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Abstract

Accurate dry mass prediction is essential in early design phases of a launch system. To predict structural mass
of a launch vehicle more accurate at a conceptual design phase, a structural mass model was developed. The model
predicts a launch vehicle’s structural mass, thickness, center of mass and mass moment of inertia. Load carrying
structures within in a conventional launch vehicle were modeled on a subsystem level by determining force and
moment acting on the structure during flight. The model was developed for use in launch vehicle optimization
algorithms, and thus relies on a relative small amount of calculations to obtain structural strength of parts. The
model supports walls made of isotropic and orthotropic material, sandwich panels, rings and stiffeners. The model
was compared to existing models and known data from existing launch vehicles. The results did indicate a good
convergence for determining wall thickness when compared to values found in literature.

Keywords: mass model, launch vehicle design, launch vehicle optimization, rocket structures, buckling of rocket
structures.



Overzicht

Het accuraat voorspellen van de droge massa is essentieel voor de vroege ontwerp phase van een lancheer
systeem. Een model was ontwikkeld om de massa, dikte, zwaartepunt en traagheidsmoment van structurele
sub-systemen van een raket te benaderen. Het model is gemaakt met het doel om het te gebruiken in optimalisatie
algorithmes voor het ontwerpen van meerdere traps raketten die een vracht in een baan om de aarde of els in het
zonne-stelsel te brengen. Het model ondersteunt meerdere soorten wand materialen en configuraties. Het rapport
vergelijkt resultaten met bestaande modellen en data van bestaande lanceer voertuigen. Waardes berekent voor de
dikte van de wanden door het model kwamen wel overeen met gevonden waardes in de literatuur. Na dit overzicht
is de rest van het rapport geschreven in het engels.

Sleutel woorden: massa model, lanceer voertuig design, lanceer voertuig optimalisatie, raket structuren, knikken
van raket structuren,
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Chapter 1

Introduction

This report is part of the master thesis phase of the Space Engineering master track at the
TU-Delft. This report functions as an embodiment of the work executed and aims to fulfill
the requirement for successfully completing the master phase. The topic of this research is a
mass model for launch vehicles to estimate their dry mass for conceptual design phases. The
research largely took place at the NLR(Nederlands Lucht en Ruimtevaart Laboratorium) in
Marknesse, in cooperation with the aerospace faculty at the TU Delft.

The research project was planned and executed by the author of this report, i.e.; the student.
The student was guided during the project by two supervisors:

Oving, Bertil Senior R&D engineer Small Space Systems - Nederlands Lucht en Ruimtevaart
Centrum (Netherlands Aerospace Centre)

Zandbergen, Barry Lecturer Space System Engineer - TU Delft

Other than guidance the supervisors also evaluated the results produced. This evaluation
also covered the determination of sufficient completion of the project(green light) together
with a determination of the final grade.

The topic of this research is the development, verification and validation of a mass model
for the structural mass in a launch vehicle. This Introduction chapter will continue with
describing the background to the project and the problem statement to show how to research
came to be. This continues with a description of the research methodology implemented,
together with the scope of the project and a description of its limits. The introductory chapter
will conclude with a plan of action which describes the iterations used to develop the model
and a review of literature surveyed and used to develop the model.

The second chapter describes mass modeling of a launch vehicle and its subsystems. This
chapter will break down the LV(launch vehicle) into several subsystems and defines these
to make clear distinctions between them. The chapter also reviews how mass of subsystems
other than the structural mass are modeled based upon existing mass models.

The third chapter describes the modeling of propellant and pressurization tanks. Since
propellant tanks are such a large and heavy subsystem a separate chapter is dedicated to
them. The chapter divides the tank further up into other subsystems and describes its design
parameters.

1



CHAPTER 1. INTRODUCTION

The fourth chapter introduces determination of forces and moments acting on the launch
vehicle. This includes the calculation of these forces at any point in the LV. Other than
moment and forces it is also explained how the center of mass and mass moment of inertia
are calculated.

The fifth chapter describes yielding criteria used to determine the thickness/geometry of the
structure wall. This includes tensile stress but also extensive description of buckling criteria
used for several kinds of wall structures and shapes.

The sixth chapter of the report describes the way the model is build up. This explains
sequences, algorithms and methods used to determine the structural mass.

The last three chapters before the appendix show the results obtained from the model and
its input variables(chapter seven). The verification process and results and an attempt at
validating the model (chapter eight). And finally a conclusion which concludes the report and
describes recommendations before the appendix starts.

I. Background

Before the background to the project is described please note that a large portion of background
information concerning existing mass models for launch vehicles can also be found in the
literature study prior to the thesis research1 and in the proposal for this research.2 These
reports indicate the motivation for the development of a dry mass model in more detail.

Dry mass of a launch vehicle is a critical property for analyzing a rocket’s performance.
Together with its engine(s) exhaust velocity and propellant mass they make up the ’famous’
Tsiolkovsky rocket equation or ideal rocket equation, see equation 1.1. In this equation Mp is
the propellant mass, Mdry is the dry mass, ve is the exhaust velocity and ∆v is the change in
velocity (Delta v) achieved after expulsion of all the propellant in the rocket. Delta v is often
used to describe performance needed to perform certain (orbital) maneuvers, an example of
this is the transition from earth’s surface to LEO (low earth orbit), this is often stated as a delta
v value of around 10[km/s].3

∆v = veln

(
Mp + Mdry + Mpay

Mdry + Mpay

)
(1.1)

Previous studies completed by master students at the TU Delft have focused on the modeling
and optimization of launch vehicles. These models use various design parameters for the
design of launch vehicles which include engine performance, trajectory, propellant choice and
an estimation of dry mass. These models are than optimized for a certain payload and orbit
to minimize the total launch vehicles mass. This is done by trajectory analysis and input of
LV parameters. Dry mass estimation in these models is achieved by empirical relations taken
from several studies, e.g. Zandbergen.4

1W.A.R. Wildvank. “Reusing Rocket Stages - A Literature Survey”. MA thesis. TU Delft, 2017.
2Roy Wildvank. “Master thesis proposal - Launch Vehicle Structure Mass Model”. In: (2017).
3B.T.C. Zandbergen. AE1222-II: Aerospace Design and Systems Engineering Elements I. 2015.
4BTC Zandbergen. “Aerospace Design and Systems Engineering Elements I, Part Launcher Design and Sizing”. In:

(2011).

2



W.A.R. WILDVANK - MASTER THESIS REPORT

Figure 1.1: SMILE logo

One of these studies was conducted by van Kesteren5 who conducted research on solid
propellant launch vehicles which are launched from the ground versus similar launch systems
that are launched by releasing them from an aircraft at high altitude/velocity. Another
similar research project was conducted by Miranda6 which compared hybrid engine based
vehicles. These studies used cost models to estimate launch cost for these vehicles, i.e.
TRANSCOSTS.7 These cost estimations are largely empirical relations in which propellant mass
of the vehicle is an important parameter. Both studies used a multi-disciplinary optimization
tool named Pagmo developed by ESA to optimize launch vehicle concepts to minimize GTOW
(ground take of weight). The models in these studies were integrated into TUDAT (TU
Delft Astrodynamics Toolbox) which is a large library written in C++ with various tools for
astrodynamic calculations such as orbit determination.

The project is executed at the NLR and has overlapping areas with the SMILE project,
a project in which the NLR has great involvement. SMILE stands for SMall Innovative
Launcher for Europe and its goal is to develop a small and affordable launcher for relative
small and light payloads. The project is a Horizon 2020 project spanning thirteen companies
and institutes to design a small launch vehicle (around 50[kg] to LEO) to supply the small
satellite and cube-sat market with a dedicated launcher. In current day, smaller satellites are
often launched in combination with larger payloads (piggybacking), this cheap option often
comes with restricted choice of orbit and launch date. Supplying the market with a dedicated
launcher gives owners of smaller satellites more control over orbit injection and other launch
related mission parameters. Launch costs is an important parameter for the SMILE project to
"compete" with piggyback launches. Although a dedicated launcher does not directly compete
with piggyback rides it cannot be significantly more expensive since the upsides will then not
weigh up against the cost increase.8

This research project uses data from the SMILE project to verify the created model. This
data is mostly in the form of FEM(finite element method) data and helps compare the model
to more refined computer simulation.

5M. van Kesteren. “Air launch versus ground launch”. MA thesis. TU Delft, 2013.
6F. Miranda, B.T.C. Zandbergen, and D. Dirkx. “Design Optimization of Ground and Air-Launched Hybrid

Rockets:” 2015. url: Item%20Resolution%20URL%20http://resolver.tudelft.nl/uuid:832aa36d-041b-4896-
97a7-837f91cdc5d6.

7Dietrich E Koelle. Handbook of Cost Engineering for Space Transportation Systems (revision 1) with Transcost 7.1:
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CHAPTER 1. INTRODUCTION

II. Problem Statement

The master theses projects mentioned in the previous section use models to calculate an
optimized LV configuration. A large number of variables go into these models that relate to
several aspects of a launch vehicle. These vary from flight trajectory to engine performance
to aerodynamic analysis to mass modeling. These models are constructed to be helpful in
the conceptual phase of a launcher design as well as to give insight in the difference between
various launcher configuration. The configurations are optimized to minimize GTOW. Multi-
disciplinary optimization should thus give a good indication of the size and mass of a LV, or
at least a proper distinction between various concepts.

As mentioned in the previous section; current mass models are almost solely based upon
empirical relations. In itself there is nothing wrong with the usage of empirical relations for
approximating mass. An advantage of empirical data is that it is grounded in reality and
can be very helpful to quickly determine a value once the relationships are established. A
downside to using empirical data in the launch vehicle industry is often lack of available
data. The combination of the total number of existing launch vehicles and availability of data
for existing launchers makes it difficult to create precise relations. This sparse data creates
relationships which often lack precision. As a consequence these formulas are inadvertently
inaccurate up to a certain extent.

Another downside to approximating mass this way is the diminishing of variables which
might be interesting for concept design trade-off or in researching key parameters for a LV
design. An example of this can be choice of material for a certain subsystem over another
material. Another example is change in geometric shape of parts to relax or intensify design
parameters. An elliptical tank end cap can for example be made "flat" (high a/b) to limit the
height of the tank or spherical (a/b = 1) to minimize wall thickness. Empirical relations do
take into account key parameters for mass determination but this is in limited amount. As
mentioned previously, available data is not abundant and thus dividing this data up even
further to distinguish between more design parameters makes the statistical analysis sparse.

On the other side of the spectrum is detailed modeling, e.g. CAD,FEM,CFD. These methods
are computational intensive and take a lot of time from the engineer, but should give accurate
results. Theses methods are thus obviously helpful when one or a few concepts are chosen
to be developed further and less so when the project is still trading-off various conceptual
designs. This property makes these methods impractical for use in an optimization tool since
calculating hundreds of concepts would take too much time and effort for the result gained.

The combination of the difficulties empirical mass model relations face and the importance
of dry mass in the determination of a rockets performance gives a need for a more accurate
mass model for rocket stages and launch vehicles which can be used during the conceptual
phase of LV design. This is easier said than done since a LV consists of a large amount of
widely different subsystems which all contribute to its overall mass. It would also be ambitious
to attempt to have modeled all these subsystems within this research project.

A decision was made to focus on the structural components of a LV. This decision is
based upon the assumption that structural mass is a subsystem that contributes significantly
towards the total dry mass. Another reason was the assumed large effect structure mass has
on changing design parameters of the LV or one of its subsystems. An example of this is
propellant choice; propellant choice affects performance of the engine and thus thrust, tank
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volume and thus moment of inertia and propellant mass and thus thrust to weight ratio. All
parameters also affect the required strength of the structure and thus its weight, even though
it does not directly change its own parameters.

Structural mass was also assumed to be able to be modeled without implementing excessive
empirical relations nor computational intensive calculations. This left the problem of creating
a mass model for structural subsystems of a LV with refined accuracy over empirical methods
but significantly less resource hungry than existing, more accurate methods such as finite
element method.

III. Problem Analysis

Extending the problem statement, this section focuses on analyzing the problem to further
specify the needs of the stakeholders. This section is build up of paragraphs each analyzing
the problem further by identifying needs. These needs were used to define clear requirements
in the following section. To start this section, identified needs are listed:

1. The model shall only require input available at a conceptual phase of a launcher design.

2. The model shall have computational time suitable for conceptual design optimization.

3. The model shall have more input than existing mass models (flexibility).

4. The model shall be as little as possible dependent on empirical data.

5. The model shall determine structure mass more accurate than existing methods.

1 The first need deals with input which is available at a conceptual level. This statement in
itself is rather ambiguous since there is no clear line of what data is and isn’t available at this
point in a LV development process. Furthermore, the details of this need vary from project to
project. Nonetheless is it important to restrict necessary input to a certain extend. This should
make the model useful in scenarios were the LV only exist at a conceptual level. A list of input
parameters which were deemed not necessary to run the model:

• Aerodynamic pressure distributions
• Aerodynamic coefficients
• Propellant dynamics (e.g. sloshing)
• Heat transfer in a LV (cryogenic propellant and aerodynamic heating)
• Attachment methods of structural components
• Acoustic loads
• Etc.

2 The second requirement has its focus on computation resources, this needs to ensure that
the model is not as computation heavy as for example a detailed FEM analysis. Computation
intensity is difficult to quantify as there are different kinds of computers and computer
parts which excel at different kinds of calculations. This makes it difficult to formulate this
requirement in one sentence in a SMART way.

As the need states; it has to be suitable for multi-disciplinary optimization. With this
computation time can be limited to practical limits. Table 1.1 shows time units like days and
weeks converted to seconds. This gives a basis for the amount of seconds it may take for the
model to compute one launch vehicle. An optimizer for practicality was determined to run at
a maximum time of one week (105[s]), a reasonable time of one day(104[s]) and if under one
hour (103) is considered quick.
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Miranda9 mentions several numbers of generations for a given optimizer to converge to
a final solution. These values go up to the around 104 generations for some optimization
algorithms. Assuming this number as a standard value the maximum time to compute one
launch vehicle can determined. Dividing the maximum computation time by the number of
generations gives the answer, thus:

bad - tcomp < 60.5[s]

acceptable - tcomp < 8.64[s]

good - tcomp < 0.36[s]

Where tcomp is the computation time to complete one launch vehicle. It was decided
that this computation time needs to be achieved on computer systems designed for personal
use. This means that this requirement cannot be satisfied with computer systems which are
specially designed for simulation tasks, e.g. a supercomputer. To further comply with this
need depending on the users needs, the model needs to be tune-able to a certain extend. This
means accuracy needs to tune-able versus computation time.

Table 1.1: Time units converted to seconds

Time unit Converted to seconds

second 1.000 · 100

minute 6.000 · 101

hour 3.600 · 103

day 8.640 · 104

week 6.048 · 105

month 2.592 · 106

year 3.154 · 107

3 The third need described in the previous paragraph states that the model shall have more
input variables than existing mass models. More input variables increase the flexibility of the
model by increasing the number of parameters by which various concepts can be distinguished.
This in itself is easy to verify. To show the actual content of this need in more detail, table
1.2 shows input parameters determined for the model compared to various existing models
which are based on empirical data. It can be observed from the table that this model uses
more input parameters than any other method described in this report.

4 The fourth need states; the model shall depend on statistical data as little as possible. This
is a need that is difficult to verify. This need was implemented to combat the lack of available
data other methods suffer from. To verify this, a sensitivity analysis has to be carried out to
understand how much empirical relations affect the outcome of the model. In other words;
error values of empirical relations used in the model can not have significant impact upon the
final result.

5 The fifth need states that the structure mass has to be determined accurately. Providing
supporting evidence for the accuracy is part of validating the model. The need stems from
the goal to increase accuracy over existing models. This should be achieved if the value can
stay within 10% of its actual real life value. Since this will be an increase over existing models
which operate with larger error values.

9Miranda, Zandbergen, and Dirkx, see n. 6.
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Table 1.2: Comparison of input for calculation of dry or structural mass

Design variable This research Zandbergen* Akin Apel

Mp X X X
Mpl X X
# engines X X
FT.vac. X X X
S f a X X X
Mox X X X
M f X X X
St X X
Mpress X X X
Stage height X X
Stage diameter X
Expansion ratio X
∆V X
Isp X
Vt X X
Mrec X
Mu.p. X
σyield X X
ρp X X
ρsm X
Buckling structure X
Tank geometry X
Stage geometry X
Thrust frames X
Payload frames X
Inter-stages X
Finertia X
FD X

* Zandbergen has more detailed mass models with more input parameters,
but these focus on engine mass and not on structure mass.

IV. Research Methodology

This thesis research tries to follow research methodology as describes in book by Verschuren.10

The research methodology applied can be read in more detail in the proposal for this research.
This section will briefly summarize the methods applied.

The research objective Converting the problem formulated in the previous section to a clear
objective was done to reflect on the success(or lack thereof) of the project after completion. A
clear objective can be used to determine if the research was successful. The main objective was
formulated in a way that it was restricted to one sentence. This was done to avoid a long and
unclear objective which could be harder to verify. Its goal was also to create a good foundation
upon which further requirements were build:

Develop and verify a launch vehicle structural mass model with increased accu-
racy and flexibility compared to existing conceptual models without significantly

10P.J.M. Verschuren et al. Designing a research project. The Hague : Eleven International Publishing, 2010.
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compromising computation time.

Model Requirements: As mentioned; to avoid ambiguous interpretation of the research
objective further requirements for the model were formulated. These requirements are, when
applicable formulated in a SMART way (Specific, Measurable, Achievable, Realistic, Timed).
Formulating requirements in such a way helps the verifying process tremendously and
increases its usefulness. Described below are the main requirements for the structural mass
model based upon the research objective.

1. Structural mass shall be calculated within ±10% of actual values.

2. Computation time shall be tune-able versus computation accuracy.

3. TUDAT compatibility

4. TUDAT independent

Requirements listed here were derived from earlier described needs in the previous section.
Chapter 9 describes the verification of these requirements.

V. Research Framework

The research framework is illustrated in figure 1.2. The left side of the illustration shows
knowledge which is necessary for proper implementation of the mass model. These sources
of knowledge are combined to create the model displayed in the center of the graph. The
model is than compared/confronted with other existing mass models which are displayed
above and below the model. The result of the confrontation is simply stated as the "result
of the analysis". This analysis compares both models on their respective performance based
on the requirements for this model. This is done to illustrate the possible advantages and
disadvantages of the new model. The figure mentions Hutchinsons model which has not
been described up unto this point in the report. Hutchinsons model is a structural mass
model similar to the model described in this report. It was thus deemed valuable towards
the research to compare Hutchinsons model with this model. Although the model shares a
similar approach there are certain differences between the two. Unfortunately this model was
eventually dropped from comparison to this research due to time constraints.

VI. Scope and Limitations

The report divides the project into components modeled and modeling methods implemented,
to describe the scope of the project. To give a clear overview over what is and isn’t modeled,
lists are presented which indicate components or methods taken into consideration.

Components The scope of the project shall entail a structural mass model of a rocket stage
or launch vehicle. This means modeling of the following structural components:

• Propellant tanks
• Pressurizer tanks
• Thrust frames
• Payload frame
• Fairing
• Inter-stages
• Rocket stage hull

8
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Figure 1.2: Research framework

The following subsystems were incorporated to model structure mass but were not modeled
in itself:

• Engines(s) [Mass, length, diameter]
• Avionics
• Payload

Modeling The following loads and yield criteria are taken into account by the model.

• Tensile yield
• Buckling yield
• Thrust
• Drag
• Inertial effects
• Lateral Forces and Moments
• Ullage gas pressure
• Hydro-static pressure

VII. Plan of Action

This section describes the process on which the model was build. The process of building the
model was to be build using iterations. This means the model started with a relatively simple
version and iterated towards a version in which it was to be a more refined with extra features.
The model versions and their features are listed in table 1.3.
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version 1: The first version took into account vertical loads and internal tank pressure. This
means other than internal pressure no lateral loads were considered at this point. The idea
behind this is that internal pressure and buckling criteria due to axial compression are the
driving forces which determine the thickness of the hull. At this point only the most heavy
subsystems(objects) are considered for modeling and due to simplicity the model limits itself
at this point to a single stage rocket with a liquid engine. This is the version which was
completed at the mid-term review point and thus on which the results in the mid-term report
are based.

version 2: This version took into account lateral thrust created by thrust vectoring and thus
took into account bending related stresses. This means the moment along the z axis of the LV
was also modeled at this point. Comparing the results of the second and first model version
showed the significance of bending loads and its effect on the structure mass. This version
also incorporated support for multiple stages to make it easier to model a full launch vehicle.
The addition of pressurization subsystems and thrust frames was a step towards refining the
model with the goal of increasing its accuracy.

version 3: With the addition of multiple load-cases the project tried to fit more within the
proposed concepts of the SMILE project. In addition was support for composite materials
added. This created a possibility to test/compare the model with FEM numbers from the
liquid concept and to test a whole flight trajectory instead of a single load-case. A proposed
method of modeling heat transfer can be read in the Propellant Tank Mass Modeling chapter
under the relevant section. Heat transfer under these circumstances is very complicated
however and it has to be investigated further if the desired accuracy can be obtained by
making certain assumptions to make the problem more simple. This was necessary to keep
the scope of this project within its bounds to be able to be completed within the set time.

version 4: The fourth and final version tried to implement more refinement by adding object
which mass can be approximated by existing empirical relations. The model can; other than
adding these masses to the already calculated mass, give these objects a location which affect
loads on structural parts. This effect can be small but this will be determined by analysis of the
results. Another important addition will be bundling configurations. This allows the model
to strap together multiple engines or pressure tanks and measure its effect compared to a
different number of larger or smaller objects. Additionally the version introduced hydro-static
loading in the axial direction. This addition was a refinement and will test its significance on
the structure mass.

Table 1.3: Summarized features of different model version.

VERSION Loads Objects Configurations

1

Vertical thrust
Internal pressure
Vertical acceleration
Vertical drag

Propellant tanks
Engines
Fairing
Interstages

Liquid
Single Stage

2
Lateral thrust
Moment

Pressure Tanks
Pressurization group
Thrust Frames

Multiple Stages

3 Payload-frame Multiple-loadcases
4 Hydrostatic Avionics Bundling
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VIII. Review of Literature

A short review of the literature used and mentioned in the project and report.

i. Mass Models

Determination of engine mass and avionics is directly used in the model. The formula’s used
to determine engine mass are taken from Zandbergen. For LOX, RP-1 engines the following
equation was used:

Me = 1.104 · 10−3FT + 27.702 (1.2)

And for H2, LOX engines:

Me = 0.00514 · F0.92068
T (1.3)

The mass modeling for avionics also comes from Zandbergen, this is defined as vehicle
equipment bay (VEB).

MVEB = 0.345M0.703
dry (1.4)

Other equations by Zandbergen used for verification in this project are as follows. for dry
stage mass two equations are used, one for semi-cryogenic and storable rockets stages.

