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On the convergence of discrete-time linear systems:
A linear time-varying Mann iteration converges iff

its operator is strictly pseudocontractive
Giuseppe Belgioioso, Filippo Fabiani, Franco Blanchini and Sergio Grammatico

Abstract—We adopt an operator-theoretic perspective to study
convergence of linear fixed-point iterations and discrete-time
linear systems. We mainly focus on the so-called Krasnoselskij–
Mann iteration, x(k + 1) = (1 − αk)x(k) + αkAx(k), which is
relevant for distributed computation in optimization and game
theory, when A is not available in a centralized way. We show that
strict pseudocontractiveness of the linear operator x 7→ Ax is not
only sufficient (as known) but also necessary for the convergence
to a vector in the kernel of I − A. We also characterize some
relevant operator-theoretic properties of linear operators via
eigenvalue location and linear matrix inequalities. We apply
the convergence conditions to multi-agent linear systems with
vanishing step sizes, in particular, to linear consensus dynamics
and equilibrium seeking in monotone linear-quadratic games.

Index Terms—Linear systems, LMIs, Game theory, Time-
varying systems.

I. INTRODUCTION

STATE convergence is the quintessential problem in multi-
agent systems. In fact, multi-agent consensus and coop-

eration, distributed optimization and multi-player game the-
ory revolve around the convergence of the state variables
to an equilibrium, typically unknown a-priori. In distributed
consensus problems, agents interact with their neighboring
peers to collectively achieve global agreement on some value
[1]. In distributed optimization, decision makers cooperate
locally to agree on primal-dual variables that solve a global
optimization problem [2]. Similarly, in multi-player games,
decision makers exchange local or semi-global information to
achieve an equilibrium for their inter-dependent optimization
problems [3]. Applications of multi-agent systems with guar-
anteed convergence are indeed vast, e.g. include power systems
[4], [5], demand side management [6], social networks [7], [8],
robotic and sensor networks [9], [10].

From a general mathematical perspective, the convergence
problem is a fixed-point problem [11], or equivalently, a zero-
finding problem [12]. For example, consensus in multi-agent
systems is equivalent to finding a collective state in the kernel
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of the Laplacian matrix, i.e., in operator-theoretic terms, to
finding a zero of the Laplacian, seen as a linear operator.

Fixed-point theory and monotone operator theory are then
key to study convergence to multi-agent equilibria [13]. For
instance, Krasnoselskij–Mann fixed-point iterations have been
adopted in aggregative game theory [14], [15], monotone
operator splitting methods in distributed convex optimization
[16] and monotone game theory [3], [17], [18]. Another
motivating application is shown in Section VI-A: the Mann
fixed-point iteration provides a simple solution to multi-agent
consensus in discrete-time, even whenever the agents have no
knowledge at all on the graph (connectivity).

The literature on fixed-point iterations is vast. The available
results assume sufficient conditions, possibly not necessary in
general, on the problem data to ensure global convergence of
fixed-point iterations applied on nonlinear mappings.

To the best of our knowledge, we are the first to study
necessary conditions for the convergence of fixed-point it-
erations, which is precisely the added value of this paper
with respect to the available literature. We focus on the
three most popular fixed-point iterations applied on linear
operators, that essentially are linear time-varying systems with
special structure. Our main technical contribution is to show
that Krasnoselskij–Mann fixed-point iterations, possibly time-
varying, applied on linear operators converge if and only if the
associated matrix has certain spectral properties (Section III).
One motivation for characterizing fixed-point iterations applied
on linear operators is to provide non-convergence certificates
for multi-agent dynamics that arise from distributed convex
optimization and monotone game theory (Section VI-B). To
achieve our main results, we adopt an operator-theoretic per-
spective and characterize some regularity properties of linear
mappings via eigenvalue location and properties, and linear
matrix inequalities (Section IV).

