
Multiple Objects Detection and Tracking
Using Stereo Cameras

MSc Thesis in Embedded Systems

By
Diwakar Babu

M U LT I P L E O B J E C T S D E T E C T I O N A N D T R A C K I N G U S I N G S T E R E O
C A M E R A S

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Embedded Systems

by

Diwakar Babu

September 2021

Diwakar Babu: Multiple Object Detection and Tracking using Stereo Cameras
(2021)

The work in this thesis was made in the Computer Engineering Group from
EEMCS, TU Delft

Supervisors: Dr. Arjan van Genderen

A B S T R A C T

The idea of autonomous driving was merely just a dream about 5 years
ago but now, with the advancements in technology, it has become prevalent.
The aim of this thesis is to provide a low-cost approach for detecting and
tracking moving objects from a moving platform. This could be used for
an autonomous vehicle to automatically avoid moving objects. Our low cost
approach will use a raspberry-pi processor board as computation platform
and stereo cameras as sensors. The process of multiple moving objects detec-
tion is performed by initially calculating the disparity maps from the stereo
image pairs. Following this is the generation of point cloud data from the
disparity map which is followed by semantic segmentation and generation
of object proposals. An EKF based tracker is used to track the moving objects
across the frames.

Keywords: tracking, stereo vision, low-cost, openCV, computer vision, se-
mantic segmentation, pcl, object detection.

v

A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude to Dr. Arjan van Genderen for
his patience and his supervision during the project. Thank you for accepting
me under you as a master thesis student and guiding me in every way possi-
ble to complete this project. It goes without saying that this thesis wouldn’t
have been possible without your invaluable contributions during the project.

A huge thanks to Dr. Stephan Wong and Dr. Rene van Leuken for accept-
ing to be a part of my thesis committee.

A big thanks to my family back in India for their continuous contribution
and support during this tough time. I would like to specially give my grati-
tude to my wife as well for having the trust and the immense support that I
received during Covid times to complete this thesis project.

vii

C O N T E N T S

Contents ix
List of Figures xi
List of Tables xv
1 introduction 1

1.1 Motivation . 2

1.1.1 Sensor systems in vogue 3

1.1.2 Object Detection . 3

1.2 Problem Statement and Thesis Goal 4

1.3 Thesis Document Outline . 4

2 related works 7

2.1 Sensors and Systems For Image Processing 7

2.1.1 Ultrasonic Sensor, LIDAR and RADAR 7

2.1.2 Monocular vs Stereo Camera 8

2.1.3 Controller Board . 10

2.2 Stereo Camera - Object Proposals Generation 10

2.3 Pre-existing Libraries . 12

2.4 Point Cloud - Object Tracking . 12

2.5 Conclusion . 14

3 methodology 15

4 stereo vision 17

4.1 Obtaining Images . 17

4.2 Splicing images . 17

4.3 Disparity Map Calculation . 18

4.4 Conclusion . 22

5 object detection 25

5.1 Point Cloud Generation and Ground Plane Estimation 26

5.1.1 Generating Point Cloud 26

5.1.2 Ground Plane Estimation 28

5.2 Detecting 3D Object Proposals 29

5.2.1 Semantic Segmentation 29

5.2.2 Extracting Object Proposals 31

5.3 Conclusion . 33

6 tracking 35

6.1 Visual Odometry . 35

6.2 Tracker . 36

6.3 Conclusion . 36

7 observation and results 37

7.1 Device . 37

7.1.1 Single type of Object - Person walking 38

7.1.2 Single type of Object - Person walking - Walks back . . 39

7.1.3 Single type of Object - Person walking and Crossing . . 40

7.1.4 Multiple types of Objects 41

7.1.5 Scenario: Without break in tracking 41

ix

x CONTENTS

7.2 Benchmark Input . 43

7.3 Conclusion . 44

8 conclusion 45

8.1 Summary . 45

8.2 Contributions . 46

8.3 Future Work . 47

L I S T O F F I G U R E S

Figure 1.1 Timeline of autonomous driving cars as mentioned in
[Aut] . 1

Figure 1.2 Timeline of unmanned aerial vehicles as seen in [Thec] 3

Figure 2.1 Proposed algorithm for object detection and tracking
using monocular system.[WHN17] 8

Figure 2.2 Process Flow from the paper [WSV09]. It is seen that
the pre-processing of images (left and right pairs) ob-
tained from stereo cameras are done as a parallel pro-
cess. 9

Figure 2.3 The proposed algorithm when applied to these dataset,
the traversable regions (ground plane) is depicted in
green and the objects are depicted in red [CPBY14]. . . 11

Figure 2.4 The architecture of the proposed algorithm from [SWL19] 11

Figure 2.5 Result of the proposed 3D object detection algorithm
on a large-scale 3D industrial point cloud [PN16] . . . 12

Figure 2.6 Trajectory tracks generated using LIDAR (a) and pseudo
LIDAR (b) detectors. Dashed lines with cross mark-
ers denote the ground truth tracks. The detections
received on the latest frame are denoted by blue stars.
Solid lines denote estimated tracks. Ellipses denote
two standard deviation bounds on position estimate
[DRWC+

19]. 13

Figure 2.7 Estimation error (RMSE) for object location and bound-
ing box . 14

Figure 3.1 Proposed Method for Object Detection and Tracking . 15

Figure 3.2 Stereo Matching of Image Matrices [SLD18] 16

Figure 4.1 An example of Disparity Map calculation obtained
from [Theb]. (The top left image displays the left pair
and top right image displays the right pair. The bot-
tom left image shows the rectified image based on left
and right pairs, which is used to calculate the dispar-
ity map as seen in the bottom right image.) 18

Figure 4.2 An overview of Stereo Camera Setup obtained from
[Theb] . 19

Figure 4.3 Flowchart of Rectification process as discussed in [Theb] 20

Figure 4.4 An example of Stereo Block Matching Algorithm Pro-
cess . 21

Figure 4.5 The above selected pixel blocks from both left and
right image pairs are compared and the resulting sum
of absolute difference is calculated. 21

xi

xii LIST OF FIGURES

Figure 4.6 The resultant (c)Disparity Map from (a)Left pair and
(b)Right pair (This gray scale disparity map explains
that the darker area means they are far away from the
observer and brighter area means they are closer to
the observer.) . 22

Figure 5.1 Difference between disparity map and point cloud . . 25

Figure 5.2 An example of Point Cloud Generation (an example
described in [Stea] . 27

Figure 5.3 Algorithm used for Estimating Ground Plane on a 3D
Point Cloud from [ZEF16] 28

Figure 5.4 Visualization of Ground plane detection as seen in the
top image. The middle left image shows the depth
view of the same scene, while the bottom left image
is the actual scene. This is an implemented algorithm
for ground plane detection from [CPBY14] 29

Figure 5.5 The set of images on left, when segmented produces
the result as seen on the right side 30

Figure 5.6 (a) shows an image obtained from a stereo vision KITTI
benchmark, that shows multiple cars moving.(b) shows
the semantically segmented image of the input image. 31

Figure 5.7 (a) shows the semantically segmented image of the in-
put image as seen from the previous subsection. (b)
shows the generated object proposals that are bounded
by a bounding box. 32

Figure 7.1 The device used for this thesis is the above shown
Stereo-Pi with Raspberry-Pi compute module, with
the stereo cameras. 37

Figure 7.2 (a), (b) and (c) shows the left image frames taken at
time t, t+1 and t+2 respectively; (d), (e) and (f) shows
the right image frames taken at time t, t+1 and t+2

respectively and finally (g) shows the tracking line,
that follows the detected object (person). 38

Figure 7.3 (a) and (b) shows the left image frames where the ob-
ject (person) walks back after reaching one end of the
frame; (c) shows the tracking line, that follows the de-
tected object (person), tracking from time t=0 (initial
point). 39

Figure 7.4 (a) and (b) shows the left image frames where 2 ob-
jects (of same object type - persons) walk from one
side to another; (c) shows the tracking line, that fol-
lows the detected objects (persons). 40

Figure 7.5 (a) and (b) shows the left image frames where 2 ob-
jects (of same object type - persons) walks back after
reaching one end of the frame; (c) shows the tracking
line, that follows the detected objects (persons), from
time t=0 (initial point). 40

LIST OF FIGURES xiii

Figure 7.6 (a) and (b) shows the left image frames where 3 ob-
jects (2 objects of same type - persons and 1 object
of ball) walking and throwing the ball over; (c) shows
the tracking line, that follows the detected objects (per-
sons and the ball) . 41

Figure 7.7 (a), (b), (c), (d) and (e) shows the left image frames
taken at time t, t+1, t+2, t+3 and t+4 respectively; (f)
shows the tracking frame when the ball leaves the
hands of the person, without the continuity. 42

Figure 7.8 (a), (b), (c), (d) and (e) shows the left image frames
where (a) corresponds to the 1st frame and so on;
(f) shows the tracking frame of the 5th frame and (g)
shows the tracking frame of the 15th (last) frame. . . . 43

Figure 8.1 The device used for this thesis is the above shown
Stereo-Pi with Raspberry-Pi 1 compute module, with
the stereo cameras. 45

L I S T O F TA B L E S

Table 2.1 Time Comparison for Detecting 6 Object Class 11

Table 2.2 Tracking Performance on KITTI dataset 13

Table 4.1 Different running or processing time for obtaining im-
ages and calculation of disparity images 23

Table 5.1 Different running or processing time for generating
object proposals from the calculated disparity maps. . 33

Table 7.1 Different running or processing time for different pro-
cesses that are implemented. 38

xv

1 I N T R O D U C T I O N

The emergence of autonomous vehicular systems began in the early 1980s.
Initially developed automated vehicles depended on modified highway sys-
tems with embedded magnets along with vehicle-to-vehicle communication.
With evolving technologies, the dependence on highway infrastructure was
replaced by vision guidance. In the early 21st century began the usage of
sensor systems and adept algorithms to carefully navigate the vehicles on
roads.

