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Abstract 
New flexible teaching methods for robotics are needed to automate repetitive tasks that are 
currently still done by humans. For limited batch sizes, it is too expensive to teach a robot a 
new task (Smith & Anderson, 2014). Ideally, such flexible robots can be taught a new task by 
a non-expert. A non-expert is a person who knows the task the robot should perform, but 
does not have experience in programming a robot. A powerful method that would allow for 
flexible robotics without the use of an expert is inverse reinforcement learning (IRL). IRL aims 
to learn the cost function out of demonstrations, this cost function is subsequently used to 
learn a policy which realizes the desired task.  

Current implementations focus more on the IRL algorithm itself and assume that 
there are enough demonstrations available and the quality of these demonstrations is also 
close enough to the optimal behaviour (Doerr et al., 2015). Whilst actually these 
demonstrations are very expensive and non-optimal. This thesis focuses on the effect of the 
quality of input demonstrations on the performance of the learned trajectory. Furthermore, 
how imperfect demonstrations still can be used, without lowering the performance of the 
learned trajectory. The first hypothesis is that the performance of the resulting trajectory 
depends on the average performance of the input demonstrations and the quantity of the 
input demonstrations has less of an effect. The second hypothesis is that by adding a 
ranking to the demonstrations, created through the preferences of non-robotic experts, the 
performance of the learned trajectory would be better than the average performance of the 
input demonstrations. The preferences of the non-robotic expert are collected through a 
crowdsourcing experiment. The preferences of the non-robotic expert are used to create an 
overall performance measurement. This overall performance measurement is used to obtain 
the sequentially order of the input demonstrations but also to evaluate the final learned 
trajectories. 

The results validate the first hypothesis. The average performance of the input 
demonstrations is determining the performance of the learned trajectory. The second 
hypothesis could not be confirmed. The results did not show any improvements in the 
performance of the learned trajectory when the ranking based on the preference of a non-
robotic expert is added. It could be argued that the input demonstrations were too similar or 
the cost features used in IRL are not specific enough to create different cost functions and 
therefore create differently performing trajectories. 
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List of acronyms 
 
IL – Imitation Learning  
RL – Reinforcement Learning  
IRL – Inverse Reinforcement Learning  
PI2 – Policy Improvement with Path Integrals 
MDP – Markov Decision Process  
DMP – Dynamic Movement Primitives 
 
 
 

List of definitions 
 

Reward function ( ) -  this is the core of RL from where the robot can learn the optimal 
policy. 
 
Cost function ( ) -  this is the negative reward function, as is also shown in Equation 3-6. 
 
Policy ( ) - this is a function which determines which action to take depending on which state 
the robot is in with respect to its environment. This policy determines the trajectory the robot 
is following. The optimal policy    is the one that gives the optimal trajectory. 
 
Trajectory ( ) - are the Cartesian coordinates of the end effector of the robot while 
performing the task. Mostly it is seen as a vector with a corresponding time vector. 
 
Non-robotic expert – A person who does not know how to program a robot, but does know 
the movement the robot should perform. 
 
Robotic expert – A person who has experience in programming a robot. 
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1. Introduction 
In the past decades, robots have made their entrance into the industrial production halls. 
They can perform tasks precisely and quickly. Therefore for most of the simple repetitive 
production tasks the robots are outperforming humans. Currently, robots are programmed to 
perform a fixed sequence of actions which performs the task. When there is a small change 
in the environment or in the task itself, a change is needed in this fixed sequence of actions 
and the robot needs to be reprogrammed. This (re)programming needs to be done by a 
person who knows how to program a robot, also called a robotic expert, and takes a lot of 
time. Therefore, the use of robots has large start-up/ investment costs. For large batch sizes, 
the usage of robots is profitable, but for small batch sizes, these start-up costs are too large.   

Since the start-up costs of the usage of robots are quite large, a lot of repetitive tasks 
in the industrial production halls are still done by hand (Smith & Anderson, 2014). For 
example, in the production of shaving machines the shaving machines are often changing a 
little bit in shape/ size and to reprogram a robot each time is more expensive than letting a 
human perform the tasks by hand. Therefore, robots are not used for these relatively ‘small’ 
batch sizes.   

To reduce the start-up costs it would help if a non-robotic expert is capable of 
teachting the robot a new task. A non-robotic expert is a person who is not a robotic expert, 
but knows the task the robot should perform. Moreover, when a robot can learn directly to 
perform a certain task from a non-expert, the programming of the robot becomes more 
flexible. Flexible since no robotic expert is needed and anyone can teach the robot a task.  

Currently, there are three ways to teach a robot a new task (Kormushev et al., 2013): 
Direct programming, imitation learning, and reinforcement learning. In the next paragraphs, a 
brief description is given of those methods. 

Direct programming is the current way of teaching robots a task. With this method, 
the robot performs a fixed sequence of actions, which is given by a robotic programming 
expert.   

With imitation learning (IL) the robot mimics the demonstrator. The robot is typically 
provided with a demonstration. In most cases the demonstration is given through 
kinaesthetic teaching. By means of this way of teaching the robot is pulled along the desired 
trajectory by the human as shown in Figure 1-1. This type of demonstration can be easily 
given by a non-expert. 
 

 
Figure 1-1 - Kinaesthetic teaching example (Englert et al., 2013). 

 
This demonstration is used to create a statistical method of the policy. A policy is a 

function that determines which action is taken depending on which state the robot is in. The 
state of the robot is the position and velocity of the robot with respect to its environment.  

A disadvantage of IL is that when the environment changes, the robot will not perform 
optimally anymore. Another disadvantage is that IL assumes that the given demonstration is 
completely optimal since in fact the demonstration can be a suboptimal solution to the task 
that is needed to be performed. Both disadvantages are caused by the definition of IL. With 
IL a policy is created to follow the shown trajectory, while actually it is not desired to imitate 
the specific trajectory that is shown, but the task that is performed (Ng & Russell, 2000). The 
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task can be interpreted as reaching a goal state as fast as possible or on a more high level to 
grasp an object. The goal state is the position which the robot wants to move towards. 

Reinforcement Learning (RL) is a trial and error approach where the robot needs to 
practise and make mistakes to find an optimal trajectory. RL tries to maximize the incoming 
cumulative reward which is given through the reward function. This reward function 
determines how much reward should be given after an action is taken depending on which 
state the robot has come into. This reward function typically encodes the desired behaviour, 
e.g., a high reward is typically given when the robot reached its goal state. To find out which 
action needs to be taken, the robot needs to explore its state action space. So for each state 
the robot could be in, it needs to try all actions. By doing this it can create a mapping of its 
environment and knows which action leads to the highest reward. Therefore, the trade-off of 
exploiting the known information and exploring for new information is a key element in RL.  

A disadvantage of RL is a lot of trials are needed before it completely explored the 
state action space and can exploit this information to determine the optimal policy. Typically 
this exploration is done in real time and robots suffer from wear and tear (Kober & Peters, 
2012). Another disadvantage is that creating a reward function is not a trivial task (Zhifei & 
Joo, 2012) and needs to be programmed by a robotic expert. This while the goal of the 
flexible robotics would be to eliminate this robotic expert and only use demonstrations to 
come to a trajectory. Figure 1-2 shows a flowchart of RL with respect to the ideal method. 
 

 
Figure 1-2 - Flow diagram of RL 

 
In Table 1-1 a summary is given of the IL and RL method. Both are good flexible methods, 
but are still not optimal. Desired is to use a combination of both methods where it uses the 
demonstrations of a non-robotic expert as an input, while being able to optimise to the 
wanted task. 
 
Table 1-1 – Summary of the advantages and disadvantages of IL and RL 

 Advantage Disadvantage 

IL A non-expert can be used to provide 
the demonstrations 

Demonstrated trajectory is reproduced 

- Sensitive to changes in the environment 
- Given demonstration can be suboptimal to the 

task that needs to be performed 
RL The wanted behaviour/ task is 

performed 
Lot of trials are needed 
An expert is needed to design reward function 

 
Inverse reinforcement learning (IRL) is a promising method which overcomes the main 
disadvantages of IL and RL (Zhifei & Joo, 2012). With IRL the reward function is extracted 
from a given demonstration or from multiple demonstrations (Ng & Russell, 2000), as is 
shown in Figure 1-3. This is as the name suggest the inverse of RL where the reward 
function is used to learn a policy. IRL uses likewise, as is done with IL, the demonstrations of 
a non-robotic expert as input. With IRL those demonstrations are not directly imitated but are 
used to find the underlying behaviour in the form of the reward function. This gathered 
reward function can then be used in a RL algorithm to obtain the optimal policy, as is shown 
in Figure 1-3. Through this approach, there is no need of a robotic expert to design the 
appropriate reward function. 

 
Figure 1-3 - Flow diagram of RL with IRL in front 
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2.  Research question 
This thesis is built around the idea that flexible programming a robot benefit from making a 
perfect trajectory from a set of imperfect demonstrations. Those demonstrations are used as 
an input for inverse reinforcement learning (IRL) as is shown in Figure 2-1. Decided is to 
focus this thesis on using the imperfect demonstrations optimally. 
 

 
 

Figure 2-1 - IRL creates a reward function from multiple demonstrations. Afterwards an optimal policy can 
be found with reinforcement learning (RL). A policy is a function which determines which action to take 
depending on which state the robot is in, as mentioned in Section 1.  

 
Obtaining good demonstrations is very expensive since demonstrations are often considered 
suboptimal or sometimes the demonstration did not even succeed in fulfilling the task at 
hand. There are several reasons for the low quality of the demonstrations. Two examples are 
noise in the recordings or the human demonstrator is not physically capable of demonstrating 
the intended behaviour. Even though the demonstrations are suboptimal they do contain 
valuable information about the desired task. 

With traditional IRL the provided demonstration is assumed to be the optimal 
trajectory. When multiple demonstrations are used they are seen as equally important. 
Therefore, the quality of all the input demonstrations is important.  

If the demonstrations are used optimally and therefore fewer demonstrations are 
needed to teach the robot the desired task, the solution would become more useful for real 
life purposes. This helps with reaching the goal of flexible programming a robot for industrial 
production tasks.  

Current implementations focus more on the IRL algorithm itself and assume that 
there are enough demonstrations available and the quality of these demonstrations is also 
close enough to the optimal behaviour (Doerr et al., 2015). 

  

The main research question of this thesis is, therefore:   
 

"How can the (suboptimal) demonstration(s) optimally be used for IRL?" 

  

This question leads to the following two hypotheses:        
 

     

Hypothesis 1: One versus multiple input demonstrations 

The performance of the learned trajectory depends on the average performance of the input 
demonstrations, the amount of input demonstrations is less important. 

 
 

This first hypothesis looks at the effect of the amount of demonstrations used as input. It is 
expected that adding more good demonstrations to an already selected set of 
demonstrations gives a better performance. Whilst when adding a bad performing 
demonstration the performance decreases. 

   
Hypothesis 2: Without versus with added preferences 

When ranking the demonstrations through weight factors of the preferences of a non-robotic 
expert the performance of the learned trajectory is better than without the added weight 

factors. 
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This second hypothesis explores the option of adding preferences of a non-robotic expert to 
improve the performance. The preferences are added as a weight factor for the 
demonstration before using it as an input for IRL. It is expected, that now when adding a bad 
performing demonstration it does not mean that the performance is decreased, which is 
opposite to what is expected at Hypothesis 1.   

To better understand the hypotheses the two key definitions are explained. Section 2.1 
explains what is meant with the definition performance, e.g. when is a demonstration 
performing better than another one. Section 2.2 explains how the demonstrations are ranked 
through the preferences of a non-robotic expert.   

2.1 Performance of the robot  
To validate the hypotheses it is important to describe what performance is, and what good or 
better performance is. Intuitively the concept of performance has several meanings. The 
dictionary gives the following description:   
   

performance || noun (ACTIVITY) [C or U] how well a person, machine, etc. does a piece of 
work or an activity: (Cambridge-Dictionaries, 2016) 

   
In other words, when the robot is doing the desired task, it is performing well. Therefore, how 
to properly measure performance depends highly on the task. The performance 
measurements can be divided into two categories: The primary measurements, and the 
secondary measurements, as is shown in Table 2-1. The primary measurements are the 
measurements which determine if the task was successful or not, the secondary 
measurements determine the quality of the performed task.   

The first primary performance measurement determines if the robot successfully 
performed the requested task. Another primary performance measurement is to avoid a 
collision. When the robot has a collision with itself or its environment this can give damage to 
the robot itself or its environment and the task probably needs to be stopped.   

The quality of performance, the secondary performance measurements, is described 
by other factors such as the execution time and the smoothness of the movement. The 
execution time is the actual time that the robot is moving to perform the task. The execution 
time should be as small as possible, which means that the task was performed quickly. 
Smoothness is important, because if the movements are very jerky, the robot has a lot of 
wear and tear, therefore, it is not beneficial for the robot itself.   
 
Table 2-1 - The performance measurements can be divided into two categories: The primary 
measurements and the secondary measurements.  

Primary measurements of performance  Secondary measurements of performance:   

 Successful execution of the industrial task  

 No collision  

 

 Smallest execution time  

 Length of the path taken  

 Smooth movement  

   

More details about the performance measurements used for this research can be found in 
Section 5.2. 

2.2 Ranking the input demonstrations  
The ranking of the demonstrations is ideally done by a non-robotic expert since the goal of 
the flexible robotic approach is that anyone can teach the robot a production task. Therefore, 
ranking the demonstrations is preferred over alternatives such as ranking measured results 
for which still expert knowledge is required.   

For adding the preferences to the demonstration, weight factors are the simplest 
approach to use for most IRL algorithms. Other approaches would be to include it in the IRL 
algorithm, which would involve changing the IRL algorithm. Therefore, the weight factors 

http://dictionary.cambridge.org/help/codes.html
http://dictionary.cambridge.org/dictionary/english/person
http://dictionary.cambridge.org/dictionary/english/machine
http://dictionary.cambridge.org/dictionary/english/piece
http://dictionary.cambridge.org/dictionary/english/work
http://dictionary.cambridge.org/dictionary/english/activity
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approach was used as shown in Figure 2-2 because it can give a quick analysis if adding this 
preference information is beneficial.   

How to obtain the order of the demonstration through the preferences of a non-robotic 
expert is studied in Section 3.4, where the fundaments of preference learning (PL) are 
explained.  

 
 

 
Figure 2-2 - Flow diagram of IRL and RL with added weight factors through the preferences of a non-
robotic expert  

 
However, it is important that the performance measurements of Section 2.1 correspond with 
the preferences of a non-robotic expert. If the performance measurements do not correspond 
to the non-robotic expert perceived performance unexpected results can occur. In such a 
case the robot is optimised to the perceived performance, while the learned trajectory is 
evaluated through different measurements. In other words, the robot can get really good 
results according to the perceived performance, but is scoring badly on the defined 
performance measurements.  

How this correlation is checked can be found in Section 4.1.2. Furthermore, this section 
explains how those performance measurements and the preferences are used to create the 
weight factors. 

 

2.3 Outline of report 
First is the background information of the relevant algorithms explained in Section 3. 
Afterwards the method, which is used to validate the hypotheses is described in Section 4. 
Subsequently, the industrial production task used for this research is explained with the 
corresponding performance measurements in Section 5. Section 6 describes the 
experimental set-up. Section 7 shows the results and finally Section 8 and 8.5 show the 
discussion and conclusion respectively.  
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3. Background information 
The main goal of this thesis is to teach a robot a task from a non-robotic expert, as is shown 
Figure 3-1. Focussing on this main goal, the most interesting algorithms are explained. 
 

 
 

Figure 3-1 - Flexible robotics method which uses a demonstration given by a non-robotic expert to obtain 
which action the robot should take depend on the state the robot is in, also presented through a policy 
which realizes a movement. 

