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Preface
Right at this moment, I am sitting at home on the couch, one day before I am going to hand in this report.
My new home is a 180 kilometer drive away from Delft, where my setup has already been removed.
The last two months, I have spent writing down the adventure that was my master thesis project. And
what an adventure it has been...

This writing phase has not been my favourite stage, but it makes me even more grateful for the
more exciting parts. Like the first time a real person, it was Marco I believe, was going to try out the
setup, which was built to pull over whoever was cycling on it. Or of course the times I went for a ride
myself.

One year ago, I wouldn’t have been able to envision what it was all going to look like. I don’t blame
this former version of myself, considering all the different components that the setup consists of. By
now, I have learned from a great man that even such big goals can be reached if we only divide and
conquer.

I would like to thank everyone who participated in the pilot experiments. Especially Luuk made my
day when he was last-minute willing to participate in my final pilot, after a part of the setup broke down
during the intended final pilot. I would like to thank Heike for all her help with the motors and Jason
for his thoughts on the data processing. We also couldn’t have done without Judith, who explained us
everything about the gait lab and made it possible for us to use it for so long. Another special thanks
goes out to Thijs, who supported me with anything I needed when I was at the end of my rope. Last
but not least, I would like to thank Arend and Marco for supervising me during this project. You have
been an absolute pleasure to work with and you really showed me how fun research can be.

S. van de Velde
Leuven, March 2022
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Abstract
Up to now, not much is known about how humans control bicycles, especially when subject to large
perturbations. In order to learn more about the extent to which these perturbations can be handled, a
new experimental setup is required, which can deliver large perturbations to cyclists and bring them to
fall. This thesis describes the detailed design and evaluation of such a setup.

Several requirements are formulated regarding different experiment aspects that the setup must
adhere to.

The proposed design consists of a treadmill on which a subject rides a bicycle. Ropes are guided
from the ends of the bicycle’s handlebar toward the front and back of the setup, where they are attached
to four motor units of a robotic rope-pulling system. Based on a feed-forward conversion added with PI
force feedback control, a shared controller commands the motors to maintain a tracking force or perturb
the cyclist by applying a net torque on the handlebar for a short time. An active safety harness is the
main feature that prevents the subject from harm. Meanwhile, motion capture recordings of strategically
placed passive markers and data from inertial measurement units on the bicycle are collected. With
appropriate processing, the angles and angular velocities that describe the dynamics and control of the
bicycle-rider system can be obtained from these measurements. The force data is also collected, by
the controller.

Interesting results that can be obtained with this setup include the probabilities to fall after perturba-
tions of variable forces and the data required to evaluate the equations of motions of the bicycle-rider
system during and shortly after a perturbation. This can be used to provide a baseline against which
future bicycles can be compared and it is useful for validating rider models.

The experiment shows consistent performance and generates high quality measurements. Neither
the 12 pilot participants nor the 26 subjects who participated in follow-up experiments encountered
any safety issues. The experiment could even be improved by resolving issues regarding the motor
behaviour and CPU overloads. The workload of the experiment operators could be decreased if inter-
vention of the safety harness was trained on cycling and coupled to deactivation of the treadmill. A next
step would be to automate the data processing by developing a classifier that distinguishes recoveries
from falls.
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Acronyms
DoFs Degrees of freedom

EoMs Equations of motion

GCP Ground contact point

IMU Inertial measurement unit

IQR Interquartile range

MIMO Multiple-input multiple-output

MoCap Motion capture

SISO Single-input single-output

STD Standard deviation
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1
Introduction

There are many reasons why cycling should be supported. For example, swapping the car for a bike
can reduce the ever rising volume of traffic, lowering both emission and congestion issues. Another
advantage of taking a bicycle trip can be the relief of stress and provision of exercise, which is a
welcome change for people sitting behind a desk for most of the day. With the advent of the e-bike,
efforts to cover long distances can be reduced and it is possible to compensate for lowered physical
capabilities, being favourable to commuters and elderly people. Furthermore, many discovered cycling
as a replacement for public transport and as a leisure activity during the COVID-19 pandemic, as it is
a responsible way to spend time outside.

A drawback of cycling is that the rider is vulnerable to severe injury in traffic accidents. This shows in
the road safety numbers of the Netherlands (SWOV, 2020a; SWOV, 2020b). While the number of fatal
traffic accidents has decreased since 1973 for the most common modes of transport, that decrease
has stagnated for cyclists since 2000. The number of serious injuries has even increased during the
last decades, while it has gone down for other modes of transport. In 2019, 66% of all serious road
injuries and 31% of all fatal road accidents concerned cyclists. Combined with the uptake in cycling,
these numbers are expected to increase even further.

The causes for cycling accidents are often a combination of multiple factors. Some of the accidents
are caused by collisions, but, as stated by Schepers and Klein Wolt (2012), “most cyclists admitted to
hospitals in the Netherlands are single-bicycle crash victims.” In such crashes, the cyclist is the only
road user involved. At the root of these accidents is the nature of the vehicle. The bicycle has only two
contact points with the ground, lying in longitudinal direction. Therefore, it is unstable in lateral direction,
implying the possibility to fall over. Although the vehicle is self-stable within a particular speed range
(Meijaard et al., 2007), big enough external perturbations can still disrupt balance.

It is possible to enhance stability by ‘steering into the fall’ (Kooijman et al., 2009; Schwab and
Meijaard, 2013). When the bicycle tends to lean towards one side, steering in that direction places the
ground contact points back under the center of mass. This mechanism removes net moments that can
lead to a fall. However, in order to ensure a safe situation on the road, the heading direction should
also be considered.

Thus far, it is unknown what strategy cyclists use to control a bicycle in case of large perturbations
and what are the limits of operation of the combined bicycle-rider system. A realistic model that captures
this control behaviour could be of use to design safer bicycles, for example with an active steer assist
that could help the rider to take the appropriate steering actions. Furthermore, once it is known what
perturbations the system can and cannot cope with, it is clear what kind of perturbations should be
eliminated from the cycling environment to maintain a safe situation.

Schwab and Meijaard (2013) report various theoretical rider control models that have been pro-
posed over the years. The suggested control methods include classical control, based on the pilot
models developed by McRuer, optimal control, which minimizes a cost function, intermittent control,
that activates when a certain value is exceeded and intuitive control, which depends on the speed and
is proportional with the feedback.

In order to confirm which model is most suited to mimic a real cyclist, empirical validation is of
paramount importance. However, experimental data that can be used for this purpose is barely avail-
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2 1. Introduction

able. One of the very few existing datasets is gathered by Moore (2012), but only small perturbations
were applied in this experiment. Large-perturbation studies with cyclists, leading to critical situations,
are non-existent.

This asks for a new experimental setup, with the following requirements. The setup should allow
for realistic cycling, be able to apply controlled perturbations of variable magnitudes to a subject who
is cycling straight ahead at various forward speeds, with the capability to safely cause loss of stability,
and collect data that captures the rider control behaviour.

Having such a setup makes it possible to validate which cyclist control model is most suited to mimic
a real cyclist. As such, models can be used to predict which interventions can improve cycling safety
and prevent falls. Additionally, it gives the opportunities to empirically compare performance using
different bicycles, environments or cycling strategies. For example, it can be tested whether a bicycle
designed to be safer actually leads to less falls in comparison with a baseline bicycle.

This thesis describes the detailed design of such a new experimental setup and evaluates the end
product. With this, it follows up on an earlier literature study (included in the digital material) in which
inspiration is drawn from gait perturbation experiments and the possibility to apply similar systems to
cycling has been discussed.

The proposed setup consists of a treadmill on which a cyclist cycles, while a robotic rope pulling
system can temporarily disturb the bicycle’s handlebar by imposing a torque on it. Such point contact
force perturbations by means of a pulling rope are effective to cause falls because they can generate
large forces in appropriate directions considering the degrees of freedom (DoFs) and inertia of the
different components. Meanwhile, they do not obstruct ordinary control behaviour. The relative motion
environment in the form of a treadmill is chosen because this setting allows for more realistic motion
with respect to a simulated environment and the restriction of space is convenient for safety reasons.
Hence, the possibility for the cyclist to wear an active safety harness that freezes when a fall is detected.
Additionally, the bicycle and surroundings are equipped with padding and the cyclist wears protective
gear. Recordings of passive markers on the bicycle and cyclist by motion capture (MoCap) cameras
and inertial measurement units (IMUs) are used to capture the dynamics and control of the bicycle-rider
system during the experiment.

This thesis is structured as follows. First, the requirements that the experimental setup must adhere
to are drawn up in Chapter 2. Chapter 3 then describes the different components of the experiment,
after which the data processing is treated in Chapter 4. Subsequently, Chapter 5 reports the results.
The discussion following in Chapter 6 evaluates the setup and Chapter 7 concludes with some final
remarks and recommendations.



2
Requirements

As stated in the previous chapter, the objective of this thesis is to design an experimental setup that
can safely apply controlled perturbations, with the capability to cause falls, to a subject who realistically
cycles straight ahead at one of various possible prescribed speeds, while data is collected that captures
the bicycle-rider system and the perturbations. This chapter draws up the specific requirements that
can be validated to judge whether or not the eventual design is successful. The requirements are
treated according to the part of the experiment concerned: cycling, perturbations and data collection.

2.1. Cycling
The first set of requirements considers everything that has to do with cycling during the experiment, in
the broadest sense. The according requirements are listed below.

Realisticness
Cycling during the experiment should be realistic. This means that the bicycle dynamics should cor-
respond to cycling in real life and that the rider should be able to give the bicycle all inputs that could
be given during normal cycling. Normally, a cyclist can perform steering actions, upper body and knee
movements and change the pedalling frequency. Furthermore, the available space for manoeuvring
should correspond to that of a real traffic environment and the rider should not be prepared for a coming
perturbation.

Effective steering
During cycling, a rider can perform stabilizing control actions by the mechanism of ‘steering into the
fall’. When the bicycle leans towards one side, the rider can place the support points back under the
center of mass, by steering the front wheel in the direction of undesired lean (Schwab et al., 2013).
During the experiment, this mechanism should remain executable. Reijne et al. (2021) mentions some
fall mechanisms in which the rider can not steer into the fall, e.g. locking up of the steering assembly
and loss of friction between the front tire and the ground surface. These should thus be avoided.

Speed
It should be possible to select the cycling speed such that experiments can be held below, in and above
the bicycle’s self-stable region. For the benchmark bicycle from Meijaard et al. (2007), the transition
points of these regions lie around 4.3ms−1 and 6.0ms−1.

Safety
During the experiment, it is of paramount importance that no harm is brought to the participants. This
also holds in the case of falls, whether or not as a result of perturbations.

3



4 2. Requirements

2.2. Perturbations
Following on the cycling requirements, this set elaborates on requirements that the perturbations must
adhere to.

Magnitude
The setup should be able to give perturbations of varying magnitude, but at least perturbations of the
highest magnitude should cause the cyclist to fall. A fall is here defined as any case where the subject
could not remain cycling without steering outside the designated area or putting a foot on the ground.

Responsiveness
For the subject to be unprepared for the perturbation, it is important that he does not notice the pertur-
bation force building up to the eventual level. Therefore, the rise time of the force should be less then
the time that a human needs to perceive it. The first coordinated action in response to a stimulus is the
long latency reflex, which takes around 50-100ms (Kurtzer, 2015). This is thus the rise time’s order of
magnitude that is aimed for.

Randomness
Again in order to prevent the subject from being prepared, more randomness in the perturbations is
better. Therefore, the perturbation direction, magnitude and activation instant should be randomly de-
termined.

Controllability
Having to do with the safety requirement from Section 2.1, the operator of the perturbation system
should be in full control of the perturbations. This means that he should in the end decide whether or
not to perturb at a certain moment and be in charge of the maximum forces that are delivered.

2.3. Data collection
The last set of requirements focuses on what data should be collected during the experiment.

Bicycle dynamics
During the experiment, data that describes the bicycle dynamics should be collected. Meijaard et
al. (2007) describe benchmark equations of motion (EoMs) for the Whipple bicycle model (Whipple,
1899). They explain that the model’s configuration space can be described by seven DoFs, in the
paper parametrized as follows with accompanying symbols: the rear wheel ground contact point (GCP)
location (𝑥𝑃,𝑦𝑃), the rear frame’s yaw and lean rotations 𝜓 and 𝜙, the steering angle 𝛿 and the rotations
of the rear and front wheels 𝜃𝑅 and 𝜃𝐹. Of these coordinates, all but 𝜙 and 𝛿 are ignorable, meaning
that they do not come forward in the EoMs. In the velocity space, only three velocity DoFs remain after
taking into account the longitudinal and lateral no-slip conditions for each wheel. They are chosen as
the derivates of the remaining DoFs in configuration space �̇� and �̇� and the rear wheel rotation rate �̇�𝑅,
that dictates the forward speed. Furthermore, the EoMs require 25 parameters that characterize the
bicycle design.

Extending the model with a rigid rider requires additional parameters that describe the human body
(Moore et al., 2009). These could however be estimated from the participant’s length and weight.

All in all, to capture the bicycle dynamics, it is required to identify the bicycle design parameters and
the participants length and weight, and to measure the rear frame lean angle and rate, the steering
angle and rate and the rear wheel rotation over time.