Experiments on self-driving vehicles have been conducted since the early
1920s as mentioned in [Dri]. It was in 1984 when the first self-efficient and
truly autonomous vehicle was developed as mentioned in [Thea]. Research
and experimentation have only increased with time and progressing technol-
ogy. In the figure 1.1 history of the evolution of the autonomous vehicles can
be seen. Based on the level of automation, there have been various advance-
ments over the past few decades and the fully automated vehicle is still a
dream for a lot of aspiring researchers.

Figure 1.1: Timeline of autonomous driving cars as mentioned in [Aut]

The science of automation came into existence when the need to replace
human labor arose, thereby increasing the efficiency many folds. Basically,
unification of machines into a system which can function without human
intervention. The precursor for automation is the science of mechanization.
This uprooted from humans’ ability to fabricate tools to leverage their mus-
cular power. The invention of steam engines marked the beginning of the
Industrial revolution. Machine tools were mechanized for the betterment
of production with humans only managing the machines with little to no

1

2 introduction

physical exertion like before. Slowly, even the little human interventions re-
quired to run the machinery were phased out with the advent of feedback
systems. These controlled feedback systems propelled efficiency by ensuring
consistent operating levels. With advancements in technology, intervention
of a computer processor took automation to the next level. As evolution
progressed, the monotonous repetitive tasks in any process has become an
obstacle in achieving an efficient system. Applying the process of automa-
tion can deliver significant benefits for the overall efficiency of any system.
Unification of machines into a single working unit reduces human interven-
tion. But unification of tasks done to reduce human’s operational tasks plays
differently in the world automation.

Development of fully automated vehicles (AVs) with no human interven-
tion was challenging given the complexity of our dynamic environment. To
tackle the said complexity, researchers greatly relied on the capacity of innu-
merable sensors to gather and process data for the AVs. Efficient algorithms
were developed to control the sensors and collect data on impending obsta-
cles which were further fed to the AVs for safe navigation in an independent
manner. Although automated vehicles or robots can outperform humans
when it comes to consistency and flawlessness, the sensory systems of hu-
mans are more sophisticated. Humans’ perception of shapes, distances and
an overall cognition to classify the objects cannot be matched by robots.

Talking about sensory systems, closed-circuit television (CCTV) systems
came into place when surveillance systems were developed. Object detec-
tion and tracking are the two main crucial factors for surveillance, which
are being done in many cities recently. But due to blind spots in CCTV
systems, this compromises coverage and this led to the development of Un-
manned Aerial Vehicles (UAV) called a drone. It uses variety of individual
or combination of sensory systems like cameras, radar, LiDAR etc for ob-
ject detection and tracking. Initially developed to be controlled by an user
for navigation, the development in automation sector only made the drones
smart with auto-flying features. Mainly used in military sector, can now be
seen in private sector as well.

In the subject of aerial vehicles, the fundamental challenge was to make
the AVs/drones fly and also to program them with the ability to fly them
reliably and regularly as needed. The ability to fly reliably and with basic
equipment was achieved at a very early stage of the industry. Later came
the advancement which led to the research and development in the industry
that led to continued usage of the drones in everyday life. From the Figure
1.2 we can see that the introduction of AVs started as early as 1890s when
the technology’s idea was new and engaging to research and mainly used in
military sector.

1.1 motivation

Autonomous Vehicles represent a major innovation for the automotive in-
dustry. However the doubts and challenges to overcome are still huge as the
implementation of an autonomous driving environment encompasses not
only complex automotive technology, but also human behaviour, ethics, traf-

1.1 motivation 3

Figure 1.2: Timeline of unmanned aerial vehicles as seen in [Thec]

fic management strategies, policies, liability, etc. The automation of vehicles
can be for different purposes. For operation of auto cranes, the automation
is done for picking and dropping marked containers. For auto mowers, the
automation is done for movement within a marked region and many more.
Regardless of the purpose, navigation is key and more so in an unknown
environment with many obstacles.

The most important challenges in unmanned aerial or land vehicles: de-
signing a robust real-time obstacle detection and designing collision avoid-
ance program. The two major constraints in system design: type of vision
and the platform which runs the system. Systems like Radar, LIDAR, Cam-
era, Sonar, etc. can be used to obtain the information of the environment.
This information can later be used to position the obstacles and navigate
without collision.

1.1.1 Sensor systems in vogue

Radar has the benefits of being able to detect objects through bad weather
conditions, while the resolution decreases over range. The ultrasonic sensor
is mostly used as a secondary sensor alongside the primary sensors.

On the other hand, Light detection and ranging (LiDAR) systems use laser
technology to calculate the distances to objects by sending out light beams
and collecting reflections returned by the objects in the environment. The
laser range and reflectivity of the objects are the two key features that deter-
mine the efficiency of LiDAR systems. LiDAR though has high resolution
and efficacy, it is not well suited for a low cost approach.

Camera-based systems are widely utilized to simulate humans’ visual
judgement. Despite the cost-effectiveness of cameras, their visual cognition
is highly dependent on the environmental conditions (eg., rain or other nat-
ural phenomena will impose difficulties in gathering data).

1.1.2 Object Detection

Object detection is a computer vision technique to spot and position objects
in a given image or video. The main approach concerning towards object
detection uses machine-learning based detection methods. The concept of

4 introduction

object detection works hand in hand with image recognition and image seg-
mentation. Image segmentation helps to discern the elements of the scene
on a pixel-level and image recognition helps in labelling the detected object
in an image/scene. The distinctive feature of object detection is the propen-
sity to locate or spot objects within an image or video. The importance of
object detection can be explained with the aid of the myriad range of its ap-
plications. A few unique applications are as follows; autonomous vehicles,
surveillance purposes, face detection and so on as described in [Obj]

1.2 problem statement and thesis goal

An important aspect of a good navigation system is the detection of obstacles
that may hinder the movement of the vehicle in which the navigation system
is implemented. This detection is aided by sensory systems like cameras,
360

◦, LiDAR, RADAR, etc,.
The objective of this thesis is to research and implement a method to

detect multiple moving objects from a moving platform and track their
trajectory that can be used in inexpensive unmanned vehicles like drones
and land vehicles. The sub goals of the thesis are:

• Study different types of sensors that are best suitable for use in the
current scenario.

• Study different algorithms implemented already with respect to the
decided sensor for detection and object tracking.

• Implement a robust algorithm that can detect the objects by using an
array of image frames as dataset through simulation.

• Run the same algorithm for a real-time scenario and research on fur-
ther applications.

Some of the boundary requirements can be defined as:

• The system should be developed with low latency due to the high
speed movement of vehicles and the rate of decrease of distance be-
tween obstacle and vehicle is high.

Additional boundary requirements will be defined based on the type of sen-
sory system and processor that will be used in implementing the system.

1.3 thesis document outline

• Chapter 2 describes the related works that are done in focus with de-
tection, tracking moving objects and collision prediction. The chapter
2 also briefly explains the different vision sensors and based on pros
and cons how a particular vision sensor is chosen for this research.

1.3 thesis document outline 5

• Based on the works previously done, Chapter 3 explains the method-
ology overview of the algorithm developed to answer the framed re-
search question. This chapter also explains the implemented algorith-
m/method in the form of a flowchart/UML chart.

• Chapter 4 explains the part of the implemented algorithm that deals
with the image acquisition part from the cameras and calculating the
disparity map from the pair of images from the cameras.

• Chapter 5 briefly explains the task that is undertaken to detect the ob-
jects using the disparity maps obtained from the previous step. Before
the object detection step, image segmentation is done to reduce the
area of computation in the images for detecting the objects. And also
the disparity map is converted to point cloud which is explained in
detail in chapter 5.

• Chapter 6 explains in detail the step that performs the tasks of tracking
the detected moving objects. Ego-motion compensation is done before
tracking the detected objects due to the fact that the vision system is
also placed on a moving platform.

• Chapter 7 shows the tabulated results obtained from running experi-
ments on different scenarios. Along with the results, various scenarios
and their respective image observations are also explained in detail in
chapter 7.

• Chapter 8 concludes the thesis with the summary of the implemented
algorithm. The problem statement defined in chapter 2 is evaluated
with respect to the results from previous chapter. Along with this, the
future directions of this work are also listed and explained.

2 R E L AT E D W O R K S

This chapter deals with the in-depth literature review that was carried out
to understand and discuss the various processes involved in object detection
and tracking algorithm. The object detection and tracking involves various
steps in producing the desired output Therefore this chapter is divided into
sections, explaining and reviewing the previous existing algorithms for each
steps. This chapter will also discuss on deciding the type of sensor and
board in which the developed algorithm will run.

2.1 sensors and systems for image processing

For an autonomous land or aerial vehicle, navigation through an unknown
environment will be impossible without sensors to read the environment
and provide the flight controller with required information. The sensors are
chosen based on the following attributes:

• Weight, size and power consumption.

• The frequency of signal and gathering information.

• The required field of view.

• The compatibility of the sensor with the decided platform.