 
Figure 3-2 shows the outline of this section. First an explanation about the algorithm imitation 
learning (IL) is given in Section 3.1. IL directly uses a demonstration to obtain a policy. The 
section also describes the main advantages and disadvantages.   

Section 3.2 describes the fundaments of reinforcement learning (RL) and also it 
describes which RL algorithm would be suitable for this research. With RL a reward function 
is used, which design is not a trivial task.  

Inverse reinforcement learning (IRL) is explained in Section 3.3. With IRL a cost 
function can be learned from a demonstration or multiple demonstrations. This method is 
added to the RL algorithm to be able to learn from a demonstration the movement, as earlier 
was shown in Figure 1-3.  

Afterwards the basic principles of preference learning (PL) are described in Section 
3.4. PL is used to rank the demonstrations before using the demonstrations for the IRL and 
RL algorithm. 

Finally, Section 3.5 explains the dynamic movement primitives (DMP). This is an 
algorithm to parameterize the policy, which is needed for the reinforcement learning 
algorithm and the inverse reinforcement learning algorithm.  

 
 

Figure 3-2 – Graphical representation of the outline of this section.  

Flexible robotics method 
Learned movement Demonstration 
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3.1 Imitation learning 
With imitation learning (IL) (programming by demonstration or learning from demonstration) a 
robot learns from one or multiple demonstrations (Argall et al., 2009; Bautista-Ballester et al., 
2014). From the demonstrations IL directly imitates the given movement, as is shown in 
Figure 3-3. With this method a demonstration is assumed to be the optimal performance of 
the task.  

When teaching a robot a policy through IL, two questions need to be answered (Argall 
et al., 2009), which are discussed in Section 3.1.1. The first question is “how to collect the 
useful information from given demonstrations?”. The second question is “how to derive an 
appropriate policy from the obtained information?”. In Section 3.1.3 the advantages and 
disadvantages of IL are stated.  
 

 
Figure 3-3 – Imitation learning (IL) uses a demonstration to obtain the policy. 

 

3.1.1 Gathering data from demonstrations 

The most direct approach to demonstrate a task to a robot is by kinaesthetic teaching. Here 
the human operates the robot by moving the passive joints in such a way that the desired 
movement is shown to the robot, as depicted in Figure 1-1. For this kinaesthetic teaching the 
robot needs to be in the teach mode. The teach mode is the mode where the robot can be 
moved around freely. The advantage of this method is that the robot can directly record its 
own joint states and no mapping is needed, a mapping is a function which transforms a set of 
joint states to a different format. A disadvantage is that kinaesthetic teaching can be quite 
challenging and physically hard for a human to perform. This is highly depending on the size 
and type of the robot and the options of the teach mode available.  

Another less direct way of demonstrating is to place sensors on the human 
demonstrator and let her perform the task. Afterwards the data of the sensors need to be 
transformed into the joint states of the robot, and a mapping function is needed. This 
approach is therefore considered to be less direct.  

3.1.2 The basic principles of IL 

The data from the demonstration is used to derive a policy. How to derive the policy can be 
categorized dependeding on the learning objective, as is shown in Figure 3-4.  
 

 
Figure 3-4 – The three categories of IL, which are divided through their learning objective. (Argall et al., 
2009) 

 
- Mapping Function, this function consists of directly copying the movement of the 

demonstration or of multiple demonstrations into the policy (Argall et al., 2009). Since the 
demonstrations most likely will contain some noise, statistical methods are generally 
used. 
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- System model, here the information of demonstration or of multiple demonstrations is 

used to create a state transition probability function           , also called the system 
model (Argall et al., 2009). This function contains the probability of reaching the state      
after a certain action     was chosen depending on the state     the robot was in 
previously. This state transition probability function             is then used as a starting 

point for RL to maximize the incoming reward. During RL             is updated with the 
new information that is gathered (Sutton & Barto, 1998). More explanation of RL can be 
found in Section 3.2.  

 
- Plans, this approach creates a planning framework from the demonstrations (Argall et al., 

2009). The planning framework is intended for a high level control task, e.g. it tries to 
plan, whether a robot should grasp an object or not, rather than the low level control task 
of how to grasp the object. The industrial production task that is considered during this 
research is at a low control level, therefore it is chosen to mainly focus on the first two 
groups.  

3.1.3 Advantages and disadvantages of IL 

The main advantage of using demonstrations to teach a robot a task is that it is simple to do. 
So anyone who knows the task the robot should perform is able to demonstrate it. 

The biggest disadvantage of IL is due to its definition. With IL is assumed that the 
demonstration is optimal and therefore this method generalises to the demonstrations. The 
performance of movement learned through IL is therefore limited to the movement that is 
shown through the demonstrations. With IL no new strategies can be learned. 

3.2 Reinforcement learning 
With reinforcement learning (RL) the robot receives a reward from its reward function, 
depending on which state it is in after a certain action is taken (Sutton & Barto, 1998). This 
reward is given when the robot performed a desired action. The robot tries to maximise this 
incoming reward, by updating its policy. The policy that gets the highest reward is the optimal 
policy. 

The continuous learning process is shown in Figure 3-5. The robot being in a certain 
state      at time step   performs an action     . This action      leads to, depending on the 
environment, the new state           of the robot. The reward function                
determines the corresponding reward        of this action based on this new state. The 
reward function is seen as part of the environment in Figure 3-5.  
 

 
 
Figure 3-5 – Flow diagram of a RL agent (Sutton & Barto, 1998) 
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With RL it is assumed that the robot has no information about the environment and therefore 
it will need to explore it. After each action the robot saves the new knowledge about the 
environment by updating its state transition probability function          , depending on the 
new state and reward. The higher the accumulated reward over the trajectory the robot gets 
from taking a certain action        while being in state        the higher the probability 

                     of choosing again this action         when being at that state       .  
 As just mentioned the robot needs to explore its environment. This is done by taking 
random actions and analyse the rewards that would correspond to those actions. On the 
other hand the robot is trying to exploit its own information about the environment to collect 
the highest rewards. So it needs to choose whether to get the known high reward or take 
risks and maybe find an even higher reward.  This is also called the exploration-exploitation 
trade-off (Kober & Peters, 2012). A greedy policy is always choosing for the highest reward 

which is known by the robot, without further exploring the environment. The  -greedy method 
tries to deal with this trade-off (Sutton & Barto, 1998). A robot with an  -greedy method 

explores with probability   and exploit with probability (1-  ). 

3.2.1 Problems with the reward function. 

Unfortunately, defining the reward function is not a trivial task. This is most easily explained 
through an example. When it is assumed that a robot is trying to reach a certain point. The 
robot can then receive a reward when reaching the goal position. Unfortunately, because of 
the high dimensional character of the robot, it can happen that this goal point is not reached 
during a trial. The robot receives then a zero reward and it does not know which action was 
desired and brought the robot closer to the goal position and vice versa which actions made 
the robot move  
away of the goal position and were therefore undesired. The robot therefore needs a shaped 
reward function. A shaped reward function  does not only give a reward when the goal is 
reached but also when the robot is in a state close to the goal, which guides the robot to the 
goal position. Another important point for the design of the reward function is that a trade-off 
needs to be made between precision and speed. The design of this shaped reward function 
is considered to be difficult and it is usually designed by a robotic expert (Muelling et al., 
2014). 
 The goal of the thesis is to teach the robot a movement without the use of a robotic 
expert. RL still needs a reward function as is shown in Figure 3-6, which cannot be designed 
through a non-robotic expert. This is why a look it taken at the alternative methods for 
creating such a reward function. The main algorithm for creating a reward function from a 
demonstration of multiple demonstrations is inverse reinforcement learning (IRL), which is 
discussed in Section 3.3. 
 

 
 

Figure 3-6 - RL creates a policy from a reward function. The reward function can not be given by a non-
robotic expert. Therefore RL on its own does not fit to the main goal. 

 

3.2.2 The basic principles of RL 

To better understand the basics of RL, the most important principles and formulas are 
explained. The first important assumption of RL is that the problem conforms the Markov 
property (Sutton & Barto, 1998). According to the Markov Property the new state    is only 

dependent on the previous state   and action  , and information about past states and 
actions are not included. With RL the robot decides through a probabilistic approach which 
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action to take; as a consequence the RL is a method that solves a Markov Decision Process 
(MDP).   

The fundament of most RL algorithms is based on maximizing the Bellman Optimality 
equations (Sutton & Barto, 1998), which are described in the next section.  

Bellman optimality equations 

Within RL the robot tries to maximise the cumulated rewards obtained by executing a policy. 
For a task which has a fixed time period  , this means that RL tries to maximize the expected 

reward over  . Equation 3-1 shows that using a certain policy   the expected return   of 
state   is the summation of the rewards over a time period   with discrete time steps  . 
 

                  

 

   

    3-1 

 
In most problems the amount of steps that needs to be taken is not known or the amount of 
steps is infinite. To be sure that the summation converges, the future rewards need be 

discounted by the discount factor   as is shown in Equation 3-2. The discount factor   
controls the size of the prediction horizon. The discount factor has typically a value of 
     . 
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Function   is called the value function which the robot tries to maximize. Next to the value 
function there is also a state-action value function        , which not only depends on the 
state the system is in but also on the action that can be taken. Equation 3-3 shows the value 
function and is also known as the Bellman optimality equation (Sutton & Barto, 1998): 
 

         
 

                              

     

 3-3 

 

where           is the reward function previously described. The optimal value function   
 
 

is value function for the optimal policy   , where    is the shorthand notation of   
 
 

 
The Bellman optimality equations can be directly used to search for the optimal policy, when 
the state transition probabilities and value function are known (Sutton & Barto, 1998). 

Equation 3-4 shows how to find the optimal policy. Here action    chosen by the policy    in 
the current state   which leads to the next state   , which leads to the highest optimal value 

function   . 
 

             
 

                              

     

 3-4 

 
Equation 3-4 exploits the known information to optimize the policy and does not explore the 
environment. This means that the equation is a typically greedy methods as mentioned in 
Section 3.2. 

When the states and actions are discrete and finite the value function and policy can 
be represented through a table (Sutton & Barto, 1998). When for a problem with discrete 
space the state transition probabilities and the optimal value function are fully explored it is 
just a matter of looking up in the tables to select the best policy. When the dimensionality of 
the states and actions are rising, the table grows therefore the computational expenses also 
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rise. In the case of continuous state-action spaces determining the optimal actions which 
form the optimal policy is an optimization step on its own (Kober & Peters, 2012). 

RL in robotics 

When applying RL in robotics there are four major challenges that need to be considered 
(Kober & Peters, 2012): 
 

- Curse of dimensionality 
For high-dimensional or even continuous spaces, the state and action grow 
exponentially. As mentioned in Section 3.1.2 IL can be used to obtain an initial policy 
for the RL method, which can reduce the search space significantly. Another way of 
reducing the search space is to parameterise the policy as is done with the policy 
search methods, such as PI2. 
 

- Curse of real-world samples 
In robotics, real hardware is used which suffers from wear. Therefore, when the real 
robot finds an optimal policy through trial and error is expensive. Again, when using IL 
to obtain an initial policy the amount of trials can be reduced. Another approach to 
minimise the wear and tear of the hardware would be by simulation. 

 
- Curse of Under-Modelling and Model Uncertainty 

As just mentioned, simulation can be used to reduce the cost for real-world 
interaction. Unfortunately, creating such a simulation that is accurate enough is 
extremely difficult.  
 

- Curse of Goal Specification 
To define a good reward function can be extremely difficult. Therefore is chosen to 
look into the IRL algorithms to obtain the reward function from demonstrations. More 
about IRL and how to obtain a good reward function can therefore be found in 
Section 3.3. 

 
The RL algorithms which are mostly used in robotics are policy search methods (Kormushev 
et al., 2013). The idea behind policy search RL is that a smaller policy space is used instead 
of the huge state and action spaces (Kormushev et al., 2013). The policy space is 
characterized by the chosen policy parameterization   and contains all possible policies 
regarding this certain policy parameterization.  
 

             3-5 

 
Policy search methods update the policy parameters iteratively per learning step with small 
time steps t through small changes     , see Equation 3-5, and drastic changes are 
prevented. Drastic changes can be hazardous for the robot and its environment. Another 
reason for only allowing for small changes in the policy is that otherwise the initial policies 
given or domain knowledge become useless (Peters & Schaal, 2008b; Schaal, 1997). In 
comparison to the conventional value function-based approaches, such as the Bellman 
equations 3-4, policy search methods have less dimensionality and an increased 
convergence speed. Most consolidated policy search algorithms for RL in robotics are 
(Kormushev et al., 2013): 

- Policy gradient search algorithms (Peters & Schaal, 2008a; Williams, 1992) 
With this method, the policy parameters are iteratively updated, through a gradient of 
the reward function (    , then          . Most policy gradient search algorithms 

have high sensitivity for the learning rate   and exploratory variance, with the 
exploratory variance is for example meant the   from the  -greedy method. The 
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learning rate parameter is not a trivial task to determine, but is critical for achieving 
good performance.  

- RL based on the Expectation-Maximization (EM) algorithm (Kober & Peters, 2009) 
For this algorithm the learning rate parameter is not needed, which would allow 
avoiding the issues just introduced.  

- Policy improvement with path integrals (PI2) (Theodorou et al., 2010) 
For this algorithm also no learning rate is needed, similar to the EM based algorithms.  

- Stochastic optimization 
Viable alternatives for direct policy search RL can be found in the field of stochastic 
optimisation (Stulp & Sigaud, 2012), such as cross-entropy (Rubinstein & Kroese, 
2013), covariance matrix adaptation evolution strategy (Hansen, 2006). These 
methods are not well-established in RL research and therefore these methods are not 
further discussed in this thesis.  

 
Each different policy search method has its advantages and disadvantages. However, an 
open issue remains when it is appropriate to use a certain method (Kober & Peters, 2012).  
 For this research is chosen to use PI2 algorithm of Theodorou et al. (2010). This 
algorithm was chosen because it is a proven RL approach and it has also a good inverse 
reinforcement learning (IRL) variant, namely inverse PI2. More information about inverse PI2 
can be found in Section 3.3.2.  

From now on this thesis uses the term cost function, instead of reward function. The 
cost function is actually a negative reward function as is shown in Equation 3-6. The robot 
would either try to maximize its reward function or minimize its cost function. 

 

               3-6 
 
This choice is made because the PI2 algorithm is based on a cost function that needs to be 
minimized, instead of a reward function that needs to be maximized. 

3.2.3 Policy improvement with path integrals  

A promising RL method for robotics is the policy improvement by path integrals (PI2) 
algorithm, introduced by Theodorou et al. (2010). For the parameterisation of the policy they 
use a variant of the DMPs, which are explained in Section 3.5, and use a combination of 
value function approximation and direct policy learning by approximating a path integral. It is 
a probabilistic learning method without open parameters such as the learning rate, except for 
the exploration noise. This exploration noise    is Gaussian with a zero mean and variance 

   and is added to the policy parameters  . 
` The outline of PI2 is briefly provided. More details can be found in (Kalakrishnan et 
al., 2013; Theodorou et al., 2010). 