Rider control behaviour
As described earlier, the rider can apply steering, move his upper body and knees and change the
pedalling frequency. Of these, the lean and steering actions correspond directly to the bicycle model’s
DoFs. Various rider control models only consider steer torque as output (Schwab et al., 2013), because
it is shown that steering is the main contributor to lateral control and upper-body lean occurs very little
(Moore et al., 2011, Kooijman et al., 2009). Measuring the steering torque would thus be desirable,
but practically, this is hard to do. Instead, it can be deducted from the bicycle model’s DoFs described
above.
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That lean actions appear not to be important, is convenient for using the Whipple bicycle model
(Whipple, 1899), which is often used as a base for bicycle-rider models. This model assumes a rigid
rider, which could thus be a valid assumption. To verify this rigid-rider assumption, upper body motion
should be measured during the experiment.

Additionally, Kooijman et al. (2009) noted that the pedalling frequency has a substantial impact on
the frequency of the steering actions. The cadence is thus measured as well.

Perturbation information
In order to discover the limits of operation of the bicycle-rider system, it is necessary to know at what
perturbation magnitudes the cyclist is able to stay upright or falls. For this purpose, the desired and
measured forces need to be collected. This data can then also be used to assess how well the mea-
sured forces correspond to the desired forces.





3
Experiment design

This chapter describes the design choices that weremade for the experiment to satisfy the requirements
established in the previous chapter. Each section describes an aspect of the experiment. Section
3.1 covers the experimental setup, starting with a general overview and followed by a more in-depth
explanation of the different components. Section 3.2 then proceeds with the control architecture. After
that, the data collection and experiment protocol are covered in Sections 3.3 and 3.4.

3.1. Experimental setup
Figure 3.1 shows a schematic illustration of the experimental setup. During the experiment, a subject
rides a bicycle (A) on a treadmill (B), while wearing protective gear and being secured by a safety
harness (I) attached to the ceiling. Around the treadmill, a profile construction provides support to
gymnastic mats for additional safety, and to a perturbation system. The perturbation system makes
use of four motors units (C1-C4), located around the treadmill (two on the front and two on the back).
These motors units, which are operated by a single controller (F), can wind up ropes (D) that are
connected to the ends of the bicycle’s handlebar. When the perturbation system operator determines
that a perturbation can be given, either a clockwise or counter-clockwise torque is induced on the
handlebar, by simultaneous activation of motors 2 and 4, or motors 1 and 3, respectively. The four
motor units are powered by two power supplies (G). Between the power supplies and the motor units,
an emergency button (H) is installed to disconnect all motors from power. The forces in the ropes
are measured by force sensors (E) and fed back to the controller. More details on the setup’s main
components are given below.

A

B

C2E

F

D

C3

C1

C4

G

H
I

N
êzN

êxN
êyN

Figure 3.1: Experiment setup, consisting of (A) a bicycle, (B) a treadmill, (C1-C4) a perturbation system with four motor units,
(D) ropes, (E) force sensors, (F) a controller, (G) power supplies, (H) an emergency button and (I) a safety harness.
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8 3. Experiment design

(A) Bicycle
Figure 3.2 shows a picture of the bicycle used in the
experiment. Because the goal is to find out more
about an ordinary bicycle-rider system, an ordinary
bicycle is the starting point of this setup. The bicycle
is chosen such that its geometry matches that of the
TU Delft steer assist bicycle (Dialynas et al., 2018),
to compare performances in the future.

The perturbations are delivered by means of
pulling a rope, that is connected to an extension
of the bicycle’s handlebar. The motivation for this
choice of perturbations is discussed in part (C).

For the sake of safety, additional precautions
are taken. The bicycle is for instance equipped with
padding and because breaking on a treadmill can
be dangerous, one of the two breaks is deinstalled
and the other one is replaced, such that it is not
easy to reach. A safety belt attached to the saddle
fixes the bicycle to the rider, such that the bicycle
does not sweep backwards under the rider when
he hangs in the safety harness.

Figure 3.2: Bicycle with safety precautions.

(B) Treadmill
Cycling on a treadmill is chosen as a compromise between realistic cycling and a safe environment.
It is supposed to be representative of cycling in the exterior because the relative motion between the
wheels and the ground surface is realistic. Since both wheels are in contact with the same surface, the
coupling between their speeds remains unaffected and the belt width allows some room for manoeuvre.
This space is limited, but so is the space one has on a cycling lane. Regarding safety, the small absolute
displacement makes it possible to secure the subject to the ceiling.

The treadmill that is used has a belt size of 1.2m wide by 2.62m long and can move with speeds
from 0 to 18 kmh−1, with steps of 0.1 kmh−1.

(C) Perturbation system
It is chosen to perturb the bicycle-rider system by inducing a torque on the steering assembly by means
of a motor-driven rope-pulling system. Such perturbations are effective to cause falls, because they are
applied in direction of steering. Together with the bicycle lean, this is one of the two DoFs directly related
to balance that remain in velocity space and the lower inertia of the front frame with respect to the rear
frame makes it easier to apply perturbations that suffice the magnitude requirement. The perturbation
system itself does not impose a lot of additional weight on the handlebars, which is considered beneficial
to keep the bicycle’s handling qualities realistic.

Using motors to wind up the rope allows controllability in terms of magnitude and duration of the pull.
The perturbations are only delivered for a short time, to represent and impulsive force. For the system
to exert clockwise and counter-clockwise torques on the handlebar without leading to net forces, four
ropes and motors are required.

The perturbation system is based on the open source Bump’em system developed by Tan et al.
(2020). Their paper describes multiple modular configurations. Appendix A explains which of those
was used in this experiment and what changes were applied in this setting with respect to the original.
The authors report a maximum pull force of 200N and rise times below 45ms for a step response with
this configuration. Based on a previously conducted pilot study, such pull forces are estimated sufficient
to comply with the magnitude requirement and the rise time suffices the responsiveness requirement,
as drawn up in Chapter 2.

The perturbation system consists of four motor units which are each controlled by a control unit.
Figure 3.3 depicts one of the motor units, both in assembled condition (a) and as exploded view with
all parts labelled (b). The blue parts are 3D-printed and the grey parts are essentially off-the-shelf com-
ponents. A maxon brushless motor (EC-90 Flat, maxon Group, Switzerland), attached to a mounting
frame, is connected to a drive shaft by a shaft coupler. The drive shaft is in turn connected by a shaft
collar to a reel drum and held in place by ball bearings. On the reel drum, a rope can be wound, which
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is prevented from coming off by a reel drum cover. The loose end of the rope is guided through a hole
in the reel drum cover and through an eyebolt towards the bicycle’s handlebar. The mounting frame
can be bolted on to the profile structure around the treadmill.

The control units each consist of a motor driver (ESCON 70/10, maxon Group, Switzerland), a
shunt regulator (DRS 70/30, maxon Group, Switzerland) and are connected to a power supply. A
shared controller prescribes the desired motor current for each unit, upon which the motor driver draws
the required power and regulates the motor actions. The shunt regulator, that is connected in series
with the power supply, protects the system from counter-electromotive force.

(a) Assembled

Shaft 
collar

Eyebolt
Bearing

Drive
shaft

Mounting
frame

Reel
drum

Brushless
Motor

Shaft 
coupler

Reel drum
cover

(b) Exploded view

Figure 3.3: Motor unit (a) in assembled condition and (b) as exploded view (figure inspired by Figure 1B from Tan et al. (2020)).

(D) Rope
The perturbations are delivered by a rope rather
than by a rod or similar structure, because a rope
imposes less restrictions on the freedom of move-
ment. The rope that is used is high-strength, high-
stiffness, ultra high molecular weight polyethylene
rope, type Dyneema SK75 with a 2mm diameter,
similar to the rope shown in Figure 3.4.

The ropes are not directly tied to the handlebar’s
extensions, but in series with a breakaway cable,
that is designed to break in case of too high forces
as a safety precaution. For this breakaway cable,
fishing line with a specified break strength is used.

Figure 3.4: Dyneema SK75 2mm rope (from Amazon
(n.d.)).

(E) Force sensors
Scaime S-type load cells (ZFA, scaime, France),
shown in Figure 3.5, measure the forces in the
ropes. Due to their weight, the load cells can not
hang halfway the rope without affecting the tension.
Therefore, they are bolted on to the handlebar’s ex-
tensions. A drawback of this construction is that the
load cells are not always purely loaded in axial di-
rection. It would be favourable to have light-weight
force sensors, as described in Tan et al. (2020), but
their manufacture did not succeed in the available
time.

The force sensor signals each pass through an
amplifier (CPJ, scaime, France) before being fed as
input to the controller.

Figure 3.5: S-type load cell from scaime datasheet.
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(F) Controller
A shared controller processes inputs from the perturbation system operator and directs the motors.
It also reads out the measurements from the force sensors and uses this data to adjust the motor
signals via PI-control. Furthermore, it controls a screen on which the force measurements, pull time
recommendations and activation information are shown in real time to the operator and sends out a
synchronization signal to a Qualisys data collection system. Section 3.2 touches more on the control
architecture.

In order to process the force sensor measurements fast enough and thus maintain the short rise-
time, the control loop must run at a high enough frequency. The controller that Tan et al. (2020) use
runs at 1000Hz, which is thus also taken as desired rate here. This requires a controller with sufficient
CPU. Because the complete application is quite complicated, it is considered safest to opt for a real-
timemachine. A Speedgoat real-timemachine (Performance real-time target machine, item ID 109000,
Speedgoat, Switzerland) is thus used during the experiment, along with a compatible input/output mod-
ule (IO133, item ID 2A133, Speedgoat, Switzerland).

The IO133 is an analog digital input/output module, containing 16 channels for differential analog
inputs, 8 channels for analog outputs and 14 channels that can be used as either digital input or digital
output. The voltage range of the analog input channels can be selected via software to be either ±5V
or ±10V and it can reach sampling rates of up to 2000Hz. The analog output channels voltage range
can be selected to be 0-5V, 0-10V, 0-10.8V, ±5V, ±10V or ±10.8V, with a settling time of 10µs. The
current setup uses four analog inputs, ranged ±10V, 8 digital outputs and 5 analog outputs, with ranges
of ±10V.

(G) Power supplies & (H) emergency button
Two power supplies provide themotors with power for operation. Themotors on the front of the treadmill
share a single power supply and so do the motors on the back. This division is chosen because the two
pairs of motors will never pull simultaneously, and thus not draw maximum power at the same moment.

In case of an emergency, the motors can be disconnected from power by an emergency button.
This button is installed between the power supplies and the motors. At this location, it is possible to
shut down all motors with one button, because all wires are here together and it omits delays in the
power supplies.

(I) Safety harness
During the experiment, the subject wears a safety
harness connected to a RYSEN (RYSEN, Motek
Medical, the Netherlands). The RYSEN is a low-
power 3D overground bodyweight support system
(Plooij et al., 2018). It allows the user freedom of
movement in both longitudinal, lateral and vertical
direction, while providing a support of 10-60%of the
total bodyweight, according to the settings of the op-
erator. An automatic fall detection algorithm is sup-
posed to freeze the cables when a fall is detected,
such that the user is caught and will not reach the
ground. In addition to this automatic response, the
system can also be frozen by the Rysen operator.
Figure 3.6 shows a picture of a participant wearing
the Rysen while sitting on the bicycle.

Figure 3.6: Cyclist wearing Rysen safety harness.
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3.2. Control
The real-time target machine runs an application built in Simulink Real-Time. The perturbation system
operator controls the application via a simple user interface with three buttons: start, click to pull and
stop. This interface is shown in Figure 3.7. The stop button is made significantly larger than the other
buttons to allow for quick responses when necessary, following Fitts’ law. The programming behind
this interface can be found in Appendix B.

Figure 3.7: User interface through which the operator can start and stop the Simulink application and deliver pulls.

Figure 3.8 shows a simplified representation of the control architecture, explaining the general work-
ing principle. For a better overview, only two out of four motor units are visualised in this scheme. Motor
units 3 and 4 are after all similar to units 1 and 2 respectively.

Figure 3.8: Main control architecture for two motors of opposite pulling direction.
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The scheme is explained from left to right. The input F_des_abs determines the desired pull force.
It has a value of zero, unless the click to pull button is clicked. From that moment onward, it changes to
a random value between a pre-installed minimum and maximum for a predefined pull duration of 0.3 s.
At this point, it is yet undetermined whether the perturbation shall be clockwise or counter-clockwise.
This is taken care of through the multiplication with gain S, which contains a value of 1 or −1, randomly
changing upon each click on the click to pull button. After this multiplication, the signal splits into two
signals: one for each motor unit. The lower of the two is multiplied by −1, such that the split signals
are of opposite sign. Both signals then pass a saturation that cuts off values below 5. This facilitates a
tracking force of 5Nwhen the input is zero or negative and passes on higher values when a perturbation
in the according direction is desired. Now the desired forces for each motor unit is determined and from
here on, the control schemes are similar.

The desired force is added with a PI controller contribution. The resulting force is multiplied by
the reel drum radius and divided by an experimental motor torque constant to convert the force to a
motor current. The exact values of the feedback gains and the conversion factors are addressed in
the subsection below. Again a saturation is applied, to guarantee that the current will not damage the
motor and then the current is sent via the motor controller as input to the motor. This results in the
attached rope pulling on the handlebar.

The loadcell placed in series with the rope measures the force that is applied. Another saturation
cuts off measured forces below 0N, as they can not physically be the result of a pulling rope. The
signal is then multiplied with −1 such that it is subtracted from the desired force at the addition.