Mdry = 0.0668Mp + 1499 (1.5)

And one for fully cryogenic stages:

Mdry = 0.0893Mp + 1628 (1.6)

Zandbergen also describes equations for construction mass. This is defined as a stage’s
dry mass minus the engines’ mass. These equations are also two fold. One equation is for
cryogenic and storable propellant combinations:

Mconst = 0.022Mp + 2090 (1.7)

And the other equation is for fully cryogenic stages:

Mconst = 0.0461Mp + 1870 (1.8)

ii. Atlas-Centaur

"Flight-Performance of Atlas-Centaur AC-13, AC-14, AC-15"11 is a report which describes
flight performance of early Atlas-Centaur versions in detail. Since this report is referenced a
lot in this report it is briefly discussed here.

The launch vehicles discussed in the report use very traditional design as far as that applies
in the launch vehicle industry. This means traditional construction material such as steel
instead of more modern approach to construction materials such as CFRP (Carbon fiber
reinforced plastic).

11Lewis’ staff. Flight performance of Atlas-Centaur AC-13, AC-14, AC-15 in support of the surveyor lunar landing program.
Tech. rep. NASA, Lewis Research Center, 1974.
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The vehicles discussed use load carrying tanks which use internal tank pressure to counteract
the structures nature to buckle which leads to extreme thin structures. This is one of the
reason why this design is interesting for the model. Since it is likely that failure mode of
certain systems changes with change in load-case.
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Chapter 2

Launch Vehicle Mass Modeling

The body of this report starts with a description of LV mass modeling. Several mass models for
launch vehicle design are already mentioned in the previous chapter under literature review
and the methodology of these methods will not be discussed here. What will be discussed
here is breaking down the problem towards modeling the mass of the structural subsystems
of a launch vehicle by detailing mass modeling of the entire launch vehicle.

In order to do this, it is important to evaluate of what kinds of systems and subsystems a
launch vehicle consists. Once all systems and subsystems are described an approximation can
be made of each of its masses. These (sub)system masses can be added together to calculate
the total dry mass of the LV. This breakdown of masses of (sub)systems is called a mass
breakdown structure.

The first breakdown before a detailed mass breakdown structure is constructed is dividing
the launch vehicle up into stages (obviously, some launch vehicle might consist of only one
stage and this then thus does not apply). A rocket stage is defined as follows: Every subsystem
of a rocket stage including the inter-stage or fairing above the stage (but not the inter-stage
below).

This means that the payload was considered separate of the stage and is its own entity.
Figure 2.1 shows this by displaying an example of a mass breakdown of a LV. The payload
separate from the last stage in which it is encapsulated. It is however displayed on the same
"level" as parts which are subsystems of a stage. This is done to indicate that the payload is
not broken down further. It has a mass, a center of mass location and a specified geometry.
Further breakdown of the payload was not deemed necessary for structural mass modeling.

For stages which are not the final stage, the stage includes the inter-stage which connects
the the stage to the stage above it. Figure 2.1 shows a more detailed breakdown of the last
stage. The fairing and payload frame subsystem are colored red since they only occur for the
last stage. If a stage is not the final stage then the fairing and payload frame subsystems are
replaced by the inter-stage subsystem.
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Figure 2.1: Example of top level mass breakdown structure.
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I. Mass Breakdown Structure

Breaking down the mass of a rocket stage in separate subsystems makes it easier to access the
work at hand. Figure 2.1 shows and example of a top level mass breakdown used in reference1

for the Atlas-Centaur launch system. What (sub)system belongs to which stage can vary from
project to project. The division used in this project is described in the previous chapter.

To introduce clarification in the report the mass breakdown which is applied to this project
is described. This starts, just like in figure 2.1 with dividing the launch vehicle into separate
stages. From here the dry rocket stage mass is divided into five sections; body, engine, tank,
electronic group and pressure group. This can be seen in figure 2.2 which display the mass
breakdown structure used in this project. There can be multiple tanks in a rocket stage but for
simplicity and clarity only one is described in the figure.

Figure 2.2 distinguishes (sub)systems by color to clarify their role in the model. The red
boxes represent the main system groups of the rocket stage, these boxes are also slightly
larger compared to the other. The green boxes represent sub-systems which are modeled by
calculating their mass without interference of empirical relations. These green sub-systems
embody the work done in this model and where it distinguishes itself from existing mass
models. Purple boxes represent sub-systems which are not modeled through analysis of this
research. This does not mean the mass of these sub-systems is not taken into account, but it
means that mass of these sub-systems depends on existing empirical relations and/or user
input.

The body group is divided into six parts which details are described in figure 2.2. One of
these sub-systems is not calculated trough structural analysis. This is the bulkhead sub-system.
The definition of the bulkhead sub-system in this report are parts used to connect two or more
structural parts or other sub-systems to each other. Between tanks in rocket stages this is often
a thickened ring to attach the hull to the tank by using for example; nuts and bolts,welding,etc.
It should be noted that the caps of the tanks do not belong to the bulkhead group. This is
done on purpose since its required skin thickness and therefore mass can be calculated with
structural analysis. This was the reason to omit this part from the bulkhead group, since it
keeps a clear distinction between the green and purple sub-systems.

The engine system group contains all sub-systems contributing to the main propulsive force
of the rocket. This systems and/or its subsystems mass’ is empirically determined as can be
seen from figure 2.2. These relations are described further into this chapter.

The Tanks as a system are divided into three green systems and three purple, empirical
systems. Since propellant tanks are such a massive part of the overall structure of a LV they
got their own chapter. The next chapter shall thus describe their mass calculations in more
detail.

The last two systems; the electronics and pressure group were large buildup of parts which
require empirical relations in order to calculate their mass. The exception of this are the
pressure tanks which volumes and mass are calculated based on user input. This method is
described in the tank modeling chapter since pressure tank modeling bears great resemblance
to propellant tank modeling.

1Lewis’ staff, see n. 11.
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Figure 2.2: Mass breakdown structure of model.

16



W.A.R. WILDVANK - MASTER THESIS REPORT

Figure 2.3: Example of a hull object or inter-stage object in the model. One layer skin with three rings.

II. Inter-stage and Hull

First subsystem described which mass is solely calculated by user input is the hull. The reason
hull objects and inter-stage objects are combined into one section is that they are modeled in
the same way. Hull objects are a structural manifold which can connect two or more tanks
to each other. Hull and inter-stage objects are modeled as cylinder with a certain length L
and diameter d. The cylinder can have stiffeners and rings to increase its strength as well as
multiple layers of skin to facilitate sandwich panels or layers of orthotropic material. Figure
2.3 shows an example of how an inter-stage or hull object was modeled. The example is a
cylinder with a single layered skin and three rings, this is obviously a fairly basic example.
The body can for example also be conical when connected stages have different diameters.

To calculate mass of these objects one has to know the thickness of each layer, the length
and diameter of the object and the geometry of possible rings and stiffeners. the volume of
each ring/stiffener/layer has to also be multiplied by the density of the parts material. This
calculation is described by equation 2.1 where N is the number of skin layers, s is the number
of stiffeners,Sst is stiffener area, hr is the height of the rings and u is the number on rings in
the cylinder. The equation indicates it calculates mass of an inter-stage (Mis) but was also
used for mass of hull objects.

Mis = 2πdL
N

∑
j=1

tjρj + sLρstSst +
πρr

4
(d2 − (d− hr)

2)tru (2.1)

In order to calculate mass; thickness of each layer, ring geometry and stiffener geometry
have to be known. The model uses a set input for ring and stiffener geometry after which
required skin thickness in calculated. This method is also applied when a sandwich wall is
desired. A set sandwich core thickness is defined after which the required thickness of the
skin is calculated.

Since inter-stage and hull objects are mainly stressed in compression buckling analysis was
used to determine their thickness. This buckling analysis had an axial force as input as well as
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Figure 2.4: 3D sketch of a conical frustum.

a moment which was applied to the object. How these force and moment were calculated can
be read in the chapter about force and moments.

III. Thrust-frame and Payload adapter

Thrust and payload-frames are modeled by assuming their shape as a conical frustum. This
means they have a top radius, bottom radius and height to constrict their geometry. An
example of this shape can be seen in figure 2.4. To avoid confusion, the top radius rtop is
defined to always be the larger radius and the bottom radius rbottom to always be the smaller
one. From now on thrust-frame is used to indicate this conical frustum object, however the
same things apply to the payload-frame. The only difference is that the payload frame is
generally "upside down" in a normal launcher configuration in the coordinates of the LV with
respect to the thrust-frame(s).

The method used to calculate the mass of the thrust-frame is similar to that of the inter-stage
object described earlier. This means surface is multiplied by its thickness. Surface for a conical
frustum is defined by the following equations.2 First the slanted length of the thrust-frame s is
calculated :

s =
√
(rtop − rbottom)2 + h2 (2.2)

Now the surface can be calculated with the following formula:

St f = π(rtop + rbottom)s (2.3)

Once the surface is calculated thrust-frame mass Mt f , was calculated as follows:

Mt f = St f

N

∑
j

ρj=1tj (2.4)

Where N is the number of layers in the wall and with t and ρ being thickness and density
respectively.

In order to calculate mass one thus needs to know the top and bottom radius and the height
of the thrust-frame. To calculate the geometry of the thrust-frame, its location in the rocket
stage has to be defined. This location was defined to be between the cylindrical engine and
the elliptical propellant tank above the engine.

2Eric W. Weisstein. Conical Frustum. 2017. url: mathworld.wolfram.com/ConicalFrustum.html.
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Figure 2.5: Thrust frame configurations in 2D

Since thrust-frames are loaded in compression and will thus generally fail due to buckling
the decision was made to not let the angle of the thrust frame be lower than 45o, this should
ensure proper buckling analysis to take place. Another decision was made is for choice of
configuration of the thrust-frame. Two configurations can be chosen from in the model. The
first configuration is where the thrust-frame is attached to the hull of the rocket which can be
seen in both the left and right side in figure 2.5. The second configuration is where the thrust-
frame is connected to the propellant tank at the point where the angle of the thrust-frame and
elliptical tank are equal. This second configuration is indicated by a red line in figure 2.5.

Figure 2.5 shows thrust-frame geometries for different engine sizes. The left side shows a
configuration with a small engine (or bundle of engines) diameter. This means the engine
diameter is smaller than the critical diameter dcr. The right side shows a configuration with
a larger engine diameter (dE > dcr). The angle of the thrust-frame becomes larger when
the critical engine diameter is exceeded. All in all four main configurations can thus be
distinguished:

1. small engine, tank attached

2. large engine, tank attached

3. small engine, hull attached

4. large engine, hull attached

To distinguish between small and large engine configurations the critical diameter has
to be calculated. To do this the point on the ellipse where its angle is 45 degrees has to be
defined. This translates to a slope value of 1 or −1. The ellipse shape of the tank is defined as
follows:

x2

a2 +
z2

b2 = 1 (2.5)

or:

z = ± b
a

√
a2 − x2 (2.6)
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To calculate the coordinates for the slope, equation 2.5 has to be differentiated with respect
to x to obtain z′. This was done by implicit differentiation.

d
dx

(
x2

a2

)
+

d
dx

(
z2

b2

)
=

d
dx

(1) = 0 (2.7)

d
dx

(
x2

a2

)
=

2x
a2 (2.8)

d
dx

(
z2

b2

)
=

zz′

b2 (2.9)

Hence:

z′ = − xb2

za2 (2.10)

Since the value of z′ is known(z′ = 1 || z′ = −1) it can be filled in, in equation 2.10. This
creates the following value for zcr:

zcr = −
xcrb2

a2 (2.11)

This can be filled in into equation 2.6.

− xcrb2

a2 =
b
a

√
a2 − x2

cr (2.12)

rearranging and simplification results in the following equation.

xcr = ±
a2√

1 +
b2

a2

(2.13)

zcr can than also be found by putting the value of xcr into equation 2.6. With xcr one can
determine if the engine diameter is considered large (dE > 2xcr) or small (dE < 2xcr).

Configuration 1 First considering a small engine where the thrust-frame is attached to the
tank. The angle for this configuration is set at 45 degrees and bottom radius is known as half
the engine diameter. This leaves top radius which is equal to xcr which can be calculated as
can be seen from the equation above. The only variable left which defines the thrust-frame
is its height. The height can easily be calculated from the known variables since an isosceles
right triangle can be constructed between the slant length and height, hence:

h = rtop − rbottom (2.14)

Configuration 2 When considering large engine attached to the tank the thrust-frame has a
set height. This can also be observed from figure 2.5 where the right side configuration has a
large engine. The bottom of the thrust-frame coincides with the bottom of the tank, hence the
height becomes:

h = b + ztop when zcr < 0 (2.15)

This thus means that ztop, xtop and the thrust-frame angle need to be determined. Please
note that unlike for small engine configuration, ztop and xtop do not coincide with zcr and xcr
respectively. The slope line which runs tangent to the ellipse is given by equations 2.16 and
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2.17, where c is a constant value. These two equation together with equations 2.10 and 2.6
form four independent equations which solve for four unknown variables; z′, xtop, ztop, c. The
model solves this problem numerically.

ztop = z′xtop + c (2.16)

zE = z′xE + c (2.17)

Configuration 3 & 4 Hull attached thrust-frames are in geometry similar to tank attached
thrust-frames. Hull attached thrust-frames are slightly larger and have a different xtop and
ztop coordinates compared to their tank attached counterparts. Since all variables from the
configurations 1 and 2 can be determined, and xtop is equal to the stage radius by definition;
,ztop for hull attached thrust-frames can be determined. Equation 2.18 shows how ztop was
calculated, the equation is derived from the line tangent to the elliptical tank shape and is
based on the fact that this line is linear and hence has a constant slope.

ztop = z′(xtop − xE) + zE (2.18)

IV. Fairing

A rocket fairing’s purpose is to protect the payload from outside forces which mainly consist of
aerodynamic forces during ascent. The structure thus needs to withstand pressure difference
over the skin which can be significant due to the LV’s high velocities. The magnitude of this
aerodynamic drag is dependent on air density ρair, the velocity v, a reference surface Sre f

and a drag coefficient CD as can be seen in equation 2.19.3 This drag coefficient is mainly
dependent on shape of the object and is often determined experimentally, this thus makes is
difficult to approximate within this model without access to experimental data. To keep the
work in this research to acceptable proportions it was decided to leave aerodynamic analysis
out of the model, this means that the user is expected to deliver a drag value or a load-factor
from which drag can be calculated. This ensures that no complicated aerodynamic analysis
has to be conducted to use the model.

D = 0.5CDρairv2Sre f (2.19)

Another problem that was encountered in determining structural integrity of a fairing is the
pressure distribution over the fairing during flight. The pressure distribution is the actual force
acting on the structure but can vary greatly from tip to base. This pressure distribution can be
determined through computational fluid dynamics (CFD) but this process is computational
intensive. To analyze the required thickness of the fairing in this model, simplifications have
to be made.

Since aerodynamic drag is determined to be the main load on the fairing, the material
experiences compression. The fairing is considered to be a thin walled structure and thus
buckling was considered to be its main method of yielding. This was the first assumption
made for simplification, to analyze the wall thickness of the fairing. And it was thus decided
that the fairing will undergo a buckling analysis.

3John David Anderson Jr. Fundamentals of aerodynamics. Tata McGraw-Hill Education, 2010.
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Figure 2.6: Sketch representing the modeling of the fairing
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To analyze the buckling behavior, an assumption had to be made about the load case. The
assumption was made that the fairing tip experiences a uniform pressure difference over its
entire surface. This external pressure is calculated from a known drag value.

The third and final assumption to determine the required thickness of the fairing is a
simplification of geometry. The assumption is made that a conical shape has similar buckling
behavior under constant external pressure compared to other nose-cone shapes. This assump-
tion permits the use of buckling analysis used for cones found in literature to be used for all
fairing shapes, this assumption is displayed in figure 2.6. Where the dotted line represents
the fairings real outline and the solid line represent the equivalent cone on which buckling
analysis is carried out.

The model supports two basic fairing shapes a blunted cone and the so called "von Karman"
shape. The first shape is a simple cone which surface is approximated by equation 2.20 where
r is the radius at the base and s is the cones slant height defined by equation 2.21 where
parameter h is the cone height measured from its base.4

Scone = πrs (2.20)

s =
√

r2 + h2 (2.21)

The second shape, the "von Karman" shape is defined by equation 2.22 and 2.23.5 h and r is
the nose-cone height and base radius respectively. z is the height measured from the nosecone
tip and y is the distance from the fairing axis of revolution.

y =
r

√
θ − sin(2θ)

2√
π

(2.22)

θ = arccos
(

1− 2z
h

)
(2.23)

The surface of the "von Karman" shape is calculated numerically by taking a small distance,
dz of the line plotted by equation 2.22 and thus obtaining dy. The distance ds is then calculated
with Pythagoras theorem seen in equation 2.24. This small distance is then integrated by
surface of revolution to create a small surface increment seen in equation 2.25. Eventually this
surface increment; Ds is used to calculated to entire surface of the "von Karman" nosecone.6

ds =
√

dz2 + dy2 (2.24)

dSz = 2πyds (2.25)

S =
∫

dS (2.26)

4Eric W. Weisstein. Cone. 2017. url: mathworld.wolfram.com/Cone.html.
5Gary A Crowell Sr. “The descriptive geometry of nose cones”. In: URL: http://www. myweb. cableone.

net/cjcrowell/NCEQN2. doc (1996).
6Eric W. Weisstein. Surface of Revolution. 2017. url: mathworld.wolfram.com/SurfaceofRevolution.html.
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Chapter 3

Propellant Tank Mass Modeling

I. Introduction

This chapter discusses the propellant tank mass model. It was decided to assess the propellant
tank separately from the rocket stage since it is such a large integral portion of the launch
vehicle and thus greatly contributes to its mass. This will give an opportunity to analyze this
subsystem in more detail which will hopefully result in an overall better model. The goal
of the tank model is to implement several design options which can help in the conceptual
design phase of a launch system. These design options are discussed throughout the chapter
and include tank rigidity and propellant temperature.

To analyze the mass of a propellant tank it is divided into several components. The main
component to determine mass of the tank is the structure which function is to keep the
propellant contained while maintaining structural integrity. Other components might be
insulation, anti vortex/slosh baffles, valves, etc. Table 3.1 shows a mass breakdown of this
subsystem. The final version of the model only takes into account the top,cylinder and bottom
shell of the tank as these span the entire surface of the tank but if desired the user can add an
insulation with a given density per square meter. The stresses occurring in the structure are
discussed and evaluated and the lay-out of the model is shown and explained.

Table 3.1: Tank group mass breakdown

TANKS Mass breakdown remarks
Top Shell
Cylinder Shell
Bottom Shell
Anti-vortex Baffle(s) optional
Anti-slosh Baffle(s) optional
Pipe(s) to Engine
Pressure Relieve Valve(s)
Insulation optional
Liner optional
Drain/Fill Valve(s)
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Figure 3.1: Illustration of the reference frame used in this report.

II. Structure

The structure of a propellant tank has as main purpose to contain the fuel and/or oxidizer
in liquid of gaseous form. This means that the structure mainly consists of the tank wall
which at least needs to be strong enough to withstand the internal pressure of the tank. To
determine the mass of the tank structure an assumption can be made that the tank is a thin
shell structure. This means mass of this shell can be determined taking the tank surface,
thickness and material density as seen in equation 3.1. Initially the tank is assumed to be
cylindrical with spherical end caps.

Tank shell mass : Mshell =
∫∫
S

ttρt dS (3.1)

Stresses in the tank can be determined from thin shell theory1 and can be seen in equation
3.2 and 3.3. The stresses here are defined for a spherical tank/tank-section and a cylindrical
section. To get an overview of the reference frame and variables used ,figure 3.1 is plotted
below.

Sphere : σϕ = σφ =
Ptrt

2tt
(3.2)

Cylinder : σφ =
Ptrt

tt
(3.3)

Rearranging these equations gives a formula for required tank thickness2 at a given internal
pressure, material yield stress and tank radius:

Sphere : tt =
Ptrt

2σyield
(3.4)

1Warren Clarence Young and Richard Gordon Budynas. Roark’s formulas for stress and strain. Vol. 7. McGraw-Hill
New York, 2002.

2Required tank thickness without incorporating a safety factor
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Figure 3.2: Different tank shapes, from right to left: Cylinder, Cylinder with elliptical caps, Cylinder
with spherical caps.

Cylinder : tt =
Ptrt

σyield
(3.5)

To determine the mass of the structure the tank surface also needs to be calculated, the
surface equations for a cylinder with open ends and a sphere are shown in equation 3.6 and
3.7.

Sphere : Ss = 4πr2
t (3.6)

Cylinder : Sc = 2πrtL (3.7)

For a cylindrical tank with spherical end caps, equations 3.6 and 3.7 need to be combined:

Tank Sur f ace : St = 4πr2
t + 2πrtL (3.8)

Equations 3.4, 3.5 and 3.8 show that tank mass depends on tank radius and length3; rt
and lc respectively. Tank radius and length might however not be the best input parameter
at a conceptual level. Better parameters would be tank diameter, and propellant mass since
they relate better to aerodynamic properties and rocket performance. Propellant mass can be
linked to propellant volume, which is assumed to be equal to tank volume for this discussion
about structures; equation 3.9.

Vt ≈ Vp = Mp ρp (3.9)

Equation 3.9 links the propellant mass to the tank volume and is defined in equation 3.10.

Tank Volume : Vt =
π

6
d3

t +
π

2
d2

t L (3.10)

3Length of the cylindrical section of the tank
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Thus from Diameter, Propellant mass and density the tank length can be obtained. with
which the tank surface can be calculated through equation 3.8. This leaves propellant density
as variable that needs to be determined in order to determine dry tank mass.

Traditionally propellant density could be taken as a constant in rocket design since pro-
pellant was often stored at room temperature or in case of cryogenic propellant close to the
boiling point. More modern configurations can have a design where the propellant is stored
close to its freezing temperature to increase the propellant density. The goal of this design
property is to lower the empty tank weight and hence increase performance. This means
that propellant temperature is also a valuable input parameter to determine tank weight.
Internal tank pressure also affects propellant density much like temperature but this is of
an magnitude smaller than temperature. As example one can look at liquid oxygen, at a
temperature of 65 [K] the change in density for an increment of temperature is 4.5 [kgm−3k−1]
and 0.126 [kgm−3bar−1] for a unit of pressure4. Furthermore is the range much larger for tem-
perature storage than internal pressure. Tank pressure for the space-shuttle external oxygen
tank was only 2.5 [bar] as an example, while the range of storing LOX is 35 degrees Kelvin
from freezing to boiling point. An assumption can thus be made that for liquid propellant the
density is only a function of storage temperature.

ρp ≈ ρp(T) (3.11)

i. Elliptical End Caps

LV tank design often incorporates half an ellipsoid as end cap in favor of a spherical geometry.
This is done to lower the height profile of the LV by partially "filling" up the empty space in
its cylindrical shape. Stress in ellipsoids tanks have a separate subsection because of slightly
more complex math involved to calculate the necessary thickness. The following equations
also come from thin shell theory and consist of stress in the material due to internal pressure.

