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 A B S T R A C T

High-Temperature Aquifer Thermal Energy Storage (HT-ATES) has the potential to significantly increase the 
renewable heat share in heating systems. However, HT-ATES has not been implemented in the current energy 
system models because the widely applied numerical models for HT-ATES are computationally expensive. 
This leads to a lack of HT-ATES assessment from an energy system perspective. Therefore, an accurate 
and computationally efficient model that is widely applicable is needed to facilitate such implementation. 
This research aimed to develop a novel data-driven model that generates the temperature profile of an HT-
ATES accurately and computationally efficiently. A trained machine learning algorithm predicts the recovery 
efficiency for an HT-ATES system, which, combined with other parameters, enables a nearest neighbor search 
to identify a suitable temperature profile. As a result, the temperature profile generated by the data-driven 
model has a root mean square error of 1.22 ◦C compared to the numerical model output. This error was shown 
to be larger for lower recovery efficiency values compared to higher values. The machine learning algorithm 
used to predict the recovery efficiency has a root mean square error of 1.45 percentage points. The data-driven 
model has a computation time of less than half a second, which is more than 180,000 times faster than the 
numerical model that was used to generate the data. This model is, therefore, suitable for integration in larger 
energy system models.
1. Introduction

There are growing concerns about CO2 emissions and their impact 
on global climate change. The heating sector is responsible for 40% 
of our global energy consumption [1] and is an important sector for 
reducing CO2 emissions. High-Temperature Aquifer Thermal Energy 
Storage (HT-ATES) systems offer a promising solution to reduce CO2
emissions, as they store excess heat, which can be used instead of 
burning fossil fuels when demand is high in winter [2]. HT-ATES is 
especially relevant in combination with less flexible sustainable heat 
sources such as solar and geothermal, as it can increase the load of 
these sources by shifting the use of the produced heat to the colder 
season, therefore also reducing CO2 emissions [3].

The feasibility of an HT-ATES system is highly dependent on the 
efficiency of the system, which is determined by the temperature of the 
water extracted from the HT-ATES, also called the temperature profile. 
There are different methods to calculate the temperature profile. Most 
common are the numerical models that simulate the physics of fluid 
flow in the aquifer, of which many different methods exist. Examples 
are finite differences method [4,5], finite element method [6–8] and 

∗ Corresponding author.
E-mail address: d.c.geerts@uu.nl (D. Geerts).

finite volume method [9]. In [10], 11 different simulators were com-
pared using the mentioned methods and showed that the simulation 
results are often comparable and accurate. However, these models are 
reported to have a high computational load, leading to long run times 
for individual assessments between 1 and 10 h [11–14]. The long 
computational time and complexity hinder their application in larger 
energy system modeling. As shown by Lyden et al. [15], no energy sys-
tem modeling tool has yet implemented an HT-ATES model, resulting 
in a significant gap in the analysis of HT-ATES from an energy system 
perspective. This highlights the critical importance of developing a 
computationally efficient and accurate model that can be integrated 
into energy system tools, enabling a large number of simulations to 
be conducted efficiently. By reducing computational demands, such 
a model would facilitate comprehensive scenario analyses, sensitivity 
studies, and optimization tasks in a time-efficient manner.

Another method for calculating the temperature profile is the an-
alytical method. Only one analytical solution for estimating the tem-
perature profile has been suggested [16]. They proposed an analytical 
approach to derive the efficiency and the corresponding temperature 
https://doi.org/10.1016/j.applthermaleng.2025.126817
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Nomenclature

𝜂 Recovery efficiency (–)
𝜂𝑑𝑎𝑡𝑎 Recovery efficiency in the dataset (–)
𝜂𝑝𝑟𝑒𝑑 Recovery efficiency predicted by the ML 

algorithm (–)
P𝑑𝑎𝑡𝑎 Value of a parameter in the data set (–)
P𝑛 New set of parameters inputted in the 

data-driven model (–)
T𝑑𝑎𝑡𝑎 Temperature profile over time of the 

dataset (◦C)
V𝑑𝑎𝑡𝑎 Injection pattern over time of the dataset 

(◦C)
X Temperature profile over volume (◦C)
𝑇 𝑖 Average temperature of injected water (◦C)
𝑇 𝑜 Average temperature of extracted water 

(◦C)
𝜎 Deviation in temperature profile (◦C)
𝑎 Anisotropy (–)
𝑑 Relative distance between two data points 

(–)
𝐸𝑖𝑛 Energy injected into of well (J)
𝐸𝑜𝑢𝑡 Energy extracted out of well (J)
𝐻 Thickness aquifer (m)
𝑘ℎ Horizontal hydraulic conductivity 