• The range of signal transmission

The controller board also plays a major role in processing the input and
output. But for this thesis, the processor board will be chosen based on
the type of sensor that will be used. But for basic requirements, the board
should be able to handle the sensor input and output and should also be
light weighted as discussed previously for sensor’s requirements.

2.1.1 Ultrasonic Sensor, LIDAR and RADAR

For detecting short range obstacles, ultrasonic sensor is found to be very
useful. Nowadays it is not very common to find ultrasonic sensor being
used alone for navigation of autonomous vehicles. They are rather used
in combination with other sensors. The main reason being the limitation
their sensing range is small. Ultrasonic sensor is used as the chief sensor in
detection of obstacles in the path of a fast moving robot where the speed of
the moving robot was limited to 0.78m/s as seen in [BK89]. It was successful
in detecting obstacles at a close range. Comparing this system to current
scenario, by the time sensor detects fast moving obstacle from a moving

7

8 related works

vehicle, it would be too late and the probability of collision increases. This
leads to deciding the range within which obstacles must be detected and the
frequency at which the algorithm must run.

The need for 3D imaging and the expansion of drone technology has led
to rapid growth in LiDAR technology. Light Detection and Ranging (Li-
DAR) is a remote sensing method that can detect objects in real space with
relatively high precision and accuracy, depending on the LiDAR unit’s spec-
ifications. The sensor is fast when compared to any other detection sensors
like ultrasonic, as it sends and receives pulses in nanoseconds.

In [XXW19] a LiDAR sensor is used in fast obstacle detection and tracking
where a 3D point cloud is obtained from the sensor to map the environment
and a Kalman filter based tracker is used to track the moving objects.

Based on the requirements, the cost of LiDAR can vary and it might seem
very expensive for developing such a low-cost approach for a object detec-
tion and tracking system.

2.1.2 Monocular vs Stereo Camera

The use of cameras for object detection has been around for a long time.
Long before the introduction of stereo cameras in the field of object detection
and tracking, monocular cameras were being used in detecting objects. The
figure 2.1 describes the steps involved for the object detection and tracking
process as proposed by [WHN17]. This paper proposed a computationally
effective algorithm where the detection of moving objects is done accurately
and robustly on a 3D scene.

Figure 2.1: Proposed algorithm for object detection and tracking using monocular
system.[WHN17]

In [KKS09] an algorithm was developed for detecting independently mov-
ing objects in an image sequence from a monocular camera which is mounted
on a moving platform. Various geometric constraints such as epipolar (rel-
ative movement of the object) and the moving platform’s motion is used to
estimate the position of the objects on the images. The paper also uses a
Bayesian Framework in determining the mobility status of a detected object
and this estimation is tracked in the following images.

2.1 sensors and systems for image processing 9

Before experimentation on object detection using moving stereo cameras,
static stereo cameras were widely popular. In figure 2.2, we can see that the
researchers in [WSV09] have explained Target Tracking using static stereo
cameras’ images and the tracking system was developed in combination
with depth estimation.

Figure 2.2: Process Flow from the paper [WSV09]. It is seen that the pre-processing
of images (left and right pairs) obtained from stereo cameras are done
as a parallel process.

Apart from using only stereo vision, combination with ultrasonic sensor is
used by [YTLW18]. The proposed algorithm here is where the stereo vision
is used to detect any moving objects and calculate a path for the UAV and
the ultrasonic sensor is used whenever the obstacle detection algorithm fails.

A new process of obstacle detection algorithm is developed for unmanned
land vehicles by [BMPK18] where they use stereo cameras for obstacle de-
tection and use IMU sensors for semantic segmentation process. Inertial
Mesaurement Unit (IMU) sensor can measure a variety of factors including
speed, direction, acceleration, angular rate, etc. local to the device. This
is very useful in case of determining the odometry of the device on which
the cameras are mounted. The principle disadvantage of an IMU sensor is
that they are prone to errors which accumulates over time. And also, they
are considered to be an expensive addition to stereo cameras when just the
stereo camera system can be used to determine the same.

In conclusion, combination of various compatible sensors can result in a
proper function system for object detection. Due to the limitation of devel-

10 related works

oping a low-cost system, stereo cameras will be used. Because the stereo
cameras not only provides the disparity map which contains the depth in-
formation, but this disparity map can be used to generate the point cloud.

2.1.3 Controller Board

Using a stereo camera system can be done on any board, FPGA, SoC and
controller. To consider the requirement of low-cost approach, this thesis
project resorts to Raspberry-Pi boards. The raspberry-pi boards have their
own Stereo-Pi setup with stereo cameras attached to a board that runs with
a raspberry pi compute module as seen in [Steb].

2.2 stereo camera - object proposals generation

The process of segmentation, performed on a point cloud is used to partition
any image into multiple segments. These segments are later then classified
into object classes which is used to differentiate objects from background.
Now that we have different objects of different classes, they are bound by
bounding boxes to generate what is called an object proposal. [CKZ+

15]
uses this approach where the proposed algorithm uses object size, detection
of ground plane, depth information from point cloud, position for the bound-
ing boxes for the detected objects, visibility and distance to the ground.

One of the main objectives in determining object proposals from point
cloud is also the estimation of ground plane. Ground plane detection is done
because it provides useful information such as the region through which
the objects are moving and also the 3D location of the objects. Ground
plane detection is also used for estimation of pitch angle compensation and
improves the object detection and free space estimation [WQC+

17]. The
point cloud data contains objects (feature points or object proposals) not only
traversing above the ground but present on other objects. This causes objects
occlusion, which means that due to some property of the sensor system
setup, the detected objects are unable to present themselves. Mostly it occurs
when an object is being tracked, it is hidden by another an object. The
algorithm should perform fine even when occlusion occurs. The proposed
algorithm in [CPBY14] (as seen in figure 2.3) detects the ground plane using
RANSAC (Random Sample Consensus).

The architecture of determining object proposals from a point cloud pro-
posed by paper [SWL19] is seen in figure 2.4. This is done in two stages.
Stage-1 consists of segmentation of the whole image and point cloud into
foreground and background which then generates a high quality 3D propos-
als and this is done in a bottom up manner. The stage-2 consists of collecting
and transforming the object proposal points which is used in combination
with the world space information (depth and therefore the position) to learn
better about the detected points for accurate bounding box refinement and
prediction.

The 3D descriptor matching works by projecting the 3D point cloud onto
the 2D images and transforming the 3D detection problem into the 2D space.

2.2 stereo camera - object proposals generation 11

Figure 2.3: The proposed algorithm when applied to these dataset, the traversable
regions (ground plane) is depicted in green and the objects are depicted
in red [CPBY14].

Figure 2.4: The architecture of the proposed algorithm from [SWL19]

The paper [PN16] does the projections at multiple views and use convolu-
tional neural networks (CNN) for the 2D detection tasks as it is possible for
the CNN to handle the multiple viewpoints and rotations for objects belong-
ing to the same class. The proposed algorithm has proven to be competitive
on overall performance when compared to other 3D point cloud object de-
tection methods. The results of this experiment can be seen in figure 2.5
and the table 2.1 depicts the comparison of different object detection meth-
ods with the proposed multiview CNN based object detection (all the result
values obtained from [PN16]).

Time Multi-level CNN Multi-View 3D-Scan FPFH
6-Class 3D 28s 350s 450s 2400s

Table 2.1: Time Comparison for Detecting 6 Object Class

12 related works

Figure 2.5: Result of the proposed 3D object detection algorithm on a large-scale
3D industrial point cloud [PN16]

2.3 pre-existing libraries

As seen from the previous section, the pre-processing stage involved in ob-
ject detection is to obtain the image frames from the cameras, estimating the
disparity map from image pairs and using the disparity map to generate a
point cloud.

The researchers of [ZL10] have used the OpenCV library [Ope] for the
camera calibration (the process of estimating the intrinsic and extrinsic pa-
rameters of the cameras), image rectification (the proces of reprojecting the
image pairs on to a common image plane) and stereo matching (depth esti-
mation).

The low-cost approach of generation of a point cloud will ultimately rule
out the use of LiDAR and will make use of pseudo LiDAR point cloud gener-
ation process. The researchers of [RC11] have discussed in detail regarding
the usage of Point Cloud Library [Poi] but this thesis will focus more on
generation of point cloud using the disparity map.

2.4 point cloud - object tracking

After the object detection along with it’s 3D information, the detected objects
had to be tracked across other frames.

Paper [DRWC+
19] uses LIDAR based detectors for vision only object de-

tection. The 3D object detections for the developed tracking algorithm is
done by initially computing a depth map, which is obtained from a sequence
of stereo images. This is then followed by the generation of 3D point cloud,
which is analogous to that of a LiDAR point cloud. This is why it is called
a pseudo LiDAR. Finally the 3D detections are created using the widely used
LiDAR detectors. The paper later compares the performance between LI-
DAR and pseudo-LIDAR detection across multiple sequences. The perfor-
mance was evaluated based on the metrics: accuracy (in terms of tracking

2.4 point cloud - object tracking 13

the detected objects), precision (error in meters) and false positives(marking
objects at wrong places) and negatives (inability to identify an object that
was previously identified). The table 2.2 shows that when using a stereo
camera (pseudo LiDAR) for object detection, the accuracy reduces which is
because of the ability of LiDAR to detect objects even at a farther distance.
The stereo camera based tracking also suffers from more missed detections
(FN). The figure 2.6 shows when the vehicle is driving straight with a single
car in front (same lane), and two cars in the opposite lane.