The total cost      of the trajectory   is given by Equation 3-7. The trajectory   is also 
called the path and is considered to be the degrees of freedom, e.g., the y and z coordinate, 
over time.   Here the cost function is composed of two parts; the terminal cost represented by 

   , and the time depended cost summed over the duration of the trajectory      
 

   
. Where 

   is described by Equation 3-8. 
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          3-8 
 

 

Equation 3-8 shows that    is also split into two parts. The arbitrary state-dependent cost 
       and the control cost represented by the policy parameters with some exploration noise 

       multiplied by the semi-definite weight matrix  . 
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For updating the policy parameters the algorithm first creates   roll-outs of the 
current policy parameters with some exploration noise. A roll-out is a run of the DMPs with 
some policy parameters to see which trajectory the policy parameters represent. The costs of 
the roll-outs are calculated based on the corresponding trajectories. The lower the trajectory 
costs, the higher the probability         of taking that trajectory, which is calculated through 

the formula of Equation 3-12. The parameter   is defined through   and the variance of the 

noise, by         . 
The integral of Equation 3-7 is approximated through Equation 3-9 and 3-10. 
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Therefore Equation 3-7 can be rewritten as shown in Equation 3-11. 
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Afterwards update of the policy parameters per time step is calculated through Equation 

3-13. Here the summation over the K roll-outs is taken of the probability of the roll-out         

multiplied by the change that it had evoked, the exploration noise     . 
 

        
 
 
 
 
       

  
 
 
 
        

   

 

 

3-12 
 

                  

 

   

 

 

3-13 
 

 

where    projects the exploration noise    onto a basis vector so it can be multiplied to the 

probabilities. When the roll-out has a high cost, the probability         of this roll-out is low 

and therefore its influence on the policy parameters is also low. 
Finally the update equation for the policy parameters of PI2 looks as shown in 

Equation 3-14, for a policy with N time steps. 
 

        
 

 
    

 

   

 

 

3-14 
 

As a summary the pseudo code for PI2 can be found in Figure 3-7.  
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Figure 3-7 - Pseudo Code for PI
2
 

3.3 Inverse reinforcement learning 
With IRL a cost function can be obtained from demonstrations given by a non-robotic expert, 
as is shown in Figure 3-8. This cost function can be used to learn the policy and therefore the 
task by RL afterwards. 
 

 
Figure 3-8 - IRL creates a cost function from a demonstration or multiple demonstrations. 

 
First the fundaments of the IRL algorithms are discussed in Section 3.3.1. Afterwards, in 
Section 3.3.2 the chosen IRL method is explained in more details.  

3.3.1 The basic principles of IRL 

For the explanation of the fundaments of IRL, the term reward function instead of cost 
function is used again. When explaining the algorithm inverse PI2 the term cost function is 
used again. 

Most IRL approaches assume that the reward function can be expressed as a linear 
combination of the reward features (Abbeel & Ng, 2004) as shown in Equation 3-15.  

 

                                 3-15 

 
In which      is a vector of   reward features over the states and   is a vector of the 
corresponding weights. Those reward features are task depended and defined before 
running the IRL algorithm. The IRL algorithms calculate the weights vector.  

When the demonstrated policy    is assumed to be the optimal policy   , Equation 
3-16 must hold (Ng & Russell, 2000).  
 

 
    

   

                
   
          3-16 

Given:  
- Parameterized policy (from DMPs)      with basic functions     , more 

information about this can be found in Section 3.5. 

- Cost function              
   
    

 

 
           

 
           

   
    

-   is zero mean noise with variance   
 
Calculate for: 

- Create   roll-outs with      , resulting in   trajectories       

- Calculate for       and       

o    
       

 

  
      

 (projection of   on the policy basis functions) 

o                 
   
    

 

 
           

 
           

   
    

o         
 
 
 
 
       

  
 
 
 
        

   

 

o                     

-        
-                (if                    then          
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When multiple demonstrations are given    is the average of those. Equation 3-16 states 

that the expected value function, see Equation 3-2, of the next state (  ) must be always 

larger when taking the demonstrated action    according the demonstrated policy    ) than 

taking any other action (    ). More formally: 
 
Equation 3-17 can be obtained, by combining Equation 3-2 and Equation 3-15.  
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The next step would be to define the feature expectation      as is shown in Equation 3-18.  
 

          
 

   

         3-18 

 
The value function can then be rewritten according to Equation 3-19. 
 

             3-19 

 
Assuming that the demonstrated policy is the optimal policy it can be stated that the value 

function of the demonstrated policy    is always bigger or equal than any other value 

function of policy       . This was also stated in Equation 3-16 which eventually leads to 
Equation 3-20. 
 

                 3-20 

 
By satisfying this condition a two main issues arise. The first one is that constraint 3-20 is ill-
posed. The trivial solution of     is obviously always an answer. There are several 
approaches to deal with this ambiguity problem. The second issue is that the weights need 
be updated iteratively, and this makes the process computational expensive.  
 
Ambiguity problem 
Since it is tried to approximate the true      3-15, there may not exist   other than     that 
would provide the optimal policy. Therefore constraint  3-20 can be relaxed in the 
optimisation problem by adding penalty     , with   being          if     and           

otherwise with   being a positive constant (Abbeel & Ng, 2004). 

In Equation 3-21 the expression          
                       is used to find 

the policy    which is closest to the demonstrated policy   . Afterwards the difference 
between those two policies is maximized by changing   to obtain the true weights    of the 
‘true’ reward function.  
 

         
 

     
 
                    

      

   

                   

3-21 
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There are also other approaches created to solve the drawbacks of Equation 3-20 (Abbeel & 
Ng, 2004), such as the max margin approach (Abbeel & Ng, 2004; Ratliff et al., 2006), and 
the Bayesian IRL (Ramachandran & Amir, 2007) among others.  
 
Computational Burden 

Defining the weights   of the reward function involves an iterative procedure. In which the 
following steps are taken (Kalakrishnan et al., 2013):   
 

1. Find the optimal policy for the current estimate of the reward function, for example by 
using Equation 3-4.  

2. Update the reward function estimate, by using for example Equation 3-21, using the 
output of the previous step.  

 
For solving step 1 a RL algorithm needs to be used to test the estimate 3-21 of the weights   
of the reward function and this is a computational expensive step on its own. In step 2 the 
output of the RL algorithm is then used to update the reward function 3-21. Iteratively solving 
for the weights     of the reward function 3-15 is heavily computational expensive. Although 
the approach is shown to be working well for discrete state-action spaces of low 
dimensionality or simple theoretical cases  (Abbeel & Ng, 2004; Ramachandran & Amir, 
2007; Ratliff et al., 2006), unfortunately for robotics in real-life scenarios this becomes difficult 
(Zhifei & Joo, 2012).  

A few attempts are made to apply IRL in real-life domains have been conducted. For 
example Muelling et al. (2014) uses IRL to find the underlying strategies for table tennis.  

A successful applied IRL algorithm used for a robotic arm is created by Kalakrishnan 
et al. (2013). They use the RL policy search method, PI2 (Policy Improvement with Path 
Integrals) algorithm and reverse it for finding the reward function. More information about PI2 
algorithm can be found in Section 3.2.3.  

Another disadvantage of IRL is that it assumes the demonstration to behave 
optimally. It can handle multiple demonstrations, but it is assuming that all given 
demonstrations are equally important. 

3.3.2 Inverse PI2 

For PI2 the cost function is given in Equation 3-11. This definition of the cost function can 
almost be used directly as the cost features   ) for an IRL approach as is shown in Equation 
3-22: 
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here is assumed that the state-dependent cost function is linearly parameterized through with 

user provided features      
 
   , in other words:     

   
      

      
 
   . Another assumption 

is that the shape of the quadratic control cost matrix is given and can be scaled through the 

weight factor    is a scaling factor, thus       . Where    is the shape of the control cost. 

The final assumption is that the terminal cost     is are the terminal cost feature    
  times  

the weight factor     
. The full weight vector of the cost function can be found through 

solving for the constrain 3-23: 
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        3-23 

 
where the second term is the regularization term, here the weights are penalized by the sum 

of the its absolute value (     ) of its vector, and   is a predefined constant to determine the 
size of the regularization term. This regularization term is to prevent the weight vector from 
becoming larger and larger at each iterative step. Unfortunately, taking the absolute value of 

the weights     in the cost function, make the standard iterative optimisation models less 
appropriate. Therefore a slightly more elegant algorithms need to be used, e.g. Orthant-Wise 
Limited-Memory Quasi-Newton (OWL-QN) (Andrew & Gao, 2007). Another approach, to be 
able to use the standard iterative optimisation methods, is to choose a different regularization 
term, through taking the squared (   ) or even a higher power   in      . 

 To run the inverse PI2   noisy versions of the demonstrated trajectory needs to be 
created. Inverse PI2 assumes that those noisy versions of the demonstrated trajectory are 
less optimal, than the demonstrated trajectory and by this it tries to find the cost function that 
has the lowest cost for the demonstrated trajectory and a higher cost for the noisy 
demonstrations 

As a summary, the pseudo code for inverse PI2 is given in Figure 3-9. 
 

 
Figure 3-9 - Pseudo Code for inverse PI

2
 

3.4 Preference learning 
For this research is chosen to focus on using the preferences of a non-robotic expert to 
obtain a weight factor for the demonstrations before putting it in an IRL approach, as is 
shown in Figure 3-10. The gathered demonstrations can be put into the IRL algorithm 
weighted, instead of assuming that the demonstrations are equally important. Similarly is 
done by Sugiyama et al. (2012), though they used it for a different application namely for a 
dialog control problem. 
 
 

Given:  

- Shape of the cost function    

    
   
   

 

 
           

 
           

   
   

  

  

o Which include the features        

- D demonstrated trajectories      
o Parameterized policy (from DMPs)      with basisfunctions       
o Including the noisy versions of that demonstrated trajectory. Here some 

exploration noise is added to the policy parameters     is used. 
 

 
Calculate: 

-                 
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Figure 3-10 - Adding preference information (P1,P2,P3) in form of a weight factor to the demonstrations 
before putting it in the IRL algorithm. 

 
To better understand the possibilities of preference learning (PL), the basic principles are 
explained in the next section. 

3.4.1 The basic principles of PL 

There exist several approaches to include preference learning (PL). Among them, the focus 
in this thesis is given on general preference-based learning Fürnkranz and Hüllermeier 
(2010). For an extensive overview on preference learning and its diverse approaches see 
Fürnkranz and Hüllermeier (2010)  and Silva et al. (2006) among others. 

In general preference-based learning attempts to learn a preference model (order 
relations) from observed preferences and is a subfield of supervised learning (Sugiyama et 
al., 2012). The output of a PL algorithm can be divided into three categories; Label ranking, 
instance ranking and object ranking (Fürnkranz & Hüllermeier, 2010).  
 A quick overview off all three the categories can be found in Table 3-1. With label 
ranking the demonstrations are put into different categories which have no order with respect 
to each other. With Instance ranking the demonstrations are also put into categories which 
have an order with respect to each other. Finally, with object ranking a function is obtained 
which puts the demonstrations on order. 
 
Table 3-1 - The three categories of Preference Learning; Label ranking, Instance ranking or Object 
Ranking 

Category Output More details 

Label ranking A given set of labels With this approach the demonstrations 
are ranked as either P=a, b or c 

Instance ranking A given set of labels which have an 
order with respect to each other. 

With this approach the demonstrations 
are classified as P=1,2,3,4,5 
Which would represent like 
1 Bad 2: Not so good 3: Neutral 4: Close 
to good 5: Good 

Object ranking An ranking function is obtained With this approach the demonstrations 
can be ranked by a formula. P(D)=.. 

 
This research is looking into a manner to rank the demonstrations with an order. Therefore, 
only instance and object ranking are relevant. Ideally, when ranking the demonstrations, the 
ranking would give the most information about how well the demonstrations are performing 
the task. This would lead to be using object ranking.  
 Unfortunately, object ranking is not useful for this research because of several 
reasons. The first disadvantage: for creating such an object ranking model a test set, 
features are needed and with this model new demonstrations can be ranked. That is not in 
correspondence with the goal of the research. This research assumes to have a   
demonstrations and it wants to use all demonstrations for learning to imitate the behaviour. 
Another disadvantage of using object ranking is that with this approach a cost function is 
created, then only known as the ranking function. It would not be useful to create a cost 
function twice. So the problem that needs to be solved is most similar to Instance ranking, 
here the demonstrations would be put in an order with respect to each other. More 
information on how the preferences are used can be found in Section 4.1.2. 
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The preference information can be retrieved through three types of input. (Dembczyński et 
al., 2010) 

- Pair-wise comparison; here two demonstrations of the complete set are compared to 
each other.  

- Complete order; here the full set of demonstrations is put into an order. 
- Rating on a finite scale; here the demonstrations are given a rate about how well they 

perform. 
 
According to Thurstone’s law of Comparative Judgment in general for humans the set of pair-
wise comparisons is the most intuitively to give (Thurstone, 1927). A pair wise preference of 
two actions looks as is shown in Equation 3-24 (Cheng et al., 2011): 
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here taking action    is preferred over taking action    while being at state  , and        is 

the probability that trajectory x is preferred over trajectory y. Trajectory is the path that has 
been taken.  When action    is preferred over action    the probability of taking action    

should also be higher than the probability of taking action   .   

By collecting all the pair wise preferences of the combinations of two demonstrations 
from the whole set, the final order can then be obtained. 

3.5 Dynamic movement primitive 
Dynamic Movement Primitive (DMP) is a method to parameterize the policy Ijspeert et al. 
(2013). In robotics most algorithms use such a parameterized policy; this is due to the high-
dimensional character of its problems.  

One of the most common algorithms of parameterization of the policy is DMPs, 
because of their simplicity. DMPs are a specific form of the nonlinear dynamic motor 
primitives. The nonlinear dynamic motor primitive was introduced by Ijspeert et al. (2002b). 
PI2 and inverse PI2 are also using DMPs for the parameterization of the policy. 

3.5.1 The basic principles of DMPs 

This section starts with the definition of the nonlinear dynamic motor primitives of Ijspeert et 
al. (2002b). Afterwards, more details are given about the DMPs. 

Nonlinear dynamic motor primitives assume that the movement plan for each degree 
of freedom is represented by a second order differential equation as is shown in Equation 
3-25: 
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where        and     are the desired position, velocity, and acceleration for a degree of 
freedom. The internal state of the dynamical system is   which evolves according to a 
canonical system           , where   is representing the time. The goal state is g of each 

degree of freedom,   is the movement duration and   are the open parameters, also called 
the policy parameters.  

A DMP is a damped spring model with non-linear terms which represents the 
acceleration of each degree of freedom. These dynamic motion primitives can be divided into 
two categories, based on the kind of task they represent: point attractors or oscillators. For a 
point attractive DMP, the degree of freedom is moved from a start position to a goal position 
(Ijspeert et al., 2013). With an oscillatory DMP the degree of freedom is performing a 
repetitive movement, so the start and goal state are equal  (Ijspeert et al., 2013). Since for 
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this research only the point attractive DMPs are used, only this category is briefly explained 
below. A more in-depth explanation can be found in  Ijspeert et al. (2013). 
 
Discrete movements: 
Equation 3-26 is the main equation to describe the acceleration through a DMP of a point 
attractive motion: 
 

                           3-26 

 

here    is the state of the degree of freedom the DMP is describing. The goal state of the 
DMP is given through  , and the gains    and    are predefined constants. Whilst the first 
term of the equation describes a damped spring model which makes it move from the start 
state to the goal state, the second part corresponds to the forcing term that modifies how it 
moves from the start state to the goal state. The forcing term      is shown in Equation 3-27: 
 

      
        
 
   

   
 
   

        

Where:            
 

   
         

3-27 

 
where the initial state is described as   ,    are the policy parameters and    and    are the 
defining the width and the centre of the Gaussian basis function   . This forcing term uses 

an extra nonlinear function    to define itself over time ( ), shown in Equation 3-28: 
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where   is a time constant,    is a predefined constant,   is the time and   is the phase 
variable, which is used to describe the forcing term. 
 

 
 
Figure 3-11 - Pseudo Code for the initialization of a point attractive DMP. 