Ellipsoid : σϕ =
pT R1

2t
(3.12)

Ellipsoid : σφ =
pT R1

t

(
1− R1

2R2

)
(3.13)

With:

R1 =

√
a4z2 + b4x2

b2 (3.14)

R2 =
(a4z2 + b4x2)3/2

a4b4 (3.15)

Fortunately, it is easy to solve for thickness ,t in equation 3.12 and 3.13 since it only appears
once. This results in equation 3.16 and 3.17 and thus there are two solutions to the required
thickness. This can be solved by incorporating a yield criterion which takes into account
both principle stresses. To do this the Von Mises yield criterion is chosen and can be seen
in equation 3.18 for plane stress without shear stresses. Using this criterion the required
thickness can be calculated by rearranging the equation and solving for thickness, this formula
is shown in equation 3.19. The derivation for this formula can be found in the appendix.

Ellipsoid : tt =
pT R1

2σϕ
(3.16)

4Data is taken from NIST database
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Ellipsoid : tt =
pT R1

σφ

(
1− R1

2R2

)
(3.17)

σv =
√

σ2
ϕ − σϕσφ + σ2

φ (3.18)

Ellipsoid : tt =
pT

σyield

√
A2 − AB + B2 (3.19)

A =
R1

2
(3.20)

B = R1

(
1− R1

2R2

)
(3.21)

ii. Input Parameters

Choice of input parameters for the model is important, in order to accurately determine the
mass of the tank shell structure:

Mp : Propellant mass

σyield : Yield stress of the material

Pt : Internal tank pressure

ρp : Propellant density

iii. Ullage volume

Equation 3.9 sets the propellant tank’s volume equal to the propellant volume. In reality this
is not the case. Propellant tanks have an initial ullage volume to accommodate for:

• Expansion of the fluid due to change in temperature.
• Avoid rapid increase of tank pressure due to a pressurization fail (valve stuck in open

position).5

• Pressurization of the liquid propellant.

Determining required ullage volume is difficult and little to no literature on the subject
was found during the research. This has to do with the fact that this depends on available
mass flow from pressure relieve valves, heat-transfer, motion of the propellant within the tank,
interaction between the gas and the liquid and other factors..6 Even if this is all solved this
might not be a good method to determine required volume without experimental tests. For
this reason the ullage volume is modelled by means of empirical data. This decision strays a
bit from the fact that the project does not want to depend on empirical values, but seems to
be a essential in order to achieve realistic values. Values obtained from reference7 report the
following values for ullage volume of the Centaur upper stage:

• liquid hydrogen - 1.4 % of total tank volume
• liquid oxygen - 2.2 % of total tank volume

5A Hedayat, KC Knight, and RH Champion Jr. “Transient Analysis of X-34 Pressurization System”. In: (1998).
6Viatcheslav V Osipov et al. “Dynamical model of rocket propellant loading with liquid hydrogen”. In: Journal of

Spacecraft and Rockets 48.6 (2011), pp. 987–998.
7Lewis’ staff, see n. 11.
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iv. Load Cases

This section will discuss the load cases under which the structural part of the tank in itself
operates. This means the stresses which are occurring by loads directly applied to the tank. As
discussed in previous sections, the tank shell experiences stress from storing the propellant at
a pressure difference (Tankpressure > Environmentpressure) compared to the environment
in which the tank is placed. This induces a tensile stress on the whole body of the tank.
This property has been used to decrease the weight of the tank for load cases that include
compresive stress. The Atlas booster is an example of such a design philosphy where the tank
structure is a so called "balloon tank". This means the tank uses internal pressure to retain its
shape to keep it from buckling. This caused different minimum pressure requirements for
different load-cases, i.e. differnt stages during operation.8 Compression loads on a launch
vehicle can induce buckling behavior during flight, but this will be treated in the structure
modeling and full rocket stage modeling chapters which will include the tank section.

Self-Buckling: The scenario described above is an example of possible self-buckling. This is
a situation in which a structure cannot retain the stresses of its own weight under compression.
In the case of a propellant tank the tank has to be kept at a minimum internal pressure to
avoid buckling. This is design choice made by the engineer. The design can incorporate a very
thin balloon tank which has to be kept under pressure at all times or a rigged tank design
which can support its own weight. Stress in the material caused by their own weight can be
found in the appendix.

Hydro-static Pressure: Hydro-static pressure occurs when a column of liquid is experiencing
acceleration due to gravitation or acceleration of the column. Fluid at the top of the column
exerts a pressure on the fluid below which creates a pressure difference across the column.
This pressure difference over a column also exist in liquid propellant tanks, the effect increases
with a longer tank length and stresses caused by this effect are described in the appendix.

Thermal Shock: Thermal shock is caused by a high temperature gradient in a material which
creates stress due to a delta in the thermal expansion of the material. This kind of stress is
not evaluated by the model because of the difficulty to calculate wall temperatures in a rather
straightforward manner. This is more discussed in the insulation section of this chapter.

III. Pressurization Tanks

Pressurization tanks supply pressure to the systems in the launch vehicle and are often present
in a rocket stage in one form or another. In liquid and hybrid stages these tanks often regulate
pressure of the propellant tanks, i.e.; oxidizer and fuel tanks. This means these tanks can often
be quite substantial in dry mass since they often contain pressures up to hundreds of [bar].

Determining the mass of pressurization tanks is similar to propellant tanks in the sense that
the tanks wall thickness can be determined through determination of the internal pressure,
radius and material yield stress. material and internal pressure can be taken as design
variables. This leaves the radius of the tank and this requires knowledge about the required
tank volume. This is something that needs to be determined and hence this section discussing
this part separately.

8Lewis’ staff, see n. 11.
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To determine the tank volume the ideal gas law is used, equation 3.22. In this equation P is
pressure, V is volume, M is mass of the gas, R is the ideal gas constant, T is the temperature
of the gas and M is the molar mass.

PV =
MRT
M

(3.22)

To determine the volume we need to set the pressure and temperature of the gas in its
container. As an example an internal pressure and storage temperature can be taken.

• Internal pressure = 200[bar]
• Storage temperature = 15[K]

A gas often used to pressurize systems is Helium, this gas is ideal for pressurization
because of its inert property and it remains gaseous at extremely low temperatures. The molar
mass of Helium is:

• molar mass = 4[g/mol]

This analysis calculates the necessary volume and mass of the Helium by determining
the space it needs to fill when the propellant tanks of the rocket are empty and at which
pressure it needs to keep these tanks. Using this method the necessary Helium mass to fill the
propellant tank can be determined. To continue the example; the necessary Helium for a fuel
and oxidizer tank are determined.

MHe, f ueltank =
Vf ueltankPf ueltankM

RT
(3.23)

MHe,oxtank =
VoxtankPoxtankM

RT
(3.24)

Since the helium tank needs to retain a positive pressure delta compared to the systems it
needs to pressure, the pressure in the helium tank need to be larger or equal to the tank with
the second highest pressure (after the He tank of course). Let’s assume:

Poxtank > Pf ueltank (3.25)

then:

Mmin,presstank =
VpresstankPoxtankM

RT
(3.26)

finally the total helium mass can be determined:

MHe,total = MHe, f ueltank + MHe,oxtank + Mmin,presstank (3.27)

After rearranging and simplifying this leads to:

Vpresstank =
Vf ueltankPf ueltank + VoxtankPoxtank

Ppresstank − Poxtank
(3.28)

With the volume of the pressurization tank the radius and thus the tank wall thickness can
be calculated. It is important to note that equation 3.28 describes tank volume for isothermal
expansion of the helium gas. This meas that is it assumed the temperature of the helium
stays equal to that of its initial storage temperature. This is not necessarily the case, lower
pressurizer weight can be achieved by implementing a heat exchanger to heat the helium
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gas before pressurizing the fuel and oxidizer tanks. If this is the case equation 3.28 becomes
equation 3.29, where Tnew is the temperature of the helium after it is heated.

Vpresstank =
(Vf ueltankPf ueltank + VoxtankPoxtank)

(Ppresstank − Poxtank)

Tpresstank

Tnew
(3.29)

Another method of in which the temperature can be increased is if an isentropic expansion
is assumed. In this case the new temperature can be calculated with equation

Tnew = Tinitial

(
Pnew

Pinitial

)γ− 1
γ (3.30)

IV. Insulation

A Calculation of necessary insulation thickness was not incorporated in the model. A user of
the program can however add an insulation layer to a wall and give a prefixed density. The
reason insulation thickness in not calculated is described in this section.

Cryogenic storage of propellant requires insulation to keep the propellant cool to retain
the benefits of the higher density the liquid phase of the propellant provides. Common used
cryogenic propellants in LV design are for example liquid methane, LOX and LH. Cryogenic
propellant was briefly discussed in the previous chapter about structures since its temperature
affects its density and therefore the size of the structure. This section will try to approximate
the mass of the insulation. It is thought insulation mass can be approximated quite accurately
because it covers the entire surface of the tank which is a known parameter. The only other
parameters which are necessary to determine the mass of the insulator is its density and
thickness as can be seen in equation 3.31. Subscript i indicates insulation here, t is the thickness,
ρ is the density and M is the mass. This is integrated over the tank surface S. Equation 3.31
assumes the insulation layer can be approximated as a thin shell similar to which was done to
the structural component.

Mass o f Tank Insulation : Mi =
∫∫
S

tiρi dS (3.31)

Density of the insulator is chosen as an input parameter in the model. The reason for this
is to create an easy way to compare weight difference of various insulators in a conceptual
design phase. Another input parameter is the insulator’s thermal conductivity coefficient; k.
The thermal conductivity coefficient in [watt k−1 m−1] determines how well (or how bad) the
material transfers heat due to conduction. To have a proper analysis this value must also be
known for the structural material used, since heat is also transferred through the tank shell.

With these input parameters the required thickness of the insulator has to be determined.
This is not a trivial analysis since it requires additional input of which some are design
requirements. This can be explained by the operational conditions of a propellant tank. In
conventional set-ups the tank is often filled with propellant on the launch pad. This means
that the operation starts with an empty tank which is filled until its maximum capacity is
reached. The LV can however also experience ground hold which also affects the total heat
transferred to the propellant. This in combination with aerodynamic heating during flight
and forced convection of wind when grounded. A paper which discusses modeling the filling
process of the space shuttle external tank by Osipov et al. describes this process in detail.9 The

9Osipov et al., see n. 6.
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discussion about heat transfer assumes a steady-state system onwards, and thus ignores initial
temperature of the structure and insulation. The assumption is made that the materials will
quickly change temperature due to the high temperature delta and their relative thin profile.

i. Tank Wall Heat Transfer

Heat transfer through the tank wall is a combination of conduction,convection and radiation.
This process in shown in figure 3.3. As can be seen the propellant temperature is kept at
a colder temperature than the outside air temperature. The linear curves in the shell and
insulation show that this heat transfer is controlled by conduction. Equations 3.32 and 3.33
show the heat flux; q [Wm−2], through the respective material for an assumed one dimensional
case.10 The parameter k [Wm−1K−1] in the equation stands for thermal conductance.

Shell Conduction : q = −kshell
dT
dx

= −kshell
T2 − T1

x2 − x1
(3.32)

Insulation Conduction : q = −ki
dT
dx

= −ki
T3 − T2

x3 − x2
(3.33)

x2 − x1 = ts (3.34)

x3 − x2 = ti (3.35)

Heat flux between the propellant and the tank shell is dictated by convection as well as
conduction. This can also be seen in figure 3.3 where steeper temperature gradients are shown
for conduction amplified by convection. Convection essentially includes the impact of fluid
movement on heat transfer.

Heat flux for with convection can be seen in equation 3.36 and shows that heat transfer
coefficient; h [Wm−2K−1] is necessary to calculate heat flux. To calculate the heat transfer
coefficient the Nusselt number (equation 3.37) can be approximated. The Nusselt number is
the ratio between heat transfer with convection over the heat transfer with just conduction.
To make this parameter dimensionless it is multiplied by a characteristic length which is the
height of the wall which is in contact with the propellant.

q = h(Tp − T1) (3.36)

NuL =
hL
k

(3.37)

To approximate the Nusselt number the condition of the heat transfer has to be determined.
In the case of the convective heat transfer between the propellant and the wall, natural
convection on a vertical wall can be assumed. This means that the movement of the fluid
is induced by the heating of the fluid which makes it move upwards due to gravitational
accelatration. Churchhill and Chu suggest the relationship in equations 3.38 to 3.42 to
approximate Nusselt’s number for free(natural) convection along a vetical plate.11 Where
Nusselt, Prandtl, Rayleigh and Grasshoff number are Nu, Pr, Ra and Gr respectively. cp, µ and
k are specific heat, dynamic viscosity and thermal conductivity. And in equation 3.42; g, β, ν

10J.H. Lienhard IV and J.H. Lienhard V. A Heat Transfer Textbook. 4th. Version 2.11. Cambridge, MA: Phlogiston
Press, 2017. url: http://ahtt.mit.edu.

11Stuart W Churchill and Humbert HS Chu. “Correlating equations for laminar and turbulent free convection from
a vertical plate”. In: International journal of heat and mass transfer 18.11 (1975), pp. 1323–1329.
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Figure 3.3: Schematic illustration of heat transfer in the tank wall.

and L are acceleration, thermal expansion coefficient, kinematic viscosity and height of the
cylinder wall respectively.

NuL = 0.68 + 0.503(RaL ·Ψ)0.25 : RaL < 1010 (3.38)

Ψ =

(
1 +

(
0.492
PrL

)9/16
)−16/9

(3.39)

PrL =
cpµ

k
(3.40)

RaL = PrL · GrL (3.41)

GrL =
gβL3(T1 − Tp)

ν2 (3.42)

As can be seen in equation 3.38 this relation is only valid for Rayleigh numbers below 1010.
This is where problems arise for this implementation into the model. A quick calculation for
LOX shows that Rayleigh numbers are in the order of 1012 - 1017. This makes these formulas
unusable for usage in cryogenic tanks. Table 3.2 shows an example calculation with liquid
oxygen. It was therefore chosen to let the model define a certain insulation thickness as input
instead since further calculation of required insulation thickness was deemed outside of the
scope of the project due to its complexity.
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Table 3.2: Rayleigh number example calculation for LOX, data taken from NIST database.

Input Results

cp 924[J/kg/K] Pr 0.75
µ 1.13 · 10−5 Gr 4.5 · 1013

k 0.014015 Ra 3.43 · 1013

g 9.81[m/s2]
β 0.00692[1/K]
L 5[m]
T1 143[K]
Tp 97[K]
ν 2.92 · 10−6[m2/s]

ii. Ice Buildup

The external wall of the propellant tank can experience ice buildup when storing cryogenic
propellant while being grounded. Moisture in the air condenses and freezes stuck to the
surface prior to lift-off. This is an undesirable situation as it creates additional mass which is
lifted of the ground which affect the performance of the LV. An example is the centaur upper
stage (AC-14) with an accumulated ice buildup of 28/[kg] of which 24/[kg] is shaken off/
ablated during launch. This is around approximately 1.3% of the stage’s dry weight.12

V. Anti Slosh and Vortex Baffles

Anti slosh and vortex baffles haven’t been modeled, the proper modeling of necessary structure
involves CFD (Computational Fluid Dynamics). This is obviously not in the scope of this
project and would go against the requirement of limiting computational resources since CFD
is in general a big consumer of computational resources. Literature on methods to evaluate
sloshing behavior through less complex computations are found to be scarce. The project had
three different directions concerning anti slosh and vortex baffles.

• Model sloshing and vortex behavior through simple computations and approximate
necessary baffles

• Model sloshing and vortex baffle mass by guesstimates of their size and dimension
• Not model anti slosh and anti vortex baffle

The final option is mentioned (even though it is not desirable) since the project is time
restricted and if there are not enough resources than this might be unavoidable.

12Lewis’ staff, see n. 11.

34



Chapter 4

Determination of Forces &
Moments

I. Introduction

This chapter shows the methods which were used to determine forces and moments which
are acting on the LV for a given load case. Compression and momentum loads are important
to determine buckling criterion for structures, this is described in the next chapter. First the
determination of these forces and moments is described.

First forces acting on the launch vehicle were described together with a description of load
cases. This is followed up with a section containing information about how compression force
at a specific point was determined. The chapter is concluded with a section which describes
how moment at a specific location was determined in the model.

II. Forces and load cases

Two main forces acting on the launch vehicle during flight are shown in figure 4.1. These
forces are plotted as two main forces in opposite direction; aerodynamic force(Fa) and thrust
force(FT). These two main forces are not necessarily exactly opposite of each other but one of
the figure’s goals is to illustrate the existence of compression loads in the structure. And this is
obviously achieved by having two forces acting in opposite direction while pointing towards
each-other. Other forces not illustrated are gravity and lateral thrust and aerodynamic forces.

A load case where the two main forces are not exactly opposite creates a momentum
around the center of mass of the launch vehicle. An example of this is lateral thrust created
by combustion instability, throttling or thrust vectoring. This moment induces an angular
acceleration and creates compression and tension stresses in the structure.

Trust To start with the thrust force FT ; thrust in reality is created by the pressure distribution
on the surface of an engines thrust chamber and nozzle manifold. For simplicity the model
sees these pressure distributions as a point force with a magnitude and direction.

This point force is determined by the engine parameter which indicates maximum thrust,
number of engines, thrust angle and a throttling parameter β. The model calculated maximum
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thrust of a single stage with the following equation:

FT,tot =
N

∑
i=1

FT,i (4.1)

Where N is the number of engines and FT,i is the maximum thrust of ith engine. The
model can thus handle multiple engines but is restricted to global movement and throttling of
them. What is meant by that can be described with the following equations which indicate
determination lateral (FT,x) and axial thrust (FT,z).

FT,x = FT,totsin(θ)β (4.2)

FT,z = FT,totcos(θ)β (4.3)

In these equations, θ is the thrust angle and β is the throttling parameter. Thrust angle is
measure between the z axis and the direction of the thrust force, e.g. a thrust angle of zero
degrees would result in a lateral force which is also zero. Throttling parameter β is defined as
having a positive value equal to or between one and zero:

0 6 β 6 1 (4.4)

This thus mean that individual engines of one stage cannot have different thrust angles
within the model, i.e. they always point in the same direction. This also accounts for throttling;
all engines of a stage have to be throttle to the same value at a certain time-frame. The model
does not support difference in throttle value at a specific time.

Aerodynamics Aerodynamic forces in figure 4.1 are the accumulation and integration of the
pressure distribution over the skin of the rocket. This results in a point load with a magnitude
and direction. This method of displaying aerodynamic forces comes in handy when discussing
things like flight and orbital mechanics. This method is however less practical for structural
analysis.

As discussed in the previous chapter under the fairing section: calculation of aerodynamic
drag and lift is difficult without extensive aerodynamic analysis or computational simulation.
These two reasons were key factors for the decision of a different approach to determining
aerodynamic forces.

The decision was made to apply load factor as a possible input for a load case as well as
longitudinal aerodynamic forces directly. This has the disadvantage that lateral aerodynamic
forces (lift) get removed from the model. This sacrifice in capability was deemed acceptable
since launch vehicles often fly close to a zero degree angle of attack. Load factor l was defined
as follows:

l =
FT,z − FD

Mwet
(4.5)

Where FT,z is the thrust in axial direction, FD is the drag force and Mwet is the launch
vehicles wet mass. The advantage to having a load factor as input was its value is known
somewhat accurately and is often set to a maximum value as a requirement for a launch
vehicle, since this value affects structural integrity of the launch vehicle but also its payload.
Aerodynamic drag can than be calculated if all other values are known:

FD = FT,z − lMwet (4.6)
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Figure 4.1: Indication of difference between earth based (left) and vehicle based (right) reference frame.

Wet mass of the launch vehicle is obviously not a known variable since dry mass is not
known. Wet mass can be approximated however since propellant mass is in general much
larger than dry mass. Also a first approximation was made for dry mass by putting the design
criterion for propellant tanks at design pressure and to give other structural parts a default
thickness. This way the model can iterate towards a solution by updating wet mass and in
turn drag force.

At a certain points during the ascent trajectory of the launch vehicle the structural load
case has to be determined. Some variables which are included in this load case were already
mentioned:

• total thrust [N]
• thrust vector [deg]
• load factor [−] /drag [N]
• throttle [−]
• propellant left in the tank [kg]

One last variable which has not been mentioned yet is propellant left in the tank. This is
a variable important to rockets since their weight dramatically decreases during flight. For
example when a load factor is used to calculate aerodynamic drag and thus compression loads
and structure mass, the wet mass has to be approximated. It is thus relevant for the load case
how much propellant is left. It was thus decided that this variable is also taken as input when
calculating required thickness for a specific load case.
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Figure 4.2: Variation of compression loads through a structure in increments (left) and continuous
(right).

III. Compression force at a specific point

When thrust and drag are known the model needs to determine the compression force at a
location z due to the axial thrust and aerodynamic drag. This value is used to determine the
required thickness of the wall at this position by determining its yield criterion.

This would be trivial if these two forces had the same value which then creates a load case
with a load factor of zero. This would have as consequence that the compression load would
be constant throughout the launch vehicle, i.e. it would be the same at every location z. This is
however rarely if ever the case since the rocket needs to accelerate at a significant rate in order
to achieve orbit. This creates a situation where a positive load factor is often a property of a
load case. Compression loads thus come to vary with location z and to achieve these values
the mass distribution of the LV has to be known.

The reason mass distribution has to be known to calculate compression loads is due to
acceleration of the structure. This means that the sum of all forces in the axial direction is not
equal to zero. This is illustrated in figure 4.2 and equation 4.7. Equation 4.7 shows the case for
a structure which is divided into incremental mass elements this is shown in the left side of
figure 4.2.

∑ Fz = (M1 + M3 + M3)az 6= 0 (4.7)

Assuming the thrust force is larger than the drag force. To calculate the compression load
between M3 and M2 on the left side of figure 4.2, the mass above M3 has to be calculated. In
this example this is trivial since it is simply:

Mabove3 = M1 + M2 (4.8)

Since the acceleration of the structure is known from equation 4.7 the force needed to
accelerate M1 and M2 can be calculated with Newton’s second law.1 which is equal to the
compression load at this location.

Fload,2−3 = (M1 + M2)az (4.9)

1Isaac Newton. “Principia mathematica”. In: Newton’s principia 634 (1934).
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This example with increments was used to illustrate the concept of the method used to
calculate the load force. When thrust force is larger than the drag forces the launch vehicle
accelerates upwards. The compression load close to the thrust vector (engines) experience the
largest load factor is this case. These load will be close to the magnitude of the thrust vector.
The compression loads at the top close to the drag vector will be smaller and close to the drag
value.

Using mass increments was deemed to be not desirable for use in the model since com-
pression load at a specific location can not be determined. It would then only be possible to
calculate the load at preset locations. It was decided to use a continuous approach so any
location could be evaluated when necessary.