Figure 2.6: Trajectory tracks generated using LIDAR (a) and pseudo LIDAR (b) de-
tectors. Dashed lines with cross markers denote the ground truth tracks.
The detections received on the latest frame are denoted by blue stars.
Solid lines denote estimated tracks. Ellipses denote two standard devia-
tion bounds on position estimate [DRWC+

19].

Detection Accuracy Precision FP FN
LIDAR 61 0.528 975 1924

Pseudo LIDAR 33.5 0.384 336 4729

Table 2.2: Tracking Performance on KITTI dataset

One of the most common and majorly used tracking algorithm in image
domain is Kalman filter based tracker. The paper [SM11] provides a detailed
evaluation of the three different kalman filters: linear (LKF), extended (EKF)
and unscented (UKF). Filtering is done mainly to estimate the next state of the
system using the previous state and measured observations and parameters.
Kalman filter is an iterative prediction-correction process that predicts and
corrects the state of the system. If the system had nonlinear dynamics, a
sub-optimal estimation can be achieved by using the EKF and UKF whereas
LKF is mostly used for systems with linear dynamics. Comparing the Root
Mean Square Error (RMSE) in terms of accuracy between the three filters,

14 related works

we see that in figure 2.7, UKF has smaller errors compared to EKF. But the
paper also mentioned that the UKF had the largest computational time when
compared to EKF because of the unscented transformation. While this thesis
can’t use LKF due to it’s nature of nonlinearity, EKF based tracker will be
used to reduce the computational time.

Figure 2.7: Estimation error (RMSE) for object location and bounding box

2.5 conclusion

The thesis topic, considering the low-cost approach of detecting and track-
ing moving objects, will make use of stereo cameras for sensor and the algo-
rithm will run on Raspberry-Pi (Stereo-Pi) processor board. The resolution
and frame rate of the input will be decided based on the processing fre-
quency and power of the board. The algorithm will initially involve the
pre-processing stage of estimating the disparity maps from the stereo image
pairs for which the OpenCV will be used. The generation of point cloud from
disparity maps will be done using the library PCL. This is later followed by
detecting the object proposals, which is done on a segmented image. Before
the image segmentation process, a ground plane is introduced using the
algorithm developed in [ZEF16] and then follows the Voxel Cloud Segmen-
tation proposed in [PASW13]. This is later followed by the object proposals
generation, for which an algorithm developed by [OMML17] is used.

For the tracking stage, object proposals from successive frames is used. As
seen previously, the most commonly used algorithm for tracking is based on
Kalman filter and the computation time of EKF based filters is found to be
less than other kalman filter based trackers.

3 M E T H O D O LO GY

There have been many significant researches done on different ways to detect
objects in the path of an autonomous vehicle and track the detected objects.
As seen from chapter 2 this thesis will use Stereo Pi stereo cameras with
Raspberry Pi 1 compute module. The stereo cameras will obtain both left and
right pairs of images and will run the implemented software on the com-
pute module. The proposed method for Object detection and tracking using
stereo camera images is a systematized process consisting of a combination
of several open source algorithm as seen in the figure 3.1

Figure 3.1: Proposed Method for Object Detection and Tracking

The first stage of the process is to obtain the left and right pairs of images
from stereo cameras. This splicing process of images is done on the incoming
joint images and stored separately in different folders which are accessed for
the further stages. In a real-time scenario, the video captured by the stereo
cameras are instantaneously sliced and the images are stored for further
process. After the splicing process, these image pairs are used for Stereo
Matching or Disparity mapping process. Stereo Matching (as an example
seen in fig 3.2) will compare the surrounding of a pixel p in the left image to
slightly translated positions q in the right image to estimate the disparity of
the pixel p. Each pixel is processed separately, without taking the full image
context into account, which often results in noisy disparity [SLD18]. Brief
explanation of the process is provided in the chapter 4

15

16 methodology

Figure 3.2: Stereo Matching of Image Matrices [SLD18]

Before the object detection algorithm is applied, from the disparity maps,
point clouds are generated. After the generation of Point Cloud from the
disparity map, a Ground Plane is introduced to detect the objects resting on
the plane. Later it is subjected to an object extraction algorithm to detect
feature points and segmentation which undergoes clustering to fuse differ-
ent groups of points belonging to the same object. These cluster of points,
belonging to a single object are called 3D proposals where each proposal is a
cluster that contains an object. The 3D object proposal is a class - object which
also contains the 3D information of the detected object. These clusters are
then bounded by a box and its geometric centre is obtained. The reason for
segmentation is to remove points of cluster within the image that does not
contain any value of interest. Brief Explanation of this process is provided
in chapter 5.

Tracking is when a detected object is moved, we have to find the dis-
placement of it. In this case, when the cluster of points, along with its ge-
ometrical center moves, we find the displacement. At each time step, these
objects (cluster of points) are rectified with respect to the relative motion
of the platform 6). During this process, the detected 3D object proposals
are transformed to a common coordinate frame using the process of visual
odometry. The 3D information, relative to the camera, of these clusters is
provided as an input to Extended Kalman Filter for tracking the said objects.
Brief explanation of the process is provided in chapter 6.

4 S T E R E O V I S I O N

This chapter describes in detail about how the images are obtained and pre-
processed before the implemented object detection and tracking algorithm
is applied. The first step in pre-processing stage involves obtaining images
from video frames, followed by splicing the image into left and right pairs. A
stereo camera provides a single image with both left and right pair attached
to each other. After splicing process, disparity map is calculated from the
obtained left and right pairs.

For this thesis, the pre-processing stage readies the initial images for the
conversion to point cloud, which is done during object detection phase. This
is an important stage because in a real-time scenario, when there is any delay
in this phase, it can lead to a huge latency in the final phase, which is the
tracking. The different phases in this stage are discussed below.

4.1 obtaining images

Images are nothing but matrices n x m (n rows and m columns) which can
be stored in the form of a matrix with the class Mat from OpenCV Library
as discussed in section 2. The StereoPi cameras that is used in this project
directly obtains the image in grey scale instead of converting color images
to grey scale as a separate process. Scenario where people are continuously
moving will be the test case and therefore in real-time, the video frames are
used as input images. The video frames are obtained at different frame rates
such as 30 and 60 and have a resolution of 640x480 for both cases. The total
duration of the test case video is 3 seconds, which produces 90 frames for
30 fps and 180 frames for 60 fps. Considering the limited processing power
and Raspberry Pi 2’s compute module, a limited number of total frames are
processed to avoid latency and get average performance of the implemented
software.

4.2 splicing images

Images are obtained together, where both the left and right cameras’ images
are produced jointly, where the image matrix has both the left and right pairs’
matrices. So, for disparity processing, both the left and right images must
be spliced and stored separately. This is done by using the function, from
OpenCV library, Rect which takes in the parameters start and end coordi-
nates and the width and height of the resulting images after splicing. These
image pairs are stored to different folders for further processing. These im-

17

18 stereo vision

age files are stored with incremental numbered file names, which makes the
job to read these images later for disparity mapping easier.

4.3 disparity map calculation

A disparity map tells us the relative difference in the location of the object
with respect to the viewer. The reason why human eyes can perceive depth
is because of the alignment of the eyes. Before the eyes could perceive the
depth, the difference in images from the left and right are automatically pro-
cessed by the brain. Similarly, in stereo vision, the two cameras are placed
in such a way that cameras are pointed to same object but from different
angles. This is used to calculate disparity map as seen in figure 4.1 which
contains the depth information of the whole scene.

Figure 4.1: An example of Disparity Map calculation obtained from [Theb]. (The
top left image displays the left pair and top right image displays the
right pair. The bottom left image shows the rectified image based on
left and right pairs, which is used to calculate the disparity map as seen
in the bottom right image.)

In this project, the disparity map containing the depth information is cal-
culated using the block matching (BM) algorithm as discussed in chapter
2. But before applying block matching algorithm to calculate depth infor-
mation, we need the rectified image calculated from left and right pair. An
additional step of individual camera calibration should be done before the
rectification process to recover parameters like optical center, radial distor-
tion, orientation rotation etc,. Take the example as seen from figure 4.2. The
two cameras (left and right) are aligned vertically and therefore the observed
object P will be observed in the same coordinates vertically (y coordinate)
and only the horizontal coordinate x will be different and we can focus on
that to calculate the depth and if the object P is closer to both cameras, the
difference in x coordinate will be high and vice versa. To calculate depth,
we need to calibrate the cameras and rectify the image pairs which will re-
sult in a rectified image containing the same object P lying on the same y
coordinate with two different x coordinates.

4.3 disparity map calculation 19

Figure 4.2: An overview of Stereo Camera Setup obtained from [Theb]

Camera Calibration: As seen above, the camera calibration is the pro-
cess of obtaining information about the camera, which is required to deter-
mine an accurate relationship between a 3D point in the real world and it’s
corresponding 2D project, mainly the rotation and translation parameters.
This thesis follows the most commonly used calibration method, the checker-
board method. This is done by defining the real world coordinates of the 3D
points using the checkerboard pattern of known information. The reason
behind using checkerboard pattern is that it is distinct and easy to detect in
an image. By obtaining multiple images of the checkerboard from different
angles, the first step is to find the checkerboard corners using the findChess-
boardCorners function from OpenCV Library. Once a checkerboard has been
identified, calibrateCamera function is used to pass 3D points in world coor-
dinates and their 2D locations in all images. Now these values can be stored
in a yaml file which can be accessed easily, instead of running calibration for
every frame.

