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Frequency-Domain Analysis of the Fixed-Phase Reset Control System

Xinxin Zhang, Hsing-Li Hsu, and S. Hassan HosseinNia*

Abstract— Current reset elements mainly rely on the tradi-
tional zero-crossing resetting mechanism. This study introduces
a reset element with a new resetting mechanism that distributes
multiple resets within a single period for reset controllers with
sinusoidal reference inputs. This new control element is termed
“Fixed-Phase Reset Control (FPRC)”. A higher-order sinusoidal
input describing function is developed to analyze the frequency-
domain properties of the new controller. The accuracy of
this frequency-domain analytical approach is validated through
simulations on three systems. Through the analysis, the new
FPRC demonstrates phase lead compared to zero-crossing reset
control, but it introduces nonlinearities at low frequencies.

I. INTRODUCTION

The mechatronics industry places a substantial empha-
sis on attaining precise positioning and high-speed perfor-
mance in its systems, necessitating the optimization of con-
trollers [1]. Linear controllers, such as Proportional-Integral-
Derivative (PID) controllers, are extensively employed in
industrial settings due to their effectiveness and ease of
tuning. However, their performance is constrained by the
inherent linear limitations outlined in Bode’s phase-gain
relationship [2]. In the quest for alternatives, reset control has
emerged as a promising approach to surmount these linear
limitations.

The pioneering work of Clegg in the 1950s introduced
the simplest form of a reset controller, known as the Clegg
Integrator (CI) [3]. Notably, the first-order harmonic of the
CI exhibits a 52-degree phase lead while maintaining the
same slope (-20 dB/decade) as the linear integrator. This
characteristic challenges Bode’s phase-gain relationship and
shows potential for enhancing control system performance.
To expand the applicability of reset control, Horowitz in-
troduced the first-order reset element (FORE) [4], [5]. The
FORE has demonstrated promising outcomes in mitigating
high-frequency noise. Ongoing research in the realm of reset
control has yielded various reset controller variants, as ex-
emplified by works such as [6], [7], [8], [9]. Most preceding
reset elements operate on the classical “Zero-crossing Law”
resetting mechanism, where the reset controller’s output
resets to zero upon crossing zero by the input signal.
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Research efforts have explored the different resetting
mechanisms. Studies such as [10], [11] demonstrate that
manipulating the timing of reset actions can enhance the
performance of systems like PZT positioning stages. Other
research indicates that pre-defining reset conditions can op-
timize a reset adaptive observer [12] and improve tracking
capabilities in hard disk drive systems [13]. Despite these
efforts, the application of the new resetting mechanism to
reset controllers remains unclear. Furthermore, for the ef-
fective implementation of the new reset controller, there is a
need for a frequency-domain analysis method. To the best of
the authors’ knowledge, there are currently no available tools
for analyzing the frequency responses of reset controllers that
utilize non-zero-crossing resetting mechanisms.

This study aims to overcome these limitations, and its
structure is outlined as follows. Section II provides an
introduction to the traditional reset control system employing
the zero-crossing resetting law, encompassing its state space
representation and frequency domain analysis method. Sub-
sequently, the three primary contributions of this research are
presented as follows:

1) In Section III, we introduce a novel reset controller
termed as “Fixed-Phase Reset Control (FPRC)”. The
FPRC incorporates an innovative resetting mechanism
that enables the reset controller’s output to reset to a
predefined value when a specified phase-based signal
crosses zero. This mechanism is applied to common
reset elements, including the CI, the FORE, and the
Second-Order Single-State Reset Element (SOSRE)
[7].

2) Section IV formulates a Higher-Order Sinusoidal In-
put Describing Function (HOSIDF) for analyzing the
frequency response of the Single-Input-Single-Output
(SISO) FPRC under sinusoidal inputs. The accuracy of
the HOSIDF for FPRC is validated through simulation.
This HOSIDF method enables the analysis of the
frequency domain properties of the open-loop FPRC.