3.6 Summary 
In this Section the algorithms IL, RL, IRL, PL and DMP are explained. IL directly uses 

the demonstrations to learn the task. The main disadvantage of IL is that the performance of 

Given:  

- The gain parameters:    ,    
- Discreet path of one degree of freedom of the whole trajectory in time steps      

Position     , velocity       and acceleration       
 
Calculate: 

- Calculate the phase variable:  

o                                     
- Calculate centre and width of Gaussian basis functions 

o             
           

     
      

o              

- Gaussian basis functions                  

-            
                      

      
 with   is the goal state/position 

-      
    

  
  

- Solve for the policy parameters through:                        
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the task completely depends on the performance of the demonstration. In other words IL can 
only generalise to the shown movement, it can not learn a completely different movement. 

With RL a cost function is needed to learn a task, defining such a cost function is a 
difficult task. Therefore, IRL was introduced. RL in robotics are often policy search methods 
to reduce the dimensionality of the optimisation problem. For this research is chosen to use 
the PI2 algorithm. 

With IRL the demonstrations of a non-robotic expert can be used to obtain a cost 
function. For IRL is chosen to use the inverse PI2 algorithm. 

For collecting the preferences of the non-robotic expert is chosen to use the pairwise 
preferences, since they are most intuitively to give for humans. Those pair-wise preferences 
are used to obtain an subsequentaly order of the demonstrations.  

For PI2 and inverse PI2 the trajectories need to be parameterised through the DMPs. 
Each degree of freedom has its own DMP, which is a second order differential equation.  
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4. Method 
As mentioned in Section 2 most of the current IRL algorithms are not utilising the effect of the 
input demonstrations for the learning process. With hypothesis 1 the effect of multiple 
demonstrations as input is studied. It is expected that adding more demonstrations does not 
necessary improve the performance but that it depends on the average performance of the 
input demonstrations. With hypothesis 2 the effect of adding the preferences of the non-
robotic expert on the demonstrations is studied.  

For this research, the demonstrations and preferences of a non-robotic expert need 
to be gathered. How those demonstrations and preferences are gathered is explained in 
Section 4.1. This data is afterwards used to learn an optimal policy through inverse PI2 and 
PI2 as is shown in Figure 4-1. The selection of the parameters for the inverse PI2 and PI2 
algorithms is shown in Section 4.2. 
 

 
Figure 4-1 - Graphical outline of this chapter. 

4.1 Gathering of demonstration data 
For testing the hypotheses two data sets are required: a set of demonstrations and 
information on the quality of the demonstration. As explained in more detail in Section 4.1.1, 
gathering the demonstrations is necessary to evaluate both hypotheses. Additionally, 
preferences of the non-robotic expert are collected to determine the perceived performance 
of demonstrations and test the second hypothesis. Section 4.1.2 explains how the 
preferences are collected, which give information about how well the demonstrations were 
performing the task according to the evaluator. 

4.1.1 Demonstrations 

Five steps need to be taken to gather the data of the demonstrations, as is shown in Figure 
4-2. The steps are described in the sequential order in the remainder of the paragraph. 
 

 

 
Figure 4-2 - Steps to obtain input trajectories  

 
Record 
The demonstrations are obtained through kinaesthetic teaching, where the demonstrator 
grabs the robot and pulls it according to the desired motion. During this kinaesthetic 
teaching, the relevant coordinates need to be recorded. 
 
Aligning 
Before the demonstrations are parameterised and fed to on the robot, the demonstrations 
need to be aligned by time. Alignment is necessary for better comparison of the 
demonstrations. The most common way of aligning demonstrations is to use dynamic time 
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warping. This method assumes that all demonstrations would have the same execution time 
and would change the velocities and acceleration to scale all the demonstrations in one 
unique time frame. Dynamic time warping is often used in task such as speech recognition 
(Koenig et al., 2008; Sakoe & Chiba, 1978), since with dynamic time warping different time 
spans can be compared to see if the same word is said.  

Since one of the performance measurements is the execution time, rescaling all 
demonstrations to one unique time frame is not desirable. This makes dynamic time warping 
not usable. Therefore alternatively, it was decided to take an alignment point which is 
characteristic of the movement. Afterwards, the time is scaled so all demonstrations fit. 

 
Parameterise the demonstrations 
When using inverse PI2 and PI2 the recorded coordinates need to be parameterized through 
DMPs, as mentioned in Section 3.5.  
 
Replay the DMPs of the demonstrations on the robot. 
Once the demonstrations are parameterised they need to be fed back on the robot. This is 
necessary because the DMPs are approximating the coordinates of the trajectory. While 
those trajectories are fed back to the robot a movie is recorded. Those movies are used to 
obtain the preferences of a non-robotic expert as is explained in more detail in Section 4.1.2. 
It is necessary to make the movies on the trajectories of the DMPs since they are the input 
for the algorithm and therefore also the preferences of the non-robotic expert needs to make 
on those trajectories. Otherwise, when the performance measurements are evaluated on the 
original kinaesthetic teaching trajectories, this gives a bias between what is used as an input 
for the inverse PI2 algorithm, namely the DMPs, and what is evaluated through the non-
robotic expert, the original trajectories. 

4.1.2 Extracting preferences over the demonstration  

The demonstrations need to be evaluated by a non-robotic expert. This evaluation leads to a 
ranking system. In order to retrieve the ranking values of each demonstration, it was decided 
to use pair-wise preferences gathered through a crowdsourcing experiment. The set-up of 
the experiment was inspired on the work of Grappiolo et al. (2014). Furthermore, the 
correlation between the perceived performance gathered through the crowdsourcing 
experiment and the performance measurements needs to be checked, as it is mentioned in 
Section 2.2. The crowdsourcing experiment is organized as an online survey, in order to 
maximize the chances to obtain preferences from non-robotic experts. In this survey people 
were asked to give their preference between two demonstrations; demonstration A and 
demonstration B. The answers that could be given were:   

a) demonstration A performs better than demonstration B (A>B)  

b) demonstration A performs worse than demonstration B (A<B)  

c) demonstration A and demonstration B are performing equally (A=B)  

d) I don't know which one is performing better (A?B)  

Figure 4-3 depicts the layout of the questionnaire, the full questionnaire can be found in 
Appendix E. The movies could be replayed and stopped at each time step. Participants were 
asked to rate 7 combinations of demonstrations, which in total would take around 15 to 20 
minutes to complete the survey. The combinations of the demonstrations used in the survey 
were chosen randomly but is taken into account that each combination has roughly the same 
amount of preferences. 
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Figure 4-3 - Screenshot of the crowdsourced questionnaire 

  
Analysis of the correlation 

To calculate the correlation between the performance measurements and the perceived 
performance of the non-robotic expert Equation 4-1 is used (Grappiolo et al., 2014). 

  

      
  
 

 

   

 
4-1 

 

 

Where   is the amount of pairwise preferences available and 

       if the performance measurement agrees with the preference 

     –   when they do not agree. 

The      ranges from -1 when there is absolute disagreement and 1 when there is complete 

agreement. 

 
Creating weight factors from the crowdsourcing experiment data 
This paragraph describes how this research uses the preferences of the crowdsourcing 
experiment to obtain weight factors that can be used as input for inverse PI2. First, the overall 
order of the gathered demonstrations needs to be gathered. Therefore, it is important to 

create an overall performance measurement  . As is shown in Equation 4-2 this performance 
measurement exist out of the   performance measurements times the weight vector  . The 
normalisation of the performance measurements is done through a min-max normalisation, 
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done similarly as described in Equation 4-4, furthermore they are rewritten in such a manner 
that a higher value also means a higher performance. Important is that the overall 
performance measurement   has a high correlation     , Equation 4-1, with the perceived 

performance of the non-robotic expert. Therefore, to find the weight factor   the multivariable 
optimisation problem, shown in Equation 4-3, was solved through the fmincon function of 
MATLAB (MathWorks, 2016). This optimisation was done with random initial values for   and 
multiple times to make sure that not only a local optimum was found. This overall 
performance measurement can be used next to evaluating the Demonstrations to evaluate 
also the new learned trajectories.  
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4-3 
 

 
When this overall performance measurement is created, the demonstrations can be put into 
an order. When used as input for inverse PI2 two options exist: 

1. The correlated overall performance measurement is directly used as the 
weight factor. The weight factors now not only contain which demonstration is 
performing better, but also how much better. 

2. Only the corresponding order of the input demonstrations is used for creating 
the weight factor. In this case is only known which demonstration is 
performing better than the other, and not how much better. 

In the first case, the performance measurements are used. Therefore, it is known how much 
better demonstration A is over demonstration B. When the overall performance 
measurement of demonstration A is much higher than the performance measurement of 
demonstration b than the weight factors for example would be looking like          and 

        . The weight factors are normalized to make sure they sum up to one. 
For the second case is only known that for example demonstration A is better than 

demonstration B. Therefore, demonstration A would obtain a twice as high weight factor than 

demonstration B,    
 

 
 , and    

 

 
.  

The first option contains more information on the performance, but in reality often only 
a sequential order of the demonstrations would be available. This brings the second option 
closer to reality. In the end, when applying this framework in real life only a handful of 
demonstrations would be recorded and rated.  

4.2 Parameter selection of the learning algorithms 
Now that the demonstrations and preferences are gathered the learning process can start. 
The robot first learns a cost function through inverse PI2 and afterwards PI2 is used to learn a 
trajectory, as is shown in Figure 4-4. 
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Figure 4-4 - Flow diagram of how the policy is learned through IRL and RL  

 
For applying the inverse PI2 and PI2 algorithm some parameters, e.g. the cost features and 
exploration noise, need to be selected. Section 4.2.1 explain the parameters for inverse PI2 
and Section 4.2.2 explains the parameters for PI2. 

4.2.1 The parameters for inverse PI2 

According to the pseudo-code of inverse PI2, shown in Figure 3-9, three parameters need to 
be set: the cost features, the exploration noise to create the noisy trajectories of the existing 
trajectory and the regularization term. 

Cost features for inverse PI2 

For inverse PI2 the cost function exists linearly out of different cost features        , as is 
shown in Equation 3-22. Those cost features need to be determined by hand. Ideally, a 
generic set of features could be used, which means that this set of features can be used for 
multiple tasks. Unfortunately, defining such a set of features would not be a trivial task to do. 
Therefore, it is chosen to use task specific features.  

Since the cost features determine how the cost function looks, they also determine 
how well the learned trajectory is performing. Therefore a relevant starting point for 
determining the cost features is to look at the performance measurements. Afterwards, some 
'steering' features are discussed. With steering, it is meant that although they not directly are 
connected with the performance measurements they help to obtain the trajectory that is 
fulfilling the task.  

 
Normalizing the features 
Important for inverse PI2 to work properly is that the features are all in the same range; 
otherwise features can become dominant. For example, one feature is having a maximum 
value of 1000 while the other one has a maximum of 0.1. If they are equally important, the 
weights need to be respectively 0.0001 and 1. This might lead to a disturbed outcome when 
using those features. 

Among the commonly used methods to normalize features is chosen for the min-max 
normalization, because of its simplicity. Equation 4-4 shows the normalization method. 

 

       
          

               
 4-4 

 
The         is the minimal value of that feature    and         the maximal value. The min 
and max value are determined by taking respectively the lowest and highest occurring 
feature value in the set of gathered demonstrations. 

 
Exploration noise 
The exploration noise in inverse PI2 is used to create trajectories that are close to the 
demonstrated trajectory but not similar. As mentioned before in Section 3.3.2, Inverse PI2 
uses the difference between the noisy versions of the demonstrated trajectory and the 
demonstrated trajectory to obtain the cost function. The exploration noise should therefore 
not have an as low as possible value so the weights are more accurate to the demonstrated 
trajectory. On the other hand, the exploration noise should be high enough to detect 
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differences between the noisy versions of the demonstrated trajectory and the demonstrated 
trajectory. 

Regularization term  

The standard regularization term that is described for inverse PI2 is      . Table 4-1 shows 
the effect on the learned weights when changing this regularization term. The table shows an 
example where inverse PI2 has to learn with a random subset of features to check what the 
exact effect is on the learned weights when changing the regularization term.   
 
Table 4-1 – The table shows what happens if the B and p parameters of the regularization term       are 
varied. Here is learned from 1 demonstrations and only took into account 8 random features. The weights 
were bounded through the optimisation method from -1 to 1. 

  p=1 p=2  p=4 p=6 
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Table 4-1  shows that having a higher B value lowers the value of the weights. Additionally, 
when having a high   the learning takes longer. When the value of   is higher the ‘high’ 
weights are heavier penalized then the ‘low’ weights, so the values of the weights converge 
more towards each other.  

For this thesis, a p-value of 4 is chosen. The arguments for this choice are the 
variations in the weights and the weights are not too close to each other. The   value was 
kept relatively low, namely,     , because of the learning speed.  

4.2.2 The parameters for PI2 

For this research is chosen to use PI2 as a reinforcement learning algorithm, as is mentioned 
in Section 3.3.2. The learning is done in a simulated world, to prevent wear and tear on the 
robot. With RL this learning in simulation significantly speeds up the learning process. The 
PI2 algorithm needs four parameters to guide the learning process: 

 The cost function 

 The initial trajectory 

 Amount of iterations 

 Exploration noise  
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The cost function that is used for PI2 comes directly from inverse PI2. For the initial trajectory 
is chosen to use the mean of all demonstrations. The reason for this being that a DMP close 
to the solution is needed and it is not wanted to reuse one of the demonstrations as initial 
learning trajectory. Using one of the demonstrations is not possible since in theory that input 
demonstration is the best solution for the cost function. So to see whether RL actually learns 
a policy another new trajectory was needed, that has the same starting state and final state. 

The amount of iterations that needs to be taken is a consideration. On one side it is 
important that there are enough iterations to converge, on the other side taking more 
iterations means that the learning takes longer. The amount of iterations needed also 
depends on the exploration noise, when per iteration a lot of exploration is done less iteration 
are needed to fully explore the state space. 

The exploration noise can be determined through two parameters. The first parameter 
controls the size of the exploration noise. The value of the size of the exploration noise is 
typically between zero and one. In other words the size of the noise which is added to the 
DMP policy parameters of the initial trajectory for exploration. The second parameter to 
control the exploration noise is how many new roll-outs are made at each learning step or 
iteration. When more roll-outs are re-used the algorithm explores less of the environment. 
When no roll-outs are re-used, no learning occurs because at each iteration the information 
of the previous run is thrown away.  
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5. Task 
Chosen is to focus on one specific task for validating the hypotheses. This section describes 
the chosen task that is performed. Section 5.1 gives the description of the task and Section 
5.2 describes the performance measurements. 

5.1 Task description 
Even though multiple tasks can be learned with the same IRL and RL approach, for this 
research is chosen to focus on one specific task. This since the research wants to prove that 
ranking the demonstrations is beneficial and is not focussed on the flexibility of the 
algorithms. 

The production task that is taken into account for this research is the breaking off of 
the three floes from the injected moulded part. Figure 5-1 shows the injected moulded part. 
The task was chosen because it is a real production task that is currently done by humans 
and too expensive to install a robot. 
 

 
Figure 5-1 - Injected moulded part with its three floes. The floes are the circles that need to be broken off.  

 
The floes are broken off through pulling it through the ‘breaking tool’, which is shown in 
Figure 5-2. Figure 5-3 shows how the three floes are in contact with the ‘breaking tool’ when 
the injected moulded part is pulled through the ‘breaking tool’. The robot that is chosen to 
perform this task in the UR5 (Universal Robot 5), shown in Figure 5-4. The UR5 was chosen 
because it has the teach mode and was available for this research. 
 