Notation: R, R≥0 and C denote the set of real, non-negative
real and complex numbers, respectively. Dr := {z ∈ C |
|z − (1− r)| ≤ r} denotes the disk of radius r > 0 centered
in (1−r, 0), see Fig. 1 for some graphical examples. bdry(S)
denotes the boundary of a set S. H (‖·‖) denotes a finite-
dimensional Euclidean space with inner product 〈·, ·〉 and norm
‖·‖ :=

√
〈·, ·〉. Sn�0 is the set of positive definite symmetric

matrices and, for P ∈ Sn�0, ‖x‖P :=
√
x>Px. Id denotes

the identity operator. R(·) :=
[

cos(·) − sin(·)
sin(·) cos(·)

]
denotes the

rotation operator. Given a mapping T : Rn → Rn, fix(T ) :=
{x ∈ Rn | x = T (x)} denotes the set of fixed points, and
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zer(T ) := {x ∈ Rn | 0 = T (x)} the set of zeros. Given a
matrix A ∈ Rn×n, ker(A) := {x ∈ Rn | 0 = Ax} = zer(A ·)
denotes its kernel; Λ(A) and ρ(A) denote the spectrum and the
spectral radius of A, respectively. 0N and 1N denote vectors
with N elements all equal to 0 and 1, respectively.

II. MATHEMATICAL DEFINITIONS

A. Discrete-time linear systems

In this paper, we consider discrete-time linear time-invariant
systems,

x(k + 1) = Ax(k) , (1)

and linear time-varying systems with special structure, i.e.,

x(k + 1) = (1− αk)x(k) + αkAx(k) , (2)

for some positive sequence (αk)k∈N. Note that for αk = 1 for
all k ∈ N, the system in (2) reduces to that in (1).

B. System-theoretic definitions

We are interested in the following notion of global conver-
gence, i.e., convergence of the state solution to some vector,
which may depend on the initial condition.

Definition 1 (Convergence): The system in (2) is conver-
gent if, for all x(0) ∈ Rn, there exists x̄ ∈ Rn such that the
solution x(k) to (2) satisfies limk→∞ ‖x(k)− x̄‖ = 0. �

Note that in Definition 1, the vector x̄ can depend on the
initial condition x(0). In the linear time-invariant case, (1),
it is known that semi-convergence holds if and only if the
eigenvalues of the A matrix are strictly inside the unit disk
and the eigenvalue in 1, if present, must be semi-simple, as
formalized next.

Definition 2 ((Semi-) Simple eigenvalue): An eigenvalue is
semi-simple if it has equal algebraic and geometric multiplic-
ity. An eigenvalue is simple if it has algebraic and geometric
multiplicities both equal to 1. �

Lemma 1: The following statements are equivalent:
i) The system in (1) is convergent;

ii) ρ(A) ≤ 1 and the only eigenvalue on the unit disk is 1,
which is semi-simple. �

C. Operator-theoretic definitions

With the aim to study convergence of the dynamics in (1),
(2), in this subsection, we introduce some key notions from
operator theory in finite-dimensional Hilbert spaces.

Definition 3 (Lipschitz continuity): A mapping T : Rn →
Rn is `-Lipschitz continuous in H (‖·‖), with ` ≥ 0, if ∀x, y ∈
Rn, ‖T (x)− T (y)‖ ≤ ` ‖x− y‖ . �

Definition 4: In H (‖·‖), an `-Lipschitz continuous map-
ping T : Rn → Rn is
• `-Contractive (`-CON) if ` ∈ [0, 1);
• NonExpansive (NE) if ` ∈ [0, 1];
• η-Averaged (η-AVG), with η ∈ (0, 1), if ∀x, y ∈ Rn

‖T (x)− T (y)‖2 ≤ ‖x− y‖2

− 1−η
η ‖(Id− T ) (x)− (Id− T ) (y)‖2 , (3)

or, equivalently, if there exists a nonexpansive mapping
B : Rn → Rn and η ∈ (0, 1) such that

T = (1− η)Id + ηB .
• κ-strictly Pseudo-Contractive (κ-sPC), with κ ∈ (0, 1), if
∀x, y ∈ Rn