3) In Section V, The HOSIDF analysis shows the superior
phase lead of the FPRC compared to zero-crossing
reset control, but it introduces nonlinearities at low
frequencies.

Finally, Section VI delivers the conclusions of this study and
delineates potential avenues for future research.

II. BACKGROUND

A. The Definition of the Traditional Reset Controller
The closed-loop reset control system’s block diagram

is illustrated in Fig. 1. This system consists of various
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components: a reset controller labeled as C, a linear controller
denoted as Cα, a plant represented as P , a reference signal
given by r(t), an error signal denoted as e(t), a reset output
signal designated as v(t), a control input signal marked as
u(t), and a measured output tracked as y(t).

+-
r(t) e(t)  y(t)v(t) a

u(t)

Fig. 1: The block diagram of a closed-loop reset control
system, where the blue lines represent the reset action.

The state-space equations of the reset controller C with
the classical “Zero-crossing Law” is expressed as follows:

C =


ẋr(t) = ARxr(t) +BRe(t), e(t) ̸= 0,

xr(t
+) = Aρxr(t), e(t) = 0,

v(t) = CRxr(t) +DRe(t),

(1)

where xr(t) ∈ Rζc represents the state of the reset controller
and ζc is the number of states. Matrices AR, BR, CR, DR

collectively define the base-linear controller (BLC) of C. The
transfer function of the BLC, denoted as Cbl, is expressed as:

Cbl(ω) = CR(jωI −AR)
−1BR +DR. (2)

The reset matrix Aρ in the second equation in (1) is defined
as:

Aρ =

[
Γζr

Iζl

]
,Γζr = diag(γ1, γ1, ..., γi, ..., γζr ), (3)

where γi ∈ (−1, 1). Here, ζr denotes the number of reset
states, ζl represents the number of linear states, and the total
number of states is given by ζc = ζl + ζr. When Γζr = Iζr ,
C represents the BLC Cbl. Substituting the reset controller C
in Fig. 1 with its base-linear counterpart Cbl results in the
system being referred to as the base-linear system (BLS).

B. Frequency Response Analysis of the Reset Controller

Let V (ω) and E(ω) represent the Fourier transforms of
the output v(t) and input e(t) = |E|sin(ωt+ ̸ E) signals of
the reset controller C. These signals exhibit n harmonics in
V (ω) and E(ω), denoted as Vn(ω) and En(ω). The transfer
function of C denoted as Hn(ω) incorporates n harmonics,
as expressed in [14], [15] and given by

Hn(ω) =
Vn(ω)

En(ω)
=

CR(jωI −AR)
−1(I + jΘD(ω))BR +DR, for n = 1,

CR(jnωI −AR)
−1jΘD(ω)BR, for odd n > 1,

0, for even n ⩾ 2,
(4)

with

Λ(ω) = ω2I +AR
2,

∆(ω) = I + e(
π
ωAR),

∆r(ω) = I +Aρe
( π
ωAR),

Γr(ω) = ∆−1
r (ω)Aρ∆(ω)Λ−1(ω),

ΘD(ω) =
−2ω2

π
∆(ω)[Γr(ω)− Λ−1(ω)].

(5)

III. NEW RESET ELEMENT: FIXED-PHASE RESET
CONTROL

A. The Definition of the Fixed-Phase Reset Control

We introduce a novel reset element termed Fixed-Phase
Reset Control (FPRC). This reset mechanism involves mul-
tiple resets within a single steady-state period, evenly spaced
in terms of phase. Our emphasis in this paper is on the SISO
FPRC system, specifically designed for sinusoidal inputs.

Definition 1. The state-space representation for the FPRC,
denoted as C̃, under a sinusoidal input signal e(t) =
|E|sin(ωt) is given by:

C̃ =


ẋr(t) = ARxr(t) +BRe(t), t /∈ U,

xr(t
+) = Aρxr(t), t ∈ U,

v(t) = CRxr(t) +DRe(t).