The complete Simulink application that employs this scheme is visualized in Appendix B. This also
contains additional features such as

• a synchronization signal that enables communication with the data acquisition system. This indi-
cates the activation and deactivation instants of the perturbation system and all pulls,

• a signal that counts down from a random value to advise the instant of the next perturbations

and

• the monitoring and/or logging of data of interest (e.g. the force signals) to a screen/the Speedgoat
memory.

3.2.1. Feedback gains & conversion factors
This subsection touches on the determination of the conversion factors and feedback gains used in
the controller. The reel drum radius is based on the physical property and the motor torque constant
was adjusted from the motor specifications such that the open loop response were adequate when
performed on a static weight. The P and I gains were tuned by trial and error such that fast rise times
were obtained and the tracking performance was increased. The eventual values can be found in
Table 3.1. The motor constants are here reported as values divided by 3. This is because it was found
out during the writing down of the results that the inputs to the motor controllers were supposed to be
voltages instead of currents, which were then internally multiplied by 3 to convert the voltage back to
current. This was in practice compensated by the too high values for the motor torque constants. The
motor torque constants divided by 3 are thus the values that lead to the current input that was actually
given to the motors.

Motor Unit 1 Motor Unit 2 Motor Unit 3 Motor Unit 4
r (m) 19.05 × 10−3 19.05 × 10−3 19.05 × 10−3 19.05 × 10−3
Kt (Nm/A) 0.4620 / 3 0.5313 / 3 0.5313 / 3 0.5313 / 3
P (-) 1.5 2 1.75 1.5
I (-) 2 2 2 2

Table 3.1: Values for feedback gains and force-current conversion factors for all motor units.
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3.3. Data collection
From the data collection requirements in the previous chapter, it became evident which angular po-
sitions and velocities need to be measured, together with the desired and measured forces. Each of
these kinds of data requires its specific approach, which will be explained below.

3.3.1. Angular positions
Reviewing the requirements, the lean angle, steering angle and upper body angles should be collected.
For this purpose, a Qualisys optoelectronic measurement system, containing 12 MoCap cameras, is
used to record the positions of passive markers on the bicycle and cyclist at 100Hz. Two additional
cameras make ordinary video recordings. The markers are placed such that the local coordinate sys-
tems of the bicycle’s front frame 𝐹 and rear frame 𝑅 and that of the cyclist 𝐶 can be obtained with respect
to an inertial reference frame 𝑁. This 𝑁 frame is established by initial calibration of the Qualisys sys-
tem before starting the actual recordings. Its axes follow from markers on an L-shaped frame, which is
placed against the left side of the treadmill before calibration such that the 𝑦-axis points in forward and
the 𝑥-axis in sideways direction. The location of the origin is not exactly known. The marker locations
used in the experiment are shown and described in Figure 3.9 (a) and Table 3.2. Figure 3.9 (b) shows
the coordinate system orientations.
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(a) Markers placed on bicycle and rider.
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(b) Coordinate systems 𝑅, 𝐹, 𝐶 and 𝑁.

Figure 3.9: Visualization of bicycle and rider with (a) the marker positions and (b) the different frames.

Marker Position
1 front wheel axis left
2 front wheel axis right
3 headtube left
4 headtube right
5 handlebar left
6 handlebar right
7 rear wheel axis left
8 rear wheel axis right
9 bike rack
10 lower back left (on top of safety harness)
11 lower back right (on top of safety harness)
12 seventh cervical (C7) vertebra
13 sternal end of left clavicle
14 sternal end of right clavicle

Table 3.2: Descriptions of the locations at which markers are placed during the experiment.
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The local frame orientations can be described with respect to a reference frame by a succession of
three rotations. This is visualized in Figure 3.10 by cans-in-series, which rotate with respect to each
other around their primary axis. Figure 3.10 (a) shows how frame 𝑅 is oriented with respect to frame
𝑁, by first a rotation 𝜓 around the 𝑧-axis, followed by a rotation 𝜙 around the rotated 𝑦-axis and then
a rotation 𝜒 around the rotated 𝑥-axis. This series of rotations will be referred to as yaw-lean-pitch.
In (b) and (c), the rotations of respectively coordinate systems 𝐹 and 𝐶 are given relative to frame 𝑅.
The latter succeed in the same order as the rotations seen in (a), here denoted as 𝜁, 𝜂 and 𝜃. For the
rotations of frame 𝐹 with respect to frame 𝑅, another succession order is chosen to comply with the
structure of the bicycle. This frame orientation is described by first a rotation 𝛼 around the 𝑥-axis, then
a rotation 𝛽 around the rotated 𝑦-axis and lastly a rotation 𝛾 around the rotated 𝑧-axis. These frame
rotations are named here tilt-bank-steer. Positive rotation direction is determined by the right-hand rule.

Rotations 𝜙, 𝛾, 𝜁, 𝜂 and 𝜃 respectively correspond to the desired lean angle, steering angle and
upper body angles. Note that the symbols differ from those inMeijaard et al. (2007). With the processing
explained in Section 4.1, these angles can be calculated from the marker positions. In addition to
these angles, the rear frame yaw angle 𝜓 is also of interest. In Section 2.3, this was designated as
an ignorable coordinate for the bicycle configuration, but together with the GCPs of the wheels, it does
reveal the bicycle’s configuration on the treadmill. Other angles that are also obtained but not of direct
interest can be used for sanity checks.
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Figure 3.10: Frame rotations of body-fixed frames represented as cans-in-series.

3.3.2. Angular velocities
Besides the positions, measurements of the lean rate, steering rate, rear wheel rotation rate and the
cadence are also required. To obtain those, Delsys Trigno avanti sensors are used. They contain
an IMU, which measures angular rates in three axis directions. The data is sent out at 2000Hz and
automatically synchronized with the MoCap data.

Four such sensors are placed on the bicycle. One is on the bike rack, to measure the rear frame’s
velocity. It is placed such that the sensor’s 𝑧-axis is aligned with the �̂�𝑧𝑅 vector from Figure 3.10 (a) and
its 𝑥- and 𝑦-axes are aligned with −�̂�𝑥𝑅 and −�̂�𝑦𝑅 respectively. This means that the gyroscope’s 𝑦-data
represent the negative lean rate −�̇�. Another sensor is attached to the rear wheel axis. Because the
wheel rotates, it can’t be constantly aligned with frame 𝑅, but the sensor’s 𝑦-axis is aligned with �̂�𝑥𝑅,
to provide the rear wheel rotation rate. Similarly, another sensor, attached to the left crank arm, gives
the cadence. These rotation rates will be denoted by �̇�𝑅 and �̇�𝐶 respectively. Finally, a last sensor is
placed on the bicycle’s front fender. Its 𝑧-axis is approximately aligned with �̂�𝑧𝐹, and its 𝑥- and 𝑦-axes
with −�̂�𝑥𝐹 and −�̂�𝑦𝐹. This gyroscope’s 𝑧-data should thus give the steering rate �̇�.

3.3.3. Force data
The desired and measured force signals are already available during the experiment in the controller.
From here, they are saved on the target machine and copied to the host computer. As mentioned in
Section 3.2, the controller sends out a synchronization signal to the Qualisys software for synchroniza-
tion with the other data. This analog signal comes in to the data acquisition system at 100Hz with a
reach of ±10V. The signal is designed such that activation, pulls and deactivation of the perturbation
system are recognizable events.
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3.4. Experimental protocol
The procedure of this experiment, with the purpose to validate the working of the experimental setup,
consists of four phases: preparation, familiarization, exploration and randomization. Each of these
phases are explained below.

Preparation
The first phase of the protocol is the preparation. Before arrival of the participant, the Rysen software
is started and the Qualisys system is calibrated. The bicycle is provided with markers and sensors.
When the participant arrives, their clothing is inspected on visibility of the bony landmarks around the
neck and any reflecting elements are covered with tape. They are offered a helmet, gloves and shin
protectors and helped into the safety harness. Their height and weight is given into the Rysen software.
The remaining markers are placed on the participant and the bicycle is set to their size.

Familiarization phase
The next phase of the protocol aims at comforting the participant and building confidence in the system.
It starts with mounting the bicycle without riding it. The participant is instructed to fall to one side, upon
which they are caught by the safety harness. This is repeated until the participant feels comfortable
with falling. Then, cycling on the treadmill without perturbations is practised. Although all participants
know how to ride a bicycle, starting to cycle on a treadmill can be challenging. Once this goes well, the
participants are asked to start a self-intended fall while cycling. They can choose to skip this if falling
already happened during the learning phase.

Exploration phase
In the following phase, the critical pull force is explored. This is the desired perturbation force (in tens
of Newtons) at which the participant is not able to recover, while he is instructed to ride as relaxed as
possible. This exploration consists of a rough search and a finer search. The full procedure consists
of the steps described below:

1. Set the desired force to 20N and start the perturbation system.
2. Bring the treadmill belt to a speed of 12 kmh−1.
3. Induce a pull. If the participant falls, proceed to step 5. Otherwise, repeat this step until five pulls

are given.
4. Increase the desired force by 30N and go back to step 2.
5. Decrease the desired force by 20N.
6. Bring the treadmill belt to a speed of 12 kmh−1.
7. Induce five pulls. If the participant recovers at least once, increase the desired force by 10N and

go back to step 6.
8. Denote the current desired force as Fmax.

Randomized phase
During the last phase of the experiment, the participant receives 10 pulls with a random magnitude.
This desired force is chosen randomly between a minimum of 20N and a maximum of Fmax+20N.





4
Data processing

During the experiment, various kinds of data are collected to obtain the relevant angular positions and
velocities of the bicycle and rider and the measured force profiles. This chapter covers their processing.
The used notations correspond to Vallery and Schwab (2018), except that vectors are noted as 𝑟.

4.1. Rotation matrices
The angular positions can be obtained from the rotation matrices that describe the rotations of the
local coordinate systems with respect to a reference frame. These matrices, whose columns are the
according coordinate system’s unit vectors, can be found based on the marker positions recorded by
the MoCap cameras. For this purpose, the set of markers described in Table 3.2 and illustrated in
Figure 3.9 (a), is first extended with some virtual markers. The new marker set is described in Table
4.1. The next step is to find the initial rotation matrices for all three local coordinate systems. How this is
done, is described in Section 4.1.1. After that, the rotation matrices for each timestep can be calculated
using a singular value decomposition method (Challis, 1994). This will be explained further in Section
4.1.2. Once these rotation matrices are known, they can easily be converted to the according rotation
angles by means of the rotm2eulMATLAB command. Another purpose that the rotation matrices can
be used for, is to find the GCPs. This is elaborated on in Section 4.1.3.

Marker Position
1 front wheel axis left
2 front wheel axis right
3 headtube left
4 headtube right
5 handlebar left
6 handlebar right
7 rear wheel axis left
8 rear wheel axis right
9 bike rack
10 lower back left (on top of safety harness)
11 lower back right (on top of safety harness)
12 seventh cervical (C7) vertebra
13 sternal end of left clavicle
14 sternal end of right clavicle
Virtual Marker Position
21 average of markers 1 and 2
22 average of markers 3 and 4
24 average of markers 7 and 8

Table 4.1: Marker-position descriptions extended with virtual markers.

17



18 4. Data processing

4.1.1. Initial rotation matrices
Each of the three coordinate systems require an individual approach to find their initial rotation matrix.
These approaches will be explained below. For completeness, they are also given an origin.

Rear Frame
The rear frame coordinate system’s origin is chosen to be located at marker 24, such that

𝑁𝑟𝑂𝑅 =
𝑁𝑟𝑀24. (4.1)

Vector 𝑁�̂�𝑥𝑅,𝑡1 is easily obtained from the positions of marker 7 and 8 at this instance:

𝑁�̂�𝑥𝑅,𝑡1 =
𝑁𝑟𝑀8/𝑀7,𝑡1
∣ 𝑁𝑟𝑀8/𝑀7,𝑡1 ∣

. (4.2)

For vector 𝑁�̂�𝑧𝑅,𝑡1 , use is made of the unit vector pointing from marker 24 to 21:

𝑁�̂�𝑀21/𝑀24,𝑡1 =
𝑁𝑟𝑀21/𝑀24,𝑡1
∣ 𝑁𝑟𝑀21/𝑀24,𝑡1 ∣

. (4.3)

The participant is instructed to hold the steer straight at the beginning of the recording, such that marker
21, 7 and 8 span the local 𝑥𝑦-plane. Then,

𝑁�̂�𝑧𝑅,𝑡1 =
𝑁�̂�𝑥𝑅,𝑡1 ×

𝑁�̂�𝑀21/𝑀24,𝑡1 . (4.4)

Another cross product between vectors 𝑁�̂�𝑧𝑅,𝑡1 and
𝑁�̂�𝑥𝑅,𝑡1 then gives

𝑁�̂�𝑦𝑅,𝑡1 :

𝑁�̂�𝑦𝑅,𝑡1 =
𝑁�̂�𝑧𝑅,𝑡1 ×

𝑁�̂�𝑥𝑅,𝑡1 . (4.5)

Now that all unit vectors of the local coordinate are known, the initial rotation matrix can be constructed
as follows

𝑁𝑅𝑅,𝑡1 = [
𝑁�̂�𝑥𝑅,𝑡1

𝑁�̂�𝑦𝑅,𝑡1
𝑁�̂�𝑧𝑅,𝑡1] . (4.6)

Front Frame
Similarly to the rear frame, the front frame coordinate system’s origin is located at marker 21

𝑁𝑟𝑂𝐹 =
𝑁𝑟𝑀21. (4.7)

Unlike in the previous case, it is difficult to construct all unit vectors of this coordinate system from the
marker positions. The 𝑁�̂�𝑥𝐹,𝑡1 vector could be calculated from markers 1 and 2, or from markers 5 and
6, but there is no third marker that spans the local 𝑥𝑦- or 𝑥𝑧-plane, such that the 𝑧-axis is aligned with
the steering axis. Instead, one can make use of the fact that

𝑁𝑅𝐹 = 𝑁𝑅𝑅 𝑅𝑅𝐹 . (4.8)

As 𝑁𝑅𝑅,𝑡1 is already known, only
𝑅𝑅𝐹,𝑡1 needs to be found to obtain

𝑁𝑅𝐹,𝑡1 . Following the rotations from
the cans in series illustrated in Figure 3.10 (b),

𝑅𝑅𝐹 = 𝑅𝛼𝑅𝛽𝑅𝛾 . (4.9)

Because the construction of the bicycle inhibits a bank rotation 𝛽, 𝑅𝛽 is assumed to be equal to the
identity matrix. That leaves

𝑅𝑅𝐹 = 𝑅𝛼𝑅𝛾 , (4.10)

in which
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𝑅𝛼 = [
1 0 0
0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

] (4.11)

and

𝑅𝛾 = [
𝑐𝑜𝑠 𝛾 −𝑠𝑖𝑛 𝛾 0
𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾 0
0 0 1

] . (4.12)

The parameter 𝛼 in Equation 4.11 is the steer axis tilt, a constant inherent to the bicycle design, and
the steering angle 𝛾 in Equation 4.12 can be obtained from the marker positions. How this is done, is
explained with help of Figure 4.1. Here, the handlebar makes a steering angle 𝛾 about the steering
axis. The orientation of the front frame after rotation is depicted in orange, while the original position of
the handlebar is dashed blue. This rotation is in a plane parallel to the local 𝑥𝑦-plane.