(m day−1)
𝑘𝑣 Vertical hydraulic conductivity (m day−1)
𝑛 Porosity of aquifer (–)
𝑇𝑒 Temperature of extracted water (◦C)
𝑇𝑔 Ambient groundwater temperature (◦C)
𝑇𝑖 Temperature of injected water (◦C)
𝑉𝑒 Yearly extracted water volume (m3)
𝑉𝑖 Yearly injected water volume  (m3)
𝑇 P𝑛
𝑖 Temperature of injected water in P𝑛 (◦C)
DDM Data-Driven model (–)
HT-ATES High-Temperature Aquifer Thermal Energy 

Storage (–)
ML Machine Learning (–)
RMSE Root Mean Square Error (–)

profile, which would resolve the computational burden that numerical 
models have. However, the scope in which this analytical approach is 
accurate is narrow, which was shown by the fact that when changing 
either injection rate, diffusivity, or injection screen length, the accuracy 
decreased, limiting the applicability of this method.

Based on the discussion above, a model is needed to calculate the 
temperature profile of HT-ATES systems that can reduce computational 
load while preserving the accuracy of numerical models across a wide 
range of HT-ATES parameters. Such a model facilitates the integra-
tion of an HT-ATES model into an energy system modeling tool and 
would support the economic and environmental assessment of HT-
ATES from an energy system perspective. To address this need, we 
develop a Data-Driven Model (DDM) enabling computationally efficient 
and accurate temperature profile predictions. The following definition 
of temperature profile is used in this study: the temperature of the 
volume extracted from a well over time. Note that this definition of 
the temperature profile inherently depends on the rate of extraction.

The DDM was created based on a large dataset previously gener-
ated [11], which contains different parameter values and the corre-
sponding temperature profiles. An accurate data point should be found 
in this dataset. The temperature profile is reflected in three aspects: 
2 
the maximum and minimum temperature reached during the extraction 
period and the path between those points. The maximum and minimum 
temperatures reached during extraction are approximated using the 
temperature of the injected water and the ground temperature, respec-
tively. The path between the maximum and minimum is reflected by 
the Recovery Efficiency (𝜂) of that cycle. The 𝜂 is often calculated using 
the mentioned numerical models. To avoid reliance on these models, 
the 𝜂 is instead predicted by a Machine Learning (ML) algorithm, which 
is well-suited to accurately predict single values, in this case, the 𝜂 [17], 
while being computationally efficient. Using these three parameters, 
which reflect important aspects of a temperature profile, a nearest-
neighbor search is conducted to find the most accurate temperature 
profile in the dataset. This search ensures that the resulting temperature 
profile is accurate while the approach is computationally efficient.

Based on the above discussion, the key novelties of this work 
are the following: (1) DDM methodology: By integrating ML with a 
nearest-neighbor search, the DDM effectively identifies accurate tem-
perature profiles. This approach combines the predictive accuracy of 
ML with the physical constraints inherent to temperature profiles, 
enforced through a search algorithm that is constrained by full-physics 
numerical models, ensuring consistency with comprehensive numerical 
model results. (2) Wide applicability: The dataset’s extensive parameter 
range allows the DDM to be applied to a wide variety of HT-ATES 
systems. Lastly, (3) Computational efficiency and accuracy: the pro-
posed model is based on data and relatively simple equations compared 
to numerical modeling, resulting in a low computational cost, which, 
combined with the wide range of applicability, makes this model useful 
for a large range of applications.

This paper describes the DDM and its applicability, accuracy, and 
limits. First, the DDM is explained in more detail in Section 2, after 
which Section 3 explains the assessment method for the model. The 
results of the model assessment are presented in Section 4 and discussed 
in Section 5. Conclusions are drawn in Section 6

2. Data-driven HT-ATES model

This section outlines the DDM used to generate a temperature pro-
file. Firstly, Section 2.1 introduces the dataset and describes its content. 
Section 2.2 explains how ML is applied to predict the 𝜂. Section 2.3 
describes how this 𝜂 is used in combination with the nearest neighbor 
search in the dataset to find the closest matching temperature profile. 
Lastly, Section 2.4 explains how the closest matching temperature 
profile is adapted to better align with the used parameters. Section 3 
explains the testing of this model as well as the assessment of the 
boundaries. The structure of this section and the next section is visually 
explained in Fig.  1. The model is open source and can be found on 
Github [18].