(6)

The set of reset instants U = {ti = 2πi
ωk , i ∈ N} is

an unbounded time sequence increasing monotonously with
respect to i ∈ N, i.e., ti < ti+1 for any i ∈ N and limi→∞ =
+∞. In traditional reset controller C defined in (1), the set of
reset instants is defined as {ti} = {ti|e(ti) = 0, ti < ti+1}.
However, in our new proposed reset controller C̃, the reset
triggered signal is denoted as es = sin(kωt), where the
variable k denotes the number of reset instants per steady-
state cycle, with k = 2h, h ∈ Z+. When k = 2, the FPRC
C̃ is equivalent to the conventional reset controller C.

Define ∆i = ti+1− ti. Neglecting the input r(t), research
[10] established the stability condition for C̃ as presented in
the following proposition:

Proposition 1. If both ∆i = δ is a constant and Aρ ≡ M

is a constant matrix, then the reset system C̃ in (6) with the
zero initial condition xr(0) = 0 is (asymptotically) stable if
and only if [10]

|λ(MeARδ)|≤ 1, (< 1), ∀δ ∈ R+, (7)

where λ(·) denotes the eigenvalue of (·).

The stability of the system and the existence of steady-
state solutions are essential for proving the main results
in this paper. To establish the necessary conditions, we
introduce the following assumption.

Assumption 1. The FPRC defined in (6), is assumed to
satisfy the condition specified in Proposition 1. The reset
actions are assumed to be finite in any finite time. The initial
condition of the reset controller is zero, i.e., xr(0) = 0.
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In practice, the base-linear system of C̃ in (6) is usually
designed to be stable. In this case, the bounded constraint
on {∆ti} can be relaxed [10].

B. Fixed-Phase Reset Control Elements

In this study, we integrate the novel Fixed-Phase (FP) re-
setting mechanism into three reset control structures: the CI,
the FORE, and the SOSRE, with their state-space matrices
defined as follows.

1) The state-space matrices of the CI are

AR = 0, BR = 1, CR = 1, DR = 0, Aρ = γ. (8)

2) The state-space matrices of the FORE are

AR = −ωr, BR = 1, CR = ωr, DR = 0, Aρ = γ.
(9)

3) The SOSRE refers to a second-order reset element that
resets the first state x2(t), as shown in Fig. 2. The
state-space matrices of SOSRE are given by:

AR =

[
−2βωr −ω2

r

1 0

]
, BR =

[
1
0

]
,

CR =
[
0 ω2

r

]
, DR = 0, Aρ =

[
γ 0
0 1

]
.

(10)

e(t) 1
s+-

1
s

-2bwr++

x2(t) x1(t) wr
2 u(t)

wr
2

Fig. 2: The block diagram of the SOSRE.

Applying the new reset mechanism defined in (6) to the three
control structures, the resulting reset control elements are
termed as “Fixed-Phase CI (FP-CI)”, “Fixed-Phase FORE
(FP-FORE)”, and “Fixed-Phase SOSRE (FP-SOSRE)”.

IV. THE FREQUENCY-DOMAIN ANALYSIS OF THE FPRC

A. The Open-loop HOSIDF for FPRC systems

Due to the nonlinearity of the FPRC, the reset output
signal v(t) is characterized by an infinite series of harmonics,
defined as v(t) =

∑∞
n=1 vn(t). In the Fourier domain, it is

expressed as V (ω) =
∑∞

n=1 Vn(ω). As illustrated in Fig.
3, to generate vn(t), we employ the “Virtual Harmonics
Generator” [16] to produce harmonics en(t) from the input
e(t) = |E|sin(ωt), expressed as:

en(t) = |E|sin(nωt), n ∈ Z+. (11)

Define E(ω) and En(ω) as the Fourier transforms of e(t)
and en(t), respectively.

