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Preface
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Working on a project alone for an entire year is an incredibly lonely endeavor. But apparently, it is a rite
of passage for aerospace engineers. I am very grateful for the people who shared this journey with me.
Special thanks to Aman, Korneel, and Ole, it is almost poetic that we are all graduating within a month. I
also want to thank the other people who were in SIM0.04 over the past months, thank you for the support,
fun coffee breaks, and lunches in the sun.

Lastly, I want to thank my girlfriend and family for their love and support during this challenging and
time-intensive part of my studies. As this chapter closes, I am looking forward to spending more time with
you again. I couldn’t have achieved this without you!
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Delft, December 15, 2024
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1
General Introduction

Loss of control in-flight (LOC-I) remains a critical safety concern in aviation, responsible for a majority
of fatal accidents over the past decades [1, 2, 3, 4]. LOC-I occurs when a pilot is unable to maintain
control and the aircraft deviates from its intended flight path. Stalls have been shown to be a common
precursor to LOC-I incidents [5, 6, 7]. If not correctly recognized, a stall can escalate into a more severe
upset. Therefore, recognition is seen as a fundamental aspect of accident prevention [8]. The critical
nature of stall recognition in LOC-I scenarios underscores the importance of effective upset prevention
and recovery training (UPRT). Training goals have been put forward by the International Committee for
Aviation Training in Extended Envelopes (ICATEE) [9] and are adopted by ICAO, FAA and EASA [10, 11,
12]. Analysis of training goals showed that it is necessary to improve the aerodynamic models in stall
regimes for flight simulator training devices [13].

Two methods exist for the creation of stall models. The first is based on extensive wind tunnel testing
and CFD analysis, for example, the simulation of upset recovery in aviation (SUPRA) project [14]. These
projects are expensive due to the high complexity and extensive use of wind tunnels. Alternatively, iden-
tification methods are used on flight test data. Stall model identification has been extensively researched
at different research institutes and universities, such as the German Aerospace Center (DLR) [15, 16,
17, 18], NASA [19], the Flight Test and Research Institute of the Brazilian Air Force [20, 21], and Delft
University of Technology (TU Delft) [22, 23, 24, 25, 26, 27, 28, 29].

Specifically in Delft, a system identification workflow has been created for the creation of stall models
of the Cessna Citation II. A longitudinal stall model was created by Van Ingen [23] and an asymmetric stall
model by De Fuijk [29]. Both methods use a combination of linear models for the aerodynamic coefficients
and an embedded separation state that depends on a nonlinear model.

This thesis builds upon the existing system identification workflow by improving the nonlinear parame-
ter optimization process. The primary objective of this research is to enhance the Citation II aerodynamic
stall models by developing a more efficient nonlinear system identification routine. It does so by exploring
the use of separable nonlinear least squares to reduce computational complexity.

This thesis is organized as follows: Part I presents the initial research phase, in which a literature
review is performed and the scope of the research is defined. Part II is the result of this thesis, a scientific
article contributing to safer flight, by proposing improved methods to create stall models. Further research
elements, beyond the scope of the paper are discussed in Part III. Lastly, a reflection on the work and
recommendations for future work is given in Part IV.

2



2
Literature Review

This chapter covers the relevant literature used as a starting point for the work in this thesis. The relevance
of stall modeling is introduced in Section 2.1. Information on the test vehicle, available data, and data pre-
processing is provided in Section 2.2. A background of stall and its modeling is covered in Section 2.3. In
Section 2.4, the multivariate simplex spline is introduced. Lastly, Section 2.5 covers separable nonlinear
least squares which is a special variant of nonlinear least squares that will be used in this thesis.

2.1. Stall Modeling Relevance
LOC-I remains a critical safety concern in aviation, responsible for a majority of fatal accidents over the
past decades [1, 2]. LOC-I occurs when an aircraft deviates from its intended flight path and the pilot is
unable to regain control, resulting in a crash. This category of accidents includes situations such as stalls,
spins, and unintentional maneuvers that place the aircraft outside its normal flight envelope.

From 2013 to 2022, LOC-I accidents accounted for the most crash-related fatalities compared to other
causes like controlled flight into terrain or runway excursions [3]. The International Air Transport Asso-
ciation reports that LOC-I incidents have been the most severe, giving passengers the lowest chance
of surviving such accidents [4]. These incidents are often linked to poor pilot response to unusual flight
conditions and failures in preventing or recovering from stalls and other aerodynamic upsets [30, 31].

Stalls are a common precursor to LOC-I incidents [8, 5, 6, 7]. A stall occurs when the aircraft’s angle of
attack increases beyond a critical point, leading to a loss of lift due to flow separation [32]. If not correctly
recognized, a stall can escalate into a more severe upset, therefore, recognition is seen as a fundamental
aspect of accident prevention [8]. The critical nature of stall recognition in LOC-I scenarios underscores
the importance of effective UPRT.

UPRT is designed to address skill deficiencies identified in LOC-I accidents [9]. The training objectives
have been established by ICATEE [13] and adopted by ICAO in theManual on AeroplaneUpset Prevention
and Recovery Training [10]. Furthermore, the American and European flight authorities amended their
pilot training requirements to reflect the same [11, 12].

In an analysis of current state-of-the-art simulator capabilities, 56% of the training objectives were
found to be achievable. However, 26% of tasks require upgraded Level D / Type 7 simulators. These
enhancements should be made to the instructor station, stall buffet models and post-stall aerodynamics
models [13]. This research aims to take further steps in improving post-stall aerodynamic modeling.

2.2. Flight Experiments
At different research institutes flight test experiments have been performed to study aircraft stall. Most
notably are the German Aerospace Center (DLR) [15, 16, 17, 18], NASA [19], the Flight Test and Research
Institute of the Brazilian Air Force [20, 21], and TU Delft [22, 23, 24, 25, 26, 27, 28, 29]. In this section,
past experiences of stall modeling in Delft are discussed specifically. This is done by introducing the flight
vehicle in Subsection 2.2.1. Then, in Subsection 2.2.2 the past flight tests are summarized. Lastly, the
concept of flight path reconstruction is introduced in Subsection 2.2.3, which is an integral part of the data
preprocessing.

3



2.2. Flight Experiments 4

2.2.1. Flight Test Vehicle
The PH-LAB, a Cessna Citation II, is a flight test vehicle jointly owned by TU Delft and the Netherlands
Aerospace Center (NLR). The aircraft is used for academic and research purposes. It is outfitted with a
modern fly-by-wire system and multiple data collection systems. The aircraft schematics can be found
in Fig. 2.1. The aircraft’s general dimensions, mass, and inertia properties can be found in Table 2.1.
Information on the installed data collection systems is listed in Table 2.2. The most notable instrument
is the air-data boom installed that measures the angle of attack and sideslip. This is the flight vehicle
modeled in this research.

Figure 2.1: Schematic views of the PH-LAB, including the body-fixed reference frame axes definition.
The left schematic also illustrates the installed air data boom. (adapted from [23])

Table 2.1: PH-LAB dry mass and dimensions (adapted from [23])

Dimensions Mass and Inertia
b 15.9 m 4,157 kg
c̄ 2.09 m Ixx 12,392 kgm2

S 30.0 m2 Iyy 31,501 kgm2

Izz 41,908 kgm2

Ixz 2,252.2 kgm2

Table 2.2: List of flight test equipment installed in the Cessna Citation II aircraft PH-LAB including the
variables they measure, which are relevant to this research (adapted from [23])

Name Explanation Measures Variables Units

GPS Global Positioning System Position in FE xE , yE , zE m
Velocity in FE ẋE , ẏE , żE m/s

DADC Digital Air-Data Computer Total airspeed VTAS m/s

AHRS Attitude and Heading Reference System
Aircraft attitude ϕ, θ, ψ rad
Body rotation rates p, q, r rad/s
Body specific forces Ax, Ay, Az m/s2

Synchro Angle Measurements Contr.surf.defl δa, δe, δr rad
Boom Air data boom Air incidence angle α, β rad
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2.2.2. Stall Database
Over the years, the stall research group at TU Delft performed multiple stall tests. These tests were
performed using the flight vehicle discussed in Subsection 2.2.1. This chapter provides an overview of
these tests.

• 2015 stall data: The first stall dataset was obtained through test flights performed for the course
flight dynamics in the third year of the Aerospace Engineering Bachelor’s degree at Delft University
of Technology. All aerospace students have an opportunity to be part of a flight test, in which data is
collected for their projects. Van Horssen [22] used data collected during these flights for his Master
Thesis work. The dataset consisted of 69 stalls.

• 2016 stall data: Van Horssen [22] recognized that a lack of data on the angle of sideslip limits the
modeling capabilities. In 2017 specific stall tests were performed with an air data boom measuring
both angle of attack and sideslip. Van Ingen [23] analyzed the performance of an updated Kalman
filter, which revealed that the 2015 stall data will be unreliable when a sideslip is present. The
reliability can not be verified as there is no data on the sideslip during those tests. It is thus unwise
to use the data from 2015.

• 2018 stall data: In 2018 another test was performed. In this case, audio and video were recorded
for later use in the flight simulator. Furthermore, multiple stalls were recorded for identification pur-
poses. The logbook shows that problemswere encounteredwith the autopilot and fly-by-wire system.
However, this data was still used by Delfosse [27] in his work on asymmetric stall modeling.

• 2019 stall data: In 2019 a test was performed that mainly gathered data in the landing configuration
of the aircraft. Delfosse [27] used this data to create a stall model in this configuration.

• 2022 stall data: In 2022 extra data was gathered on stalls with high angles of sideslip. This was
done as part of the research effort by De Fuijk [29], who focused on improving the asymmetric stall
model of the Citation.

• 2023 stall data: In 2023 the research group started researching multivariate splines as a method for
full envelope stall modelling. For this reason, a test flight was performed gathering data at different
flight levels. At all flight levels stalls and normal maneuvers were performed.

• 2024 stall data: In 2024 another stall test was performed to gather data for accelerated stalls of 1.4g.
This equates to a bank angle of 45 degrees. This data has been used by Van Wezel [33] to combat
α̇ and q∗ correlations. This resulted in a new method for modeling the pitch moment coefficient.

The data compiled over the years can be combined to create new data sets. However, it is worth
mentioning two sets as they have been used in the past by Van Ingen [23] and De Fuijk [29]. These
are referred to as the Van Ingen and the Asym datasets. The former includes 34 stalls and was used
by Van Ingen [23] for identification purposes. This set includes the stalls performed in the 2016 stall
data, an overview is provided in Table 2.3. De Fuijk [29] used a part of the data in the Van Ingen dataset,
supplemented with data collected in the test flight of 2022. An overview of this dataset is given in Table 2.4.

Table 2.3: An overview of the manoeuvres included in the Van Ingen data set. (Adapted from [29])

Flight Level Load factor Intended sideslip (◦) Input(δa|δe) Number of data sets
80-110 1.0g 0 QR | QR 2
110-150 1.0g 0 QR | QR 4
150-200 1.0g 0 QR | QR 11
150-200 1.1g 0 QR | QR 10
150-200 1.3g 0 QR | QR 7
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Table 2.4: An overview of the manoeuvres included in the Asym data set. (Adapted from [29])

Flight Level Load factor Intended sideslip (◦) Input(δa|δe) Number of data sets
150-200 1.1g 0 QR | QR 12
150-200 1.1g 0 3211 | QR 5
150-200 1.1g 5 QR | QR 1
150-200 1.1g 5 3211 | QR 5
150-200 1.3g 0 QR | QR 7

2.2.3. Flight Path Reconstruction
Flight path reconstruction is an essential part of any aircraft system identification routine. The sensors
discussed in Subsection 2.2.1 will include bias and noise. Moreover, some states can not be directly
measured. In Delft, the two-step method was developed to perform system identification when such
biases, noise and unmeasured states are present. The two-step method first estimates the aircraft states
and then uses the aircraft states as input for system identification. The motivation behind this choice
comes from the common use of linear flight models. By splitting the steps, only the state estimation is
nonlinear. This allows for the use of easier linear system identification methods, such as ordinary least
squares. Furthermore, the trouble of setting up a state estimation method such as a Kalman filter does not
need to be repeated when different model structures are explored. The use of Kalman filters has been well
covered in the stall research group and is therefore not a focus in this research. An unscented Kalman
filter is used and more information on the implementation of such a filter can be found in, for example,
Van Ingen [23].

2.3. Aerodynamic Stall Modeling
Aerodynamic stall modeling has been extensively researched in the context of aircraft stability analysis
[34] and rotor load analysis [35]. This section introduces the current state of the field. First, a recap of
stall types and phenomena is given in Subsections 2.3.1 and 2.3.2. Then, an introduction to the Goman-
Khrabrov stall model [34] is given in Subsection 2.3.3, which is the major model in aircraft stall modeling.
Lastly, the Leishman-Beddoes model is introduced in Subsection 2.3.4, this model is the largest in rotor
loads analysis.

2.3.1. Types of Stall
In this section, an introduction is given to different types of stall. The types discussed are associated with
low speeds and the information is taken from Anderson [32, pp. 395-400]. At high speeds stall can also
occur, Vos and Farokhi [36] discuss this in more detail. The low-speed stall types are:

• Leading edge stall: A stall phenomenon associated with thin airfoils, between 10% and 16% of
the chord length. As the name suggests, stall is initiated at the leading edge. The complete flow
separation results in a sharp decrease in lift coefficient.

• Trailing edge stall: Alternatively, stall can be initiated from the trailing edge. This type of stall is
characteristic for thicker airfoils. The lift decrease is more gradual due to the separation creeping
forward on the airfoil.

• Thin airfoil stall: This stall happens for extremely thin airfoils. The high rate of curvature at thin
airfoil leading edges causes early separation. Opposed to leading edge stall, the flow reattaches
and forms a separation bubble. As the angle of attack is increased the reattachment point moves
backwards and reaches the trailing edge, after which complete separation takes place. This type of
stall is very subtle and can be similar to trailing edge stall.

2.3.2. Dynamic Stall Phenomenology
The previous section introduced three types of stall. These are measured under static conditions. During
dynamic maneuvers, additional effects are introduced. Before diving into the detailed models that rep-
resent the stall, the phenomena involved during the dynamic stall are discussed. Figure 2.2 shows the
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lift curve for an airfoil following a ramp in the angle of attack. Multiple phases can be extracted from the
curve, which are numbered. These numbers relate to the airfoils presented in Fig. 2.3, which shows the
flow fields at the specific stage. The stages can be explained as follows:

• Point 1: There are slight differences observed in the linear part of the lift curve. The lift is slightly
higher due to the rotation of the airfoil. This is due to a starting vortex that is formed on the top
surface. This is a well-known phenomenon and is modeled by the Wagner function [37].

• Point 2: This is the point where the static stall is observed, it can be seen that the unsteady lift curve
extends beyond the static lift curve. This continuation of the lift curve is attributed to a vortex at the
trailing edge that induces suction at the trailing edge. As can be seen in Fig. 2.3. The trailing edge
suction leads to an additional positive pressure gradient over the top of the airfoil, which allows the
flow to stay attached.

• Point 3: There is a plateau visible which happens as the trailing edge vortex separates. The suction
at the trailing edge disappears and flow reversal starts from the trailing edge.

• Point 4: After the plateau another increase in lift is visible. This is caused by the creation of a
dynamic stall vortex (DSV). This vortex is formed due to an accumulation of reverse flow causing
the shear layer to roll up. The existence of a vortex causes additional suction pressure.

• Point 5: At this point the maximum lift is achieved. This is caused by the separation of the DSV
which convects over the airfoil. The maximum lift is achieved as the DSV reaches the mid-chord.

• Point 6: As the DSV separates a large reduction in lift is observed. If the increase in angle of attack
continues beyond this point additional stall vortices can be formed causing further fluctuations in the
lift.

[44]. However, the authors of the present article propose that
regardless of the type of motion, the primary effect can be consid-
ered to be on the angle of attack histories experienced by the airfoil
due to the particular type of motion that is experienced. This is
because, unlike the simple steady-state case, the instantaneous
angle of attack for the unsteady case is dependent on several veloc-
ity vectors that form the resultant velocity experienced by the air-
foil. Note that the instantaneous angle of attack, illustrated in
Fig. 16, is not the same as the conventionally-defined angle of
attack, between the freestream velocity and the airfoil chord. The
velocity vectors involved in two different types of motions are
indicated in Fig. 16. For the simple ramp-type motion, it can be
observed that the freestream velocity (U1) and the velocity of
the leading edge due to pitching (ULEP ) constitute the resultant
velocity (URes) experienced by the airfoil. On the other hand, for
an airfoil undergoing heaving motion as well, an additional compo-
nent of heave velocity (ULEH ) also factors in the determination of
the resultant velocity. Hence, for similar magnitudes of U1 and
ULEP , the instantaneous angle of attack (ainst) differs for the two
cases due to the additional heave velocity component. The figure,
therefore, simply illustrates that it is the angle of attack histories
(ainst) that are important rather than the type of motion itself. This
inference can be drawn due to the key similarities observed
between all dynamic stall cases caused by different types of
unsteady motions. These similarities include, but are not limited
to, the large overshoots in lift and the formation of the DSV [51].
This leads to the conclusion that a universal parameter can be
defined for all types of unsteady motions using the freestream
velocity and the resultant velocity experienced by the airfoil.

4. Dynamic stall lift characteristics

Due to the complexity of the dynamic stall process, several dis-
crepancies exist in the present literature as to the actual cause of
lift during dynamic stall. Early research [19,57] has indicated that
the primary cause of the large increase in lift is due to the presence
of the concentrated vortex structure on the suction side of the air-
foil. Similarly, Walker et al. [91] also proposed, through the use of
direct flow visualizations and surface hot wires, that the primary
DSV structure was responsible for the increased lift as long as it
stays in the vicinity of the airfoil. However, this concept was
opposed by Albertson et al. [2] when they proposed that the DSV
was not responsible for the sustenance of lift in the unsteady case.
The lack of consensus regarding the sustenance of lift during
unsteady motions indicates that a unified theory of lift generation
during dynamic stall is lacking. In the present section, the authors
have attempted to present some theories explaining the generation
lift by an airfoil pitching at constant pitch rates (ramp-type
motion). An insight into the lift characteristics of an airfoil during
such unsteady motions can help in the fundamental understanding
of the phenomenon.

For the ramp-type motion, the airfoil is allowed to be pitched at
constant angular rates to a pre-determined maximum angle of
attack, generally starting at an angle of zero degrees. Unlike the
sinusoidal-case, where the airfoil returns to the minimum angle
of the cycle, in the ramp-case, the airfoil is allowed to maintain
the maximum angle of attack of the cycle for several chord lengths
of flow travel. During the later stages of the pitch-up, the formation
of the DSV is observed, depending primarily on the reduced
frequency of pitching. A comparison of the lift curves for both
the steady and unsteady case for the NACA 0015 airfoil has been
presented earlier in Fig. 4. From the figure, several interesting
characteristics of the lift curve for a symmetric airfoil can be
extracted. These are presented in Fig. 17, with slight exaggeration,
to highlight some of the more interesting characteristics.

The unsteady lift curve can conventionally be divided into the
pre- and post-stall regimes. From Fig. 17, the primary lift curve
characteristics are:

1. At the onset of rotation, the lift produced at zero angle of attack
for the unsteady case is slightly larger as compared to that pro-
duced by the simple symmetric airfoil during steady state
operation.

2. As the angle of attack increases, the lift curve slope starts to
decrease to some extent and a slight curvature is observed in
the so-called linear region of the lift curve. As the steady-state
stall angle of attack is exceeded, the airfoil continues to gener-
ate lift.

3. A slight kink or plateau is observed in the lift curve.
4. With further increase in the angle of attack, the lift curve slope

is observed to increase. This is the stage at which the primary
DSV is observed.

5. The airfoil experiences complete flow separation and there is a
sudden decrease in the lift indicating the occurrence of dynamic
stall.

6. The airfoil continues to generate lift beyond dynamic stall if
pitching is continued. The post-stall lift characteristics during
the foil rotation are still superior compared to the steady-state
lift characters.

4.1. Pre-stall regime

For an airfoil undergoing constant pitch motions, the lift coeffi-
cient in the so-called ‘linear’ regime experiences some peculiar
effects such as increased lift at the onset of motion and a decreased
lift curve slope [36,38,39]. These effects have also been observed
using conformal mapping techniques that model the inviscid,
unsteady flow around an airfoil pitching at constant rates [3,87].
A further effect, observed by the present authors, is the slight cur-
vature in the lift coefficient curve (Section 4.1.2) before the forma-
tion of the DSV. Afterwards, a slight kink is observed in the lift
curve just prior to the formation of the DSV. Subsequently, the lift
curve slope increases due to the presence of the vortex. These
effects have been discussed in further detail in the following
sections.

4.1.1. The onset
The step increase in lift at the onset of rotation was illustrated

by Jumper et al. [39] experimentally by fitting a straight line
through the so-called linear region of the lift curve for the dynamic
stall cases. It was observed that increasing the reduced frequency
resulted in an increase in the lift at the onset of rotation. The

Fig. 17. Comparison of the primary lift curve characteristics of the unsteady ramp-
type dynamic stall with steady-state behavior.

198 A. Choudhry et al. / Experimental Thermal and Fluid Science 58 (2014) 188–208

Figure 2.2: Lift coefficient during a progressive dynamic stall. Angle of attack follows a ramp profile.
(adapted from [38])
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(2) The effects of Reynolds number on the dynamic stall process
have generally been declared as minimal. However, as
shown in the current work, the Reynolds number and the
state of the boundary layer prior to unsteady excitation
plays a significant role in the forces produced by the airfoil.
A larger range of Reynolds numbers needs to be investigated
to understand this effect.

(3) The effects of Mach number on the dynamic stall process are
generally disputed. It has been argued that an increase in
Mach number results in the reduction of the unsteady
effects associated with the dynamic stall process. It is, how-
ever, disputed whether or not a DSV is observed during
operation at compressible conditions. Furthermore, the
authors were not able to find any studies related to dynamic
stall at supersonic freestream conditions.

(4) The effects of airfoil profile on the dynamic stall process
have been largely ignored. This is primarily due to a lack
of quantifiable parameters that can be used to compare air-
foil performance during unsteady operation. It has been
shown in the present article that the airfoil profile tends to
significantly affect the flow features in its vicinity and,
therefore, alters the lift and stall characteristics of the airfoil.
Hence, there is a need for organized study towards

understanding the effects of airfoil leading edge radius, cam-
ber and thickness-to-chord ratio on the dynamic stall
process.

(5) Three dimensional effects, such as finite-span wings and
spanwise flow due to helicopter or wind turbine blade rota-
tion, also affect the global flow features during the dynamic
stall process. However, a detailed analysis of the effects of
these flow features on the lift curve characteristics is still
lacking.

In addition, the causes of lift sustenance for an airfoil pitching at
constant pitch rates undergoing dynamic stall have been investi-
gated in the article. The research has been based on the prevalent
theories found in literature and authors’ conjectures based on sur-
face pressure measurements and flow visualizations of the
dynamic stall process. The unsteady lift curve can be divided into
pre- and post-stall states much like the conventional steady state
situation. The lift curve characteristics of an airfoil pitching at con-
stant rates, in conjunction with Fig. 31, can be summarized as
follows:

(1) At the onset of rotation, the lift produced at zero angle of
attack for the unsteady case is found to be slightly larger

Fig. 31. Authors’ conjecture of the flow topologies around an airfoil undergoing constant pitch dynamic stall.

206 A. Choudhry et al. / Experimental Thermal and Fluid Science 58 (2014) 188–208

Figure 2.3: Flow fields around an airfoil during dynamic stall (adapted from [38])

2.3.3. Goman-Khrabrov Model
Introduced by Goman and Khrabrov [34] with flight dynamics simulation and stability analysis in mind, this
model is a simple representation of some of the effects that take place during flow separation and vortex
breakdown. Specifically, it is used to model trailing edge flow separation and its effect on the aircraft lift.

Longitudinal Modeling
To model trailing edge stall Goman and Khrabrov [34] used Kirchhoff’s theory of flow separation for flat
plates. It stipulates that the lift coefficient depends on an internal variable X. This variable describes
the state of flow separation as the chord-wise separation point, 0 describes a fully separated flow at the
leading edge and 1 describes a fully attached flow. Equation (2.1) describes the dependence of the lift
coefficient on the flow separation variable [15]. This is a relatively simple model for illustration, but during
model identification, an iterative procedure to find model terms can be used [23].

CL (α,X) = CLα

(
1 +

√
X

2

)2

α (2.1)

From the equation above, it can be seen that when the airflow is fully attached (X = 1) the equation
reduces to CL (α) = CLαα, which describes the lift coefficient as a linear function of the angle of attack.
However, when the flow separates the lift is reduced, this is in line with expectations of a stall. Fischenberg
[15] suggests a formulation for the steady flow separation point described in Eq. (2.2). Here a1 and α∗

are fitting parameters that will be explained later.

X0 (α) =
1

2
{1− tanh (a1 (α− α∗))} (2.2)

With Eqs. (2.1) and (2.2) the static lift curve can be created. This is the curve created when taking static
measurements at different angles of attack. An example can be seen in Fig. 2.4. However, it is known that
during unsteady conditions the separation point will be significantly different from the static measurements.
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This can be attributed to two categories of effects. Firstly, due to circulation and boundary layer effects and
secondly, because of time lag in the response to a new flow condition. These two effects are accounted
for by the first-order differential equation in Eq. (2.3). The differential equation is a simple approximation
of the Wagner or Theodorsen function [15].

τ1
dX

dt
+X = X0 (α− τ2α̇) (2.3)

The differential equation above introduces two time constants, τ1 and τ2. These account for the un-
steady effects mentioned before. To visualise the effect each parameter has, Figs. 2.4 to 2.7 are created.
A summary of the model parameters with a description of the influence it has is presented:

• Abruptness parameter (a1): This parameter determines the abruptness of the separation and lift
drop-off. The effect of this parameter is visualized in Fig. 2.4. It can be seen that an increase in the
magnitude of this parameter speeds up the transition from fully attached to fully separated. As a
result, it can be seen that the drop-off in lift is sharper.

• Separation parameter (α∗): This parameter defines the 50% separation point in a steady condition.
The effect of this parameter is visualized in Fig. 2.5. It can be seen that an increase of this parameter
shifts the curve forX as a function of α to the right. As a result, the maximum lift coefficient is larger.

• Time lag parameter (τ1): This parameter describes a phase delay in the separation point X. The
effect of this parameter is visualized in Fig. 2.6. It can be seen that the separation and attachment
are delayed under a periodic excitation of the angle of attack.

• Hysteresis parameter (τ2): This parameter describes the hysteresis effect caused by the angle of
attack rate. The effect of this parameter is visualized in Fig. 2.7.
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Figure 2.4: Effect of parameter a1 on the lift curve and flow separation point. With lift curve slope
CLα

= 1.6π [rad−1], separation parameter α∗ = 10 [deg], time lag and hysteresis parameters
τ1 = τ2 = 0 [s]
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Figure 2.5: Effect of parameter α∗ on the lift curve and flow separation point. With lift curve slope
CLα

= 1.6π [rad−1], abruptness parameter a1 = 70 [−], time lag and hysteresis parameters
τ1 = τ2 = 0 [s]
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Figure 2.6: Effect of parameter τ1 on the lift curve and flow separation point. With lift curve slope
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Figure 2.7: Effect of parameter τ1 on the lift curve and flow separation point. With lift curve slope
CLα

= 1.6π [rad−1], separation parameter α∗ = 10 [deg], abruptness parameter a1 = 70 [−] and time lag
parameter τ1 = 0 [s]

Asymmetric Modeling
The model described above can only treat the longitudinal aspects of a stall. It was found by Van Ingen
[23] that stall modelling with the separation point X does not identify stall contributions to the asymmetric
dynamics. During testing, large roll-offs were observed. In the literature, these roll-offs are described as
being caused by differential lift on lifting surfaces [29, 18, 17]. In mathematical terms, it can be said that
the difference in the roll and yaw moment coefficients is described by Eqs. (2.11) and (2.12) respectively.

∆Ĉl = [(CL)l − (CL)r]
yw
b

(2.4)

∆Ĉn = [(CD)l − (CD)r]
yw
b

(2.5)

To model differences between the left and right wing, De Fuijk [29] proposes using a local angle of
attack as seen in Eq. (2.6). This local angle of attack is determined at the mean aerodynamic chord (MAC),
with ∆yP = ±yMAC . An additional effect of the difference in the angle of attack is that the separation is
also different. Now the left and right wings have separate governing flow separation points as can be
seen in Eq. (2.7). This will propagate further into the lift formulation, as can be seen in Eq. (2.1).