γ

l

Figure 4.1: Visualization of the front frame making a steering angle 𝛾.

To eventually find the value of 𝛾𝑡1 , 𝑙𝑡1 is calculated first. This is done by projecting the vector from
marker 5 to 6 on 𝑁�̂�𝑦𝑅,𝑡1 and correcting for the steer axis tilt 𝛼 as follows:

𝑙𝑡1 =
𝑁�̂�𝑦𝑅,𝑡1 ⋅

𝑁𝑟𝑀6/𝑀5,𝑡1
𝑐𝑜𝑠 𝛼 . (4.13)

Subsequently, 𝛾𝑡1 can be calculated by

𝛾𝑡1 = 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑙, 𝑡1

∣ 𝑁𝑟𝑀6/𝑀5,𝑡1 ∣
). (4.14)

This sums up all the ingredients required to calculate 𝑅𝑅𝐹,𝑡1 .

Cyclist
For the cyclist coordinate system, the origin is chosen to lie at marker 12

𝑁𝑟𝑂𝐶 =
𝑁𝑟𝑀12. (4.15)

Similar to the rear frame’s 𝑁�̂�𝑥𝑅,𝑡1 ,
𝑁�̂�𝑥𝐶,𝑡1 can be calculated straightforwardly from markers 10 and 11,

by

𝑁�̂�𝑥𝐶,𝑡1 =
𝑁𝑟𝑀11/𝑀10,𝑡1
∣ 𝑁𝑟𝑀10/𝑀11,𝑡1 ∣

. (4.16)
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It should be noted that the safety harness, on which these markers are positioned, can move a little
with respect to the human body. To guarantee an orthogonal coordinate system despite these small
displacements, 𝑁�̂�𝑧𝐶,𝑡1 is calculated as the normalized distance from the projection of marker 12 on
𝑁�̂�𝑥𝐶,𝑡1 to marker 12. This is calculated as

𝑁𝑟𝑝𝑟𝑜𝑗�̂�𝑥𝐶,𝑡1 (𝑀12,𝑡1) =
𝑁�̂�𝑥𝐶,𝑡1 ⋅ (

𝑁𝑟𝑀12,𝑡1 −
𝑁𝑟𝑀10,𝑡1)

𝑁�̂�𝑥𝐶,𝑡1 +
𝑁𝑟𝑀10,𝑡1 , (4.17)

𝑁�̂�𝑧𝐶,𝑡1 =
𝑁𝑟𝑀12,𝑡1 −

𝑁𝑟𝑝𝑟𝑜𝑗�̂�𝑥𝐶,𝑡1 (𝑀12,𝑡1)

∣ 𝑁𝑟𝑀12,𝑡1 −
𝑁𝑟𝑝𝑟𝑜𝑗�̂�𝑥𝐶,𝑡1 (𝑀12,𝑡1) ∣

. (4.18)

Again, the last unit vector can be found by means of the cross product between the previous two:

𝑁�̂�𝑦𝐶,𝑡1 =
𝑁�̂�𝑧𝐶,𝑡1 ×

𝑁�̂�𝑥𝐶,𝑡1 . (4.19)

Equivalently to Equation 4.6,

𝑁𝑅𝐶,𝑡1 = [
𝑁�̂�𝑥𝐶,𝑡1

𝑁�̂�𝑦𝐶,𝑡1
𝑁�̂�𝑧𝐶,𝑡1] . (4.20)

4.1.2. Rotation matrices over time
To find how the rotation matrices evolve over time, a technique described in Challis (1994) is used.
With this technique, one can find a rotation matrix 𝐵𝑅𝐴, such that

𝐵𝑟𝑖 = 𝐵𝑅𝐴
𝐴𝑟𝑖 +

𝐵𝑟𝑂𝐴 , (4.21)

where

• 𝐵𝑟𝑖 is the position vector of point 𝑖 measured in frame 𝐵,

• 𝐴𝑟𝑖 is the position vector of point 𝑖 measured in frame 𝐴,

and

• 𝐵𝑟𝑂𝐴 is the position vector of the origin of frame 𝐴, expressed in frame 𝐵.

This requires a matrix C, calculated according to

𝐶 = 1
𝑛

𝑛

∑
𝑖=1
(𝐵𝑟𝑖 − 𝐵�̄�)(𝐴𝑟𝑖 − 𝐴�̄�), (4.22)

with 𝐵�̄� the average of the position vectors of points 1 to 𝑛, expressed in the 𝐵 frame (and 𝐴�̄�𝑖 similar, but
expressed in the 𝐴 frame). Subsequently, the singular value decomposition of this matrix is computed,

𝐶 = 𝑈𝑊𝑉𝑇 . (4.23)
𝐵𝑅𝐴 is then given by

𝐵𝑅𝐴 = 𝑉𝑇𝑈. (4.24)

For the proof of this method, the reader is referred to the original paper (Challis, 1994). The benefit
of this method over the method used for the initial rotation matrices, is that it can cope with some
markers being temporarily occluded, whereas the other method relies strongly on the visibility of specific
markers.

To apply this method to this situation, it is first necessary to define sets of markers that correspond
to each frame. This is specified in the Table 4.2
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Frame Markerset
𝑅 [3, 4, 7, 8, 9]
𝐹 [1, 2, 22, 5, 6]
𝐶 [10, 11, 12, 13, 14]

Table 4.2: Sets of markers associated with each coordinate system.

For each marker in a set, the local position vector can be found using the previously established
initial rotation matrix.

𝑋𝑟𝑖 = (𝑁𝑅𝑋,𝑡1)𝑇(
𝑁𝑟𝑖,𝑡1 −

𝑁𝑟𝑂𝑋 ,𝑡1), (4.25)

with 𝑋 standing for 𝑅, 𝐹 or 𝐶, depending on the frame that the markerset corresponds to. Assuming
that the bodies associated with the frames do not deform, 𝑋𝑟𝑖 remains the same over time, despite the
change in the other terms of Equation 4.25. With these position vectors and with position vectors 𝑁𝑟𝑖,𝑡𝑗 ,
as captured by the MoCap recordings for all visible markers in the set at a certain time 𝑡𝑗, 𝑁𝑅𝑋,𝑡𝑗 can
be computed following Equations 4.22 to 4.24.

4.1.3. Ground contact points
As mentioned in Section 3.3.1, the GCPs of the wheels can give information about the configuration
on the treadmill. With the Qualisys measurements and rotation matrices available, their locations can
be easily computed using the relative position vectors from the wheel centers to the GCPs:

𝑁𝑟𝑃/𝑀24,𝑡𝑗 =
𝑁𝑅𝑅,𝑡𝑗 [

0
0
−𝑟
] (4.26)

and

𝑁𝑟𝑄/𝑀21,𝑡𝑗 =
𝑁𝑅𝐹,𝑡𝑗 [

0
−𝑟𝑠𝑖𝑛(𝛼)
−𝑟𝑐𝑜𝑠(𝛼)

] , (4.27)

where P is the rear wheel GCP, Q the front wheel GCP, 𝑟 the wheel radius and 𝛼 the steer axis tilt. The
absolute location of the GCP’s is then given by

𝑁𝑟𝑃,𝑡𝑗 =
𝑁𝑟𝑀24,𝑡𝑗 +

𝑁𝑟𝑃/𝑀24,𝑡𝑗 (4.28)

and

𝑁𝑟𝑄,𝑡𝑗 =
𝑁𝑟𝑀21,𝑡𝑗 +

𝑁𝑟𝑄/𝑀21,𝑡𝑗 . (4.29)

It should be noted that this absolute position is relative to the origin of the inertial 𝑁 frame, of which the
location was not precisely known. Because the L-frame for the calibration was placed against a flange
on the left side of the treadmill, the 𝑥-coordinate at the farmost left side of the belt shall approximately
be zero, with an estimated uncertainty of 0.05m at maximum.
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4.2. Angular velocities
The angular velocities of interest can easily be obtained from the IMUs. The lean rate �̇� is given by the
rear frame IMU’s 𝑦-axis gyroscope data, multiplied by −1, and the steering rate �̇� by the front frame
IMU’s 𝑧-axis gyroscope data. The rear wheel rotation rate �̇�𝑅 and the cadence �̇�𝐶 follow from the rear
wheel IMU’s 𝑦- and the crank arm IMU’s 𝑧-axis gyroscope data.

For angles that have both position and velocity data available, additional processing can give further
insight in the correspondence of the two signals. This is the case for 𝜙 and 𝛾. Use can be made of the
fact that

𝜙 = ∫ �̇� 𝑑𝜙 + 𝑐1 (4.30)

and

𝛾 = ∫ �̇� 𝑑𝛾 + 𝑐2. (4.31)

Before this integration, the mean of each velocity signal is computed and subtracted to compensate
for sensor bias. Then, the integration can be done by means of a cumulative trapezoidal numerical
integration and the resulting signals are downsampled to the MoCap frame rate. Now the position data
obtained from two different methods is available and computing the cross correlation as a function of
the signal shift can provide insight in the similarity of the two signals and the lag between them. How-
ever, an angle of 0∘ here corresponds to the bicycle being in upright position for 𝜙 and steering straight
ahead for 𝛾. Slight inaccuracies in the measurements can thus result in one signal being positive while
the other is negative, which gives poor results for the cross correlation. Therefore, 90∘ is added to both
signals before computing the cross correlation, such that a value of 0∘ corresponds to the bicycle lying
flat on the ground for 𝜙 and a 90∘ steering angle for 𝛾.

4.3. Force data
The force data are acquired and saved by the controller. This contains both the desired and measured
forces for all motors. Performance measures will be defined and used to evaluate the controller perfor-
mance. In order to regard the effect of the forces on the other signals acquired by the Qualisys system,
they need to be synchronized. Both these topics will be discussed further in the subsections below.

4.3.1. Performance measures
How well the actual force signals track the reference will be evaluated for each signal in terms of rise
time and overshoot. Usually, these measures are expressed in terms of the output signal’s steady-state
value for step responses. However, because of the short duration of the perturbations, the output signal
does not settle to a steady state value in this experiment. Therefore, these measures are expressed
here in terms of the target value 𝐹𝑑𝑒𝑠. The custom definitions of the measures are shown below:

• The rise time is defined as the time after which the output signals first cross 80% of the target
value 𝐹𝑑𝑒𝑠 since the instant at which 𝐹𝑑𝑒𝑠 rises.

• The overshoot is defined as the extent that the output signals first peaks exceed the target value
𝐹𝑑𝑒𝑠, expressed as a percentage. In the case that the output signal’s first peak does not reach
the target value, the amount that the peak value is short of the target is reported as a negative
percentage.

Additionally, the resulting moment on the handlebar will be computed and integrated to obtain the
angular momentum. Assuming that the forces are applied in straight forward and backward directions,
the moment vector can be calculated as

𝑁𝑀𝑡𝑗 = (𝑟
𝑁�̂�𝑥𝐹,𝑡𝑗) × ((𝐹1,𝑡𝑗 + 𝐹3,𝑡𝑗 − 𝐹2,𝑡𝑗 − 𝐹4,𝑡𝑗)

𝑁�̂�𝑦𝑁), (4.32)

in which

• 𝑟 is half the distance between the forces’ points of attachment on the handlebar,
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• 𝑁�̂�𝑥𝐹,𝑡𝑗 is the first column of
𝑁𝑅𝐹,𝑡𝑗 ,

• 𝐹1,𝑡𝑗 to 𝐹4,𝑡𝑗 are the force measurements of module 1 to 4,

and

• 𝑁�̂�𝑦𝑁 is the 𝑦-directional unit vector in the inertial frame.