The continuous approach is sketched in figure 4.2 on the right side of the figure. To keep
consistent notation, the bottom of the "vehicle" in the figure has a z value of zero (its origin).
M∗ is indicated as the mass below the dashed line (z).

The mass below the dashed line is calculated by integrating the mass over the length of the
launch vehicle. The relation of this integration can be seen in equation 4.10. This equation
shows that the change of mass with respect to location z needs to be known to calculate M∗.
The model determines this parameter and integration numerically and mass below the dashed
line is thus calculated.

M∗ =
∫ z

0
dM =

∫ z

0

dM
dz

dz (4.10)

Once M∗ is known the force required to accelerate this mass to the acceleration of the
entire vehicle can be determined:

F∗ = M∗az (4.11)

Compression load becomes:

Fload = FT − F∗ (4.12)

The most difficult part of this method is the determination of
dM
dz

. This is done by
known location and mass of different subsystems and an assumed distribution of mass within
subsystems. The methodology used is described in more detail in chapter 6, where the model
is explained.

IV. Moment at specific point

Determining the moment load acting on a specific location is more complicated than the
compression force due to axial loads. This is caused by additional parameters which need to
be known in order to complete the calculation.

i. Force, shear and moment line

Determining the moment at a given location z on the LV requires the information of forces
acting on the object. The model makes use of force, shear and moment lines which determine
stress acting on the object a a location z. An example of this can be lateral thrust of the rocket
engine due to thrust vectoring or a force due to wind on the launchpad. The latter can be seen
in figure 4.3. The figure shows the wind which is represented as an equally distributed load
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Figure 4.3: Approximation of force on LV due to wind on the launchpad.

Figure 4.4: Example of the implementation of the force, shear and moment line.

across the lenghth of the LV. This representation is a force line, where the LV is anchored to the
launchpad and thus creating a cantilever beam. This approximation is solely to determine the
moment and shear force of a particular location. From this force line the shear and moment
line can be determined by integrating. Integrating the force line once forms the shear line
and integrating the force line twice becomes the moment line. This process is illustrated in
figure 4.4. More information about determining the shear and moment line can be found in
the appendix of the report, this is the same method which is incorporated into the model.

ii. Rocket in flight

As can be seen from the previous section, the moment at a specific location for a rocket on the
launch pad can be calculated in a rather straight forward method. All forces should be known
and most importantly is the sum of all forces equal to zero since there is no acceleration taking
place.
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This is different for a rocket in flight, there are accelerations. Axial acceleration was dealt
with in a previous section which analyzed the compression loads. and lateral accelerations
where deemed to be approximately zero for when a zero degree angle of attack trajectory is
implemented. This leaves angular acceleration to be discussed and the effect it has on the
structural mass of the LV.

Angular acceleration is induced by lateral thrust, either due to thrust vectoring, combustion
instability or other forces. This lateral thrust generates a moment (τ) around the center of
mass (zc.o.g.) on the launch vehicle. Where its magnitude can be determined as follows:

τ = Flatzc.o.g. (4.13)

In order to calculate angular acceleration α, Newton’s second law is used.2 This relation is
shown by equation 4.14. In this equation Ixx is the mass moment of inertia around the x axis,
with the x axis placed at the location of the center of mass zc.o.g..

τ = αIxx (4.14)

For the model it was assumed that the launch vehicle is axis symmetric around its z axis.
This means that:

Ixx = Iyy (4.15)

and:

Ixy = Iyx = Izx = Ixz = Iyz = Izy = 0.0 (4.16)

Therefore no tensor calculations are necessary to complete the calculation in the model. In
order to calculate the mass moment of inertia I, defined by equation 4.17. It can be observed
that the center of gravity (mass) has to be determined, in order to calculate the mass moment
of inertia. Since rotation act around its axis.

Ixx =
∫ M

0
(z− zc.o.g.)

2dM (4.17)

Please note that equation 4.17 assumes that the launch vehicle is long and somewhat thin.
This is means that it is assumed that every every x and y coordinate for a given z coordinate
has approximately the same value. Hence, the distance from the center of gravity is purely
expressed in the z dimension.

iii. Center of gravity

Calculation of the position of the center of gravity will be discussed in more detail in this
section. The LV is assumed to be axis symmetrical for this calculation which means that
it is assumed that its x and y coordinates of the center of gravity (mass) are 0 (zero). This
makes the problem less complicated by restricting the problem to one dimension, namely the
z direction. This confines the problem to equation 4.18 for a body and equation 4.19 for a
collection of particles,i.e. point masses. M in this equation is the total mass and mi is the mass
of the ith particles.

zcog = M−1
∫ M

0
zdm (4.18)

2Newton, see n. 1.
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zcog = M−1
N

∑
i=1

mizi (4.19)

Both equations are used in the model. The way this works is that parts/subsystems are
created as objects which C.O.G. and mass are calculated separately by using equation 4.18.
These objects are then treated as point masses and summed up to determine the total center
of gravity by using equation 4.19.

For full rocket stage modelling this calculation has to take into account the mass of the
propellant which is left at a certain time or load case. This variable naturally has an effect on
the height of the propellant(fluid level) in its tanks. This height is unknown but and has to be
calculated in order to determine the C.O.G. of the propellant in the tank. This can be achieved
by a similar equation to 4.18 and is shown in equation 4.20. This equation in itself has no z
value(only mass), this means that mass has to be rewritten to a function with z in it. The way
this done depends on the geometric shape and is described for several shapes in the appendix.
To illustrate this the method for a cone is written out here in equations 4.21 to 4.24. This works
because the mass is known as an input parameter and height h can thus be calculated.

M =
∫ M

0
dm (4.20)

dm = ρdV (4.21)

dV = πr2dz (4.22)

r = tan(α)z (4.23)

thus:

M = πρtan(α)2
∫ h

0
z2dz (4.24)

Once the center of gravity has been determined the mass moment of inertia can be
calculated. The model used an numerical integration method to achieve this, similar to the
center of mass calculation. Both the integrals can be tuned within the model. This is done to
give the user power over precision versus calculation time.

iv. Angular acceleration

Once the moment acting on the LV has been determined (τ) as well as the mass moment of
inertia around the x axis, the angular acceleration of the object can be determined using 4.14.
This means that the the entire structure undergoes this angular acceleration (α) if an infinite
stiff structure or time solution is assumed. It was determined that the structure cannot be
assumed to be infinitely stiff but it was decided to implement a time independent or so-called
static solution. This means that for simplification dynamic loading is not taken into account in
the model. A simplified way of looking at a static solution is that the moment τ is performed
for a long enough duration for the entire vehicle to achieve the same angular acceleration α.

Since moment and forces cannot be evaluated in an accelerating object, the model needs to
implement fictitious forces. This is done in a similar manner which was described for axial
forces. In order to do this for angular acceleration it was decided to move the reference frame.
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Reference Frame In order to solve the equations to calculate stress in the structure accelera-
tions need to be converted into fictitious forces. This is achieved by moving the orgin of the
reference frame to the center of gravity of the LV. This is paired with rotation of the reference
frame equal to the rotation of the LV. In other words; this creates a reference frame in which
the LV is not moving but is however experiencing forces due to accelerations, i.e. fictitious
forces. This in essence creates a structure that is not moving relative to the reference frame
and thus experiences static loading.

The decision to move the reference frame towards the center of gravity is based on the
assumption that the structure rotates around this point during flight. This also means the
structure does not experience and force due to angular acceleration or angular velocity at this
point. This makes it easier to convert these properties into fictitious forces. A disadvantage of
this method is that the C.O.G. (center of gravity) shifts significantly for a rocket in flight and
this shift thus has to be taken into account. This means that the model had to determine the
C.O.G. for every unique load case.

Calculation of the C.O.G. is done by calculating the C.O.G of every object and multiplying
theses values with their position in the original reference frame. This is summed up and
divided by the total mass to get the C.O.G. This was explained in the previous section about
center of gravity.

Fictitious Force The magnitude of the fictitious forces due to angular acceleration at a certain
location z had to be determined. Since angular acceleration, location of the C.O.G., and location
z are known the lateral acceleration can be determined by the following equation.

ax = α ∗ (z− zcog) (4.25)

when lateral acceleration is determined the fictitious force counter acting the acceleration
due to the structures mass can be determined in a similar method to equation 4.11.

dF∗ = dM∗ax (4.26)

In equation 4.26 the value dM∗ stands for the mass for an increment of the structure. To
calculate this the model uses a function with calculation the change of mass with respect to

the z coordinate (
dM∗

dz
). The equation thus becomes:

dF∗ =
dM∗

dz
axdz (4.27)

Rearranging the equation where q stand for distribute load with a unit of [N/m]:

dF∗

dz
= q∗(z) =

dM∗(z)
dz

ax(z) (4.28)

With knowledge of the fictitious force at every location the moment acting at a certain
location can be determined by adding the moment all fictitious forces apply to a certain
location.

τ(z) =
∫ z

0
q∗(z)(z− zcog)dz (4.29)

This then gives the moment acting on the structure at a given location z.
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Chapter 5

Determination of Yield Criteria

This chapter discusses the limiting loads to which the structure was held. These limiting
loads have to be above the loads being applied to the LV in order for the structure to
maintain structural integrity. The model thus has to give structural walls sufficient thickness
to withstand these limiting loads.

I. Stresses

In order to determine yielding forces and moments in a given structure one has to look at
stresses occurring during these loads. Stresses occurring due to axial loads are quite easy to
obtain for a beam, since it is simpley the total force devided by the area of the beam.

σF =
F
S

(5.1)

For thin walled cylinders this becomes.

σF =
F

2πrt
(5.2)

Euler-Bernoulli beam method Euler-Bernoulli beam method was applied in a rather straight-
forward method to determine stress occurring due to bending forces. The method to determine
stress is focused around equation 5.3. This equation determines the stress at a cross-section
of the beam. Where τ is the moment at that location, I is the second moment of inertia and
z is the distance from the neutral axis. This neutral axis is parallel to axis around which the
moment applies its force. In the case of symmetrical geometry, (e.g. a circle) the neutral axis
will coincide with the moment axis.

στ =
τz
I

(5.3)

Stresses due to axial load and moment can simply be combined to obtain the total stress.

σtotal = σF + στ (5.4)

i. Composite material

Composite materials are supported by the model. These composite materials are modeled as
layers of isotropic or orthotropic material which have properties in the z and x direction. The
model was designed to build up a wall with layers of different material if desired. And the
model is thus flexible in changing parameters related to the structural wall.
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An example of this can be a sandwich panel which consist of an carbon fiber reinforced
plate, aluminum honeycomb and another plate of carbon fiber reinforced plastic. This wall
will then have different elastic constant when the wall is considered one composite material.
The method by how theses parameters are calculated can be found in the next section about
buckling.

Orthotropic material properties are expressed in the global reference frame of the LV (z and
x). This made is possible to evaluate stresses occurring in the material and analyze buckling
behavior. Composites are however not always layered parallel to these global coordinates.
An example of this is carbon fibre reinforced plastic lamina. Since this material can take any
direction parallel to the wall surface, i.e. 0− 180[deg].

Since properties of these kinds materials are often only given in their local coordinate system
(for CFRP tape: parallel and perpendicular to the fibers), their properties have to be converted
to the global coordinate system. This is done with the following formulas:1

Ez =
E1

m4 +

(
E1

G12
− 2µ12

)
n2m2 +

E1

E2
n4

(5.5)

Ex =
E2

m4 +

(
E2

G12
− 2µ12

)
n2m2 +

E2

E1
n4

(5.6)

µzx =

µ12(n4 + m4)−
(

1 +
E1

E2
− E1

G12

)
n2m2

m4 +

(
E1

G12
− 2µ12

)
n2m2 +

E1

E2
n2

(5.7)

µxz =

µ21(n4 + m4)−
(

1 +
E2

E1
− E2

G21

)
n2m2

m4 +

(
E2

G21
− 2µ21

)
n2m2 +

E2

E1
n2

(5.8)

Gzx =
G12

n4 + m4 + 2
(

2G12

E1
(1 + 2µ12) +

2G12

E2
− 1
)

n2m2
(5.9)

n = sin(θ) (5.10)

m = cos(θ) (5.11)

θ in these formulas is the angle the fiber would have with respect to the global z axis. n
and m are taken as temporary variables to make the equations more readable.

1George Z Voyiadjis and Peter I Kattan. Mechanics of composite materials with MATLAB. Springer Science & Business
Media, 2005.
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ii. Tensile failure

Previous chapter about tank design express tensile stress due to internal pressure as a function
of pressure, wall thickness and radius.

σ(P, t, r) (5.12)

This works well for isotropic materials since for thin walled structures it was assumed that
the in-plane stress was equal throughout the thickness. Material yield stress could thus easily
be linked to these variables, which would make determining the required thickness straight
forward.

For composite materials this procedure is more difficult since various materials have different
yield stresses, but more over different materials can experience different stresses at the same
location due to a difference in Young modulus E. Stress obtained from pressure, thickness and
radius can thus not be directly linked to material constants. This stress has to be evaluated
as the average stress in the wall denoted by σ̄. Which is the sum of the stresses in all layers
divided by the number of layers, assuming all layers have the same thickness:2

σ̄(P, t, r) =
1
N

N

∑
j=1

σj (5.13)

Here N is the number of layers and j indicates the layer number. Average stress expressed
in force per unit width of the laminate becomes:

Nx = σ̄xtN (5.14)

To solve the problem one has to make an assumption whether any variable is constant for
all layers. This variable is strain ε, which should be approximately the same for all all layers.
Strain defined by stress and young modulus:

ε =
Ē
σ̄

(5.15)

Force per unit width and strain of a laminate can be related for symmetric balanced
laminates as follows:3  Nx

Nz
Ns

 =

 Axx Axz 0
Azx Azz 0
0 0 Ass

 εx
εz
γs

 (5.16)

Solving for strain by calculating the inverse of matrix [A] , [a]:[
εx
εz

]
=

1
Axx Azz − Axz Axz

[
Azz −Axz
−Azx Axx

] [
Nx
Ny

]
(5.17)

γs =
Ns

Ass
(5.18)

The parameters of matrix A are based upon parameters of the stiffness matrix [Q] of each
lamina in the laminate and is defined as follows:

Aij =
N

∑
k=1

Qk
ijtk (5.19)

2Voyiadjis and Kattan, see n. 1.
3M Daniel Isaac and Ori Ishai. “Engineering mechanics of composite materials”. In: New York and Oxford (1994).

46



W.A.R. WILDVANK - MASTER THESIS REPORT

with Qij defined in the lamina reference frame:

Q11 =
E1

1− µ12µ21
(5.20)

Q22 =
E2

1− µ12µ21
(5.21)

Q12 =
µ21E1

1− µ21µ12
(5.22)

Q66 = G12 (5.23)

Since the parameters of matrix [A] are defined in the global reference frame the variables
Qij have to be converted from the lamina reference frame to the global reference frame.
m = cos(θ) and n = sin(θ) for the following formulas.

Qxx = m4Q11 + n4Q22 + 2m2n2Q12 + 4m2n2Q66 (5.24)

Qzz = n4Q11 + m4Q22 + 2m2n2Q12 + 4m2n2Q66 (5.25)

Qxz = m2n2Q11 + m2n2Q22 + (m4 + n4)Q12 − 4m2n2Q66 (5.26)

Qss = m2n2Q11 + m2n2Q22 − 2m2n2Q12 + (m2 − n2)2Q66 (5.27)

Since all parameters should now be known for a given lay-up (fiber orientations), E1, E2,
µ12 and µ21. The strains εx and εz can be calculated.

To determine if the laminate will hold under the normal tensile loads the strain of each
lamina has to be checked to make sure it does not exceed its maximum strain value. This is
done by converting strain in the global coordinate system back to the local coordinate system
of the lamina. Local strain are calculated using a transformation matrix [T]. ε1

ε2
0.5γ12

 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2

 εx
εz

0.5γxz

 (5.28)

if ε1 or ε2 exceed ε
yield
1 or ε

yield
2 respectively for any lamina in the laminate, then the

laminate was determined to fail under this load. These values can be determined with the
following formulas. In these formulas σ1 and σ2 can be replaced by the respective material
yield stresses. Since equations 5.29 and 5.30 show that strain is depended on stress in both
directions, solutions exist where maximum strain is not exceeded while maximum directional
stress is exceeded.

ε1 =
E1

σ1
+ µ12

E2

σ2
(5.29)

ε2 =
E2

σ2
+ µ21

E1

σ1
(5.30)

This leads to a more iterative problem where for a certain ply thickness and lay-up, one can
check if material yield stresses are exceeded. This approach does however not fit well with the
requirements of the model to calculate required ply thickness without using excessive amounts
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of cpu resources. A more suitable approach would be the determination of a maximum
average stress for a laminate which cannot be exceeded (see equation 5.14). Since this section
only affects failure under tensile stress it was decided to forfeit the second part of equations
5.29 and 5.30. This leads to the following simplified formulas for maximum allowable strain.

ε
yield
1 =

E1

σ
yield
1

(5.31)

ε
yield
2 =

E2

σ
yield
2

(5.32)

Equations used for the composite material calculations above were taken from Vitudadhus
& Kattan4 and Isaac & Ishai.5

II. Buckling

A significant portion of stresses occurring in the structure of a LV are compression stresses.
This is due to the engine thrusting the LV forward while aerodynamic forces combined with
the LV mass counteract this motion. Another cause of compression can be bending of the
structure due to thrust vectoring of the rocket engine or again, due to aerodynamic forces.
Compression stresses can be dealt with in a similar manner to tensile stresses by using a
material yield stress. This however only applies if, and only if no buckling behavior takes place
due to compression of the material. Buckling is a failure mode in which the material deforms
due to instability under compression. This phenomena is more significant in long and thin
structures where it can be the main mode of failure. It is thus obvious that buckling criteria
need to be discusses when modeling structural components since this fits the description of a
LV.

Buckling can be a complex to model phenomena which in current day is often simulated by
a computer using finite element methods. These simulations are however not available for
the model in this report as it would go against the research objective to limit computation
time. It is therefore necessary to use more classical methods which determine a yield criterion
analytically. The formula used to determine the buckling criteria are taken from reference6

and.7 In the first reference Peterson describes various buckling criteria for thin walled
cylinders, and a full overview of all buckling formulas used can be found in the appendix.
This chapter will describe the method used for a cylinder solely under axial compression
which is represented by equation 5.33. In this equation D is the flexural stiffness per unit
width and is described in equation 5.34. Here is E defined as young modulus, t as the shell
thickness and µ as the materials Poisson ratio. L is the length of the cylinder and kz is the
buckling coefficient and described by equation 5.35. In this equation m is the number of buckle
half waves in the axial direction, β is the buckle aspect ratio seen in equation 5.36, with n
being the number of buckle waves in the circumferential direction and r being the radius of
the cylinder shell. γ is a coefficient to adjust theoretical buckling results to realistic values. Z
is a curvature parameter given by equation 5.37.

Nz = kz
π2D

L2 (5.33)

4Voyiadjis and Kattan, see n. 1.
5Isaac and Ishai, see n. 3.
6JP Peterson, P Seide, and VI Weingarten. “Buckling of thin-walled circular cylinders”. In: (1968).
7VI Weingarten and P Seide. “Buckling of thin-walled truncated cones”. In: NASA Space Vehicle Criteria (Structures),

NASA SP-8019, Washington DC (1968).
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D =
Et3

12(1− µ2)
(5.34)

kx = m2(1 + β2)2 +
12
π4

γ2Z2

m2(1 + β2)2 (5.35)

β =
nL

πmr
(5.36)

Z =
L2

rt

√
1− µ2 (5.37)

As can be observed from the formula’s on the next pages these equations are quite complex.
More importantly however is that they are not computation heavy for a computer compared
to FEM analyses. The value of Nz is expressed in force per unit distance. This distance is
equal to force per unit length of the circumferential distance from the cylinder. To calculate
the required thickness the model relies on a simple, robust solver for the critical load. The
compression load is given as input and the problem is solved by using a bi-section method to
find the root of the following equation, where d is the diameter of the cylinder:

Nz(t) ∗ π ∗ d− Fcompressive = 0 (5.38)

This simple algorithm which gives the required thickness of the cylinder shell for a given
force. Similar methods are used for other buckling scenarios including cylinders or cones with
internal pressure, bending loads or a combination of these. Different formulas are used for
orthotropic and sandwich materials, but they follow a similar methodology, they are described
in the orthotropic cylinders section of this chapter.

Moment Since a moment can also be applied to the structure of the vehicle the buckling
behavior of this load also had to be analyzed. This is performed in an actual quite simple
manner by multiplying the maximum axial load per unit width of circumference by 0.75 to
obtain the maximum load due to momentum.8

Nx,m = 0.75Nx (5.39)

where Nx,m is the maximum load per unit width of circumference due to a moment acting
on the structure. Since axial stress due to a moment can be calculated as follows.

σz = τr (5.40)

with r as the cylinder radius, and:

Nx,m = σz/t (5.41)

where t is the thickness of the wall. maximum applied moment thus becomes:

τmax = 0.75Nxtr (5.42)
8Peterson, Seide, and Weingarten, see n. 6.
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Combining forces Since the structure will often experience both moment and axial loads
simultaneously the combination of both yield criteria had to be considered. This was done by
assuming a linear distribution between the maximum moment and axial force.9 This means
that both loads cannot fractional be larger than one:

1 =
τ

τmax
+

Nx

Nx,max
(5.43)

i. Orthotropic cylinders

This section describes the buckling formulas used for orthotropic cylinders. The resulting
formulas carry a similar result to equation 5.33. They are however all inclusive, which means
they can take into account sandwich walls, stiffeners and rings. The formulas presented are
taken from Weingarten and Seide.10

Axial compression Weingarten and Seide describe buckling load per unit of length of
circumference for orthotropic cylinders in the following manner.

Nz =

(
L

mπ

)2

∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣∣∣∣∣ A11 A12
A21 A22

∣∣∣∣ (5.44)

Equation 5.44 is only valid for a number of circumreferential buckling waves (n) which is
equal or larger than four. L is the length of the cylinder, m is the number of axial buckling
half-waves and all the terms of the matrices are defined as follows:

A11 = Ēz

(
mπ

L

)2

+ Ḡzx

(
n
r

)2

(5.45)

A21 = A12 = (Ēzx + Ḡzx)
mπn

Lr
(5.46)

A22 = Ēx

(
n
r

)2

+ Ḡzx

(
mπ

L

)2

(5.47)

A13 = A31 =
Ēzxmπ

rL
+ C̄z

(
mπ

L

)3

+ (C̄zx + 2K̄zx)
mπn2

Lr2 (5.48)

A32 = A23 = (C̄zx + 2K̄zx)
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(5.49)
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(5.50)

The above equations use elastic constant with a bar above them. This is to indicate that
these constant are not material constants but depend on the composition of the wall as well
as potential use and size of stiffeners and rings. Since many variables are used in the above
equation a list was compromised of the meaning of each variable.