Floe 
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Figure 5-2 - 'Breaking tool' 
Figure 5-3 – Injected moulded part in place for 

breaking 

 

 
Figure 5-4 - Universal Robots - UR5 
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Figure 5-5 - Schematic drawing of the task 

 
Figure 5-5 shows the three steps of the task. The first step for the robot is to bring the injected moulded 
part to the breaking tool. The second step is to accelerate in the upwards direction to break off the flows. 
Finally, in the last step, the task is concluded when the robot has stopped.  

 

  
Figure 5-6 - Demonstration Set-Up 

 
The gripper of the robot has in total six degrees of freedom, movement in the x-direction, y-
direction, z-direction plus roll, pitch, and yaw. 

For simplicity of this research is chosen to only control the   coordinate and the   
coordinate, whilst keeping the other coordinates constant. As can be concluded from the task 
description those are the most important coordinates of the end effector of the robot.  

5.2 Performance measure of the production task 
The performance measurements for a generic production task is discussed in Section 2.1. 
The production task used in this research is to break off three floes of the injected moulded 

y 
z 

y 
z 

1 2 3 
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part. Therefore, the first primary performance measurement is the amount of floes broken off. 
The performance measurements for this production task are summarized in Table 5-1.  
  
Table 5-1 - The performance measurements can be divided into two categories: the primary 
measurements and the secondary measurements. 

Primary measurements of performance Secondary measurements of performance:  

- Floes broken off 
- No collision 

 

- Smallest execution time 
- Length of the path taken 
- Smooth movement 

 

 

5.2.1 Performance measurement tools 

This section describes how the performance measurements are calculated. It is important to 
make the performance measurements measurable to objectively compare different 
trajectories to each other. Per performance criteria, it is explained how it should be 
measured. 
 
Primary measurements:  
When the robot is performing the task, it is simple to define if all floes are broken off or how 
many floes are broken off. Unfortunately, when the algorithm is running it is not capable of 
checking whether the learned trajectory would break off the floes. Only when the trajectory is 
examined in real life, it would be possible to determine the amount of floes broken off.  
  What can be done is to analyse whether the floes should have been in contact with 
the breaking tool, but this does not necessarily mean that the floe is broken off. This can be 
done through analysing whether the floe has passed the coordinates of where the floes are 
in contact with the ‘breaking tool’. 
 
To summarise;  

- Real life: count the amount of floes broken off. The answers possible are 0, 1, 2, or 3 
floes are broken off. 

Simulated: Do the floes have been in contact with the breaking tool. Does it pass the 

breaking point                  In other words, is there a timestep   for which the following 
statement is true?                              . Where      is the   coordinate at 

time step   and        is the y position where the floe is in contact with the breaking tool. For 
     and        the same definitions hold though for the   coordinate respectively. When 
there isn’t a point where it passes this breaking point, the shortest distance, 
                          , to this point is measured. 

 
Collision: If there is a collision in real life between the robot and its environment, the 
emergency button needs to be pushed. Therefore, it is better to check before the robot is 
playing the trajectory if there is no collision with the breaking tool. 

Figure 5-7 shows the limits which the robot should not pass. To avoid a collision the 
robot cannot move to low during the task, especially when close too the ‘breaking tool’. In 
other words, the   coordinate should not be below     . For the   coordinate a similar 

definition holds, the robot should not move too much to the left so pass the      coordinate.   
So to check whether the movement doesn’t have any collision the following statements need 
to be checked: 

- Is there a time step   for which the following statement is true?          >0 
(When the answer is yes, there is a collision) 

- Is there a time step   for which the following statement is true?             
(When the answer is yes, there is a collision) 

 



       

45 

 

 
Figure 5-7 - UR5 with coordinates and limits of the y and z coordinates. 

 
Secondary measurements 
 
Smallest execution time: With DMPs the trajectory is parameterised with a fixed duration. 
Therefore, all demonstrations have in theory the same duration. To be able to evaluate the 
demonstration based on the difference in execution time another definition is used. The 
execution time is the time where the robot is actually moving. To determine this, the start 
time and the finish time of the movement are needed. The start time is where the robot starts 

its movement and finish time when the robot is in its final position. The start time    can be 
defined through Equation 5-1 and Equation 5-2. When the robot is not moving yet, the robot 
has no change in the y or z coordinate and no velocity. In Equation 5-2 can be seen that 
when the algorithm is one time step further than the start time    the robot is moving. Now 
either it has a change in the y or z coordinate or in the velocity. 
 

                                      .  5-1 
                                              . 5-2 

 
Where      and      are the y and z coordinates at time step  . The initial coordinates of y 

and z are given through         and        , and the velocities of coordinates y and z at 
time step   are       and       respectively.  
For the finish time   , the time when the movement is finished, a similar description can be 

used, as is shown in Equation 5-3 and Equation 5-6. 
 

                                         .  5-3 

                                                   5-4 

 
Here is the final coordinate of y and z described as              and             . Where 

     is the last time step recorded. 
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The execution time is then the finish time minus the starting time, as is shown in Equation 
5-5: 
 

                         .  5-5 
 

 
where    is the step size in seconds. 
With this definition a low value is seen as good performance, while a high value would be a 
bad performing demonstration. 
 
Smooth movement: The movement is considered jerky when the system has very high 
accelerations. The jerkiness, or in this thesis referred to as inverse smoothness, is described 

as the absolute accelerations. Equation 5-6 shows the inverse smoothness at time step  : 
 

                                
 

5-6 
 

Equation 5-7 shows the definition of the inverse smoothness of the total trajectory: 
 

                                  
      
    

  5-7 
 

 
With this definition a low value is seen as good performance, while a high value would be a 
bad performing demonstration. 
 
Length of the path taken: At each time step     the robot moves by its absolute velocity 
times the size of the time step. When summing this over the whole trajectory the length of the 
path taken is obtained, as shown in 5-8. 
 

                                   
      
    

   5-8 

 
Another way of measuring the path would be to see if there are only positive velocities. A 
backwards motion is not a logical direction for the movement and, can, therefore be seen as 
a non-needed lengthening of the path. So when there is a negative velocity the absolute 
value of this velocity is used for calculating this unwanted movement. For the y coordinate 
this unwanted backward motion                      is defined as shown in Equation 5-9. For 

the z coordinate this unwanted backward motion                      is defined through 
Equation 5-10. 
 
If         

                                 
Else 

                          
End 
 

                                                     
    
    

  

5-9 

 
If         

                                   
Else 

                            
End 

                                                     
    
    

  

 

5-10 
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With those definitions, a low value is seen as good performance, while a high value would be 
a bad performing demonstration. 
 
An overview of all the performance measurements which are previously discussed is given in 
Table 5-2. This table also overviews how they are measured and a quick description of the 
measurement is given. 
 
Table 5-2 - Summary of Performance Measurements 

Level of 
measurement 

Which 
Measurement 

How 
measured? 

Description  

Primary  Floes Broken Real life         floes are broken off.  

Checked 
through 
formula. 

Does it pass the point where the floes 
are in contact with the breaking tool? 
                         

Calculates the distance to the 
breaking point. When the breaking 
point is passed, the distance to the 
breaking point is zero. 

Collision Checked 
through 
formula. 

Does the gripper of the robot come 
into contact with the breaking tool?  

Yes or No (No is wanted) 

Secondary Execution time Calculated                 
(smaller is better) 

Smooth 
movement 

Calculated                      
(smaller is better) 

Path Taken Calculated            (smaller is better) 

Calculated                            and 

                           (smaller is 
better) 

 
Important though is that the above defined performance measurements correspond with 
what humans perceive as good performance, as is mentioned Section 2.2. This since for this 
research the demonstrations are ranked on how well they perform by a non-robotic expert.  
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6. Experimental set-up 
In Section 4 the research method is discussed in general. This section describes the 
translation from a generic case to the specific situation for this research.  

6.1 Gathering of demonstration data 
As mentioned in Section 4.1.1 the gathering of the demonstration data can be divided into 
three parts; record, align, parameterise and replay. The following section discusses each 
step during the execution of the experiments.  
 
Record 
The kinaesthetic teaching can be done with the UR5 in the so called teach mode or freedrive 
mode (Universal-Robots, 2015). During the kinaesthetic teaching the Cartesian coordinates 
of the end effector are sampled with a fixed time-step through Robot Operating System 
(ROS). ROS is a set of open source software libraries and tools focussed on robotic 
applications (ROS, 2016). ROS is used for the connection between the robot and the 
computer hosting the experimental framework. The output of these recordings is given 

through a vector of the Cartesian coordinates (  and  ) and a corresponding time vector  , 
shown in Equation 6-1. In those vectors,    is the first time step with the corresponding   

coordinate    and z coordinate   . The last time step is given through   ,   , and   .   
 

   

  
  
 
  

      

  
  
 
  

      

  
  
 
  

  

        
 

6-1 
 

 
Aligning 

It was decided to take as the alignment point the maximum velocity of the   coordinate since 
this is an important moment of the movement and can also easily be detected for each 
demonstration. Afterwards, a unique time frame, 15.5 seconds, was set where all 

demonstrations would fit in. See Figure 6-1 for the plots of the   and   coordinates of the 
trajectories of the demonstrations before and after the alignment.  
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Figure 6-1 – The 14 recorded demonstrations before alignment are shown on the left and after alignment 
on the right. For the plots on the left before alignment, the demonstrations that were finished before t=25 
s, were kept constant on the end state.   

Parameterise the demonstrations 
The parameters for the DMPs of the demonstrations are shown in Table 6-1. To 

mimic the demonstration the amount of base functions used to initialize the DMPs should be 
large. The effect of the amount of base functions is shown in Figure 6-2. A disadvantage of 
using a too large amount of base functions is that there are more policy parameters and 
therefore when using the DMPs for a learning task, this task takes longer. The DMPs also 
need a start state and goal state; the start state is the initial position of the robot and is the 
same for each demonstration. The goal state is the final position. 

 

 
Figure 6-2 – Parameterised   and   coordinates of a demonstration with different amount of base 
functions, on the right the same plot is shown but zoomed in on a curve for better comparison. 

 
To mimic the demonstration the amount of base functions should be large. With 150 

base functions, the demonstrations are nicely imitated as is shown in Figure 6-2. The DMPs 
also need a start state and goal state; the start state is the initial position        of the robot 
and is the same for each demonstration. The goal state is different for each demonstration 
and is the final position         of the robot of that demonstration. 
 
Table 6-1 - Parameters to parameterise the demonstrations through DMPs 

Parameter Value 

Amount of base functions 150 

Start state of y  
(first degree of freedom) 

Starting state of the movement; which is          metres. 

Start state of z  
(second degree of freedom) 

Starting state of the movement; which is           metres 

Goal state of y  
(first degree of freedom) 

 Depended on the final state of the specific demonstration, the value is 
in between         and      metres 

Goal state of z  
(second degree of freedom) 

Depended on the final state of the specific demonstration, the value is 
around        and     metres       

 
Replay the DMPs of the demonstrations on the robot. 
The goal is to obtain demonstrations that can be ranked by non-robotic experts. Playing back 
the DMPs of the demonstrations on the robot results in clearer and simpler demonstrations. 
This enables effective ranking by non-robotic experts. As mentioned in Section 4.1.1 the 
DMPs need to be fed back to the robot, because of the approximation of the trajectories 
through the parameterisation. Another important reason to feed back the DMPs of the 
demonstrations to the robot is that during the kinaesthetic teaching all degrees of freedom 
are manipulated through the demonstrator, while for the simplicity only the   and 

  coordinates of the end effector of the robot are chosen to control. This also simplifies the 
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movement significantly. The DMPs are calculated through the MATLAB code of Ijspeert et al. 
(2002a). Furthermore, it is necessary to count the amount of floes these trajectories are 
breaking off. For replaying the parameterized demonstrations the MATLAB driver from 
Aalamifar (2015) was used to make the connection with the UR5 and send the Cartesian 
coordinates. 

6.1.1 Parameters for creating weight factors through the preferences 

As mentioned in Section 4.1.2 the performance measurements are used to describe an 

overall performance measurement  . The performance measurements used for this 
experiment are described in Section 5.2. Since with all the gathered demonstrations no 
collision did occur, this performance measurement is left out. Also is decided to split the 
performance measurement smoothness into 5 time steps and the overall smoothness of the 
whole trajectory. To describe the overall performance measurement two cases are 
distinguished: 

1. With the amount of floes broken off taken into account as one of the performance 
measurements, shown in Equation 6-2 

2. Without the amount of floes broken off taken into account as one of the performance 
measurements, shown in Equation 6-3. 

For this split is chosen, since for the learned trajectories the performance measurement, the 
amount of floes broken off, is hard to measure offline, and it is desirable to have a 
measurement for the learned trajectories without the need of feeding them back to the robot.  

The performance of the learned trajectories can only be evaluated with the overall 

performance measurement   , unless the learned trajectory is fed back to the robot to 
measure the amount of floes broken off. Since a new learned trajectory can perform worse 
on a single performance measurement, such as execution time, then the input 
demonstrations it can receive a negative value for this measurement. This can lead to that 
the learned trajectory has a really low overall performance, whilst is only bad for one of the 
performance measurements. Therefore, it is chosen to when the single performance 
measurement has a negative value to bind this one to zero.  
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6.2 Parameter selection of the learning algorithms   
This section is split into the parameters for inverse PI2 and PI2. 

6.2.1 Parameters chosen for inverse PI2  

For implementing the inverse PI2 algorithm the weights   of Eqaution 3-23 are 
calculated through the fmincon function of MATLAB (MathWorks, 2016). The fmincon 
function finds the value for the variable that minimises the nonlinear multivariable function 
that is given.   

 
Cost features for inverse PI2 
As mentioned in Section 4.2.1 the cost features exist out of features based on the 
performance measurements and ‘steering’ features. In Table 1 an overview of all cost 
features is given, with from where they originate. The performance measurements can be 
found in Section 5.2.1. 

The performance measurement smoothness is split into five timesteps, since it can 
differ per timestep whether the accelerations should be low. Furthermore, it was chosen to 
split the performance measurement execution time into eight features. First it was split into 
the start time and the end time, which were respectively split into the   and   coordinate 

afterwards. The feature to keep the   coordinate constant and therefore let the robot start as 
late as possible with the movement (start time), was also split into five time steps. The exact 
divisions can be found in Appendix A. 

The steering features are determined through the movement, it needs to follow. The 
movement consists of three parts, as was explained in Section 5.1. First, the robot needs to 

bring the floes into place by moving along the   direction. Afterwards, the robot needs to 
accelerate quickly in   direction to obtain enough velocity for when the floes hit the breaking 
tool and break off the floes. Afterwards, the movement is ended. 
 There are two features that were formulated to steer the movement. The first feature 
was to bring the floe into place by changing the y coordinate close to the breaking tool, this 
feature is given in Equation 6-4. The second feature was to make sure the end effector was 
in place before accelerating in the z direction to break off the flow; this feature is given in 
Equation 6-5. 
  

                             6-4 

 
                                for           6-5 

 
The complete set of features can be found in Appendix A. 
 
Exploration noise 
The exploration noise   has typically a zero mean, chosen for the variance     of the noise to 
use a value of 0.2. Furthermore, it is chosen to create ten noisy versions of the demonstrated 
trajectory,     . 

6.2.2 Parameters chosen for PI2 

As mentioned in Section 4.2.2 for the experiments a choice needs to be made on the amount 
of iterations and the exploration noise. After trying some different values for those 
parameters, the following ones were chosen because they created a search that nicely 
converged, for this task. 