By computing the dot product of 𝑁𝑀𝑡𝑗 and
𝑁�̂�𝑧𝐹 the moment about the steering axis can be obtained.

Cumulative trapezoidal numerical integration over the time of the perturbation leads then to the angular
momentum 𝐻. This result can then be compared to the angular momentum resulting from the desired
force.

4.3.2. Synchronization
To synchronize the force signals saved by the controller with the data signals acquired on the Qualisys,
the synchronization signal can be used, through which the Qualisys receives information about the
perturbation system. All signal indices at which the difference between the according value and the
previous one is greater than 1V, are marked as occasions. Based on the pull duration and the signal
value before the pull, occasions that mark the start of a pull can be extracted. Removing those plus the
subsequent indices leaves the occasions that mark the activation and deactivation of the perturbation
system.

Having identified all the relevant occasions, the according times can be obtained. Adding the start
times of the perturbation system to the Qualisys recording datetime approximately gives the force files
datetime, by which they can be found.

4.4. Participant performance
For each of the perturbations, the reaction of the participant is reviewed and the outcome is labelled
as a recovery or a fall. This results thus in a binomial distribution in which the perturbation force can
be regarded as a predictor variable. Subsequently performing a linear regression on this data can give
insight in the probabilities to fall for a continuous perturbation force interval. This is done by fitting a
line of the form

𝑝(𝑥) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥) (4.33)

through the data, with 𝛽0 and 𝛽1 chosen such that the likelihood function is maximized.





5
Results

In the process of developing this experiment, 12 people have participated in various pilot tests. The
first part of these pilots was used to test individual aspects of the experiment and ask participants
their opinions, which have been taken into account in the eventual design choices. In later pilots, more
aspects came together to the eventual full experiment. All of the participants indicated that they felt safe
during these tests and were not injured in any way. The results presented in this chapter originate from
the final pilot experiment. Figure 5.1 shows pictures of the experimental setup, while the participant
was cycling on it. In the next sections an overview of all perturbations given during this pilot study is
presented, after which some examples of them are shown in more depth, regarding the perturbation
forces and the bicycle-rider system data. The final section discusses the correspondence between the
MoCap data and the IMU data.

(a) Front view

(b) Oblique view

Figure 5.1: Pictures from final pilot study.
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5.1. Participant performance
This section gives an overview of all perturbations that were delivered during the experiment and how
the cyclist handled them, which is shown in Figure 5.2 in the form of a bubble chart. On the 𝑥-axis, one
finds themagnitudes of the perturbations expressed in the desired pull force and the left 𝑦-axis indicates
whether the participant could recover or falls. The size of the bubbles indicates the number of pulls
with that magnitude-outcome combination. It can be seen that for perturbations smaller than 50N, the
participant was always able to recover and that perturbations of 70N and larger consistently resulted in
a fall. Between these values is a transient region, where the results are more variable. Larger bubbles,
indicating more pulls with the same magnitude, typically originate from the exploration phase of the
experiment whereas smaller bubbles generally come from the randomized phase. Additionally, the
dashed line, associated with the right 𝑦-axis, gives the fall probability based on the logistic regression
as explained in Section 4.4. The low probabilities to fall below forces of 50N and high probabilities
above 70N support the previous observations.

Figure 5.2: Participant performance as a function of the desired pull force. The size of the bubbles indicates the number of pulls
with a certain force and outcome. In total, this overview contains 48 perturbations. The dashed line shows the fall probability
based on the logistic regression. The 50% probability to fall is crossed at a desired pull force of 59.43N.

5.2. Controller performance
Whereas the overview in the previous section only shows the desired perturbation forces, this section
dives deeper into the forces that are actually delivered. By means of analysed examples, it is illus-
trated how well the forces measured in the ropes follow the reference forces. Figure 5.3 presents two
such examples for perturbations with desired pulling forces of 60N, in which (a) is a counter-clockwise
perturbation and (b) is a clockwise perturbation. Motors 1 and 3 need to pull to perform a counter-
clockwise perturbation and motors 2 and 4 for a clockwise perturbation. 𝐹𝑑𝑒𝑠,𝐶𝐶𝑊 is thus the reference
for 𝐹1 and 𝐹3 and 𝐹𝑑𝑒𝑠,𝐶𝑊 for 𝐹2 and 𝐹4. From here on, the motors associated with to the rising reference
shall be called ‘the perturbation motors’ and the motors that correspond to the other, low reference are
named ‘the tracking motors’. The time scales are adjusted such that 𝑡 = 0 s corresponds to the instant
at which the reference is starting a perturbation. All measurements below 0N are cut off, as they can
not physically be the result of a pulling rope. The rise times and overshoots as defined in Section 4.3.1
are given below each plot.

Both plots show that soon after 𝑡 = 0 s, the forces effectuated by the perturbation motors start to
rise, as intended. After this initial increase, they fluctuate around the desired force, without settling to
a steady state before the perturbation ends. Shortly after the reference drops, the perturbation forces
follow this signal downward with some bumps and undershoot.

Interestingly, the forces associated with the tracking motors also start to rise shortly after the per-
turbation forces at the beginning of the perturbation, although to a lesser extent. After these peaks,
they fall down to values cut off at zero, only to rise to high peaks after at least 0.6 s. Looking at the
according video fragments included in the additional digital material, reveals that this effect is the result
of the following course of events: when the perturbation motors start to pull on the rope, the handlebar
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rotates in the direction of their pulls, resulting in higher forces in the opposing ropes. The controller
corrects for the extreme forces in the tracking signals and the peaks decrease, but then the participant
starts to correct for the pull on the handlebar by steering to the other side and the ropes attached to
the tracking motors are hanging slack. The controller tries to adjust for this low force and the tracking
motors wind up the ropes. However, because of the slack in the rope, feedback lacks and new peaks
arise when the ropes suddenly come to tension.

(a) in counter-clockwise direction
𝐹1: rise time = 0.036 s; overshoot = 2.97%
𝐹3: rise time = 0.036 s; overshoot = 19.77%

(b) in clockwise direction
𝐹1: rise time = 0.032 s; overshoot = 7.64%
𝐹3: rise time = 0.032 s; overshoot = 11.49%

Figure 5.3: Measured forces around two perturbations of opposite directions, with desired forces of 60N.

All these forces contribute to the net torque on the handlebar. For the perturbations from Figure
5.3, this torque is approximated as described in Section 4.3.2 and visualized in Figure 5.4. The red line
shows the net torque from all measured forces and the blue line represents the torque when all forces
would be equal to their reference, but with equal steer rotation (since that data is otherwise unavail-
able). The area under the graph represents the angular momentum 𝐻. That of the reference is almost
rectangular-shaped, except for the small decline at the end of the perturbation, which is caused by the
rotating steer. The actual torque is less consistently shaped. At first, the torque does not directly reach
the value of the reference torque, because the opposing ropes deliver an opposite contribution. After
a dip, the value from the reference is exceeded. From the moment that the perturbation is supposed
to end, the actual torque keeps lingering for a while before it reaches a value of 0Nm. This greatly
extends the angular momentum of the pull, which is visualized by a substantial amount of red area after
𝑡 = 0.3 s. The opposite force peaks that were visible in Figure 5.3, result here in opposite torque peaks
as well. Their areas are considerable, yet not close to the area of the actual pull.

(a) in counter-clockwise direction (b) in clockwise direction

Figure 5.4: Net torque on handlebar based on the measured and reference forces for the perturbations from Figure 5.3.



28 5. Results

Figure 5.5 and Figure 5.6 show more plots like these, for pulls with references of 20N, 50N and
80N. There are three examples for each magnitude, chosen such that they represent a variety of pull
directions and outcomes, which will be revealed further in this chapter. From figures 5.3 and 5.5 it can
be seen that short rise times (<50ms) are achieved for all perturbations, even though they become
longer with higher perturbation magnitudes. The occurrence of an initial peak with an overshoot of −10
to 20%, followed by a dip and then some fluctuation above the reference force seems to be a general
pattern for all perturbations. The behaviour of the opposite forces described earlier also appears typical.

The torque plots from Figure 5.4 and Figure 5.6 all show the relatively low values at the beginning
and higher values at the end of the perturbation. It also becomes clear that the effect of the rotating
steer on the torque is more substantial for higher perturbations.

An overview of the angular momentums from all given examples is shown in Figure 5.7. This figure
shows a continuous static estimate, which is based on constant forces acting on a perpendicular arm
for 0.3 s, and discrete points resulting from the given examples. Those based on the reference forces
are called the dynamic estimates and those based on the measured forces the dynamic nonlinear
estimates. It appears from this figure that the dynamic nonlinear estimates are consistently higher than
the dynamic estimates. What also stands out, is that multiple pulls with the same reference magnitude
lead to very similar angular momentums.

(a) 𝐹𝑑𝑒𝑠 = 20N
𝐹1: rise time = 0.028 s; overshoot = 10.24%
𝐹3: rise time = 0.032 s; overshoot = 10.36%

(b) 𝐹𝑑𝑒𝑠 = 20N
𝐹2: rise time = 0.032 s; overshoot = 12.11%
𝐹4: rise time = 0.028 s; overshoot = 14.58%

(c) 𝐹𝑑𝑒𝑠 = 20N
𝐹1: rise time = 0.032 s; overshoot = −1.48%
𝐹3: rise time = 0.040 s; overshoot = 2.22%

(d) 𝐹𝑑𝑒𝑠 = 50N
𝐹1: rise time = 0.032 s; overshoot = 11.82%
𝐹3: rise time = 0.032 s; overshoot = 17.09%

(e) 𝐹𝑑𝑒𝑠 = 50N
𝐹1: rise time = 0.036 s; overshoot = 5.29%
𝐹3: rise time = 0.032 s; overshoot = 12.35%

(f) 𝐹𝑑𝑒𝑠 = 50N
𝐹2: rise time = 0.032 s; overshoot = 16.01%
𝐹4: rise time = 0.032 s; overshoot = 10.93%

(g) 𝐹𝑑𝑒𝑠 = 80N
𝐹1: rise time = 0.036 s; overshoot = 12.79%
𝐹3: rise time = 0.036 s; overshoot = 10.38%

(h) 𝐹𝑑𝑒𝑠 = 80N
𝐹2: rise time = 0.048 s; overshoot = −5.31%
𝐹4: rise time = 0.040 s; overshoot = 4.61%

(i) 𝐹𝑑𝑒𝑠 = 80N
𝐹2: rise time = 0.048 s; overshoot = −3.56%
𝐹4: rise time = 0.044 s; overshoot = 6.05%

Figure 5.5: Extension to Figure 5.3 with desired forces of (a-c) 20N, (d-f) 50N and (g-i) 80N. Three examples of varying
directions are shown for each case, with rise times and overshoots reported below each plot. For the legend, the reader is
referred to Figure 5.3.
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(a) 𝐹𝑑𝑒𝑠 = 20N

(b) 𝐹𝑑𝑒𝑠 = 50N

(c) 𝐹𝑑𝑒𝑠 = 80N

Figure 5.6: Extension to Figure 5.4 for the perturbations from Figure 5.5. For the legend, the reader is referred to Figure 5.4.

Figure 5.7: Angular momentum as obtained from static, dynamic and dynamic nonlinear estimates.

At this point it might be a logical next step to recreate Figure 5.2 with angular momentum on the
𝑥-axis, because this gives more insight in the actual delivered inputs to the system. However, one set
of force data was unfortunately not saved properly, so not all data to make this overview is available.
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5.3. Bicycle-rider data
In addition to the force data, the data capturing the bicycle-rider dynamics was also gathered. This
section presents that data during the time around the same perturbations from the previous section.

Figure 5.8 shows this data during 2 s before and 5 s after the starts of the perturbations from Figure
5.3. This data comprises the force references 𝐹𝑑𝑒𝑠,𝐶𝐶𝑊 and 𝐹𝑑𝑒𝑠,𝐶𝑊, the bicycle yaw and lean angles
𝜓 and 𝜙, the steering angle 𝛾, the upper body angles relative to the bicycle 𝜁, 𝜂 and 𝜃, the derivatives
�̇� and �̇�, the rear wheel rotation rate �̇�𝑅 and the cadence �̇�𝐶. The rear and front wheel GCP positions
are also shown, along with horizontal lines that represent the sides of the treadmill. These lines are
however approximations, because it is not exactly known where the 𝑥 = 0 line is located. Section 4.1.3
mentions an uncertainty up to 0.05m. In Figure 5.8 (a), the participant recovers from the perturbation
and in (b), the participant falls.

In the middle plot of Figure 5.8 (a), it can be seen that immediately after the start of the counter-
clockwise perturbation, the steering angle 𝛾 rises beyond the small oscillations that occur during steady
cycling to a positive value of approximately 13∘. Halfway during the perturbation, the steering angle
already comes back down and at the end of the perturbation, it shoots to a negative angle of even
higher magnitude, which is in turn corrected again. The bicycle’s yaw angle 𝜓 is strongly influenced
by the steering angle, showing similar behaviour with a small delay. The lean angle 𝜙 shows smaller
peaks of opposite sign in comparison with the steering angle, but with a similar frequency. Note that
a steer angle to the left is defined positive, whereas a lean angle to the left is defined negative. The
cyclist’s yaw angle 𝜁 and lean angle 𝜂 show most severe deviations within 1.5 s starting halfway the
perturbation. The latter moves in opposite direction of the bicycle lean. The cyclist’s pitch angle 𝜃 is little
affected by the perturbation. Velocity signals �̇� and �̇� in the lower plot look like plausible derivatives of
the corresponding position data, satisfying the prerequisite to have zero-crossings where the position
data peaks. The cadence and rear wheel rates �̇�𝑅 and �̇�𝑅 remain steady over time. Their negative sign
is just a consequence of the axes definitions. After a few seconds, all signal oscillations look similar to
those from before the perturbation.