2.1. Dataset description

The data used was obtained from the research in Geerts et al. 
(2024) [11]. In that paper, multiple simulations were done to demon-
strate the relation between the 𝜂 of an HT-ATES system and seven 
relevant parameters. Where the 𝜂 is defined by Bloemendal et al. [4] 
as 

𝜂 =
𝐸𝑜𝑢𝑡
𝐸𝑖𝑛

=
𝑉𝑒𝛥𝑇𝑒
𝑉𝑖𝛥𝑇𝑖

=
𝑇𝑒 − 𝑇𝑔
𝑇𝑖 − 𝑇𝑔

. (1)

The volume injected is assumed to be the same as the extracted volume, 
allowing for an unambiguous comparison of 𝜂 values. The seven param-
eters and their minimum and maximum values are shown in Table  1, 
where anisotropy is defined as 𝑘ℎ∕𝑘𝑣.

The dataset contains 3501 data points, each point contains the 
mentioned seven parameters’ value, the corresponding 𝜂, and the cor-
responding temperature profile for the first 8 years of operation. An 
example of a small part of the dataset is shown in Table  2. The DDM 
is given a new set of parameter values, called P𝑛, and generates a new 
temperature profile based on these parameters.
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Fig. 1. The structure of Section 2 and 3 and the relation between the different sections.
Table 1
Minimum and maximum value of the parameters in the dataset [11].
 Parameter Minimum value Maximum value Unit  
 Porosity 0.1 0.3 –  
 Yearly injected volume 104 106 m3  
 Injected temperature 25 80 ◦C  
 Ambient ground temperature 10 30 ◦C  
 Horizontal hydraulic conductivity 1 85 m day−1 
 Anisotropy 1 100 –  
 Aquifer thickness 20 104 m  

2.2. ML algorithm

Next, the 𝜂 was predicted based on P𝑛. The 𝜂 generally increases 
during the first few years of operation [6,19], after which the 𝜂 stabi-
lizes when a dynamic equilibrium is reached with the aquifer, which 
means the 𝜂 does not change in subsequent years. The predicted 𝜂 is 
the stabilized 𝜂 that was calculated after eight injection and extraction 
cycles [11]. The ML algorithm predicts the 𝜂 based on the mentioned 
seven parameters. It was trained and tested on the dataset described in 
the previous section using 80% of the data for training the algorithm 
and the other 20% for testing [20,21]. This split made sure that the 
resulting accuracy of the ML model was not caused by overfitting. The 
applied ML algorithm is an extreme gradient boosting regression [22] 
as is implemented in the XGboost Python package [22]. XGboost was 
shown to be accurate by multiple authors in multiple fields, such as 
global solar irradiance prediction and district heating load forecast-
ing [17,20,21,23]. This ML algorithm was then used within the DDM 
to predict the 𝜂 based on P𝑛.

2.3. Nearest neighbor search

The resulting predicted 𝜂 was used to find the closest matching 
temperature profile in the dataset. Reformulating Eq. (1) to solve for 
recovered temperature yields: 

𝑇𝑒 = 𝜂(𝑇𝑖 − 𝑇𝑔) + 𝑇𝑔 , (2)

shows that the average extracted temperature is dependent on the 
𝜂, injected temperature, and ambient groundwater temperature. This 
average extracted temperature is dictated by the temperature profile, 
but the temperature profile cannot be calculated when only the average 
extracted temperature is known. Therefore, the three variables on the 
right side of the formula were used to find the closest temperature 
profile in the dataset, using a nearest neighbor search approach.
3 
This approach calculates the relative distance between P𝑛 and the 
parameters in the dataset, only taking into account the three parame-
ters shown on the right side of Eq.  (2). This distance (𝑑) between a data 
point and P𝑛 was calculated as follows 

𝑑 =

√

√

√

√

√

𝑁𝑝𝑎𝑟𝑎
∑

𝑖=1

𝑃 𝑑𝑎𝑡𝑎
𝑖 − 𝑃 𝑛

𝑖

𝑃𝑚𝑎𝑥
𝑖 − 𝑃𝑚𝑖𝑛

𝑖
, (3)

where 𝑁𝑝𝑎𝑟𝑎 is the number of parameters taken into account, which is 
three this case (see Eq. (2)). 𝑃 𝑑𝑎𝑡𝑎

𝑖  refers to the value of the data point 
of parameter 𝑖 and 𝑃 𝑛

𝑖  refers to the new value inputted in P𝑛 for that 
same parameter. 𝑃𝑚𝑎𝑥

𝑖  and 𝑃𝑚𝑖𝑛
𝑖  refer respectively to the maximum and 

minimum value of parameter 𝑖 as shown in Table  1. For 𝜂, the maximum 
value is 1, and the minimum value is 0. This equation calculates the 
relative distance between a data point and P𝑛, where each parameter 
is taken into account equally when determining the distance. This 
distance is calculated for all 3501 data points described in Section 2.1, 
and the temperature profile of the data point with the lowest 𝑑 value 
is used in the next step.