αP = atan
(
wP

uP

)
= atan

(
w − q∆xP + p∆yP
u− r∆yP + q∆zP

)
(2.6)

τ1
dXl,r

dt
+Xl,r =

1

2
{1− tanh (a1 (αl,r − τ2α̇l,r − α∗))} (2.7)

In the work by De Fuijk [29] two different models for the roll moment were proposed. Firstly, Eq. (2.1)
is used to define the difference in lift. The resulting formula can be seen in Eq. (2.8). Furthermore, by
assuming symmetric wings, the coefficients (CLα)L and (CLα)R are identical and can be reduced to Cl∆Ka

.
Furthermore, ∆Ka is introduced leading to the reformulation in Eq. (2.9).

∆Ĉl =

[
(CLα)l

(
1 +

√
Xl

2

)2

αl − (CLα)r

(
1 +

√
Xr

2

)2

αr

]
yw
b

(2.8)
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∆Ĉl = Cl∆Ka
∆Ka

yw
b

with ∆Ka =

(
1 +

√
Xl

2

)2

αl −
(
1 +

√
Xr

2

)2

αr (2.9)

Alternatively, Eq. (2.10) is proposed. The reason for this simpler model is that it was not known if the
Kirchhoff model could be used for a single wing. This model takes the difference between the separation
parameters as a regressor for the roll moment coefficient. De Fuijk [29] determined that this second model
was more effective in fitting the data.

∆Ĉl = Cl∆X
∆X

yw
b

with ∆X = Xl −Xr (2.10)

Singh and Jategaonkar [17] propose a slightly different model structure, they argue that the roll and yaw
moments are not a function of the lift and drag coefficients, but of the normal and chord-wise coefficient.
The difference between these two reference frames is the angle of attack. For the dataset used by De
Fuijk [29] this difference leads to a maximum error of 4.5%, calculated at the maximum angle of attack.

∆Ĉl = [(CN )l − (CN )r]
yw
b

(2.11)

∆Ĉn = [(Cc)l − (Cc)r]
yw
b

(2.12)

In the original paper byGoman and Khrabrov [34], the authors proposed a different method for including
asymmetric effects. They included an effect of sideslip to the separation parameter as follows:

τ1
dXl,r

dt
+Xl,r = X0 ±

∂X0

∂β

(
β − τ3β̇

)
, (2.13)

where a third time delay is included for the angle of sideslip. By assuming the roll moment induced by
the vortex breakdown will be proportional to the difference between the left and right separation parame-
ters, a new differential equation can be created:

τ1
dCvor

l

dt
+ Cvor

l =
dCvor

l

dX

dX0

dβ

(
β − τ3β̇

)
. (2.14)

It should be noted that this analysis was performed for a delta wing and the application to an aircraft
should be analyzed.

2.3.4. Leishman-Beddoes Model
As a quick note, the Goman-Khrabrov model is not the only existing stall model. It is merely the one
commonly used in aircraft stall modeling. In the field of helicopter and wind turbine load analysis, different
models exist. Perhaps the most influential work has been by Leishman and Beddoes [35]. Melani et al.
[39] provides a review of the current landscape in the field of rotor stall models, an adapted figure from
their work has been included in Fig. 2.8. Due to the highly dynamic nature of rotors, more effects have
been included in the stall models, such as leading-edge stall, center of pressure corrections, and first and
second-order vortex shedding.
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Figure 2.8: A review of stall models in the field of rotor load analysis (Adapted from [39])

2.4. Multivariate B-splines
Multivariate B-splines are an advanced nonlinear modeling structure, that has been well-researched at
Delft University of Technology. Due to its stable local basis it is ideal for global nonlinear model estimation.
Multivariate B-splines are seen as a potential method for merging nominal and stall flight regimes.

The foundation of simplex multivariate B-splines is the simplex. A simplex is defined as a geometri-
cal structure that minimally spans a set of dimensions. The simplex of dimension n is uniquely defined
by n + 1 non-degenerate vertices. Simplices have a local coordinate system called the Barycentric co-
ordinate system. To convert Cartesian coordinates x = (x0, x1, · · · , xn−1) to barycentric coordinates
b = (b0, b1, · · · , bn) on a n-simplex tj = ⟨v0, v1, · · · , vn⟩, the transformation for a given x can be done
using the equations below, where first b1 through bn are calculated using Eqs. (2.15) and (2.16) and sub-
sequently b0 is calculated using Eq. (2.17). Finally, these calculations are given a shorthand notation:
b = btj (x).

[
b1 b2 · · · bn

]⊤
= A−1

tj ·
(
x⊤ − v⊤0

)
(2.15)

Atj =
[
(v1 − v0)

⊤
(v2 − v0)

⊤ · · · (vn − v0)
⊤
]

(2.16)

b0 = 1−
n∑

i=1

bi (2.17)

The simplex polynomial basis functions are derived from the multinomial expansion presented in
Eq. (2.18). Some notation can be introduced to simplify this formulation. Firstly, the multi-index κ =
(κ0, κ1, · · · , κn) is introduced. The multi-index has the following properties: |κ| = κ0 + κ1 + · · · + κn and
κ! = κ0!κ1! · · ·κn!.

(b0 + b1 + · · ·+ bn)
d
=

∑
κ0+κ1+···+κn=d

d!

κ0!κ1! · · ·κn!
bκ0
0 bκ1

1 · · · bκn
n (2.18)
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Using the multi-index properties the basis functions of Eq. (2.18), Bd
κ(b), can be simplified as described

in Eq. (2.19). Additional simplification is done using the following notation: bκ = bκ0
0 bκ1

1 · · · bκn
n .

Bd
κ(b) =

d!

κ!
bκ0
0 bκ1

1 · · · bκn
n =

d!

κ!
bκ (2.19)

Using the basis functions a simplex polynomial can be created by multiplying the basis functions de-
fined in Eq. (2.19) by a polynomial coefficient. This formulation is given in Eq. (2.20). Additionally, the
vector notation of the simplex polynomial is given in Eq. (2.21).

p(b) =
∑
|κ|=d

ctjκ B
d
κ(btj (x)) (2.20)

p(b) = Bd
tj (btj (x))c

tj (2.21)

This formulation is called the B-form of a simplex polynomial. The polynomial coefficients are also
named B-coefficients. These coefficients locally control the shape of the simplex polynomial and a spatial
location can be assigned to them. The Barycentric coordinates of these locations are calculated using
Eq. (2.22). The spatial locations have been visualized for increasing orders one through four in Fig. 2.9.

b(cκ) =
κ

d
(2.22)
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Figure 2.9: Visual representation of the B-coefficient spatial locations for increasing order of simplex
polynomial

To move from a single simplex polynomial to a simplex spline, the concept of triangulation needs to
be explained. A triangulation T is the partitioning of an n-dimensional domain into a set of J n-simplices
that do not overlap. The intersection of two simplices ti and tj is defined as the null space or a k-simplex
t̃ with 0 ≤ k ≤ n− 1 [40].

T :=

J⋃
i=1

ti, ti ∩ tj ∈
{
∅, t̃
}
, ∀ti, tj ∈ T (2.23)

For a triangulation T consisting of J simplices, the spline function can be defined:

srd (x) = Bd (b (x)) · c ∈ R (2.24)

where Bd is a row vector that contains the basis function of every simplex tj , as
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Bd (b (x)) :=
[
Bd

t1 (b (x)) Bd
t2 (b (x)) · · · Bd

tJ (b (x))
]
∈ R1×J·d̂, (2.25)

and c is a column vector that contains all B-coefficients for each simplex tj , as

c :=
[
ct

⊤
1 ct

⊤
2 · · · ct

⊤
J

]⊤
∈ RJ·d̂×1. (2.26)

With the inclusion of multiple simplices, there arises a need for continuity conditions. The continuity
conditions ensure a smooth transition from simplex to simplex. Continuity comes in different orders where
the rth order continuity implies that the rth directional derivative of the simplex polynomials of adjacent
simplices is continuous across the interface. The condition that guarantees this is Eq. (2.27), where v∗
is the out-of-edge vertex. Note that this is just one of the possible permutations of the multi-index, the
location of m and 0 are arbitrary and dependent on the out-of-edge vertex.

ct2κ0,m,κ1
=
∑

|γ|=m

ct1(κ0,0,κ1)+γB
m
γ (v∗) , 0 ≤ m ≤ r (2.27)

Using Eq. (2.27) the smoothness matrix H can be constructed. The continuity conditions can be
summarized as a system of equations:

H · c = 0 (2.28)

For the parameters of a simplex spline, a constrained least-squares problem must be solved. This can
be done by using Lagrange multipliers and a modified cost function called the Lagrangian:

L (c, λ) =
1

2
(Y −B · c)⊤ (Y −B · c) + λ⊤ ·H · c. (2.29)

The optimum of this cost function can be found at the point where the partial derivatives with respect
to c and λ are zero. This can be reformulated in the following form,

[
B⊤ ·B H⊤

H 0

]
·

[
c

λ

]
=

[
B⊤ · Y

0

]
. (2.30)

The first matrix in this form is called the Karush-Kuhn-Tucker (KKT) matrix and by inverting it one can
solve for the parameters c and λ. However, due to the general rank deficiency of the smoothness matrix,
the KKT matrix cannot be inverted and the Moore-Penrose pseudo inverse should be used. As the KKT
matrix can get large, it is more efficient to use iterative numerical solvers. One way to do this is by using
the following scheme:

ĉ(1) =

(
2B⊤ ·B +

1

ε
H⊤ ·H

)−1

·
(
2B⊤ · Y −H⊤ · λ̂(0)

)
, (2.31)

ĉ(k+1) =

(
2B⊤ ·B +

1

ε
H⊤ ·H

)−1

· 2B⊤ ·B · ĉ(k), (2.32)

where ε must be some small number such as 1e−6 and the initial value for the Lagrange parameters
should be λ̂(0) = 1. Another way to ensure the continuity conditions are met is by introducing Γ, the
null space of the smoothness matrix H. The continuity conditions are automatically met by forcing the
parameters c to be a linear combination of the vectors in the null space of H. The parameters look like
this,

c = Γ · c̃. (2.33)
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The modification should be introduced in the cost function, by substituting c in the least squares prob-
lem. The cost function looks like this,

L (c̃) = ∥Y −B · c∥2 = ∥Y −B · Γ · c̃∥2 , (2.34)

where one now solves the modified unconstrained least squares problem. The least squares solution
of the free parameters c̃ is,

ˆ̃c = (B · Γ)+ · Y. (2.35)

The parameters can then be extracted by pre-multiplying the free parameters ˆ̃c with the null space Γ.

2.5. Separable Nonlinear Least squares
Separable Nonlinear Least Squares (SNLS) is a class of nonlinear least squares problems with a special
structure. The structure discriminates parameters in a group of linear and nonlinear parameters. The
premise of this method is that the linear parameters can be rewritten as a function of the nonlinear pa-
rameters, thereby reducing the dimension of the parameter space. Furthermore, Golub and Pereyra [41]
found that leveraging this special structure reduces computation time. The technique has been widely
used in research fields such as telecommunications, robotics, and medical imaging [41].

2.5.1. Cost Function
To further understand SNLS and its potential application to aerodynamic stall modeling, the mathematical
structure of an SNLS problem will be explored. An SNLS model consists of a linear set of parameters
c, which multiply a set of regressors Φ. Opposed to standard linear least squares, the regressors Φ can
be a function of a nonlinear set of parameters θ. Note that this work deviates its notation from Golub
and Pereyra [42] to avoid confusion with the angle of attack α. The model output can then be written as
follows:

ŷi (c,θ) = Φ (θ; ti) · c, (2.36)

where c ∈ Rn and θ ∈ Rk. The least squares cost function for this model structure is formulated as
the vector norm of the difference between the observations y and the model output ŷ as

r (c,θ) = ∥y − ŷ∥2 = ∥y −Φ (θ) c∥2 . (2.37)

Due to the special property of SNLS, for a given θ, a linear least squares solution can be found for the
parameters c:

c (θ) = Φ (θ)
+
y, (2.38)

where Φ (θ)
+ indicates the Moore-Penrose pseudo inverse of Φ (θ). Golub and Pereyra [42] proved

that a global minimizer θ̂ implies a global minimizer ĉ. This enables the reduction of the parameter space:

r (θ) =
∥∥∥y −Φ (θ)Φ (θ)

+
y
∥∥∥2 =

∥∥∥P⊥
Φ(θ)y

∥∥∥2 = ∥r2 (θ)∥2 , (2.39)

where c is eliminated by substituting Eq. (2.38) into Eq. (2.37). Furthermore, P⊥
Φ(θ) is the projector

onto the orthogonal complement of the column space of Φ (θ), defined as I −Φ (θ)Φ (θ)
+.

2.5.2. Objective Gradient
Common methods for optimizing a nonlinear least squares problem require a residual Jacobian matrix.
The Jacobian matrix provides the sensitivity of the residual vector r2 (θ) to changes in the parameters θ.
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Golub and Pereyra [42] defined as:

Dr2 (θ) = DP⊥
Φ(α)y = −(P⊥

ΦDΦ)Φ+y − (Φ+)⊤(P⊥
ΦDΦ)⊤y, (2.40)

whereDΦ is the Frechet derivative of the regression matrix Φ. This derivative is a three-dimensional
tensor that stores, for each observationm, the derivatives of the n regressors with respect to the k param-
eters. This results in am×n× k sized tensor. This is visualized in Fig. 2.10. The multiplication involving
the tensor is done page-wise, meaning that the multiplication is performed as a matrix multiplication for
each entry in the parameter dimension of the tensor.
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Figure 2.10: Visual representation of the Frechet derivative of ϕ. Own work.

Golub and Pereyra [42] identified that the tensor DΦ often has many zero columns. This is the case
when not all regressors are a function of all nonlinear parameters. To improve storage, a lookup table
that maps the regressors to the nonzero derivatives is suggested by O’Leary and Rust [43]. The three-
dimensional tensor can be stored in a m× l array, where each column corresponds to a nonzero column
of the tensor. The lookup table is a 2× l array that stores information about the l nonzero columns of the
tensor. Each column I of the lookup table describes the partial derivative of regressor ΦI1 to parameter
αI2 and corresponds to the same column in the m × l array. An example of this process is provided in
O’Leary and Rust [43].

2.5.3. Statistical Properties
Once the parameter values have been found, one needs to judge the reliability of the results. One way
to do this is to approximate the covariance matrix of the parameters. The covariance matrix contains the
variance of the parameters on the diagonal. A reliable result will give a low variance meaning that it is not
dependent on the specific realizations of the data. In other words, it is robust to noise. The covariance
of the parameters can be found outside the diagonal. It describes the relation between the parameters, if
the covariance is high the parameters are co-linear and characterize the same information in the data.

For the SNLS model structure Mahata and Söderström [44] derived an equation for the covariance ma-
trixCθ̂, which contains the covariance of the linear and nonlinear parameters. The formulation approaches
the true covariance matrix for large sample sizes. The formula is as follows.

Cθ̂ =
[
∇f⊤m∇fm

]−1 [∇f⊤mΛm∇fm
] [

∇f⊤m∇fm
]−1

, (2.41)

where ∇fm is the partial derivative of the model with respect to the linear and nonlinear parameters.
The partial derivative of the linear parameters is simply the regression matrix Φ, for the nonlinear param-
eters the Jacobian of the residuals can be reused. It can be derived that the derivative of the model with
respect to the nonlinear parameters is the inverse of the residual sensitivity derived in Subsection 2.5.2:
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r2 = y − ŷ,

∂

∂αi
[r2 = y − ŷ] ,

∂r2
∂αi

= − ∂ŷ

∂αi
.

(2.42)

Using these two facts,∇fm can be derived as follows: ∇fm = [ −Dr2 Φ ]. The second parameter in
the equation for the covariance matrix is Λm, which is the auto-correlation matrix of the residuals. This is a
Toeplitz matrix of sizem×m. Its entries are created from the auto-correlation sequence λ as [Λm]ij = λi−j .



3
Research Questions

Due to significant contributions made by master students at Delft University of Technology, a framework
for system identification of stall models, using flight data, exists. This essential groundwork enables the
research of this thesis to focus on one key aspect, the nonlinear system identification routine. This directly
leads to the research objective, which is defined as:

To improve the Citation II aerodynamic stall model accuracy by developing an improved nonlin-
ear system identification routine.

Research Objective

Looking deeper into the research objective, it consists of two components. Firstly, the development of
an improved nonlinear system identification routine. This starts by reflecting on the existing methods. To
this effect, RQ 1 is formulated:

What are the limitations and potential improvements of the current nonlinear system identifica-
tion routine used for aerodynamic stall modeling?

Research Question 1

Next, an investigation should be performed, on how the proposed method, separable nonlinear least
squares, solves the limitations of the previous methods. Furthermore, the practicalities of applying sepa-
rable nonlinear least squares to the problem of stall model identification must be worked out. This has not
been done previously and requires further analysis. With this goal in mind, RQ 2 has been formulated:

How can separable nonlinear least squares eliminate the limitations imposed by the current
nonlinear system identification routine?

Research Question 2

Note that RQ 2 leads to a qualitative comparison of the old and the new method. Furthermore, it
explores the implementation of the method in MATLAB. The research question can be closed with a
quantitative comparison of the metrics determined as limitations.

Looking back at the research objective, the second aspect deals with enhancing the existing stall
models. To achieve this, the improved nonlinear system identification routine will be used to re-evaluate
the existing data. To verify if any improvements are made a quantitative comparison will be done. This
task is covered by RQ 3:

How does the output of the new nonlinear system identification routine compare to that of the
current routine?

Research Question 3

20
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RQ 3 tries to objectively compare methods by using the same data and model structures. However, using
the new method new information might be uncovered. Throughout the project research into new model
terms will be done. This leads to RQ 4:

What new model components can be identified using the new nonlinear system identification
routine?

Research Question 4

Integral to the research project is the evaluation of the existing flight data. At any stage, data gaps
can be uncovered and, depending on the availability of the aircraft, flight tests can be performed to fill the
gaps. This aspect of the research is covered in RQ 5:

What additional flight test data is required to enhance the Citation II aerodynamic stall model?

Research Question 5

Using a combination of new methods, model terms and flight data a final model will be made. This
model looks to improve on the existing models and a comparison will be made of the model terms, param-
eter variances, model statistics and time traces. This leads to RQ 6:

How does the identified stall model compare to the current stall models?

Research Question 6



4
Project Plan

4.1. Methodology
Past literature has created methodologies for system identification of Cessna Citation II stall characteris-
tics. First Van Ingen [23] came up with a methodology for longitudinal dynamics using Kirchhoff’s theory
of flow separation first introduced by Goman and Khrabrov [34]. The workflow developed is described in
Fig. 4.1. It uses the dependency of the lift coefficient CL on the internal state variable X to solve for the
parameters of the governing differential equation of X. After the identification of the X-parameters, the
model structure identification takes place. If it is found that a different model structure is identified for the
lift coefficient the X-parameter identification is redone. When this converges, the parameters of the model
are identified.

Figure 4.1: Stall model identification workflow developed by Van Ingen [23]

Building on previous work a deficiency in asymmetric stall modeling was recognized and tackled by
De Fuijk [29]. It proposes a similar strategy as for the longitudinal model but uses a dependency of the roll
moment coefficient on the local flow separation of the two wings. It converges on a model structure for Cl

after wich all other model structures are selected and linear parameter estimation takes place. De Fuijk
[29] found that the new methodology degrades the longitudinal dynamic model. He therefore proposes a
hybrid methodology with separate separation models for longitudinal and asymmetric modes.

22
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Figure 4.2: Stall model identification workflow developed by De Fuijk [29]

A major deficiency found in the previous workflows is in the optimization of the parameters. This was
done through a nonlinear solver that solved for all parameters. For van Ingen and de Fuijk respectively:

θvan,Ingen =
[
τ1 τ2 a1 α∗ CL0

CLα
CLα2 ,

]
(4.1)

θde,Fuijk =
[
τ1 τ2 a1 α∗ Cl0 Clβ Clr Clδa

Cl∆X

]
. (4.2)

It can be seen that 7 or 9 parameters need to be resolved, depending on the model. Although previous
work found a solution for the parameters, it did so suboptimally. This is evident from the post-optimization
comparison with linear estimation methods. These show that, although well correlated, there are discrep-
ancies between the nonlinear and the optimal OLS estimate. The discrepancies determined by De Fuijk
[29] can be seen in Fig. 4.3. The previous methods solved this by doing an OLS on the linear parameters
post-optimization. However, this does not guarantee global convergence.
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The distribution of the --parameter estimates over the training sets is visualized by means of box plots in Fig. 10a
and Fig. 10b, for Models A and B, respectively. The plots are grouped by the aileron input that was applied during the
stall maneuver. The parameters of Model A are more sensitive to the type of aileron input than the parameters of Model
B. Most notably for 01, the boxes of the 3-2-1-1 and QR maneuvers do not overlap. From both figures, it is confirmed
that g2 is the most difficult parameter to identify, as the estimates cover a large part of the feasible solution space.

2. Nonlinear Optimization Analysis
The nonlinear optimization indirectly influences the model performance, as the linear regression step aims to

optimize the same model structure. Unlike this nonlinear optimization, the linear regression technique described in
Section III.G provides a guaranteed global optimum. Appendix C features an example of the convergence of the
optimization over the different initial conditions. The ⇠;-parameters are estimated for both processes, allowing for the
verification of the nonlinear optimization results. The correlation plots of Fig. 11a and Fig. 11b display the ⇠;-parameter
estimates from all training sets, for Models A and B, respectively. On the horizontal axis, the results from OLS are
displayed, and the vertical axis represents the results obtained from the Interior Point (IP) method. When the methods
yield similar results, a distinct diagonal pattern is observable. Additionally, Pearson’s linear correlation coefficient (d)
between the sets is included in each plot. While this analysis cannot prove the convergence to a global optimum of the
--parameters, it provides insight into the consistency of the found solutions.

Generally, Model B exhibits a significantly stronger similarity in parameter estimates compared to Model A.
Specifically, when examining Model A, the estimates for ⇠;�- display the weakest correlation. Conversely, the ⇠;� U

estimates are highly correlated. The optimization process may encounter difficulties when the corresponding regressors
depict similar phenomena. The optimizations of Model B exhibit a high correlation for the estimates of every parameter.
Especially important to highlight is the high correlation coefficient between the optimizations of ⇠;�- , further motivating
the inclusion of only a single asymmetric stall regressor. From the results of the MOF-algorithm, the validation model fit
evaluations and the analysis in this section, Model B is identified as the most suitable ⇠;-model structure. The associated
estimated --parameters are used for the selection of the remaining models and the resulting linear regression problems.
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Fig. 11 Correlation plots showing the similarity between the linear and nonlinear optimization results. d

denotes Pearson’s linear correlation coefficient between the sets of estimates.
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Figure 4.3: Correlation between linear and nonlinear parameter optimization (Adapted from [29])

An alternative approach can be taken by recognizing the linearity of all terms except τ1, τ2, a1, and
α∗. This methodology is based on separable nonlinear least squares and will be developed as part of this
thesis.

After the successful implementation of the SNLS method, an exploration phase will start. In this phase,
different ways of including multivariate splines are explored. The first option is to create a spline model
for the aerodynamic coefficients (CL, CD, Cm, CY , Cl, Cn) directly, this is called the Full Spline Model.
Alternatively, aerodynamic derivatives can be implemented as splines, Abramov et al. [14] found that Cmq ,
for example, is a function of the angle of attack, this is called the Hybrid Spline Model. A third option is
that improvements are found through the optimizer itself, this is called the No Spline Model.

4.2. Expected Results
The goal of this thesis is to implement an improved workflow for identifying stall models. The first major
contribution is to reinvent the optimizer used to find the nonlinear parameters. Through improvements
here, the identification of more complex model structures becomes possible. A promising direction is mul-
tivariate simplex splines, but not the only direction. Therefore, after successful implementation of SNLS
an exploration phase will commence in which different opportunities of using the method are explored.

4.3. Planning
The global planning is visualized in Fig. 4.4. The development of SNLS is expected to be the major
hurdle in the first phase of the thesis. After successful implementation, different applications are explored,
referred to as Full Spline Model, Hybrid Spline Model, and No Spline Model.
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Improved Longitudinal Stall Modeling with Separable Nonlinear
Least Squares and Dynamic Stall Maneuvers

Joey A. Herbold ∗

Delft University of Technology, Delft, Zuid-Holland, 2629HS, the Netherlands

Loss of control inflight is the most common cause of fatal accidents in aviation. Aerodynamic

stall models are utilized in pilot training to enhance safety and prevent accidents. This research

presents an advanced longitudinal stall model for the Cessna Citation II, achieved through

innovations in modeling methodologies and experimental design. By introducing dynamic stall

maneuvers with step inputs, the study mitigated 𝜏1 and 𝜏2 parameter correlation, enabling more

reliable parameter identification. A separable nonlinear least squares method significantly

reduced computational time for nonlinear stall model estimation, decreasing it from hours

to seconds. This approach revealed two minimally correlated flow separation states, offering

deeper insights into wing flow characteristics and improving model accuracy. The lift model

was refined to incorporate pitch rate and elevator deflection effects, while the drag model

was enhanced with a lift-induced drag component. Additionally, a center of pressure model

was derived from pitching moment data, advancing the understanding of stability during

stall. A novel structure for characterizing degraded elevator control effectiveness was also

developed. These advancements resulted in substantial performance improvements, with mean

squared errors for lift, drag, and pitch moment coefficients reduced by 32%, 29%, and 27%,

respectively. The models also demonstrated greater consistency across diverse maneuvers,

evidenced by reduced variability in 𝑅2 values. This work contributes to more accurate stall

modeling, enhancing both aerodynamic understanding and aviation safety.

Nomenclature

Abbreviations

FL Flight level

LOC-I Loss of control in-flight

MSE Mean square error

OLS Ordinary least squares

SNLS Separable nonlinear least squares

UPRT Upset prevention and recovery training

Roman Symbols

𝑎𝑥 ,𝑎𝑦 ,𝑎𝑧 Accelerations in 𝐹𝑏 [m/s2]



𝑎1 Stall abruptness parameter [-]

𝑏 Wing span [m]

𝑐 Mean aerodynamic chord [m]

𝒄 Linear parameters

𝐶𝐷 Drag coefficient [-]

𝐶𝐿 Drag coefficient [-]

𝐶𝑚 Pitch moment coefficient [-]

𝐶𝑁 Normal force coefficient for an airfoil [-]

𝐶𝑋 Longitudinal force coefficient [-]

𝐶𝑍 Normal force coefficient for an aircraft [-]

𝐷∗ Fréchet derivative of ∗

𝐹∗ Reference frame

𝐼∗ Moment of inertia around ∗ axis [kgm2]

𝑰 Inertia tensor [kgm2]

𝐾 Coefficient relating the pitch moment
coefficient to the lift coefficient

𝑳 Loss function

𝑚 Mass [kg]

𝑝,𝑞,𝑟 Roll, pitch and yaw rate in 𝐹𝑏 [rad/s]

𝑷⊥
𝚽(𝜽) Projector onto the orthogonal complement

of the column space of 𝚽(𝜽)

𝑞 Dynamic pressure [Pa]

𝒓 Residual vector

𝑅2 Coefficient of determination

R Set of real numbers

𝑆 Wing surface area [m2]

𝑋 Separation state [-]

𝑿 Regression matrix for linear model

𝑥,𝑦,𝑧 Coordinate in body reference frame [m]

Greek symbols

𝛼 Angle of attack [rad]

𝛼∗ Stall angle of attack [rad]

𝛽 Angle of sideslip [rad]

𝛿𝑎,𝛿𝑒,𝛿𝑟 Aileron, elevator and rudder deflection [rad]

𝜽 Nonlinear parameters

𝜏1 Flow relaxation time constant [s]

𝜏2 Delay of flow separation time constant [s]

𝚽 Regression matrix for nonlinear model

Subscripts

0 Static relation

0 Bias term

𝑎 Aerodynamic reference frame

𝑏 Body reference frame

𝑐.𝑔. Center of gravity

𝑐.𝑝. Center of pressure

𝐸 Earth reference frame

𝑠𝑠 Stall Strip

𝑇 Thrust

𝑤 Remainder of the wing

Superscripts

ˆ Model prediction

ˆ Optimal parameter estimate

¤ Time derivative
+ Moore-Penrose pseudo inverse
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I. Introduction
Loss of control in-flight (LOC-I) remains a critical safety concern in aviation, responsible for a majority of fatal

accidents over the past decades [1–4]. LOC-I occurs when a pilot is unable to maintain control and the aircraft deviates

from its intended flight path. Stalls have been shown to be a common precursor to LOC-I incidents [5, 6]. In a study of

74 LOC-I accidents between 1993 and 2007, 36% were caused by aerodynamic stall [7]. If not correctly recognized,

a stall can escalate into a more severe upset. Therefore, pilots’ recognition of stalls is seen as a fundamental aspect

of accident prevention [8]. The critical nature of stall recognition in LOC-I scenarios underscores the importance of

effective upset prevention and recovery training (UPRT). Training goals have been put forward by the International

Committee for Aviation Training in Extended Envelopes (ICATEE) [9] and are currently adopted by ICAO, FAA, and

EASA [10–12]. Analysis of training goals showed that it is necessary to improve the aerodynamic models in stall

regimes for flight simulator training devices [13].