9Peterson, Seide, and Weingarten, see n. 6.
10Weingarten and Seide, see n. 7.
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Ēz, Ēx - wall extensional stiffness

Ḡzx - wall shear stiffness

C̄zx, K̄zx, C̄zC̄x - Coupling constants (for orthotropic walls)

D̄z, D̄x - wall bending stiffness

D̄zx - wall twisting stiffness

The definitions used for these elastic coefficient for othrotropic walls comes also from
Weingarten and Seide.11 The equations are listed below and were used in the model. The
equations also handle possible stiffeners and/or rings. These can be distinguished by their
subscripts r and s for rings and stiffeners respectively. The two parameters b and d denote
stiffener and ring spacing per unit width respectively. The equations basically add parameters
of various layers within the wall. N denotes the number of layers in the wall and j indicates
the specified layer.

Ēz =
N

∑
j=1

(
Ez

1− µzµx

)
j
tj +

EsSs

b
(5.51)

Ēx =
N
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j
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d
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Ēzx =
N

∑
j=1

(
Ezµx
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)
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K̄zx =
N

∑
j=1

(Gxy)jtjỹj (5.61)

11Weingarten and Seide, see n. 7.
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One parameter not specified in the previous paragraph is ỹ. This parameter indicates the
distance from a specific layer to an arbitrary reference line. This line was chosen to be on the
outer wall for the model but can be chosen to be at any distance,ỹj thus becomes:

ỹj =
j−1

∑
k=1

tk + 0.5tj (5.62)

Please note that the distance measured is from the bending axis of the layer. If ỹs or ỹr has
to be determined the entire wall can be summed and half the stiffener or ring height should
be added.

ii. Buckle wave numbers

As can be seen in equations 5.35 and 5.36, critical buckling load depends on buckle waves.
These buckle waves are divided into axial half waves (m) which can be any positive real
number and circumferential buckle waves (n) which is always an integer. This creates a
scenario where the cylinder can theoretically buckle in infinite many modes, these modes all
have a critical buckling load. Figure 5.1 visualizes this effect by plotting critical load versus
several wave number values. The figure plots a simulation of a simple aluminum isotropic
cylinder with a radius of 1[m], length of 2[m] and a thickness of 2[mm]. The plot stops at
450[kN] but has much higher values around its peaks, the lowest value of 172[kN] which
occurs at a value of 16 and 4 for n and m respectively. The figure shows a valley of low critical
loads and this was noticed to be a general trend among various configurations.

Finding this minimum value is crucial to determining the buckling yield criterion. This is
in practice the value at which the cylinder will experience instabilities and collapse due to
compression loads. For some configurations the minimum value can be approximated. An
example of this is the formula mentioned in reference12 which states that for isotropic cylinder
of moderate length the buckling coefficient can be calculated as follows:

kz =
4 ∗
√

3
π2 γZ (5.63)

This simplifies the problem significantly for this case and critical buckling load can be
calculated reliably and quick. This method is however no help to stiffened or orthotropic
cylinders. For theses configurations the buckle wave values have to be tuned to find the
minimum load at which buckling occurs.

Optimizing Buckling waves The model has no optimization algorithm implemented for the
determination of the minimum buckling load for every buckle wave. The algorithm finds the
minimum value of a set of predetermined buckle wave value not unlike the calculation plotted
in figure 5.1.

12Peterson, Seide, and Weingarten, see n. 6.
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Figure 5.1: Theoretical critical buckling load of isotropic cylinder plotted versus number of buckle half
waves in axial direction - m, and number of buckle waves in circumferential direction - n.
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Chapter 6

Model Description

As described previously, the model was given shape by programming it in the TUDAT toolbox
using the C++ programming language. This chapter shall give an overview and explanation
of method used and the way the model was coded. This starts with an overview of the
core program and gradually explains more detailed sections of the model. Methods used to
calculate certain parameters are discussed by describing the method itself and how they fit
into the entire program.

I. Classes

C++ is a programming language which stems from the older language C. C++ is however vastly
different and in contrast to C uses classes to get stuff done. This method of programming is
often called object oriented programming (OOP) and its goal is to make software development
easier. The report does not explain OOP in more detail nor does it go into depth about
explaining the C++ language any further. This section is meant to describe the classes created
and used in the program. For further information about the language and OOP the author
refers to different literature.1

Launch Vehicle The LV class is at the core of the program and contains all information about
the LV. This ranges from the number of stages to load case parameters. The Launch vehicle
object also contains a lot of other objects as members. A large object contained by the LV
object is the Stage class. This class is stored in the LV object as a vector of pointers to several
stage objects. This makes it easier to dynamically change the number of stages in an LV. The
Stage class carries other objects in order to contains all information of a single stage. And
overview of the launch vehicle class can be seen in figure 6.1. The figure shows the launch
vehicle class and in this case one stage class object. This stage class then has various different
objects from different classes which represent various subsystems within the rocket stage. The
subsystems have another class object themselves which is called the wall class. Please note
that not all class objects are represented in figure 6.1, the purpose of this figure is to give an
overview. To extrapolate on the last statement, the wall class shown in the figure actually also
contains one or several material objects which is also a separate class. This makes the total
number of levels of object members in the LV class five.

The launch vehicle class needs to know what stages are in it and what load-case is acting on
it. It needs to know how to stack build stages on top of each other and thus a rough idea on

1Stephen R Davis. C++ for Dummies. John Wiley & Sons, 2009.
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Figure 6.1: Overview of the launch vehicle class

each stage geometry.Furthermore it needs to keep track of the mass distribution of the entire
launch vehicle and forces and moment acting on the LV at each point along its z direction.

Stage The stage class needs to keep track of all subsystems within its stage. These subsystems
can be categorized into two groups:

• structural subsystems
• non-structural subsystems

– affecting stage geometry
– not affecting stage geometry

Both groups should be well defined based on their name. In the model the first group;
structural subsystems can be recognized by the fact that they have the wall class as one of its
members. Changing the parameters of any structural subsystem will inadvertently change the
geometry of the stage itself. For example, changing the length of a tank increase the length of
the stage as well. The second group; non-structural subsystem can be further divided into two
groups. This is a group which does affect stage geometry and a group which does not. The
model distinguished between these groups to execute the build process correctly.

There are only two non-structural subsystems which affect the geometry of the stage. The
first subsystem is the engines. This subsystem increases the length of the stage and its length
has a great effect on the mass of the inter-stage. The second subsystem in the payload class, this
class affects the size of the fairing and therefore its mass. All other non-structural subsystems
do not affect the geometry of other subsystems. These subsystems do however have a location
and mass. This means that even though they do not have an effect on geometry they do affect
thickness and thus mass of structural subsystems.
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Tank The tank class holds all information regarding tank geometry and other parameters
such as mass, ullage volume, internal pressure. The tank class can be adapted to be integrated
into the structure, this meas that for propellant tanks the choice can be made to have a double
or single wall on the cylindrical section of the tank. In case of a double wall the tank object
will have an extra wall object added to it. This wall will then support the external axial loads
and moments acting on the structure. The inner wall will withstand the pressure exerted by
the propellant and pressurization gas on the tank wall like the top and bottom end-cap.

The tank class also holds information regarding its propellant which is contained by the
propellant class. An object of this class in embedded into the tank class and holds information
about is density and temperature. Another aspect the propellant object holds is a minimum
and maximum temperature at which to store the propellant to avoid unrealistic storage
temperatures. This was mostly effective to keep cryogenic fluids below their boiling point and
above their freezing point. The tank class was also designed to generate its own coordinates in
its own reference frame which origin is location at the "tip" of the tank bottom end-cap.

Fairing The fairing class holds information about the shape of the nose-cone, its length
and the total length of the fairing structure. The class carries functions to calculate external
pressure based on a drag and its geometry as input. In order to calculate its mass the class
has functions to calculate the surface. The class uses global buckling functions to determine
necessary thickness of the chosen walls. The fairing class was also designed to generate its
own coordinates based in its own reference frame. The origin of the reference frame is located
in the center at the bottom of the cylindrical section of the fairing.

Inter-stage The inter-stage class carries its own wall properties and generates is own coordi-
nates like the fairing, tank and more classes. It calculates is mass based upon axial load and
moment as input combined with its length. The inter-stage differs from some other classes
upon building its coordinates since it need information from the object above and below it to
correctly make a decision about its required length to avoid collision of objects. with length,
surface can be determined. From surface the required thickness is calculated with global
buckling function.

Thrust-frame The thrust-frame class needs, like the inter-stage class information about the
object above and below it. It communicates with the stage class to figure out the order of
tank and from there retrieves information of the tank above which it sits. The class also needs
to communicate with the stage class object in which it sits, about the number and diameter
of the stages’ engines. As described in chapter 2, the thrust-frame calculates its coordinates
based upon the objects above and below but also a design decision can be made if the frame is
attached to the hull of the rocket or directly attached to the propellant tank.

Thickness of the thrust-frame is determined by buckling analysis of its cone shape. The
buckling force is determined from the engines to which it is attached, e.g. the thrust-frame of
the second stage of a hypothetical launcher will have its necessary structural thickness based
upon the thrust force of the engine(s) of the second stage. Buckling analysis is called form
within the class which calls a global buckling function that requires input about the geometry,
wall, etc. This input is naturally supplied by the thrust-frame object.

Payload-frame The payload-frame is similar to the thrust-frame in its functions and variables.
In essence it is modeled the same with the exception that the payload-frame’s features are
reverted with respect to a thrust-frame’s features. It’s geometry is based upon the payload
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and the tank below it. The same design decision can be made to attach the frame to the hull
or directly to the tank. The force acting on the pay-load frame comes from the mass of the
payload and the force it is acting upon the frame due to inertial forces.

Payload The payload is obviously not considered an important part in modeling the structure
of the LV it is thus modeled as a simple cylinder with a height radius and mass. These variables
are input when initialing an object of the payload class. These parameters have the biggest
effect of the geometry of the payload-frame and the fairing and the thickness(thus mass) of
the payload-frame.

Engine The engine class, like the payload frame is rather simple in geometry. Engines are
modeled as a cylinder with a predetermined diameter and length from object initialization.
Engine mass is assumed to be linearly distributed throughout its length. Engine objects can be
initialized in multiples for a single stage at once. The engines then get bundled according to
optimal circle packing in a circle.2 Engine mass can be predetermined during initialization of
the class or by using empirical relations which approximate engine weight3.4

Wall The wall class is essential to the model since it is incorporated into every structural
subsystem mentioned above. The basic functionality of the wall class is to construct a wall from
certain materials. This way the model can incorporate relative complicated wall structures
while maintaining flexibility, i.e. wall parameters can quickly and easily be changed without a
lot of rewriting of code.

One of the core functions of the wall class is the addLayer function. This function adds a
layer of specified material to the wall. The addLayer function is overloaded5, and can call two
different functions. The simple version for isotropic material is shown below.

1 void Wall::addLayer( Materials *materials)
2 {
3 mp.push_back(materials);
4 tvec.push_back(&t);
5 layers++;
6 }

This function has one pointer as a variable which is a of the material class. This material
pointer is then pushed to the back of a vector containing all materials in the wall in the correct
order. The second line in the function adds a pointer to the thickness t to the back of a vector
containing the thickness of every layer of material. Lastly the number of layers is updated to
add one, this way the class knows how many layers of material it has.

The wall class has a private variable called t which control the thickness of all structural
layers. This means that all structural layers with the exception of rings and stiffeners have the
same length. This was done to make implementation of composite layered materials such as
CFRP easy to implement. Every layer will then thus have the same thickness.

2Eric W. Weisstein. Circle Packing. 2017. url: http://mathworld.wolfram.com/CirclePacking.html.
3BTC Zandbergen. “Simple mass and size estimation relationships of pump fed rocket engines for launch vehicle

conceptual design”. In: (2015).
4Zandbergen, “Aerospace Design and Systems Engineering Elements I, Part Launcher Design and Sizing”, see n. 4.
5The same function name is used to call different functions
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Different functions are used to add rings or stiffeners and an extra core layer can also be
added for sandwich panels. This core layer does have the ability to have a different thickness
than the structural layers. The vector of pointers to the thickness was implemented to easily
change thickness of the structural walls by just changing one private variable. This works
since all pointers for structural walls point to the t private variable of the wall class.

The overloaded function can also be called with an extra floating point number:

1 void Wall::addLayer(double theta, Materials *mat)
2 {
3 ...
4 ..
5 .
6 Materials* matpoint = new Materials(...,...,...,...,Ez,Ex,G,mux,muz);
7

8 mp.push_back(matpoint);
9 tvec.push_back(&t);

10 layers++;
11 }

This double floating point variable called theta, indicates the angle under which the
material is placed compare to the global z-axis and the materials prime axis. This is only used
for orthotropic materials such as Carbon or Glass fiber composites. The code is not shown in
full since the function is quite long. The rest of the function deals with converting material
constants in its local plane to global constants. The function creates a new material with the
correct global coordinates and the function then points towards this for further reference.

A final responsibility the wall class carries out is the calculation of the density per square
meter of wall. This function can be called from within another object containing a wall object to
calculate the objecst mass. The object which carries a wall object can obviously also set/update
parameters concerning thickness of the wall to the required value.

Material The material class contains material constants such as Young modulus, Poisson
ratio and yield stress. Material objects were initialized in a material database header file which
contains all materials used and is initialized at the start of the program.

The material class has an overloaded constructor. One constructor initializes an object for
isotropic material. The other constructor function creates an object for orthotropic material
where material constants can be given in different directions.

Propellants & Pressurizers Lastly there are propellant and pressurizer classes which contain
data about each respectively. This data is in the form of minimum and maximum allowable
temperature and their density shift within these ranges of temperatures. These classes only
store data.

II. Building the launch vehicle

Building of the launch vehicle is done from within the launch vehicle class and extends itself
to basically all other objects which represent subsystems of a rocket stage. The process starts
of fairly basic with the function looping through its stages beginning with the first stage
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and working its way up. First the function calls another function within the ith stage and
commanding it to build the stage. After this the program calculates the height of the stage
with the calcVerticalShift(int) function. This way the LV knows how much to shift the
stage upon with the previous build stage must rest. Lastly an if statement is called to build
an inter-stage for the previous stage. This function has to be called after the stage above it is
build, since it relies on data from the stage above (Tank and engine(s) geometry).

1 void Launchvehicle::buildLV()
2 {
3 double verticalShift =0.0;
4 for (int i=0; i< numberOfStages ; i++)
5 {
6 cout << "building stage: " << i + 1 << endl;
7 stage[i]->buildStage(verticalShift);
8 cout << "finshed building stage: " << i + 1 << endl;
9 verticalShift = calcVerticalShift(i);

10

11 if (i > 0)
12 {
13 buildInterstage(*stage[i-1],*stage[i]);
14 }
15 }
16 }

Building the stage in the buildStage(double) function is more complex and will not
be fully printed here due to its length. The beginning of the function is shown below. The
function starts with initializing a 3x6 matrix called the transformMatrix. This function is used
to determine the location of the rocket stage’s subsystems in the launch vehicle coordinate
system. The transform matrix’ coordinates are set the vertical shift in the z direction to adjust
for possible stages below the current stage which is building, the rest of the transform matrix
coordinates are set to zero.

The function continuous by executing the bundleEngines() function, this function is dis-
cussed in more detail below. After this the real building of the stage begins by starting at the
bottom of the stage and working upwards. Engine coordinates in the LV frame of reference
are stored in the stage class, this way the stage class knows object coordinates in both the stage
and LV reference frame. On line 10 the program loops through every engine in the stage. On
line 12 the program shifts the coordinates of the engines in their own reference frame to the
LV reference frame by adding the transform matrix. After the for loop every engine is places
in the correct position according to user input.

The program builds the stage subsystems (engine in this case) by calling subsystem class
functions of creating the subsystems own coordinates in its own coordinate system. It then
linearly transforms those local coordinates to global LV or stage coordinates. Please note that
the function call to get engine coordinates in the local reference frame is not shown below.
This function is present within the bundeleEngines() function.

After the for loop coordinates of the just placed engines are called and temporary put into a
matrix variable. This variable is used to create a new transform matrix on line 16 & 17. This
way a new subsystem (thrust-frame) can be added on top of the engine(s).
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1 void Stage::buildStage(double verticalShift)
2 {
3

4 Eigen::MatrixXd transformMatrix(3,6);
5 transformMatrix << Eigen::MatrixXd::Zero(2,6),
6 Eigen::MatrixXd::Constant(1,6,verticalShift);
7

8 // put engines at the bottom
9 bundleEngines();

10 for (int i = 0 ; i < numberOfEngines ; i++)
11 {
12 *(engineCoordinates[i]) = *(engineCoordinates[i]) + transformMatrix;
13 }
14

15 Eigen::MatrixXd EC = *(engineCoordinates[0]);
16 transformMatrix << Eigen::MatrixXd::Zero(2,6),
17 Eigen::MatrixXd::Constant(1,6,EC(2,3));
18 ...
19 ..
20 .

The rest of the buildStage function adds subsystems in a similar manner to the engines
and updating the transform matrix as it "climbs" higher up the stage. exceptions are made to
the last stage to add a payload and fairing other-wise an inter-stage is constructed within the
launch vehicle class. At the end of the buildStage function propellant levels within the tanks
are calculated. This is described in more detail below in a section dedicated to this function.

The bundleEngines() function is described below. This function starts by calling a engine
object for its coordinates in its own local reference frame. The create "subsystem" coordinates
function on line 4 exist for every subsystem. The function builds the subsystem, saves the
local coordinates in the object and return the local coordinates to the caller. In this case the
local coordinates are stored as a variable named EC.

The function creates a separation angle over which the engines are space, e.g. 120 degrees
for 3 engines. After this the magnitude of the radius is calculated on line 7,8 and 9. This is
done by optimizing circle packing within a circle to determine the distance.6 After this every
engine is looped through to shift their coordinates in the x and y plane. This is done with a
special function on lines 16,17 and 18. This transformation function shifts coordinates in a
polar coordinate system linearly by an angle and radius to another polar coordinate system.

6Weisstein, Circle Packing, see n. 2.
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1 void Stage::bundleEngines()
2 {
3 // ASSUMING EVERY ENGINE HAS SAME DIAMETER AND LENGTH
4 Eigen::MatrixXd EC = engine[0]->createEngineCoordinates();
5 double engineRadius = EC(0,1);
6 double seperationAngle = 2 * pi / numberOfEngines;
7 double newRadius = (engineRadius *
8 CoordTransformations::getBundleRadius(numberOfEngines))
9 - engineRadius;

10 for (int i=0 ; i < numberOfEngines ; i++)
11 {
12 double teta = seperationAngle * i;
13 double radiusShift = newRadius;
14 Eigen::MatrixXd dummyMatrix = engine[i]->createEngineCoordinates();
15

16 dummyMatrix = CoordTransformations::
17 PolarToPolarLinear(dummyMatrix,radiusShift,teta);
18 *(engineCoordinates[i])= dummyMatrix;
19 }
20 }

III. Plotting the launch vehicle

The launch vehicle is plotted as a means to validate the build process and to a lesser extend
provide supporting evidence for center of mass and propellant level calculation correctness.
This is further discussed in chapter 9 of the report. This section goes into more detail about
the method of which the plot function were implemented.

Unlike most other functions, the plotting function happens outside the launch vehicle
class. The plotting is done within the QT 5 framework using the dialog class to achieve its
requirements. The dialog class is initialized in the main function of the program using the
launch vehicle object created as function variable.

1 Dialog w(LV); // plot and show the LV
2 w.showMaximized();

Here the LV variable is of the launch vehicle class and passes the launch vehicle in its
entirety to the dialog class. Once inside the dialog class the launch vehicle’s coordinates are
converted by scaling in order to ensure the launch vehicle fits on the screen in its entirety.

The dialog class also contains a private variable containing the view angle under which the
LV is plotted along side a scalar factor. This view angle variable determines the angle under
which the LV is plotted. The coordinates of the launch vehicle are taken together with the
view angle to project the three dimensional coordinates onto a two dimensional surface.

One of the advantages of these transformations stored as variables is the ability to dynami-
cally change these variables in the plotting window. This means with implementation of a
view buttons (seen in figure 6.2), the launch vehicle can be panned up, down, left and right.
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Figure 6.2: Control buttons in the top left corner of the plotting window.

Other functions include zooming in and out with the plus and minus buttons to view the LV
in more detail. The buttons on the top and bottom right adjust the viewing angle. This in
effect rotates the launch vehicle. Rotation can be used to verify the correct execution of the
bundeling of engines for example.

The actual plotting of the launch vehicle is done by using functions and libraries within the
QT framework (most notably QPainter) to connect lines and ellipses between coordinates of
subsystems.

IV. Calculating Propellant level

Calculation of propellant levels is important for determining the center of mass and conse-
quently determining the mass moment of inertia of the launch vehicle. The function calculating
propellant levels resides within the tank class and is called during the build process. Propellant
left is a floating point variable used as input from the launch vehicle class, this in passed onto
the stage class to finally be passed to the tank class. The code looks as follows:

1 void Tank::calcPropellantLevel(double PL)
2 {
3 double propellantMassLeft = PL * propellantMass;
4 double dz = 0.01;
5 double calcPropMass =0.0;
6 double bottom;
7 if (positionMatrix(2,0) <= positionMatrix(2,1))
8 {bottom = positionMatrix(2,0);}
9 else

10 {bottom = positionMatrix(2,1);}
11 double z = bottom;
12 int i;
13 while (propellantMassLeft > calcPropMass)
14 {
15 calcPropMass += contourFunction(z)*dz;
16 z += dz;
17 i++;
18 }
19 propellantLevel = z;
20 }
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Figure 6.3: Integration method used to calculate propellant level.

The double variable PL stands for propellant left and is a value from zero to one indicating
the mass fraction left in the tank. This fraction is calculated to mass left by multiplying it with
the total capable propellant mass in the tank on line 3. After initializing some variable the
program executes an if-else statement on line 7 to 10. This code finds the bottom of the tank,
i.e. the coordinate with the lowest z value.

After determination of the bottom most part the code executes a while loop where propellant
mass is numerically integrated over a distance z. When this propellant mass during integration
reaches the earlier calculated mass the value of z is equal to the propellant level when assuming
no errors of any kind take place.

The way integration works is through the contourFunction(double) on line 15. This
function return the surface density of the tank at a certain location z. This is done by creating
a function which calculates the contour of the tank. This can be represented by a graph with
radius r on the vertical and z distance on the horizontal axis, as seen in figure 6.3.

Figure 6.3 shows calculation of the propellant level of a tank with elliptical tank cap where
the propellant level is in the cylindrical part. The model can handle elliptical and conical caps
which can both be face outward (left cap in figure) or facing inward (right side of figure).

After a function for the contour is constructed a the value is integrated by surface of
revolution. This means the code calculates the surface of the cylinder and multiplies that by
the density of the propellant to obtain the surface density.

V. Calculating center of mass

Calculation of the location of the center of mass (c.o.m. or c.o.g.) is done with a function held
by the launch vehicle class. The core function is listed below. The algorithm starts with calling
a function which updates the total mass of the launch vehicle. This step is necessary to make
sure masses of all relevant objects are checked to see if they have been updated. Then after
initialization of some temporary variables calculation of the c.o.m. starts by integrating over
the length of the object (z direction).