‖T (x)− T (y)‖2 ≤ ‖x− y‖2

+ κ ‖(Id− T ) (x)− (Id− T ) (y)‖2 . (4)

�

Definition 5: A mapping T : Rn → Rn is:
• Contractive (CON) if there exist ` ∈ [0, 1) and a norm
‖·‖ such that it is an `-CON in H (‖·‖);

• Averaged (AVG) if there exist η ∈ (0, 1) and a norm ‖·‖
such that it is η-AVG in H (‖·‖);

• strict Pseudo-Contractive (sPC) if there exists κ ∈ (0, 1)
and a norm ‖·‖ such that it is κ-sPC in H (‖·‖).

�

III. MAIN RESULTS:
FIXED-POINT ITERATIONS ON LINEAR MAPPINGS

In this section, we provide necessary and sufficient con-
ditions for the convergence of some well-known fixed-point
iterations applied on linear operators, i.e.,

A : x 7→ Ax, with A ∈ Rn×n. (5)

First, we consider the Banach–Picard iteration [12, (1.69)]
on a generic mapping T : Rn → Rn, i.e., for all k ∈ N,

x(k + 1) = T (x(k)) , (6)

whose convergence is guaranteed if T is averaged, see [12,
Prop. 5.16]. The next statement shows that averagedness is
also a necessary condition when the mapping T is linear.

Proposition 1 (Banach–Picard iteration): The following
statements are equivalent:

(i) A in (5) is averaged;
(ii) the solution to the system in (1) converges to some x ∈

fix(A) = ker(I −A). �

If the mapping T is merely nonexpansive, then the sequence
generated by the Banach–Picard iteration in (6) may fail to
produce a fixed point of T . For instance, this is the case
for T = −Id. In these cases, a relaxed iteration can be
used, e.g. the Krasnoselskij–Mann iteration [12, Equ. (5.15)].
Specifically, let us distinguish the case with time-invariant step
sizes, known as Krasnoselskij iteration [11, Chap. 3], and the
case with time-varying, vanishing step sizes, known as Mann
iteration [11, Chap. 4]. The former is defined by

x(k + 1) = (1− α)x(k) + αT (x(k)) , (7)

for all k ∈ N, where α ∈ (0, 1) is a constant step size.
The convergence of the discrete-time system in (7) to a

fixed point of the mapping T is guaranteed, for any arbitrary
α ∈ (0, 1), if T is nonexpansive [12, Th. 5.15], or if T ,
defined from a compact, convex set to itself, is strictly pseudo-
contractive and α > 0 is sufficiently small [11, Theorem
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3.5]. In the next statement, we show that if the mapping
T : Rn → Rn is linear, and α is chosen small enough,
then strict pseudo-contractiveness is necessary and sufficient
for convergence.

Theorem 1 (Krasnoselskij iteration): Let κ ∈ (0, 1) and
α ∈ (0, 1− κ). The following statements are equivalent:

(i) A in (5) is κ-strictly pseudo-contractive;
(ii) the solution to the system

x(k + 1) = (1− α)x(k) + αAx(k) (8)

converges to some x ∈ fix(A) = ker(I −A). �

Since α > 0, (8) is equivalent to 1
α (x(k + 1)− x(k)) =

(A− I)x(k), which represents the Euler approximation of the
continuous-time Laplacian-like dynamics ẋ = −(I −A)x.

In Theorem 1, the admissible step sizes for the Krasnoselskij
iteration depend on the parameter κ that quantifies the strict
pseudo-contractiveness of the mapping A = A ·. When the
parameter κ is unknown, or hard to quantify, one can adopt
time-varying step sizes, e.g. the Mann iteration:

x(k + 1) = (1− αk)x(k) + αkT (x(k)) , (9)

for all k ∈ N, where the step sizes (αk)k∈N shall be chosen
as follows.