There are two methods for the determination of stall models. The first is based on extensive wind tunnel testing

and CFD analysis, for example, the simulation of upset recovery in aviation (SUPRA) project [14]. These projects

are expensive due to the high complexity and extensive use of wind tunnels. Moreover, scaling effects complicate the

interpretation of results. Alternatively, identification methods are used on flight test data. Stall model identification has

been extensively researched at different research institutes and universities, such as the German Aerospace Center (DLR)

[15–18], NASA [19], the Flight Test and Research Institute of the Brazilian Air Force [20, 21], and TU Delft [22–29].

Stall models generally combine differential equations to model flow separation with polynomial linear-in-the-

parameters model structures to determine the aerodynamic forces resulting in a nonlinear optimization problem. This

problem was previously solved in a multi-stage approach [30], which has been proven to be computationally expensive

and often leads to local optima. The main contribution of this work is a novel model parameter estimation methodology

that combines separable nonlinear least squares (SNLS) with Kirchhoff’s theory of flow separation, allowing for more

complex model structures that still converge to an optimal solution. Separable nonlinear least squares (SNLS) implicitly

calculates the ordinary least squares (OLS) estimate for the linear parameters, which reduces the dimension of the

nonlinear parameter space [31]. This is shown to improve the convergence rate [32].

The new parameter estimation technique is applied to the identification of a longitudinal dynamics model for the TU

Delft’s Cessna Citation II research aircraft. New flight tests have been performed for the new longitudinal model. The

dynamic stall and deep dynamic stall aim to reduce the correlation between 𝜏1 and 𝜏2 which was found to be high with a

new correlation calculation. Improvements are proposed to include local flow effects of the stall strips installed on

the wing. Furthermore, elevator and pitch rate effects are incorporated into the model. A new approach involving the

lift-induced drag is introduced for the drag model. The pitch model is upgraded by including a model for the shift in the

center of pressure at high angles of attack. Lastly, a new model for elevator control effectiveness is identified.

This paper is organized as follows: Section II provides an overview of the prerequisites required for the rest of the
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paper. Next, the developed methodology for this work is presented in Section III. This is followed by Section IV, which

presents the results. A discussion is performed in Section V and finally, Section VI concludes the paper.

II. Background

A. Flight Test Vehicle

The Cessna Citation II callsign PH-LAB, is a research aircraft operated by Delft University of Technology. The

aircraft is jointly owned by the University and the Netherlands Aerospace Center. The aircraft is used for educational and

research purposes and offers a unique opportunity for stall model identification. Its general dimensions are presented in

Table 1. Figure 1 shows a schematic view of the aircraft. The aircraft is outfitted with a custom flight test instrumentation

system that logs aircraft states, a summary of the relevant sensed states is given in Table 2.

Table 1 General dimensions of the Cessna Cita-
tion II and mass and inertia properties at basic
empty weight.

Dimensions Value Unit
𝑏 15.75 m
𝑐 2.013 m
𝑆 30.0 m2

𝑚 4161.3 kg
𝐼𝑥𝑥 12392 kgm2

𝐼𝑦𝑦 31501 kgm2

𝐼𝑧𝑧 41908 kgm2

𝐼𝑥𝑧 2252.2 kgm2

Note that values differ slightly from Van Ingen et al. [30] as
they are derived directly from the manufacturer’s manual

Fig. 1 Schematic view of the Cessna Citation II.
Adapted from [30].

Table 2 Summary of the relevant sensing systems of the flight test instrumentation system.

System Explanation Measures Variables Unit Sample rate

AHRS Attitude & Heading
Reference System

Aircraft Attitude 𝜑, 𝜃, 𝜓 rad
52 HzBody Rotation Rates 𝑝, 𝑞, 𝑟 rad/s

Body Specific Forces 𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧 m/s2

Boom Air Data Boom Air Incidence Angles 𝛼, 𝛽 rad 100 Hz

DADC Digital Air Data Computer
True Airspeed 𝑉𝑇𝐴𝑆 m/s 16 Hz
Dynamic Pressure 𝑞 Pa 8 Hz

Engine Engine Measurements
Rotational Rates 𝑁1, 𝑁2 %

1000 Hz
Fuel Mass Flow ¤𝑚 𝑓 kg/s

GPS Global Positioning System
Position in 𝐹𝐸 𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸 m

1 Hz
Velocity in 𝐹𝐸 ¤𝑥𝐸 , ¤𝑦𝐸 , ¤𝑧𝐸 m/s

Synchro Angle Measurements Control Surface Deflections 𝛿𝑎, 𝛿𝑒, 𝛿𝑟 rad 100 Hz
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B. Aerodynamic Coefficients

Aerodynamic coefficients express the aerodynamic forces and moments on the aircraft. These coefficients are

dimensionless versions of the forces and moments themselves. In the body reference frame (see Appendix A), forces

along 𝑋𝑏, 𝑌𝑏 and 𝑍𝑏, can be defined as 𝑋𝑏, 𝑌𝑏 and 𝑍𝑏 respectively.

𝐶𝑋𝑏 =
𝑋𝑏

𝑞𝑆
, 𝐶𝑌𝑏 =

𝑌𝑏

𝑞𝑆
, 𝐶𝑍𝑏 =

𝑍𝑏

𝑞𝑆
(1)

Equation (1) shows the non-dimensional forces in the body reference frame. In these equations, 𝑞 refers to the

dynamic pressure and 𝑆 is the surface area of the wing.

𝐶𝑙 =
𝐿

𝑞𝑆𝑏
, 𝐶𝑚 =

𝑀

𝑞𝑆𝑐
, 𝐶𝑛 =

𝑁

𝑞𝑆𝑏
(2)

Equation (2) shows the non-dimensional moments in the body reference frame. Here, 𝑏 refers to the wingspan and 𝑐

to the mean aerodynamic chord. Furthermore, the moments are defined as 𝐿, 𝑀, 𝑁 around the axes 𝑋𝑏, 𝑌𝑏 and 𝑍𝑏,

respectively.

In the literature, it is also common to find the forces expressed in the aerodynamic reference frame (see Appendix A).

The relationship between the reference frames is the rotation matrix T𝑎𝑏 (see Appendix A), which can convert the forces

and moments in the body frame to those of the aerodynamic frame. The forces 𝑋𝑎 and 𝑍𝑎 in the aerodynamic reference

frame relate directly to the lift 𝐿 = −𝑍𝑎 and the drag 𝐷 = −𝑋𝑎 of the aircraft.

Aerodynamic forces and moments cannot be measured directly in the aircraft. Instead, they are derived from the

specific force and body rate data provided by the AHRS. The accelerations 𝑎𝑥 , 𝑎𝑦 , and 𝑎𝑧 are derived from the specific

force [23]. Acceleration is related to the sum of all forces on the vehicle. The gravitation and engine effects can be

subtracted to isolate the aerodynamic force.



𝐶𝑋𝑏

𝐶𝑌𝑏

𝐶𝑍𝑏


=

1
𝑞𝑆


𝑚



𝑎𝑏𝑥

𝑎𝑏𝑦

𝑎𝑏𝑧


− 𝑚T𝑏𝐸



0

0

𝑔0


−



𝑋𝑏
𝑇

𝑌𝑏
𝑇

𝑍𝑏
𝑇




(3)

Equation (3) shows the force coefficients in the body frame. Here, 𝑚 is the aircraft mass, which is time-varying and

modeled by a mass model [33]. For the gravitational force, the assumption is made that the gravitational pull is constant

regardless of altitude or geographical location. Furthermore, T𝑏𝐸 (see Appendix A) is a rotation matrix from the earth

frame (see Appendix A) to the body frame. The thrust is defined in the body frame and calculated using an engine

model provided by the manufacturer [33]. This model uses the Mach number 𝑀 and the low-pressure turbine speed 𝑁1

to calculate the thrust.
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The aerodynamic moment coefficients can also be derived from the equations of motion. Here, the inertial and

gyroscopic moments are taken into account. Furthermore, the moment caused by the thrust of the engines can be

subtracted. Lastly, the equation can be non-dimensionalized.



𝐶𝑙

𝐶𝑚

𝐶𝑛


=

1
𝑞𝑆



1/𝑏 0 0

0 1/𝑐 0

0 0 1/𝑏


·


𝑰 ·



¤𝑝

¤𝑞

¤𝑟


+



𝑝

𝑞

𝑟


× 𝑰 ·



𝑝

𝑞

𝑟


−



𝑥𝑒𝑛𝑔𝑖𝑛𝑒 − 𝑥𝑐𝑔

𝑦𝑒𝑛𝑔𝑖𝑛𝑒 − 𝑦𝑐𝑔

𝑧𝑒𝑛𝑔𝑖𝑛𝑒 − 𝑧𝑐𝑔


×



𝑋𝑏
𝑇

𝑌𝑏
𝑇

𝑍𝑏
𝑇




(4)

Equation (4) shows the aerodynamic moment coefficients in the body frame. Here, 𝑝, 𝑞, and 𝑟 are the roll, pitch,

and yaw rates respectively. Their time derivatives are ¤𝑝, ¤𝑞, ¤𝑟 . The moments of inertia of the aircraft are stored in matrix

𝑰, which is time-varying and modeled by the mass model [33]. The moment caused by the engine thrust uses the engine

model, engine positions, and time-varying center of gravity modeled by the mass model.

C. Theory of Flow Separation

To link the aircraft state to the aerodynamic forces and moments at high angles of attack an intermediary is required.

Additional states, in the form of flow separation states, are included to model the changing behavior at high angles of

attack. First, a connection between the angle of attack and state of flow separation is established in Section II.C.1. Then,

the new flow separation state is connected to the forces and moments in Section II.C.2.

1. Flow Separation Models

The most prominent model in aircraft stall modeling is based on Kirchhoff’s theory of flow separation. This model,

introduced by Goman and Khrabrov [34], connects the degree of flow separation (𝑋) and aerodynamic forces and

moments. The degree of flow separation is measured as the normalized chord-wise distance at which the flow separates,

𝑋 = 1 for attached flow and 𝑋 = 0 for separated flow. Goman and Khrabrov noted that unsteady aerodynamic effects

can cause relaxation and delay of flow separation. The following first-order differential equation can model these effects:

𝜏1
𝑑𝑋

𝑑𝑡
+ 𝑋 = 𝑋0 (𝛼 − 𝜏2 ¤𝛼) (5)

Here, 𝜏1 and 𝜏2 are time constants modeling relaxation and delay of flow separation, respectively. The static relationship

between flow separation and angle of attack is modeled by 𝑋0. This relation can be estimated from static wind tunnel

data or identified from flight data if a model structure is assumed. Multiple model structures have been proposed

[35, 36], however, in this work the model structure introduced by Fischenberg [15] is used:

𝑋0 (𝛼) =
1
2
{1 − tanh (𝑎1 (𝛼 − 𝛼∗))} (6)
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where 𝑎1 models the abruptness of the stall and 𝛼∗ is the angle of attack at which flow separation reaches the mid chord.

Using this information, three different flow separation models can be defined. Firstly, a steady flow separation model

can be defined, where none of the previously mentioned unsteady effects are modeled, in other words, 𝜏1 = 𝜏2 = 0. Next,

a quasi-steady model, for which 𝜏2 can be non-zero and delay of flow separation is modeled. Lastly, the full unsteady

model for which 𝜏1 and 𝜏2 can be non-zero. These three model structures and corresponding model parameters are

summarized in Table 3.

Table 3 Different flow separation models and their corresponding model parameters.

Separation model Parameters
Steady 𝑎1, 𝛼∗

Quasi-steady 𝜏2, 𝑎1, 𝛼∗

Unsteady 𝜏1, 𝜏2, 𝑎1, 𝛼∗

2. Force and Moment Reconstructions

Reconstructions of the aerodynamic forces and moments can be made using the state of flow separation. Initial

research efforts focused on the forces and moments on airfoils. Woods [37] mentions the lift coefficient for trailing edge

flow separation as:

𝐶𝐿 = 2𝜋

(
1 +

√
𝑋

2

)2

𝛼 (7)

Here, 2𝜋 is the lift curve slope in thin airfoil theory [38, p. 352] and 𝛼 the angle of attack. This relation is widely

accepted in aircraft stall modeling [18, 30, 34]. Next to the lift coefficient, Woods [37] defines an expression for the

drag coefficient:

𝐶𝐷 = 2𝜋

(
1 −

√
𝑋

2

)2

𝛼2 (8)

Moving on, Leishman and Beddoes [35] have created a relation between the pitch moment coefficient 𝐶𝑚 and the

normal force coefficient 𝐶𝑁 . In the context of aircraft, 𝐾0 models the distance between the center of gravity and the

aerodynamic center of the wing, 𝐾1 models the shift in the center of pressure due to flow separation, and 𝐾2 is used to

describe the typical moment break of the stall. Note that a zero-lift moment 𝐶𝑚0 may be added to the model.

𝐶𝑚 = [𝐾0 + 𝐾1 (1 − 𝑋) + 𝐾2 sin(𝜋𝑋𝑚)] 𝐶𝑁 (+𝐶𝑚0 ) (9)

Other formulations for the pitching moment also exist. Singh and Jategaonkar [16] propose a very similar term but

uses the lift coefficient instead of the normal force coefficient. Additionally, the 𝐾0 term is neglected.
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𝐶𝑚 = 𝐶𝐿 [𝐾1 (1 − 𝑋) + 𝐾2 sin(𝜋𝑋𝑚)] (10)

It is not the only term for the pitching moment coefficient put forward by Singh and Jategaonkar [16]. An alternative

formulation is derived from Goman and Khrabrov [34], who propose the following:

𝐶𝑚 =
𝜋

2
𝛼

(
1 +

√
𝑋

)2 5
(
1 −

√
𝑋

)2
+ 4

√
𝑋

16
(11)

This formula was then adapted by Singh and Jategaonkar [16]. They add a constant term 1
4 to multiply the lift coefficient

by.

𝐶𝑚 = 𝐶𝐿

©­­«
5
(
1 −

√
𝑋

)2
+ 4

√
𝑋

16
− 1

4
ª®®¬ (12)

The models and model terms introduced in this section will be used later in the paper to explore different model

structures.

III. Methodology
Over the past ten years, a stall model identification workflow has been developed at Delft University of Technology.

A high-level overview is visualized in Fig. 2. As can be seen, the workflow can be broken down into five major steps.

First, data must be collected through flight test experiments. This is done with the Citation PH-LAB. The design of

flight test experiments will be discussed in Section III.A. Using the data collected in flight, a spectral analysis can be

performed to analyze the buffet vibrations. The buffet model is created by fitting a curve to the power spectra of the

normal and lateral accelerations [39]. Using the results of the buffet analysis, the buffet effects can be filtered out and

flight path reconstruction can be performed, see Section III.B.

Phases 4 and 5 are the main subject of this paper. Stall model identification, phase 4 is further detailed in Fig. 3. As

can be seen in the diagram, first a model structure is assumed. The selection of the best model structure is discussed in

Section III.C. Using the assumed model structure of the lift coefficient and flow separation states, nonlinear parameter

estimation is performed with SNLS. Details of the SNLS method are discussed in Section III.D. With the estimated

flow separation models the flow separation states can be determined. This is used as an input for the linear parameter

estimation for the other models 𝐶𝐷 and 𝐶𝑚. Linear parameter estimation is performed using OLS and is discussed in

Section III.E. Only longitudinal force and moment coefficients are mentioned, but the workflow can be extended to

include lateral dynamics. After the identification, the model must be validated using additional flight data. This is

discussed in Section IV.D.
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Phase 1
Flight Test
Experiment

(III.A)

Phase 2
Buffet Model
Identification

[39]

Phase 3
Flight path

Reconstruction
(III.B)

Phase 4
Stall Model

Identification
(III.C to III.E)

Phase 5
Model

Validation
(III.F)

Fig. 2 System identification workflow for stall modeling. Phases four and five are the primary subjects of this
research.

Flight Data

𝐶𝐿 structure

𝑋 structure

𝐶𝐷 structure

𝐶𝑚 structure

SNLS

𝑋 states

OLS

OLS

𝐶𝐷 parameters

𝐶𝑚 parameters

𝐶𝐿 parameters

𝑋 parameters

Inputs Outputs

Linear
Parameter
Estimation

(III.E)

Nonlinear
Parameter
Estimation

(III.D)

Regressors and Force/Moment Coefficients

Fig. 3 Detailed description of the stall model identification workflow.
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A. Flight Test Experiments

Using the covariance calculations from Section III.D, the correlation between 𝜏1 and 𝜏2 was re-evaluated. With this

new formulation, the correlation is determined at 0.73. This was likely missed by Van Ingen et al. [30] because 𝜏2 ran

into the lower bound of the optimization problem. This bound masked the true correlation between 𝜏1 and 𝜏2 when

calculated on the resulting samples. To mitigate the correlation, new flight tests were necessary. Two new maneuvers

were designed to eliminate this correlation: the dynamic and the deep dynamic stall. These maneuvers are derived from

Singh and Jategaonkar [16] and adapted to fit the Citation.

The dynamic stall maneuver, depicted in Fig. 4a, starts with a smooth positive angle of attack rate. During the

approach to stall, sequential step inputs are given to the elevator, ailerons, and rudder. These events are visible in Fig. 4a

at annotations 1,2, and 3, respectively. The aircraft is stabilized before the aircraft enters the stall. Oscillating elevator

inputs are applied to enter and exit the stall, starting at annotation 4. This gives the most information on the transition

into and out of the stall.
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(a) Dynamic stall maneuver
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(b) Deep dynamic stall maneuver

Fig. 4 New stall maneuvers performed for this research.

The deep dynamic stall maneuver follows the same initial steps, as can be seen in Fig. 4b. Starting with a smooth

positive angle of attack rate and sequential step inputs, again annotated with 1,2, and 3. The elevator is held to keep the

aircraft in the stall. Once the angle of attack reaches 18◦ to 20◦, oscillating elevator inputs are given. The oscillations

are seen at annotation 4 as short spikes of lower deflection. Significant elevator deflection is needed to keep the aircraft
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in the stall, which compromises the pilots’ ability to oscillate the elevator.

Table 4 shows the data sets used in this research. First, a recap is given of the data set defined by Van Ingen et al.

[30]. This prior data set is supplemented with five dynamic stalls and seven deep dynamic stalls. These were flown

between flight levels 150 and 200. The data is split into a training and validation set using an 80%-20% ratio.

Table 4 Overview of the flight maneuvers used in this paper. The division into a training and validation set is
also described.

Data set FL Maneuver Type Reps Training Set Validation Set Used In

Van Ingen [30]
80-110 Quasi-steady stall 2 1,2

IV.A110-150 Quasi-steady stall 4 3,4,6 5
150-200 Quasi-steady stall 28 8-11,13-15,17-

21,24,26-34
7,12,16,22,23,25

This Work

80-110 Quasi-steady stall 2 1,2

IV.B to IV.D
110-150 Quasi-steady stall 4 3,4,5,6
150-200 Quasi-steady stall 28 8-11,13-15,17-

21,24,26-34
7,12,16,22,23,25

150-200 Dynamic stall 5 35-37 38,39
150-200 Deep dynamic stall 7 40-45 46

B. Flight Path Reconstruction

Table 5 A summary of the cut-off fre-
quencies used for the low-pass filters.

Signals 𝑓𝑐 [Hz]
𝑎𝑥 , 𝑎𝑦 , 𝑟, 𝛿𝑟 4
𝑝, 𝑞, 𝛿𝑎 5
𝛿𝑒, 𝛼, 𝛽 6
𝑎𝑧 8

Reconstructing the flight path is essential for a good identification result

of aircraft systems. Sensors will introduce noise, bias, and drift, which

causes errors when using the measurements directly. Kalman filtering

minimizes these errors, by using a prediction model in combination with

the measurements. An unscented Kalman filter is used for the state

reconstruction of the Citation. The workings of this filter have been worked

out in detail by Van Horssen [22] and Van Ingen [23].

Some signals are strongly affected by the aerodynamic buffet, signal pre-processing must be applied to eliminate

these effects [40]. This can be done using a low-pass filter. In previous research, a fourth-order Butterworth filter was

used [30]. This choice is retained, although the cut-off frequencies are adjusted based on a new analysis [41]. In this

analysis, the idea is to filter only as much as needed and preserve as much of the signal as possible. This is important

when considering unsteady effects of unknown frequency. A summary of the new cut-off frequencies is presented in

Table 5.
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C. Model Structure

In this section, candidate models are defined to achieve specific objectives. First, the studied flow separation models

are defined in Section III.C.1. Then, the proposed lift, drag, and pitch moment models are discussed in Sections III.C.2

to III.C.4.

1. Separation Models

As expressed in Section II.C, stall models typically use the state of flow separation on the wing and connect it

to the aerodynamic forces and moments. This simplification stems from two-dimensional aerodynamics, however, it

has proven effective for aircraft too [30]. Early-stage stall models have used one flow separation parameter for the

entire aircraft [15, 30]. Later, multiple flow separation parameters were explored, but only to model asymmetric effects

[17, 29]. In this work, multiple flow separation parameters are proposed for the longitudinal stall model. It is believed

that previous results found by Van Ingen et al. [30] do not model a full-wing stall, but the effects of the stall strips

installed on the Citation. A diagram of the stall strip can be seen in Fig. 5. The stall strip provides control of when and

where the stall happens on the wing. The hypothesis would explain the low stall angle of attack found in previous work

(𝛼∗ ≈ 12◦) [30], which does not align with prior knowledge of the airfoils of the wing. The Citation uses NACA23014

and NACA23012 airfoils. Wind tunnel data for the NACA23012 airfoil points out that for an infinite wing at Reynolds

numbers of 3.4 × 106, the stall angle of attack is at 15◦. Furthermore, for a finite wing with an aspect ratio of 6, they

found a stall angle of attack of 20◦ [42]. The Citation with an aspect ratio of 8.3 must fall somewhere in between the two.

Figure 201 : Sheet 1 : De-Ice Boot Installation

Model 550 Maintenance Manual (Rev 36)

30-12-01 (Rev 35)

Copyright © Textron Aviation Inc. Page 14 of 20

Retain printed data for historical reference only. For future maintenance, use only current data. Print Date: Thu Aug 15 04:48:38 CDT 2024

Fig. 5 Diagram of the stall strip installed on the de-ice boot on the leading edge of the wing. Adapted from the
Cessna Citation II maintenance manual.
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2. Lift Model

Four goals are defined for the estimation of a new lift model. To evaluate these goals, six new models will be

estimated, for which the model structures are summarized in Table 18 in Appendix B. The first goal is to evaluate

the effectiveness of the new SNLS method. To make this evaluation, the model structure of Van Ingen et al. [30] is

re-estimated using SNLS. This re-estimated model will be referred to as Model CL-I. The second goal is to evaluate if

the previously used second-order spline term is necessary or an artifact of the previous nonlinear parameter estimation

technique. To achieve this, the term is removed in Model CL-II. The third goal is to evaluate the addition of the second

flow separation state, this is done through Model CL-III. The last goal is to re-evaluate the contributions of pitch rate 𝑞

and elevator deflection 𝛿𝑒. Three models are created for this. Model CL-IV evaluates the contribution of 𝑞. Model

CL-V does this for 𝛿𝑒 and Model CL-VI takes into account both simultaneously.

3. Drag Model

For the drag model, five objectives are set and fourteen models are defined. The model structures are summarized in

Table 19 in Appendix B. As a first test, the model found by Van Ingen et al. [30] is re-estimated. This is referred to as

Model CD-I. This re-estimation goes hand in hand with the re-estimation of Model CL-I. For the second objective,

the same model is identified with the addition of a second flow separation term, this is Model CD-II. This gives an

indication of the impact of the second flow separation state.

For analysis beyond the previous, it is chosen to include four terms by default: 𝐶𝐷0 , 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒
and 𝐶𝐷𝐶𝑇

. A t-test

is performed after the parameter estimation, if the hypothesis of the t-test is accepted for any parameter the model is

re-estimated without the parameter. To set a baseline, the four terms are supplemented with the terms (1 − 𝑋𝑠𝑠) and

(1 − 𝑋𝑤) to add stall effects. This model is referred to as Model CD-III.

Objective three is to analyze the relation of 𝐶𝐷 with the angle of attack 𝛼. In previous work, a linear dependency

on 𝛼 was found [30]. However, it would make sense for a quadratic relation to exist, as otherwise, the drag becomes

negative for negative angles of attack. For this reason, three models are suggested for comparison. The first adds a term

𝛼 to the baseline and is called Model CD-IV. The second adds 𝛼2 and is called Model CD-V. Lastly, Model CD-VI

adds both 𝛼 and 𝛼2.

An alternative to including the angle of attack is to include the lift coefficient. Objective four is to understand the

effect of including the lift coefficient as a regressor. For this, the best-performing lift coefficient model will be used as

an input for the drag model. The lift coefficient model already includes stall effects. For this reason, the inclusion of 𝐶𝐿

and 𝐶2
𝐿

will be tested with and without the (1 − 𝑋𝑠𝑠) and (1 − 𝑋𝑤) dependencies. This leads to six distinct models,

Model CD-VII through Model CD-XII. Lastly, the drag term derived from Kirchhoff flow by Woods [37] is explored.

This term also has a dependency on the state of flow separation and thus it is tested with and without the inclusion of

(1 − 𝑋𝑠𝑠) and (1 − 𝑋𝑤), respectively Model CD-XIII and Model CD-XIV.
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4. Pitch Moment Model

For the pitch moment model, multiple experiments are defined. First, the model by Van Ingen et al. [30] is

re-estimated. This model is referred to as Model Cm-I. This model is identified in combination with Model CL-I and

shows the effect of the new SNLS method.

Next, an exploration of the models proposed by Leishman and Beddoes [35] and Singh and Jategaonkar [16] is

performed. Using components of their models, six base regressors are defined. First, 𝐾0 models the moment arm

between the center of gravity and the center of pressure. Then, 𝐾1 models the shift of the center of pressure as a function

of the state of flow separation. The term 𝐾𝑚
2 is used to modify the moment to model pitch break at moment stall, here

the value of 𝑚 can be 1/2, 1, or 2. Lastly, 𝐾𝑆 refers to a term proposed by Singh and Jategaonkar [16]. These six

regressors are combined in fourteen ways and lead to Model Cm-II up to Model Cm-XV.

Table 6 Summary of the regressors studied in this work for the pitch moment coefficient. Note 𝐶𝑚0 , 𝐶𝑚𝐶𝑇
, 𝐶𝑚𝑞∗

and 𝐶𝑚𝛿𝑒
are included by default.

Identifier Regressors

𝐾0 𝐶𝐿 𝑥𝑐.𝑔./𝑐𝐶𝐿

𝐾1 (1 − 𝑋𝑠𝑠)𝐶𝐿 (1 − 𝑋𝑤)𝐶𝐿

𝐾
1/2
2 sin(𝜋𝑋1/2

𝑠𝑠 )𝐶𝐿 sin(𝜋𝑋1/2
𝑤 )𝐶𝐿

𝐾1
2 sin(𝜋𝑋1

𝑠𝑠)𝐶𝐿 sin(𝜋𝑋1
𝑤)𝐶𝐿

𝐾2
2 sin(𝜋𝑋2

𝑠𝑠)𝐶𝐿 sin(𝜋𝑋2
𝑤)𝐶𝐿

𝐾𝑆
5(1−

√
𝑋𝑠𝑠)2+4

√
𝑋𝑠𝑠

16 𝐶𝐿
5(1−

√
𝑋𝑤)2+4

√
𝑋𝑤

16 𝐶𝐿

(1 − 𝑋) (1 − 𝑋𝑠𝑠) (1 − 𝑋𝑤)

𝑋𝛿𝑒 𝑋𝑠𝑠𝛿𝑒 𝑋𝑤𝛿𝑒

Fischenberg and Jategaonkar [18] describe an empirical pitch moment model that includes (1− 𝑋) as a regressor. To

study the inclusion of this term, Model Cm-XVI is defined. Furthermore, the combination of this term with previously

defined regressors is studied, leading to fourteen additional model structures. These are Model Cm-XVII up to Model

Cm-XXX.