2.4. Temperature profile adaptation

The adaptation was to correct for the temperature of the injected 
water (𝑇𝑖). The temperature of the injected water of the data point 
chosen in the last step can be higher or lower than the injected temper-
ature in P𝑛, leading to inaccuracy. The maximum temperature that the 
temperature profile should reach should be equal to the temperature 
of the injected water (𝑇𝑖) in P𝑛 (𝑇 P𝑛

𝑖 ). The temperature profile was not 
corrected for the ground temperature (𝑇𝑔) even though the 𝑇𝑔 in P𝑛

might be different from the 𝑇𝑔 of the data point. This is because 𝑇𝑔 is 
only an approximation of the minimum temperature reached and not a 
strict minimum that the temperature profile should reach. This injected 
temperature was corrected by using the following equation 

T𝑚𝑎𝑛 = T𝑑𝑎𝑡𝑎 ∗
𝑇 P𝑛
𝑖

𝑚𝑎𝑥(T𝑑𝑎𝑡𝑎)
. (4)

Here 𝑚𝑎𝑥 refers to taking the maximum value in the temperature pro-
file. This adapts the temperature profile to better suit the new injected 
water temperature. This T𝑚𝑎𝑛 is the output of the model, which is the 
temperature profile over time for the first 8 years of operation. For 
temperature profiles beyond the eighth year, the temperature profile 
of the eighth year can be used as the 𝜂 is stabilized and should not 
change in subsequent years.

As mentioned in the introduction, the temperature profile always 
implicitly depends on the extraction rate. To make this dependency 
explicit, the temperature profile over volume is introduced to show 
the temperature of the extracted water over volume instead of over 
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Table 2
Example of the layout of the dataset used for the DDM, where the temperature profile contains a time series.
 Index 𝑛 𝑉𝑖 𝑇𝑖 𝑇𝑔 𝐻 𝑘ℎ 𝑎 𝜂 Temperature profile  
 0 0.1 1e6 80 30 20 1 1 0.83 [80, 80 . . . , 80, 80]  
 ... ... ... ... ... ... ... ... ... ...  
 3501 0.3 1e6 25 10 105 85 100 0.93 [25, 25, . . . , 25, 25] 
time. This decouples the production temperature from the operation 
profile, where the operation profile is defined as both the injection 
and extraction rate of one well. Temperature over volume allows the 
model to be applied to operation profiles beyond the ones considered 
in the dataset (which is the Base case in Fig.  2), adding great flexibility 
to the model. This introduces some error because heat losses in the 
aquifer are also proportional to time, which is not explicit in the 
temperature profile over volume [16]. The accuracy of this approach 
will be discussed in Section 4.

The temperature over volume was obtained using the following 
formula 

X =
T𝑚𝑎𝑛
V𝑑𝑎𝑡𝑎

. (5)

This equation divides the temperature profile over time (T𝑚𝑎𝑛) by the 
used operation profile over time (V𝑑𝑎𝑡𝑎), resulting in the temperature 
profile over volume (X).

3. DDM assessment and limit identification

First, in Section 3.1, the testing of the accuracy of the DDM is 
explained. Next, in Section 3.2, the method of assessing the limits of 
the DDM is explained.

3.1. Accuracy assessment of DDM

3.1.1. ML algorithm accuracy assessment method
The ML algorithm explained in Section 2.2 was tested. The pre-

dictive performance of the ML algorithm was captured using the Root 
Mean Square Error (RMSE) as follows [24] 

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑛
∑

𝑖=1

(𝜂𝑝𝑟𝑒𝑑 − 𝜂𝑑𝑎𝑡𝑎)2

𝑛
, (6)

where 𝑛 is the number of observations in the testing dataset. This 
formula shows the error in the predictions, where larger errors have 
a larger impact on the RMSE. The ML algorithm was compared with 
a linear interpolation algorithm. The linear interpolation algorithm 
interpolates between the 𝜂 values of the dataset based on all parameter 
values of the tested data point and uses the scipy.interpolate.interpn 
function [25].

3.1.2. Nearest neighbor accuracy assessment method
The distance (calculated in Eq.  (3)) was based on three parameters, 

for reasons explained in Section 2.3. However, this distance can also 
be calculated using any combination of parameters. To check the 
accuracy of only using the three parameters mentioned in Section 2.3, 
multiple combinations of parameters were compared. To facilitate this 
comparison, five options were created, and each calculates the distance 
of Eq.  (3) based on different parameters. The five options and the used 
parameters are shown in Table  3.