63



CHAPTER 6. MODEL DESCRIPTION

1 void Launchvehicle::calcCOM()
2 {
3 updateWetMass();
4 COM = 0.0;
5 double calcMass = 0.0;
6 double height = stage[numberOfStages-1]->fairingCoordinates(2,3);
7 double dz = height/Settings::COMCalculationSlices;
8 double MPM=0.0;
9 for (double z = 0 ; z < height ; z+= dz)

10 {
11 MPM = MassPerMeter(z+(0.5*dz));
12 calcMass += MPM;
13 COM += (MPM*z);
14 }
15 calcMass = calcMass * dz;
16 COM = COM * dz / wetMass;
17 }

At line 11 in the illustrated code the function calls the MassPerMeter(double) function.
This function returns derivative of the mass function if it was plotted against the height of the
launch vehicle. This algorithm comes from equation 6.1 which describes the location of the
center of mass.7

zcog =
1

Mwet

∫ height

0
zρdz (6.1)

This formula is approximated by the algorithm with numerical approximation. Where N is
the number of slices over which the launch vehicle is divided and dz is defined as the height
divided by N.

zcog =
dz

Mwet

N

∑
i=1

rhoi(zi)(zi + 0.5dz) (6.2)

The algorithm also calculates mass of the launch vehicle through this method to check to
error in the calculation when comparing it to the wet mass of the launch vehicle. This is an
indication of the accuracy of the integration method.

VI. calculating moment of inertia

Calculating the mass moment of inertia (m.o.i.) is done with the equations shown in chapter 4
of this report. To clarify the main equation is shown below.

I =
∫ M

0
(z− zcom)

2dM =
∫ z

0
(z− zcom)

2 dM
dz

dz (6.3)

The parameters
dM
dz

is already a function discussed earlier and is incorporated into the
program as the MassPerMeter(double) function. Approximating the integral with numerical
integration leads to the following code:

7Eric W. Weisstein. Geometric Centroid. 2017. url: http://mathworld.wolfram.com/GeometricCentroid.html.
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1 void Launchvehicle::calcI()
2 {
3 MOI =0.0;
4 double height = stage[numberOfStages-1]->fairingCoordinates(2,3);
5 double dz = height / Settings::MOICalculationSlices;
6 for (double z = 0 ; z < height ; z+= dz)
7 {
8 MOI += MassPerMeter(z+(0.5*dz)) * (z - COM)*(z- COM);
9 }

10 MOI = MOI *dz;
11 }

The center of mass function has to be called before mass moment of inertia is calculated
since this function relies on its outcome, i.e. the location of the c.o.m.. Calculation of mass
along side of the mass moment of inertia was deemed not necessary since the center of mass
calculation is similar in giving a value for the error in these calculations.

VII. Calculating Mass

Finally calculation of mass is discussed in this chapter. This is naturally to main goal of the
program and starts with an iteration in the main function of the program. as previously
discussed this iteration is necessary to converge to a solution since the load case may change
after updating the mass of the launch vehicle. The calcStructureMass() function is called
from the launch vehicle class (line 7). This is where the actual structural mass is calculated.

1

2 for (int i = 0; i < n ;i++)
3 {
4 cout << "-------- Mass Iteration " << i+1 << "---------" << endl;
5 LV.calcCOM();
6 LV.calcI();
7 LV.calcStructureMass();
8 }

The calcStructureMass() function is described below and starts with a for loop on line 6
after initialing some temporary variables. This for loop runs in a different direction than most
other for loops in the model. This for loop starts at the top of the launch vehicle, i.e. the last
stage and move downwards. This is not done without a reason. The main reason for doing
this is to reduce the iterations needed in to converge to a solution for the structural mass in
the main function.

Compression force acting on a structural object is mostly affected by the drag, the load
factor and the objects above it. A more accurate axial compression load lead to calculation of
structural thickness closer to the final solution. It is thus better to calculate the top objects first
and let the program work its way down.

After initializing the for loop the program check if the current stage is the last stage and
if so the program calculates the mass of the fairing and the pay-load frame. This is done
by calculating the aerodynamic drag and load factor acting on the fairing and passing these
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values as variable to the calculation of dry mass function in the fairing object (line 12). After
this the payload frame mass is calculated by passing the compression force created by the
payload and acceleration to its mass calculation function (line 16).

1 void Launchvehicle::calcStructureMass()
2 {
3 double z=0.0;
4 double compForce = 0.0;
5

6 for (int i=numberOfStages-1 ; i >= 0 ;i--)
7 {
8 if (stage[i]->getLastStage())
9 {

10 // CALC FAIRING MASS
11 cout << "calculating fairing mass: ";
12 stage[i]->fairing[0]->calcDryMass(getAerodynamicDrag(),zGforce());
13 cout << "done" << endl;
14 cout << "calculating payload frame mass: ";
15 compForce = stage[i]->payload[0]->getMass() * zGforce();
16 stage[i]->payloadframe[0]->calcMass(compForce);
17 cout << "done" << endl;
18 }
19 else {
20 // CALC INTER STAGE MASS
21 ...
22 ..
23 .

The function continuous and is much longer than illustrated here. The function lets
every structural subsystem calculate its mass based upon new inputs calculated from the
getAerodynamicDrag(), ZGforce(), compressiveForce(z) and moment(z) function. At the
end of the function an update function; updateDryMass() is called to get the newly calculated
mass from all objects and update the total launch vehicle mass.
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Simulation Input

Various launch vehicles were used as input for the model. They are described in this chapter
along with their input. The program uses a .cpp file called "database" in which all launch
vehicles are stored. Propellants and pressurizers are stored in their respective class .cpp file.
Material is stored in a header file called materialDatabase.h. Finally a header file which
contains generals settings is used, named "settings.h".

This chapter first discusses general settings used to generate a launch vehicle. After this a
section about the Atlas-Centaur launch vehicle is discussed and finally a section about a small
modern liquid engine launcher is discussed.

I. General Settings

General settings are mostly placed within the settings header file in the program. The settings
file used in displayed below, all values which are not dimensionless have SI units attached
to them. The choice for integration constants around a value of 1000 to 2000 was to ensure
numerical integration without large errors while maintaining a relative short processing time.

A safety factor of 1.25 was chosen for the entire structure. The value of the safety factor was
determined rather arbitrary. This has a reason for it being a global safety factor where normally
every subsystem would have its own safety factor based on system requirements or else. This
safety factor is in line with the general standards for ultimate load, no safety factor could be
found for the Atlas-Centaur launch vehicle in literature. The structure is thus designed to
withstand the worst case scenario with a factor of 1.25 increase in force/moment/etc..

Stiffener and rings height and width are predetermined in the settings file to values which
are representable for normal rings and stiffeners compared to the expected skin thickness
of around 1 [mm]. This means skin thickness is the only variable which changes during the
program run time.

Buckling wave numbers are taken to be the minimum buckling force or close to this
minimum. These were chosen after iterating to find the right values. A solver can be used but
this will affect computation, this can be decreased by implementing an optimization algorithm.
This might be an addition to the model in the future.
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Other general settings include some mathematical or astronomical constant, this can be seen
under constants in the code below.

settings.h
//SETTINGS files
namespace Settings {

// general settings
static const double safetyfactor = 1.25;
static const int massCalculationIterations =2;
static const int COMCalculationSlices = 2000;
static const int propellantLevelSlices = 2000;
static const int MOICalculationSlices = 2000;
static const int MomentCalculations = 1000;

// stifferner and ring settings [m]
static const int numberOfStiffeners = 15;
static const double stiffenerHeight = 0.02;
static const double stiffenerWidth = 0.0005;
static const int numberOfRings =15;
static const double ringHeight = 0.02;
static const double ringWidth = 0.0005;
static const double Is = stiffenerWidth * pow(stiffenerHeight,3)/12.0;
static const double Ir = ringWidth * pow(ringHeight,3.0)/12.0;

//buckling
static const int numberOfBuckleHalfWavesM = 13;
static const int numberOfBuckleWavesN = 7;

// constants
static const double pi = boost::math::constants::pi<double>();
static const double R = 8.3144621; // gas constant
const double gEarth = 9.807; //[m/s2]
}

II. Atlas-Centaur

The Atlas-Centaur launch vehicle is a two stage launcher capable of carrying large payloads
into space. Data used for input to simulate the launcher is mostly taken from a paper reviewing
the flight performance of the Atlas-Centaur written by the Lewis Research Center.1 This
paper review the AC-13, AC-14 and AC-15. These are early version of the launch vehicle and
this is thus what the model is simulating. Over the years the Atlas-Centaur LV has evolved
significantly thus little resemblance to the earlier version remains, results from this simulation
can thus not be used to resemble the current day version of this launcher.

The appendix of this report contains the full description of the code used to simulate the
Atlas-Centaur launcher since it was deemed to long to put in the body of the report. Input not
mentioned here can be found there.

1Lewis’ staff, see n. 11.
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Table 7.1: Key variables Atlas-Centaur

Atlas Centaur

stage diameter 3.05 3.05 [m]
LOX tank pressure 3.4 3.2 [bar]
fuel tank pressure 6.0 1.9 [bar]
LOX temperature 97.0 97.0 [K]
fuel temperature 290 18.9 [K]
Load carrying LOX tank true true
Load carrying fuel tank true true
Common Bulkhead true true
LOX tank above fuel tank true false
Pressure tank location engine(s) engine(s)
Pressure tank pressure 200 200 [bar]

Table 7.2: Material data used for simulation of the Atlas-Centaur LV.

Name 301 Full Hard SS 301 Half Hard SS Alu Honeycomb Alu 5086

ρ[kg/m3] 7880 7880 32 2657
σyield[MPa] 965 758 10 225
E[GPa] 193 193 0.72 70.3
µ 0.27 0.27 0.3 0.33

i. Key Variables

The key variables chosen for the Atlas-Centaur are variables directly contributing to its build
and are taken from existing literature and can be seen in table 7.1. Figure 7.1 shows the
Atlas Centaur plotted by the model. All variables stated in the table are important factors in
determining the structural dry mass of the launch vehicle.

ii. Material

Material data used in the simulation is shown in table 7.2. ρ indicates density, σ indicates
tensile yield stress, E represents Young’s modulus and µ represents Poisson’s ratio. All
materials used for the Atlas-Centaur LV is assumed to be isotropic. The aluminum honeycomb
material is not used to withstand structural loads. This materials is only used as spacer for
the glass fiber composite and it is assumed it carries no load. This is why it yield stress is
composed in a way that is will not yield under any load.

iii. Engines

Three engines where used for the simulation of the Atlas-Centaur. The Centaur upper stage
used two RL10A-3 engines manufactured by Prat & Whitney. The Atlas stage used one
sustainer engine and two booster engines both developed and constructed by Rocketdyne.
Data about the engines is collected from the report mentioned earlier in this section. The
oxidizer to fuel ratios where used to calculated necessary propellant mass for the oxidizer and
fuel in the liquid engine rocket stages. Engine data can be observed in table 7.3.
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Figure 7.1: Plot of the simulated Atlas-Centaur launch vehicle.

Table 7.3: Engine data used for simulation of the Atlas-Centaur LV.

Name RL10A-3 Sustainer Engine Booster Engine

Manufacturer Prat & Whitney Rocketdyne Rocketdyne
Thrust[kN] 66.7 258 747
Reported Mass[kg] 228 1300 1452
Calculated mass[kg] 2 142 313 852
Diameter[m] 1.0 1.2 1.2
Length[m] 1.5 3.43 3.43
0/F 4.83 2.23 2.23
2 - Mass is calculated using Zandbergen M-C1 and M-S1 relations
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Table 7.4: Propellant data used for simulation of the Atlas-Centaur LV.

Name RP-1 LH2 LOX

Tmin[K] 270 14 54
Tmax[K] 310 23 97
ρmax[kg/m3] 823 77 1305
ρmin[kg/m3] 792 68 1105

iv. Material allocation

Most structural parts in the AC-13, AC-14 and AC-15 were reported to use full hard 301
stainless steel. Exception are:

• Fairing: Aluminum honeycomb and aluminum sheet sandwich construction. The actual
construction was of a glass fiber honeycomb structure but no reliable data could be
found on its properties therefore aluminum 5086 sheet was chosen as replacement.
• Centaur Oxidizer tank: Reported to use half-hard 301 stainless steel. This material is

very similar to the full-hard equivalent with a slightly lower yield stress.

v. Tank Geometry

Tank cap geometry was simulated to be the same to the actual shape whenever possible. The
only exception where the true shape could not be fully simulated was the top cap of the
Centaur hydrogen tank. This shape was assumed to be spherical in the model, the real shape
deviated from this slightly.

Atlas fuel tank: Conical bottom and spherical top

Atlas oxidizer tank: Inverted spherical bottom and spherical top

Centaur fuel tank: Inverted Ellipsoid bottom (a/b =
√

2) and spherical top

Centaur oxidizer tank: Ellipsoid bottom and Ellipsoid top (both with a/b =
√

2)

The Atlas first stage has the fuel tank below the oxidizer tank and the Centaur has its oxidizer
tank below its fuel tank. Both stages have integrated tank configurations as can be seen from
the inverted caps in both stages. All tanks are load carrying tanks and thus cylindrical parts
of tanks have only a single wall. Trust frames for both stages where determined to be attached
to the tanks and not the hull, the same applies to the payload frame.

vi. Propellant and pressurizer

The RL10A-3 engines used by the Centaur use liquid hydrogen and liquid oxygen as their
main propellant. The engines in the Atlas stage both use liquid oxygen and kerosene (RP-1) as
their main propellants. The pressurizer used by both stages is helium gas stored in spherical
tanks. Helium as a gas only needed two parameters to function in the model which is heat
capacity ratio γ set at a value of 1.66. The other value was molar mass M set to a value of
0.004[kg/mol]. All propellant and pressurizer data was taken from the NIST database and can
be seen in table 7.4.
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Table 7.5: Key variables for the small modern launcher configuration.

Small modern launcher Stage 1 Stage 2 Stage 3

stage diameter 1.4 1.4 1.4 [m]
LOX tank pressure 4.0 30.0 30.0 [bar]
fuel tank pressure 4.0 30.0 30.0 [bar]
LOX temperature 97.0 97.0 97 [K]
fuel temperature 290 290 290 [K]
Load carrying LOX tank false false false
Load carrying fuel tank true false false
Common Bulkhead false false false
LOX tank above fuel tank true true true
Pressure tank location between tanks between tanks between tanks
Pressure tank pressure 200 200 200 [bar]

III. Small Modern Launcher

A liquid configuration for a small modern launcher was simulated as a three stage launcher
using kerosene and liquid oxygen as propellant for all stages. Data from this simulation was
obtained internally at the NLR. No further reference to data obtained is thus mentioned, data
taken from elsewhere is naturally referenced.

i. Key Variables

The key variables chosen for the Small modern launcher are variables directly contributing to
its build and are based upon typical values for a small launcher. These determining variables
are described in table 7.5. Figure 8.1 shows the launcher as plotted by the model. Similar to
the Atlas Centaur are all variables stated in the table are important factors in determining the
structural dry mass of the launch vehicle.

ii. Material

Materials used in the small modern liquid launcher consist of orthotropic as well as isotropic
materials. Carbon fiber reinforced plastic is mainly used for the outside structure of the
launcher but also many tanks use this material to contain their propellant. An aluminum alloy
is also used as a structural material, mainly for the liquid oxygen tanks. Material data can be
found in table 7.6.

Since only material data for uni-directional CFRP was available the material has to have a
lay-up pattern as input. Lay-up of all CFRP laminates where determined to be [60/− 60/0]s.
This is a thin symmetric balanced quasi-isotropic lay-up and was deemed appropriate for the
structure.

iii. Engines

Engines selected for the project are unitary engines. These RP-1/LOX engines provide relative
little thrust but are used for all stages. The third and last stage only uses one of these engines,
the second stage uses 6. The first stage uses 36 of these engines assembled in a large manifold
to construct an aerospike nozzle. This engine of the first stage was therefore treated as if it
were one engine.
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Table 7.6: Material data used for simulation of the small modern liquid LV.

Name CFRP Uni-Directional tape Aluminium 5086 h36 Aluminum Honeycomb

ρ[kg/m3] 1607 2657 32
σ1[MPa] 1951 225 10
σ2[MPa] 22.6 225 10
E1[GPa] 119 70.3 0.72
E2[GPa] 7.10 70.3 0.72
µ 0.31 0.33 0.3

Table 7.7: Engine data used for simulation of the small modern liquid LV.

Name 1st stage engine 2nd stage engine 3rd stage engine

Manufacturer - - -
Thrust[kN] 277.8 46.1 7.7
Calculated mass[kg] 3 309.2 217.2 36.2
Diameter[m] 1.4 0.35 0.35
Length[m] 1.5 1.2 1.2
0/F 2.23 2.23 2.23
2 - Mass is calculated using Zandbergen M-S1 relation

table 7.7 shows the data used as input for the engines. Thrust shown is the magnitude of
engine thrust in vacuum.

iv. Material Allocation

The outside of the entire rocket is made out of a [60/− 60/0]s lay-up sandwich panel this
means that all load-carrying tanks, i.e. the fuel tanks also use this wall as their cylindrical
wall. The end-caps of the fuel tanks are made for a non-sandwich construction with CFRP.
Thrust-frames and payload-frames were also made with the CFRP sandwich wall.

The non-carrying LOX tanks are all fully made of aluminum. This means the LOX tanks
have a double wall at the cylindrical part where the inside in the aluminum tanks wall and
the outside is the earlier mentioned sandwich panel.

v. Tank Geometry

Tank geometry implemented was quite simple, predetermined propellant masses resulted in
the following tank shapes.

Stage 1 fuel tank: cylindrical tank with spherical caps.

Stage 1 oxidizer tank: cylindrical tank with spherical caps.

Stage 2 fuel tank: spherical tank.

Stage 2 oxidizer tank: spherical tank.

Stage 3 fuel tank: spherical tank.

Stage 3 oxidizer tank: spherical tank.
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vi. Propellant and Pressurizer

Propellant for all three stages is RP-1 with liquid oxygen. The data for these propellants can
be found in table 7.4. To pressurize the fuel and oxidizer tanks gaseous Helium was chosen
to be fitted in small spherical pressure tanks between the two tanks. The volume of these
pressure tanks was calculated with the volume of the to be pressurized tanks and an initial
tank pressure of 200[bar]. The number of pressure tanks for each stage was determined by
increasing the number from an initial two tanks until they fitted between the fuel and oxidizer
tanks.
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Verification & Validation

The report divides verification of the model up into two parts; internal and external verification.
Internal verification will focus on verifying functions within the model, external verification
will focus on verification of results.

I. Buckling Functions

Various buckling function were used in order to calculate the correct thickness required to
withstand each proposed load case. Verifying that these functions within the model, output
correct values is essential for the calculation of structure mass. Several cases where verified
using a simple FEM analysis with similar input parameters. The FEM analysis where executed
using ABAQUS software.

Buckling load criterion was calculated for a simple isotropic cylinder and compared to
FEM data. This comparison can be seen in table 8.1. The table shows good comparison
between theoretical buckling values (γ = 1) and obtained FEM data with values within 0.1%
of each other. The other values show a significant decrease in strength when imperfections are
accounted for (γ 6= 1). This value becomes significantly lower when radius over thickness ratio
increases, i.e. thin walled cylinder. It can also be observed from the table that the function
used for orthotropic materials is conservative compared its isotropic counterpart with a value
that is 17% lower.

The correlation factor; γ, calculated for the isotropic and orthotropic cylinder have values of
0.32 and 0.27 respectively. This means

Table 8.1: Comparison of obtained critical buckling loads for an isotropic aluminum cylinder under
axial compression.

Input [m] Results [kN]

t 0.002 Isotropic(γ = 1) 172.0
r 1 Isotropic 55.3
l 2 Orthotropic 45.9

FEM 171.8
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Table 8.2: Comparison of obtained critical buckling loads for an carbon fiber laminate with (0/60/-60)
symmetrical lay-up, cylinder under axial compression.

Input [m] Results [kN]

t 0.002 Orthotropic 49.1
r 1 FEM Lay-up 70.0
l 2

II. Build Process

Since the model "builds" a launch vehicle form the ground up the build process needed to
be verified. The model builds a launch vehicle by creating various coordinates for every part
inside a stage. These various parts are than given a place within the rocket stage, finally
this stage is put in its correct place in the launch vehicle. To ensure that each component
has its correct position a plotting tool was developed. This plotting tool plots the rocket in 3
dimensions where a quick assessment can be made to determine if the launch vehicle is build
correctly. An example of a plot can be seen in figure 8.1.

Figure 8.1 shows a wire-frame plot of a entire launch vehicle with fuel, oxidizer and
pressurization tanks drawn to scale. engines are represented as simple cylinders with a
diameter and height. inter-stage structures are plotted between stages and it can be verified
from the plot that these lengths are correct and that no object collides with another. Payload is
represented as a cylinder inside the fairing. The model supports more fairing designs but only
plots conical shapes. Other objects plotted are thrust frames, payload frames.

Other than object location more things can be checked using this plotting tool. An option
was implemented to draw the location of the center of mass, this can also be seen in figure 8.1.
It can’t be directly verified that it is in the absolute exact location but an engineer can use this
method to access if its calculation is in the right ballpark.

A similar plotting function was developed to check propellant level at a certain percentage
of maximum volume. Figure 8.1 shows full propellant levels for the third and second stage
and approximately half full tanks for the first stage, the levels are indicated with a red circle.
Propellant levels suffer from the same drawback as the center of mass plot, when it comes to
verification through plotting. This means the calculation cannot be verified directly through
the plotting tool. However, one can be certain propellant levels do not exceed the limits of the
tank and one can determine if calculated propellant levels are approximately in the correct
position since corresponding propellant volume fraction is known.

III. Mass distribution

Mass distribution plots can show mass varies in the launch vehicle and if this looks correctly
according to input given. This function is verified using the small modern launcher as input
and using the MassPerMeter(z) function plotted versus z coordinates. Figure 8.2 shows the
plot for three different propellant levels to verify its workings. The figure shows a clear mass
distribution where the first stage distribution differs from full to empty. The half full tank
clearly displays mass at the bottom of the tank and no mass at the top half. This is of course
expected behavior since the propellant is drained from top to bottom.
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Figure 8.1: Example of the small modern launcher vehicle plot.

77



CHAPTER 8. VERIFICATION & VALIDATION

Figure 8.2: Mass distribution of the small modern launch vehicle.

Figure 8.3: "Mass above z" of the small modern launch vehicle.
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IV. Axial Load

Verification of the working of the axial load function is necessary eventhough it is very similar
to the mass distribution. It is modeled differently however. The mass distribution used for
computing the axial load only looks at mass above the structure an mass distribution of the
structure itself. To clarify what is meant by this an example is given.