Rectification: Since the cameras are aligned at an angle to focus on an
object, we need to align the obtain image pairs parallel to each other. This is
done by the stereo image rectification process, where the two images from
left and right cameras are re-projected on to a common plane parallel to a
line that passes through the optical center (camera parameter). This ensures
that the corresponding points have the same y coordinate and are related
by a horizontal translation as discussed earlier. Using the camera’s intrinsic
and extrinsic parameters, rotation and translation, stereo rectification can be
applied. Stereo rectification applies rotations to both camera images to bring
them to same plane as seen in figure 4.3. This is done by using stereoRec-
tify function from OpenCV library. This function also returns the projection
matrices in the new coordinate space. The next step is to calculate the undis-
torted and rectified left and right images using the initUndistortRectifyMap
and remap functions, separately for left and right images.

20 stereo vision

Figure 4.3: Flowchart of Rectification process as discussed in [Theb]

Block Matching: After rectification process, we understand that the single
object can be seen with two different x coordinates for left and right cameras
separately. The difference between the x coordinate should give us the dis-
parity value but this changes with change in location of object. This can
result in a slow process and increase in error due to improper rectification
process. This is the reason why Block Matching algorithm is used. Instead
of comparing just the pixel value in the same row of the stereo image pair,
using the neighboring pixels will result in reducing the computation time.
Also, sometimes multiple pixels corresponding to different images can have
the same pixel intensity.

As seen in figure 4.4a from the left pair (or right), a block is chosen and it is
searched and tried to be matched in the right pair as seen in figure 4.4b. The
matching method used here is the Sum of Absolute Difference. It is calculated
by taking the absolute difference between each pixel in the original block
(the block from left pair) and the corresponding pixel in the block from right
pair (being used for comparison). In figure 4.4b, a pixel block on the right
image pair is chosen (the white box) as the same position on the selected
original block on left image pair (as seen in figure 4.4a, the black box) and
its neighboring pixel blocks (the white and green boxes) are compared with
the original block from the left pair. In figure 4.5, we see that the two selected
pixel blocks produce a sum of absolute difference of 938, which means that
if the same pixel block from left pair image is compared with a difference
pixel block (say the white box) from right image would have produced a
sum of absolute difference more than 938.

4.3 disparity map calculation 21

(a) Chosen Block from Left pair

(b) Block Searching in right pair on same axis

Figure 4.4: An example of Stereo Block Matching Algorithm Process

Figure 4.5: The above selected pixel blocks from both left and right image pairs are
compared and the resulting sum of absolute difference is calculated.

Searching and matching is done only in a single axis because the images
are rectified. The OpenCV library provides the implementation of such a
block matching algorithm using the StereoBM class which is used to obtain
the disparity map from a pair of rectified left and right images, just like in
figure 4.6.

22 stereo vision

(a) (b)

(c)

Figure 4.6: The resultant (c)Disparity Map from (a)Left pair and (b)Right pair (This
gray scale disparity map explains that the darker area means they are
far away from the observer and brighter area means they are closer to
the observer.)

4.4 conclusion

The process of obtaining frames from cameras, splicing them, rectifying the
image pairs and calculating disparity maps of every frames was discussed in
this section. The scenario considered here does not entail high speed moving
objects or objects that are located far from the camera. Due to these reasons,
frames are obtained at a lower resolution with less frames per second. To
make sure that the whole project comes under the low-cost approach, open
source library OpenCV is used for these pre-processing stages.

Due to absence of parallel processing in Raspberry Pi compute module,
obtaining images and calculating the disparity map from rectified image
pairs can result in a slow process, since the next set of frames (from time
t+1) will already be available but won’t be processed until object detection
and tracking algorithm is performed on the current frames. The processing/-
computation time details derived from running this pre-processing stage for
images obtained from video of duration of 1 second, running at 640x480

4.4 conclusion 23

resolution for 30 fps (30 frames) and 60 fps (60 frames) can be seen in table
4.1

Number of Frames Time (in ms)
30 10-12

60 19-23

Table 4.1: Different running or processing time for obtaining images and calcula-
tion of disparity images

In the next step, the obtained disparity maps are subjected to the conver-
sion to point cloud where object detection in combination with scene seg-
mentation (for faster processing) and clustering (to group clusters belonging
to same object) is used to obtain possible sets of objects with 3D information.
Let us see that in detail in the next chapter.

5 O B J E C T D E T E C T I O N

This chapter discusses in detail about the generation of 3D object propos-
als from the previously generated disparity maps. But before applying the
object detection algorithm, the disparity map will have to undergo a bit pro-
cessing. Remember that a disparity map is an image that is derived from a
left image and a right image, and that in the disparity map each pixel also
has information about by the distance between the position where it was
found in the left image, and the position where it was found in the right
image as seen on the figure 5.1 (a). But on the other hand, a point cloud as
seen in figure 5.1 (b) is a set of data points, that is suspended in space, where
the points represent the shape of the objects that are present in the image.

(a) Disparity Map (b) Point Cloud

Figure 5.1: Difference between disparity map and point cloud

Following the generation of a 3D point cloud, a ground plane is estimated
and fit into the generated point cloud to reduce the area of processing the
image.

The final stage in object detection is generating object proposals, which
includes Semantic Segmentation, which is the process of linking each pixel
in the point cloud to a class label like person, car, furniture, etc,. Semantic
segmentation is a type of image classification at a pixel level.

The algorithms used for conversion of disparity map to point cloud, esti-
mating and fitting the ground plane and the detection 3D object proposals
are referred from previous works, which will be mentioned in detail in the
upcoming sections.

25

26 object detection

5.1 point cloud generation and ground plane es-
timation

The generated disparity map contains 3D information about the scene but
to compute 3D object proposals, we first need to convert the disparity map
into a point cloud. The generated point cloud can be visualized using the
PCL library functions as mentioned in [Poi].

5.1.1 Generating Point Cloud

The mathematical steps involved in converting a disparity map to a point
cloud is as follows

• Every row and column of disparity matrix is processed one by one.

• Current disparity ID is found from the current row (row) and column
(col).

• The disparity value (disp val) of ID is obtained from the matrix.

• Depth is calculated using the equation 5.1.

• The x and y coordinates are calculated using equations 5.2 and 5.3
respectively.

• The translated coordinated are added to the output PCL for the current
row and column.

• The above steps are repeated for all the columns in a single row of the
disparity matrix.

• The above steps are repeated for all the rows of disparity matrix.

z(depth) = ((f ocal len) ∗ (base))/(disp val) (5.1)

x = (((col)− (cen x)) ∗ depth)/(f ocal len) (5.2)

y = (((row)− (cen y)) ∗ depth)/(f ocal len) (5.3)

where focal len represents the focal length, an internal parameter of the
cameras (both left and right will have the same focal length, since they both
use the same lens) and base represents the base line, also an internal param-
eter which is calculated based on the camera’s position. These values are
obtained from the camera calibration step, described in the subsection of 4.3

The PCL Library contains the function DisparityMapConverter::compute()
which follows the above mentioned algorithm in converting the disparity
map to a point cloud and this project uses the same. To visualize the gen-
erated point cloud, the function DisparityMapConverter::getImage() is used

5.1 point cloud generation and ground plane estimation 27

to get the image by coloring the generated point cloud and
pcl::visualization::cloudViewer() is used to visualize the point cloud. This is
done only to check the output and uses more processing power. Therefore
it is not used when tracking module is also running. As seen from the ex-
ample in figure 5.2, the left and right image pairs (figure 5.2a) are used to
calculate the disparity map (figure 5.2b), which when projected onto a 3D
space, produces the point cloud as seen in the figure 5.2c.

(a) Stereo vision Pair of images

(b) The resulting Disparity map from the stereo vision pair of images

(c) Visualization of the generated Point Cloud from the disparity map

Figure 5.2: An example of Point Cloud Generation (an example described in [Stea]

28 object detection

5.1.2 Ground Plane Estimation

The ground plane detection is the process of detecting the ground plane in a
scenario above which all the objects reside and move. By fitting the ground
plane, the object detection process is reduced because of the reduction in the
area of image that has to be processed in detecting the objects.

Figure 5.3: Algorithm used for Estimating Ground Plane on a 3D Point Cloud from
[ZEF16]

This project makes use of the algorithm that is mentioned in the [ZEF16],
which describes the estimation of detecting ground plane on a point cloud
using RANSAC, as mentioned in figure 5.3. The depth information for the
plane estimation is provided from the disparity map matrix and the gener-
ated point cloud library. This method was used in [CPBY14] in detecting
traversable ground plane and other obstacles on a street view. Figure 5.4
describes the same.

5.2 detecting 3d object proposals 29

Figure 5.4: Visualization of Ground plane detection as seen in the top image. The
middle left image shows the depth view of the same scene, while the
bottom left image is the actual scene. This is an implemented algorithm
for ground plane detection from [CPBY14]

5.2 detecting 3d object proposals

The generated point cloud was processed to find and estimate the ground
plane on it. The next step involves the process of object detection, where
semantic segmentation is performed on the generated point cloud to clas-
sify the image segments into different classes. Basically it is the process
of classifying all the objects (of interest or not) into different classes such
as cars, pedestrians, buildings, etc,.. This is performed based on the idea of
[HK08]. The semantic segmentation process is followed by the generation of
3D object proposals.