These options were compared using the following method. First, the 
parameters of a data point were obtained. This data point was then 
removed from the dataset to prevent the nearest neighbor algorithm 
from finding that data point. The multiple nearest neighbor options 
were run, generating a temperature profile. This temperature profile 
was compared with the temperature profile of the removed data point, 
using the RMSE. This process was repeated for every data point in 
this way, and the DDM is directly compared with the results of the 
numerical model. This method of calculating the RMSE was also used 
to obtain the RMSE of the DDM in general.
4 
Table 3
Options of parameters included in distance calculation of the nearest neighbor search, 
used for comparison.
 Options Included parameters  
 Base 𝜂, 𝑇𝑖, 𝑇𝑔  
 𝜂 only 𝜂  
 All parameters 𝜂, 𝑇𝑖, 𝑇𝑔 , 𝑉𝑖, 𝑎, 𝑘ℎ, 𝐻 , 𝑛 
 Four random parameters 𝑎, 𝑇𝑖, 𝐻 , 𝑉𝑖  
 Base plus one 𝜂, 𝑇𝑖, 𝑇𝑔 , 𝑉𝑖  

3.2. Limits identification

The original dataset was based on a numerical model that included 
certain assumptions. When these assumptions are altered, the accuracy 
of the DDM may decrease, limiting the reliable use of the DDM. One 
operational assumption is tested, namely, using a different operation 
profile than the one used to create the data points. The test aims 
to evaluate how changes in these operational assumptions affect the 
accuracy of the data-driven model, which is done by changing the 
assumption in the MODFLOW model [11] and comparing the resulting 
temperature profile with the temperature profile in the dataset.

The yearly operation profile was assumed to be a sinusoid as shown 
in the base case in Fig.  2. This is called base, as it is the operation profile 
on which the dataset is based and which mimics the yearly variability 
in heat supply and demand. The effect of keeping the operation profile 
the same between simulations is twofold: firstly, the injection and 
extraction period are sequential, with each period lasting six months. 
Secondly, the injected and extracted volumes always follow the same 
pattern. The consequence of these assumptions is tested by running the 
model from [11] again using different operation profiles.

Three operation profiles were created to test the effect of keeping 
the operation profile the same between simulations: (1) sequential ran-
dom operation pattern, where sequential means that the extraction and 
injection period are sequential, lasting six months each, and random 
means that the injected and extracted amount is randomized for each 
time step. (2) sequential constant pattern, where constant refers to the 
fact that the injected and extracted amount are kept constant during 
the extraction and injection period, and (3) mixed random operation 
profile, where the extraction and injection period are shorter than six 
months. This was implemented as three months of injecting, three 
months with both injecting and extracting, switching between injecting 
and extracting multiple times at random intervals, three months of 
extracting, and again three months with both injecting and extracting 
at random intervals. The used operation profiles are shown in Fig.  2. 
To allow for a fair comparison, the extracted and injected volume over 
a year was kept the same between operation profiles, which was the 
assumption used in Eq.  (1).

The temperature profiles of these operation profiles are compared 
with the temperature profile of the base profile, which is the operation 
profile used for generating the 3501 data points (shown in Fig.  2 as 
base). The goal of this comparison is to identify which operational 
profiles can be accurately predicted by the DDM. The deviation of 
the different operation profiles from the base profile is calculated as 
follows: 

𝜎 =
∑𝑁𝑑𝑎𝑡𝑎

𝑖=1 |𝑇𝑏𝑎𝑠𝑒,𝑖 − 𝑇𝑠𝑐𝑒𝑛,𝑖|
𝑁𝑑𝑎𝑡𝑎

(7)

where 𝜎 is the deviation and 𝑇𝑏𝑎𝑠𝑒,𝑖 and 𝑇𝑠𝑐𝑒𝑛,𝑖 are the temperature value 
at point i for the base operation profile and the operation profile it 
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Fig. 2. Different operation profile used for comparison, positive rate refers to injecting 
and negative rate refers to extracting. The total volume used is the same between 
operation profiles.

is compared with respectively. 𝑁𝑑𝑎𝑡𝑎 is the number of data points in 
one temperature profile. This 𝜎 is calculated for 100 data points using 
different parameter values, using only parameter values corresponding 
to a minimum or maximum value as shown in Table  1, to test the edge 
cases.