Assumption 1 (Mann sequence): The sequence (αk)k∈N is
such that 0 < αk ≤ αmax <∞ for all k ∈ N, for some αmax,
limk→∞ αk = 0 and

∑∞
k=0 αk =∞. �

The convergence of (9) to a fixed point of the mapping T
is guaranteed if T , defined from a compact, convex set to
itself, is strictly pseudo-contractive [11, Theorem 3.5]. In the
next statement, we show that if the mapping T : Rn → Rn
is linear, then strict pseudo-contractiveness is necessary and
sufficient for convergence.

Theorem 2 (Mann iteration): Let (αk)k∈N be a Mann se-
quence as in Assumption 1. The following statements are
equivalent:

(i) A in (5) is strictly pseudocontractive;
(ii) the solution to

x(k + 1) = (1− αk)x(k) + αkAx(k) (10)

converges to some x ∈ fix(A) = ker(I −A). �

We remark that the sequence in (10) does not necessary
converge to a vector in ker(I−A) if αk converges too quickly,
as it can be shown by simple counterexamples.

IV. OPERATOR-THEORETIC CHARACTERIZATION OF
LINEAR MAPPINGS

In this section, we characterize the operator-theoretic prop-
erties of linear mappings via necessary and sufficient linear
matrix inequalities and conditions on the spectrum of the
corresponding matrices. We exploit these technical results in
Section V, to prove convergence of the fixed-point iterations
presented in Section III.

Lemma 2 (Lipschitz continuous linear mapping): Let ` >
0 and P ∈ Sn�0. The following statements are equivalent:

(i) A in (5) is `-Lipschitz continuous in H (‖·‖P );

(ii) A>PA 4 `2P . �

Proof: It directly follows from Definition 3.

Lemma 3 (Linear contractive/nonexpansive mapping): Let
` ∈ (0, 1). The following statements are equivalent:

(i) A in (5) is an `-contraction;
(ii) ∃P ∈ Sn�0 such that A>PA 4 `2P ;

(iii) the spectrum of A is such that{
Λ(A) ⊂ `D1

∀λ ∈ Λ(A) ∩ bdry(`D1), λ semi-simple
(11)

If ` = 1, the previous equivalent statements hold if and only
if A in (5) is nonexpansive. �

Proof: The equivalence between (i) and (ii) follows from
Lemma 2. By the Lyapunov theorem, (iii) holds if and only
if the discrete-time linear system x(k + 1) = 1

`Ax(k) is (at
least marginally) stable, i.e., Λ(A) ⊂ `D1 and the eigenvalues
of A on the boundary of the disk, Λ(A) ∩ bdry(`D1), are
semi-simple. The last statement follows by noticing that an
1-contractive mapping is nonexpansive.

Lemma 4 (Linear averaged mapping): Let η ∈ (0, 1). The
following statements are equivalent:

(i) A in (5) is η-averaged;
(ii) ∃P ∈ Sn�0 such that

A>PA 4 (2η − 1)P + (1− η)
(
A>P + PA

)
;

(iii) Aη := Aη · :=
(

1− 1
η

)
I ·+ 1

ηA· is nonexpansive;
(iv) the spectrum of A is such that{

Λ(A) ⊂ Dη
∀λ ∈ Λ(A) ∩ bdry(Dη), λ semi-simple.

(12)

�

Proof: The equivalence (i) ⇔ (ii) follows directly by
inequality (3) in Definition 4. By [12, Prop. 4.35], A is η-AVG
if and only if the linear mapping Aη is NE, which proves (i)
⇔ (iii). To conclude, we show that (iii) ⇔ (iv). By Lemma
3, the linear mapping Aη is NE if and only if{

Λ(Aη) ⊂ D1

∀λ ∈ Λ(Aη) ∩ bdry(D1), λ semi-simple
(13)

⇔
{

Λ(A) ⊂ (1− η){1}+ ηD1 = Dη
∀λ ∈ Λ(A) ∩ bdry(Dη), λ semi-simple

(14)

where the equivalence (13) ⇔ (14) holds because Λ(Aη) =
(1− 1

η ){1}+ 1
ηΛ(A), and because the linear combination with

the identity matrix does not alter the geometric multiplicity of
the eigenvalues.

