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A B S T R A C T

The recovery of C, N, and P elements by sludge biorefinery potentially reduces operation costs and increases the 
extra benefits. Herein, we analyzed the elemental stoichiometry of C, N, and P and functional microbiome 
involved in enzymatic anaerobic fermentation. Enzymatic hydrolysis was observed to increase the release of C, N, 
and P into the sludge supernatants by 21.8 %–26.3 %. Metatranscriptome analysis indicated that enzymatic 
pretreatment enhanced the metabolism of the organic carbon degradation, ammonium conversion, and P solu
bilization in subsequent fermentation. Specifically, enzymatic pretreatment enhanced endogenous carbon hy
drolase activity by 48.4 %–72.7 % and upregulated intra-C metabolic pathways, such as glycolysis and pyruvate 
metabolism. Ammonium transport and conversion were significantly increased by 4–6 fold, stimulating the 
synthesis of glutamine and endogenous amino acids. Additionally, enzymatic hydrolysis promoted phosphatase 
secretion and enhanced bacterial P uptake. These effects improved the recovery of C, N, and P as dentification 
carbon source and struvite by 13.7 %–41.8 % and the dry sludge production was reduced by 24.3 %–28.1 %. Life 
cycle assessment (LCA) indicated the shift of CO2 emissions from net positive to net negative levels as compared 
to the conventional A2/O process. This study offers valuable insights into the redistribution and metabolism of 
various elements involved in the enzymatic anaerobic fermentation, and proposes the potential strategy to re
covery C, N, and P from sewage via sludge biorefinery.

1. Introduction

In wastewater treatment plants (WWTPs), the generation of sub
stantial waste-activated sludge (WAS) has been viewed as a significant 
problem, and currently the resource-rich features of WAS are acknowl
edged by a green-oriented and zero-pollution society (Faragò et al., 
2022; Munir et al., 2018; Zeng et al., 2022). WAS has been recognized as 
important source materials to produce renewable energy, e.g., 
hydrogen, methane, and biodiesel (Fang et al., 2020; Kwon et al., 2012; 
Manara and Zabaniotou, 2012), valuable chemicals such as poly
hydroxyalkanoate (PHA) (Frison et al., 2015; Pei et al., 2022), single-cell 
protein (SCPs) (Gu et al., 2024; Wu et al., 2021), and phosphate 
(Ribarova et al., 2017; Shashvatt et al., 2022), Concurrently, the United 
Nations’ Sustainable Development Goals (SDGs) emphasize 

comprehensive and integrated resource recovery to enhance global 
resource cycling and to achieve sustainable development (United Na
tions, 2015; Trimmer et al., 2019).

Sludge biorefineries have been proposed to advance the recovery of 
multiple valuable resources, rather than focusing on single elements 
(Crutchik et al., 2018; Fang et al., 2020; Zhou et al., 2019). For example, 
WAS fermentation has been reported to achieve the simultaneous re
covery of ammonia nitrogen (NH4

+-N) and volatile fatty acids (VFAs) 
(Zhang and Chen, 2009). Ethylenediaminetetraacetic acid-enhanced 
anaerobic digestion has been reported to not only improve sludge 
methanogenesis but also mobilize up to 80.4 % of the total phosphorus 
(P), thereby enabling dual resource recovery (Zou et al., 2025b). 
Compared with conventional biorefinery schemes, integrated 
multi-resource recovery strategies could greatly improve the potential 
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and expand the application scope of resource utilization (Luo et al., 
2024; Messa et al., 2025), and this perspective offers significant poten
tial to integrate carbon reduction with holistic valorization in WWTPs 
within the framework of sustainable development. To the best of our 
knowledge, despite the recognition of this perspective, research on in
tegrated multi-resource recovery from sludge is relatively scarce and 
faces the problems of limited recovery efficiency and the high applica
tion barrier that erode net benefit. Developing practical and highly 
efficient recovery strategies is a key area that warrants further 
investigation.

Recently, various strategies have been explored to enhance sludge 
biorefinery, including thermal, alkaline, ultrasonic, Fenton, and com
bined pretreatments (Elalami et al., 2019; Kor-Bicakci and Eskicioglu, 
2019). However, their large-scale application is often constrained by the 
high energy and chemical costs, undesirable side reactions, secondary 
pollution, and substantial alterations to sludge chemical characteristics, 
which might hinder downstream bioconversion and the extraction of 
various resources (Balasundaram et al., 2022; Gonzalez et al., 2018). In 
contrast, enzymatic pretreatment has been reported to mildly condition 
sludge and enhance anaerobic fermentation with minimal energy re
quirements, owing to its superior catalytic efficiency (Odnell et al., 
2016; Zou et al., 2025a). It was reported that lysozyme efficiently dis
rupted the sludge cells and enhanced carbon recovery by 538 %–621 % 
(Pang et al., 2024). The immobilized hydrolases and laccase was 
observed to improve the growth of key anaerobes involved in VFAs 
production (Wan et al., 2022). As polysaccharides and proteins consti
tute over 60 % of the dry sludge (Neyens and Baeyens, 2003), amylases 
and proteases have also been investigated for optimizing sludge condi
tioning and biorefinery. For example, protease has been reported to 
significantly enhance organic carbon release in sludge and increase 
methane yield by 86.1 % (Jiang et al., 2024). In our previous study, 
hydrolysis with amylase and protease improved the sludge solid–liquid 
interface, thereby facilitating the growth and enrichment of fermenta
tive microorganisms (Song et al., 2024). Compared with other enzymes, 
proteases and amylases could be produced through biomass conversion 
to offer lower cost-effectiveness (Contesini et al., 2018; Diamantopoulou 
et al., 2025), and this further expands their application potential in 
sludge treatment. Typically, enzymatic hydrolysis serves as a gating 
reaction that could drive multi-elements cycling and release within a 
microecosystem (Han et al., 2024; Zhao et al., 2024). This effect is ex
pected to further affect the recovery potential of resource elements such 
as carbon (C), nitrogen (N), and P in sludge, and their fates during 
anaerobic fermentation. Unfortunately, the effects of enzymatic anaer
obic fermentation on the redistribution and co-recovery of these key 
elements in sludge are far to be well illustrated, and this restricts the 
optimization of enzymatic anaerobic fermentation for enhancing envi
ronmental benefits with regard to multi-resource recovery and CO₂ 
emission reduction.