The last objective is to define a new method for including stall-related elevator effectiveness reduction. To model

this, a cross term of the elevator deflection 𝛿𝑒 and state of flow separation 𝑋𝑠𝑠 or 𝑋𝑤 is defined. Collectively this is

referred to as 𝑋𝛿𝑒 but consists of two terms as can be seen in Table 6. These terms are added to the previously defined

models to create 29 new models, Model Cm-XXXI up to Model Cm-LXIX. A summary of all model structures used

can be found in Table 20 in Appendix B.
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D. Nonlinear Parameter Estimation - Separable Nonlinear Least Squares

SNLS can be used to estimate the nonlinear parameters corresponding to the flow separation states. SNLS is a

subset of nonlinear least squares problems, characterized by the ability to separate the model into linear and nonlinear

components, which reduces computational load compared to full nonlinear optimization [32]. This separation is possible

due to the following structure:

𝒀̂ = 𝑓𝑚 (𝒙, 𝒄, 𝜽) = 𝚽(𝒙, 𝜽) · 𝒄 (13)

Here, 𝒄 ∈ R𝑛 is a set of linear parameters and 𝜽 ∈ R𝑘 is a set of nonlinear parameters. Furthermore, 𝚽 is a regression

matrix, which is a function of the aircraft state 𝒙 and nonlinear parameters 𝜽. The dependency on the aircraft state 𝒙

will be dropped in further equations to be concise. Lastly, 𝒀̂ are the estimated outputs of the model at each data point.

As with any least squares problem, the cost function is the sum of the squared residuals:

𝑳(𝒄, 𝜽) = ∥𝒀 −𝚽(𝜽) · 𝒄∥2 (14)

Here, 𝒀 are the observed outputs at each data point. The structure allows for solving the linear parameters 𝒄 as if it

were an ordinary linear least squares problem. However, due to the dependency of 𝚽 on 𝜽 the optimal estimate of 𝒄 will

also be dependent on 𝜽 . The least squares solution looks as follows:

𝒄(𝜽) = 𝚽(𝜽)+ · 𝒀 (15)

This optimal estimate can then be substituted in Eq. (14) which reduces the number of parameters to estimate from

𝑛 + 𝑘 to 𝑘 . Golub and Pereyra [31] proved that this reduction is valid and that when the reduced problem is solved for an

optimal 𝜽 this also results in an optimal 𝒄, which minimizes the cost function globally. The reduced problem takes the

following form:

𝑳(𝜽) = ∥𝒀 −𝚽(𝜽) ·𝚽(𝜽)+ · 𝒀 ∥2 = ∥𝑷⊥
𝚽(𝜽 ) · 𝒀 ∥

2 = ∥𝒓 (𝜽)∥2 (16)

Here, 𝑷⊥
𝚽(𝜽 ) signifies the projector onto the orthogonal complement of the column space of 𝚽(𝜽), defined as

𝑰−𝚽(𝜽)𝚽(𝜽)+. This effectively eliminates all contributions of the model proportional to the columns in 𝚽(𝜽), isolating

the nonlinear contributions. Furthermore, 𝒓 (𝜽) is introduced as the residual vector, defined as 𝑷⊥
𝚽(𝜽 ) · 𝒀 .

The reduced problem can be solved with the nonlinear least squares tool in MATLAB∗. This uses the trust-region-

reflective method to find a minimum to the least squares problem. This method requires the formation of a Jacobian

matrix, which provides the sensitivity of 𝒓 (𝜽) to the parameters 𝜽 . This is used to define the next step in the algorithm.
∗https://nl.mathworks.com/help/optim/ug/lsqnonlin.html
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The Jacobian of the residuals is defined in Eq. (17), where the dependency on 𝜽 was dropped for convenience.

D𝒓 = −(𝑷⊥
𝚽 · D𝚽) ·𝚽+ · 𝒀 − (𝚽+)⊤ · (𝑷⊥

𝚽 · D𝚽)⊤ · 𝒀 (17)

D defines the Fréchet derivative which is a generalization of derivatives in normed spaces [43]. This allows for

the derivative of 𝚽(𝜽) : R𝑘 → R(𝑚×𝑛) to be taken as D𝚽(𝜽) : R𝑘 → R(𝑚×𝑛×𝑘 ) where D𝚽(𝜽)𝑖 𝑗𝑞 =
𝜕Φ𝑖 𝑗 (𝜽 )
𝜕𝛼𝑞

. A novel

expression for 𝑫𝒓 equivalent to Eq. (17) that reduces memory storage is presented:

D𝒓 = −D𝚽 · 𝒄 +𝚽 · (𝚽+ · (D𝚽 · 𝒄)) − (𝚽+)⊤ · (D𝚽)⊤ · 𝒓 (18)

Proof. Equation (17) consists of two segments: 𝑫𝒓 = −𝐽1 − 𝐽2. These segments can be refactored separately.

Starting with 𝐽1:

𝐽1 = (𝑷⊥
𝚽 · D𝚽) ·𝚽+ · 𝒀

𝐽1 = (𝑷⊥
𝚽 · D𝚽) · 𝒄 (𝒄 = 𝚽+ · 𝒀)

𝐽1 = ((𝐼 −𝚽 ·𝚽+) · D𝚽) · 𝒄 (𝑷⊥
𝚽 = 𝐼 −𝚽 ·𝚽+)

𝐽1 = D𝚽 · 𝒄 −𝚽 · (𝚽+ · (D𝚽 · 𝒄)) (refactor)

Next, 𝐽2 can be refactored:

𝐽2 = (𝚽+)⊤ · (𝑷⊥
𝚽 · D𝚽)⊤ · 𝒀

𝐽2 = (𝒀⊤ · 𝑷⊥
𝚽 · D𝚽 ·𝚽+)⊤ (double transpose)

𝐽2 = (𝒀⊤ · (𝐼 −𝚽 ·𝚽+) · D𝚽 ·𝚽+)⊤ (𝑷⊥
𝚽 = 𝐼 −𝚽 ·𝚽+)

𝐽2 = ((𝒀⊤ − 𝒀⊤ ·𝚽 ·𝚽+) · D𝚽 ·𝚽+)⊤ (refactor)

𝐽2 = ((𝒀 − (𝚽 ·𝚽+)⊤ · 𝒀)⊤ · D𝚽 ·𝚽+)⊤ (double transpose)

𝐽2 = ((𝒀 −𝚽 ·𝚽+ · 𝒀)⊤ · D𝚽 ·𝚽+)⊤ ((𝚽 ·𝚽+)⊤ = 𝚽 ·𝚽+)

𝐽2 = (𝒓⊤ · D𝚽 ·𝚽+)⊤ (𝒓 = 𝒀 −𝚽 ·𝚽+ · 𝒀)

𝐽2 = (𝚽+)⊤ · (D𝚽)⊤ · 𝒓 (refactor transpose)

16



Now by substituting 𝐽1 and 𝐽2:

𝑫𝒓 = −𝐽1 − 𝐽2

𝑫𝒓 = −D𝚽 · 𝒄 +𝚽 · (𝚽+ · (D𝚽 · 𝒄)) − (𝚽+)⊤ · (D𝚽)⊤ · 𝒓

which proves that Eq. (18) is equivalent to Eq. (17).

□

Further inspiration is taken from Golub and Pereyra [31], and O’Leary and Rust [44], who suggest reducing the

storage and computational constraints by bookkeeping the non-zero derivatives and skipping storing or calculating the

zero derivatives.

The parameter variance can be determined to give a bound on the confidence one has in the estimated parameter

values. Mahata and Söderström [45] present a method to estimate the parameter covariance matrix of the union of 𝒄 and

𝜽 .

𝐶𝑜𝑣 [𝜽 , 𝒄] =
[
∇ 𝑓 ⊤𝑚 · ∇ 𝑓𝑚

]−1 [
∇ 𝑓 ⊤𝑚 · Λ𝑚 · ∇ 𝑓𝑚

] [
∇ 𝑓 ⊤𝑚 · ∇ 𝑓𝑚

]−1 (19)

In Eq. (19), ∇ 𝑓𝑚 is the Jacobian matrix of 𝑓𝑚 with respect to the parameters 𝜽 and 𝒄. Furthermore, Λ𝑚 is a Toeplitz

matrix built from the autocorrelation sequence {𝜆𝑡 } of the residuals 𝑟𝑡 . Each diagonal 𝐷𝑖 of Λ𝑚 for −𝑚 + 1 ≤ 𝑖 ≤ 𝑚 − 1

is constant with value 𝜆𝑖 , where 𝐷𝑖 ≠ 𝐷0 refers to the off-diagonals. The diagonal of the covariance matrix contains the

parameter variances.

E. Linear Parameter Estimation

For the identification of aerodynamic coefficient models, linear parameter estimation is used. Linear parameter

estimation deals with the identification of parameter values in equations that are linear in the parameters. Note that this

does not require the regressors to be linear.

𝒀̂ = 𝑿𝒄 (20)

Equation (20) is the general form for this type of model, where 𝑿 is the regression matrix and 𝒄 is a vector containing

the linear parameters. An estimate for the parameter values can be found using ordinary least squares.

𝒄 = 𝑿+ · 𝒀 (21)

The covariance matrix is defined in Eq. (22) and comes from the system identification book by Klein and Morelli

[46]. Here Λ𝑚 has the same definition as in Section III.D.
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𝐶𝑜𝑣 [𝒄] =
[
𝑿⊤ · 𝑿

]−1 [
𝑿⊤ · Λ𝑚 · 𝑿

] [
𝑿⊤ · 𝑿

]−1 (22)

F. Model Validation

As mentioned in Section III.A, 20% of the flight data is reserved for validation. Two main statistics are calculated

for the training and validation data sets to judge the performance of the models. First, the mean square error (MSE) is

calculated. This value is calculated as follows:

𝑀𝑆𝐸 =

∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2

𝑁
(23)

Secondly, the coefficient of determination or 𝑅2 value can be calculated. This value is an indication of the accuracy

of the fit, where 1 indicates a perfect fit. Typically the value varies between 0 and 1, but it is possible to go below one

when the measured signal has little variation. The value is calculated as follows:

𝑅2 = 1 −
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2∑𝑁
𝑖=1 (𝑦𝑖 − 𝜇𝑦)2

(24)

IV. Results

A. Evaluation of Separable Nonlinear Least Squares

To judge the effectiveness of SNLS, the model structure defined in Van Ingen et al. [30] is reidentified. In addition,

the same data set and training-validation split are used, see Section III.A for details. Note that the cut-off frequencies

are still different from the work of Van Ingen et al. [30]. Estimation of flow separation and lift coefficient parameters is

performed using the SNLS method. The remaining coefficients are estimated using OLS.

The MSE values on the training and validation data are summarized in Table 7. The MSE values of the lift coefficient

are reduced by 36% and 25% on the training and validation data respectively. This consistent reduction shows that

the SNLS method finds better solutions within the same optimization problem. Moreover, the computation time is

reduced from hours to seconds, which opens the door to more extensive iteration and analysis. All other MSE values of

force and moment coefficients are reduced for the training data. However, this consistency is not found in the validation

data. This indicates that the model structures might not be optimal, further exploration of different model structures is

covered in Section IV.B.
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Table 7 Comparison of mean square error values for the model defined by Van Ingen et al. [30] and unidentified
using SNLS in this work.

Training Data Validation Data

Van Ingen This work Van Ingen This work

Model MSE MSE Difference [%] MSE MSE Difference [%]
𝐶𝐿 2.74 × 10−3 1.76 × 10−3 −36 2.48 × 10−3 1.86 × 10−3 −25
𝐶𝐷 1.33 × 10−4 1.12 × 10−4 −15 1.01 × 10−4 1.00 × 10−4 −1
𝐶𝑋 1.65 × 10−4 1.30 × 10−4 −21 9.09 × 10−5 9.28 × 10−5 2
𝐶𝑍 2.70 × 10−3 1.74 × 10−3 −36 1.87 × 10−3 1.87 × 10−3 −25
𝐶𝑚 1.17 × 10−4 1.08 × 10−4 −8 1.25 × 10−4 1.25 × 10−4 0

B. Model Structure Selection

1. Flow Separation Model

As mentioned in Section III.C, a second flow separation state is introduced to model the effects of the stall strips.

For each flow separation state, the choice remains between a steady, a quasi-steady, and an unsteady flow separation

model. In this section, an analysis is done to explore the different options. For this analysis, SNLS is performed on

the lift coefficient. The presumed model incorporates a bias, two Kirchhoff terms, a pitch rate term, and an elevator

deflection term. The model looks as follows:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼,𝑠𝑠

(
1 +

√
𝑋𝑠𝑠

2

)2

𝛼 + 𝐶𝐿𝛼,𝑤

(
1 +

√
𝑋𝑤

2

)2

𝛼 + 𝐶𝐿𝑞∗
𝑞𝑐

𝑉
+ 𝐶𝐿𝛿𝑒

𝛿𝑒 (25)

Here, 𝑋𝑠𝑠 is the flow separation state at the stall strip and 𝑋𝑤 models the rest of the wing. For both 𝑋𝑠𝑠 and 𝑋𝑤 the

steady, quasi-steady and unsteady flow separation models are explored. This leads to nine potential model structures as

seen in Table 8. The choice for lift model structure will be explained in Section IV.C.2.

Table 8 Mean square error fit of the lift model using different flow separation dynamics models for the stall
strip and wing. The most accurate result is highlighted in green.

Stall Strip 𝑋𝑠𝑠

Steady Quasi-steady Unsteady

Wing 𝑋𝑤

Steady 3.73 × 10−3 3.65 × 10−3 3.55 × 10−3

Quasi-steady 3.73 × 10−3 3.65 × 10−3 3.56 × 10−3

Unsteady 3.70 × 10−3 3.64 × 10−3 3.69 × 10−3

Examining the MSE values of the models in Table 8 reveals several key insights. First, the values are nearly

identical when using either a steady or quasi-steady model for 𝑋𝑤 . This is because the parameter 𝜏2,𝑤 approaches zero

in the quasi-steady models, effectively reducing them to steady models. Furthermore, incorporating unsteady terms

enhances the performance of the stall strip flow separation model, where the combination of two unsteady models is

an exception. The exception is due to poor convergence, which may be caused by poor observability of the two 𝜏1
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parameters. Consequently, an unsteady model is selected for 𝑋𝑠𝑠, while a steady model is chosen for 𝑋𝑤 . For the

remainder of this paper, the unsteady model for 𝑋𝑠𝑠 and the steady model for 𝑋𝑤 will be utilized as presented in Eqs. (26)

and (27). The parameter estimation and associated statistics are presented in Section IV.C.1.

𝜏1,𝑠𝑠
𝑑𝑋𝑠𝑠

𝑑𝑡
+ 𝑋𝑠𝑠 =

1
2
− 1

2
tanh

(
𝑎1,𝑠𝑠

[
𝛼 − 𝜏2,𝑠𝑠 ¤𝛼 − 𝛼∗𝑠𝑠

] )
(26)

𝑋𝑤 =
1
2
− 1

2
tanh

(
𝑎1,𝑤

[
𝛼 − 𝛼∗𝑤

] )
(27)

2. Lift Model

The lift model created by Van Ingen et al. [30], referred to as Van Ingen CL, serves as a baseline for comparison

with the new model structures defined in this paper. As mentioned in Section III.C.2, six lift coefficient models are

proposed for comparison. Model CL-I and Model CL-II use one flow separation state, reconstructed using an unsteady

flow separation model. Model CL-III through Model CL-VI use two flow separation states, where 𝑋𝑠𝑠 uses an unsteady

flow separation model and 𝑋𝑤 uses a flow steady separation model. The results of the parameter estimation can be

summarized using the MSE on the training set. These results are presented in Table 9.

Table 9 Summary of the model exploration for the lift coefficient model. The underlying separation model
types are defined as steady (S), quasi-steady (Q) or unsteady (U). Furthermore, the linear parameters are defined.
Lastly, the MSE of the lift and normal force coefficient on the training data are also presented. The most accurate
result is highlighted in green.

Model MSE

Name Separation Models (S/Q/U) Linear Parameters 𝐶𝐿 𝐶𝑍

Van Ingen CL U 𝐶𝐿0 , 𝐶𝐿𝛼 , 𝐶𝐿
𝛼2 5.2256 × 10−3 5.0438 × 10−3

Model CL-I U 𝐶𝐿0 , 𝐶𝐿𝛼 , 𝐶𝐿
𝛼2 3.8823 × 10−3 3.7420 × 10−3

Model CL-II U 𝐶𝐿0 , 𝐶𝐿𝛼 3.9255 × 10−3 3.7874 × 10−3

Model CL-III U | S 𝐶𝐿0 , 𝐶𝐿𝛼,𝑠𝑠 , 𝐶𝐿𝛼,𝑤 3.7919 × 10−3 3.6565 × 10−3

Model CL-IV U | S 𝐶𝐿0 , 𝐶𝐿𝛼,𝑠𝑠 , 𝐶𝐿𝛼,𝑤 , 𝐶𝐿𝑞∗ 3.6244 × 10−3 3.4975 × 10−3

Model CL-V U | S 𝐶𝐿0 , 𝐶𝐿𝛼,𝑠𝑠 , 𝐶𝐿𝛼,𝑤 , 𝐶𝐿𝛿𝑒
3.6448 × 10−3 3.5150 × 10−3

Model CL-VI U | S 𝐶𝐿0 , 𝐶𝐿𝛼,𝑠𝑠 , 𝐶𝐿𝛼,𝑤 , 𝐶𝐿𝑞∗ , 𝐶𝐿𝛿𝑒
3.5534 × 10−3 3.4278 × 10−3

As a first step, Van Ingen CL and Model CL-I are compared. This comparison is made to see the relative

performance of the newly developed SNLS method compared to the old nonlinear parameter estimation method. The

SNLS method shows a 25.7% reduction in training MSE. Next, Model CL-II shows the quadratic spline term is not of

significant contribution compared to Model CL-I as removing it does not degrade model performance. Therefore, the

spline term will be excluded from further analysis. Moving to the two flow separation states, Model CL-III shows a

3.4% reduction in training MSE compared to Model CL-II.

Another objective of the proposed model structures is the evaluation of pitch rate 𝑞 and elevator deflection 𝛿𝑒 effects.

This is done through model structures Model CL-IV through Model CL-VI, where Model CL-IV and Model CL-V
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evaluate the separate effects of the pitch rate and elevator deflection respectively, and Model CL-VI evaluates the

combined effect. The results show that compared to Model CL-III, the pitch rate term reduces the training MSE by

4.4% and the elevator deflection term reduces the MSE by 3.9%. Combined the two terms reduce the MSE by 6.3%.

The combination of SNLS, two flow separation states, and the inclusion of pitch rate and elevator deflection terms

reduce the MSE with a total of 32%. The final model structure looks as follows:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼,𝑠𝑠

(
1 +

√
𝑋𝑠𝑠

2

)2

𝛼 + 𝐶𝐿𝛼,𝑤

(
1 +

√
𝑋𝑤

2

)2

𝛼 + 𝐶𝐿𝑞∗
𝑞𝑐

𝑉
+ 𝐶𝐿𝛿𝑒

𝛿𝑒 (28)

3. Drag Model

A total of fourteen models have been tested for the drag model. This is done with five main objectives objectives

defined in Section III.C.3. The results of the comparisons are summarized in Table 10. Looking deeper into the results,

interesting insights can be found. Starting with the direct comparison of the two nonlinear parameter estimation methods.

Using SNLS to estimate Model CL-I and then using OLS to estimate Model CD-I results in a 12.0% decrease in MSE

for the drag coefficient. However, more importantly, the longitudinal force coefficient MSE is reduced by 54.7%. This

larger improvement is due to the combined effects of the lift and drag coefficient model improvements.

Moving on to objective number two, the addition of a second flow separation state. Compared to Model CD-I,

Model CD-II further decreases the drag coefficient MSE by 15.6%. This in combination with the improved lift model

Model CL-VI causes a 34.0% reduction of the longitudinal force coefficient MSE.

The next goal is to review the contribution of the angle of attack as a direct regressor in the model. Before analyzing

this, a baseline is set with Model CD-III. Then, Model CD-IV and Model CD-V are estimated to see the improvements

of including 𝛼 and 𝛼2, respectively. Furthermore, Model CD-VI shows the effect of including both. It is seen that 𝛼2

has a more significant effect than 𝛼, but the best effect is seen when combining the terms. Model CD-VI makes a 9.7%

reduction in drag coefficient MSE and 8.5% reduction in longitudinal force coefficient MSE, all compared to baseline

Model CD-III.

A very similar analysis is done for the dependency of drag on lift. Model CD-III is used as a baseline. A first

observation can be made by looking at Model CD-X through Model CD-XII. Due to their poor performance, these

models are discarded. Looking at Model CD-VII through Model CD-IX the inclusion of only 𝐶𝐿 , only 𝐶2
𝐿
, and both

are tested. The term 𝐶2
𝐿

outperforms 𝐶𝐿 and including both works best. Furthermore, they show that the addition

of (1 − 𝑋𝑠𝑠) and (1 − 𝑋𝑤) have significant impact. Model CD-IX reduces the drag coefficient MSE by 10.3% and

longitudinal force coefficient by 10.0%, compared to Model CD-III. It can thus be said that the lift coefficient addition

performs better than the angle of attack addition.

Lastly, the effect of the Kirchhoff flow term is tested and compared to Model CD-III. The results again show that
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Table 10 Summary of the model exploration for the drag coefficient model. The underlying lift coefficient model
is referenced. Furthermore, the linear parameters are defined. Lastly, the MSE of the lift and normal force
coefficient on the training data are also presented. The most accurate result is highlighted in green.

Model MSE

Name Lift Model Linear Parameters 𝐶𝐷 𝐶𝑋

Van Ingen CD Van Ingen CL 𝐶𝐷0 , 𝐶𝐷𝛼 , 𝐶𝐷𝛿𝑒
, 𝐶𝐷𝐶𝑇

, 𝐶𝐷𝑋 2.3514 × 10−4 4.1277 × 10−4

Model CD-I Model CL-I 𝐶𝐷0 , 𝐶𝐷𝛼 , 𝐶𝐷𝛿𝑒
, 𝐶𝐷𝐶𝑇

, 𝐶𝐷𝑋 2.1027 × 10−4 1.9151 × 10−4

Model CD-II Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝛼 , 𝐶𝐷𝛿𝑒
, 𝐶𝐷𝐶𝑇

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 1.7545 × 10−4 1.2495 × 10−4

Model CD-III Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 1.7890 × 10−4 1.2814 × 10−4

Model CD-IV Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷𝛼

1.7225 × 10−4 1.2372 × 10−4

Model CD-V Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷

𝛼2

1.6585 × 10−4 1.1980 × 10−4

Model CD-VI Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷𝛼 , 𝐶𝐷

𝛼2

1.6162 × 10−4 1.1749 × 10−4

Model CD-VII Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷𝐶𝐿

1.7186 × 10−4 1.2327 × 10−4

Model CD-VIII Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷

𝐶2
𝐿

1.6683 × 10−4 1.1981 × 10−4

Model CD-IX Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷𝐶𝐿

, 𝐶𝐷
𝐶2
𝐿

1.6077 × 10−4 1.1572 × 10−4

Model CD-X Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝐶𝐿
4.7955 × 10−4 4.0464 × 10−4

Model CD-XI Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷
𝐶2
𝐿

4.5693 × 10−4 3.8668 × 10−4

Model CD-XII Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝐶𝐿
, 𝐶𝐷

𝐶2
𝐿

4.0461 × 10−4 3.4206 × 10−4

Model CD-XIII Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝐾𝐷,𝑠𝑠
, 𝐶𝐷𝐾𝐷,𝑤

2.6119 × 10−4 2.0720 × 10−4

Model CD-XIV Model CL-VI 𝐶𝐷0 , 𝐶𝐷𝐶𝑇
, 𝐶𝐷𝑞∗ , 𝐶𝐷𝛿𝑒

, 𝐶𝐷𝑋,𝑠𝑠 , 𝐶𝐷𝑋,𝑤 ,
𝐶𝐷𝐾𝐷,𝑠𝑠

, 𝐶𝐷𝐾𝐷,𝑤

1.7722 × 10−4 1.2555 × 10−4

the inclusion of (1 − 𝑋𝑠𝑠) and (1 − 𝑋𝑤) is necessary. The best performing version, Model CD-XIV, shows a 1.1%

reduction in drag coefficient MSE and 2.1% reduction in longitudinal force coefficient MSE. This term performs worse

than previous terms and is hence discarded.

From the previous analysis, Model CD-IX is selected for further refinement. Firstly, the pitch rate term is removed

as its t-test null hypothesis was accepted. Looking further, the correlations between 𝐶𝐷𝐶𝐿
and 𝐶𝐷

𝐶2
𝐿

as well as 𝐶𝐷𝐶𝐿

and 𝐶𝐷0 are between 0.8 and 0.9. Considering the small difference in performance between Model CD-IX and Model

CD-VIII, the 𝐶𝐷𝐶𝐿
term is removed. This leads to the following model:

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝐶𝑇
𝐶𝑇 + 𝐶𝐷𝛿𝑒

𝛿𝑒 + 𝐶𝐷
𝐶2
𝐿

𝐶2
𝐿 + 𝐶𝐷𝑋,𝑠𝑠 (1 − 𝑋𝑠𝑠) + 𝐶𝐷𝑋,𝑤 (1 − 𝑋𝑤) (29)

4. Pitch Moment Model

As mentioned in Section III.C.4, 59 new model structures are selected to be evaluated for the pitch moment model.

Due to their large quantity, individual mentions are omitted. However, global observations are discussed, and a
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comprehensive overview of all model fitting results is provided in Table 20 in Appendix B. The first objective was to

estimate Model Cm-I, building on the results of Model CL-I. It decreases the MSE on the pitch moment coefficient by

2.3%.

Moving on to the models proposed by Leishman and Beddoes [35], and Singh and Jategaonkar [16]. First, it is

observed that the inclusion of 𝐾𝑚
2 does not provide significant improvements. Although marginal improvements are

found, it is chosen to neglect these terms because of their diminishing returns and risk of overfitting. Furthermore, the

inclusion of 𝐾0 must be paired with 𝐾1 or (1 − 𝑋) to provide good results.

The model term proposed by Goman and Khrabrov [34], and Singh and Jategaonkar [16], shows poor performance

individually. Paired with 𝐾0 and (1 − 𝑋) it provides a decent improvement. However, there is no clear physical

underlying meaning for this. To improve the interpretability of the results, this term is omitted. Lastly, the inclusion of

𝑋𝛿𝑒 to model a reduction in the elevator effectiveness at high angles of attack shows consistent improvements in the

model. For this reason, it is chosen to keep it in the model.

Based on the previous sections, Model Cm-XXXIII is chosen. This model includes 𝐾0 and 𝐾1 as well as 𝑋𝛿𝑒.

Although the addition of (1 − 𝑋) could improve the model slightly, it is excluded to limit the complexity of the model.

Model Cm-XXXIII serves as a start for refinement. As a first observation, the correlation between 𝐶𝑚𝛿𝑒
and 𝐶𝑚𝑋𝑤 𝛿𝑒

is

found to be above 0.9. Therefore, it is decided to remove the latter. This does not have significant repercussions in terms

of model performance. This results in the following model:

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝐶𝑇
𝐶𝑇 + 𝐶𝑚𝑞∗

𝑞𝑐

𝑉
+ 𝐶𝑚𝛿𝑒

𝛿𝑒 + 𝐶𝑚𝑐.𝑔.

𝑥𝑐.𝑔.

𝑐
𝐶𝐿 (30)

+ 𝐶𝑚𝐾0
𝐶𝐿 + 𝐶𝑚𝐾1,𝑠𝑠

(1 − 𝑋𝑠𝑠)𝐶𝐿 + 𝐶𝑚𝐾1,𝑤
(1 − 𝑋𝑤)𝐶𝐿 + 𝐶𝑚𝑋𝑠𝑠 𝛿𝑒

𝑋𝑠𝑠𝛿𝑒

Finally, by grouping the terms relating to 𝐶𝐿 , a model for the distance between the center of gravity and the center

of pressure can be obtained, this is referred to as 𝑙𝑐.𝑝.. Furthermore, terms relating to the elevator deflection 𝛿𝑒 can be

grouped to create a model of the effectivity of the elevator 𝐶∗
𝑚𝛿𝑒

. This results in the following model:

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝐶𝑇
𝐶𝑇 + 𝐶𝑚𝑞∗

𝑞𝑐

𝑉
− 𝑙𝑐.𝑝.𝐶𝐿 + 𝐶∗

𝑚𝛿𝑒
𝛿𝑒 (31)

𝑙𝑐.𝑝. =
𝑥𝑐.𝑝. − 𝑥𝑐.𝑔.