Lemma 5 (Linear strict pseudocontractive mapping): Let
κ, η ∈ (0, 1). The following statements are equivalent:

(i) A in (5) is κ-strictly pseudocontractive;
(ii) ∃P ∈ Sn�0 such that

(1− κ)A>PA 4 (1 + κ)P − κ(A>P + PA); (15)

(iii) As
κ := As

κ · := κI ·+(1− κ)A· is nonexpansive;
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Fig. 1. Spectrum of a linear η-AVG mapping: Disk centered in 1− η with
radius η, Dη (dark-grey disk). Spectrum of a linear κ-sPC mapping: Disk
centered in − κ

1−κ with radius 1
1−κ , D 1

1−κ
(light-grey disk).

(iv) the spectrum of A is such thatΛ(A) ⊂ D 1
1−κ

∀λ ∈ Λ(A) ∩ bdry
(
D 1

1−κ

)
, λ semi-simple

(16)
(v) Aα := Aα· := (1 − α)I · +αA· is η-averaged, with

α = η(1− κ) ∈ (0, 1). �

Proof: The equivalence (i) ⇔ (ii) follows directly by
inequality (4) in Definition (5). To prove that (ii) ⇔ (iii), we
note that the LMI in (15) can be recast as

(κI + (1− κ)A)
>
P (κI + (1− κ)A) 4 P, (17)

which, by Lemma 3, holds true if and only if As
κ is NE.

(iii) ⇔ (iv): By Lemma 3, As
κ is NE if and only if{

Λ(As
κ) ⊂ D1

∀λ ∈ Λ(As
κ) ∩ bdry(D1), λ semi-simple

(18)

⇔

Λ(A) ⊂
{
− κ

1−κ

}
+ 1

1−κ D1 = D 1
1−κ

∀λ ∈ Λ(A) ∩ bdry
(
D 1

1−κ

)
, λ semi-simple

(19)

where the equivalence (18) ⇔ (19) holds because Λ(As
κ) =

As
κ := κI+(1−κ)A, and because the linear combination with

the identity matrix does not alter the geometric multiplicity of
the eigenvalues. (iii) ⇔ (v): By Definition 4 and [12, Prop.
4.35], As

κ· is NE if and only if Aα· = (1 − η)I · +ηAs
κ·

is η-AVG, for all η ∈ (0, 1). Since α = η(1 − κ), Aα =
(1− η(1− κ))Id + η(1− κ)A, which concludes the proof.

V. PROOFS OF THE MAIN RESULTS

Proof of Proposition 1 (Banach–Picard iteration)

We recall that, by Lemma 4, A is AVG if and only if there
exists η ∈ (0, 1) such that Λ(A) ⊂ Dη and ∀λ ∈ Λ(A) ∩

bdry(Dη), λ is semi-simple and we notice that Dη ∩ D1 =
{1} for all η ∈ (0, 1). Hence A is averaged if and only if
the eigenvalues of A are strictly contained in the unit circle
except for the eigenvalue in λ = 1 which, if present, is semi-
simple. The latter is a necessary and sufficient condition for
the convergence of x(k + 1) = Ax(k), by Lemma 1. �

Proof of Theorem 1 (Krasnoselskij iteration)

(i) ⇔ (ii): By Lemma 5, A is κ−sPC if and only if (1 −
α)Id + αA is η-AVG, with α = η(1 − κ) and η ∈ (0, 1);
therefore, if and only if (1−α)Id+αA is AVG with α ∈ (0, 1−
κ). By Proposition (1), the latter is equivalent to the global
convergence of the Banach–Picard iteration applied on (1 −
α)Id + αA, which corresponds to the Krasnoselskij iteration
on A, with α ∈ (0, 1− κ). �

Proof of Theorem 2 (Mann iteration)