5.2.1 Semantic Segmentation

3D point cloud segmentation is the process of classifying point clouds into
different homogeneous regions such that the points in the same isolated and
meaningful region have similar properties. To be precise, it is the process of
linking each point in the cloud to a class label, where these labels could mean
a person, car, flower, furniture, building, sky, etc., As an example, [CKZ+

15]
performs semantic segmentation on a single image, classifying the image
into different parts such as roads, pedestrians, trees, etc,. as seen as in figure
5.5.

This project follows the approach developed by [OMML17]. The reason
for performing segmentation is to classify parts of images or frames, that
are of no interest (like buildings, trees, etc,.) and they are ignored for further
processing.

Before the clustering process, the segmentation classifier is initially trained
using KITTI dataset [GLU12] and using this classifier, the software filter out
regions which are unlikely to belong to an object, where an object is classified
based on labels from annotated images like cars and pedestrians.

30 object detection

Figure 5.5: The set of images on left, when segmented produces the result as seen
on the right side

The segmentation is done by clustering certain points from the point cloud
and then use the information to classify the cluster of points into a single
object. To be precise, the segmentation algorithm groups pixels in an im-
age into meaningful regions. This is done with the help of steps based on
segmentation process by [PASW13] which uses Voxel Cloud Connectivity
Segmentation (A voxel is a three dimensional analog to a pixel, representing
numerical quantities like color, location in a three dimensional space, etc. A
supervoxel similar to voxel but only larger in size).

Voxel Cloud Segmentation generates over-segmented 3D point cloud dataset
called supervoxels. These supervoxels adhere to object boundaries better than
the current 2D methods. One of the main property of supervoxel is that they
do not cross the boundary of an object. It is done using the existing class in
the point cloud library, pcl::SupervoxelClustering as mentioned in [Sup]. It
is performed as follows:

• Load the input point cloud obtained from previous step.

• Check the input arguments and set default values. Default values refer
to the parameters of supervoxels such as the voxel size (determines the
leaf size), seeding size (the size of the supervoxels) etc.

• Initialize a supervoxel clustering using the above mentioned class, set-
ting values to the data structure in the created object such as centroid
(the centroid of the supervoxel) etc,.

• The ’viewer’ function from the library is used to add, get and set ren-
dering properties like voxel centroid cloud to get the centroid and col-
ored voxel cloud to add color to the supervoxels according to their la-
bels.

• This process is iterated throughout the point cloud by extracting the
previous supervoxel’s adjacency list, creating a point cloud of the cen-
troids of each supervoxel’s neighbors.

5.2 detecting 3d object proposals 31

This results in a supervoxel graph that is stored as point cloud data, where
each supervoxel clusters is labeled based on the classified objects from seg-
mented regions. For the visualization, the visualizer from pcl library is used,
to use the function to add color to segmented scene. From the figure 5.6, we
see that they implemented their developed algorithm with KITTI benchmark
image 5.6a from [GLU12]. The original image frame contains a moving car
and other objects like trees and bushes (without taking the ground plane into
consideration). The segmented image 5.6b shows that the multiple moving
cars are segmented as blue regions and the tree and bushes are classified
into cyan regions.

(a)

(b)

Figure 5.6: (a) shows an image obtained from a stereo vision KITTI benchmark,
that shows multiple cars moving.(b) shows the semantically segmented
image of the input image.

5.2.2 Extracting Object Proposals

An object proposal generation method by [OHE+
16] produces a set of object

proposals from the region of interest in the point cloud. But this set of ob-
ject proposals might contain under- or/and over-segmented objects, where
a group of pedestrians and cars are classified under same class of object.

Therefore, [OMML17] developed a method, where these classified objects
are referred as short 3D proposals and these proposals provide precise 3D
information and measurements, mainly the objects’ positions with respect
to camera and it’s size. These 3D object proposals, when combined with 2D
detection, provide an observation. The project follows the object detection
process by creating a detection class, that uses object parameters from the
object proposal class.

• Object proposal objects have parameters such as original point cloud
indices (the list of point cloud data, from the segmentation process),
estimated ground plane (the ground plane point cloud data is used to

32 object detection

visualize the ground plane), bounding box setter (based on the radius
of the detected point clouds), etc.

• Every object proposal has a parameter called score which is set based
on the detection of voxel points of each object. This parameter is used
to reduce the overlapping of feature points that are of an object present
in two different clusters. This means that overlapping detected voxel
clusters will have the same point cloud data. This value changes over
iteration, which is later filtered to get proposals that are well generated.

• Initially the object proposals are filtered based on the score, which
refers to the detections that are good to worse (good detections have
more score value). These scores are set by iteratively running the steps.

• Following this, a CRF (combined random field) model is used to select
suitable proposals from the previous step to reduce the over-segmentation.

• By getting the maximum value of width and length of every proposals
generated, bounding box class functions are used to draw the bound-
ing boxes around objects which share the same label.

This results in the list of point cloud objects, that are semantic segmen-
tation and when visualized is bounded by a 2D box. From the previously
seen segmented figure 5.7a, the segmented image is then subjected to the
developed model in generating the object proposals, which are bounded by
boxes as seen in figure 5.7b.

(a)

(b)

Figure 5.7: (a) shows the semantically segmented image of the input image as seen
from the previous subsection. (b) shows the generated object proposals
that are bounded by a bounding box.

5.3 conclusion 33

5.3 conclusion

From this chapter, we see that the final set of object proposals with their 3D
information such as position and size are generated using various previously
implemented approaches. The above developed algorithm for processing the
generated disparity map for object detection was run for various scenarios,
with one or more than one type of objects and the running time is as shown
in table 5.1. This table, gives the value of run time for processing a single
frame (right and left images obtained at time t).

Object types used Time (in ms)
1 (2 Persons) 10

2 (2 Persons + 1 ball) 15

Table 5.1: Different running or processing time for generating object proposals from
the calculated disparity maps.

The use of high resolution camera will only increase the running time but
will help in detecting objects that are farther from cameras or smaller in size.
To compensate the high running time, usage of high resolution cameras can
be coupled with using a processor with high processing frequency.

6 T R A C K I N G

The detected object proposals are tracked throughout the different frames.
The position of the detected objects in world coordinate domain is obtained
by initially finding the orientation and position of the moving camera, which
is done using visual odometry. Then later, the detected objects are projected
on the world space domain. This is then followed by tracking the objects
using a Extended Kalman Filter based tracker.

6.1 visual odometry

Visual odometry is the process of determining the position and orientation
of the moving stereo cameras by analyzing the associated image frames. A
calibrated stereo camera pair, which helps compute the feature depth be-
tween images at various time points is used to compute the actual motion.
This is done with the algorithm that is developed by the [GZS11]. A visual
odometry class is created with calibration, bucketing data structures and
functions that update and get motion and it is also used to compute the
transformation vector to matrix. The step by step process is as follows:

• Bucketing is the process of reducing the number of detected features
and this is spread uniformly over the image domain.

• Following this, the feature points from the previous frame are pro-
jected on the current frame, using the transformation matrix, com-
puted using the transformation vector. For this, we use the camera
calibration parameters from the stereo camera setup.

• This process is iterated to compute the motion which uses the current
coordinate system (determined from the transformation matrix) along
with the orientation. The transformation parameters are used to obtain
the velocity vector also known as ego motion vector.

• Now we calculate the state vector using the equation 6.1.

X =
[
p v

]T
(6.1)

where the state vector is X, p is the position vector of the moving stereo
cameras (represented as [x y z]T which uses 3D space geometry derived
from the image as reference) and v is the velocity vector (represented as
[ẋ ẏ ż]T). Now that the position and state vector of the stereo cameras is
known, as the camera moves, this position is used as the reference to deter-
mine the position vector and compute state vectors of the objects detected,

35

36 tracking

projected on the world space domain. This state vector is used in EKF based
tracker.

6.2 tracker

The state vectors of different bounding boxes (which refers to the detected
objects) obtained from consecutive frames are then tracked to estimate the
movement of the boxes across frames. A filter is used to filter the observa-
tions and refine the matching process across different frames. The project
follows a EKF based tracking algorithm developed in [OMML17].

The basic algorithm in an Extended Kalman Filter (EKF) is as follows:

• Predicting the State (X)

• Compute the error covariance

• Compute the Kalman gain

• Update the state estimate

• Update the error covariance

The goal is to estimate, update and predict the state vectors of the detected
bounding boxes which move with constant velocity across frames. The track-
ing is performed as follows:

• An extended state vector is calculated using the variance. This variance
is computed by subtracting the distance of the same object proposals
(bounding boxes) in successive frames. This variance is updated in
every frame, as it is used in calculating the correction in position of
bounding boxes.

• The current extended state vector is then used to predict the error using
the EKF function (based on an example implementation from here) and
this process is iterated for subsequent frames.

• The centroids of the bounding boxes are then connected using a line
that is drawn.

6.3 conclusion

At the end of tracking process, the detected object proposals are tracked and
the position of the objects are predicted using the EKF equations. Missed
detection and occlusions are handled by the update, predict and compute
model of the EKF trackers and the objects are associated with the individual
objects’ trajectories.

https://github.com/shazraz/Extended-Kalman-Filter

7 O B S E R VAT I O N A N D R E S U LT S

This chapter is used to view the results of the implemented algorithm to
detect and track the multiple moving objects and their results are discussed
in detail. Various scenarios are also used to run the developed algorithm to
check the results.

7.1 device

The stereo-pi system is obtained from [Steb] on which the developed algo-
rithm is run as seen in figure 7.1. This stereo pi system uses a raspberry pi
1 compute module which contains the guts of Raspberry Pi 1. This uses the
BCM2835 processor with a limited memory of 512MB RAM. This supports
2 Raspberry Pi cameras (OV5647 sensors).