The upper plot, which shows the rear and front wheel GCP positions, indicates a large deviation
of the front wheel to the right starting at 𝑡 ≈ 0.4 s. Around 𝑡 ≈ 1 s, it crosses the right border of the
treadmill belt, but inspecting the according video material shows that this doesn’t actually happen. This
thus indicates that the horizontal lines should have been placed at slightly higher values for 𝑥. The rear
wheel GCP shows a similar movement, but in a reduced form. Soon after the extreme deviation, both
GCPs move back to the middle of the belt.

When comparing the data from Figure 5.8 (a) to that shown in (b), which considers a clockwise
perturbation, one sees that all recorded angles move in opposite direction. Although opposite, the
bicycle’s yaw, lean and steering angles initially show peaks of comparable magnitudes, but after 1 s, it
becomes clear that these angles become bigger than in the previous case. Simultaneously, the upper
plot visualizes that the front wheel GCP comes very close to the indicated left edge of the treadmill belt.
The peak is not smooth, but seems cut off at the top. Shortly hereafter, the cadence and rear wheel
speed in the bottom plot come to a halt. These are indications of a fall. When inspecting the video,
it becomes clear that the cyclist steered off the treadmill in this case, after which the Rysen operator
stopped the treadmill. This again shows that the horizontal lines representing the belt edges are placed
at too low values for 𝑥.

More such data visualisations, corresponding to the previously shown perturbations of 20N, 50N
and 80N are contained in Figure 5.9. The amount of falls and recoveries is representative of the usual
outcomes for each perturbation force as discussed in Section 5.1.

Overall, higher perturbations lead to higher initial steering angles and thus higher chances to fall.
For perturbations with relatively low forces, the width of the treadmill is often the limiting factor that
keeps the cyclist from recovery. For high-force perturbations, the cyclist often falls before the bounds
of the treadmill are reached. A halt in the cadence shortly after the start of the perturbation clearly
indicates such an event. Clear, early signs of the cyclist riding off the treadmill are given away by the
front wheel GCP. In all cases, it seems to be determined within approximately 1 s whether the person
falls. For high-perturbation falls, the cadence signal often indicates the fall significantly earlier than this.
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(a) Recovery after counter-clockwise perturbation (b) Fall after clockwise perturbation

Figure 5.8: Combined datasets for the perturbations from Figure 5.3. The desired pull forces were 60N, with in (a) a counter-
clockwise pull which the rider could recover from and in (b) a clockwise pull which led to a fall. The upper plot shows the
𝑥-coordinates of the front and rear wheel GCPs together with the approximate locations of the belt edges, the middle plot shows
the bicycle’s yaw (𝜓), lean (𝜙) and steering (𝛾) angles and the cyclist’s yaw (𝜁), lean (𝜂) and pitch (𝜃) angles and the bottom plot
shows the angular rates of the bicycle’s lean (𝜙𝑑𝑜𝑡) and steering (𝛾𝑑𝑜𝑡) and the rear wheel rotation speed (𝜒𝑅,𝑑𝑜𝑡) and cadence
(𝜒𝐶,𝑑𝑜𝑡). Data shown as solid or dotted lines are associated with the left 𝑦-axes and data shown as dashed lines are associated
with the right 𝑦-axes
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(a) Recovery (b) Recovery (c) Recovery

(d) Fall (e) Recovery (f) Recovery
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(g) Fall (h) Fall (i) Fall

Figure 5.9: Extension to Figure 5.8, for the perturbations from Figure 5.5. It is indicated for each case whether the disturbance
resulted in a fall or recovery. For the legend, the reader is referred to Figure 5.8.
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5.4. Qualisys data correspondence
Having shown all relevant captured data, this section discusses the quality of the MoCap and IMU data
based on their similarity. Figure 5.10 shows the bicycle lean angle 𝜙 and steering angle 𝛾 as obtained
from the MoCap and from the integrated IMU signals for the first full Qualisys recording. From a first
view, both signals seem to have a comparable shape. It also appears that the integrated IMU signals
contain some random walk, which is a known problem intrinsic to IMU signals.

Figure 5.10: Recording 1 of the lean angle 𝜙 and steering angle 𝛾 from the MoCap and from the integrated IMU signals.

This Qualisys recording contains two runs of the perturbation system. Figure 5.11 zooms in on
these, to see the impact the random walk has within this time frame. The first run shown in (a) takes
approximately 140 s and the second run shown in (b) takes a little over 200 s. The first time instants
are corrected such that the signal pairs start at the same angles. within these relatively short durations,
the respective maximum differences are 3.28∘ and 2.35∘ for 𝜙 and 25.94∘ and 23.77∘ for 𝛾.

Normalized outcomes of a cross correlation analysis are shown in Table 5.1, along with the IMU lag
at which themaximum cross correlation is found, for all five Qualisys recordings. The latter is expressed
in the number of Qualisys frames, which are captured at 100Hz. The maximum cross correlations
are all close to 1, indicating good correspondence of the two signals. Most of these maximum cross
correlations were found at zero IMU lag, with exception of the first two steering angle recordings. Here
values of −1 and −2 are reported, implying that the IMU recordings lead up to 0.02 s.

Recording 1 Recording 2 Recording 3 Recording 4 Recording 5

𝜙 max x-cor 0.9999 1.0000 1.0000 0.9998 0.9995
IMU lag 0 0 0 0 0

𝛾 max x-cor 0.9936 0.9990 0.9993 0.9739 0.9926
IMU lag −1 −2 0 0 0

Table 5.1: Correspondence of MoCap data with integrated IMU data expressed as maximum cross correlation and the lag of the
IMU signals at which the maximum cross correlation occurs. The latter is expressed in the number of MoCap frames.

As another check of the quality of the MoCap data, the computed rear frame pitch 𝜒 and the steer
axis tilt 𝛼 and bank 𝛽 are analysed in Appendix C.
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(a) First perturbation system run.

(b) Second perturbation system run.

Figure 5.11: Zoomed in version of Figure 5.10, to inspect the recordings during the time frames that the perturbation system was
active.





6
Discussion

Having shown the most important results, this chapter proceeds with the discussion. This discussion
evaluates the eventual setup that was built during this project, with the goal to investigate cycling falls in
order to learn more about how a cyclist controls a bicycle in presence of perturbations and especially to
what extent they can be handled without falling. This review consists of two parts. The first part checks
the setup against the requirements from Chapter 2, with the help of the results presented in Chapter 5.
Subsequently, the second part discusses other findings that emerged during the pilot studies.

6.1. Adherence to requirements
This section discusses to what extent the requirements set in Chapter 2 are fulfilled. The requirements
were ordered in three sets, each concerning different parts of the experiment. The first set of require-
ments concerned cycling during the experiment. The setup must allow realistic cycling and effective
steering. Moreover, it must be possible to conduct the experiment at different cycling speeds and safety
of the cyclist must be assured (also during falls).

Regarding the realisticness, the following observations are made. During the experiment, an ordi-
nary bicycle is used without changing any of the usual mechanisms. This bicycle is placed freely on
a treadmill, which means that the cyclist is in charge of its balance and direction. The relative motion
between the wheels and the ground surface is similar as on a road and the rotation speeds of the front
and rear wheels are coupled because they are in contact with the same surface. All these arguments
are in favour of the hypothesis that cycling dynamics on a treadmill are realistic.

This theory is supported by the findings of the pilot studies: once the participants mastered the skill
of getting started, the cycling itself offered no additional problems. This condition is formulated as such
because getting started is for sure different on the treadmill than in the exterior. After all, on a treadmill
the ramp-up of the cycling speed is determined by the acceleration of the belt, whereas normally the
cyclist himself is in control of this speed. Additionally, the cyclist needs to get used to the contradiction
of external inputs: one is used to see a moving environment when cycling, which doesn’t happen on
a treadmill. However, participants of the pilot studies got accustomed to these differences quite fast.
Some people could even cycle successfully from the second try and the ‘slowest’ learners managed to
do so within 10 minutes.

Also the possible rider inputs must correspond to those in a normal situation. During the experiment,
the participants were free to lean, steer and change gears as they liked. Steering felt heavier than usual
because of the pretension in the ropes, which could be compared to cycling with a loaded basket on
the steering assembly. This effect could be reduced by attaching the ropes closer to the middle of the
handlebar. The participant’s feet were semi-constrained to the pedals by straps, from which they could
escape if they tried. Knee movements could still be performed with feet in the straps. The participant
was also constrained to the bicycle by means of a safety belt around the waist, attached to the saddle.
This makes that he is not able to stand, but the measure is necessary for safety reasons.

Regarding the space the cyclist has to manoeuvre, the belt width of the treadmill is compared to the
guidelines for road designs. The road design manual advices a minimal width of 1.25m for bike lanes,
in contrast to more spacious dimensions for separate bicycle paths (Fietsersbond, n.d.). The belt width
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of 1.20m comes quite close to this and is thus considered realistic.
The last thing comprised in the realisticness requirement, was that the cyclist is not prepared for

a coming perturbation. Such a naive mindset is hard to replicate in the experiment environment. For
this to be possible, the participant should be deceived as to the intention of the experiment, which is
ethically questionable, and even then, the element of surprise is lost after the first perturbation. For
these reasons, the participant was informed about the perturbations, but instructed to ride as relaxed
as possible.

The requirement of effective steering means that the mechanism of steering into the fall must be
executable. This clearly is the case when no perturbations are given and the results presented in
Section 5.3 show that even during perturbations, the cyclist is able to decrease the steering angle
before a perturbation ends. This is for example visible in Figure 5.8. This argues that the cyclist still
has the possibility to steer into the fall. The extent to which this is applicable of course depends on the
available space left on the belt.

The speed requirement states that it must be possible to select the cycling speeds such that exper-
iments can be conducted below, in and above the bicycle’s self-stable region. The treadmill that was
available for this experiment can facilitate speeds up to 18 kmh−1, which corresponds to 5ms−1. For
the benchmark bicycle from Meijaard et al. (2007), boundaries of the self-stable region lie at approx-
imately 4.3ms−1 and 6.0ms−1. In Schwab et al. (2012), the stability regions for the Whipple bicycle
model extended with a passive rider are discussed. It emerges that for the models that do show self-
stable behaviour, the boundaries lie higher than for the benchmark model. According to the theory, the
maximum treadmill speed is thus definitely too slow to represent speeds above the self-stable region,
and representation of the self-stable region itself is doubtful in some cases. In practice however, par-
ticipants reported that balancing felt easiest around speeds of 10-12 kmh−1. Cycling at slower speeds
on the one hand, e.g. 6 kmh−1, required more control effort. On the other hand, when cycling at higher
speeds of 18 kmh−1 the cyclist ended up off the belt more quickly after perturbations.

The extent to which the setup satisfies the safety requirement is hard to express with absolute
certainty. After all, accidents can never be ruled out entirely. However, during the development of the
setup, close contact was maintained with the Human Research Ethics Committee, whose approval is
required before experiments can take place. Under their supervision, risks have been evaluated and
prevention measures have been taken. This resulted in their approval being granted. Additionally,
none of the pilot study participants said to experience discomfort during the experiments and after the
pilot studies, the experiment was safely conducted with another 26 participants. It once happened that
one of the ropes hit backwards after a rupture of the breakaway cable. Although this is not dangerous
for the participant, it can form a risk for bystanders of the experiment.

The second set of requirements is aimed at the perturbations. These requirements considered
magnitude, responsiveness, randomness and controllability.

The magnitude requirement states that it should be possible to give perturbations of multiple mag-
nitudes and that at least perturbation of the highest magnitude should cause a fall. During the final
pilot study, falls started to occur from desired pull forces of 50N onwards. This was comparable to
performances of earlier participants. This pull magnitude is not even close to the maximum system
capabilities, which is reported at 200N.

The responsiveness requirement directly relates to the rise times of the perturbation force, which
should be in the order of magnitude of 50−100ms. In Section 5.2, it was shown that they generally
stay under 50ms and thus comply with the requirement.

According to the randomness requirement, perturbation direction, magnitude and activation instant
should be randomly determined. The Simulink application is supposed to directly take care of the
former two. For the direction this works well, but less so for the magnitude. It appears that the same
sequence of magnitudes repeats itself each time that the controller activates. For the activation instant
of the perturbation, the controller is supposed to give an advice. This can be visualized on the screen
and then the operator of the perturbation system can decide to give the perturbation. However, during
the pilot studies, the task of operator was found intensive enough without keeping an eye on this screen.
How well this works is thus not evaluated here. This could be done by applying a series of perturbation
of the same force, which reduces the effort for the operator, but the contribution is questionable if the
operator does not use it during an actual experiment.