4. Results

4.1. Model accuracy results

4.1.1. Machine learning algorithm
Predictions from the ML algorithm were more accurate than those 

achieved by linear interpolation (Fig.  3). The RMSE was 1.45 per-
centage points for ML compared to 16 percentage points for linear 
interpolation. The linear interpolation was accurate for those data 
points that were very close to any of the points that the algorithm 
interpolates between. The algorithm calculates 𝜂 values similar to those 
of the points interpolated between, and if the data point is close to one 
of these points, the 𝜂 value generated by linear interpolation is very 
similar, which is accurate. However, for other points, this was inaccu-
rate, showing that there is no linear relation between the parameters 
and the 𝜂. The ML algorithm was, on average, better able to predict the 
𝜂 values. The ML model was

4.1.2. Nearest neighbor options comparison
The RMSE of the nearest neighbor options were compared (Table 

4). As can be seen, the ‘‘Base’’ option has the lowest RMSE; only the 
‘‘Base plus one’’ option is comparable, while the other options perform 
significantly worse. As explained in Section 2.3, the calculation of 𝑇𝑒 is 
based on these three parameters, and therefore, the temperature profile 
can best be found using only these three parameters. The ‘‘Base’’ option 
is generally the most accurate, although it does not perform best for all 
tested data. Most notable is that the ‘‘Base’’ option does not perform 
well with a small injected volume. The ‘‘Base plus one’’ option performs 
better, as it includes injected volume in its search.

An example of temperature profiles of the different options is shown 
in Fig.  4. The Base option has the lowest deviation. As can be seen, 
all options have taken a different data point on which the temperature 
profile is based because all options have a different temperature profile. 
If two options had chosen the same data point, then their resulting 
temperature profile would be identical. Some of the data points have 
a more suitable temperature profile than others, leading to a lower 
deviation.

Another design for the nearest neighbor search was also considered. 
This design used different weights for each parameter when using 
Eq. (3). Using different weights changes the model to be more accurate 
for some data points and less accurate for others, but no weights were 
found that led to a significant reduction in RMSE.
5 
Table 4
Comparison RMSE of the different nearest neighbor options, calculated using all data 
points.
 Base 𝜂 only All parameters Four random Base plus one 
 RMSE 1.22 ◦C 3.48 ◦C 3.47 ◦C 3.79 ◦C 1.40 ◦C  

4.1.3. Computational performance
The RMSE of the DDM is 1.22 ◦C compared to the numerical 

model that used the same parameters and can thus be considered 
the reference. The run time of the model was on average 0.20 s per 
temperature profile and 28% of this was spent on loading the data set, 
which used 235 megabyte of memory (Section 2.1), 6% on predicting 
the 𝜂 (Section 2.2), another 47% on the nearest neighbor algorithm 
(Section 2.3) and the last 19% on the temperature profile adaptation 
(Section 2.4). This was timed using Python 3.9 and an Intel Core i7-
1255U without multiprocessing. The numerical model on which this 
DDM is based required, on average, 601 min for one temperature 
profile, making this model 180,000 times faster.

4.1.4. Temperature profile validation
In Fig.  5 two examples of a temperature profile generated by the 

DDM are shown, one that has the highest deviation in the dataset (Fig. 
5(a)) and one which has a deviation equal to the RMSE (Fig.  5(b)). 
Only 10% of the dataset has a higher deviation than 1.22 ◦C. The 
large deviation is caused by the difference in the rate of decline of 
the temperature profile. Both temperature profiles have a comparable 
𝜂. However, the temperature profile of the DDM model drops at the 
beginning of the extraction phase and then stabilizes, while for the data 
point, the extraction temperature decreases gradually, leading to a large 
deviation.

The temperature profile with a deviation equal to the RMSE
(Fig.  5(b)) still looks very similar to the temperature profile of the 
dataset, and a large part of the deviation can be attributed to the 
first extraction phase. Where the temperature profile of the data point 
reaches a very low temperature compared to the temperature profile of 
the DDM. However, when only using the eighth year, the error is only 
0.4 ◦C.

The error in the temperature profile generally increases when the 
𝜂 decreases (Fig.  6). This is likely because fewer data points have a 
low efficiency (Fig.  6). When using the nearest neighbor search with 
a low 𝜂, the closest temperature profile is likely less accurate as there 
are fewer points to choose from. Therefore, with lower 𝜂, the error is 
likely higher, but the technical potential of HT-ATES systems with low 
𝜂 is also low.

4.2. Identifying model limits

The 𝜂 values of the different operation profiles shown in Fig.  2 
were analyzed. The 𝜂 of the sequential constant and sequential random 
operation profile differed on average by 0.5% and 0.3%, respectively, 
from the base case. Where the 𝜂 value of the mixed operation profile 
was on average 9.2% higher than the base scenario. This is because 
using a mixed operation profile reduces the time between storage and 
extraction, leading to reduced storage periods, which in turn leads to 
reduced losses to the surroundings, increasing the 𝜂. The other two 
operation profiles are similar to the base operation profile in terms of 
time between storage and extraction, leading to similar 𝜂 values.