Theorem 1. The Higher-Order Sinusoidal Input Describing
Function (HOSIDF) for the FPRC system in (6) with a
sinusoidal input e(t) = |E|sin(ωt) and a reset triggered

signal es(t) = sin(kωt)(k = 2h, h ∈ Z+), under Assump-
tion 1, is denoted as H̃n(ω). It is defined to describe the
transfer function from the input en(t) to the output vn(t).
The expression for H̃n(ω) is as follows:

H̃n(ω) =
Vn(ω)

En(ω)
=


Cbl(ω) + Φ̃(ω), for n = 1,

Φ̃(nω), for odd n > 1,

0, for even n ≥ 2,
(12)

with
Φ̃(nω) =

2

nπ|E|
∆l(nω)Θ̃(nω),

∆l(nω) = CR(jnωI −AR)
−1jnωI,

Θ̃(nω) = (γ − 1)
∑ k

2−1

i=1
mie

j 2nπi
k ,

(13)

where m0 = 0 and mi (where i ∈ Z+) for C̃ with different
state numbers ζc are provided as follows.

1) For the FR-CI and FR-FORE with ζc = 1,

mi = mi−1e
ARti + [BRe

ARt ∗ e(t)]|ti . (14)

2) For the FR-SOSRE with ζc = 2,

mi = L−1[Ωi(s)/s]|ti−1
,

Ωi+1(s) =
E(s) + (s+ 2βωr)L−1[Ωi(s)]|ti

s2 + 2βωrs+ ω2
r

.
(15)

e(t)

e1(t)

e3(t)

en(t)

S
v(t) 

H(w)

...
...

Virtual
Harmonic
Generator

~

H(w)

Hn(w)
...

...

~

~ 

Fig. 3: The HOSIDF for FPRC systems.

Proof. The proof is divided into scenarios with ζc = 1 for
the FP-CI and FP-FORE, and with ζc = 2 for the FP-SOSRE.
Note that the FP-CI is identical to the FP-FORE when ωr =
0 in (9). When ζc = 1, mi is set to xr(ti). When ζc = 2
for the FP-SOSRE, xr(t) = [x2(t) x1(t)]

T . In this case,
mi = x2(ti). We set m0 = 0 due to the zero-initial condition
of the reset controller. Here, we first present the scenario with
ζc = 1.

Between two reset instants (ti, ti+1], the FPRC experi-
ences no reset. It can be seen as the base-linear system with
an initial condition inherent from the time interval (ti−1, ti].
From (6), during (ti, ti+1], we have

ẋr(t) = ARxr(t) +BRe(t). (16)

The Laplace transform of (16) is given by

sXr(s)− xr(ti−1) = ARXr(s) +BRE(s) ⇔
Xr(s) = (s−AR)

−1(xr(ti) +BRE(s)),
(17)
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where xr(ti) is the initial condition of xr(t) for t ∈ (ti, ti+1].
The inverse Laplace transform of (17) is given by

xr(t) = xr(ti)e
ARt + [BRe

ARt ∗ e(t)](t). (18)

From (18), the state xr(t) at the reset instant ti+1 can be
derived as follows:

xr(ti+1) = xr(ti)e
ARti + [BRe

ARt ∗ e(t)]|ti+1
. (19)

From (19), for the FPRC with ζc = 1 and mi = xr(ti), we
have

mi = mi−1e
ARti + [BRe

ARt ∗ e(t)]|ti . (20)

This concludes the mi for the FP-CI and FP-FORE with
ζc = 1.