Proof that (i) ⇒ (ii): Define the bounded sequence βk :=
1
εαk > 0, for some ε > 0 to be chosen. Thus, x(k +
1) = (1 − αk)x(k) + αkAx(k) = (1 − εβk)x(k) +
εβkAx(k) = (1 − βk)x(k) + βk ((1− ε)I + εA)x(k). Since
A· is sPC, we can choose ε > 0 small enough such that
B := (1 − ε)Id + εA· is NE, specifically, we shall choose
ε < min

{
1
|λ| | λ ∈ Λ(A) \ {1}

}
. Note that 0 ∈ fix(A) =

fix(B) 6= ∅. Since βk = 1
ε αk → 0, we have that ∀ε, ε′ ∈

(0, 1), ∃k̄ ∈ N such that βk ≤ 1− ε′ for all k ≥ k̄. Moreover,
since

∑k̄
k=0 βk < ∞, for all x(0) ∈ Rn, we have that the

solution x(k̄) is finite. Therefore, we can define h := k−k̄ ∈ N
for all k ≥ k̄, y(0) := x(k̄) and y(h+1) := x(h+k̄+1) for all
h ≥ 0. The proof then follows by applying [12, Th. 5.14 (iii)]
to the Mann iteration y(h+ 1) = (1−βh)y(h) +βhBy(h). In
fact, as βh ≤ 1− ε′, ∑∞h=0 βh(1− βh) ≥ ε′∑∞h=0 βh =∞.

Proof that (ii) ⇒ (i): For the sake of contradiction, suppose
that A is not sPC, i.e., at least one of the following facts must
hold: 1) A has an eigenvalue in 1 that is not semi-simple; 2)
A has a real eigenvalue greater than 1; 3) A has a pair of
complex eigenvalues σ±jω, with σ ≥ 1 and ω > 0. We show
next that each of these facts implies non-convergence of (9).
Without loss of generality (i.e., up to a linear transformation),
we can assume that A is in Jordan normal form.

1) A has an eigenvalue in 1 that is not semi-simple. Due to
(the bottom part of) the associated Jordan block, the dynamics
in (9) contain the two-dimensional dynamics

y(k + 1) =

(
(1− αk)

[
1 0
0 1

]
+ αk

[
1 1
0 1

])
y(k)

=

[
1 αk
0 1

]
y(k).

For y2(0) := c > 0, we have that the solution y(k) is such
that y2(k) = y2(0) > 0 and y1(k + 1) = y1(k) + αkc, which
implies that y1(k) = y1(0) + c

∑k−1
h=0 αh. Thus, x(k) diverges

and we have a contradiction.
2) Let A has a real eigenvalue equal to 1 + ε > 1.

Again due to the associated Jordan block, the dynamics in
(9) must contain the scalar dynamics s(k + 1) = (1 −
αk)s(k) + αk(1 + ε)s(k) = (1 + ε αk)s(k), with solution



2475-1456 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2018.2840882, IEEE Control
Systems Letters

s(k + 1) =
(∏k

h=0(1 + ε αh)
)
s(0). Since ε αh > 0, it holds

that
∏∞
h=0(1 + ε αh) ≥ ε

∑∞
h=0 αh = ∞, by Assumption 1.

Therefore, y(k) and x(k) diverge and we reach a contradiction.
3) A has a pair of complex eigenvalues σ±jω, with σ = 1+

ε ≥ 1 and ω > 0. Due to the structure of the associated Jordan
block, the vector dynamics in (9) contain the two-dimensional
dynamics

z(k + 1) =

(
(1− αk)

[
1 0
0 1

]
+ αk

[
σ −ω
ω σ

])
z(k)

=

[
1 + ε αk −ωαk
ωαk 1 + ε αk

]
z(k).