The parameter values used for Figs.  7(a) and 7(b) are shown in 
Table  5, and the 𝜂 of the base case operation profile is 88%. Fig.  7(a) 
shows the temperature profiles of the different operation profiles. What 
is immediately clear is that the mixed profile shows peaks, in contrast 
to the other temperature profiles, which are only decreasing during 
the extraction period. These peaks correspond with injecting instead 
of extracting. After injection, the temperature out of the hot well is 
the same as the temperature injected, which corresponds with these 
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Fig. 3. Comparison ML algorithm against linear interpolation, showing the error in the predictions.
Fig. 4. Temperature profile comparison for the different nearest neighbor options for 
the eighth year.

peaks. For the other two operation profiles, the temperature profiles are 
comparable to the base case, but the injection and extraction periods 
differ, meaning that at the same time step, each operation profile can 
have extracted more or less volume than the base case, leading to a 
different temperature at that time step. This is most notable with the 
constant operation profile, which injects at different time intervals than 
the base case, and large differences can be seen during these time 
intervals.

However, the temperature over volume (X) can resolve these time 
differences (Fig.  7(b)). The sequential operation profile outputs are 
in better agreement with the base operation profile. For the mixed 
operation profile, the temperature profile over volume still has large 
errors, and the conclusion needs to be drawn that this model cannot 
predict the temperature output of a mixed operation profile. The model 
underestimates the performance of an HT-ATES that has a mixed oper-
ation profile, resulting in 𝜂 on average 9.2% higher than the base case 
scenario.

Table  6 shows the deviation of the random and constant operation 
profile. The temperature over volume deviation is significantly lower 
than the temperature profile deviation for both operation profiles, 
showing that this X is suitable when the operation profile differs from 
the base case.
6 
Table 5
The parameter values used in Figs.  7(a) and 7(b).
 𝑛 𝑉𝑖 𝑇𝑖 𝑇𝑔 𝐻 𝑘ℎ 𝑎 
 Value 0.3 1E6 25 10 20 85 1 

Table 6
Average deviation (𝜎) of the two injection patterns.
 Injection pattern Constant Random 
 Temperature profile 1.62 ◦C 0.53 ◦C  
 Temperature over volume 0.17 ◦C 0.40 ◦C  

4.2.1. Shifting injection profile
An inconsistency in the resulting temperature profile was found 

relating to the first year of operation, which contained one injection 
and one extraction period. As seen in Fig.  2, the hot well starts with 
injecting but only injects half of the total yearly volume in the first 
storage cycle, from week 0 to week 13. After this, the full yearly volume 
is extracted. This leads to the first year of the temperature profile 
reaching a very low minimum compared to when the full total yearly 
volume would be injected and extracted.

As illustrated in Fig.  8, the temperature profile of the first year of 
the ‘‘Half total yearly injected volume before extraction’’ line reaches 
ground temperature at the end of the first year of extraction. This 
suggests that all the heat injected during the first injection cycle is 
extracted, resulting in minimal residual heat in the aquifer, and no 
increase in 𝜂 is expected in the following year. Consequently, in the 
second year, the HT-ATES has not yet been heated, and the 𝜂 for the 
second year does not benefit from the previous year. When injecting 
the full yearly volume before extraction, the minimum temperature 
reached during the first year’s extraction aligns with the original op-
eration profile for its second year, as depicted in Fig.  8. Therefore, if 
the HT-ATES starts with injecting the full total yearly volume before 
extraction, the first year of the temperature profile that is outputted 
by the DDM should be removed. This only influences the first year 
of operation, while the stabilized operation after eight years remains 
unchanged.
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Fig. 5. Example of temperature profiles of the DDM against the temperature profile of the data set. The dashed lines refer to the switching of operation phases, with ‘In’ referring 
to injection and ‘Ex’ referring to extraction.
Fig. 6. Error of the individual data points against the 𝜂 of the data point. With the 
top plot showing a distribution of 𝜂 values in the dataset. Note the logarithmic scale 
on the bottom 𝑦-axis.

5. Discussion

The temperature profile generated by the DDM has an RMSE of 
1.22 ◦C. The prediction of the 𝜂 by ML algorithm has a RMSE of 1.45 
percentage points compared to the numerical model. The ML algorithm 
would likely perform better with more data points, reducing the RMSE 
further. More data points also lead to higher chances of finding a more 
accurate data point during the nearest neighbor search. However, data 
generation was time intensive and took on average 601 min per data 
point. This model is accurate for data points with a high 𝜂, which are 
the most relevant HT-ATES systems. Where lower 𝜂 generally leads 
to lower accuracy. Generating more data points with a low 𝜂 would 
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likely improve the accuracy, however, these HT-ATES systems are less 
interesting to install.