The controllability requirement declares it essential that the perturbation system operator is in
charge of when perturbations are delivered and what maximum forces they convey. The operator
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determines when perturbations are applied by clicking a button on the user interface. By default, the
perturbation force is set on a low force, but the operator can change this through interaction with the
MATLAB Command Window. No problems are encountered with the working of these mechanisms,
but the actual forces can show some overshoot with regard to the desired force during the perturba-
tions. The angular momentums that result from the perturbation force are however consistently close
to the intended goal, as is shown in Figure 5.7. More severe is the occurrence of force peaks after
correcting slack in the ropes. The sudden tension is accompanied with high forces that the operator is
not in charge of. Figures 5.5 (d-f) for example show peaks after the intended perturbation that reach
higher forces than the desired perturbation force. This slack in the rope seems to be related to sud-
den movements of the handlebar, that the controller can not cope with accordingly. In order to control
this better, another control strategy together with additional sensors might be helpful. This suggestion
will be elaborated upon in Section 7.1. Fortunately, the stop button on the user interface immediately
stops the motors when pressed by the operator, for example when perturbations rise too high or other
undesired events occur.

The last set of requirements concerned the data collection. In order to capture the bicycle dynamics,
rider control behaviour and perturbation information, collection of relevant angles, angular velocities
and force profiles was required. These were the angles that indicate the bicycle’s lean and steering
and the cyclist’s yaw, lean and pitch, the angular velocities that represent the bicycle’s lean and steering
rates, the cadence and the rear wheel rotation rate and the desired and measured forces in the ropes.

Acquisition of the angles and angular velocities went very well. All this data from moments that the
participant was cycling is available. The quality of the measurements was checked by evaluating the
correspondence of the lean angle with the lean rate and the steering angle with the steering rate, as
shown in Section 5.4. This gave good results. The IMU signals did show random walk after integration,
which led to high deviations from the MoCap data over time. Even within single runs of the perturbation
system, the differences rise high, which makes it undesirable to let the IMU signals replace the MoCap
recordings. To evaluate the bicycle’s position on the treadmill belt, the GCPs of the wheels and the
bicycle’s yaw angle were also obtained.

Collecting the force signals went well for most of the cases. Unfortunately, there was one Speed-
goat run for which the data was not logged. This run was precisely the longest one, with the most
perturbations. The length of this run might be related to the failure to save this run. As runs get longer,
a point arrives at which the associated data does not fit into one file and a second logfile is created.
This has not occurred during the logging test phase, and it is thus not known whether this imposes
problems.

In addition to this data, parameters that describe the bicycle design are also required for the EoMs.
These have not been measured for the pilots, but the bicycle’s specifications sheet from the manufac-
turer is available and this can thus be used for follow-up experiments.

6.2. Other findings
Besides the findings directly related to the requirements, other results and observations emerged that
should be discussed as well.

First of all, the participant performance as shown in Figure 5.2, which presents the perturbation
outcomes and the estimated chances to fall for a continuous input interval, was not discussed in the
previous section. Nonetheless, this image presents one of the results of main interest that can be
obtained with this experiment. Acquiring such data for a broad group of participants allows us to say
what perturbations are easy to handle, unmanageable or variable in outcome. For the latter sort it is of
course interesting to dive deeper into the perturbations with different outcomes and learn what causes
this distinction. This data can also serve as a baseline to compare future bicycles with, to evaluate their
stability performance.

Despite the promising results, the setup does still have some teething troubles. These include
occasional crashes of the controller due to CPU overloads. Such a CPU overload indicates that the
processor didn’t finish all calculations corresponding to a certain time step in the allocated time. Not
only is it bothersome that this sometimes happens, but it also makes that no additional features can
be added to the application. That would make the application even heavier and CPU overloads would
occur more often. It might be worthwhile to investigate whether running the control loop at a lower
frequency significantly affects the feedback behaviour. If not, this could be a solution for the CPU
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overloads. Otherwise, a more powerful controller is required.
Another problem is caused by temporary defects in the motors. At random moments, they stop

working for a short time, leading to a slack rope. Inspecting the current sent out by the controller does
show a higher value from the moment this slack occurs, which increases further over time as a result
of the integral gain contribution. However, the motor does not seem to react on this input at first. When
the motor does react, after approximately 0.5 s, this leads to similar high peaks seen earlier after slack.

The next point considers the outcome classification. Whether the cyclist was able to recover or fell
was now determined by reviewing the recordings. Most of the times, the last perturbation before the
treadmill and perturbation system were stopped, resulted in a fall and the others not, but exceptions
sometimes apply. This naive classification would on the one hand miss a fall when the cyclist for
example manages to regain control of the bicycle after steering off and back on the belt or after making
a step on the ground with one foot. On the other side, a recovery could be faultily classified as a fall
if the operators misjudged the situation and stopped the devices too soon. It is however desirable to
be able to classify the perturbations without having to review all video material. In Section 5.3, it came
forward that a sudden halt in the cadence and cut-off peaks in the motion of the front GCP seem to
be good indicators of a fall. Hence, an outcome classification algorithm to automatically processes the
data could be based on these parameters.

The last point of discussion gets back to something briefly mentioned in the previous section. It was
noted that the advice on the activation instant was not used because the task of the perturbation system
operator was already intensive enough. Here, I’d like to comment on the workload of the executive staff.
The experiment requires at the moment three people for that. One person operates the perturbation
system, another one the Rysen and treadmill and the last person is in charge of the Qualisys data
acquisition.

The perturbation system operator activates and deactivates the application and delivers the pertur-
bations. Meanwhile, he needs to adjust the perturbation forces, keep an eye on the data monitored on
the screen to see if all force measurements are active and to check for CPU overloads and the loca-
tion of the cyclist on the treadmill needs to be checked before delivering the pulls for safety reasons.
During the final pilot study it was also tried to immediately register the outcome of the perturbation in a
separate document, but the many responsibilities resulted in errors in this documentation and in diffi-
culties to keep track of the experiment protocol. I would thus advice against noting down the outcome
immediately and focus more on retrieving this in hindsight from the data by a classifier as mentioned
before.

The operator of the Rysen and treadmill brings belt to the desired speed at the start of a run. After
reaching this speed, he needs to stay alert on falls. If a fall occurs, the Rysen needs to be frozen
and the treadmill needs to be stopped. This task could be made less intensive if freezing the Rysen
simultaneously caused the treadmill to stop and if the Rysen’s automatic fall detection, which is now
only trained on walking, would be trained on cycling as well.

The person in charge of the Qualisys data acquisition starts the recordings, checks the amount of
time left until they end and occasionally checks the IMU signals. With the currently available computer,
recordings can only have a maximum duration of ten minutes. In the near future, a better computer
is coming to the lab, which should allow unlimited recording times. This would make it possible to
combine this task with operation of the Rysen and treadmill.
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Conclusion

This thesis described the design of a new experimental setup which makes it possible to conduct
fall experiments with cyclists. During this experiment, a cyclist rides straight ahead at one of various
possible prescribed speeds while controlled perturbations can be delivered to the handlebar, whereby
relevant data to capture the bicycle-rider system is measured and safety is provided by an active safety
harness.

The setting allows for realistic cycling dynamics, although the cyclist needs to get used to the man-
ner of starting and the lack of visual feedback, and the tracking forces did have some influence on the
steering. During the experiment, steering was effective, and no issues occurred regarding the partic-
ipant safety. The available cycling speeds were limited by the capabilities of the available treadmill,
which doesn’t reach the upper limit of the self-stable region of 6ms−1. However, according to the
experiment participants, balancing the bicycle was easiest around 3ms−1. The perturbations demon-
strated rise times that satisfied the responsiveness requirement and were of sufficient magnitude to
cause falls. The perturbation direction was determined randomly and the operator of the perturbation
device had full control of when perturbations were delivered. The reference forces could be followed
to a certain extent, unless when slack occurred, which was consistently followed by undesirable force
peaks. For repeating perturbations, the imposed forces do however lead to very consistent angular
momentums, close to the estimates. The measurements of the bicycle dynamics and rider control
were consistent and reliable. The measurements of the perturbations went well in all cases but one,
and relevant information is also available through the synchronization signal.

Overall, the development of the setup is considered successful, despite the large number of differ-
ent systems that had to work together. With this experiment, we are able to expose the chances that
a cyclist falls after perturbations with variable input forces and the data required to regard the corre-
sponding EoMs of the bicycle-rider system can be measured successfully. This is valuable to validate
rider models and it can serve as a baseline to compare stability performance of future bicycles with.
All this suggests that a repeatable experiment has been created that enables a breakthrough in cycling
research.

7.1. Recommendations
The experiment could be improved by looking into the problems that are currently present. This includes
CPU overloads, which could be solved by running the control loop at lower rates or by replacing the
current controller by a more powerful one. For the motor defects, I would recommend to contact the
manufacturer to sort out what causes the temporary deactivations. Lastly, the controller might be able
to track the desired forces better when another control strategy might be used. For the current PI
feedback, the system is decoupled to create multiple single-input single-output (SISO) systems. There
is however a correlation between the forces in the different ropes, which can not be taken account in
this way. A controller that can handle multiple-input multiple output (MIMO) systems, might thus be
able to perform better. The lack of force feedback in some of the ropes might then be compensated for
when the length of the ropes could be measured, for example with encoders.

In order to decrease the workload of the experiment operators, it would be beneficial if the Rysen’s
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fall-detection algorithm was trained to react on cycling falls and was coupled to a deactivation of the
treadmill. Another step forward could be obtained if the computer connected to the Qualisys data
acquisition is replaced by one that can handle recordings with a duration of the full experiment.

The last point to focus on is the development of an automatic classifier to detect falls or recoveries.
For this, I would recommend using at least the cadence measurements and coordinates of the front
wheel GCP.



A
Comparison with BumpEm

Since the bump’em system is designed to be a modular system with multiple configuration possibilities,
the best suited option for the application was to be chosen. There is a configuration for open-loop and
for closed-loop control. The main difference is that a force sensor is included for the closed-loop version
and excluded for the open-loop version. For this application, it was chosen to include the force sensor
to allow for closed-loop control, such that higher rise times and better force tracking performance can
be obtained. It is also possible to include an encoder for state control, but this was not considered
necessary here.

Besides these anticipated design options, other changes with respect to the original design have
been made as well. First of all, various dimensions of the custom parts have been adapted to metric
sizes. Furthermore, the amount of power supplies has been reduced in order to cut on expenses. This
is done by sharing one across two modules that do not pull simultaneously, instead of providing each
module with an own power supply. Moreover, off-the-shelf S-type load cells were used as force sensor
instead of the custom-made aluminium dogbones with strain gauges. The latter were preferred, but
manufacturing was unsuccessful in the available time. Another point to consider is that the feedback
control initially used a proportional and derivative gain, while we opted for proportional and integral gain.
Although the damping effect that the derivative gain can produce is desirable, it also reacts strongly
on measurement noise and it is directly related to motion jerk. Therefore, this is not used. Integral
feedback is used, because it can adjust for persistent errors.
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B
Control applications

This appendix explains more about the applications created for the control. Section B.1 covers the
design of the user interface and Section B.2 shows the content of the Simulink model.

B.1. User interface
The user interface to communicate with the controller during the experiments was created in MATLAB
App Designer. The code at the backend of the buttons of the interface shown in Figure 3.7 is shown in
the listing below.

Listing B.1: App code view behind user interface buttons

14 % Button pushed func t i on : S ta r tBu t ton
15 func t i on StartButtonPushed ( app , event )
16 params = eva l i n ( ’ base ’ , ’ params ’ ) ;
17 tg = params . tg ;
18 F_min = params . F_min ;
19 F_max = params .F_max ;
20
21 % set emergency but ton and c l i c k de tec t i on to 0
22 tg . setparam ( ’ Emergency_constant ’ , ’ Value ’ ,0 )
23 tg . setparam ( ’ I n_onc l i c k / C l i c k_de tec t i on ’ , ’ Value ’ ,0 )
24 % set minimal and maximal p u l l f o rce to i n i t i a l values
25 tg . setparam ( ’ I n_onc l i c k / F_min ’ , ’ Value ’ , F_min )
26 tg . setparam ( ’ I n_onc l i c k / F_max ’ , ’ Value ’ ,F_max)
27 de le te ( t ime r f i n d )
28
29 date = datet ime ;
30
31 tg . s t a r t ;
32
33 date . Format = ’yyyyMMdd_HHmmss ’ ;
34 da te_s t r = char ( date ) ;
35 ass ign in ( ’ base ’ , ’ da te_s t r ’ , da te_s t r )
36 end
37
38 % Button pushed func t i on : StopButton
39 func t i on StopButtonPushed ( app , event )
40 params = eva l i n ( ’ base ’ , ’ params ’ ) ;
41 tg = params . tg ;
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42 tg . setparam ( ’ Emergency_constant ’ , ’ Value ’ ,1 )
43
44 % Make a d i r e c t o r y f o r the l a s t run and go there
45 da te_s t r = eva l i n ( ’ base ’ , ’ da te_s t r ’ ) ;
46 cd ’C : \ Users \ SID�TUDelf t \ Documents \TU�De l f t \ MScThesis \ Matlab \