Now, we define ρk :=
√

(1 + εαk)2 + ω2α2
k ≥√

1 + ω2α2
k > 1, and the angle θk > 0 such that

cos(θk) = (1 + εαk)/ρk and sin(θk) = (ωαk)/ρk, i.e., θk =

atan
(

ωαk
1+εαk

)
. Then, we have that z(k + 1) = ρkR(θk)z(k),

hence, the solution z(k) reads as

z(k + 1) =
(∏k

h=0 ρh

)
R
(∑k

h=0 θh

)
z(0).

Since ‖R(·)‖ = 1, if the product (
∏∞
h=0 ρh) diverges, then

z(k) diverges as well. Thus, let us assume that the product
(
∏∞
h=0 ρh) converges. By the limit comparison test, the series∑∞
h=0 θh =

∑∞
h=0 atan

(
ωαh

1+εαh

)
converges (diverges) if and

only the series
∑∞
h=0

ωαh
1+εαh

converges (diverges). The latter
diverges since

∑∞
h=0

ωαh
1+εαh

≥ ω
1+εαmax

∑∞
h=0 αh = ∞. It

follows that
∑∞
h=0 θh diverges, hence z(k) keeps rotating

indefinitely, which is a contradiction. �

VI. APPLICATION TO MULTI-AGENT LINEAR SYSTEMS

A. Consensus via discrete-time linear time-varying dynamics

We consider a connected graph of N nodes, associated
with N agents seeking consensus via discrete-time, distributed
information exchange on a network with fixed Laplacian
matrix L ∈ RN×N . The aim is to reach consensus assuming
that the algebraic connectivity of the graph, i.e., the strictly-
positive Fiedler eigenvalue of L, is unknown and no bounds
are available.

Thus, in view of [1, Equ. (16)], we study the following
linear time-varying dynamics:

x(k + 1) = x(k)− αkLx(k) (20a)
= (1− αk)x(k) + αk(I − L)x(k) , (20b)

where x(k) := [x1(k), . . . , xN (k)]
> ∈ RN and, for simplicity,

the state of each agent is a scalar variable, xi ∈ R.
Since the dynamics in (20) have the structure of a Mann

iteration, due to Theorem 2, we have the following result.

Corollary 1: Let (αk)k∈N be a Mann sequence. The system
in (20) asymptotically reaches consensus, i.e., the solution
x(k) to (20) converges to x1N , for some x ∈ R. �

Proof: Since the graph is connected, L has one (simple)
eigenvalue at 0, and N − 1 eigenvalues with strictly-positive
real part. Therefore, the matrix I −L in (20b) has one simple
eigenvalue in 1 and N−1 with real part strictly less than 1. By
Lemma 5, (I−L)(·) is sPC and by Theorem 2, x(k) globally
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Fig. 2. Disagreement vector norm versus discrete time. Since the mapping
Id− L · is strictly pseudocontractive, consensus is asymptotically reached.

converges to some x ∈ fix(I − L) = zer(L), i.e., Lx = 0N .
Since L is a Laplacian matrix, Lx = 0N implies consensus,
i.e., x = x1N , for some x ∈ R.

We have only assumed that the agents agree on a sequence
of vanishing, bounded, step sizes, αk. However, we envision
that agent-dependent step sizes can be used as well, e.g. via
matricial Mann iterations [11, §4.1]. We stress that the mere
convergence of αk does not imply that consensus is achieved.
In fact, if the sequence {αk}k∈N is summable, then the limit
vector x may not be in the kernel of the Laplacian matrix.

Let us simulate the consensus dynamics in (20) for a graph
with 3 nodes, adjacency matrix A = [ai,j ] with a1,2 = a1,3 =
1
2 , a2,3 = a3,1 = 1, hence with Laplacian matrix

L = Dout −A =

[
1 −1/2 −1/2
0 1 −1
−1 0 1

]
.

We note that L has eigenvalues Λ(L) =
{

0, 3
2 ± j 1

2

}
. Since

we do not assume that the agents known about the connectivity
of the graph, we simulate with step sizes that are initially
larger than the maximum constant-step value for which con-
vergence would hold. In Fig. 2, we compare the norm of the
disagreement vectors, ‖Lx(k)‖, obtained with two different
Mann sequences, αk = 2/k and αk = 2/

√
k, respectively.