𝑐
= −𝐶𝑚𝐾0

− 𝐶𝑚𝐾1,𝑠𝑠
(1 − 𝑋𝑠𝑠) − 𝐶𝑚𝐾1,𝑤

(1 − 𝑋𝑤) − 𝐶𝑚𝑐.𝑔.

𝑥𝑐.𝑔

𝑐
(32)

𝐶∗
𝑚𝛿𝑒

= 𝐶𝑚𝛿𝑒
+ 𝐶𝑚𝑋𝑠𝑠 𝛿𝑒

𝑋𝑠𝑠 (33)
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C. Stall Model

The final model structure, as derived from the analyses described in Section IV.B, can be obtained as:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼,𝑠𝑠

(
1 +

√
𝑋𝑠𝑠

2

)2

𝛼 + 𝐶𝐿𝛼,𝑤

(
1 +

√
𝑋𝑤

2

)2

𝛼 + 𝐶𝐿𝑞∗
𝑞𝑐

𝑉
+ 𝐶𝐿𝛿𝑒

𝛿𝑒 (34)

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝐶𝑇
𝐶𝑇 + 𝐶𝐷𝛿𝑒

𝛿𝑒 + 𝐶𝐷
𝐶2
𝐿

𝐶2
𝐿 + 𝐶𝐷𝑋,𝑠𝑠 (1 − 𝑋𝑠𝑠) + 𝐶𝐷𝑋,𝑤 (1 − 𝑋𝑤) (35)

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝐶𝑇
𝐶𝑇 + 𝐶𝑚𝑞∗

𝑞𝑐

𝑉
− 𝑙𝑐.𝑝.𝐶𝐿 + 𝐶∗

𝑚𝛿𝑒
𝛿𝑒 (36)

The models for the aerodynamic force and moment coefficients are supplemented with a model for the position of the

center of pressure and control effectiveness of the elevator:

𝑙𝑐.𝑝. = −𝐶𝑚𝐾0
− 𝐶𝑚𝐾1,𝑠𝑠

(1 − 𝑋𝑠𝑠) − 𝐶𝑚𝐾1,𝑤
(1 − 𝑋𝑤) − 𝐶𝑚𝑐.𝑔.

𝑥𝑐.𝑔

𝑐
(37)

𝐶∗
𝑚𝛿𝑒

= 𝐶𝑚𝛿𝑒
+ 𝐶𝑚𝑋𝑠𝑠 𝛿𝑒

𝑋𝑠𝑠 (38)

Lastly, the stall is modeled using two flow separation states. One state will model the effect of stall strips installed on the

wing, and another will model the rest of the wing. The governing equations are obtained as:

𝜏1,𝑠𝑠
𝑑𝑋𝑠𝑠

𝑑𝑡
+ 𝑋𝑠𝑠 =

1
2
− 1

2
tanh

(
𝑎1,𝑠𝑠

[
𝛼 − 𝜏2,𝑠𝑠 ¤𝛼 − 𝛼∗𝑠𝑠

] )
(39)

𝑋𝑤 =
1
2
− 1

2
tanh

(
𝑎1,𝑤

[
𝛼 − 𝛼∗𝑤

] )
(40)

1. Flow Separation Models

Using the SNLS method, the models for the lift coefficient and flow separation states defined in Eqs. (34), (39)

and (40) can be estimated simultaneously. The results of this system identification task can be found in Tables 11 and 12.

The results in Table 11 show an acceptable parameter standard deviation. It also shows that all null hypotheses for

the t-test are rejected. Furthermore, all parameter correlations in Table 12 are below 0.9. The correlation between

𝜏1,𝑠𝑠 and 𝜏2,𝑠𝑠 is very low, indicating that the new flight maneuvers mentioned in Section III.A are effective. The

highest correlation is found for 𝐶𝐿0 and 𝐶𝐿𝛼,𝑠𝑠 . This correlation was already highlighted by Van Ingen et al. [30] and is

likely caused by parts of the data having insufficient variation in the angle of attack. However, removing either term

significantly reduces the accuracy of the model, thus both are retained.

Looking at the static flow separation parameters of the stall strip and wing, a few observations can be made. Starting

with the stall strip angle of attack 𝛼∗𝑠𝑠. This is found to be at 11.2◦ and is in line with the start of buffet vibrations.

Furthermore, the abruptness of the stall modeled by 𝑎1,𝑠𝑠 is high. This corresponds well with the behavior of a stall

strip, which causes flow separation at the leading edge. A high abruptness is seen here as a crude method for modeling a
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Table 11 Parameter estimates and statistics for the final lift coefficient model. For the 𝑡-test ◦ indicates that the
null hypothesis is accepted and ∗ that the null hypothesis is rejected.

Results 𝑡-test

Parameter Unit 𝜃 𝜎𝜃 𝑝 ℎ

𝜏1,𝑠𝑠 s 0.4191 0.0722 0.0000 *
𝜏2,𝑠𝑠 s 0.3391 0.0346 0.0000 *
𝑎1,𝑠𝑠 - 70.2846 11.2205 0.0000 *
𝛼∗𝑠𝑠 rad 0.1956 0.0017 0.0000 *
𝑎1,𝑤 - 13.9276 1.4462 0.0000 *
𝛼∗𝑤 rad 0.3267 0.0056 0.0000 *
𝐶𝐿0 - 0.2318 0.0116 0.0000 *

𝐶𝐿𝐾𝛼,𝑠𝑠
- 1.3851 0.1061 0.0000 *

𝐶𝐿𝐾𝛼,𝑤
- 2.5961 0.0536 0.0000 *

𝐶𝐿𝑞∗ - 8.0747 1.3881 0.0000 *
𝐶𝐿𝛿𝑒

- −0.3403 0.0681 0.0000 *

Table 12 Parameter correlation matrix for the final lift coefficient model. High correlations are highlighted red.

𝜏1,𝑠𝑠 𝜏2,𝑠𝑠 𝑎1,𝑠𝑠 𝛼∗𝑠𝑠 𝑎1,𝑤 𝛼∗𝑤 𝐶𝐿0 𝐶𝐿𝐾𝛼,𝑠𝑠
𝐶𝐿𝐾𝛼,𝑤

𝐶𝐿𝑞∗ 𝐶𝐿𝛿𝑒

𝜏1,𝑠𝑠 1.00 0.06 0.21 0.10 0.15 0.03 0.16 -0.35 0.33 0.06 -0.08
𝜏2,𝑠𝑠 0.06 1.00 -0.07 -0.35 0.09 0.36 0.09 -0.27 0.40 0.51 0.16
𝑎1,𝑠𝑠 0.21 -0.07 1.00 0.36 -0.08 0.03 0.07 0.04 -0.07 0.05 0.13
𝛼∗𝑠𝑠 0.10 -0.35 0.36 1.00 -0.04 0.04 0.17 -0.10 -0.26 -0.03 -0.21
𝑎1,𝑤 0.15 0.09 -0.08 -0.04 1.00 0.30 0.00 -0.05 0.14 0.29 0.10
𝛼∗𝑤 0.03 0.36 0.03 0.04 0.30 1.00 0.07 -0.16 0.28 0.46 0.21
𝐶𝐿0 0.16 0.09 0.07 0.17 0.00 0.07 1.00 -0.87 -0.27 0.58 -0.12
𝐶𝐿𝐾𝛼,𝑠𝑠

-0.35 -0.27 0.04 -0.10 -0.05 -0.16 -0.87 1.00 -0.11 -0.61 0.23
𝐶𝐿𝐾𝛼,𝑤

0.33 0.40 -0.07 -0.26 0.14 0.28 -0.27 -0.11 1.00 0.25 0.49
𝐶𝐿𝑞∗ 0.06 0.51 0.05 -0.03 0.29 0.46 0.58 -0.61 0.25 1.00 0.30
𝐶𝐿𝛿𝑒

-0.08 0.16 0.13 -0.21 0.10 0.21 -0.12 0.23 0.49 0.30 1.00

leading-edge stall. Moving on to 𝑎1,𝑤 , a much more subtle stall is estimated for the rest of the wing. This is in line with

the expected trailing-edge stall. Furthermore, 𝛼∗𝑤 is estimated to be 18.7◦. This corresponds well with the wind tunnel

results for NACA23012, which indicated that the stall angle of attack must be between 15◦ and 20◦.

Using the four static flow separation parameters discussed before, the static flow separation curves can be plotted.

These are presented in the left plots of Fig. 6. Three main stages in the flow separation behavior can be defined: no flow

separation, stall strip flow separation, and full flow separation. No flow separation is the expected stage during normal

flight, this is defined in Fig. 6 as stage 1. As can be seen in the top right plot, the flow separation line is located at the

trailing edge of the wing. Moving on to stage 2, stall strip separation, corresponds to the middle right plot. It can be

seen that the green flow separation line has moved to the leading edge which means full flow separation at the stall strips.

Lastly, stage 3 refers to full flow separation and is shown in the bottom right plot. At this stage, the rest of the wing

follows the stall strips and the flow separates.

The unsteady flow separation parameters of the stall strip were determined at 𝜏1,𝑠𝑠=0.4191 s and 𝜏2,𝑠𝑠=0.3391 s.
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Fig. 6 Visualization of the stages of flow separation on the wing. Flow separation state of the stall strip in the
top left plot. Flow separation state of the rest of the wing in the bottom left plot. The three right plots show the
three stages of flow separation on a top view of the wing and reference the vertical lines in the left plots.

Using the average airspeed of the training set 𝑉=87 m/s and chord length, the non-dimensional time constants can be

determined. These are 𝜏∗1,𝑠𝑠=18.14 and 𝜏∗2,𝑠𝑠=14.67. The value for 𝜏1,𝑠𝑠 corresponds well with literature. However, 𝜏2,𝑠𝑠

is observed to be relatively high [15].

2. Lift Model

The lift coefficient model parameters have been identified with SNLS in Section IV.C.1. A review of the parameter

values in Table 11 is performed here. The zero angle of attack lift coefficient 𝐶𝐿0 is estimated at 0.2318. It is expected

for this value to be above zero due to an angle of incidence of the wing and a camber in the airfoil profile. The lift curve

slope in the linear part of the angle of attack range is 3.98 and found by combining 𝐶𝐿𝛼,𝑠𝑠 and 𝐶𝐿𝛼,𝑤 . The response of

the lift to a pitch, captured by 𝐶𝐿𝑞∗ , is positive, as expected. Lastly, the response of the lift to an elevator deflection is

estimated to be negative. The low lift curve slope and negative response of lift to elevator deflection could be explained

by a high correlation between the angle of attack and elevator deflection, which is estimated at -0.8 for the training set.

Using 𝐶𝐿0 , 𝐶𝐿𝛼,𝑠𝑠 , 𝐶𝐿𝛼,𝑤 and the steady flow separation parameters, the static lift curve can be constructed. Figure 7

shows the measured values as data points and the static lift curves of Van Ingen [23] and this work. It can be seen that

the measured values show significant spread, which can be attributed to neglected elevator deflection effects through

𝐶𝐿𝛿𝑒
and unsteady effects modeled by 𝜏1,𝑠𝑠, 𝜏2,𝑠𝑠 and 𝐶𝐿𝑞∗ . Beyond that, it can be seen that both models are in the
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middle of the measurements in the low angle of attack regions. However, the previous model starts to diverge at high

angles of attack due to the quadratic spline term in the work of Van Ingen [23]. This divergence already starts around

0.3 radians. On the other hand, the old model closer approximates the data at low angles of attack.

3. Drag Model
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Fig. 7 Static lift curve for Van Ingen CL and Model
CL-VI plotted over the measured lift coefficient values

For the refined 𝐶𝐷 model defined in Eq. (35), referred

to as Model CD-IXr, the results of the parameter esti-

mation are presented in Tables 13 and 14. It can be seen

in Table 13 that all t-test null hypotheses are rejected,

indicating that each parameter is significantly different

from zero. Furthermore, it can be seen in Table 14 that

all correlations are below 0.8.

Looking at the values of the coefficients, 𝐶𝐷0 is

estimated at 0.0165, indicating there is some drag, even

when all other contributions are zero. The coefficient

𝐶𝐷𝐶𝑇
is estimated at 0.3917, which corresponds well

with previous results found by Van Ingen et al. [30]. The

coefficient for the elevator deflection 𝐶𝐷𝛿𝑒
is found to be

negative. This is likely because the deflection is on average negative, which makes the contribution of the elevator

to the drag positive. As expected, the lift causes added lift-induced drag, thus the coefficient 𝐶𝐷
𝐶2
𝐿

is positive. The

coefficients 𝐶𝐷𝑋𝑠𝑠
and 𝐶𝐷𝑋𝑤

indicate that as the flow separates a further increase in drag is observed.

Table 13 Estimated coefficients for the Drag coeffi-
cient model. For the 𝑡-test ◦ indicates that the null
hypothesis is accepted and ∗ that the null hypothesis is
rejected.

Results 𝑡-test

Parameter Unit 𝜃 𝜎𝜃 p h
𝐶𝐷0 - 0.0165 0.0020 0.0000 *
𝐶𝐷𝐶𝑇

- 0.3917 0.0135 0.0000 *
𝐶𝐷𝛿𝑒

- −0.1894 0.0131 0.0000 *
𝐶𝐷

𝐶2
𝐿

- 0.0258 0.0035 0.0000 *
𝐶𝐷𝑋𝑠𝑠

- 0.0555 0.0017 0.0000 *
𝐶𝐷𝑋𝑤

- 0.2062 0.0064 0.0000 *

Table 14 Parameter correlation matrix for the Drag
coefficient model.

𝐶𝐷0 𝐶𝐷𝐶𝑇
𝐶𝐷𝛿𝑒

𝐶𝐷
𝐶2
𝐿

𝐶𝐷𝑋𝑠𝑠
𝐶𝐷𝑋𝑤

𝐶𝐷0 1.00 -0.74 -0.23 -0.76 0.20 0.40
𝐶𝐷𝐶𝑇

-0.74 1.00 -0.05 0.23 0.14 -0.38
𝐶𝐷𝛿𝑒

-0.23 -0.05 1.00 0.73 -0.25 -0.04
𝐶𝐷

𝐶2
𝐿

-0.76 0.23 0.73 1.00 -0.40 -0.25
𝐶𝐷𝑋𝑠𝑠

0.20 0.14 -0.25 -0.40 1.00 -0.52
𝐶𝐷𝑋𝑤

0.40 -0.38 -0.04 -0.25 -0.52 1.00
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Fig. 8 Static drag polar for Van Ingen CL and Model
CD-IXr plotted over the adjusted drag coefficient mea-
surements

Using the estimated model, the static drag polar may

be constructed. The static drag polar is presented in

Fig. 8. The polar is complemented by the measurements

corrected for the effects of the thrust coefficient and

elevator deflection. Furthermore, the model Van Ingen

CD from Van Ingen et al. [30] is added for comparison.

It can be seen that the new model better matches the

high and low angle of attack regions. Furthermore, the

𝐶2
𝐿

term ensures that drag remains positive for negative

angles of attack.

4. Pitch Moment Model

The results of the model identification for the pitch

moment model in Eq. (36), referred to as Model Cm-

XXXIIIr, are presented in Tables 15 and 16. Immediately,

the high correlation between 𝐶𝑚𝑐𝑔 and 𝐶𝑚𝐾0
in Table 16 stands out. This makes sense as the center of gravity is

relatively constant. However, due to the difference it makes for the accuracy of the model the term is retained. Beyond

that, all terms were found to be significant by the t-test, and parameter correlations are below 0.8.

Table 15 Estimated coefficients for the Pitch moment coefficient model. For the 𝑡-test ◦ indicates that the null
hypothesis is accepted and ∗ that the null hypothesis is rejected.

Results 𝑡-test

Parameter Unit 𝜃 𝜎𝜃 p h
𝐶𝑚0 - 0.0659 0.0026 0.0000 *
𝐶𝑚𝐶𝑇

- 0.0794 0.0089 0.0000 *
𝐶𝑚𝑞∗ - −1.7502 0.2675 0.0000 *
𝐶𝑚𝛿𝑒

- −0.7431 0.0134 0.0000 *
𝐶𝑚𝑐.𝑔. - −0.9616 0.1305 0.0000 *
𝐶𝑚𝐾0

- 3.2316 0.4594 0.0000 *
𝐶𝑚𝐾1,𝑠𝑠

- −0.0517 0.0033 0.0000 *
𝐶𝑚𝐾1,𝑤

- −0.0681 0.0053 0.0000 *
𝐶𝑚𝑋1 𝛿𝑒

- −0.2576 0.0224 0.0000 *

The model for the center of pressure is presented in Fig. 9. The center of pressure is measured from a datum defined

15 inches in front of the aircraft [33]. It can be seen that for low angles of attack, the center of pressure is constant and it

shifts backward as the aircraft stalls. The stall angles of attack for the stall strip and the rest of the wing are highlighted

in the figure. The shift back is expected and relates to the relative contribution of the horizontal tail becoming larger.
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Table 16 Parameter correlation matrix for the Pitch moment coefficient model. High correlations are highlighted
red.

𝐶𝑚0 𝐶𝑚𝐶𝑇
𝐶𝑚𝑞∗ 𝐶𝑚𝛿𝑒

𝐶𝑚𝑐.𝑔. 𝐶𝑚𝐾0
𝐶𝑚𝐾1,𝑠𝑠

𝐶𝑚𝐾1,𝑤
𝐶𝑚𝑋1 𝛿𝑒

𝐶𝑚0 1.00 -0.41 0.54 0.07 -0.07 0.06 0.51 0.20 -0.38
𝐶𝑚𝐶𝑇

-0.41 1.00 0.08 -0.07 -0.45 0.45 0.03 -0.30 0.08
𝐶𝑚𝑞∗ 0.54 0.08 1.00 0.28 -0.40 0.39 0.57 -0.23 -0.21
𝐶𝑚𝛿𝑒

0.07 -0.07 0.28 1.00 -0.08 0.08 0.67 0.04 -0.68
𝐶𝑚𝑐.𝑔. -0.07 -0.45 -0.40 -0.08 1.00 -1.00 -0.27 0.13 0.11
𝐶𝑚𝐾0

0.06 0.45 0.39 0.08 -1.00 1.00 0.26 -0.13 -0.11
𝐶𝑚𝐾1,𝑠𝑠

0.51 0.03 0.57 0.67 -0.27 0.26 1.00 -0.15 -0.78
𝐶𝑚𝐾1,𝑤

0.20 -0.30 -0.23 0.04 0.13 -0.13 -0.15 1.00 -0.27
𝐶𝑚𝑋1 𝛿𝑒

-0.38 0.08 -0.21 -0.68 0.11 -0.11 -0.78 -0.27 1.00

The center of gravity envelope lies between 276 and 286 inches†, which is ahead of the center of pressure at all times.

This means that the configuration is stable; that this comes back from the identification results is an important marker

for the reliability of the results.

Moving to the effective elevator control effectiveness 𝐶∗
𝑚𝛿𝑒

. It has long been known that the stall would adversely

affect this [30]. The results in this work, as seen in Fig. 10, show the same. The initial control effectiveness is close to

that estimated by Van Ingen et al. [30], however, the degradation is less. In previous work, the degradation was forced to

be 50%, due to the model structure. In this work, the identification has more freedom and therefore is seen as a more

reliable estimate.
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Fig. 9 Variation of the center of pressure 𝑥𝑐.𝑝 with
respect to a datum in front of the aircraft for increasing
angle of attack.
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Fig. 10 Variation of the elevator control effectiveness
for increasing angle of attack. Compared against
Van Ingen et al. [30]

†Information received from the TU Delft’s research aircraft technicians
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Fig. 11 Static pitch moment for Van Ingen Cm and
Model Cm-XXXIIIr plotted over the adjusted pitch mo-
ment measurements.

Lastly, the static pitch moment behavior can be plotted

in Fig. 11. To do this, unsteady effects from the flow

separation states are neglected. Furthermore, the mea-

surements are corrected for elevator and thrust coefficient

effects. The static pitch moment is compared to that

obtained by Van Ingen et al. [30]. Interestingly, the two

models behave very similarly in the low angle of attack

region. However, for high angles of attack the new model

levels off, as opposed to the previous model. This is

expected as the lift, causing the moment, levels off as well.

At first, this is offset by the shift of the center of pressure,

but as that stabilizes the pitch moment settles too.

D. Model Validation

As mentioned in Section III.A, 20% of the data is

saved to be used for validation. This data is used to show that the identified model can generalize. A comparison of

the MSE values on the training and validation data sets is summarized in Table 17. This table recaps the reductions

mentioned in previous sections. Furthermore, the reductions for the validation set are presented. Improvements for the

validation set are smaller, but significant nonetheless. The consistency of the improvements builds confidence in the

validity of the model.

Table 17 Comparison of mean square error values for the model defined in this work and that by Van Ingen
et al. [30]

Training Data Validation Data

Van Ingen This work Van Ingen This work

Model MSE MSE Difference [%] MSE MSE Difference [%]
𝐶𝐿 5.23 × 10−3 3.55 × 10−3 −32 4.09 × 10−3 3.38 × 10−3 −17
𝐶𝐷 2.35 × 10−4 1.68 × 10−4 −29 1.90 × 10−4 1.75 × 10−4 −8
𝐶𝑋 4.13 × 10−4 1.20 × 10−4 −71 1.98 × 10−4 1.53 × 10−4 −23
𝐶𝑍 5.04 × 10−3 3.60 × 10−3 −29 4.07 × 10−3 3.38 × 10−3 −17
𝐶𝑚 1.96 × 10−4 1.43 × 10−4 −27 2.52 × 10−4 1.86 × 10−4 −26

The 𝑅2 value can be calculated for each maneuver in the training and validation data sets. Moreover, the 𝑅2 values

can be obtained for all models. The resulting values are summarized in Fig. 12, where Fig. 12a shows the training data

and Fig. 12b shows the validation data. The plots show an improvement in the consistency of the model obtained in this

work. This is evident from the increases in mean values, first quartile values, lower whisker values, and outlier values.
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Fig. 12 Boxplots of the 𝑅2 values of each model. 𝑅2 values are calculated for each maneuver.

Figure 13 shows a comparison of the previous and new models for three selected flight maneuvers of the validation

set. These were chosen based on the average 𝑅2 value for the different submodels. The model performed worst for

maneuver 46, average performance was found for maneuver 16, and the best performance on maneuver 7. The plots

show that, in general, the prediction made by the new model is closer to the measured value.

V. Discussion

A. Implications of Separable Nonlinear Least Squares

SNLS is introduced in this paper as an alternative nonlinear parameter estimation technique. Its goal is to overcome

three main limitations in prior methods: long runtime, lack of a parameter correlation metric, and suboptimal linear

parameter results. The first limitation has been largely eliminated, with runtime reduced from hours to seconds. The

second limitation was removed with the introduction of the covariance matrix in Eq. (19). The correlation metric can be

derived from the covariance matrix. The third limitation was previously solved by running OLS after the nonlinear

parameter estimation. However, this gave inconsistent results between nonlinear and linear parameter estimation

methods. SNLS embeds OLS into it for the linear parameters, implying that the parameter estimates are the best linear

unbiased estimators of the true parameter values.

The use of SNLS has enabled rapid iteration of model structures, which can be expanded even more in the future.

For the separation states and lift coefficient, 15 different nonlinear parameter estimations have been performed. In the

past, this was infeasible. The low runtime enables more comprehensive studies to be performed in the future. On top of

the runtime improvement, the SNLS method also converges to better parameter values. In Section IV.A, the model of
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Fig. 13 Performance of the new longitudinal stall model compared with Van Ingen et al. [30] for selected
maneuvers. Left shows maneuver 46, the middle shows maneuver 16, and the right shows maneuver 7.

Van Ingen et al. [30] was re-identified and lower MSE values were found on the same maneuvers. The same was found

when retaining the same model structure on the new data set created for this paper. Moreover, the results prove more

consistent, showing higher averages and smaller spreads in 𝑅2 values.

The potential of the SNLS method is clear, however, work remains in extending the method to lateral flight dynamics.

Additionally, the method should be integrated with better model structure selection methods, such as genetic algorithms

or exhaustive methods. The use of SNLS has also opened up the option to work with larger data sets. Future work

should use this to create composite data sets with stall and non-stall data. Integrating stall models with nominal models

has been a longstanding challenge and this is seen as a potential avenue for closing that gap.
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B. Stall Model

A new longitudinal stall model for the Cessna Citation II has been presented in this paper. The new model reduces

the training MSE by around 30% for the lift, drag, and pitch moment coefficients. Furthermore, the validation MSE is

decreased by around 20%.

The model has been extended with a second flow separation state. The second state is hypothesized to correspond

to the stall strip. However, this cannot be confirmed without specific tests to visualize the flow around the wing. To

this effect, it is suggested for subsequent research to perform flight tests with tufts installed on the wing. Assuming

the second state models the local effects of the stall strip. Further research should investigate the use of the model for

leading edge stalls specifically. The flow separation model used is typically associated with trailing edge stalls.

No unsteady contributions were found for the wing separation state. It is important to note that these results do not

imply that unsteady aerodynamic effects are absent on the rest of the wing. Instead, the available data does not provide

significant information for the stall regime in these regions. Furthermore, the deep dynamic stall maneuver proved

difficult to execute and further research should work on reliable maneuvers in the high angle of attack regime.

The lift model has been extended and now includes two separation states, as well as a pitch rate and elevator

deflection term. There remains a large correlation between the bias and Kirchhoff’s term. Although reduced, future

work should try to reduce it even further. Furthermore, the effect of the elevator deflection is found to be negative. This

is counter-intuitive and likely caused by a high correlation between the elevator deflection and the angle of attack. This

can be eliminated by including excitations of the elevator at low angles of attack.

The drag model was changed and now includes a quadratic relation to the lift coefficient. It matches the low and

high angle of attack extremes more closely compared to the previous model. Most importantly, it avoids negative drag

for negative angles of attack. Still, it would be useful to include more data at negative angles of attack to improve

knowledge of that regime.

The pitch moment model saw the most major iteration. It now includes a model for the center of pressure and its

shift during a stall. The determination of its location is of great interest for aerodynamic modeling, and future research

should investigate it in more detail. Next, a new formulation for the elevator control effectiveness is obtained. The

model shows a stagnation of the static pitch moment. Further work should specifically look at that high angle of attack

regime where this is observed.

For the drag and pitch moment models, a new dependency on the lift coefficient is introduced. The lift model itself

contains errors, which means those are propagated to the drag and pitch moment models. Future work should investigate

this propagation. More broadly speaking, an estimate of the confidence in the output of the model is desirable. This can

be achieved using uncertainty propagation, which is an area that should be investigated in the future.
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C. Stall Simulation

The ultimate goal of this research is to teach pilots how to safely operate an aircraft during a stall. This paper

contributes by improving the accuracy of the aerodynamic force and moment models during the stall. However, future

work should determine its effectiveness for pilot training.

First, a study should be performed to judge the propagation of the aerodynamic model towards the aircraft states. By

simulating the aircraft dynamics with the aerodynamic model the aircraft states can be compared against the measured

states. This might reveal deficiencies present in the model. Additionally, it may also be used to determine if the added

complexity is worthwhile.

Similarly, pilot-in-the-loop simulations can determine if it is necessary to include model terms. Through the use of

just-noticeable-differences experiments, it can also be determined if the parameter variances found in this work are low

enough. Otherwise, more data must be gathered.