From (6), at ti = 2πi/(ωk), the reset action introduces a
pulse signal into the xr(t), given by

Ωi = xr(t
+
i )− xr(ti) = (Aρ − I)xr(ti). (21)

When ζc = 1, Aρ = γ.
Substituting mi = xr(ti) into (21), we have

Ωi = xr(t
+
i )− xr(ti) = (γ − 1)mi. (22)

Equation (22) indicates that the reset action introduces a
pulse signal Ωi to the state xr(t). Since the periodic property
of the base-linear and reset output, the reset actions in the
time domain introduce a square wave denoted as q(t) with
an amplitude of (γ−1)mi/2, a period of 2π/ω, and a phase
shift of i2π/k to x1(t), which can be seen as a disturbance
[17]. Define a normalized square wave with an amplitude of
1 and a period of 2π/ω, and a phase shift of 0 as q0(t) given
by

q0(t) =
4

π

∑∞

n=1

sin(ωt)

n
. (23)

The Fourier transform of q0(t), denoted as Q0(ω), is given
by:

Q0(ω) =
4

π

∑∞

n=1

E(nω)

n|E|
. (24)

Thus, q(t) and its Fourier transform are given by

q(t) = F−1[Q(ω)],

Q(ω) =
(γ − 1)

2|E|
∑ k

2−1

i=1
mie

j 2nπi
k Q0(ω).

(25)

From (24) and (25), the n-th harmonic in Q(ω) defined as
Qn(ω) is given by

Q(ω) =
∑∞

n=1
Qn(ω),

Qn(ω) =
2(γ − 1)

π|E|
∑ k

2−1

i=1

mie
j 2nπi

k E(nω)

n
.

(26)

From (6), the transfer function from the xr(t) to v(t) is
defined as

∆l(ω) = CR(jωI −AR)
−1jωI. (27)

Taken consider the q(t) as a disturbance adding to the xr(t),
the reset output signal v(t) is given by

v(t) = vbl(t) + vnl(t),

vbl(t) = F−1[Cbl(ω)E(ω)],

vnl(t) = F−1[∆l(ω)Q(ω)].

(28)

From (24), (26), and (28), Vnl(ω) = F−1[vnl(t)] is given
by

Vnl(ω) =
∑∞

n=1

2(γ − 1)∆l(nω)

nπ|E|
∑ k

2−1

i=1
mie

j 2nπi
k E(nω).

(29)
Define V n

nl(ω) as the n-th harmonic in Vnl(ω). From (29),
we have

Vnl(ω) =
∑∞

n=1
V n
nl(ω),

V n
nl(ω) =

2(γ − 1)∆l(nω)

nπ|E|
∑ k

2−1

i=1
mie

j 2nπi
k E(nω).

(30)

Based on (28) and (30), the first-order harmonic in V (ω) =
F [v(t)] is obtained as

V1(ω) = Vbl(ω) + V 1
nl(ω). (31)

From (28) and (31), the first-order (n = 1) transfer function
of FPRC is defined as

H̃1(ω) =
V1(ω)

E(ω)

= Cbl(ω) +
2(γ − 1)∆l(ω)

π|E|
∑ k

2−1

i=1
mie

j 2nπi
k .

(32)

From (28) and (30), the n-th (n > 1) order harmonic in
V (ω) is given by

Vn(ω) = V n
nl(ω). (33)

Then, based on (33), the n-th transfer function of FPRC is
defined as

H̃n(ω) =
Vn(ω)

E(nω)
=

2(γ − 1)∆l(nω)

nπ|E|
∑ k

2−1

i=1
mie

j 2nπi
k .

(34)
By defining Φ̃(nω) and Θ̃n(nω) in (13), equation (12) is
obtained. Here The proof for the FPRC with ζc = 1 is
concluded. The following content derives mi for the FP-
SOSRE with ζc = 2.

In FP-SOSRE, we have xr(t) = [x2(t) x1(t)]
T , where

x2(t) and x1(t) denote the first and the second state of
the controller, respectively, as shown in Fig. 2. From (6)
and (10), during the time interval (ti, ti+1], the state-space
representation of FP-SOSRE can be written as follows:{

ẋ1(t) = x2(t),

ẋ2(t) = −2βωrx2(t)− ω2
rx1(t) + e(t).