We observe that convergence with small tolerances is faster in
the latter case with larger step sizes.

B. Two-player zero-sum linear-quadratic games:
Non-convergence of projected pseudo-gradient dynamics

We consider two-player zero-sum games with linear-
quadratic structure, i.e., we consider N = 2 agents, with
cost functions f1(x1, x2) := x>1 Cx2 and f2(x1, x2) :=
−x>2 C>x1, respectively, for some square matrix C = C> 6=
0. In particular, we study discrete-time dynamics for solving
the Nash equilibrium problem, that is the problem to find a
pair (x∗1, x

∗
2) such that:

x∗1 ∈ argmin
x1∈Rn

f1(x1, x
∗
2)

x∗2 ∈ argmin
x2∈Rn

f2(x∗1, x2).
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Fig. 3. Solution to the discrete-time system in (21) in semi-log scale. The
lack of strict pseudo-contractiveness causes persistent oscillations.

A classic solution approach is the pseudo-gradient method,
namely the discrete-time dynamics

x(k + 1) = x(k)− αkFx(k) (21a)
= (1− αk)x(k) + αk(I − F )x(k) , (21b)

where F · is the so-called pseudo-gradient mapping of the
game, which in our case is defined as

F(x) :=

[
∇x1

f1(x1, x2)
∇x2f2(x1, x2)

]
=

[
Cx2

−Cx1

]
=

[
0 1
−1 0

]
⊗ C︸ ︷︷ ︸

=:F

x ,

and (αk)k∈N is a sequence of vanishing step sizes, e.g. a Mann
sequence. In our case, (x∗1, x

∗
2) is a Nash equilibrium if and

only if [x∗1 ;x∗2] ∈ fix (Id−F) = zer (F) [17, Th. 1].
By Theorem 2, convergence of the system in (21) holds if

and only if I − F is strictly pseudocontractive. In the next
statement, we show that this is not the case for F in (21).

Corollary 2: Let (αk)k∈N be a Mann sequence and C =
C> 6= 0. The system in (21) does not globally converge. �

Proof: It follows by Lemma 5 that the mapping Id− F ·
is sPC if and only if the eigenvalues of F either have strictly-
positive real part, or are semi-simple and equal to 0. Since
Λ
([

0 1
−1 0

])
= {±j}, we have that the eigenvalues of F =[

0 1
−1 0

]
⊗ C are either with both positive and negative real

part, or on the imaginary axis and not equal to 0, or equal to
0 and not semi-simple. Therefore, Id−F · is not sPC and the
proof follows by Theorem 2.

Let us numerically simulate the discrete-time system in (21),
with the following parameters: n = 1, C = 1, x1(0) = 1/2,
x2(0) = 0, and αk = 1/(k + 1) for all k ∈ N. Figure 3
shows persistent oscillations, due to the lack of strict pseudo-
contractiveness of I − F . In fact, Λ(I − F ) = {1 ± j}. The
example provides a non-convergence result: pseudo-gradient
methods do not ensure global convergence in convex games
with (non-strictly) monotone pseudo-gradient mapping, not
even with vanishing step sizes and linear-quadratic structure.

VII. CONCLUSION AND OUTLOOK

Convergence in discrete-time linear systems can be equiv-
alently characterized via operator-theoretic notions. Remark-
ably, the time-varying Mann iteration applied on linear map-
pings converges if and only if the considered linear operator is
strictly pseudocontractive. This result implies that Laplacian-
driven linear time-varying consensus dynamics with Mann
step sizes do converge. It also implies that projected pseudo-
gradient dynamics for Nash equilibrium seeking in monotone
games do not necessarily converge.

Future research will focus on other, more general, linear
fixed-point iterations, e.g. the general Mann iteration [11,
§4.1], and of discrete-time linear systems with uncertainty.
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