Figure 7.1: The device used for this thesis is the above shown Stereo-Pi with
Raspberry-Pi compute module, with the stereo cameras.

The following sections containing the results were obtained by running
the implemented program on the above mentioned device, where the images
are directly fed from the stereo cameras to the process. Instead of training
the data while processing for semantic segmentation process, the project
uses already trained data set due to the availability of minimum processing
power of the device. While running this program, we obtain the run time
for different steps as seen in table 7.1

37

38 observation and results

Process Time (in ms for a single frame)
Disparity Map Calculation 2

Point Cloud Generation 18

Object Proposal Generation 5

Tracking 4

Table 7.1: Different running or processing time for different processes that are im-
plemented.

7.1.1 Single type of Object - Person walking

In this section, a single object is used to detect and track across the frames,
which is captured by the stereo pi cameras. From the figure in 7.2, it can
be clearly seen that a single object type (person) is moving across the frame.
Figure 7.2g shows the tracking line, with the bounding box of the detected
object type (person).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.2: (a), (b) and (c) shows the left image frames taken at time t, t+1 and t+2

respectively; (d), (e) and (f) shows the right image frames taken at time
t, t+1 and t+2 respectively and finally (g) shows the tracking line, that
follows the detected object (person).

7.1 device 39

7.1.2 Single type of Object - Person walking - Walks back

In the figure 7.3, the person walk across the frame and starts to walk back
from the other side of the frame. The tracking line still holds clearly, without
any error in this case.

(a) (b)

(c)

Figure 7.3: (a) and (b) shows the left image frames where the object (person) walks
back after reaching one end of the frame; (c) shows the tracking line,
that follows the detected object (person), tracking from time t=0 (initial
point).

40 observation and results

7.1.3 Single type of Object - Person walking and Crossing

In this particular scenario, two objects of same type (2 persons) are seen
walking along the same line and this results in following a tracking line
which follows along both the objects of same type as seen in figure 7.4. Fig-
ure 7.5 also shows that when the objects move back from the other side, the
tracking line continues to track them without breaking and without getting
affected by any occlusion occurred while the objects pass each other.

(a) (b)

(c)

Figure 7.4: (a) and (b) shows the left image frames where 2 objects (of same object
type - persons) walk from one side to another; (c) shows the tracking
line, that follows the detected objects (persons).

(a) (b)

(c)

Figure 7.5: (a) and (b) shows the left image frames where 2 objects (of same object
type - persons) walks back after reaching one end of the frame; (c) shows
the tracking line, that follows the detected objects (persons), from time
t=0 (initial point).

7.1 device 41

7.1.4 Multiple types of Objects

7.1.5 Scenario: Without break in tracking

For this scenario, two objects of same type (person) and an object of a dif-
ferent type (ball) is taken, as seen from figure 7.6. The object (ball) is seen
bouncing up and down from the object (person’s hand). The figure 7.6c
shows that the objects (2 persons) are tracked properly just like it is men-
tioned in the previous scenario and the ball (object of different type) is
tracked just like any other object.

(a) (b)

(c)

Figure 7.6: (a) and (b) shows the left image frames where 3 objects (2 objects of
same type - persons and 1 object of ball) walking and throwing the
ball over; (c) shows the tracking line, that follows the detected objects
(persons and the ball)

42 observation and results

Break in tracking

When it comes to tracking the ball in this particular scenario, every time the
ball object reaches the other object (person’s hand), it is detected as a new
ball, instead of considering it as the old ball. Therefore, we see a break in
tracking line between the frames when the ball is in person’s hand as seen
in figure 7.7.

(a) (b) (c)

(d) (e)

(f)

Figure 7.7: (a), (b), (c), (d) and (e) shows the left image frames taken at time t, t+1,
t+2, t+3 and t+4 respectively; (f) shows the tracking frame when the ball
leaves the hands of the person, without the continuity.

7.2 benchmark input 43

7.2 benchmark input

In this section, the software code is slightly modified to take in images from
a directory instead of camera. In this case, the cameras are not used and
therefore the following results were obtained using the benchmark images
from [GLU12]. And these results were obtained from running the program
in a laptop with Intel i7 6th Gen processor, with 4 cores and also with
NVidia 960m GPU. Running the implemented program on such a powerful
device can reduce the running time when compared to the run time as seen
in table 7.1 which is obtained by running it on raspberry pi.

(a) (b) (c)

(d) (e)

(f)

(g)

Figure 7.8: (a), (b), (c), (d) and (e) shows the left image frames where (a) corre-
sponds to the 1st frame and so on; (f) shows the tracking frame of the
5th frame and (g) shows the tracking frame of the 15th (last) frame.

The image 7.8f corresponds to the tracking of objects using the 5th frame,
where it shows the detection and tracking of 2 cars on a road, where one
car is seen moving and another car is seen standing still. This result shows
that the still car has no tracking line since it is not moving. The figure
7.8g corresponds to the tracking of objects using the 15th frame (last frame),
where it shows the detection and tracking of only one car, since the car
moved out of the frame.

44 observation and results

7.3 conclusion

The above results were obtained from the board with limited memory and
processing power and therefore there were limitations and requirements ac-
cording to which the algorithm was run. There are as follows:

• Due to limited processing power, the program was able to handle 30

frames per second, where each frame is processed at approximately
30ms as seen from table 7.1. The program was also run for 60 frames
per second but the results obtained due to that had huge latency and
therefore were not utilized.

• The camera used had a maximum resolution of 1280x480 but the pro-
gram stopped abruptly while using this. This is due to the fact of
availability of limited memory. Therefore the resolution used to obtain
proper results was 640x240.

• There shouldn’t be any set minimum or maximum number for number
of objects that this algorithm can detect and track but due to lack of
limited memory, the program was limited to detecting and tracking
maximum of only 3 objects.

• At certain points, due to the size of objects, there is a possibility that
occlusion occurs. Then the system will stop the tracking abruptly and
starts tracking the same object with a break (like in figure 7.7). This
can be avoided by having a higher resolution image and higher frames
per second. This way, the object can still be detected on the hands of
the pedestrian and still be able to track it, in the ideal way as intended.

• When running the developed algorithm on the raspberry pi, the pro-
cessor gets overheated sometimes, which results to thermal shutdown
abruptly in the middle of the process.

8 C O N C L U S I O N

8.1 summary

This research work is focused on creating a low-cost solution to multiple
moving objects detection for land and aerial vehicles. Currently there are a
lot of detection and tracking methods being used, which uses various sen-
sor systems. These methods and systems were studied to evaluate how ap-
propriate it would be for this thesis’s requirement. After immense research,
stereo cameras were used as the sensor system due to the major requirement
of low-cost approach.

For the first stage of the process, the algorithm is required to capture
the image frames from the camera feed and have to be stored separately as
left and right camera images. After which the stored images are used in
computing disparity maps to get depth information of the scene.

Following this, the disparity map is used to generate point cloud data on
which a ground plane is estimated above which all the objects, that are to
be detected, reside. This step is skipped in case of aerial vehicle, due to
the absence of ground plane. Image segmentation is performed to classify
the regions of images to different classes thereby reducing the area to be
processed. The object classes of interest are then extracted as point cloud
data which are later tracked using an Extended Kalman Filter based tracker.
The final output of this developed algorithm is the detection of objects and
tracking them across the image frames.

This whole system is implemented on a Raspberry-Pi 1 compute module
attached with a Stereo-Pi board, which is used due to the low-cost approach
as seen in figure 8.1. The stereo-Pi board has it own stereo cameras attached,
which is used to obtain the image frames for processing.

Figure 8.1: The device used for this thesis is the above shown Stereo-Pi with
Raspberry-Pi 1 compute module, with the stereo cameras.

45

46 conclusion

8.2 contributions

Moving objects detection and tracking is a wide area for a research topic
and there are numerous researches happening simultaneously all the time.
It would be difficult and a lot of work to develop a new set of algorithms for
the current thesis problem statement. In contrast, this thesis makes use of
already existing algorithms in an efficient way to develop a low-cost system
that runs according to the framed requirements.

Now, addressing the thesis goals mentioned in section 1.2, we answer
them as following:

• There are a lot of sensor systems that are currently being used for ob-
ject detection and tracking. Considering the low-cost approach, stereo
cameras were selected to make sure that the program runs without any
problem.

• Monocular cameras and stereo cameras were used in a lot of systems
for object detection and tracking, but the problem was that a lot of
the algorithms were developed on a fast running boards to implement
parallel processing. But with respect to this project, the raspberry-
pi won’t be able to handle parallel processing and therefore had to
execute the simplest object detection and tracking algorithms which
were developed previously.

• Running the above mentioned algorithm on a low-cost board on a real
case scenario, the results were as expected without any error. Although
the program had some latency due to low processing power, it can be
used a proof of concept to develop the same on a faster board.

This thesis actually works as a set of already developed or existing algo-
rithms. To make them work as expected in a single pipeline, was a tough
challenge. The contributions to this thesis are:

• Different algorithms were selected and connected together, to imple-
ment a pipeline for object detection and tracking on a raspberry pi
board. When working in a real-time environment, the program can
run and obtain results without an external display.

• This thesis uses Open CV library to handle the pre-processing stage
of this algorithm. Program was developed from scratch to obtain the
video from the cameras and process the image frames from left and
right cameras. In addition, the program is also used in computing
disparity maps from the stored stereo pairs.