(35)

The Laplace transforms of both sides from Equation (35)
with the inital condition of x1(ti) are given by

(36)s2X1(s)− sx1(ti) = −2βωr(sX1(s)− x1(ti))

− ω2
rX1(s) + E(s).
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From (36), X1(s) is obtained as

X1(s) =
E(s) + (s+ 2βωr)x1(ti)

s2 + 2βωrs+ ω2
r

. (37)

By conducting the inverse Laplace transform of (37), we
have

x1(t) = L−1

{
E(s) + (s+ 2βωr)x1(ti)

s2 + 2βωrs+ ω2
r

}
, for t ∈ (ti, ti+1].

(38)
Define

Ωi(s) =
E(s) + (s+ 2βωr)x1(ti)

s2 + 2βωrs+ ω2
r

. (39)

Substituting Ωi(s) into (38), x1(t) is given by

x1(t) = L−1[Ωi(s)], for t ∈ (ti, ti+1]. (40)

From (38), x1(ti+1) is given by

x1(ti+1) = L−1[Ωi(s)]|ti . (41)

Based on (39) and (41), we have

Ωi+1(s) =
E(s) + (s+ 2βωr)L−1[Ωi(s)]|ti

s2 + 2βωrs+ ω2
r

. (42)

From (40) and ẋ1(t) = x2(t), x2(t) is given by

x2(t) = L−1[Ωi(s)/s], for t ∈ (ti, ti+1]. (43)

From (43), x2(ti+1) is given by

x2(ti+1) = L−1[Ωi(s)/s]|ti . (44)

Since mi = x2(ti), from (44), mi is given by

mi = L−1[Ωi(s)/s]|ti−1
. (45)

This completes the derivation of mi for the FP-SOSRE with
ζc = 2. The subsequent steps for deriving H̃n(ω) for the
FP-SOSRE follow the same process as the derivations from
(23) to (34). Here, we conclude the proof.

In practical scenarios, the system in (6) with a sinusoidal
input e(t) = |E|sin(ωt) and under Assumption 1 will
initially undergo a transient response before reaching the
steady-state. The frequency response analysis in Theorem
1 is applicable to systems at steady-states. Therefore, we
calculate mi until the cycle has a reset instant ti meeting
the condition of mi = mi+k. This cycle is denoted as the
first valid steady-state cycle.

V. RESULTS

A. Illustrative Example 1: Validation of the Accuracy of the
HOSIDF

We verify the accuracy of the HOSIDF method in Theorem
1 by applying it to analyze three FPRC examples. Figures
4(a)-(c) depict the simulated and predicted outputs of three
FPRC systems under the input signal e(t) = sin(2πft),
including the FP-CI (with γ = 0 and k = 20) at an input
frequency of f = 1 Hz, the FP-FORE (with ωr = 1, γ = 0,
and k = 4) at an input frequency of f = 10 Hz, and the
FP-SOSRE (with ωr = 1, β = 1, γ = 0, and k = 4) at
an input frequency of f = 10 Hz. The results indicate a

(a)

(b)

(c)

Fig. 4: The simulated and Theorem 1-predicted outputs for
(a) the FP-CI, (b) the FP-FORE, and (c) the FP-SOSRE.

close alignment between the predicted and simulated outputs,
confirming the accuracy of Theorem 1.

The small differences between the simulation and predic-
tion results stem from the fact that the output of the reset
system includes an infinite number of harmonics, whereas
in practice, only a finite number (set to 1000 in Fig. 4)
of harmonics is considered in the calculation. Figure 5
illustrates the prediction error (PE) between the prediction
and simulation in the context of the FP-CI shown in Fig. 4(a).
It shows that as the number of harmonics Nh increases, the
PE decreases. Ideally, the PE approaches zero as Nh tends
to infinity. Research [18] also demonstrates that the accuracy
of the HOSIDF analysis improves as Nh, the number of
harmonics considered in the analysis, increases.