The axial load acting on a z coordinate on a cylindrical wall of a propellant tank is propor-
tional to the mass of the subsystems above it and the section of dry mass of the tank above the
z coordinate only. This means that propellant inside of the aforementioned tank is assumed to
not affect the axial load on the cylindrical wall. The weight of the propellant was modeled to
be carried by the bottom of the tank and not the cylinder.

This thus required a different function which is plotted is figure 8.3. Another method used
to verify the working of this function was to compare the vale of the total mass calculated by
the function at z = 0 to the total mass calculated by the model. These values matched with
slight error due to numerical integration by the axial load function.

V. Moment

Moment calculation is verified by inducing a load-case with a thrust vector and analyzing the
moment throughout the structure this is plotted in figure 8.4. This figure shows a smooth
solution to the moment experienced by the structure. Numerical integration was done from
either side starting with an moment of zero at the ends. The lateral thrust vector is induced at
z = 0 and shows a rapid increase of moment as it approached the center of mass after which
moment decreases due to mass being accelerated.

Numerical integration from both ends met at the center of mass. It can be observed that
both integrations have the same value and slope at the center of mass which indicates that the
moment is correctly computed.

VI. External Verification

External verification is done by comparing calculated values of the Atlas-Centaur rocket to
reported values for which data is present. Results of this verification can be seen in table 8.4
and table 8.3. Similarities can be observed through with calculated thicknesses approximating
reported ones. This results in fairly low mass error in the dry mass calculations for the Atlas
stage but a large error in computation of the Centaur dry mass.

Structural mass of the Centaur stage is fairly well approximated compared to dry mass.
This magnitude of this gap can be attributed to the large difference in fairing mass and the
Centaur having a rather large mass dedication to avionics (∼ 650[kg]) and a relative heavy
mass value for its insulation panels (∼ 555[kg]).

The method of calculating fairing thickness in the model was not observed in literature by
the author. This might be a cause for the large reported error. The reliability of this method is
thus undetermined until it can be validated through CFD and FEM models of fairings. This is
however outside the scope of this project.
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Figure 8.4: moment experienced by structure of the small modern launch vehicle at 2[deg] thrust
vectoring.

VII. Internal Verification

Internal verification is this report was defined as checking if the model has met it’s require-
ments mentioned in the first chapter. The clarify the requirements are again listed.

1. Computation time shall be tune-able versus computation accuracy.

2. TUDAT compatibility

3. TUDAT independent

4. structural mass shall be calculated within ±10% of actual values.

The first three requirements are easily verified the first requirement can be verified by the
general settings file which can be seen in chapter 7. A decision can be made to increase or
decrease the precision of the numerical integration functions of the model. These functions
are the most computation intensive functions in the model and were thus deemed to be able
to make the model well tune-able for the user.

The second and third requirement are easily verified since the model is completely build
within TUDAT but can be run stand alone. Since the model does not depend on external
TUDAT functions.

The last requirement is difficult to verify, since limited data is available. The dry mass of
the simulated Atlas stage was within 8.63% of the real life value which complies not with
the requirement since it applies to structure mass and not dry mass. It gives however a good
indication of accuracy.
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Table 8.3: Comparison of real and calculated values - Centaur

Parameter Literature Calculated Value Error [%]

Total dry mass [kg] 3150 1361.5 56.8
Total structure mass [kg] 427 500.1 17.1
Total Height [m] 14.63 13.48 7.86
Fuel tank shell thickness[mm]

Top 0.25 - 0.41 0.15 [-]
Cylinder 0.36 0.30 [-]
Bottom 0.33 - 0.66 0.68 [-]

Oxidizer tank shell thickness[mm]
Top 0.33 - 0.66 0.68 [-]

Bottom 0.46 - 0.51 0.68 [-]
Fairing mass[kg] 940 311.7 66.8

Table 8.4: Comparison of real and calculated values - Atlas

Parameter Literature Calculated Value Error [%]

Total dry mass [kg] 6109 5581 8.63
Total structure mass [kg] - 1378
Total Height [m] 21.0 23.0 8.69
Fuel tank shell thickness[mm]

Top 0.61 0.47 [-]
Cylinder 0.97 0.95 [-]
Bottom 1.04 1.16 [-]

Oxidizer tank shell thickness[mm]
Top 0.41 0.63 [-]

Cylinder 0.71 0.54 [-]
Bottom 0.61 0.47 [-]

Inter-stage mass[kg] 468 110.37 76.4

The centaur simulation give a structural mass error of 17.1%. This is outside the set
requirement formulated at the start of the project. This means this requirement is not met
since the error is to large. A hypothesis was made that the error can attributed to simplistic
modeling of the thrust and payload-frame. especially the thrust-frame was calculated to
be relatively heavy. This cannot be verified since this data is not available. A different
configuration of the thrust-frame with rings or a sandwich panel could greatly reduce its
thickness and thus mass.

VIII. Validation

Validation of the model happens by comparing the results to ZandBergens equations for mass
modeling of stages mentioned in chapter 1. Table 8.5 shows a comparison between the reports
model and zandbergens model. It can be observed that the results from both models is quite
different. There is no situation where both models approach the same value.

For the small modern launcher (SML in the table) this difference can be explained to a
certain extend. Zandbergen’s model seems to not favor small and light launchers since it
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Table 8.5: Comparison to Zandbergens model on stage mass

Construction mass Dry Mass
Model Zandbergen Model Zandbergen Reported

Atlas 1378 4807 5581 9748 6109
Centaur 500 2511 1361 2863 3150
AC-LV 1878 7318 6942 12612 9259

SML S1 161 2337 478 2251
SML S2 106 2138 318 1646
SML S3 21 2098 58 1523
SML-LV 288 6574 854 5421

makes use of a constant in its equations. This means that even the smallest launcher start with
a preset value. This value disappears becomes less significant when stage propellant mass
increases. This means small stages inadvertently have construction and dry masses above
∼ 1000[kg].

When comparing results from the Atlas-Centaur simulation the difference in the models
can be better analyzed. Since reported values of its mass are available and the simulated LV is
larger the comparison becomes more clear. An interesting observation can be made where
the model predicts the mass of the Atlas stage quite well compared to Zandbergen’s model.
This is vice-versa for the Centaur stage, where Zandbergen’s model provides more accurate
predictions.

Error in the simulation of the Centaur might be caused by the way fairing thickness
is calculated by the model. The fairing is reported to be fairly heavy compared to its
approximated mass, 940 vs 311 [kg]. It is difficult to determine how large of a portion
of fairing mass cannot be attributed to structural parts, e.g. separation systems. No data
was found on the actual thickness of the fairing which make analysis difficult. The Centaur
stage also had a unique insulation system for the liquid hydrogen which was quite heavy and
unconventional. Whichever is the case the fact remains that fairing mass calculation in the
model is an approximation which has not been verified.
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Results

I. Atlas-Centaur

Atlas-Centaur results are described in this section. The mass and required thickness of
structural parts is shown and a simulation of the first stage’s flight.

i. Mass & thickness

Mass and thickness results for the Atlas-Centaur simulation are displayed in table 9.1. Mass
for the propellant tank part is combined since it is considered one subsystem, this is also
the case for the fairing. Thickness of the structural parts is determined from the worst-case
scenario during flight.

The first 135 seconds of flight of the launch vehicle is simulated and required thickness was
determined. In order to determine load case the propellant left at a certain time in flight has
to be determined. This was done by determining the propellant mass flow of the first stage
propulsion system. Thrust and specific impulse is used to determine the mass flow rate. This
is turn calculates how much mass is lost during flight time t, which is set at 153 seconds, this
is the time where the LV experiences a maximum load case of 5.7.

• Booster thrust: 747[kN]
• Sustainer thrust: 258[kN]

• Booster specific impulse: 282[s]
• Sustainer specific impulse: 248[s]

ṁ =
FT

Ispg0
(9.1)

mass flow then becomes:

• Booster mass flow: 270[kg/s]
• Sustainer mass flow: 106[kg/s]
• Total mass flow: 646[kg/s]

• Booster mass flow: 307[kg/s]
• Sustainer mass flow: 93[kg/s]
• Total mass flow: 646[kg/s]
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Table 9.1: Mass and thickness of structural parts of the Atlas-Centaur simulation

stage 1 stage 2
mass[kg] thickness[mm] mass[kg] thickness[mm]

Fuel tank top
487.448

0.474093
160.657

0.15013
Fuel tank cylinder 0.948187 0.300259
Fuel tank below 1.16129 0.405905

Oxidizer tank top
541.14

0.634981
128.691

0.68363
Oxidizer tank cylinder 0.537306 0.505699
Oxidizer tank below 0.268653 0.68363

Thrust frame 102.513 3.62756 179.61 3.92148

Payload frame 11.0355 0.240942

Fairing cylinder
311.668

4.30375
Fairing tip 2.48408

Pressure tank 17.0528 9.89508

Interstage 110.37 0.313654

Total structure 1258.5238 801.55658

The findings of this simulation can be found in figure 9.1a. The figure plots required
thickness of various structural parts versus the flight time. Thickness was chosen to be
plotted instead of stress since it is more intuitive for illustration. This has to do with the fact
that the critical mode of failure can switch between tensile and buckling during flight. The
abbreviations in the plot, OT and FT stand for oxidizer and fuel tank respectively.

The figure shows rather constant lines of required thickness. Change in pressure due to
hydro-static effects increases with increasing with load-factor. It decreases with decreasing
propellant level. During the first 153 seconds of flight the propellant level in the second stage,
the Centaur does not decrease. This can be observed from the plot since required thickness
increases due to an increase in acceleration (load factor). This effect is especially visible in the
Centaur’s oxidizer tank, since the LOX is much heavier than the liquid hydrogen in the fuel
tank.

ii. Center of mass & moment of inertia

Center of mass and moment of inertia were determined for a first stage with an empty tank
to a first stage with a full tank. The results of this simulation can be seen in figure 9.2a and
9.2b. If constant mass flow is assumed than it can be observed from figure 9.2a that center
of mass does not shift linearly during flight. During the first 70 percent of flight time the
center of mass stays nearly at a constant position where a large shift happens during the last
30 percent of flight. Mass moment of inertia changes rather linearly with a value of 40 percent
of its initial value during depletion. This translates to a factor of approximately 2.5 increase in
angular acceleration with a similar moment applied between lift-off and burn-out.
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(a) required thickness of structure (b) load factor and propellant left

Figure 9.1: Atlas Centaur simulation during the first 153 seconds of flight

(a) Center of mass drift during first stage burn, expressed
in percentage of total height.

(b) Mass moment of inertia change during first stage
burn, expressed as fraction of maximum value calculated.

Figure 9.2: Atlas Centaur simulation of center of mass and mass moment of inertia.
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II. Small Modern Launcher

The small modern launcher was simulated and results for this simulation are shown in this
section. Similar to the Atlas-Centaur simulation the mass and thicknesses are shown as well
as a simulation during flight. The first stage of the launcher is assumed to have a constant
mass flow of:

ṁ = 89.35[kg/s] (9.2)

The flight time t f light is assumed to be 121 seconds.
This means that total propellant burned is:

Mp,burned = ṁt f light = 10.8 · 103[kg] (9.3)

Total propellant for this stage was determined to be:

Mp = 11.6 · 103[kg] (9.4)

Propellant left at the and of the flight is thus.

(PL) = 1− 10.8
11.6

= 6.9 · 10−2 (9.5)

i. Mass & thickness

Required thickness for structural subsystems during the first 121 seconds of flight can be
observed in figure 9.3a to 9.3d. This shows that fairing thickness structural thickness is
dependent on the maximum dynamic pressure. Most not pressurized structural parts such as
inter-stages and hulls are affected by load factor more than drag and thus sees it critical load
at the end of the simulation.

The simulation results are summarized in table 9.2, the table shows the required thickness
of every subsystem to withstand every load-case during the trajectory. The corresponding
mass of each subsystem is also displayed. A total construction mass for the small modern
launcher was determined to be 287.72[kg].

ii. Center of Mass and Moment of inertia

Moment of inertia and center of mass plots can be seen in figure 9.4. This plot shows the
properties plotted versus propellant left in the first stage tank. It can be observed that center
of mass shifts upwards during flight in a non-linear way. Assuming constant engine mass
flow the center of mass stays somewhat constant during the firs half of flight time. Moment
of inertia seems to decrease at an increasing pace during flight, this makes somewhat sense
since weight is removed further away from the center of mass during the end of the flight, i.e.
propellant is at the bottom of the tank.

A hypothesis on why center of mass is approximately at a constant distance during the first
half of flight was formulated. It is thought this behavior stems from the fact that the center of
mass initially is located somewhere between the propellant level of the two propellant tanks
in the first stage. Removing propellant above and below the center of mass and thus retaining
a somewhat similar center of mass is thought of as the reason of this behavior.
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(a) stage 1, required thickness of structure
(b) load factor and propellant left

(c) stage 2,required thickness of structure (d) stage 3,required thickness of structure

Figure 9.3: Small modern launcher simulation during the first 121 seconds of flight

Figure 9.4: Moment of inertia and center of mass plotted versus propellant left for the small modern
launch vehicle.
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Figure 9.5: Change of tank diameter vs tank weight and cylinder wall thickness of a low pressure tank
with buckling failure.

III. Changing variables

This section shows different kinds of graphs where the effect of changing variables is shown
and analyzed.

i. Tank diameter variation of a low pressure tank

Variation of the diameter of a cylindrical tank with spherical caps is shown in figure 9.5. The
horizontal axis shows the length over diameter value of the tank. The left side of the graph
thus indicates a tank with a large diameter while the right side represent thinner and longer
tanks. The left vertical axis shows the thickness of the cylindrical wall of the tank and the
right vertical axis shows the weight of the tank in [kg].

The tank in figure 9.5 is calculated through with a relative low pressure. This means that the
thickness of the material is based upon buckling failure instead of failure due to high internal
pressure. The tank experiences a flight load similar to the tanks of the Atlas-Centaur and the
small modern launcher is the previous sections.

The mass of the tank decreases by enlarging the diameter of the propellant tank. This is
expected since the tank become more "spherical" because is length also decreases. The tank
can thus encompass the same volume with a smaller surface area.

The cylindrical wall thickness of the tank seems to increase with an increasing diameter.
This might seem counter-intuitive since the length of the tank gets smaller but due to an
increase in circumference the required thickness due to buckling increases.
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Figure 9.6: Change of tank diameter vs tank weight and cylinder wall thickness of a high pressure tank
with tensile failure.

ii. Tank diameter variation of a high pressure tank

The same calculations were done on a high pressure tank with tensile failure due to the high
internal pressure inside. The results of this calculation can be seen in figure 9.6. The graph is
similar to the one in figure 9.5 with the same variable on each axis.

Similar to the low pressure tank a decrease in weight can be observed when the diameter
increases. In this case the decrease is much more linear and less steep with the plotted length
over diameter parameter. An increase in cylindrical wall thickness is expected with an increase
in diameter. Since required thickness of a cylinder under pressure scales linearly with diameter
(see appendix).

The interesting observation that can be made from both figures is the lower mass and
thickness of a tank under high pressure compared to a tank under low pressure. This is caused
by the internal pressure of the tank counteracting the compression force that causes buckling
failure. This results in a high pressure tank with a smaller required wall thickness than a tank
has a relatively low internal pressure.

iii. Varying tank pressure

Figure 9.7 shows a tank with a constant diameter but changing tank pressure. This is done
to illustrate the transition between buckling and internal pressure failing. Previous figures
illustrated the effect of changing diameter on low and high pressure tanks. Where low pressure
tanks needed a thicker wall. An increase in pressure however also requires a thicker wall
due to greater tensile strain on the material. This indicates that there is a minimum required
thickness for a certain tank pressure. This is what is shown in figure 9.7.
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Figure 9.7: Variation of tank pressure plotted versus tank weight and cylindrical wall thickness.

At roughly an internal tank pressure of 2.8[bar] the wall thickness is at its minimum. This is
obviously not a general rule and this point will vary for different launch vehicle configurations.
After this point internal pressure will be a deciding factor in determining the wall thickness
of the propellant tank. Before this point buckling is the deciding factor in determining
the cylindrical wall thickness. It is important to conclude that simple equations that relate
cylindrical wall thickness to internal pressure only work for relatively high pressures. At lower
tank pressures one cannot depend on these equations to give a representative wall thickness.

iv. Variation of tank a/b parameter

The variable a stands for the radius of the tank or the semi-major axis of an ellipsoid. The
variable b stands for the semi-minor axis of the ellipsoid or the "height" of the tank cap. It is
thus possible to change both parameters to change the shape of a propellant tank. A value
for a/b = 1.0 indicates a spherical tank. A higher value indicates a slightly squeezed tank.
Although spherical caps have an ideal shape to minimize thickness of the cap wall, it can
be desirable to "squeeze" the tank flat to shorten the structure. The effect of changing a/b is
illustrated in figure 9.8.

The figure has the variable a/b plotted on the horizontal axis with a value starting at
one(spherical) to a more flattened tank cap. The vertical axis on the left indicates the percentage
lost or gained compared to a spherical configuration. For this tank configuration only a small
loss in tank length is achieved by increasing a/b. The sacrifice for this is a rather large increase
in total tank mass. This seems to be the general behavior for a change in this parameter. Tank
cap wall thickness also needs to be increased significantly when increasing the a/b parameter.
As a general rule it was found not to let this parameter exceed the value of a/b = sqrt(2).

v. Propellant storage temperature

Figure 9.9 shows the effect of propellant storage temperature on the structural weight and
length of a liquid oxygen tank. Colder propellant has a higher density which leads to the
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Figure 9.8: Variation of tank a/b plotted versus tank weight and cylindrical wall thickness and tank
length.

possibility of constructing smaller propellant tanks. For the tank calculated a difference
of 16.0% in mass and 13.7% in height can be achieved. This is quite a significant gain or
loss in structural mass. As discussed earlier in this report the model does not take into
account possible increase in insulation thickness. This effect is difficult to analyze since colder
propellant would need thicker insulation but a smaller tank also encompasses less surface
area. The magnitude of the effect of insulation is thus unknown.
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Figure 9.9: Change in propellant storage temperature plotted versus tank weight and height.
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Chapter 10

Conclusions & Recommended
Continuation

The final chapter of the body of the report describes conclusions and recommended continu-
ation of the research. First a section reporting conclusions to the research. This section will
describe lessons learned and interpretation of the results of the simulation. A second section
will describes recommendations regarding continuation of the research.

I. Conclusions

Conclusions regarding the created model start with difficulties encountered before interpreta-
tion of the results is presented.

Fairing modeling One difficulty encountered was modeling of the fairing. As mentioned
previously in the report the modeling of the fairing was not found in literature and is thus
without validation. This means there was not a way to determine is validity without a relative
large set of data about fairing thickness. The reason for modeling the fairing are obvious for a
structural mass model but the error encountered from one validation (Centaur fairing)check
was large.

The method used in the model assumes an equal pressure distribution over the surface of
the fairing based on a drag force. Pressure is however not equally distributed over the fairings
surface, but can vary greatly. Heat-flux into the fairing is also not taken into account which
could be an important factor in structural design. These parameters and effects are outside
the scope of the project. The conclusion thus remains that modeling of the fairing is difficult
to validate.

Under valued dry mass Observing the results clearly indicates that the model under values
the actual dry and construction mass of a rocket stage. These calculated values differ in error
but the general trend is a lower calculated mass than the one observed from literature. This is
interesting since calculated thickness values seems to comply rather well with ones found in
literature. This indicates that the "missing" mass comes from structural parts not currently
modeled.

The model assumes all structural mass as a "perfect" monocoque structure, this might result
in lower expected values for structural mass. Perfect monocoque structure in this instance
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means a structure which parts flow over in each other fluently and is completely constructed
from monocoque shells. This means connection structures, attachment points, etc. are not
modeled. It is thus concluded that these "subsystems" likely compromise a large portion of
the structural mass. Future research could perhaps model these by assuming a simple ring
with bolted connection between parts or welds in metallic structures. This however creates
an abundances of extra variables which need to be determined. Thus, The feasibility and
usefulness of modeling these parts to determine structural mass more accurately will have to
be accessed first.

Another reason for under approximating dry mass is not modeling insulation of the
propellant tanks. Most notably, this resulted is a large error in the dry mass of the Centaur
simulation which uses a relative heavy insulation panel system which is jettisoned during
flight. This stage is also fully cryogenic using liquid hydrogen as fuel which could also result
the large insulation mass due to large temperature differences and tank surface.

Critical load-cases Different load-cases for one LV were analyzed, since multiple load-case
support was implemented in the model. Since even flight trajectories were analyzed the critical
load-cases during flight could be analyzed. The analysis of the critical load case for each
structural part was analyzed and a few conclusion can be drawn from it.

• Structural subsystems and parts yielding on buckling almost always have a critical
load-case when the load factor (i.e. acceleration) is maximized.
• As exception; fairing thickness is determined by max dynamic pressure q,likely not the

maximum load factor.
• Stress difference due to Hydro-static pressure it rather small. Higher load-factors mean

the hydro-static pressure increases but higher load factors also appear with decreasing
propellant levels which in turn decrease hydro-static pressure. They often almost cancel
each other out.
• Max hydro-static pressure often occurs when propellant tanks are completely filled.

This results in a general sense in three recommended load cases for structural analysis of a
launch vehicle:

1. Max dynamic pressure, q

2. Maximum load factor (often when propellant tanks are close to empty)

3. Full tanks.

This obviously does not paint the whole picture so to say for structural analysis. But this
could be a good start if computation time is limited.

Center of Mass Both launch vehicles simulated showed a similar shift in center of mass
when their tanks were drained. Its location stays somewhat constant at the beginning of the
burn and shifts rather rapidly upwards after a significant portion of the propellant has been
burned off. This means a linear shift in center of mass location in relation to propellant mass
cannot be assumed.

Moment Determination of moment acting on the structure was not a trivial analysis. The
resulting plots showed that when only thrust vectoring is applied as force the structure
experiences a maximum moment between the bottom of the LV and its center of mass. This
was somewhat expected since the mass of the LV starts to counter act the induced acceleration
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and at a certain point decreases its moment until it is zero at the top of the LV. Magnitude
of moment was observed to vary greatly with location and information of this relation is
necessary for proper analysis of the structural thickness.

Verification & Validation The research was somewhat stumped by lack of verification and
validation data. This means that the validation of the model could have been more thoroughly
if more data was available. Time constraint is also a factor in lack of this analysis. The model
has grown quite large within the developed period, with a larger number of functions which
needed to be tested and verified. This broad range of verification of functions and features
was traded off against the depth of each analysis.

Usefulness of the research This research has given insight into structural design of a con-
ventional launch vehicle. The research has analyzed critical factors for structural mass. From
limited data the usefulness of mass determination could not be well validated. The model
does seem to accurately predict necessary wall thickness under tension and buckling which is
definitely a step in the right direction for a complete dry mass prediction model. Insight into
distribution of axial load and moment acting on the structure was achieved through use of
functions within the model. The moment acting on the LV was in particular non-trivial. For
example, the small modern launcher simulation has a maximum moment applied to it between
its engines and center of mass. The magnitude of this moment is crucial for determining
required structural thickness and knowledge of its distribution is thus essential for a proper
structural design.