• This thesis describes the generation of point cloud from the computed
disparity maps. A program was developed to generate the said point
cloud data using the point cloud library.

• Following the point cloud generation, a ground plane is fit to reduce
the area of processing. A program was developed using the algorithm
mentioned in [ZEF16] which uses RANSAC.

8.3 future work 47

• After ground plane estimation, the thesis follows the process of se-
mantic segmentation of point cloud (image segmentation). This was
achieved by developing a program that uses Voxel Cloud Connectivity
Segmentation from the point cloud library (reference [PASW13]).

• Control flow and data transfer between different algorithms was man-
aged properly.

• During the tracking process, due to the limitation mentioned in 7.3,
the developed system is able to detect and track 3 different objects.
Therefore, the EKF based tracking program was amended to track the
objects in three different colors, instead of having the same colors for
all objects.

8.3 future work

The future scope of this thesis remains in using the developed algorithm on
a faster board. This thesis uses images of resolution 640x480 and using a
better resolution camera will be of great use. Advantages for developing
such a solution are:

• Multiple core processor can result in parallel processing, which will
result in low latency.

• Higher processing rate can result in processing images quicker than
current rate, which can also be advantageous when using high frame
rate.

• Higher resolution cameras have the advantage of capturing objects at
a far point and this can provide the system enough time to react.

• Using an external peripheral like NVIDIA Jetson Nano module will
reduce the overheating of the processor and could also be used for
training the data, instead of using the trained dataset.

B I B L I O G R A P H Y

Autonomous Driving, Both Close and Far from Ubiquity
(https://www.skynettoday.com/editorials/autonomous vehicles).

Johann Borenstein and Yorem Koren. Real-Time Obstacle Avoidance for
Fast Mobile Robots. IEEE Transactions on Systems, Man and Cybernetics,
19(5):1179–1187, 1989.

Borja Bovcon, Rok Mandeljc, Janez Perš, and Matej Kristan. Stereo obstacle
detection for unmanned surface vehicles by IMU-assisted semantic seg-
mentation. Robotics and Autonomous Systems, 104(Figure 1):1–13, 2018.

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew Berneshawi, Huimin
Ma, Sanja Fidler, and Raquel Urtasun. 3D object proposals for accurate
object class detection. Advances in Neural Information Processing Systems,
2015-Janua:424–432, 2015.

Sunglok Choi, Jaehyun Park, Jaemin Byun, and Wonpil Yu. Robust ground
plane detection from 3D point clouds. International Conference on Control,
Automation and Systems, (Iccas):1076–1081, 2014.

Driverless Cars of the 1920s - The Atlantic
(https://www.theatlantic.com/technology/archive/2016/06/beep-
beep/489029/).

Carlos Diaz-Ruiz, Yan Wang, Wei Lun Chao, Kilian Weinberger, and Mark
Campbell. Vision-only 3D tracking for self-driving cars. IEEE Interna-
tional Conference on Automation Science and Engineering, 2019-Augus:1029–
1034, 2019.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the KITTI vision benchmark suite. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 3354–3361, 2012.

Andreas Geiger, Julius Ziegler, and Christoph Stiller. StereoScan: Dense 3d
reconstruction in real-time. IEEE Intelligent Vehicles Symposium, Proceed-
ings, pages 963–968, 2011.

Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff
to find things. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5302

LNCS(PART 1):30–43, 2008.

Abhijit Kundu, K. Madhava Krishna, and Jayanthi Sivaswamy. Moving ob-
ject detection by multi-view geometric techniques from a single cam-
era mounted robot. 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2009, pages 4306–4312, 2009.

49

50 BIBLIOGRAPHY

Object Detection Guide (https://www.fritz.ai/object-detection/#part-
basics).

Aljosa Osep, Alexander Hermans, Francis Engelmann, Dirk Klostermann,
Markus Mathias, and Bastian Leibe. Multi-scale object candidates for
generic object tracking in street scenes. Proceedings - IEEE International
Conference on Robotics and Automation, 2016-June(3):3180–3187, 2016.

Aljosa Osep, Wolfgang Mehner, Markus Mathias, and Bastian Leibe. Com-
bined image- and world-space tracking in traffic scenes. Proceedings
- IEEE International Conference on Robotics and Automation, 0:1988–1995,
2017.

OpenCV: Open Source Computer Vision Library
(https://github.com/opencv/opencv).

Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Worgotter.
Voxel cloud connectivity segmentation - Supervoxels for point clouds.
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2027–2034, 2013.

Guan Pang and Ulrich Neumann. 3D point cloud object detection with multi-
view convolutional neural network. Proceedings - International Conference
on Pattern Recognition, 0:585–590, 2016.

Point Cloud Library (PCL) (https://github.com/PointCloudLibrary/pcl).

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). Proceedings - IEEE International Conference on Robotics and Automa-
tion, pages 9–12, 2011.

Olgierd Stankiewicz, Gauthier Lafruit, and Marek Domański. Multiview
video: Acquisition, processing, compression, and virtual view rendering, vol-
ume 6. 2018.

Yasir Salih and Aamir S. Malik. 3D object tracking using three Kalman filters.
ISCI 2011 - 2011 IEEE Symposium on Computers and Informatics, pages
501–505, 2011.

Stereo Vision for 3D Reconstruction (https://medium.com/analytics-
vidhya/depth-sensing-and-3d-reconstruction-512ed121aa60).

StereoPi (https://stereopi.com/).

Super Voxel Clustering (https://github.com/PointCloudLibrary/ pcl/blob/
master/doc/tutorials/content/supervoxel clustering.rst).

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointRCNN: 3D object
proposal generation and detection from point cloud. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2019-June:770–779, 2019.

The Carnegie Mellon University Autonomous Land Vehicle Project
(https://www.cs.cmu.edu/afs/cs/project/alv/www/index.html).

BIBLIOGRAPHY 51

The Depth I: Stereo Calibration and Rectification
(https://python.plainenglish.io/the-depth-i-stereo-calibration-and-
rectification-24da7b0fb1e0).

The Evolution Of Drones Timeline (http://www.regimage.org/the-
evolution-of-drones-timeline/).

Yuanyuan Wu, Xiaohai He, and Truong Q. Nguyen. Moving Object Detec-
tion with a Freely Moving Camera via Background Motion Subtraction.
IEEE Transactions on Circuits and Systems for Video Technology, 27(2):236–
248, 2017.

Kangru Wang, Lei Qu, Lili Chen, Jiamao Li, Yuzhang Gu, Dongchen Zhu,
and Xiaolin Zhang. Ground plane detection with a new local dispar-
ity texture descriptor. IEICE Transactions on Information and Systems,
E100D(10):2664–2668, 2017.

Lee Chong Wan, Patrick Sebastian, and Yap Vooi Voon. Stereo vision track-
ing system. Proceedings - 2009 International Conference on Future Computer
and Communication, ICFCC 2009, pages 487–491, 2009.

Desheng Xie, Youchun Xu, and Rendong Wang. Obstacle detection and
tracking method for autonomous vehicle based on three-dimensional
LiDAR. International Journal of Advanced Robotic Systems, 16(2):1–13, 2019.

Yang Yu, Wang Tingting, Chen Long, and Zhang Weiwei. Stereo vision based
obstacle avoidance strategy for quadcopter UAV. Proceedings of the 30th
Chinese Control and Decision Conference, CCDC 2018, pages 490–494, 2018.

Ramy Ashraf Zeineldin and Nawal Ahmed El-Fishawy. Fast and accurate
ground plane detection for the visually impaired from 3D organized
point clouds. Proceedings of 2016 SAI Computing Conference, SAI 2016,
pages 373–379, 2016.

Ling Zou and Yan Li. A method of stereo vision matching based on OpenCV.
ICALIP 2010 - 2010 International Conference on Audio, Language and Image
Processing, Proceedings, pages 185–190, 2010.

colophon

This document was typeset using LATEX. The document layout was generated
using the arsclassica package by Lorenzo Pantieri, which is an adaption of
the original classicthesis package from André Miede.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Sensor systems in vogue
	1.1.2 Object Detection

	1.2 Problem Statement and Thesis Goal
	1.3 Thesis Document Outline

	2 Related works
	2.1 Sensors and Systems For Image Processing
	2.1.1 Ultrasonic Sensor, LIDAR and RADAR
	2.1.2 Monocular vs Stereo Camera
	2.1.3 Controller Board

	2.2 Stereo Camera - Object Proposals Generation
	2.3 Pre-existing Libraries
	2.4 Point Cloud - Object Tracking
	2.5 Conclusion

	3 Methodology
	4 Stereo Vision
	4.1 Obtaining Images
	4.2 Splicing images
	4.3 Disparity Map Calculation
	4.4 Conclusion

	5 Object Detection
	5.1 Point Cloud Generation and Ground Plane Estimation
	5.1.1 Generating Point Cloud
	5.1.2 Ground Plane Estimation

	5.2 Detecting 3D Object Proposals
	5.2.1 Semantic Segmentation
	5.2.2 Extracting Object Proposals

	5.3 Conclusion

	6 Tracking
	6.1 Visual Odometry
	6.2 Tracker
	6.3 Conclusion

	7 Observation and Results
	7.1 Device
	7.1.1 Single type of Object - Person walking
	7.1.2 Single type of Object - Person walking - Walks back
	7.1.3 Single type of Object - Person walking and Crossing
	7.1.4 Multiple types of Objects
	7.1.5 Scenario: Without break in tracking

	7.2 Benchmark Input
	7.3 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Contributions
	8.3 Future Work