- In total, there were 300 iterations. 
- The exploration noise is kept small; respectively 0.2 and it even further converge to 

zero as more iterations had been done. In total, at each iteration, 6 new trajectories 
were created and 6 were re-used from the previous iteration. 
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7. Results 
In this section, the results of the experiments are shown. First, the input demonstrations are 
shown. Afterwards, the results of the crowdsourcing experiment are shown in Section 7.1. In 
Section 7.2 the input demonstrations are shown which relate to hypothesis 1. Followed by 
Section 7.3 where the input demonstrations and the preferences of the non-robotic expert 
are used to evaluate hypothesis 2. Finally, in Section 7.4 an interesting selection of the 
learned trajectories is fed back to the robot to see how the trajectories perform in real life.  

For the experiments in total 14 demonstrations are recorded. The amount of 
demonstrations created is chosen since it is desired to have demonstrations with different 
amount of floes broken off and to have variation in terms of smoothness, execution time 
among others. The performance of the 14 recorded demonstrations, according to the 
performance measurements, can be found in Appendix B - Table 1. Although the 
demonstrations show differences in the performance measurements, it can be argued that 
the demonstrations are too similar when looking at Figure 6-1 at the right plot. In this figure 

for all 14 demonstrations the   and   coordinates over time are shown. What is seen that the 
demonstrations mainly differ in the   coordinate and more specifically when does the robot 

start to change this    coordinate. Subsequently, this led to a difference in the ‘waiting’ time 
in between that the   coordinate is in place and the   coordinate is changing.  

7.1 Crowdsourcing experiment 
To rank the recorded demonstrations the crowdsourcing experiment described in Section 
4.1.2 is set up to gather the non-robotic expert’s preferences. The results of this 
crowdsourcing experiment are shown in this section. To obtain a sequential order by the non-
expert’s preferences all 14 demonstrations need to be pairwise compared. As a result, in 
total 182 combinations needed to be ranked. In total 78 people participated in the 
crowdsourcing experiment. Each participant compared seven different combinations of the 
demonstrations, in total there were 546 preferences, which means that for each combination 
around 3 to 4 preferences were given.  

The average participant is an 30.5 year old male, with a technical background. He 
has no to little experience in Robotics and the UR5, has worked long with Artificial 
Intelligence, although this is quite contradictory to the study direction. He does not have any 
experience with preference learning or Inverse Reinforcement learning. Reinforcement 
Learning is mostly familiar, but sometimes from the different field such as education. The 
demographic data and the link to the raw data can be found in Appendix F. 

The answers that the participants gave are shown in Section 7.1.1, besides those 
preferences some of the participants mentioned in the comment section that they found it 
hard to determine on which criteria they should evaluate the performance. Since the 
participants said they could not always find the difference between the two demonstrations. 
In the next section more details are given on the answers the participants gave and the 
correlations with the performance measurements.  

7.1.1 Correlations of the performance measurements 

With the survey in total 546 preferences were given. The answer options were a>b a<b a=b 
or a?b, where the first two options are considered as clear preference and the second two as 
no clear preference. In Appendix B - Table 2 all given answers are shown. In Figure 7-1 is 
shown how many of the preferences were clear preferences, also a division is made on 
whether the combination of demonstrations rated had a difference in the amount of floes 
broken off. What can be seen is that the participants when there was a difference in the 
amount of floes broken off people found it much easier to give a clear preference, than when 
the same amount of floes were broken off.            
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Figure 7-1 - All pairwise given preferences divided over clear preferences and non clear preferences. 
What can be seen is that when there is a difference in the amount of floes broken off between the two 
demonstrations shown, more clear preferences are given. In total of all preferences 65.4% are clear 
preferences. 

 
In Table 7-1, all correlation values (    ) of the performance measurements with or without 
the difference in amount of broken floes can be found. A quick recap of the performance 
measurements can be found in Table 5-2. For the smoothness is chosen to split it into 5 time 
steps. Additionally, also the overall smoothness of the whole trajectory is shown. Three 
interesting results can be highlighted from Table 7-1. First is that a high correlation is found 
for the amount of floes broken off. Secondly, when only looking at the combinations where 
the same amounts of floes are broken off, the other performance measurements have higher 
correlations with the preferences of the non-robotic expert. For example, the execution time 
and the second time step of the smoothness have really high correlations. Finally, also 
negative correlations are found. Those negative correlations are found when there is was a 
different amount of floes broken off for the smoothness in the second and third time step, and 
for the path taken. Furthermore, negative correlations are found at the simulated break when 
only having the same amount of floes broken off. Those negative correlations can be 
explained through that all the performance measurements influence each other, and 
therefore if another performance measurement is optimal another one is less optimal. More 
explanation about this phenomenon can be found in Section 8.1. 
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Table 7-1 – The correlation values (    ) of the different performance measurements. The correlations 
higher than 0.2 or lower than -0.2 are highlighted. When looking at all the preferences the amount of floes 
is shown to have the highest correlations with the preferences given in the crowdsourcing experiment. 
When only looking at the combinations of demonstrations that have no difference in the amount of floes 
broken it can be seen that the other performance measurements are higher correlated. 

 Amount of 
clear 
preferences 

Amount of 
floes 
broken off 

Simulated 
break: 
Shortest 
distance to 
breaking 
point 

Execution 
time 

Smoothness 
Split into 5 
time step 
and the 
overall 
smoothness 

Path 
taken 

No 
backward 
motion y 

No 
backward 
motion z 

All 
preference

s  

357 0.6256 -0.0735 0.1877  0.0532 
 0.0588 
-0.0756 
-0.1429 
 0.1485 
 
 0.1541 

0.0084 0.3053 0.1036 

Different 
amount of 

floes 
broken off  

203 0.6256 0.1214 -0.0936 -0.0936 
-0.2906 
-0.2217     
 0.0739 
 0.2315 
 
-0.0640 
 

-0.2117 0.2512 -0.1626 

Same 
amount of 

floes 
broken off  

154 N/A -0.3143 
 
 

0.5584  0.2468 
 0.5195 
 0.1169 
-0.4286 
 0.0390 
 
  0.4416 

0.3117 0.3766 0.4545 

 
Interesting would be to see what the important performance measurements are when the 
different amount of floes are broken off, but the preference is not given according to this 
performance measurement. For example, when demonstrations A breaks of 2 floes and 
demonstrations B 1 floe, but demonstrations B is preferred, it is interesting to see which of 
the other performance measurements is then chosen to rank the demonstrations on. The 
most interesting result with this division is shown in Table 7-2, the full table is shown in 
Appendix B - Table 3. The most important result is that the simulated break, through using 
the shortest distance to the breaking point is correlated with the amount of floes broken off. 
The other results found in Appendix B - Table 3 were as expected, namely when the 
preference did not agree with the amount floes broken off the other performance 
measurements became more important. Similar to when only looking at the preferences at 
the combinations which have the same amount of floes broken off. 
 
Table 7-2 – the correlation values (    ) of the performance measurement, shortest distance to breaking 
point, which simulates the break of the floes divided in two categories is shown. The first category is 
when the preferences do not agree with the performance measurement the amount of floes broken off. 
The second category they do agree. It can be seen that they correspond to the performance measurement 
amount of floes broken off. 

 Amount of 
preferences 

Amount of floes 
broken off 

Shortest distance 
to breaking point  
1.0e-04 m 

Preference does not agree with the performance 
measurement the amount of floes broken off 

 

38 -1 -0.6970 

Preference does agree with the performance 
measurement the amount of floes broken off 

  

165 1 0.3143 
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7.1.2 Combining the performance measurements to obtain the overall 
performance measurement description 

After the correlation of the performance measurements are known the next step is to create 
the overall performance measurement (     ), shown in Equation 6-2 and 6-3. The 

optimization search of Equation 4-3 for the weights    and    led to the result shown in Table 
7-3. 
 
Table 7-3 – The learned weights    and    to create the overall performance measurements    and   . For 

   a high weight is given to the amount of floes broken, where    has the highest weights more divided 
over the features; no backward movement in y, smoothness in the second and third time step, and the 
simulated break.  

 

A
m

o
u
n
t o

f flo
e
s
 

b
ro

k
e
n
 o

ff 

S
im

u
la

te
d
 b

re
a
k
 

E
x
e
c
u
tio

n
 tim

e
 

S
m

o
o
th

n
e
s
s
 

d
u
rin

g
 t=

[0
 3

] 

S
m

o
o
th

n
e
s
s
 

d
u
rin

g
 t=

[3
 6

] 

S
m

o
o
th

n
e
s
s
 

d
u
rin

g
 t=

[6
 9

] 

S
m

o
o
th

n
e
s
s
 

d
u
rin

g
 t=

[9
 1

2
] 

S
m

o
o
th

n
e
s
s
 

d
u
rin

g
 t=

[1
2

 1
5

.5
] 

O
v
e
ra

ll 

s
m

o
o
th

n
e
s
s
 

P
a
th

 ta
k
e
n

 

N
o
 b

a
c
k
w

a
rd

s
 

m
o
v
e
m

e
n
t in

 y
 

N
o
 b

a
c
k
w

a
rd

s
 

m
o
v
e
m

e
n
t in

 z
 

   
0.6667 0.0201 0.0653 0.0451 0.0557 0.0266 0.0007 0.0149 0.0392 0.0019 0.0425 0.0214 

   N/A 0.1283 0.0902 0.0861 0.0590 0.1873 0.1413 0.0216 0.0173 0.0028 0.1901 0.0761 

 
Which led to that the demonstrations could be ranked through    and   , shown in Figure 

7-2.    has a correlation value               and    has a correlation value of       
      . In Table 7-3 can be seen that according to    the floes broken off is the most 
important measurement for the overall performance measurement. For   , the weights    are 
more spread over the simulated break, the second and third time step of the smoothness and 
no backwards movement in  . This leads to that for    demonstration 10 is performing best, 

while for    demonstration 2 is performing best. As mentioned in Section 6.1.1    is used to 
evaluate the learned trajectories when they are not fed back to the robot.  

 
Figure 7-2 - The ranking of the input Demonstrations based on Performance measurement with floes 
broken      and without floes broken off   . All exact values and the full order can be found in Appendix 

B - Table 4. It can be seen that according to    demonstrations 10 is performing the best, while according 

to    demonstration 2 is performing best.  
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The mean trajectory has according to    a performance of 0.8180, which is higher than all 
the demonstrations separately. This was being expected since it averages out some of the 
small bumps of the demonstrations, so a higher smoothness is found and less backward 
motion. As said the smoothness and less backward motion in y are having high weights    
for     

7.2 Hypothesis 1: One or multiple demonstrations 
This section contains the results for evaluating hypothesis 1. The hypothesis is that the 
performance of the learned trajectories is mainly based on the average performance of the 
input demonstrations. More specifically, is looked whether using multiple input 
demonstrations does change this.   

For Figure 7-3 is decided to use the best demonstrations, according to the overall 
performance measurement   , for plotting. This means that when 1 demonstration is 
selected the trajectory is learned from only demonstration 2, and when 2 demonstrations are 
selected it learns from demonstration 2 and 1. Figure 7-4 shows a similar plot only now the 
worst demonstrations are selected. An overview of which input demonstrations are used for 
the figures can be found in Table 7-4. 
 
Table 7-4 - An overview of which demonstrations ID are used for Figure 7-3, Figure 7-4, and Figure 7-5. 

#amount of 
demonstrations 

Case 1 
(ID#) 

Case 2 
(ID#) 

Case 3  
(ID#) 

Case 4  
(ID#) 

Case 5  
(ID#) 

Figure 7-3 2 2, 1 2, 1, 7 2, 1, 7, 6 2, 1, 7, 6, 10 

Figure 7-4 /  Figure 7-5 14 12, 14 11, 12, 14 8, 11, 12, 14 4, 8, 11, 12, 14 

 

 
Figure 7-3 - The performance of the learned trajectories with 1,2,3,4 or 5 demonstrations used as input for 
IRL. The demonstrations are selected to be the best demonstrations according to   . Also the average 
performance of the input demonstrations is plotted. The grey area around the mean represents the 
standard deviation of the performance of the input demonstrations. The boxplots are represented the 
performance of 6 learned trajectories, the outliars are given as red crosses. It can be seen when 2 
demonstrations are used the performance is increased a bit afterwards the performance is degrading in 
the same trend as the average performance of the input demonstrations is.  
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Figure 7-4 - The performance of the learned trajectories with 1,2,3,4 or 5 demonstrations used as input for 
IRL. The demonstrations are selected to be the worst demonstrations according to   . Also the average 
performance of the input demonstrations is plotted. The grey area around the mean represents the 
standard deviation of the performance of the input demonstrations. The boxplots are represented the 
performance of 6 learned trajectories, the outliars are given as red crosses. What is seen is that when the 
average performance of the input demonstrations is increasing, so is the performance of the learned 
trajectories. Further the learned trajectories are a performing lot better than the input demonstrations.  

 
As expected, Figure 7-3 shows that the performances of the learned trajectories seem to 
follow the average performance of the input. When the average performance of the input 
demonstrations decreases also the performance of the learned trajectories decreases. 
Another interesting result from Figure 7-3 is that a little increase in the performance is seen 
when going from one input demonstrations to two demonstrations. This increase is not seen 
in Figure 7-4. As expected Figure 7-4 shows that when the performance of the input 
demonstrations increases also the performance of the learned trajectories increases. A 
remarkable result from Figure 7-4 is that the performance is higher than the average input 
demonstrations. This is probably due to the initialisation with the mean trajectory of all 
demonstrations, as explained in Section 4.2.2. Another run with RL is made with a different 
initialisation DMP, namely with the worst demonstration respectively demonstrations with ID 
14, according to performance measurement 2, as initialisation. In Figure 7-5 this is shown 
and it can be seen that the performance of the learned trajectories is now closer to the 
average of the input demonstration with this different initialisation of the DMPs.  
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Figure 7-5 - Similar to Figure 7-4, but here for the initialization of the DMPs for RL demonstration 14 is 
used, which is the worst performing demonstrations according to   .  Furthermore, the boxplots are now 
represented the performance of 3 learned trajectories. The performance of the learned trajectory is now 
closer to the average performance of the input demonstrations, than in Figure 7-4. 

7.3 Hypothesis 2: Added preference 
This section contains the results for Hypothesis 2, which is about the effect of adding 
preferences through weight factors of the preferences of the non-robotic expert as defined in 
4.1.2.  

Figure 7-6 shows for each of the four sets of selected input demonstrations, the three 
cases. The first case is without any added preferences; in this case, the weights are 
uniformly divided over the trajectories. The second case is learned with added preferences 
through weight factor 1. Finally, the third case the trajectories are learned by adding the 
preferences through weight factor 2. An overview of the weight factors is shown in Table 7-5 
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Figure 7-6 - Performance plotted of the 3 cases; without preferences, with preferences through weight 
factor 1 and with preferences added through weight factor 2. 3B means that 3 'bad' demonstrations are 
used as input, 2B1G means that 2 'bad' and 1 'good' demonstrations are used, 1B2G means that 1 'bad' 
and 2 'good' demonstrations are used, and 3G means that 3 'good' demonstrations are used. The above 
categorization is made through   . The boxplots are represented the performance of 9 learned 
trajectories, the outliars are given as red crosses. No clear difference in performance between the 
different cases for each of the four sets of input demonstrations. 

 
Table 7-5 - The weight factors used for learning the trajectories from which the performance is plotted in 
Figure 7-6. 