2 2.2 2.4 2.6 2.8 3
Time [s]

-0.04
-0.02

0
0.02
0.04

PE
 [a

bs
]

Nh=100 Nh=1000

Fig. 5: The prediction error (PE) of the FP-CI when (a) Nh =
100 and (b) Nh = 1000.

B. Illustrative Example 2: Frequency-domain Properties of
the FPRC

We employ the HOSIDF analysis to investigate the
frequency-domain properties of the FPRC. The reset control
system (RCS) employing the FPRC is referred to as FP-RCS
and the reset system employing the “Zero-crossing (ZC) law”
is denoted as ZC-RCS.

Figure 6(a) compares the frequency responses of the FP-
CI (with k = 4 and γ = 0) and the traditional ZC-CI (with
k = 2 and γ = 0). Their gain-frequency (slope) is the same,
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but the first-order harmonic in FP-CI provides an 8.4° phase
lead compared to that of the CI.

Figure 6(b) illustrates the relationship between the number
of reset instants k and the phase of the FP-CI (with γ = 0).
As the number of reset instants increases, the phase lead
provided by the FP-CI also increases. This characteristic of
the FP-CI demonstrates the potential benefits for improved
performance achieved by the phase lead of the FPRC.

However, a large number of reset instants k will generate
higher-order harmonics. As shown in Fig. 6(c), when setting
k = 20, the three dominant harmonics in the FP-CI are the
first, 19th, and 21st harmonics. Although it eliminates the 3rd
and 5th harmonics, it introduces higher-order harmonics.
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Fig. 6: (a) The first three dominant harmonics in the FP-CI
(with k = 4) and the ZC-CI. (b) The relationship between
the phase of the first-order harmonic and the number of
reset instants k in the FP-CI. (c) The first three dominant
harmonics in the FP-CI (with k = 20).

VI. CONCLUSION

This paper introduces a novel reset element termed Fixed-
Phase Reset Control (FPRC), designed for Single-Input-
Single-Output (SISO) systems with sinusoidal inputs. The

FPRC resets based on a signal with a fixed phase, distributing
k reset instants per steady-state period. A Higher-Order Si-
nusoidal Input Describing Function (HOSIDF) is developed
to analyze the frequency-domain properties of the FPRC.
Simulation results validate the accuracy of the analysis
method. The findings indicate that the FPRC provides a
phase lead compared to traditional reset controllers with the
zero-crossing law. Increasing the value of k tends to provide
a larger phase benefit; however, higher values of k introduce
high-order harmonics into the system. The applicability of
the FPRC with the phase benefits to practical closed-loop
systems needs further investigation in future studies.
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and S. H. HosseinNia. Closed-loop frequency analysis of reset control
systems. arXiv preprint arXiv:2001.10487, 2020.

[15] Kars Heinen. Frequency analysis of reset systems containing a clegg
integrator: An introduction to higher order sinusoidal input describing
functions. 2018.

[16] Niranjan Saikumar, Kars Heinen, and S. Hassan HosseinNia. Loop-
shaping for reset control systems: A higher-order sinusoidal-input
describing functions approach. Control Engineering Practice,
111:104808, 2021.

[17] Marcin B. Kaczmarek, Xinxin Zhang, and S. Hassan HosseinNia.
Steady-state nonlinearity of open-loop reset systems. In 2022 IEEE
Conference on Control Technology and Applications (CCTA), pages
1056–1060. IEEE, 2022.

[18] Xinxin Zhang, Marcin B. Kaczmarek, and S. Hassan HosseinNia.
Frequency-domain analysis for reset systems using pulse-based model.
arXiv preprint arXiv:2206.00523, 2022.

293

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2024 at 13:42:11 UTC from IEEE Xplore.  Restrictions apply. 