VI. Conclusion
Stall model identification aims to improve upset prevention and recovery training by enabling accurate flight

simulation in stall. This paper contributes to this goal by introducing new flight maneuvers for the Cessna Citation II:

the dynamic stall and the deep dynamic stall. These maneuvers reduced 𝜏1 and 𝜏2 parameter correlation from 0.73

to 0.06, improving model reliability. Furthermore, a new nonlinear parameter estimation technique was developed,

called separable nonlinear least squares. This method significantly reduces the computational time for nonlinear

parameter estimation. In addition, larger data sets can be processed, ensuring greater consistency and reducing the risk

of overfitting to certain maneuvers. In the future, data sets using stall and non-stall data may be considered to bridge

the existing gap of transitioning from nominal to stall models. Further methodological improvements can be made

by integrating the separable nonlinear least squares method with model structure selection methods. An improved

longitudinal stall model is introduced in this paper, where MSE values for the lift, drag and pitch moment coefficients

were reduced by 32%, 29%, and 27%, respectively. The new model should be tested in a simulation where aircraft

states can be analyzed. Additionally, pilot-in-the-loop tests should be performed to review the pilots’ perception of the

new model. Further research should extend the developed longitudinal model to the lateral dynamics of the aircraft

using the new methodology. In conclusion, multiple advances have been made that contribute to the overarching goal of

improving upset prevention and recovery training, paving the way to safer flight.
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A. Aircraft Reference Frames
In the paper, three reference frames are used. These reference frames define in which direction forces and moments

act. The first reference frame is the earth reference frame, as seen in Figure 14. The origin of this frame is in the center

of gravity of the aircraft. The 𝑋𝑌 -plane is tangential to the surface of the earth, with the 𝑋-axis pointing north and the

𝑌 -axis pointing east. The 𝑍-axis is perpendicular to the 𝑋𝑌 -plane and points towards the center of the earth.
24 Reference Frames
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Figure 2-5: Vehicle carried normal Earth reference frame for spherical Earth

perturbed motion. The choice of the direction of the axes is rather arbitrary, the most commonly
used orientation of the axes-system is depicted in Figure 2-6 (p. 25). The Xb-axis is in the
symmetry plane of the aircraft 3 and points forward. 4 The actual direction is still arbitrary
which influences the definition of the angle of attack (which will be explained in future sections).
The Zb-axis also lies in the symmetry plane and points downward. Finally the Yb-axis is directed
to the right, perpendicular to the symmetry plane.

Because the X-axis direction can be chosen arbitrarily, an infinite number of possible body-fixed
reference frames exist. The most commonly used body-fixed reference-frame definition is the
stability reference frame, FS . For this reference frame to be defined, a reference flight condition
must be chosen which is in most cases a condition of steady flight. For this condition the relative
wind can be projected onto the plane of symmetry. The XS-axis is chosen in this direction. The
ZS-axis is also in the plane of symmetry but perpendicular to the XS-axis pointing downward,
The YS-axis completes the reference frame. Once the orientation of the reference frame relative
to the aircraft is chosen, it will remain fixed thereafter. A graphical description is given in Figure
2-7 (p. 25).
The stability reference frame will be used in subsequent sections of this book. The origin is
chosen in the center of mass of the aircraft.

2-1-5 Vehicle reference frame, Fr

The vehicle frame of reference (OrXrYrZr) is a left-handed orthogonal axis-system with the
origin at an arbitrary, yet fixed and invariable, position. The reference frame is fixed to the vehicle.

3This is only possible under the assumption that such a plane exists.
4Forward, in this case, holds only for a more or less horizontal flight condition. For the vertical orientation of

a launcher, the Xb-axis is positive pointing upwards. What is common, though, is that in both situations the axis
points towards the nose of the vehicle.

Fig. 14 Earth reference frame, adapted from [47]

The second reference frame, most relevant for flight dynamics modeling, is the body reference frame. This is the

frame in which aerodynamic forces and moments are typically expressed. The 𝑋-axis is defined through the nose of the

aircraft. The 𝑌 -axis lies in the horizontal plane and points towards the right wing. Lastly, the 𝑍-axis points downwards

and is perpendicular to the 𝑋 and 𝑌 -axis. This reference frame is depicted in Figure 15. The Euler angles can be used to

rotate from the earth frame to the body frame. These angles are defined as yaw 𝜓, pitch 𝜃 and roll 𝜑. Using these three

angles the rotation matrix T𝑏𝐸 can be constructed:

T𝑏𝐸 =


cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃

sin 𝜑 sin 𝜃 cos𝜓 − cos 𝜑 sin𝜓 sin 𝜑 sin 𝜃 sin𝜓 + cos 𝜑 cos𝜓 sin 𝜑 cos 𝜃

cos 𝜑 sin 𝜃 cos𝜓 + sin 𝜑 sin𝜓 cos 𝜑 sin 𝜃 sin𝜓 − sin 𝜑 cos𝜓 cos 𝜑 cos 𝜃


(41)

Lastly, the aerodynamic reference frame can be constructed. This frame is aligned with the velocity vector of the

incoming undisturbed air. The lift and drag of an aircraft are defined in this reference frame. Its relation to the body

frame can be seen in Figure 16. The two angles are the angle of attack 𝛼 and sideslip 𝛽. To rotate from the body frame
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Figure 2-7: Stability Reference Frame

The usual definitions, in case of an aircraft, for the axes’ directions are:

• Xr-axis
Parallel to the plane of symmetry, in a direction fixed and invariable relative to the aircraft.
The positive Xr-axis points to the rear of the aircraft.

• Yr-axis
Perpendicular to the plane of symmetry. The positive Yr-axis points to the left.

Flight Dynamics

Fig. 15 Body reference frame, adapted from [47]

to the aerodynamic frame rotation matrix T𝑎𝑏 can be used. This rotation matrix is defined as follows:

T𝑎𝑏 =


cos 𝛽 cos𝛼 sin 𝛽 cos 𝛽 sin𝛼

− sin 𝛽 cos𝛼 cos 𝛽 − sin 𝛽 sin𝛼

− sin𝛼 0 cos𝛼


(42)
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Fig. 16 Aerodynamic reference frame, adapted from [47]
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B. Model Structures

A. Lift Model

The lift models used during exploration are summarized in Table 18.

Table 18 Overview of all experimental lift model structures derived from the base regressors. All models
include 𝐶𝐿0 .

(𝛼 − 6◦)2
+ 𝐾𝐿,𝑠𝑠 𝐾𝐿,𝑤

𝑞𝑐̄

𝑉
𝛿𝑒

Model CL-I * *
Model CL-II *
Model CL-III * *
Model CL-IV * * *
Model CL-V * * *
Model CL-VI * * * *

B. Drag Model

The drag models used during exploration are summarized in Table 19.

Table 19 Overview of all experimental drag model structures derived from the base regressors. All models
include 𝐶𝐷0 .

𝐶𝑇
𝑞𝑐̄

𝑉
𝛿𝑒 𝛼 𝛼2 𝐶𝐿 𝐶2

𝐿
(1 − 𝑋𝑠𝑠) (1 − 𝑋𝑠𝑠) 𝐾𝐷,𝑠𝑠 𝐾𝐷,𝑤

Model CD-I * * * *
Model CD-II * * * * *
Model CD-III * * * * *
Model CD-IV * * * * * *
Model CD-V * * * * * *
Model CD-VI * * * * * * *
Model CD-VII * * * * * *
Model CD-VIII * * * * * *
Model CD-IX * * * * * * *
Model CD-X * * * *
Model CD-XI * * * *
Model CD-XII * * * * *
Model CD-XIII * * * * *
Model CD-XIV * * * * * * *

C. Pitch Model

The first model structure for the pitch model is derived from Van Ingen et al. [30].

Model Cm-I : 𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑋𝛿𝑒
max(1/2, 𝑋)𝛿𝑒 + 𝐶𝑚𝐶𝑇

𝐶𝑇 (43)
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The other model structures are summarized in Table 20. They are supplemented with training MSE on the pitch

moment coefficient as not each model is mentioned separately in the main body. Furthermore, the percentage difference

from the model by Van Ingen et al. [30] is presented.

Table 20 Overview of all pitch model structures derived from the base regressors. Differences are measured
against the pitch model of Van Ingen et al. [30].

𝐾0 𝐾1 𝐾
1/2
2 𝐾1

2 𝐾2
2 𝐾𝑆 (1 − 𝑋) 𝑋𝛿𝑒 𝐶𝑚 MSE Difference [%]

Model Cm-II * 3.86 × 10−4 96.7
Model Cm-III * 3.39 × 10−4 72.6
Model Cm-IV * * 1.53 × 10−4 −22.2
Model Cm-V * * 2.17 × 10−4 10.8
Model Cm-VI * * 3.33 × 10−4 69.9
Model Cm-VII * * * 1.51 × 10−4 −22.8
Model Cm-VIII * * 2.50 × 10−4 27.6
Model Cm-IX * * 3.32 × 10−4 69.4
Model Cm-X * * * 1.51 × 10−4 −23.0
Model Cm-XI * * 2.486×10−4 26.3
Model Cm-XII * * 3.30 × 10−4 68.2
Model Cm-XIII * * * 1.49 × 10−4 −24.1
Model Cm-XIV * 4.62 × 10−4 135.3
Model Cm-XV * * 2.52 × 10−4 28.4
Model Cm-XVI * 3.45 × 10−4 75.8
Model Cm-XVII * * 1.62 × 10−4 −17.4
Model Cm-XVIII * * 3.30 × 10−4 68.4
Model Cm-XIX * * * 1.47 × 10−4 −24.9
Model Cm-XX * * * 1.62 × 10−4 −17.6
Model Cm-XXI * * * 3.18 × 10−4 62.0
Model Cm-XXII * * * * 1.41 × 10−4 −27.9
Model Cm-XXIII * * * 1.61 × 10−4 −17.9
Model Cm-XXIV * * * 3.17 × 10−4 61.7
Model Cm-XXV * * * * 1.39 × 10−4 −29.1
Model Cm-XXVI * * * 1.57 × 10−4 −20.2
Model Cm-XXVII * * * 3.18 × 10−4 61.9
Model Cm-XXVIII * * * * 1.40 × 10−4 −28.5
Model Cm-XXIX * * 1.80 × 10−4 −8.3
Model Cm-XXX * * * 1.62 × 10−4 −17.6
Model Cm-XXXI * * 1.68 × 10−4 −14.5
Model Cm-XXXII * * 3.06 × 10−4 56.0
Model Cm-XXXIII * * * 1.42 × 10−4 −27.8
Model Cm-XXXIV * * * 1.46 × 10−4 −25.8
Model Cm-XXXV * * * 3.06 × 10−4 55.8
Model Cm-XXXVI * * * * 1.40 × 10−4 −28.7
Model Cm-XXXVII * * * 1.57 × 10−4 −20.2

Continues on the next page
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Table 20 Overview of all pitch model structures derived from the base regressors. Differences are measured
against the pitch model of Van Ingen et al. [30]. (continued)

𝐾0 𝐾1 𝐾
1/2
2 𝐾1

2 𝐾2
2 Singh (1 − 𝑋) 𝑋𝛿𝑒 𝐶𝑚 MSE Difference [%]

Model Cm-XXXVIII * * * 3.04 × 10−4 55.1
Model Cm-XXXIX * * * * 1.41 × 10−4 −27.9
Model Cm-XL * * * 1.63 × 10−4 −16.9
Model Cm-XLI * * * 2.98 × 10−4 51.9
Model Cm-XLII * * * * 1.41 × 10−4 −28.3
Model Cm-XLIII * * 2.08 × 10−4 5.8
Model Cm-XLIV * * * 1.52 × 10−4 −22.7
Model Cm-XLV * * 3.27 × 10−4 66.5
Model Cm-XLVI * * * 1.45 × 10−4 −26.1
Model Cm-XLVII * * * 2.85 × 10−4 45.1
Model Cm-XLVIII * * * * 1.39 × 10−4 −29.1
Model Cm-XLIX * * * * 1.42 × 10−4 −27.7
Model Cm-L * * * * 2.84 × 10−4 45.0
Model Cm-LI * * * * * 1.37 × 10−4 −30.1
Model Cm-LII * * * * 1.44 × 10−4 −26.4
Model Cm-LIII * * * * 2.83 × 10−4 44.5
Model Cm-LIV * * * * * 1.37 × 10−4 −30.2
Model Cm-LV * * * * 1.44 × 10−4 −26.6
Model Cm-LVI * * * * 2.81 × 10−4 43.4
Model Cm-LVII * * * * * 1.37 × 10−4 −30.4
Model Cm-LVIII * * * 1.64 × 10−4 −16.2
Model Cm-LIX * * * * 1.43 × 10−4 −27.3
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6
Pre-filter Analysis

The function of the pre-filter is two-fold. Firstly, it removes contributions from the buffet in the stall. The
Kalman filter does not model the buffet dynamics. The buffet therefore would increase the state variance
of the filter. Secondly, the states ṗ, q̇, ṙ, α̇ and β̇ are obtained by numerical differentiation. Numerical
differentiation tends to amplify high-frequency noise. Using a low-pass filter, the high-frequency content
can be reduced.

Table 6.1 shows the parameters that have been filtered. The third column shows the cut-off frequencies
selected by Van Ingen [23]. However, these were found to be very restrictive. Higher-frequency signals
are required especially for the identification of unsteady effects. For the identified value of τ1 = 0.2547
frequency signals up to 4 Hz are required. The control inputs, performed during test flights, are another
reason to increase the cut-off frequencies. These quasi-random inputs have a higher maximum frequency
than 1.5 Hz. Any effects from those inputs would not be present in the aerodynamic coefficients derived
from the accelerations and body rates.

A new analysis of the cut-off frequency was performed. Data from the four most recent stall test flights
were used. Furthermore, for comparison two recent flights for flight test practicals were analyzed. These
were included to provide a comparison between data including and excluding stalls. A power spectral
density is made of the data. These power spectra are presented in the left plots of Figs. 6.1 to 6.11. The
power spectra were calculated with the periodogram MATLAB function1. Afterwards, a moving average
filter with 100 mean points was applied using the movmean MATLAB function2.

Analyzing the plots, similar conclusions can be drawn as Marschalk [24] made. For the accelerations,
it is clear that the longitudinal acceleration ax in Fig. 6.1 has a range of frequencies in which buffeting
happens. Furthermore, it is orders of magnitude lower than ay and az. The lateral acceleration ay in
Fig. 6.2 does have two clear buffet peaks around 6 and 10 Hz. To a lesser extent, there is also a peak
at 15 Hz, this has not been modeled previously but could be related to the new dynamic stall maneuvers.
The normal acceleration az in Fig. 6.3 has a buffet peak at 12 Hz. These results are in line with previous
results [22]. From the power spectra, it is determined that the previous cut-off frequencies for ax, ay and
az eliminate the buffet contributions, but are very close to the maneuvering contributions. It is chosen to
increase the cut-off frequencies to 4, 4 and 8 Hz for ax, ay and az respectively.

For the body rates, no specific analysis has been done prior. The results presented in Figs. 6.4 to 6.6
are new. Observe that the peaks for the lateral acceleration ay are also present in the lateral body rates
p and r. The same can be said for the normal acceleration az, which transfers to the pitch rate q. Further-
more, a wider range of low-frequency content is visible. This likely has to do with the direct response of
the aircraft to control inputs. The previously selected cut-off frequencies are inappropriate to capture this
behavior. Therefore, the cut-off is moved to 5, 5 and 4 Hz for p, q and r respectively.

Moving to the control surface deflections, these already had a relatively high cut-off at 4 Hz. Looking
at Figs. 6.7 to 6.9, it can be seen that the signal content goes up to about 5 Hz. For the ailerons, there is
no visible high-frequency content and the cut-off is set to 5 Hz. For the elevator, the signal strength at 4
Hz is higher than for the elevator. To be on the safe side, the cut-off frequency here is set to 6 Hz, without

1https://nl.mathworks.com/help/signal/ref/periodogram.html
2https://nl.mathworks.com/help/matlab/ref/movmean.html
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introducing much high-frequency content. For the rudder, there are clear effects from the lateral buffet.
The data shows a big peak at 6 Hz. To attenuate this peak the cut-off frequency is set to 4 Hz.

Lastly, the angle of attack and sideslip signals of the air data boom are analyzed. The power spectra
Figs. 6.10 and 6.11 show signal strength in the frequency range of 8 to 12 Hz. These cannot be fully
attributed to any prior frequency mode. The most probable cause is vibrations in the boom itself. To
attenuate these effects the cut-off frequency is set to 6 Hz.

Besides the analyzed signals, a small note on the time derivatives. The filters used in this and prior
work are of the type Butterworth. This is a linear filter. This means that filtering before taking the derivative
should be equivalent to filtering after the derivative. This is further derived in Eq. (6.1). In this equation,
B(ω) is the Butterworth filter. This means that the time derivatives by definition are filtered at the same
frequency.

B(ω) · α̇ = B(ω) · α
s
=

1

s
(B(ω) · α) (6.1)

To summarize, new cut-off frequencies have been defined. In most cases, the frequency range is
widened. The final filter is a fourth-order Butterworth filter with cut-off frequencies as defined in the fourth
column of Table 6.1. The result of this filter is visualized for a time segment during stall on the right side
of Figs. 6.1 to 6.11

Table 6.1: Cut-off frequencies for the pre-filter of different signals

Parameter Symbol Previous work [23] This work
Longitudinal acceleration ax 1.5 Hz 4.0 Hz
Lateral acceleration ay 1.5 Hz 4.0 Hz
Normal acceleration az 1.5 Hz 8.0 Hz
Roll rate p 1.5 Hz 5.0 Hz
Pitch rate q 1.5 Hz 5.0 Hz
Yaw rate r 1.5 Hz 4.0 Hz
Aileron deflection δa 4.0 Hz 5.0 Hz
Elevator deflection δe 4.0 Hz 6.0 Hz
Rudder deflection δr 4.0 Hz 4.0 Hz
Angle of attack α 4.0 Hz 6.0 Hz
Angle of sideslip β 4.0 Hz 6.0 Hz
Roll acceleration ṗ 1.5 Hz1 5.0 Hz
Pitch acceleration q̇ 1.5 Hz1 5.0 Hz
Yaw acceleration ṙ 1.5 Hz1 4.0 Hz
Angle of attack α̇ 4.0 Hz 6.0 Hz
Angle of sideslip β̇ 4.0 Hz 6.0 Hz
1 The source mentions 4 Hz, however, due to the lower cut-off frequency filter on p, q and r
the effective cut-off frequency is 1.5 Hz
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Figure 6.1: Analysis of the cut-off frequency for ax. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace

Figure 6.2: Analysis of the cut-off frequency for ay. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace
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Figure 6.3: Analysis of the cut-off frequency for az. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace

Figure 6.4: Analysis of the cut-off frequency for p. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace
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Figure 6.5: Analysis of the cut-off frequency for q. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace

Figure 6.6: Analysis of the cut-off frequency for r. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace
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Figure 6.7: Analysis of the cut-off frequency for δa. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace

Figure 6.8: Analysis of the cut-off frequency for δe. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace
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Figure 6.9: Analysis of the cut-off frequency for δr. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace

Figure 6.10: Analysis of the cut-off frequency for α. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace
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Figure 6.11: Analysis of the cut-off frequency for β. Left: Power spectral density estimates for stall and
nominal flights. Right: Raw and filtered time trace



7
Center of Gravity Correction

During the research, it was observed that the center of gravity calculated in previous work did not fall
within the stable envelope. The problem lies with the initial step. The first step to calculate the aircraft’s
center of gravity is the determination of the aircraft’s basic empty weight (BEW) properties. In the past,
these measured the weight on each landing gear. Currently, three jack points are used as these give more
reliable results. The location at which the weight was measured is summarized in Table 7.1. The mass
model uses the weight measured at these three points to determine the x and y position of the center
of gravity at BEW. The z position is not measured but assumed, the assumption is that the z position is
located at 125 in.

Table 7.1: Positions at which the aircraft weight was measured in the past (Scales) and currently
(Jacks)

Scales Jacks

Measuring point x [in] y [in] x [in] y [in]

Nose 82.01 0 93.70 8.60
Left 300.21 211.08 315.50 121.67
Right 300.21 −211.08 315.50 −121.67

Previous calculations were done with the values presented in the old segment of Table 7.2. It shows
that the BEW center of gravity arm, which refers to x, is determined at 275.87 inches. When compared
with the center of gravity envelope in Appendix A, it is outside of the stable range. When the aircraft
is loaded that problem would only become larger. The only logical explanation is that the values are
off. Appendix B shows an official mass and balance sheet checked by a Part 66 certified technician. A
summary of the calculation done in the appendix is also presented in the new segment of Table 7.2. Note
that this value also falls outside the center of gravity envelope, however, once fuel and payload are added
the center of gravity shifts forward into the envelope.

Table 7.2: Comparison between BEW balance calculation in previous work versus corrected in this work

Old New

Mass [lbs] Arm [in] Moment [lbs in] Mass [lbs] Arm [in] Moment [lbs in]
Nose 1085 82.01 88981 1447 93.70 135584
Left 4490 300.21 1347942.9 5200 315.50 1640600
Right 4495 300.21 1349444 5278 315.50 1665209
Fuel -900 285.16 -256644 -2760 285.16 -787041
Extra N/A N/A N/A 88 420 36960
Total 9170 275.87 2529724 9253 290.86 2691311
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The mass model requires the BEW to be provided in three separate weights for nose, left, and right.
As can be seen in Table 7.2, extra ballast is added to the aircraft. To take that into account the nose,
left, and right mass values can be adjusted to retain the same balance. Note, this is just a workaround to
comply with the input of the code. The final inputs to the mass model are presented in Table 7.3.

Table 7.3: Corrected input values for the mass model

Corrected

Mass [lbs] Arm [in] Moment [lbs in]
Nose 1405.54 93.70 131699
Left 5264.25 315.50 1660870
Right 5343.21 315.50 1685783
Fuel -2760 285.16 -787041.6
Total 9253 290.86 2691311

This correction has been performed for the dataset used in the final paper. For any further analysis, it is
advised to start with the raw flight data and apply the corrections mentioned in this chapter. Furthermore,
it is observed that the mass model uses a different frame of reference than the body frame. Especially for
the y position this may make a difference. For now, it is assumed that the absolute value of y is small, but
in the future, it must be verified that the correct conversion of the reference frame is made.



8
Development of Separable Nonlinear

Least Squares

This chapter guides the reader through the development of a separable nonlinear least squares routine
for system identification of an aircraft in stall conditions. It starts by identifying the limitations in the current
routine and how SNLS could solve this in Section 8.1. Section 8.2 explains how SNLS is implemented in
practice, covering the application to stall models, necessary adaptations, and MATLAB implementation.
Lastly, the developed methods are tested for their correct implementation in Section 8.3.

8.1. Limitations in Current Methodology
This section aims to define the limitations of the existing non-linear parameter estimation routine. This is
a key step to guide the definition of a new routine. It starts by analyzing the implementation of the method
and looking for the thought process behind certain choices. Next,

The current method employs a series of flight maneuvers to determine optimal parameter values for the
separation equation. A least squares cost function is minimized 300 times for each maneuver to mitigate
the effects of local minima and reduce parameter variance. The choice to minimize the cost function
independently for each maneuver appears to result from the absence of a covariance metric. Instead,
parameter variance is inferred by treating the individual parameter estimates as samples from the true
distribution, effectively applying a bootstrap approach for statistical variance estimation.

The least squares cost function minimizes the sum of squared residuals of CL or Cl. The parameters
to be estimated include the separation parameters (τ1, τ2, a1, α∗) and the aerodynamic derivatives (CL0 ,
CLα

, CLα2 ). The cost function is optimized using the MATLAB function fmincon1, which supports the
minimization of constrained multi-variable functions. However, after this initial estimation, an ordinary
least squares (OLS) method is applied to re-estimate the aerodynamic coefficients. This secondary step
is necessary because the non-linear estimation fails to yield satisfactory results. While the outcomes
of both approaches are correlated, the non-linear estimation routine exhibits noticeable deficiencies, as
illustrated in Fig. 8.1.

A significant bottleneck is the runtime of the optimization process, which typically takes an entire day
per iteration. This long runtime severely limits the pace of innovation for refining model structures. Further-
more, independently minimizing each maneuver’s cost function does not yield a global minimum across
the entire dataset. A more effective approach would involve optimizing the cost function across all maneu-
vers simultaneously, necessitating the development of a covariance matrix computation method. Lastly,
the inability of the non-linear estimation to achieve an optimal solution for the aerodynamic coefficients
raises concerns about the reliability of the separation parameter estimates. In summary, the methodology
faces three primary limitations:

• Extended runtime, impeding the rapid iteration of model structures.
• No covariance matrix, forcing separate identification for each maneuver.

1https://nl.mathworks.com/help/optim/ug/fmincon.html
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The distribution of the --parameter estimates over the training sets is visualized by means of box plots in Fig. 10a
and Fig. 10b, for Models A and B, respectively. The plots are grouped by the aileron input that was applied during the
stall maneuver. The parameters of Model A are more sensitive to the type of aileron input than the parameters of Model
B. Most notably for 01, the boxes of the 3-2-1-1 and QR maneuvers do not overlap. From both figures, it is confirmed
that g2 is the most difficult parameter to identify, as the estimates cover a large part of the feasible solution space.

2. Nonlinear Optimization Analysis
The nonlinear optimization indirectly influences the model performance, as the linear regression step aims to

optimize the same model structure. Unlike this nonlinear optimization, the linear regression technique described in
Section III.G provides a guaranteed global optimum. Appendix C features an example of the convergence of the
optimization over the different initial conditions. The ⇠;-parameters are estimated for both processes, allowing for the
verification of the nonlinear optimization results. The correlation plots of Fig. 11a and Fig. 11b display the ⇠;-parameter
estimates from all training sets, for Models A and B, respectively. On the horizontal axis, the results from OLS are
displayed, and the vertical axis represents the results obtained from the Interior Point (IP) method. When the methods
yield similar results, a distinct diagonal pattern is observable. Additionally, Pearson’s linear correlation coefficient (d)
between the sets is included in each plot. While this analysis cannot prove the convergence to a global optimum of the
--parameters, it provides insight into the consistency of the found solutions.

Generally, Model B exhibits a significantly stronger similarity in parameter estimates compared to Model A.
Specifically, when examining Model A, the estimates for ⇠;�- display the weakest correlation. Conversely, the ⇠;� U

estimates are highly correlated. The optimization process may encounter difficulties when the corresponding regressors
depict similar phenomena. The optimizations of Model B exhibit a high correlation for the estimates of every parameter.
Especially important to highlight is the high correlation coefficient between the optimizations of ⇠;�- , further motivating
the inclusion of only a single asymmetric stall regressor. From the results of the MOF-algorithm, the validation model fit
evaluations and the analysis in this section, Model B is identified as the most suitable ⇠;-model structure. The associated
estimated --parameters are used for the selection of the remaining models and the resulting linear regression problems.
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Fig. 11 Correlation plots showing the similarity between the linear and nonlinear optimization results. d

denotes Pearson’s linear correlation coefficient between the sets of estimates.

18

Figure 8.1: Relationship between aerodynamic coefficients estimated via the non-linear routine and the
subsequent ordinary least squares estimation. Adapted from [29]

• Suboptimal aerodynamic coefficient estimates, which bring into question the validity of the sep-
aration parameters.

Using these limitations, some early research into alternative methods led to separable non-linear least
squares. SNLS guarantees an optimum value for the aerodynamic coefficients as it internalizes an OLS
method for the linear parameters [42]. This directly solves the third limitation. Furthermore, SNLS reduces
the dimension of the non-linear parameter estimation problem, which should decrease the computational
load [41]. Lastly, covariance matrix estimates have been defined for SNLS [44].

8.2. Implementation
As SNLS is a nonlinear least squares method, it is chosen to use the MATLAB method lsqnonlin2. For
this method, it is necessary to define an objective function that returns a vector of residuals as its first
output. More details on the calculation of the residuals are given in Subsection 8.2.1. The second output
of the objective function must be the residual sensitivity matrix. This matrix provides the gradient of the
residuals with respect to the parameters, the calculation of this matrix is elaborated on in Subsection 8.2.2.
A boilerplate code for the function is given in Listing 8.1.

Listing 8.1: General objective function for lsqnonlin Matlab function
1 f unc t i on [ r , J ] = ob j ec t i v e ( p )
2 % [ r , J ] = ob j ec t i v e ( p ) Returns the res i dua l s and ob j ec t i v e g rad ien t
3 %
4 % p = [ k x 1 ] column vec to r o f non l inear parameters
5 %
6 % r = [m x 1] column vec to r o f r es i dua l s
7 % J = [m x k ] s e n s i t i v i t y mat r i x o f the res i dua l s w i th respect to the

parameters
8 . . .