Situation: 3B 2B1G  1B2G 3G 
Demonstrations ID 

# 
11 12 14 2 12 14 2 1 14 2 1 7 

No added weights [0.33 0.33 0.33] [0.33 0.33 0.33] [0.33 0.33 0.33] [0.33 0.33 0.33] 

Weight Factor 1, 
(created through   ) 

[0.3692 0.3158 
0.3150] 

[0.4906,0.2550,0.2543] [0.4061 0.3834 
0.2105] 

[0.3576 0.3376 
0.3048] 

Weight Factor 2 [0.5000 0.3333 
0.1667] 

[0.5000 0.3333 0.1667] [0.5000 0.3333 
0.1667] 

[0.5000 0.3333 
0.1667] 

 
In all situations, it seems that the learned performance is very similar. Since earlier was seen 
that the performance was also highly influenced through the initialisation of the DMPs, 
decided was to replay 2 situations with 3 data points to see whether this would change the 
outcome of the learned trajectories with respect to each other. It was chosen to select 
random three learned cost function in the case no added preferences and for three learned 
trajectories with added preferences through weight factor 1 with as input ‘2B1G’. Afterwards 
was optimized to those cost function through PI2 using two different initialisations of the 
DMPs for learning the trajectories. In the first case the mean trajectory of all demonstrations 
was used before as well is shown in Figure 7-7. The second case the worst demonstrations, 

according to   , were used, respectively demonstration 14. Although it can be seen that the 
performance of the case with initialisation through the worst demonstration is lower than 
shown in with the initialisation with the mean trajectory. There seems to be no difference in 
learning between the cases with or without preference. The performance is just lowered in 
both cases evenly.  
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Figure 7-7 - The performance of the learned trajectories with the same learned cost function using a 
different initialization of the DMPs. The boxplots are represented the performance of 3 learned 
trajectories. The performance with the initialization through demonstrations 14 is just lowered in 
comparison to the performance of the learned trajectories which were using the initialization through the 
mean.  

7.4 Performance on UR5 
Finally, to see whether the learned trajectories are usable in the real life scenario, 15 of all 
the learned trajectories are selected to feed back to the UR5. The main observations are: 

- When the robot follows the same learned trajectories twice, the amount of floes 

broken off is not necessarily the same. Therefore the performance according to    is 
not repeatable. 

- There are two batches of floes, which have a different coating. With the uncoated 
‘silver’ batch the floes are much easier to break off compared to the coated ‘black’ 
batch.  

- The speed at the breaking point is also an important factor for breaking off all floes. 
Sometimes the floes are touched and therefore bend, but not broken.  

- The positioning of the breaking tool should be very precise. When the breaking tool is 
placed a few millimetres differently the floes were not broken off anymore.  

 
Appendix D explains which trajectories are chosen and shows the amount of floes that the 
selected trajectory broke off. Since the amount of floes broken off depends on more factors 
than just the trajectory, it is hard to say something about the performance according to   . 
Therefore hypotheses 1 and 2 cannot be evaluated according to this overall performance 
measurement   . The conclusions made, with the overall performance measurement   , are 

still valid. This is because the input demonstrations are also evaluated according to   , 
without the amount of floes broken off.  
  



       

61 

 

8. Discussion and conclusion 
This section starts with a recap of the research goal afterwards the results shown in Section 
7 are discussed. The main goal of this thesis is to find the effect of the input demonstrations 
on the performance of the learned trajectories. Therefore, it is important to first determine 
what good performance is. This is done through the preferences of a non-robotic expert 
which are gathered through a crowdsourcing experiment. The results of this crowdsourcing 
experiment are discussed in Section 8.1. Afterwards, in Section 8.2 the effect of the amount 
input demonstrations used is discussed. According to Hypothesis 1 the average performance 
of the input demonstrations depends on the performance of the learned trajectories, the 
amount of input demonstrations has less influence. In Section 8.3, Hypothesis 2 is evaluated, 
namely, whether adding the preference knowledge of the non-robotic expert to the 
demonstrations is indeed improving performance of the learned trajectories. In Section 8.4 
the conclusion on the selected learned trajectories which were fed back to the robot are 
given. Afterwards, in Section 8.5 the overall conclusion is given. Finally, Section 8.6 contains 
the recommendations for future work are given.  

8.1 Crowdsourcing experiment 
As expected the most important factor for defining good performance is the amount of floes 
broken off, as is shown in Figure 7-1 and Table 7-1. In other words, whether the robot is 
performing the given task as desired. In Figure 7-1 shows that the participants found it 
difficult to evaluate the trajectories, since only 65.4% of the preferences are clear 
preferences, which means that one of the demonstrations is ranked as better performing. 
This is in line with the comments of the participants, which stated the participants mentioned 
in the comment section they found it hard to find the differences between the 
demonstrations. When the participants need to rank the combinations of the demonstrations 
that have a difference in the amount of floes broken off, clearly more clear preferences are 
given. 

In Table 7-1 shows that the amount of floes broken off has the highest correlation 
value with the preferences of the non-robotic expert. Furthermore is seen in this table that 
when the amount of floes broken off is not taken into account the other measurements 
become more important. An interesting result to mention shown in Table 7-1 is that the 
second time step of the smoothness is very highly correlated. A theory could be that this 
measurement is correlated with the execution time. When the execution time is small, the 
robot is not moving in the first and second time step, so likewise the accelerations are low. 
That the first time step of the smoothness is less correlated can be explained through that for 
that time step most of the demonstrations are not moving yet and therefore they all receive a 
high performance value for that performance measurement.  

As can be seen in Table 7-2 the performance measurement simulated break seems 
to correlate with the amount of floes broken off as expected. Maybe an even higher 
correlation can be reached when adding the speed at that time since this is also an important 
factor for breaking as found during feeding back the selected learned trajectories on the 
UR5.  

 
Overall performance function 
As is shown in Figure 7-2 two overall performance measurements were created. One is with 

the amount of floes broken off taken into account   , the other one is without   . The one 
with the amount of floes broken off taken into account had a much higher correlation. 
Unfortunately, the amount of floes broken off is hard to determine without actually replaying 
the trajectory on the robot. Furthermore, it is seen in Section 7.4 when replaying the amount 
of floes broken off can differ within a learned trajectory. Therefore is chosen to use the 

overall performance measurement   , that does not take the amount of floes broken off into 
account for analysing the results. 
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In Section 7.1.2 is mentioned that the mean of all demonstrations is having a high 
overall performance   . This can be due to that the mean of all demonstrations is having low 
accelerations and therefore a high smoothness. Furthermore, the mean trajectory is having 
almost no backwards velocities in the y and z direction. 
 It can be questioned whether smoothness is not getting a too high influence on the 
overall performance    since it has multiple weigths   in the overall performance 
measurement as is seen in Table 7-3. While for the execution time there is only one weight 

  . This can also be a reason why the mean is scoring higher than expected.  

8.2 Hypothesis 1 
As expected is shown in Figure 7-3, Figure 7-4, and Figure 7-5 that the performance of the 
learned trajectories depends on the performance of the input demonstrations. Simply adding 
more demonstrations with the idea of adding more information, is therefore not beneficial. 
Important is that the demonstrations that are added are of high quality, to improve the 
performance of the learned trajectory. Furthermore, the quality of the trajectory that is used 
as initialisation of the DMPs for RL is having a big influence on the performance as can be 
seen in Figure 7-5. 
 In theory, it should be hard to learn from one demonstration, since there is a high 
chance of optimising to a bad behaviour of this single demonstration. When using more than 
one demonstration this is averaged out. Although this effect can be seen in Figure 7-3, it is a 
smaller effect than expected. Furthermore, Figure 7-4 does not confirm this theory and 
therefore could not be said that it learns better from one demonstration than from two 
demonstrations which have a lower average performance.  

8.3 Hypothesis 2 
As mentioned in the previous section, the average performance of the input demonstrations 
is determining the performance of the learned trajectory. With hypothesis 2 is looked whether 
the performance can be increased when adding the non-robotic expert’s preferences in the 
learning process. In theory the good demonstrations would be used more in this case than 
the bad demonstrations which should lead to a better performance than when assuming that 
all the demonstrations are equally important. Through this ranking the goal is to be able to 
also use imperfect demonstrations, which also contain a lot of information on the task that 
needs to be performed but have a low performance.   
 Unfortunately, this hypothesis is not confirmed as can be seen in Figure 7-6. For the 

three different cases; without added preferences, directly add the information of   , or 
through only giving the order of the demonstrations the learned trajectories perform similarly. 
Also looking at different combinations of input demonstrations did not change the 
performance.  

For the situations where three similar performing demonstrations were used. This is 
logical since when the demonstrations are quite similar in performance the weigh factors are 
also very close to each other, as can be seen in Table 7-5. Also with the third case with 
weight factors 2, there are not that many differences since the demonstrations are close to 
each other in terms of performance and probably therefore also in their shape. 

 For the situations where there is a high spread in the performance of the input 
demonstrations an increase of the performance when using the added preferences is 
expected. Unfortunately, also no differences in performance are found when learning from 1 
good and 2 bad demonstrations or from 1 bad and 2 good demonstrations when adding 
preferences. This can be caused through that the movements are too similar to each other. 
Another reason for this could be that the cost features which are used for inverse PI2 are not 
sufficient for learning the difference.   

This leaves two options; either the learned cost functions are very similar or PI2 is not 
working as intended with the learned cost function. In Appendix C the learned cost function 
and the according learned trajectories are analysed. This analysis led to the conclusion that 
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PI2 is working as expected. Therefore, it can be said that the learned trajectories do not show 
the clear differences in performance since the learned cost functions are similar.  

8.4 Replay on robot 
When replaying the learned trajectories on the robot, the conclusion is made that the 
demonstrations are hard to evaluate according to   . With the overall performance 

measurement    the amount of floes broken off is needed. Unfortunately, this measurement 
was influenced through more factors are taken into account for learning. The exact 
placement of the breaking tool for breaking all the floes should be correct according to 
millimetres, this is hard to evaluate through the eye.  

Furthermore, a big difference in the results seems to be due to which batch of floes is 
taken. The black series were much harder to break off the floes, than for the silver batch. 
Since the input demonstrations were ranked based on the black series and for the results the 
silver batch has only been available it is hard to say something about the results. What is 
seen during testing: 

- Exact placement really important 
- Speed when passing the breaking point is important, especially for the black batch. 

For the silver batch, this was less important. This is why it is desired want to start as 
low as possible with accelerating, only in the setting that was used there was a 
minimum for the z coordinate since otherwise the gripper would come into collision 
with the breaking tool. 

8.5 Conclusion 
The results confirm hypothesis one, that not the amount of unranked demonstrations is 
important, but the average performance of those demonstrations. Another important issue to 
solve is how the initialisation of the DMPs used as input for RL should be done since this has 
a big influence on the learned trajectories.  
 The second hypothesis can not be confirmed with the results of this research. So 
further adding weight factors to the input demonstrations based on the performance of the 
non-robotic expert is not improving the performance of the learned trajectories. It can be 
argued whether this is always the case or whether the variations between the 
demonstrations are not large enough or the features are not specific enough. For example, 
more steering features could be added. 

8.6 Recommendations 
In order to obtain statistical evidence for the above conclusions more data points are needed. 
This thesis is based on only a few, at maximum nine, learned trajectory per test case, 
because of the limited time available. To fully discard that the ranking the demonstrations 
through the preferences is not improving the performance of the learned trajectory, more 
learned trajectories are needed.  

However, at the moment, the results suggest that ranking the demonstrations before 
using IRL is not improving the results. And therefore this does not seem to be the limiting 
factor for the performance. The limiting factor seems to be the cost features and the 
gathering demonstrations with enough variation.  

As it turned out, it is not a trivial task to create the cost features for inverse PI2 to 
make the algorithm learn the optimal cost function from which it can learn better than the 
input demonstrations or the average of the input demonstrations. Therefore, further research 
on what good elements would be for the cost function is necessary. Also, another look 
should be taken in what features are that tune the amount of floes broken off.  

Another approach would be to record new demonstrations with more variation in the 
performance measurements such as execution time, smoothness, among others. This would 
lead to more difference in the input demonstrations and therefore, it is more likely to see the 
effect of adding the different weight factors to the demonstrations. This would also help with 
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the normalization of the features since the minimum and maximum values of the different 
features are then more apart from each other. Only this can lead to the paradox, that on one 
hand the system needs really bad demonstrations to normalize the features, while the input 
demonstrations should be performing relatively well.  

Another disadvantage of the approach of creating different types of demonstrations is 
that it is quite hard to manipulate the UR5 in the teach mode. Therefore, the input trajectories 
always look a bit jerky and have a higher execution time than when the robot would have 
been programmed. This means that it is hard to create really fast demonstrations or a very 
smooth demonstration, or a combination of both. Most of the time when recording the 
demonstrations it was not the choice to perform faster or slower, it was more depended on 
the compliance of the robot.   

Besides the above mentioned comments it would be interesting to look at more 
generic cost features. For this research as mentioned in 4.2.1 the cost features were chosen 
to be task specific. It would actually be a more useful algorithm when those features are 
generic for more tasks. So there is no need of a robotic expert to create those features per 
task. Also, it is interesting to check whether the learned trajectories are directly applicable to 
other robots. Moreover, it would be interesting to look at different tasks if the same results 
are found. 

 

 
Figure 8-1 – Using an evaluator to update the reward function (r) (Silva et al., 2006) 

 
For future work, when the above mentioned recommendations are fixed it could be 

interesting to look at another approach to avoid the problems with kinaesthetic teaching. The 
approach of Silva et al. (2006) as is shown in Figure 8-1. Here the non-robotic expert is the 
evaluator, which needs to evaluate after each learning step between the new and old 
trajectories which one is better performing. With this approach, the robot can be used to its 
full capabilities and having no influence on the limitations of kinaesthetic teaching. A 
disadvantage of this method can be that between two trials the difference in performance is 
very hard to notice. Another disadvantage is that the non-robotic expert has to be there 
during the time-expensive learning process. 
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Appendix A – Cost features for IRL 
 
Table 1 - All cost features used for inverse PI

2
 in the order the appear in the code. The first column shows 

the formulation used, the second column what the purpose of the feature is. 

 Description of the feature The feature origin 

1 
        

 

 
          

 
            

Cost of Policy Parameters 

2 For the first time step, this feature is trying to keep the y 
coordinate constant 
                    for        ] else      

Performance: Execution Time 

3                     for       ] else      Performance: Execution Time 
4                     for       ] else      Performance: Execution Time 
5                    for        ] else      Performance: Execution Time 
6                     for         ] else      Performance: Execution Time 
7 This feature keeps the z coordinate constant during the 

time period where the y coordinate is moving. 
                   for        ] else      

Performance: Execution Time 

8                   for             ] else      Performance: Execution Time 
9                   for             ] else      Performance: Execution Time 
10                    for         else       Performance: Smoothness 
11                    for         else       Performance: Smoothness 
12                    for         else       Performance: Smoothness 
13                    for          else       Performance: Smoothness 
14                    for             else       Performance: Smoothness 
15                        

  
    (for     ) Performance: Path taken 

16 If         then              else       Performance: Path taken, no 
backwards motion 

17 If         then              else       Performance: Path taken, no 
backwards motion 

18                    for        ] else       Steering: Bring y in position 

19                   for       ] else       Steering: Bring y in position 

20                    for       ] else       Steering: Bring y in position 

21                    for        ] else       Steering: Bring y in position 

22                    for           ] else       Steering: Bring y in position 

23                                                        

for         ] else       

Steering: Before breaking the 
floes 

24                                      for         ] 

else       

Performance: Breaking off floes 
simulation 

25 If            then                 else       Performance: Collision 
26 If            then                 else       Performance: Collision 
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Appendix B – Input demonstrations and 

the corresponding performance 
 
 
Table 1 – Performance of the recorded demonstrations 

Demonstration 

ID # 

Amount 
of floes 
broken 

off 

Shortest 
distance 

to 
breaking 

point  
1.0e-04 

m 

Execution 

Time 

(seconds) 

Overall 
Smoothn

ess 
(m/s

2
) 

Path 
taken 
(m/s) 

No 
backward 
motion y 

(m/s) 

No 
backward 
motion z 

(m/s) 

1 1 0.1600  5.58 127.6211 24.5422 0.3398 1.1402  

2 2 0.0900 6.21 128.2390 26.2778   0.2033 1.1218 

3 2 0.0400 12.43 155.3608 29.5149 0.4477 2.6927 

4 2 0  9.63 147.4194 28.7608   0.6932 2.1204 

5 2 0.1600  8.26 153.7105 30.5306 0.2717 1.6356 

6 2 0.0400 10.56 142.8810 29.4426 0.2283 1.7488 

7 2 0.0900 6.93 150.1551 27.6728 0.1189 1.3074 

8 1 0.2500 7.73 153.6194 29.7748 0.6351 0.8043 

9 2 0.2500   12.77 171.9735 33.5464  0.4836 1.1704 

10 3 0 11.92 157.5166 34.1211 0.4635 1.9706 

11 1 0 14.03 168.4038 32.2831 1.1412 1.6510 

12 2 0.1600 11.36 171.2847 34.7210 0.9419 2.2199 

13 2 0.2500 7.97 135.1845 29.9549 0.4771   0.7824 

14 2 0.0900 10.73 169.9748 33.8322 1.1463 1.5900 

Mean 
trajectory 

N/A 0 12.22 120.1540 28.2340 0.2604 0.8056 

 
 
Table 2 – An overview of the answers given at the survey which are categorized by different groups of 
combinations. 

 a>b  a<b a=b a?b # clear preferences 
(a</>b) 

All preferences 189 168 128 61 357 (65.4%) 
Different amount of floes 102 101 28 21 203 (81.0%) 

Same amount of floes broken 
off  

87 67 100 40 154 (52.4%) 
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Table 3 – the correlation values (    ) of the performance measurements divided in two categories. 