The error in temperature predictions can impact energy system de-
sign, especially in hybrid systems combining HT-ATES with other heat 
sources. With an RMSE of 1.22 ◦C, deviations in predicted temperatures 
can affect storage dispatch, HT-ATES sizing, and overall efficiency. 
Overestimation may lead to increased reliance on backup heating, 
while underestimation could cause underutilization of stored heat and 
unnecessary over-sizing. However, the error is lower for higher re-
covery efficiencies, which are the most relevant cases for practical 
HT-ATES applications. Additionally, the purpose of this model is to 
provide a quick method to estimate the performance of the HT-ATES. 
Detailed models are still recommended for the actual implementation 
of the HT-ATES. These detailed models can take into account practical 
considerations such as variability in demand or supply or regulatory 
constraints.

This DDM can be implemented to represent the HT-ATES system 
without the computational effort required for running numerical mod-
els. This efficiency makes the DDM very appropriate as a component 
within a larger energy system model. This facilitates larger models 
to also include HT-ATES systems and enables them to adequately 
determine the impact of implementing such an HT-ATES system from 
a system perspective. However, the performance of the HT-ATES when 
using a mixed operation profile is underestimated, which needs to be 
taken into account when implementing this model into larger models.

Other designs for the DDM could be considered, which could im-
prove computational time, accuracy, or both. For example, training 
a ML algorithm to directly predict the temperature profile, which 
skips the nearest neighbor search step. However, with the data-driven 
approach, the output will always be constrained to the numerical 
modeling output, leading to temperature profiles that will always be 
comparable to the ones calculated by a full numerical model. When di-
rectly applying a ML algorithm, this is not guaranteed, and temperature 
profiles might be illogical.

There are also limitations to the DDM. Firstly, the assumption 
in [11] was that there should be no interaction between wells; there-
fore, for this model to be reliable, wells should be placed sufficiently far 
apart to prevent other wells from influencing the temperature profile 
of the targeted well.

Secondly, the DDM and the results in this paper are constrained by 
the underlying data. There is no knowledge of how this model behaves 
when using values outside of the parameter space. It will search for 
the closest data point it can find and will give a temperature profile 
similar to that data point, which might be inaccurate depending on the 
distance between the new values and the parameter space.
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Fig. 7. T𝑚𝑎𝑛 and X for the different operation profiles for the eighth year of operation, with the parameter values shown in Table  5.
Fig. 8. Effect of start of operation on temperature profile, ground temperature = 10 
◦C and vertical lines reflect the change of operation mode. The full total yearly volume 
line starts in the second year to show the similarities with the half total yearly volume 
line.

The temperature profile created by the model is based on operation 
profiles that inject half of the total yearly volume before extracting the 
full total yearly volume, which is not always the case. The proposed 
solution is to skip the first year of operation because in the first year, 
the extracted heat is very close to the amount of injected heat. The 
temperature profile of the eighth year remains the same because this 
is the stabilized temperature profile, which is the same regardless of 
starting time.

With this model, future work could investigate the sizing of an HT-
ATES system within the larger system, the optimization of flows within 
an energy system, or the comparison of different supply sources in 
combination with a storage component. Additionally, a more holistic 
approach of sizing heat supply technologies and HT-ATES simultane-
ously is enabled by this model. The design of this DDM can also be used 
for other purposes. It can be used to generate a time series for which 
data is available or can be generated, such as borehole thermal energy 
storage profiles [26] or the output of geothermal wells. This could also 
be a direction for future research.

6. Conclusion

This research contributes to the integration of High-Temperature 
Aquifer Thermal Energy Storage (HT-ATES) into larger energy system 
modeling tools by developing a novel data-driven HT-ATES model. 
The objective of the model is to generate an accurate temperature 
profile of a HT-ATES. The model is computationally efficient while 
maintaining the accuracy that numerical modeling provides. The model 
8 
enables analysis of HT-ATES from a system perspective, facilitating its 
incorporation into broader energy system studies.

The Data-Driven Model required less than half a second to generate 
a temperature profile. In comparison, the MODFLOW model that was 
used to generate the data required an average of 601 min per data 
point, making the Data-Driven Model more than 180,000 times faster. 
The Root Mean Square Error of the model was shown to be 1.22 ◦C 
compared to the numerical model. The model can be used reliably 
with different operation profiles as long as the injection and extrac-
tion periods are sequential and last a few months each. However, it 
underestimates recovery efficiency when switching between injection 
and extraction within a month.

This study also found that for different operation profiles compared 
to the base case, temperature profiles over volume are more accurate 
than those over time, emphasizing the role of extracted volume in the 
temperature profile.

This research demonstrated both the usefulness and the limits of the 
Data-Driven Model. The data includes a wide range of HT-ATES param-
eters, making the model applicable across different HT-ATES systems. 
The model’s robustness across varying operation profiles highlights its 
potential for broader applications in larger energy systems, maintaining 
accuracy while drastically reducing computational time.
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