A more practical sense of usefulness of the model is determination of center of mass,
moment of inertia, axial load and moment throughout the structure. Solutions for these
parameters were not trivial but have been achieved with success. For example, it was observed
from detailed center of mass shifts that this shift is not linear as one might aspect between
full and empty tanks. The relation between propellant left and center of mass location can
take non-trivial shapes as can be seen in previous chapter. Another practical use of the model
is the approximation of moment of inertia, this can be used to determine maximum angular
acceleration of a hypothetical launch vehicle. This can be used in trajectory analysis as an
upper bound boundary condition.

Concluding The research goal to develop an accurate and quick model for structural mass
might be somewhat in the future still. Thickness of walls can be accurately predicted but
structural mass seems to be still relative inaccurate. Further research seems necessary to
implement structural parts which do not directly carry load but contribute in a different way,
e.g attachment methods. Hopefully this research will have contributed to the research of
approximating dry stage and launch vehicle mass.

II. Recommended Continuation

Further extension of the model might be seen in the form of adding various other subsystems
and parts to the mix of subsystems. This might start by adding insulation if required thickness
of said insulation can be determined. If so than implementation into the model would be
without trouble since surface area of propellant tanks is already known. Further research into
other structural parts a mentioned above might see improvement into approximation of dry
mass.
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Further validation of the model if data from other launch vehicles becomes accessible would
be greatly increase the value of the model and the research which was conducted. It is thus
recommended that this model is further validated in future research if possible.

A larger more complicated continuation of the model might be the implementation of the
dynamic beam equation. which is shown below.1

δ2

δz2

(
EI

δ2w
δz2

)2

= −µ
δ2w
δt2 + q(z) (10.1)

The reason it is interesting to implement this equation into the model is that solving the
equation for one can be applied for more accurate determination of moments due to bending
during flight. The second reason is the determination of natural frequencies of the LV. The
reason this equation could be implemented in this particular model is the existence of the
function µ in the model which stand for mass per unit length. This already exist within the
model as well as functions determining Young modulus E and moment of inertia I.

1Seon M Han, Haym Benaroya, and Timothy Wei. “Dynamics of transversely vibrating beams using four
engineering theories”. In: Journal of sound and vibration 225.5 (1999), pp. 935–988.
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Appendix A

Stresses in thin shell tanks

I. Internal pressure

i. Cylinder

without end caps : σz = 0 (A.1)

with end caps : σz =
pT R
2t

(A.2)

σφ =
PR
t

(A.3)

ii. Sphere

σϕ = σφ =
PR
2t

(A.4)

iii. Ellipsoid

σϕ =
pT R1

2t
(A.5)

σφ =
pT R1

t

(
1− R1

2R2

)
(A.6)

R1 =

√
a4z2 + b4x2

b2 (A.7)

R2 =
(a4z2 + b4x2)3/2

a4b4 (A.8)

at equator:

σϕ =
pTa
2t

(A.9)

σφ =
pTa

t

(
1− a2

2b2

)
(A.10)

at the top:

σϕ = σφ =
pTa2

2bt
(A.11)
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II. Hydrostatic Pressure

i. Cylinder

σz = 0 (A.12)

σφ =
ρpgzR

t
(A.13)

ii. Sphere

below the liquid’s surface d:

σϕ =
ρpgR2

6t

(3d
R

+
2cos2 ϕ

1 + cosϕ
− 1
)

(A.14)

σφ =
ρgR2

6t

(3d
R

+
(3 + 2cosϕ)2cosϕ

1 + cosϕ
− 5
)

(A.15)

above the liquid’s surface d, with Wl as the total liquid weight is Newton:

σϕ =
Wl

2πR2tsin2 ϕ
(A.16)

σφ = −σϕ (A.17)

Wl = ρgπd2
(

R− d
3

)
(A.18)

iii. Ellipsoid

below the liquid’s surface d with Wl the weight of the liquid below z:

σϕ =
Wl

2πR2tsin2 ϕ
+

ρgR2(d− z)
2t

(A.19)

σφ =
−Wl

2πR1tsin2 ϕ
+

ρgR2(d− z)
2t

(
2− R2

R1

)
(A.20)

Wl =
πa2z2

3b2 (3b− z) (A.21)

above the liquid’s surface d with Wl the weight of the liquid:

σϕ =
Wl

2πR2tsin2 ϕ
(A.22)

σφ =
−Wl

2πR1tsin2 ϕ
(A.23)

Wl =
πa2d2

3b2 (3b− d) (A.24)
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III. Stress due to own weight

i. Cylinder

σz = ρgz (A.25)

σφ = 0 (A.26)

ii. Sphere

σϕ =
ρgR

1 + cosϕ
(A.27)

σφ = −ρgR
( 1

1 + cosϕ
− cosϕ

)
(A.28)

iii. Ellipsoid
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Appendix B

Ellipsoid shell thickness due to
internal pressure with Von Mises
criterion

Von Mises criterion for plane stress without shear:

σv =
√

σ2
ϕ − σϕσφ + σ2

φ (B.1)

Stress in Ellipsoid:

σϕ =
pT R1

2t
(B.2)

σφ =
pT R1

t

(
1− R1

2R2

)
(B.3)

With:

R1 =

√
a4z2 + b4x2

b2 (B.4)

R2 =
(a4z2 + b4x2)3/2

a4b4 (B.5)

Make two terms A and B independent of thickness and internal pressure:

A =
R1

2
(B.6)

B = R1

(
1− R1

2R2

)
(B.7)

σϕ = pTt−1 A (B.8)

σφ = pTt−1B (B.9)

Fill in Von Mises criterion:

σv =
√

p2
Tt−2 A2 − p2

Tt−2 AB + p2
Tt−2B2 (B.10)
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APPENDIX B. ELLIPSOID SHELL THICKNESS DUE TO INTERNAL PRESSURE WITH
VON MISES CRITERION

After rearranging by getting t to one side and replacing Von Mises stress with material
yield stress we get:

t =
pT

σyield

√
A2 − AB + B2 (B.11)
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Appendix C

Modelling of force, shear and
moment lines

This chapter shows plots taken from the model which indicate the method used to determine
shear and moment at a certain location z. Figure C.1 shows the three main variants used in
the model which are indicated as point, even and sloped load. The force line indicated in
what way the force is acting on the beam. The beam can be assumed to be anchored around
coordinate 16 on the horizontal axis, the moment and shear line values at that point than
become the reaction forces necessary to counteract the force being applied. A note on the
point load force line is it’s apparent value of zero over the entire beam. This is not true since
at the point where the moment line meets the horizontal axis on the left most side a point
load is applied. The point load shear and moment lines are quite trivial since the shear line
is constant and equal to the force applied. The moment line is simply the force times the
distance from the force. It is also important to note that the moment is defined to be negative
for positive value of force and vice versa. The even and sloped load forces are defined as force
per unit distance. This creates a situation where the force line needs to be integrated to create
the shear line. In the areas where no force is applied the shear remains constant, similar to
the point load case. The moment line value for the even load is determined by the value of
the shear line at the same coordinate and a reference distance. The shear line value is the
total load applied up until that point but cannot be multiplied by the same coordinate like
the point load case. A reference distance needs to be applied. This reference distance is equal
to: z′ = z + 0.5(zend − z). where z is the desired coordinate and zend is the location where the
even loads ends. The reason for this is that the moment is determined by converting the even
load up until that point into a point load with the same total force and moment. This point
load is located where the total surface under the force line(i.e. the shear line), is half that of
the surface area under the force line of the desired coordinate. For the even load case this is
trivial in the middle and hence we get this simple equation.

The sloped load moment line works similar but is a little bit more complicated in determining
the reference location. Figure C.2 shows a triangle which can be assumed to be the force line
of a sloped load. This means that its surface area (i.e. shear line) is equal to:

Stotal = S1 + S2 =
a · b

2
(C.1)

and per definition:

S1 = S2 (C.2)
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Figure C.1: Force, shear and moment lines of the three main load methods.

d needs to be determined since it’s the location of the reference location, since this is where
there is an equal surface on each of its side.

a · b =
d · e

2
(C.3)

Since the triangles are similar:

a
b
=

d
e

(C.4)

thus:

e =
a · b
2d

(C.5)

a
b
=

2d2

a · b (C.6)

finally:

d =

√
a2

2
(C.7)
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Figure C.2: Triangle showing surface under a sloped load.
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Appendix D

Centroid of geometric shapes

Centroid for geometric shapes are given here, they are used to determine the center of gravity
of objects. The location of the center of gravity for a body is given in equation D.1. where M
is the total mass and dm a mass increment.

x̄ =

∫ M
0 xdm∫ M
0 dm

(D.1)

This equation can be rewritten.

x̄ =

∫ L
0 x

dm
dx

dx

M
(D.2)

The centroid of different shapes is described below. Cylinder (s = cross-section surface,

r = radius, h = height):

dm
dx

= ρ ∗ S = ρπr2 (D.3)

r = constant (D.4)

∫ L

0
x

dm
dx

dx =
πρr2

2
h2 (D.5)

x̄ =
h
2

(D.6)

Cone (R = radius of the base):

r =
R
h

x (D.7)

∫ L

0
x

dm
dx

dx =
ρπR2

4h2 h4 (D.8)

M =
πρ

3
R2h (D.9)

x̄ from the tip of the cone:

x̄ =
3
4

h (D.10)
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Thin hollow Cone:
S = 2πrt (D.11)

dm
dx

= 2ρπrt (D.12)

r =
R
h

x (D.13)

∫ h

0
x

dm
dx

dx =
2ρπRt

3h
h3 (D.14)

M = tρπR
√

R2 + h2 (D.15)

x̄ =
2
3

h (D.16)
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Appendix E

Model Flow Chart
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Figure E.1: Flow chart of current model (version 1)
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Appendix F

Atlas Centaur Simulation Input

Full code used for input for the Atlas-Centaur launch vehicle.
Atlas-Centaur

1 Launchvehicle Database::atlasCentaur()
2 {
3 Launchvehicle AtlasCentaur("Atlas-Centaur");
4 AtlasCentaur.createStages(2);
5

6 double massFuel,massOxidizer,diameter,internalPressure, height, aOverBTop,
7 aOverBBottom, ullageVolume, propellantTemperature, propellantDensity;
8 Materials material;
9 Propellants propellant;

10

11

12 ///////////////////////////////
13 // ATLAS
14 ///////////////////////////////
15 AtlasCentaur.stage[0] = new Stage(123500,true,false,3.05,false, "engine");
16

17 // ENGINES
18 //
19 AtlasCentaur.stage[0]->createEngines(3);
20 AtlasCentaur.stage[0]->engine[0] = new Engine("Sustainer Engine"
21 ,"Rocketdyne",257.98 * pow(10,3),1300.0,3.43,1.2,2.231546);
22 AtlasCentaur.stage[0]->engine[1] = new Engine("Booster Engine "
23 ,"Rocketdyne",74.7327 * pow(10,4),1452.0,3.43,1.2,2.231546);
24 AtlasCentaur.stage[0]->engine[2] = new Engine("Booster Engine "
25 ,"Rocketdyne",74.7327 * pow(10,4),1452.0,3.43,1.2,2.231546);
26

27 // THRUST FRAME
28 //
29 AtlasCentaur.stage[0]->createThrustframe();
30 AtlasCentaur.stage[0]->thrustframe[0] = new ThrustFrames();
31 AtlasCentaur.stage[0]->thrustframe[0]
32 ->wall.addLayer(&MaterialDatabase::FullHard301SS);
33

34 // FUEL TANK
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35 //
36 massFuel = AtlasCentaur.stage[0]->getTotalPropellantMass()
37 / (1.0 + AtlasCentaur.stage[0]->engine[0]->getOxidizerFuelRatio());
38 AtlasCentaur.stage[0]->createFuelTanks(1);
39 diameter = AtlasCentaur.stage[0]->getStageDiameter();
40 internalPressure = 6.0 * pow(10,5);
41 material = MaterialDatabase::FullHard301SS;
42 aOverBTop = 1.0;
43 aOverBBottom = 1.0;
44 propellant = Propellants::RP1();
45 propellantTemperature = 290.0;
46 propellantDensity = propellant.getDensity(propellantTemperature);
47 ullageVolume = 0.025;
48 bool loadCarrying = true;
49 AtlasCentaur.stage[0]->fuelTank[0] = new
50 Tank(massFuel,diameter,internalPressure,propellantTemperature
51 ,propellantDensity,"Ellipse","Balloon","Cone",aOverBTop,aOverBBottom
52 ,ullageVolume,loadCarrying);
53 AtlasCentaur.stage[0]->fuelTank[0]
54 ->cylinderWall.addLayer(&MaterialDatabase::FullHard301SS);
55 AtlasCentaur.stage[0]->fuelTank[0]
56 ->topWall.addLayer(&MaterialDatabase::FullHard301SS);
57 AtlasCentaur.stage[0]->fuelTank[0]
58 ->bottomWall.addLayer(&MaterialDatabase::FullHard301SS);
59

60 // OXIDIZER TANK
61 //
62 massOxidizer = AtlasCentaur.stage[0]->getTotalPropellantMass()
63 / (1.0 + (1.0/AtlasCentaur.stage[0]->engine[0]->getOxidizerFuelRatio()));
64 AtlasCentaur.stage[0]->createOxidizerTanks(1);
65 internalPressure = 3.4 * pow(10,5);
66 material = MaterialDatabase::FullHard301SS;
67 aOverBTop = 1.36;
68 aOverBBottom = -1.0;
69 propellant = Propellants::LiquidOxygen();
70 propellantTemperature = 97.0;
71 propellantDensity = propellant.getDensity(propellantTemperature);
72 ullageVolume = 0.025;
73 loadCarrying = true;
74 AtlasCentaur.stage[0]->oxidizerTank[0] = new Tank(massOxidizer
75 ,diameter,internalPressure,propellantTemperature,propellantDensity
76 ,"Ellipse","Balloon","Ellipse",aOverBTop,aOverBBottom,ullageVolume
77 ,loadCarrying);
78 AtlasCentaur.stage[0]->oxidizerTank[0]
79 ->cylinderWall.addLayer(&MaterialDatabase::FullHard301SS);
80 AtlasCentaur.stage[0]->oxidizerTank[0]
81 ->topWall.addLayer(&MaterialDatabase::FullHard301SS);
82 AtlasCentaur.stage[0]->oxidizerTank[0]
83 ->bottomWall.addLayer(&MaterialDatabase::FullHard301SS);
84

85

113



APPENDIX F. ATLAS CENTAUR SIMULATION INPUT

86

87

88 // PRESSURANT TANKS
89 Pressurizers pressurant = Pressurizers::Helium();
90 int numberOfPressureTanks = 8;
91 AtlasCentaur.stage[0]->createPressurantTanks(numberOfPressureTanks);
92 internalPressure = 200.0 * pow(10,5);
93 double pressurantTemperature = 273.0;
94 material = MaterialDatabase::FullHard301SS;
95 aOverBTop = 1.0;
96 aOverBBottom = 1.0;
97 ullageVolume = 0.10;
98 for (int i=0; i < numberOfPressureTanks ; i++)
99 {

100 AtlasCentaur.stage[0]->pressurantTank[i] = new
101 PressurantTanks(material,pressurant,ullageVolume
102 ,pressurantTemperature,internalPressure);
103 }
104

105 // INTERSTAGE
106 //MADE OF 301 HALF HARD STAINLESS STEEL
107 AtlasCentaur.stage[0]->createInterstages(1);
108 AtlasCentaur.stage[0]->interstage[0]
109 ->wall.addLayer(&MaterialDatabase::FullHard301SS);
110 AtlasCentaur.stage[0]->interstage[0]
111 ->wall.addStiffener(&MaterialDatabase::FullHard301SS);
112 AtlasCentaur.stage[0]->interstage[0]
113 ->wall.addRing(&MaterialDatabase::FullHard301SS);
114

115 ///////////////////////////////
116 // CENTAUR
117 //////////////////////////////
118 AtlasCentaur.stage[1] = new
119 Stage(13948.0,true,true,3.05,true, "engine"); //max propellant mass
120 , integrated tanks, fuel on top, stage diameter
121

122 // PAYLOAD
123 //
124 AtlasCentaur.stage[1]->createPayload();
125 AtlasCentaur.stage[1]->payload[0] = new
126 Payload("surveyor 6",995.0,1.0,1.0);
127

128 // ENGINES
129 //
130 AtlasCentaur.stage[1]->createEngines(2);
131 AtlasCentaur.stage[1]->engine[0] = new Engine("RL10A-3","Prat & Whitney"
132 ,66700.0,227.5,1.5,1.0,4.83); // name, manufacturer, thrust , mass ,
133 // length , diameter, O/F
134 AtlasCentaur.stage[1]->engine[1] = new Engine("RL10A-3","Prat & Whitney"
135 ,66700.0,227.5,1.5,1.0,4.83);
136
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137 // THRUST FRAME
138 //
139 AtlasCentaur.stage[1]->createThrustframe();
140 AtlasCentaur.stage[1]->thrustframe[0] = new ThrustFrames();
141 AtlasCentaur.stage[1]->thrustframe[0]
142 ->wall.addLayer(&MaterialDatabase::FullHard301SS);
143

144 // FUEL TANK
145 // made of 301 full hard stainless steel, a over b values are estimated
146 // , filled with liquid hydrogen, propellant density based on pressure
147 // and temperature via NIST database
148

149 massFuel = AtlasCentaur.stage[1]->getTotalPropellantMass()
150 / (1.0 + AtlasCentaur.stage[1]->engine[0]->getOxidizerFuelRatio());
151 AtlasCentaur.stage[1]->createFuelTanks(1);
152 diameter = AtlasCentaur.stage[1]->getStageDiameter();
153 internalPressure = 1.9 * pow(10,5);
154 material = MaterialDatabase::FullHard301SS;
155 aOverBTop = 1.0; //spherical top cap
156 aOverBBottom = -1.425; //negative since cap is inverted
157 ullageVolume = 0.015;
158 loadCarrying = true;
159 AtlasCentaur.stage[1]->fuelTank[0] = new
160 Tank(massFuel,diameter,internalPressure, 18.9,67.0,"Ellipse"
161 ,"Balloon","Ellipse",aOverBTop,aOverBBottom,ullageVolume,loadCarrying);
162 AtlasCentaur.stage[1]->fuelTank[0]
163 ->cylinderWall.addLayer(&MaterialDatabase::FullHard301SS);
164 AtlasCentaur.stage[1]->fuelTank[0]
165 ->topWall.addLayer(&MaterialDatabase::FullHard301SS);
166 AtlasCentaur.stage[1]->fuelTank[0]
167 ->bottomWall.addLayer(&MaterialDatabase::FullHard301SS);
168

169

170 // OXIDIZER TANK
171 // made of 301 half hard stainless steel, a over b values are estimated
172 // , filled with liquid oxygen, propellant density based on pressure and
173 // temperature via NIST database
174 massOxidizer = AtlasCentaur.stage[1]->getTotalPropellantMass()
175 / (1.0 + (1.0/AtlasCentaur.stage[1]->engine[0]->getOxidizerFuelRatio()));
176 AtlasCentaur.stage[1]->createOxidizerTanks(1);
177 diameter = AtlasCentaur.stage[0]->getStageDiameter();
178 internalPressure = 3.2 * pow(10,5);
179 material = MaterialDatabase::HalfHard301SS;
180 aOverBTop = 1.425;
181 aOverBBottom = 1.425;
182 ullageVolume = 0.025;
183 loadCarrying = true;
184 AtlasCentaur.stage[1]->oxidizerTank[0] = new
185 Tank(massOxidizer,diameter,internalPressure,97.0,1107.0,"Ellipse"
186 ,"Balloon","Ellipse",aOverBTop,aOverBBottom,ullageVolume,loadCarrying);
187 AtlasCentaur.stage[1]->oxidizerTank[0]
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188 ->cylinderWall.addLayer(&MaterialDatabase::FullHard301SS);
189 AtlasCentaur.stage[1]->oxidizerTank[0]
190 ->topWall.addLayer(&MaterialDatabase::FullHard301SS);
191 AtlasCentaur.stage[1]->oxidizerTank[0]
192 ->bottomWall.addLayer(&MaterialDatabase::FullHard301SS);
193

194 // PRESSURANT TANKS
195 pressurant = Pressurizers::Helium();
196 AtlasCentaur.stage[1]->createPressurantTanks(2);
197 internalPressure = 200.0 * pow(10,5);
198 pressurantTemperature = 273.0;
199 material = MaterialDatabase::FullHard301SS;
200 aOverBTop = 1.0;
201 aOverBBottom = 1.0;
202 ullageVolume = 0.10;
203 AtlasCentaur.stage[1]->pressurantTank[0] = new
204 PressurantTanks(material,pressurant,ullageVolume,pressurantTemperature
205 ,internalPressure);
206 AtlasCentaur.stage[1]->pressurantTank[1] = new
207 PressurantTanks(material,pressurant,ullageVolume,pressurantTemperature
208 ,internalPressure);
209

210 // FAIRING
211 //
212 double heightNoseCone;
213 AtlasCentaur.stage[1]->createFairings(1);
214 diameter = AtlasCentaur.stage[1]->getStageDiameter();
215 height = 6.7;
216 heightNoseCone = 4.87;
217 AtlasCentaur.stage[1]->fairing[0] = new
218 Fairing(diameter,height,heightNoseCone,"blunted cone");
219 AtlasCentaur.stage[1]->fairing[0]
220 ->wallTip.addLayer(&MaterialDatabase::Aluminium5086H36);
221 AtlasCentaur.stage[1]->fairing[0]
222 ->wallTip.addCore(&MaterialDatabase::AluHoneycomb);
223 AtlasCentaur.stage[1]->fairing[0]
224 ->wallTip.addLayer(&MaterialDatabase::Aluminium5086H36);
225 AtlasCentaur.stage[1]->fairing[0]->wallTip.settc(0.02);
226 AtlasCentaur.stage[1]->fairing[0]
227 ->wallCylinder.addLayer(&MaterialDatabase::Aluminium5086H36);
228 AtlasCentaur.stage[1]->fairing[0]
229 ->wallCylinder.addCore(&MaterialDatabase::AluHoneycomb);
230 AtlasCentaur.stage[1]->fairing[0]
231 ->wallCylinder.addLayer(&MaterialDatabase::Aluminium5086H36);
232 AtlasCentaur.stage[1]->fairing[0]
233 ->wallCylinder.settc(0.02);
234

235 // PAYLOAD FRAME
236 //
237 AtlasCentaur.stage[1]->createPayloadFrame();
238 AtlasCentaur.stage[1]->payloadframe[0]->setTankAttached(true);
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239 AtlasCentaur.stage[1]->payloadframe[0]
240 ->wall.addLayer(&MaterialDatabase::FullHard301SS);
241

242 return AtlasCentaur;
243 }

Atlas-Centaur
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