BumpEmulation \ LogData ’
47 mkdir ( da te_s t r )
48 cd ( da te_s t r )
49
50 % Copy . dat f i l e s from Speedgoat to PC
51 f =SimulinkRealTime . openFTP ( tg ) ;
52 mget ( f , ’ F_001 . dat ’ ) ;
53 mget ( f , ’C_001 . dat ’ ) ;
54 c lose ( f )
55
56 % Open . dat f i l e s from Speedgoat
57 fsys = SimulinkRealTime . f i l eSys tem ( tg ) ;
58 f i l e _ i d _ f o r c e = fopen ( fsys , ’ F_001 . dat ’ ) ;
59 f i l e _ i d _ c u r r e n t = fopen ( fsys , ’C_001 . dat ’ ) ;
60 F_data = f read ( fsys , f i l e _ i d _ f o r c e ) ;
61 C_data = f read ( fsys , f i l e _ i d _ c u r r e n t ) ;
62 f c l ose ( fsys , f i l e _ i d _ f o r c e ) ;
63 f c l ose ( fsys , f i l e _ i d _ c u r r e n t ) ;
64
65 Forces = SimulinkRealTime . u t i l s . getFi leScopeData ( F_data ) ;
66 Currents = SimulinkRealTime . u t i l s . getFi leScopeData ( C_data ) ;
67
68 % Save opened f i l e s to PC
69 name_str_forces = s t r c a t ( ’ Forces_ ’ , da te_s t r ) ;
70 name_str_currents = s t r c a t ( ’ Currents_ ’ , da te_s t r ) ;
71 ass ign in ( ’ base ’ , name_str_forces , Forces )
72 ass ign in ( ’ base ’ , name_str_currents , Currents )
73 save ( name_str_forces , ’ Forces ’ )
74 save ( name_str_currents , ’ Currents ’ )
75
76 % p l o t opened f i l e s
77 f i g u r e
78 subp lo t (2 ,2 ,1 )
79 hold on
80 g r i d on
81 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 3 ) , ’ Color ’ , [ 0 .623 , 0.698 ,

0 .874 ] )
82 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 5 ) , ’ Color ’ , [ 0 .666 , 0.874 ,

0 .623 ] )
83 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 1 ) , ’ Color ’ , [ 0 .823 , 0.254 ,

0 .254 ] )
84 y l abe l ( ’CCW�Force�(N) ’ )
85 legend ( ’measured�1 ’ , ’measured�3 ’ , ’ des i red�13 ’ )
86 y l im ( [ 0 100] )
87 t i t l e ( da te_s t r , ’ I n t e r p r e t e r ’ , ’ none ’ )
88
89 subp lo t (2 ,2 ,2 )
90 hold on
91 g r i d on
92 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 4 ) , ’ Color ’ , [ 0 .623 , 0.698 ,

0 .874 ] )
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93 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 6 ) , ’ Color ’ , [ 0 .666 , 0.874 ,
0 .623 ] )

94 p l o t ( Forces . data ( : , 7 ) , Forces . data ( : , 2 ) , ’ Color ’ , [ 0 .823 , 0.254 ,
0 .254 ] )

95 y l abe l ( ’CW�Force�(N) ’ )
96 legend ( ’measured�2 ’ , ’measured�4 ’ , ’ des i red�24 ’ )
97 y l im ( [ 0 100] )
98
99 subp lo t (2 ,2 ,3 )
100 hold on
101 g r i d on
102 p l o t ( Currents . data ( : , 5 ) , Currents . data ( : , 1 ) , ’ Color ’ , [ 0 .623 , 0.698 ,

0 .874 ] )
103 p l o t ( Currents . data ( : , 5 ) , Currents . data ( : , 3 ) , ’ Color ’ , [ 0 .666 , 0.874 ,

0 .623 ] )
104 x l abe l ( ’ Time ( s ) ’ )
105 y l abe l ( ’CCW�Currents�(A) ’ )
106 legend ( ’ I�to�M1 ’ , ’ I�to�M3 ’ )
107 y l im ( [ 0 10 ] )
108
109 subp lo t (2 ,2 ,4 )
110 hold on
111 g r i d on
112 p l o t ( Currents . data ( : , 5 ) , Currents . data ( : , 2 ) , ’ Color ’ , [ 0 .623 , 0.698 ,

0 .874 ] )
113 p l o t ( Currents . data ( : , 5 ) , Currents . data ( : , 4 ) , ’ Color ’ , [ 0 .666 , 0.874 ,

0 .623 ] )
114 x l abe l ( ’ Time�( s ) ’ )
115 y l abe l ( ’CW�Currents�(A) ’ )
116 legend ( ’ I�to�M2 ’ , ’ I�to�M4 ’ )
117 y l im ( [ 0 10 ] )
118
119 save f ig ( da te_s t r )
120
121 cd . . / . .
122 end
123
124 % Button pushed func t i on : C l i c k t o pu l l Bu t t o n
125 func t i on Cl i ck topu l lBu t tonPushed ( app , event )
126 i f isempty ( t ime r f i n d ( ’ Tag ’ , ’ C l i c k ’ ) )
127 params = eva l i n ( ’ base ’ , ’ params ’ ) ;
128 tg = params . tg ;
129
130 t_min = params . t_min ;
131 t_max = params . t_max ;
132 t_nex t = t_min + rand i ( t_max−t_min ) ;
133
134 D i rec t i on_s ign = 2* rand i ( [ 0 1 ] ) −1;
135
136 t = t imer ( ’ Tag ’ , ’ C l i c k ’ , ’ S ta r tDe lay ’ , t_min ) ;
137 t . Star tFcn = @(~ ,~ ) tg . setparam ( ’ I n_onc l i c k / C l i c k_de tec t i on ’ , ’ Value

’ ,1 ) ;
138 t . TimerFcn = @(~ ,~ ) tg . setparam ( ’ I n_onc l i c k / C l i c k_de tec t i on ’ , ’ Value

’ ,0 ) ;
139 t . StopFcn = @(~ ,~ ) de le te ( t ) ;
140



48 B. Control applications

141 tg . setparam ( ’ I n_onc l i c k / t_nex t ’ , ’ Value ’ , t_nex t ) ;
142 tg . setparam ( ’ D i r ec t i on_s ign ’ , ’ Gain ’ , D i r ec t i on_s ign ) ;
143
144 s t a r t ( t )
145 end
146 end
147 end

B.2. Simulink model
The block diagrams that make up the Simulink Real-Time model are shown in the figures below. Figure
B.1 shows the main block diagram and Figures B.2 to B.5 represent the subsystems.

The code shown in Listing B.2 is the initialization function that is executed at the start of the compi-
lation of the model. Listing B.3 shows the content of the ClickToPullFcn block in Figure B.2.

Figure B.1: Main scheme
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Figure B.2: In_onclick subsystem

Figure B.3: Unit1 subsystem
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Figure B.4: PIControl subsystem

Figure B.5: IO133 subsystem
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Listing B.2: Callback InitFcn

1 c lea r a l l ;
2
3 %% Parameters
4
5 % ta r ge t computer
6 tg = s l r t ;
7
8 % motor parameters
9 rc = 19.05e−3; % rea l drum rad ius (m)
10 kt_nom = 0.231; % nominal motor torque const (Nm/A)
11 kt_exp = 2.3* kt_nom ; % exper imenta l motor torque const (Nm/A)
12 k t_ i nv = 1/ kt_exp ; % inverse o f exper imenta l motor torque f o r gain (A /

Nm)
13 I _ s t a l l = 56 .9 ; % s t a l l cu r ren t (A)
14
15 % fo r each motor (1 ,2 ,3 ,4 )
16 % r a d i i
17 rc1 = rc ;
18 rc2 = rc ;
19 rc3 = rc ;
20 rc4 = rc ;
21 % inverse motor cu r ren ts
22 k t_ inv1 = k t_ i nv *1 .15 ;
23 k t_ inv2 = k t_ i nv ;
24 k t_ inv3 = k t_ i nv ;
25 k t_ inv4 = k t_ i nv ;
26 % sa tu r a t i on cu r ren ts
27 I_sa t1 = 10;
28 I_sa t2 = 10;
29 I_sa t3 = 10;
30 I_sa t4 = 10;
31
32 % s imu la t i on parameters
33 t _ t o t a l = 60; % t o t a l s imu la t i on t ime ( s )
34 t_samp = 0.001; % sampling t ime ( s )
35 F_max = 20; % max pu l l f o rce (N)
36 F_min = 200; % min p u l l f o rce (N)
37 F_t rack ing = 5; % des i red t r a ck i ng fo rce (N)
38 t _ p u l l = 0 . 3 ; % pu l l du ra t i on ( s )
39 t_min = round ( t _ p u l l +3) ; % minimum time between two subsequent p u l l s ( s )
40 t_max = 30; % maximum time between two subsequent p u l l s ( s )
41
42 date = datet ime ;
43 date . Format = ’yyyyMMdd_HHmmSS ’ ;
44 da te_s t r = char ( date ) ;
45
46 % parameter s t r u c t
47 params . tg = tg ;
48 params . F_min = F_min ;
49 params .F_max = F_max ;
50 params . F_t rack ing = F_t rack ing ;
51 params . t_min = t_min ;
52 params . t_max = t_max ;
53
54 %% i n i t i a l i z i n g
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55 % set emergency but ton to 0
56 set_param ( ’ TestForceSensor1234Motor1234 / Emergency_constant ’ , ’ Value ’ ,

num2str ( 0 ) ) ;
57
58 % set c l i c k de tec t i on to 0
59 set_param ( ’ TestForceSensor1234Motor1234 / I n_onc l i c k / C l i c k_de tec t i on ’ , ’ Value

’ , num2str ( 0 ) ) ;
60
61 % set min p u l l f o rce to i n i t i a l value
62 set_param ( ’ TestForceSensor1234Motor1234 / I n_onc l i c k / F_min ’ , ’ Value ’ , num2str (

F_min ) ) ;
63
64 % set max p u l l f o rce to i n i t i a l value
65 set_param ( ’ TestForceSensor1234Motor1234 / I n_onc l i c k / F_max ’ , ’ Value ’ , num2str (

F_max) ) ;
66
67 % ca l cu l a t e a random t_nex t and set i t
68 t_nex t = t_min + rand i ( t_max−t_min ) ;
69 set_param ( ’ TestForceSensor1234Motor1234 / I n_onc l i c k / t_nex t ’ , ’ Value ’ , num2str

( t_nex t ) ) ;
70
71 % de le te a l l t ime r f unc t i ons
72 de le te ( t ime r f i n d ) ;

Listing B.3: ClickToPullFcn

1 func t i on [ F_des_oncl ick , pu l l_sync , t _se t ] = Cl ickToPul lFcn ( F_des_prev ,
t _ pu l l , F_min , F_max , C l ick , Cl ick_prev , t_now , t _ r e l )

2
3 % i n i t i a l i z i n g t ’ s as type double
4 t1 = 0; t2 = 0; t _se t = 0 ;
5
6 % ass ig ing values from d i g i t a l c lock
7 t1 = t_now ; t2 = t _ r e l ;
8
9 i f C l i c k > Cl ick_prev
10 i f F_max > F_min
11 F_des_oncl ick = F_min + rand i (F_max−F_min ) ;
12 e lse
13 F_des_oncl ick = F_max ;
14 end
15 t_se t = t1 ;
16 pu l l_sync = F_des_oncl ick / 10 ;
17 e l s e i f ( C l i c k > 0 ) && ( t2 < t _ p u l l )
18 F_des_oncl ick = F_des_prev ;
19 t_se t = t1 − t2 ;
20 pu l l_sync = F_des_oncl ick / 10 ;
21 else
22 F_des_oncl ick = 0;
23 t_se t = t1 − t2 ;
24 pu l l_sync = 0;
25 end
26 end



C
Constant angle evaluation

Angles that are part of the cans-in-series rotations from Figure 3.10, but are not of direct interest, can
be assessed as sanity checks. These angles are the pitch of the rear frame 𝜒, which is determined to
be 0∘ by the wheel GCPs during cycling, and the front frame tilt 𝛼 and its lean 𝛽, which are defined by
the bicycle design to be 21.5∘ and 0∘ respectively.

This analysis is visualized with the help of Figure C.1. The plots on the left show the results for
the angles over all experiment time concatenated, together with the theoretical value. The plots on the
right show the box plots of this data. Table C.1 shows the according values for the means, standard
deviations (STD), medians and interquartile ranges (IQR). It stands out that the mean and median
values are very close to the theoretical values. The median for 𝜒 deviates most from it, with 0.4281∘.
The standard deviations are all below 2.5∘ and that of 𝜒 is even an order of magnitude lower. The
interquartile ranges are all below 0.5∘.

In Figure C.1 (a) and (b), two large deviations from the theoretical values are shown at the same
times. Inspection of the video material at these instants reveals that markers had fallen to the ground
here. This contributes to the higher standard deviations for 𝛼 and 𝛽. The smaller, but more frequent
peaks for 𝜒 are often the result of the subject positioning the bicycle back to the middle of the belt after
a fall.

𝛼 𝛽 𝜒
Mean 21.3∘ 0.200∘ 0.363∘
STD 2.41∘ 1.75∘ 0.348∘
Median 21.5∘ 0.246∘ 0.428∘
IQR 0.347∘ 0.459∘ 0.201∘

Table C.1: Statistic quantities for the front frame tilt 𝛼, the front frame bank 𝛽 and the rear frame pitch 𝜒.

53
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(a) 𝛼 over time (b) Box plot 𝛼

(c) 𝛽 over time (d) Box plot 𝛽

(e) 𝜒 over time (f) Box plot 𝜒

Figure C.1: Analysis of front frame tilt 𝛼, front frame bank 𝛽 and rear frame pitch 𝜒, which are supposed to be constant over
time. The left plots show the angles over time, together with the theoretical value. The right plots show the corresponding box
plots. The red line in each box indicates the median and the box edges represent the first (Q1) and third (Q3) quartiles. The
whiskers visualize Q1-1.5*IQR and Q3+1.5*IQR. Red plus signs beyond the whiskers represent outliers.
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