The first category is when the preferences do not agree with the performance measurement the amount 
of floes broken off. The second category they do agree. 

 Amount of 
preferences 

Amount of 
floes 
broken off 

Shortest 
distance to 
breaking 
point  
0.0001 m 

Execution 
time 

Smoothness Path 
taken 

No 
backward 
motion y 

No 
backward 
motion z 

Preference does 
not agree with 

the performance 
measurement the 

amount of floes 
broken off 

 

38 -1 -0.6970 0.5263  0.2632 
 0.7895 
 0.3158 
-0.4737 
-0.3684 
 
 0.2632 
 

0.2632 -0.1579 0.6316 

Preference does 
agree with the 

performance 
measurement the 

amount of floes 
broken off 

  

165 1 0.3143 -0.2364 -0.1758 
-0.5394 
-0.3455 
 0.2000 
 0.3697 
  
-0.1394 

-0.3333 0.3455 -0.3455 

 
 
 

Table 4 - Performance of the demonstrations, according to    and   , also the performance 

according to    of the mean is presented. 

Demonstration ID #    Order according 
to    

   Order according 
to    

1 0.5231 12 0.7491 2 
2 0.7493 2 0.7934 1 
3 0.5817 8 0.5641 8 
4 0.6507 7 0.5161 10 
5 0.6709 5 0.5652 7 
6 0.6628 6 0.6615 4 
7 0.7158 3 0.6762 3 
8 0.4462 13 0.5121 11 
9 0.5590 11 0.5199 9 

10 0.8305 1 0.6281 5 
11 0.3015 14 0.4820 12 
12 0.5621 10 0.4123 13 
13 0.6988 4 0.5694 6 
14 0.5808 9 0.4112 14 

Mean trajectory N/A N/A 0.8180 N/A 
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Appendix C – Learned trajectories and 

their corresponding weights 
 
To better understand what is happening during the learning process, Figure 2, Figure 3, and 
Figure 4 are showing the learned trajectories and Figure 1 the input demonstrations. What 
can be seen is that although the demonstrations differ in performance, they look very similar. 
The main difference can be found in when the y coordinate is moving towards ‘the breaking 
tool’.Table 1, Table 2, and Table 3 
Table 3 shows the corresponding weights of the cost function which is used to create the 
learned trajectories. 

 
Figure 1 –The input demonstrations of the learned demonstrations shown in Figure 7-7, Figure 2, Figure 
3, and Figure 4.  

   
Figure 2 - Learned trajectories without 
weight factors 

Figure 3 - Learned trajectories with 
weight factor 1 

Figure 4 - Learned trajectories with 
weight factor 2 

 
What can be seen that sometimes the weights are focussing on the wrong feature, e.g. in 
Figure 2 the trajectory of trial 2 the y coordinate is tried to keep constant. What can be 

explained through the negative weights     and    , which is corresponding to the features 
before breaking and during breaking shown in Table 1. 
Furthermore, do all the learned trajectories look quite similar, unless, for Figure 4 where it 
seems that the y coordinate is kept constant until 6 seconds, this can be explained through 
the weight                and a little bit through    , which are shown in  
Table 3. It shows that at one hand the y coordinate is tried to keep constant for the first 2/3 
time steps, and on the other hand the y coordinate is should not be close to breaking point.  
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Table 1 – weights of the cost function used to create the learned trajectories in Figure 2. 
Trial             

     
                                

Without 
added 

preferences 
 

Trial 1 
 

-0.0380 1.0000    
0.9744    
0.7565   
 -0.5795    
0.6489     
 
1.0000  
 
 0.7933 
0.8204 

1.0000    
1.0000    
1.0000    
0.8779 
0.5937   

1.0000    
1.0000   
1.0000 

-0.5458   
 -0.3513    
0.3558    
0.7693    
0.3906 

1.0000 -0.9077 0.7268 
1.0000 

Without 
added 

preferences 
 

Trial 2 
 

0.0516 1.0000    
0.6251    
0.6496   
 -0.6872    
0.7778     
 
1.0000  
   
 0.7550    
0.1680 

1.0000    
1.0000    
1.0000    
0.9441    
0.6454 

1.0000    
1.0000   
1.0000 

0.6441    
0.9312    
0.8731    
0.9856    
-0.4524 

-0.0448 -0.5917 0.8583    
1.0000 

Without 
added 

preferences 
 

Trial 3 
 

-0.0371   0.9355    
0.8907    
0.6773   
 -0.6454    
0.2312     
 
1.0000     
 
0.6839    
0.5542 

1.0000    
1.0000    
1.0000    
0.9018    
0.6246  

1.0000    
1.0000  
1.0000 

0.1982    
-0.2577    
0.4963    
0.9573    
1.0000 

1.0000 
    

0.7734 0.8114    
1.0000 

 
Table 2 - weights of the cost function used to create the learned trajectories in Figure 3. 

Trial                                                  
With added 
preferences 

through 
weight 

factor 1 
 

Trial 1 
 

0.0253 0.6707    
0.6064    
0.5132   
 -0.4431    
0.0521    
 
 1.0000   
 
 -0.3891    
-0.1056 

0.9756    
1.0000    
0.9455    
0.7188    
0.4407 

1.0000    
1.0000  
 1.0000 

-0.2988    
-0.3921   
 -0.2690    
0.5323    
0.2388 

1.0000 0.5631 0.5572    
0.8028 

With added 
preferences 

through 
weight 

factor 1 
 

Trial 2 
 

0.0304 0.7073    
0.6937    
0.6672    
0.2350    
0.8373 
 
 1.0000  
    
0.8025    
0.3035 

0.9611    
0.9909    
0.9634    
0.5862    
0.4146 

1.0000    
1.0000   
1.0000 

-0.3592    
0.3042    
0.4161    
0.2529    
0.5275 

0.9365 -0.4942 0.5264    
0.7456 

With added 
preferences 

through 
weight 

factor 1 
 

Trial 3 
 

-0.0252 0.6512    
0.7055    
0.7277    
0.3890    
0.5945  
 
 1.0000     
 
0.6908    
0.2140 

0.9557    
0.9992    
0.9587    
0.6501    
0.4112 

1.0000    
1.0000  
1.0000 

-0.3390    
-0.4032    
-0.3973    
0.5910    
0.7684 

1.0000 
    

0.4582 0.5826    
0.8409 

 



       

70 

 

Table 3 - weights of the cost function used to create the learned trajectories in Figure 4. 
Trial                                                  

With added 
preferences 

through 
weight 

factor 2 
 

Trial 1 
 

0.0273 0.6799    
0.7128    
0.6204    
-0.5386    
0.5985     
 
1.0000     
 
0.5754    
0.3256 

0.9533    
0.9899    
0.9798    
0.6578    
0.4204 

1.0000    
1.0000  
    1.0000 

-0.3451   
 -0.2861    
0.5230    
0.4735    
-0.8718 

0.7325 -0.7276 -0.3898    
0.9284 

With added 
preferences 

through 
weight 

factor 2 
 

Trial 2 
 

0.0124 0.6508    
0.7592    
0.8078    
0.5567    
0.8158  
 
 1.0000     
 
0.8582    
0.3271 

0.9534    
0.9687    
0.9720    
0.6747    
0.4481 

1.0000    
1.0000   
1.0000 

-0.0840    
-0.2925    
-0.4655    
0.5114   
-0.4380 

0.9512 0.3168  0.5781    
0.8069 

With added 
preferences 

through 
weight 

factor 2 
 

Trial 3 
 

0.0151 0.6204    
0.7634    
0.7314    
0.1424    
0.7180     
 
1.0000    
 
-0.5406    
0.4390 

0.9718    
1.0000    
0.9741    
0.6194    
0.4271 

1.0000    
1.0000  
1.0000 

-0.1985    
-0.4939    
-0.4231    
-0.3730    
0.5410 

-0.4623  0.4582 0.4328    
0.7281 

 
 
 
  



       

71 

 

Appendix D – Selected trajectories to be 

fed back to the robot 
 
To know how the learned trajectories look in real life some trajectories are selected. The first 
trajectory that is selected to be fed back to the robot is the mean trajectory. This trajectory is 
chosen because it is used as starting point for RL and furthermore it has a very high 

performance according to   . 
The mean trajectory looks as shown in Figure 1. What can be seen that it is a quite 

smooth movement; this is because sudden changes in position are equalized through taking 
the average of all demonstrations.  

 
Figure 1 – the y and z coordinates over time of the average trajectory of all demonstrations, which is also 
used as initialization of the DMPs for PI

2
. 

 
 

Decided is to replay the best evaluated trajectory through    that has learned from 2 
demonstrations. Chosen for the situation of 2 demonstrations, because also in Figure 7-3 this 
was the situation where the highest performance was reached. 
 
Furthermore was decided to feed the following trajectories back to the robot: 

- The best performing trajectory according to    from the case 2B1G and from the case 

1B2G, where the demonstrations that were selected through   .  
- The best performing trajectory according to    from the case 2B1G and from the case 

1B2G, where the demonstrations that were selected through   .  
 
Furthermore was decided to replay the input trajectories that were used to create those 
demonstrations to check the test environment. 

Table 1 and Table 2 shows the amount of floes that were broken when those 
demonstrations were fed back to the robot. For the new test, only a different batch of floes 
was used, the ‘silver’ batch. These floes were a lot easier to break off than the other batch, 
the black batch which was used in the testing  can be seen in Table 2. There were not 
enough floes of the black batch set to test all trajectories with. 



       

72 

 

 In the tables can be seen that the amount of floes broken off varies even between 
trials and also the amount of floes broken off do not seem to improve when adding 
preferences.  
 What was noticed when the mean was fed back to the robot with the ‘black’ batch that 
no of the floes were broken off, but all the floes were bent and therefore had been in contact 
with the ‘breaking’ tool. This is likely due to the slow speed at which it passed the breaking 
tool. 
 
Table 1 - The amount of floes broken off for the selected learned trajectories 

Trajectory Silver Black Performance according 

to    
Mean 3,3 0 0.8180 

With 2 good demonstrations selected through    3,3   
With 2 good demonstrations selected through 

   
3,3   

1g2b no added preferences selected through    3,3  0.6976 

1g2b added preferences trough weight factor 2 
selected through    

2,2  0.6931 

1g2b added preferences trough weight factor 3 

selected through    
3,2  0.7457 

2g1b no added preferences selected through    2,3,3  0.7133 

2g1b added preferences trough weight factor 2 
selected through    

3,3  0.7524 

2g1b added preferences trough weight factor 3 
selected through    

3,3  0.7252 

1g2b no added preferences selected through    2,3  0.7188 
1g2b added preferences trough weight factor 2 

selected through    
3,2  0.7267 

1g2b added preferences trough weight factor 3 
selected through    

3,2  0.7191 

2g1b no added preferences selected through    3,2  0.7516 
2g1b added preferences trough weight factor 2 

selected through    
2,2  0.7430 

2g1b added preferences trough weight factor 3 

selected through    
3,3  0.7282 

 
 

Table 2 - The amount of floes broken off with the different batches for a couple of input 
demonstrations 

Demonstration ID# Silver Black (recorded before) 

1 3,3  1 
2 3  2 
4 3  2 
6 3  2 
7 3  2 
8 2  1 

10 3,3 2 3 
11 2 1 1 
12 3  2 
14 3 (but collision)  2 
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Appendix E – Questionnaire 
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Appendix F – Demographic data of the 

crowdsourcing experiment 
The raw data of the crowdsourcing experiments can be found via: 
https://docs.google.com/spreadsheets/d/1o6OpbDK5aaCIFiKqxDrDP_J3VEi0lwRCjCp8QXer
Z9E/edit?usp=sharing 
 
Below the demographic data is shown. 
 
Gender: 

 
There are 21 female and 53 male that filled in the 
survey.  
 
Age: 

The average age of the people who filled in the 
survey is 30.51 years old with a standard deviation 
of 9,06. 

 
Education Level: 

 
2 people did lower Education, 25 are 
undergraduate, 52 graduate and 4 phd'ers. 

Educational Field: 

 
Others were: 
Aerospace, agriculture, Animal Husbandry, Applied 
Science, Architecture, Artificial Intelligence, 
BioMechatronics, Biomedical Engineering, Civil 
Engineering, Computer Science, Education, 
Geosciences, Industrial Design Engineering, 
Management, Marine Technology, MBA, 
Mechatronics, Medical, Physiotherapy, Political 
Science, System & Control. 
The main conclusion that can be drawn, is that most 
people had a technical background and were higher 
educated. 
 
Experiences: 

 

 
Robotics: 

0 year(I have never worked with it) 
0-1 year (I have worked with it) 
1-3 years  
3 or more years 
 
Some people commented that they did a course on 
it, but never worked with it. 

https://docs.google.com/spreadsheets/d/1o6OpbDK5aaCIFiKqxDrDP_J3VEi0lwRCjCp8QXerZ9E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1o6OpbDK5aaCIFiKqxDrDP_J3VEi0lwRCjCp8QXerZ9E/edit?usp=sharing
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Experience with an UR5: 

 
0 year (No experience, I have never heard from it) 
0-0.5 year (I have heard from it, but I have never 
worked with it) 
0.5-1 year (I have worked with it) 
1-3 years 
3 or more years. 
 
PL 

 
0 year (No experience, I have never heard from it) 
0-0.5 year (I have heard from it, but I have never 
worked with it) 
0.5-1 year (I have worked with it) 
1-3 years 
3 or more years  

Experience RL:

 
 
 

0 year (No experience, I have never heard from it) 
0-0.5 year (I have heard from it, but I have never 
worked with it) 
0.5-1 year (I have worked with it) 
1-3 years 
3 or more years 
 
What I say during scrolling through the results is 
that some people, who were not technical educated 
also said they knew it for over more then 3 years. I 
have the feeling they meant a different kind of 
reinforcement learning, the one of teaching little 
children. 
 
Experience IRL: 

 

 
People who said to have heard about it, 4 knew it 
from my stories. 5 people knew it from studies and 1 
wrote a paper about it.  
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