2https://nl.mathworks.com/help/optim/ug/lsqnonlin.html

https://nl.mathworks.com/help/optim/ug/lsqnonlin.html
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9 end

8.2.1. Objective
As explained before, the objective for SNLS is to minimize the squared residuals. In the case of stall
model identification, the residuals can be defined as the difference between a measured aerodynamic
coefficient and the predicted aerodynamic coefficient. To keep it general, in this work all equations refer
to CX . The residuals can be defined as:

r = CX − ĈX (8.1)

where CX ∈ Rm is the measured aerodynamic coefficient and ĈX ∈ Rm is the estimated aerodynamic
coefficient. Furthermore, the estimated model can be defined as:

ĈX =
[
Φ1 · · · Φn

]
· c = Φ · c (8.2)

where Φi are the regressors and c is a column vector with the aerodynamic derivatives. The aerodynamic
coefficients, the linear parameters in the context of SNLS, can be estimated using OLS.

ĉ = Φ+ ·CX (8.3)

Note that the order of operations becomes important. This is due to the matrix multiplication of Φ and
Φ+. A naive implementation results in the formation of that multiplication directly, which leads to a matrix
in R(m×m). For large problems, this matrix explodes and RAM storage will run out. A quick calculation
shows, assuming 16 GB of RAM and the standard double number format in MATLAB, this matrix will run
out of storage at m = 44721. The dataset, used in previous work, contained 243055 observations, which
exceeds what is possible with this naive implementation. Luckily, a simple solution exists. By changing
the order of operations, the maximum matrix size becomes (m×n) and considering n << m, the storage
problem is solved.

r = CX −Φ ·Φ+CX = CX −Φ · (Φ+ ·CX) (8.4)

8.2.2. Objective Gradient
The objective gradient is defined using the formulation given by Golub and Pereyra [42]. This formula as
defined in Subsection 2.5.2, is restated here:

Dr2 (θ) = DP⊥
Φ(α)y = −(P⊥

ΦDΦ)Φ+y − (Φ+)⊤(P⊥
ΦDΦ)⊤y (2.40)

Dr = −J1 − J2 (8.5)

Similar to the previous section, a naive calculation leads to (m ×m) storage constraints. However, the
equation can be refactored to avoid this. To do this, consider the equation as two parts, J1 and J2, these
can be refactored independently. Starting with J1:

J1 = (P⊥
Φ · DΦ) ·Φ+ · Y

J1 = (P⊥
Φ · DΦ) · ĉ (ĉ = Φ+ · Y )

J1 = ((I −Φ ·Φ+) · DΦ) · ĉ (P⊥
Φ = I −Φ ·Φ+)

J1 = DΦ · ĉ−Φ · (Φ+ · (DΦ · ĉ)) (refactor)

here, the following steps were taken. First, the product Φ+ · Y is reduced to ĉ. Then, P⊥
Φ is expanded.

Lastly, by refactoring the parentheses and order of multiplication the formation of an (m × m) array is
avoided. Moving on to J2, this refactoring is more complex. It requires multiple double transpositions,
expansion of P⊥

Φ and the pseudo-inverse property (Φ ·Φ+) = Φ ·Φ+ [45]. The full derivation follows:
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J2 = (Φ+)⊤ · (P⊥
Φ · DΦ)⊤ · Y

J2 = (Y ⊤ · P⊥
Φ · DΦ ·Φ+)⊤ (double transpose)

J2 = (Y ⊤ · (I −Φ ·Φ+) · DΦ ·Φ+)⊤ (P⊥
Φ = I −Φ ·Φ+)

J2 = ((Y ⊤ − Y ⊤ ·Φ ·Φ+) · DΦ ·Φ+)⊤ (refactor)
J2 = ((Y − (Φ ·Φ+)⊤ · Y )⊤ · DΦ ·Φ+)⊤ (double transpose)
J2 = ((Y −Φ ·Φ+ · Y )⊤ · DΦ ·Φ+)⊤ ((Φ ·Φ+)⊤ = Φ ·Φ+)
J2 = (r⊤ · DΦ ·Φ+)⊤ (r = Y −Φ ·Φ+ · Y )
J2 = (Φ+)⊤ · (DΦ)⊤ · r (refactor transpose)

Using the previous two derivations, the function can be refactored to avoid the formation of large
matrices. This results in the following formula:

Dr = −DΦ · ĉ+Φ · (Φ+ · (DΦ · ĉ))− (Φ+)⊤ · (DΦ)⊤ · r (8.6)

where, the calculation of ĉ has been covered in Subsection 8.2.1. The last remaining piece of the puzzle is
the Frechet derivative DΦ. The three-dimensional tensor contains the partial derivatives of the regressors
with respect to the nonlinear parameters for each observation. In stall modeling, the nonlinear parameters
refer to the separation parameters. An entry of the tensor looks as follows:

DΦ =
∂Φij

∂θk
(8.7)

A product rule must be used to define the partial derivative. First, the derivative of the regressor with
respect to the separation state X is calculated. Then, the derivative of the separation state with respect
to the nonlinear parameters is calculated. Furthermore, depending on the equation, multiple separation
states may exist which can be a function of the same parameters. To account for this, a summation is
introduced.

∂Φij

∂θk
=

∑
X={X1,...X2}

∂Φij

∂X
· ∂X
∂θk

(8.8)

For unsteady separation models, the separation state is a function of a first order differential equation.
To find the state sensitivity to the nonlinear equations Van Ingen [23] defined a procedure taken from Leis
and Kramer [46].

Lastly, in the setup of the aerodynamic coefficients not each regressor will be a function of the separa-
tion states. Consider, for example, the bias term, pitch rate, or elevator deflection. This means that many
entries of DΦ will be zero. Inspired by O’Leary and Rust [43] a bookkeeping method is implemented to
register the dependency of each regressor on the separation states and the derivative is only stored if
necessary.

8.2.3. Statistical Properties
To judge the quality of themodel, it is important to definemetrics with which tomeasure the quality. Looking
at the model parameters five metrics are defined: the parameter covariance matrix, variance, standard
deviation, correlation matrix, and t-test. These are further discussed below.

Parameter Covariance Matrix
First and foremost, the parameter covariance matrix can be defined. As mentioned in Subsection 2.5.3,
the parameter covariance matrix for SNLS can be defined as:

Cov[c,θ] =
[
∇f⊤m · ∇fm

]−1 [∇f⊤m · Λm · ∇fm
] [

∇f⊤m · ∇fm
]−1 (8.9)
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However, this equation cannot directly be implemented. Λm is in R(m×m), which becomes too large for
storage. However, Λm is a Toeplitz matrix built from the auto-correlation series λm. The Toeplitz matrix
connects to discrete convolution which can be used here. For convolution, efficient algorithms have been
implemented in MATLAB. In this case, cconv3 is used. Note that Λm is a full matrix, which means it does
not calculate the tails of the convolution and only the central part. This is easily extracted from the results
of cconv.

Parameter Variance and Standard Deviation
From the covariance matrix, it is easy to derive the parameter variance. The parameter variance is simply
the diagonal of the covariance matrix. Furthermore, the standard deviation can be derived by taking the
square root of the variance [47].

V ar[θ] = Diag[Cθ]; σθ =
√
V ar[θ] (8.10)

where Diag refers to taking the diagonal elements of a matrix.

Parameter Correlation Matrix
The correlation matrix can be seen as a normalized version of the covariance matrix. It can be calculated
by forming a diagonal matrix with the parameter standard deviation and doing a left and right multiplication
with the covariance matrix.

Cor[θ] = Diag[1/σθ] · Cov[θ] ·Diag[1/σθ] (8.11)

where Diag refers to a matrix with the diagonal filled with the elements of a vector.

Student’s T-test
Using the two-sided t-test it can be determined if a parameter is significantly different from zero [48]. This
is done by setting the null hypothesis as the parameter has a value of zero. The alternative hypothesis
then naturally becomes that the value cannot be zero.

H0 : θi = 0 (8.12)
H1 : θi ̸= 0 (8.13)

Using a significance level α, the null hypothesis is rejected if:

θ̂i
σθi/

√
m
> tα/2 (8.14)

where θ̂i is the estimated parameter value, σθi is the estimated parameter variance, m is the number of
observations and tα/2 is the point where the tail of the distribution has a remaining probability of α/2, for
a t-distribution with m− p degrees of freedom. p here is the number of regressors.

8.3. Verification and Validation
In this chapter, multiple steps will be performed to verify the correct implementation of the SNLS method.
Important for all steps is a data set with a known model structure. In this way, the results of the SNLS
method can be compared to the known values. The model structure chosen for these verification steps is
that of the roll moment coefficient of De Fuijk [29]:

Cl = Cl0 + Clββ + Clrr + Clδa
δa + Cl∆X

∆X
yw
b
, (8.15)

τ1
dXl,r

dt
+Xl,r =

1

2
{1− tanh (a1 [αl,r − τ2α̇l,r − α∗])} . (8.16)

The inputs used by the tests in this chapter are taken from the asym dataset used by De Fuijk [29].
The model parameters are those found by De Fuijk [29].

3https://nl.mathworks.com/help/signal/ref/cconv.html

https://nl.mathworks.com/help/signal/ref/cconv.html
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Table 8.1: Comparison of the true model parameters and those estimated by the SNLS method

Parameter θ θ̂

τ1 0.0971 0.0971
τ2 0.5526 0.5526
a1 16.865 16.865
α∗ 0.1730 0.1730
Cl0 −0.0006 −0.0006
Clβ −0.0279 −0.0279
Clr 0.0661 0.0661
Clδr

−0.0501 −0.0501
Cl∆X

−0.1274 −0.1274

8.3.1. Convergence
As a first verification step, it is tested if the SNLS method can find the parameter values of a known model.
The model can be visualized as in the top part of Fig. 8.2, where αl,r, α̇l,r, β, r and δa are the inputs to
the model, θX and θl are the model parameters and Cl is the model output. The blocks Cl-model and
X-model refer to Eq. (8.15) and Eq. (8.16) respectively. Next, the input and output of the model can be
used by the SNLS method to estimate the model parameters, this is visualized in the bottom of Fig. 8.2,
where θ̂X and θ̂l are the model parameter estimates.
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Figure 8.2: Workflow for the verification of convergence for the SNLS method

Applying the described workflow creates a set of parameter estimates. These estimates can be directly
compared to the true parameters. The result of this verification step is summarized in Table 8.1. It can be
seen that the SNLS method successfully finds the true parameter values.

8.3.2. Monte-Carlo Simulation
A Monte-Carlo simulation is performed to verify the correct implementation of the covariance matrix by
Mahata and Söderström [44], which has been restated in Eq. (8.17) for ease of reference.

Cθ =
[
∇f⊤m · ∇fm

]−1 [∇f⊤m · Λm · ∇fm
] [

∇f⊤m · ∇fm
]−1

, (8.17)

For Monte Carlo simulation, white Gaussian noise is added to Cl before it is used as input to the SNLS
method, as can be seen in Fig. 8.3. This noise emulates the residual noise when the parameters are
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Table 8.2: Results of the Monte Carlo simulation

SNLS Monte-Carlo

Parameter θ̂ σθ̂ µθ̂ σθ̂
τ1 9.17 × 10−2 8.74 × 10−3 9.72 × 10−2 8.66 × 10−3

τ2 5.42 × 10−1 3.16 × 10−2 5.53 × 10−1 3.15 × 10−2

a1 1.66 × 101 9.91 × 10−1 1.69 × 101 9.70 × 10−1

α∗ 1.72 × 10−1 1.89 × 10−3 1.73 × 10−1 1.83 × 10−3

Cl0 −5.66 × 10−4 3.45 × 10−5 −5.93 × 10−4 5.15 × 10−5

Clβ −3.13 × 10−2 1.77 × 10−3 −2.79 × 10−2 1.72 × 10−3

Clr 6.87 × 10−2 8.17 × 10−3 6.63 × 10−2 9.27 × 10−3

Clδr
−5.15 × 10−2 1.43 × 10−3 −5.01 × 10−2 1.70 × 10−3

Cl∆X
−1.27 × 10−1 3.34 × 10−2 −1.28 × 10−1 5.29 × 10−3

identified using real data. The magnitude of the noise was calculated using the residuals of the model
identification performed by De Fuijk [29] and equal to −36 dB. For each noise realization, the parameters
were estimated and stored. The resulting collection of parameter estimates has a distribution of which the
mean and standard deviation can be calculated. The calculated standard deviations are compared with
those calculated from the covariance matrix.
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Figure 8.3: Injection of noise on the input of the SNLS method.

The final results of this verification step are presented in Table 8.2. The SNLS column presents statis-
tics for one estimate, including noise. It can be seen that the introduced noise affects the parameter
estimates, which start to deviate from their value. Looking at the standard deviation estimates, which
are determined by taking the square root of the diagonal of the covariance matrix Cθ, it can be seen that
they align well with those estimated using the Monte Carlo method. As the covariance matrix is based on
asymptotic assumptions, the true variance cannot be achieved. Similarly, the Monte Carlo method is sta-
tistical and does not produce the true variance. For this reason, the results are considered an acceptable
verification step.



9
Initial Results

In this chapter, initial research is shown for the creation of a new stall model. It is not the final result of
this paper, refer to Part II for this. However, it can serve as a tool to understand how an iteration of the
model can be initiated, what steps are required, and on what grounds a model might be accepted as an
improvement.

9.1. Lift Coefficient
The optimization of the X-parameters in the work by Van Ingen [23] was done through the lift coefficient
model. To compare the SNLS method to previous optimizers, it is chosen to compare to this result. The
model identified by Van Ingen [23] has the structure of Model I in Eq. (9.1).

Model I : CL = CL0 + CLKα

(
1 +

√
X

2

)2

α+ CL
α2
+6

(α− 6◦)
2
+ (9.1)

τ1
dX

dt
+X =

1

2
{1− tanh (a1 [α− τ2α̇− α∗])}

where the second term is the standard Kirchhoff term and the third term is a squared spline function that
starts at angles higher or equal to six degrees. The last term was introduced to improve the behavior at
high angles of attack. The parameter values of the Van Ingen are summarized in Table 9.3. The model
quality metrics mean square error (MSE) and R-square values are presented in Table 9.5.

Using the SNLS method, Model I is reidentified. Interestingly, the results differ significantly from those
found in earlier work. This is probably attributed to the previous method of optimizing per stall and averag-
ing the values. Identification per stall creates the risk of insufficient data content to find the true parameters.
Furthermore, the averaging method implicitly assumes that the confidence in each parameter estimate
is equal, which might not be the case. The SNLS method solves both issues by directly identifying the
parameters of the entire training set.

Furthermore, looking at Table 9.5, it can be seen that the SNLSmethod reduces theMSE of the training
data and improves the consistency of the R-square values between sets. This comes at the cost of some
performance in the MSE of the validation data. The consistency of the R-square values is transferred to
the validation data.

Due to the significant changes in parameter values, the addition of the spline function is revisited. The
spline term has no physical meaning and should if possible be removed. This leads to the formation of
Model II.

Model II : CL = CL0 + CLKα

(
1 +

√
X

2

)2

α (9.2)

τ1
dX

dt
+X =

1

2
{1− tanh (a1 [α− τ2α̇− α∗])}

89
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The results of Model II parameter estimation using SNLS is presented in Tables 9.3 and 9.5. It can be
seen that Model II performs almost as well as Model I. The marginal differences between the models and
the improved phenomenological explanation make Model II more desirable.

Looking at the results of Van Ingen,Model I andModel II, it can be seen that all parameter estimations
give very different τ1 and τ2 values. A likely explanation for this is the existence of a high correlation
between the two. For Model II, the parameter correlations are presented in Table 9.1. As expected, the
correlation between τ1 and τ2 is found to be large. This finding is also supported by the literature. Fis-
chenberg [15] describes that quasi-steady stall approaches, which were flown with the Citation II, cannot
identify τ1 without correlation. To identify the effects of τ1, dynamic stall approaches must be flown as de-
scribed by Fischenberg and Jategaonkar [18]. This requires more flight test data. For now, an alternative
model structure is proposed, which is called Model III.

Table 9.1: Parameter correlation matrix for Model II

τ1 τ2 a1 α∗ CL0
CLKα

τ1 1 −0.8889 0.3759 −0.4418 −0.4207 0.4299
τ2 −0.8889 1 −0.3347 0.5921 0.1840 −0.1925
a1 0.3759 −0.3347 1 0.3292 0.0411 −0.0180
α∗ −0.4418 0.5921 0.3292 1 0.1505 −0.1430
CL0 −0.4207 0.1840 0.0411 0.1505 1 −1.0003
CLKα

0.4299 −0.1925 −0.0180 −0.1430 −1.0003 1

Model III : CL = CL0 + CLKα

(
1 +

√
X

2

)2

α (9.3)

X =
1

2
{1− tanh (a1 [α− τ2α̇− α∗])}

Model III is a quasi-steady stall model. The results of parameter estimation using SNLS is presented
in Tables 9.3 and 9.5. It can be seen that the performance of the model is not significantly degraded. This
confirms that the stalls performed are quasi-steady, as a quasi-steady model can capture them.

Using model term selection procedures developed previously in the stall task force, it is identified that
the pitch rate has a positive effect on the model fit. For this reason Model IV is created.

Model IV : CL = CL0
+ CLKα

(
1 +

√
X

2

)2

α+ CLq
q∗ (9.4)

X =
1

2
{1− tanh (a1 [α− τ2α̇− α∗])}

where the extra term dependent on the reduced pitch rate is introduced. The results are presented
in Tables 9.3 and 9.5. Small gains are seen in the MSE of the training data and for the validation data
the improvement is more significant. In terms of the parameter values, it can be seen that the value of
τ2 is significantly altered. The explanation lies in the added term. Judging from the correlation matrix in
Table 9.2, τ2 and CLq are correlated. This is not surprising, as these terms scale α̇ and q respectively.
The correlation between these terms is a well-documented problem in aircraft system identification, and
special maneuvers have been designed to separate them [49, 50, 51]. Again, different data are required
to identify the effects of the pitch rate.

Next, an analysis of the contribution of the elevator deflection on the lift is performed. The previous
results of Van Ingen [23] did not find any contribution. This contradicts the findings made previously in
nominal flight by Van Den Hoek [52]. In addition, other researchers have found that the elevator affects the
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Table 9.2: Parameter correlation matrix for Model IV

τ2 a1 α∗ CL0 CLKα
CLq

τ2 1 −0.3691 −0.3836 0.3168 −0.3440 0.7850
a1 −0.3691 1 0.6294 0.0405 −0.0143 −0.3171
α∗ −0.3836 0.6294 1 −0.1189 0.1289 −0.3508
CL0 0.3168 0.0405 −0.1189 1 −0.9998 0.4898
CLKα

−0.3440 −0.0143 0.1289 −0.9998 1 −0.5216
CLq

0.7850 −0.3171 −0.3508 0.4898 −0.5216 1

lift coefficient during stall [15, 21]. To gain more insight, the power spectrum of the elevator sensor signal
is plotted in Fig. 9.1. From this plot, it can be seen that the deflection of the elevator must be relatively
constant, judging by the power at 0 Hz. The further signal power seems to be spread mainly between 0
and 3 Hz and a small peak at 4 Hz. In previous work by Van Ingen [23] a filter with a cutoff frequency of 4
Hz was used, which captures most of the power in the signal. However, for the accelerations, which are
used to determine the lift coefficient, a cutoff frequency of 1.5 Hz is used. This means that the influence
of the elevator might have been filtered out before the system identification. There are two solutions to
these problems. Either, slower maneuvers must be performed, for example, a 3211 or doublet instead of
the wiggle used as an input to the elevator. Alternatively, the flight path reconstruction has to be redone,
using accelerations filtered with a cutoff frequency of 4 Hz instead of 1.5 Hz.
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Figure 9.1: Power spectrum of the elevator deflection signal for Van Ingen dataset

During a walk-around of the aircraft, a relatively small detail on the wing was noticed. However, the
implications on the stall model could be large. On part of the leading edge, stall strips are installed. These
strips are used to control the behavior of the stall of the aircraft. They make sure stall is not initiated at
the wing tips, where control effectiveness might be compromised. Similarly, stall at the root is prevented,
where stall wake could cause adverse effects on the engine. The previous stall models assumed a uniform
stall over the wing. The local effects of a stall strip cannot be modeled. The early stall around the stall
strips also provides a possible explanation for the low a1 values that are found. Due to averaging of the
flow condition over the whole wing, the local stall can be perceived as a soft stall. To improve the model
the effect of the stall strip will be separated. An initial assumption is that the stall takes place only at the
stall strip. This leads to Model V, which is defined as follows:
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Model V : CL = CL0 + CLαα+ CLKα

(
1 +

√
X

2

)2

α (9.5)

X =
1

2
{1− tanh (a1 [α− τ2α̇− α∗])}

Excluding the bias, the first term accounts for the nonstalled regions, which should behave linearly.
The last term is the familiar Kirchhoff term, which accounts for the stalled region of the wing. The results
of the model identification using SNLS can be found in Tables 9.3 and 9.5. It can be seen that Model V
provides a good improvement in MSE, for training and validation data, compared to Model II. However,
the assumption that no stall takes place outside the stall strips might not be valid. To account for stall
outside of the region of the stall strips Model VI is created, which looks like this:

Model VI : CL = CL0
+ CLKα,1

(
1 +

√
X1

2

)2

α+ CLKα,2

(
1 +

√
X2

2

)2

α (9.6)

X1 =
1

2
{1− tanh (a11 [α− τ21α̇− α∗

1])}

X2 =
1

2
{1− tanh (a12 [α− τ22α̇− α∗

2])}

Table 9.3: Comparison of parameter estimates for different lift coefficient models

Van Ingen [23] Model I Model II

Parameter θ̂ σθ̂ θ̂ σθ̂ θ̂ σθ̂
τ1 0.2547 0.1565 0.1554 0.0239 0.0101 0.0202
τ2 0.0176 0.0819 0.1191 0.0214 0.3354 0.0273
a1 27.6711 6.7177 15.0111 0.6546 8.7520 0.2765
α∗ 0.2084 0.0202 0.2175 0.0019 0.2350 0.0043
CL0

0.1758 0.0423 0.1274 0.0089 0.1003 0.0088
CLKα

4.6605 0.3965 5.1891 0.0735 5.6523 0.0739
CL

α2
+6

10.7753 3.8895 5.9746 0.2502 N/A N/A

CLq
N/A N/A N/A N/A N/A N/A

Model III Model IV Model V

Parameter θ̂ σθ̂ θ̂ σθ̂ θ̂ σθ̂
τ1 N/A N/A N/A N/A N/A N/A
τ2 0.3619 0.0130 0.2305 0.0302 0.4014 0.0116
a1 8.9897 0.2614 9.1486 0.2997 20.6430 1.0909
α∗ 0.2376 0.0038 0.2433 0.0046 0.2135 0.0016
CL0

0.1065 0.0088 0.1242 0.0085 0.1438 0.0083
CLKα

5.5633 0.0738 5.3360 0.0720 2.9556 0.0672
CL

α2
+6

N/A N/A N/A N/A N/A N/A

CLq
N/A N/A 11.4130 1.3010 N/A N/A

CLα
N/A N/A N/A N/A 2.0013 0.0443
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Table 9.4: Parameter estimates for a lift model with two quasi-steady separation states

Model VI

Parameter θ̂ σθ̂
τ21 0.4462 0.0126
a11 39.3620 3.2210
α∗
1 0.1989 0.0012
τ22 0.1742 0.0145
a12 14.3940 1.2824
α∗
2 0.3385 0.0046
CL0

0.1578 0.0078
CLKα,1

1.7218 0.0482
CLKα,2

3.0739 0.0435

Table 9.5: Comparison of lift coefficient models

Training data (27 sets) Validation data (7 sets)

Model MSE R2 min(R2) max(R2) MSE R2 min(R2) max(R2)
Van Ingen 1.65× 10−3 0.92 0.71 0.98 1.45× 10−3 0.91 0.77 0.96
Model I 1.39× 10−3 0.93 0.85 0.98 1.52× 10−3 0.91 0.85 0.97
Model II 1.44× 10−3 0.93 0.84 0.98 1.63× 10−3 0.91 0.84 0.96
Model III 1.46× 10−3 0.93 0.82 0.98 1.72× 10−3 0.90 0.83 0.96
Model IV 1.42× 10−3 0.93 0.80 0.98 1.54× 10−3 0.91 0.84 0.97
Model V 1.34× 10−3 0.93 0.83 0.98 1.46× 10−3 0.92 0.86 0.96
Model VI 1.23× 10−3 0.94 0.84 0.98 1.42× 10−3 0.92 0.85 0.96

9.2. Normal Force Coefficient
The normal force coefficient CZ is defined in the body reference frame and points downwards. This
coefficient is an alternative to the lift coefficient in modeling aircraft motion. For nominal stall models, this
coefficient is used [52, 53].



10
Flight Test Design and Identification Set

Synthesis

During the research, deficiencies in the data were observed as part of RQ 5. These deficiencies relate
to high correlations between unsteady terms in the stall model and high correlations between the pitch
rate and angle of attack rate. This chapter presents maneuvers designed to overcome these deficiencies.
The maneuvers are presented in Section 10.1. Two flights were performed during the research, in which
the designed maneuvers were executed. Section 10.2 performs a reflection on the flights.

10.1. Maneuver Design
To accomplish the goals set, five maneuvers have been designed for the Citation. This section dis-
cusses these maneuvers. First, the maneuvers to differentiate unsteady effects are discussed in Sub-
section 10.1.1. Then, a discussion on the design of maneuvers for pitch rate and angle of attack rate
effects follows in Subsection 10.1.2.

10.1.1. Unsteady Stall Effects
During previous flight tests, stall maneuvers were conducted as follows: the aircraft was first trimmed
for level flight, and then its airspeed was gradually reduced at a rate of 1 kts/s until stall occurred. This
approach is referred to as a quasi-steady stall maneuver, as both airspeed and angle of attack vary slowly
throughout the maneuver. However, Fischenberg [15] identified that such maneuvers are insufficient to
distinguish between the effects of the parameters τ1 and τ2.

To address this limitation, dynamic stall maneuvers were suggested for identifying τ1 effects. Singh
and Jategaonkar [16] describe a procedure for dynamic stall, which served as the baseline for designing
a maneuver for the Citation aircraft. This maneuver begins with an angle of attack between 10◦ and 12◦.
The angle of attack is then gradually increased while sequential doublet inputs are applied to the control
surfaces. Upon reaching buffet onset, oscillating elevator inputs are used to repeatedly drive the aircraft
into and out of stall. This process induces repeated flow separation and reattachment over the wing,
providing valuable data for identifying flow separation parameters.

For the Citation, this maneuver required several adaptations. Firstly, the initial angle of attack was
lowered to 3◦ to 5◦, as the Citation begins buffeting at angles of attack between 10◦ and 12◦. Secondly,
the doublet inputs were replaced with step inputs, providing pilots with greater control during the maneuver.
As in the original procedure, oscillating elevator inputs are introduced upon reaching buffet onset to induce
stall entry and recovery. This maneuver will be referred to as the Dynamic Stall.

94
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1. Establish trimmed level flight
2. Smoothly increase angle of attack
3. Apply sequential elevator/aileron/rudder steps
4. When at stall boundary, apply oscillating elevator inputs
5. Repeat entry into stall until altitude or attitude require recovery
6. Recover

Dynamic Stall

However, this approach does not capture the full dynamics of the stall, as the Citation’s stall behavior is
influenced by its stall strip. To investigate stall effects across the entire wing, an alternative maneuver was
developed. This modified maneuver begins in the same manner as the adapted dynamic stall maneuver.
Once buffet is reached, however, the aircraft is held in the stall, allowing the angle of attack to increase
while remaining stalled. At approximately 20◦ angle of attack, oscillating elevator inputs are applied to
induce flow separation and reattachment across the rest of the wing. This provides additional data to
better understand stall characteristics over the entire wing surface. This maneuver will be referred to as
a Deep Dynamic Stall

1. Establish trimmed level flight
2. Smoothly increase angle of attack
3. Apply sequential elevator/aileron/rudder steps
4. Hold stall with increasing angle of attack
5. Give oscillating elevator inputs around 20◦ angle of attack
6. Recover

Deep Dynamic Stall

10.1.2. Pitch Rate versus Angle of Attack Rate
A second objective for the flight tests is to better differentiate between the effects of pitch rate and angle of
attack rate. These two terms are typically highly correlated. The relation between the two can be written
as:

α̇ = q − q̄S

mV cosβ
CL +

g(cosα cosϕ cos θ + sinα sin θ)
V cosβ

− tanβ(p cosα+ r sinα)− XT sinα
mV cosβ

(10.1)

There exists a direct relationship between the two terms and in general conditions, the later terms
have minor contributions causing them to be highly correlated. Using this equation, however, maneuvers
can be designed to differentiate the two. This is exactly what Grauer, Morelli, and Murri [50] have done.
The Pushover and Pullup maneuvers have both been designed by them.

1. Establish trimmed level flight
2. Pitch up to +25◦ pitch attitude
3. Release the elevator to pitch down and use the elevator to maintain a constant angle of

attack
4. Recover when pitch attitude reaches -20◦

Pushover
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1. Establish trimmed level flight
2. Pitch up to -10◦ pitch attitude
3. Release the elevator to pitch up and use the elevator to maintain a constant angle of

attack
4. Recover when pitch attitude reaches 30◦

Pullup

Furthermore, through conversations with the test pilots, an alternative idea was formed. The phugoid
is also characterized by a relatively constant angle of attack with a varying pitch angle. This maneuver
should theoretically also differentiate the two terms.

1. Establish trimmed level flight
2. Establish off-trim airspeed
3. Release the elevator
4. Recover after 3 periods

Phugoid

10.2. Test Flight Reflection
On the 14th and 23rd of October, two flight tests were performed. During the first test seven dynamic stalls,
five pullup, three pushover, and three phugoid maneuvers were performed. During the second flight five
dynamic stalls, seven deep dynamic stalls, and five pullup maneuvers were performed. To reflect on the
goals thesemaneuvers are meant to achieve this section performs an analysis on the new flight data. First,
the effect of the dynamic stalls is explored in Subsection 10.2.1. Then, a reflection on the maneuvers to
identify angle of attack rate effects is performed in Subsection 10.2.2.

10.2.1. Unsteady Stall Effects
To show the impact of the dynamic stalls mentioned in Subsection 10.1.1, two identification exercises are
performed. For both, the following model is used:

CL = CL0 + CLα,ss

(
1 +

√
Xss

2

)2

α+ CLα,w

(
1 +

√
Xw

2

)2

α+ CLq∗
qc̄

V
+ CLδe

δe (10.2)

where Xss is governed by an unsteady stall model and Xw is governed by a steady stall model. Two
different datasets are used. First, the dataset defined in the work of [23] is used. The second set uses the
previous as a basis but adds on the dynamic stall maneuvers performed during the flight test on the 23rd
of November. The parameters are identified using the new SNLS method and are presented in Table 10.1.
Interestingly, for the Van Ingen dataset there is no significant contribution from the elevator deflection.

For both datasets, a parameter correlation matrix can be constructed. The results of this are presented
in Tables 10.2 and 10.3. The most notable correlations for the Van Ingen dataset are between τ1,ss and
τ2,ss, between τ1,ss and CLq∗ , and between CL0

and CLα,ss
. Table 10.3 shows that including dynamic stall

maneuvers successfully reduces the first two correlations. However, large correlations still exist between
CL0 and CLα,ss .
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Table 10.1: Comparison of the identification results with and without dynamic stall maneuvers. For the
t-test ◦ indicates that the null hypothesis is accepted and ∗ that the null hypothesis is rejected.

Van Ingen + Dynamic stalls Van Ingen

Results t-test Results t-test

Parameter θ̂ σθ p h θ̂ σθ p h

τ1,ss 0.4191 0.0722 0.0000 * 0.3246 0.0509 0.0000 *
τ2,ss 0.3391 0.0346 0.0000 * 0.6105 0.0391 0.0000 *
a1,ss 70.2846 11.2205 0.0000 * 49.1520 5.9537 0.0000 *
α∗
ss 0.1956 0.0017 0.0000 * 0.2017 0.0014 0.0000 *

a1,w 13.9276 1.4462 0.0000 * 10.9279 1.4962 0.0000 *
α∗
w 0.3267 0.0056 0.0000 * 0.3437 0.0072 0.0000 *

CL0
0.2318 0.0116 0.0000 * 0.1584 0.0075 0.0000 *

CLα,ss
1.3851 0.1061 0.0000 * 1.7115 0.0711 0.0000 *

CLα,w
2.5961 0.0536 0.0000 * 2.8433 0.0513 0.0000 *

CLq∗ 8.0747 1.3881 0.0000 * 8.7946 1.3948 0.0000 *
CLδe

−0.3403 0.0681 0.0000 * −0.0845 0.0596 0.1561 ◦

Table 10.2: Parameter correlation matrix for identification using Van Ingen dataset

τ1,ss τ2,ss a1,ss α∗
ss a1,w α∗

w CL0
CLα,ss

CLα,w
CLq∗ CLδe

τ1,ss 1.00 0.73 0.59 -0.17 0.08 -0.25 -0.27 0.15 0.19 -0.67 0.09
τ2,ss 0.73 1.00 0.37 -0.44 0.06 -0.40 -0.16 -0.06 0.36 -0.37 0.11
a1,ss 0.59 0.37 1.00 0.15 -0.11 -0.11 -0.12 0.21 -0.16 -0.40 -0.02
α∗
ss -0.17 -0.44 0.15 1.00 -0.06 0.21 -0.03 0.23 -0.40 0.00 -0.20
a1,w 0.08 0.06 -0.11 -0.06 1.00 0.61 0.05 -0.12 0.22 0.23 0.13
α∗
w -0.25 -0.40 -0.11 0.21 0.61 1.00 0.14 -0.03 -0.12 0.35 0.01
CL0

-0.27 -0.16 -0.12 -0.03 0.05 0.14 1.00 -0.80 -0.14 0.58 -0.08
CLα,ss 0.15 -0.06 0.21 0.23 -0.12 -0.03 -0.80 1.00 -0.38 -0.59 0.07
CLα,w 0.19 0.36 -0.16 -0.40 0.22 -0.12 -0.14 -0.38 1.00 0.13 0.56
CLq∗ -0.67 -0.37 -0.40 0.00 0.23 0.35 0.58 -0.59 0.13 1.00 0.06
CLδe

0.09 0.11 -0.02 -0.20 0.13 0.01 -0.08 0.07 0.56 0.06 1.00



Table 10.3: Parameter correlation matrix for identification using Van Ingen + Dynamic stalls dataset

τ1,ss τ2,ss a1,ss α∗
ss a1,w α∗

w CL0 CLα,ss CLα,w CLq∗ CLδe

τ1,ss 1.00 0.06 0.21 0.10 0.15 0.03 0.16 -0.35 0.33 0.06 -0.08
τ2,ss 0.06 1.00 -0.07 -0.35 0.09 0.36 0.09 -0.27 0.40 0.51 0.16
a1,ss 0.21 -0.07 1.00 0.36 -0.08 0.03 0.07 0.04 -0.07 0.05 0.13
α∗
ss 0.10 -0.35 0.36 1.00 -0.04 0.04 0.17 -0.10 -0.26 -0.03 -0.21
a1,w 0.15 0.09 -0.08 -0.04 1.00 0.30 0.00 -0.05 0.14 0.29 0.10
α∗
w 0.03 0.36 0.03 0.04 0.30 1.00 0.07 -0.16 0.28 0.46 0.21
CL0

0.16 0.09 0.07 0.17 0.00 0.07 1.00 -0.87 -0.27 0.58 -0.12
CLα,ss

-0.35 -0.27 0.04 -0.10 -0.05 -0.16 -0.87 1.00 -0.11 -0.61 0.23
CLα,w 0.33 0.40 -0.07 -0.26 0.14 0.28 -0.27 -0.11 1.00 0.25 0.49
CLq∗ 0.06 0.51 0.05 -0.03 0.29 0.46 0.58 -0.61 0.25 1.00 0.30
CLδe

-0.08 0.16 0.13 -0.21 0.10 0.21 -0.12 0.23 0.49 0.30 1.00

10.2.2. Pitch Rate versus Angle of Attack Rate
During the first flight on October 14th, eleven flight maneuvers were performed to study the distinction
between pitch rate and angle of attack rate. Five pullups, three pushovers, and three phugoids were per-
formed. Using the MATLAB function corrplot1 plots of the correlation were generated, these are presented
in Fig. 10.1.

From the figure, it is immediately clear that all three methods significantly reduce the correlation be-
tween q and α̇. This analysis shows, however, that the correlation is lowest for the pullup maneuver. This
is most likely attributed to the ease of performing this maneuver for the pilots. However, no further analysis
has been performed into the proficiency of the pilots.

When combining the data, problems are observed. It turns out that the excursions made during the
defined maneuvers are not large enough to eliminate the highly correlated excursions made during stall
maneuvers. This is visible in Fig. 10.2. Although the correlation has been reduced from 0.82 to 0.71, it is
an avenue that requires more research to give a useful contribution to stall modeling.

1https://nl.mathworks.com/help/econ/corrplot.html
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(a) Van Ingen dataset [23] (b) Pullup

(c) Pushover (d) Phugoid

Figure 10.1: Correlation plots for the pitch rate and angle of attack rate for different datasets, with
different maneuvers.
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Figure 10.2: Correlation plot for the ensemble of Van Ingen dataset, pullup, pushover and phugoid
maneuvers.
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11
Conclusions & Recommendations

11.1. Conclusions
To conclude this research, a reflection on the original research objective and questions is performed. The
research objective posed in Chapter 3 is repeated below for convenience.

To improve the Citation II aerodynamic stall model accuracy by developing an improved nonlin-
ear system identification routine.

Research Objective

To reach the objective six research questions were defined. Leading up to the objective, an answer to
these questions is provided in this section.

What are the limitations and potential improvements of the current nonlinear system identifica-
tion routine used for aerodynamic stall modeling?

Research Question 1

In Chapter 8, the limitations of the previous nonlinear system identification routine have been deter-
mined. Three main limiting factors were identified. First, the method lacked a proper definition of the pa-
rameter covariance matrix. Due to this limitation, the previous method had to rely on a bootstrap method
to create an estimate of the covariance matrix. However, this was based on the assumption that the pa-
rameter estimate for each maneuver had the same statistical properties. The second limitation relates to
the linear parameters present in the model. Using least squares theory, optimal estimates can be found
for these parameters. The fact that these optimal estimates do not align with the results of the nonlin-
ear estimation method directly indicates that the nonlinear estimation method has difficulty converging.
The last and perhaps most significant limitation relates to the method’s runtime, which was found to be
one day. This has been a long-standing bottleneck in the stall identification pipeline. This has limited
experimentation and innovation of stall models.

How can separable nonlinear least squares eliminate the limitations imposed by the current
nonlinear system identification routine?

Research Question 2

The idea of SNLS stems directly from the model structure, common to most stall models proposed at
the stall task force in Delft. The structure extends the regular linear aerodynamic models with underlying
separation equations that introduce nonlinearities. SNLS makes use of the linear part of the model to
reduce the complexity of optimization. This is achieved by using the OLS estimate of the linear parame-
ters. The optimality of the linear parameters is thus built into the algorithm, solving the second limitation.
Through practical experience with the new method, it is observed that the runtime is significantly reduced,
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taking less than a minute on average. This is seen as proof that the third limitation is reduced. Lastly,
methods have been developed for SNLS to determine the parameter covariance, removing the first limi-
tation.

How does the output of the new nonlinear system identification routine compare to that of the
current routine?

Research Question 3

In Chapter 9, an early analysis is performed on the lift model. It is here that a direct comparison is made
between the results of the previous nonlinear parameter optimization method and SNLS. Compared with
Van Ingen [23], the same dataset and model structure are chosen. When SNLS is used a 16% decrease
in training MSE is achieved. Furthermore, the minimum R2 value is increased from 0.71 to 0.85, which
points to better consistency across maneuvers. In Part II, the developed SNLS method is applied to find
an improved longitudinal stall model. Again, it is observed that the SNLSmethod provides more consistent
results. These two cases are good indications that the SNLS method is more efficient and robust.

What new model components can be identified using the new nonlinear system identification
routine?

Research Question 4

This research has focused on the identification of a new longitudinal stall model. During the study,
multiple new model components have been found. First, a new stall parameter was introduced to model
the local effects of the stall strip. This extra stall parameter distinguishes well between an abrupt low angle
of attack stall, characteristic of the stall strip, and a subtle high angle of attack full-wing stall. Furthermore,
additional elevator deflection and pitch rate contributions were uncovered for the lift model. The drag
model has incorporated a new lift-induced drag term. Lastly, the pitch moment was completely overhauled.
Pitch rate contributions are added, an alternative method to model the elevator control effectiveness is
presented, and a new internal model for the aircraft center of pressure is added.

What additional flight test data is required to enhance the Citation II aerodynamic stall model?

Research Question 5

During this research, two flight tests have been performed. For these flights the goals were to lower
correlations in the current dataset. Firstly, a high correlation existed between τ1 and τ2 parameter esti-
mates. To overcome this deficiency the Dynamic Stall and Deep Dynamic Stall maneuvers were de-
signed. These were very effective and reduced the correlation from 0.73 to 0.06. The second correlation
that was aimed to be reduced is that between the pitch rate and angle of attack rate. To achieve this,
three maneuvers were selected: Pullup, Pushover, and Phugoid. Although all three maneuvers proved
to reduce the correlation during the maneuver, it was observed that the magnitude of the excursions was
too low in comparison to the magnitudes observed in the stall. For this reason, the separation of pitch
rate and angle of attack rate was unsuccessful.

How does the identified stall model compare to the current stall models?

Research Question 6

The result of this thesis is a new longitudinal stall model for the Cessna Citation II. Enabled by im-
proved nonlinear parameter estimation methods, new model structure elements, and additional flight data.
These factors culminated in consistent reductions of the MSE for all models, CL, CD and Cm, as well as
derived coefficients, CX and CZ , summarized in Table 11.1. Additionally, the consistency of the models
is improved by increasing the minimum R2 value. With that in mind, it can be stated that the research
objective is met.
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Table 11.1: Summary of the global training and validation model statistics. Green indicates better results
in this work, orange means no difference and red indicates worse results. Table adapted from the paper.

Training Data Validation Data

Model MSE R2 min(R2) max
(

R2) MSE R2 min(R2) max
(

R2)

This work

CL 3.55 × 10−3 0.89 0.82 0.95 3.38 × 10−3 0.91 0.81 0.95
CD 1.68 × 10−4 0.91 −1.31 0.96 1.75 × 10−4 0.86 0.75 0.92
CX 1.20 × 10−4 0.94 0.79 0.99 1.53 × 10−4 0.92 0.66 0.97
CZ 3.60 × 10−3 0.89 0.82 0.95 3.38 × 10−3 0.91 0.81 0.95
Cm 1.43 × 10−4 0.79 0.16 0.92 1.86 × 10−4 0.71 0.18 0.88

Van Ingen [54]

CL 5.23 × 10−3 0.84 0.63 0.96 4.09 × 10−3 0.89 0.59 0.96
CD 2.35 × 10−4 0.87 −1.53 0.95 1.90 × 10−4 0.85 0.76 0.91
CX 4.13 × 10−4 0.79 −2.86 0.98 1.98 × 10−4 0.89 0.60 0.97
CZ 5.04 × 10−3 0.85 0.66 0.96 4.07 × 10−3 0.89 0.57 0.96
Cm 1.96 × 10−4 0.72 −0.37 0.89 2.52 × 10−4 0.61 −0.03 0.88

11.2. Recommendations
Using the knowledge built during this project, recommendations can be given for future work. The rec-
ommendations can be roughly divided into four categories. First, relating to the nonlinear parameter
estimation methodology:

• The SNLS method provides effective results within a short time. This opens up the opportunity to
develop a framework for the exploration of different model structures. This can be done in multiple
ways, such as exhaustive search methods or genetic algorithms.

• The advancements in nonlinear parameter estimation also enable the method to simultaneously use
data from different aerodynamic coefficients. This should help with the consistency of the estimation.

• The improved nonlinear parameter estimation method is able to process larger data sets simultane-
ously, ensuring an optimal model across multiple maneuvers. This is seen as a potential solution
for merging the stall models with nominal models by combining stall and non-stall data into one
identification routine.

• More research should be performed to quantify the uncertainty of the model. An initial sensitivity
study has been initiated using the parameter variance. Further work should propagate model uncer-
tainties to the output to determine confidence bands.

• Accuracy of the model may also be judged by the ability to predict aircraft states. Applying the
aerodynamic model in forward simulation may give further insights into model performance.

Moving on from the system identification methodology. The next category of recommendations relates
to the structure of models that are used:

• This work has shown that two stall parameters are effective. This is based on a hypothesis, one stall
parameter relates to the stall strips and one to the rest of the wing. Future work should investigate
the validity of this hypothesis, by mapping the flow field around the wings using tufts.

• The effect of stall strips on stall behavior is not well documented in the literature. It would be inter-
esting to study the effects of stall strips on 2D wing sections in the wind tunnel.

• An assumption has been made that Kirchhoff’s theory of flow separation is able to model a leading-
edge stall at the stall strips. It has shown effective in modeling, but more researchmust be performed
to understand the leading edge stall behavior.

• An initial assumption is made for the model structure of the static separation characteristics. It is
advised to explore different model structures.

• A model for the center of pressure has been created. However, the model includes a term relating
to the center of gravity. This added term should be understood better and if possible removed.
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• The current model, models the forces and moments at the center of gravity. However, this shifts
during the flight. For aerodynamic modeling, it might make sense to create a model around a fixed
point on the aircraft. This is a possible new route for exploration.

Next, recommendations for a new identification dataset are given. In part, the existing database of
flight tests should be explored for the necessary data. However, these could also be potential avenues
for new flight test campaigns:

• Continue research into the angle of attack rate effects and suitable methods for the identification of
them during stall.

• A high correlation between the angle of attack and elevator deflection is observed. New data is
required to remove that correlation.

• A high correlation between bias and lift curve slope is observed. Further research is required to
understand where this comes from and how this can be reduced.

Lastly, some recommendations that did not fit in any of the above categories:

• It is advised to revisit the engine and mass model as these are likely introducing undesired effects
to the aerodynamic model.

• It is advised to research the effectiveness of using DADC data for the dynamic pressure.
• The effectiveness of the model must be tested with pilot-in-the-loop experiments. These tests may
research if parameter variances are low enough through just-noticible-difference experiments. Fur-
thermore, they might shed light on the necessity of adding complexity to the model.
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WEIGHING RECORD 

Description Scale 
reading 

Tare Net Arm Moment (Lat) Arm (Lat) Moment 

L/H Main 5200 0 5200 315.5 1640600 0 0 
R/H Main 5278 0 5278 315.5 1665209 0 0 
Tail or nose 1447 0 1447 93.7 135583.9 0 0 

 
Amendments to General Data 

Removed items: 
Description Weight Arm Moment (Lat)Arm (Lat)Moment 

Fuel on Board -2760.0 285.16 -787041.6 .0 .0 
 
Added items: 

Description Weight Arm Moment (Lat)Arm (Lat)Moment 
4 Balance Plates (total of 10 
plates  220LBS) 

88.0 420.0 36960.0 .0 .0 

 
Basic Empty Weight  9253.0 290.86 2691311.3 .00 .0 

 
 

Date: 10/10/2024                Sign: 
                      

Name: G.F. den Toom                License no.: NLR 2010-1 
 
                      

VALID FOR AIRCRAFT CONFIGURATION ACCORDING CCR-2024-016 
 

AIRCRAFT 
Registration PH-LAB 
Make Cessna 
Model C550 
Serial 550-712 
TC 
 

A22CE (FAA) 

OWNER 
Name National Aerospace Laboratory 
Address Anthony Fokkerweg 2 
City Amsterdam 
Postal Code 1059 CM 

GENERAL DATA WEIGHING DD:  03-08-2023 
Aircraft configuration: WR-C-1017, CCR-2023-008 FTIS-FBW 
Levelling means: Longitudinal: inboard seat track. (Center level over FS206)� Lateral: Inboard seat track at FS206 
Datum point : Reference Datum Line 
Weighting point: Jack Stand 
Conditions during weighing: 
Balance weights installed (Aft 
Bagage Compartment) 

220 LBS 

Cabin Seat #8    FS288 Installed 
Cabin Seat #7    FS288 Installed 
Cabin Seat #6    FS250 Installed 
Cabin Seat #5    FS250 Installed 
Cabin Seat #4    FS216 Installed 
Cabin Seat #3    FS216 Installed 
Cabin Seat #10  FS170 Installed 
Cabin Seat #9    FS170 Installed 
Weight/arm/moment lbs/inch/lbsinch 
Fuel on Board 2760 
Flight Bag on board 17 inch rack 
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FLIGHT TEST CARD                              

 
PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 1 
SUBJECT                    : Dynamic stall maneuvers w. air data boom & 

angular accelerometers 
REFERENCE                  :  
NOTES                      : 14/10/2024 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : FL150-FL200 ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : Clean 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         :  
C.G.   :    
 
EXPERIMENT PROCEDURE  
 
Checklist: 
 
Nr.  Maneuver ALT/FL Flap 

setting 
Landing 
gear 

1 □ Dynamic Stall FL150-FL200 Clean Up 
2 □ Dynamic Stall FL150-FL200 Clean Up 
3 □ Dynamic Stall FL150-FL200 Clean Up 
4 □ Dynamic Stall FL150-FL200 Clean Up 
5 □ Dynamic Stall FL150-FL200 Clean Up 
6 □ Dynamic Stall FL150-FL200 Clean Up 
7 □ Dynamic Stall FL150-FL200 Clean Up 
8 □ Dynamic Stall FL150-FL200 Clean Up 
9 □ Dynamic Stall FL150-FL200 Clean Up 
10 □ Dynamic Stall FL150-FL200 Clean Up 
      
11 □ Pullup  FL150-FL200 Clean Up 
12 □ Pullup  FL150-FL200 Clean Up 
13 □ Pullup  FL150-FL200 Clean Up 
14 □ Pullup  FL150-FL200 Clean Up 
15 □ Pullup  FL150-FL200 Clean Up 
      
16 □ Pushover  FL150-FL200 Clean Up 
17 □ Pushover  FL150-FL200 Clean Up 
18 □ Pushover  FL150-FL200 Clean Up 
19 □ Pushover  FL150-FL200 Clean Up 
20 □ Pushover  FL150-FL200 Clean Up 
      

... □ Dynamic Stall FL150-FL200 Clean Up 
      
21 □ Phugoid 120kts FL150-FL200 Clean Up 
22 □ Phugoid 120kts FL150-FL200 Clean Up 
23 □ Phugoid 160kts FL150-FL200 Clean Up 
24 □ Phugoid 160kts FL150-FL200 Clean Up 

 
Note 1: If time permits, repeat dynamic stall maneuver. 
Note 2: See test card 2 and 3 for procedures for chosen maneuvers. 
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PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 2 
SUBJECT                    : Dynamic stall maneuvers w. air data boom & 

angular accelerometers 
REFERENCE                  :  
NOTES                      : 14/10/2024 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : FL150-FL200 ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : Clean 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         :  
C.G.   :    
 
EXPERIMENT PROCEDURE REC. NRS 
 
Dynamic stall procedure: 
 

1. Establish trimmed level flight 
2. Increase AoA with ~X* deg/sec 
3. Apply sequential elevator/aileron/rudder doublets 
4. When at stall boundary, apply oscillating elevator 

inputs 
5. Maintain stall for “X”** seconds 
6. Recover 

 
* Finetune to achieve good entry into stall 
** As long as possible 
 
Phugoid procedure: 
 

1. Establish trimmed level flight at 120-160 kts 
2. Push/Pull elevator to establish off-trim airspeed 
3. Make as large as possible deviations 

 

 
1-10 + 
left over 
time 
 
 
 
 
 
 
 
 
 
 
21-24 
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PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 3 
SUBJECT                    : Dynamic stall maneuvers w. air data boom & 

angular accelerometers 
REFERENCE                  :  
NOTES                      : 14/10/2024 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : FL150-FL200 ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : Clean 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         :  
C.G.   :    
 
EXPERIMENT PROCEDURE REC. NRS 
 
Pullup maneuver procedure: 
 

1. Establish trimmed level flight at 120-160 kts 
2. Set power to XX%* 
3. Pitch down to -XX** deg pitch attitude 
4. Apply elevator input to maintain 6*** deg AoA 
5. Recover when pitch attitude reaches XX** deg 

 
* Set power to throttle percentage lower/higher than trim 
** Set pitch range as large as possible 
*** Value from Grauer (2017), tune for Citation; assumed to be 
near the trim AoA 
 
Pushover maneuver procedure: 
 

1. Establish trimmed level flight at 120-160 kts 
2. Set power to XX%* 
3. Pitch up to XX** deg pitch attitude 
4. Apply elevator input to maintain 4.5*** deg AoA 
5. Recover when pitch attitude reaches -XX** deg 

 
* Set power to throttle percentage lower/higher than trim 
** Set pitch range as large as possible 
*** Value from Grauer (2017), tune for Citation; assumed to be 
near the trim AoA 

 
11-15 
 
 
 
 
 
 
 
 
 
 
 
 
16-20 
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PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 1 
SUBJECT                    : Dynamic stall maneuvers w. air data boom & 

angular accelerometers 
REFERENCE                  :  
NOTES                      : 23/10/2024 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : FL150-FL200 ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : Clean 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         :  
C.G.   :    
 
EXPERIMENT PROCEDURE  
 
Checklist: 
 
Nr.  Maneuver ALT/FL Flap 

setting 
Landing 
gear 

1 □ Dynamic Stall FL180-FL190 Clean Up 
2 □ Dynamic Stall FL180-FL190 Clean Up 
3 □ Dynamic Stall FL180-FL190 Clean Up 
4 □ Dynamic Stall FL180-FL190 Clean Up 
5 □ Dynamic Stall FL180-FL190 Clean Up 
      
6 □ Pullup  FL180-FL190 Clean Up 
7 □ Pullup  FL180-FL190 Clean Up 
8 □ Pullup  FL180-FL190 Clean Up 
9 □ Pullup  FL180-FL190 Clean Up 
10 □ Pullup  FL180-FL190 Clean Up 
      
11 □ Deep Dynamic Stall  FL180-FL190 Clean Up 
12 □ Deep Dynamic Stall  FL180-FL190 Clean Up 
13 □ Deep Dynamic Stall  FL180-FL190 Clean Up 
14 □ Deep Dynamic Stall  FL180-FL190 Clean Up 
15 □ Deep Dynamic Stall  FL180-FL190 Clean Up 
      
16 □ Dynamic Stall FL180-FL190 Clean Up 
17 □ Deep Dynamic Stall  FL150-FL200 Clean Up 
18 □ Dynamic Stall FL150-FL200 Clean Up 
19 □ Deep Dynamic Stall  FL150-FL200 Clean Up 
20 □ Dynamic Stall FL150-FL200 Clean Up 
21 □ Deep Dynamic Stall  FL150-FL200 Clean Up 
22 □ Dynamic Stall FL150-FL200 Clean Up 
23 □ Deep Dynamic Stall  FL150-FL200 Clean Up 
24 □ Dynamic Stall FL150-FL200 Clean Up 
...      

 
Note 1: If time permits, repeat (deep) dynamic stall maneuver. 
Note 2: See test card 2 for procedures for chosen maneuvers. 
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PROJECT                    : Dynamic Stall Modeling for the Cessna 

Citation II 
TEST CARD NUMBER           : 2 
SUBJECT                    : Dynamic stall maneuvers w. air data boom & 

angular accelerometers 
REFERENCE                  :  
NOTES                      : 23/10/2024 
EST. DURATION OF TEST POINT: 120 seconds 
HAZARD CATEGORY            : ROUTINE / LOW / MEDIUM / HIGH 
 

INITIAL CONDITIONS 
ALT/FL : FL150-FL200 ENGINE SETTING: As required 
IAS    : As required FLAP SETTING  : Clean 
MACH   : As required LANDING GEAR  : Up 
MASS   :  OTHER         :  
C.G.   :    
 
EXPERIMENT PROCEDURE REC. NRS 
 
Dynamic stall procedure: 
 

1. Establish trimmed level flight 
2. Smoothly increase angle of attack 
3. Apply sequential elevator/aileron/rudder steps 
4. When at stall boundary, apply oscillating elevator 

inputs 
5. Repeat entry into stall until altitude or attitude 

require recovery 
6. Recover 

 
Deep dynamic stall procedure: 
 

1. Establish trimmed level flight 
2. Smoothly increase angle of attack 
3. Apply sequential elevator/aileron/rudder steps 
4. Hold stall with increasing angle of attack 
5. Give oscillating elevator inputs around 20 degrees AoA 
6. Recover 

 
Pullup maneuver procedure: 
 

1. Establish trimmed level flight at 120-160 kts 
2. Pitch down to low pitch attitude 
3. Smoothly pitch up while maintaining constant AoA  
4. Recover when pitch attitude becomes too high 

 

 
1-5, 16, 
18, 20, 
22, 24, 
... 
 
 
 
 
 
 
 
11-15, 17, 
19, 21, 
23, ... 
 
 
 
 
 
 
6-10 
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