Based on these considerations, this study proposes the enzymatic 
anaerobic fermentation process to recovery C, N, and P from WAS, and 
aims to: (1) quantify their redistribution behaviors upon enzymatic 
pretreatment and anaerobic fermentation by elemental stoichiometric 
analysis; (2) elucidate the functional microbial communities and meta
bolic pathways involved in fermentation by metatranscriptomic 
sequencing and metabolic reconstruction; (3) illustrate the recovery 
potential of C, N, and P in terms of dentification carbon source and 
struvite, and evaluate the environmental benefits of sludge biorefinery 
by life cycle assessment (LCA). This study provides insights into the 
redistribution and cycling of C, N, and P elements involved in enzymatic 
anaerobic fermentation, and potentially advances the integrated re
covery of multiple valuable resources from WAS.

2. Material and methods

2.1. Sludge samples and enzymatic anaerobic fermentation experiments

The WAS and inoculum used in this study were collected from a 
secondary sedimentation tank and the mesophilic anaerobic digester at a 
WWTP in Beijing, China. Their specific characteristics are provided in 
Table S1 and Text S1. Detailed information regarding the enzymatic 
pretreatment processes and subsequent acidogenic fermentation exper
iments were described in our previous paper (Song et al., 2024), and are 
summarized in Text S2. Protease and amylase were added to the sludge 
at dosages of 0.0054 g/g TS and 0.027 g/g TS, respectively, to attain the 
enzymatic activities of 400 U/g VS in the systems. The intrinsic elements 
and chemical oxygen demand (COD) of the enzymes had insignificant 
effect on sludge composition, and detailed contributions of the enzymes 
are provided in Table S2 and Text S3. Additionally, a control pretreat
ment was established to isolate the effects of shaking and heating on 
sludge properties from the subsequent fermentation. The groups with 
protease, α-amylase, and control pretreatment were named Pro, Amy, 
and Con, and the raw sludge was named RS.

2.2. Sludge component extraction

Based on previous reports (Snidaro et al., 1997; Yu et al., 2008), the 
stratification structure of sludge was divided into supernatant, extra
cellular polymeric substances (EPS), intracellular species, and sludge 
residue. First, the supernatant was obtained after allowing the sludge to 
settle for 1.5 h at 4 ◦C (Yu et al., 2008). Then, a modified heating method 
was used to extract EPS from the sludge (Procházka et al., 2012). The 
remaining sludge pellet was re-suspended in a 0.75 mol/L LiCl solution. 
The cells were crushed using an ultrasonic cell crusher (BioSafer-650E, 
China) at 10 W/mL for 15 min, followed by centrifugation at 20,000 × g 
and 4 ◦C for 15 min to obtain intracellular biomolecules (Hausmann 
et al., 2016). The final precipitate retained in the tube was collected as 
the sludge residue. The detailed protocol is provided in Text S4.

2.3. Resources recovery experiments and life cycle assessment

First, the pH of the fermented sludge was adjusted from 5.5 ± 0.1, 
5.3 ± 0.2 and 5.1 ± 0.2 for the Con, Pro and Amy, respectively, to 9.5 
using a 0.5 mol/L NaOH solution. Subsequently, a 1.0 mol/L MgCl2 
solution was added to adjust the Mg/P molar ratio to 1.2:1.0 in the 
sludge. The reaction was conducted for 20 min at 130 rpm stirring and 
ambient temperature, and then the sludge was allowed to settle and age 
for 2 h (Zeng et al., 2018). The precipitates were filtered and collected 
using 0.45 µm filters, and the precipitated phosphorus was determined 
by the difference between the initial and final total phosphorus (TP) 
concentrations in the sludge. Subsequently, the supernatants from the 
fermented sludge were collected, and their carbon source concentrations 
were determined by the soluble COD (SCOD). Based on previous report 
(Bian et al., 2022), denitrification experiments were conducted in sealed 
100 mL glass serum bottles to investigate the bioavailability of the 
sludge-derived carbon source. Denitrification sludge and Paracoccus 
denitrificans were used as inoculants, and the commercial acetate was 
used as the control. The effective carbon source in denitrification sys
tems was calculated based on previous report (Zhou et al., 2023). The 
detailed protocol of denitrification experiment is provided in Text S5.

A life cycle impact assessment (LCIA) model was conducted using the 
CML 2001 method in GaBi 9.0 (Professional Edition) to compare the 
environmental impacts of conventional and enzymatic anaerobic 
fermentation (Figure S1). This study mainly focused on nine categories 
of midpoint impacts: acidification potential (AP), eutrophication po
tential (EP), global warming potential (GWP), ozone layer depletion 
potential (ODP), photochem, ozone creation potential (POCP), terrestric 
ecotoxicity potential (TETP), freshwater aquatic ecotoxicity potential 
(FAETP), marine aquatic ecotoxicity potential (MAETP), and human 
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toxicity potential (HTP) (Zhao et al., 2023a, 2023b). The detailed in
ventory and additional information of LCA are provided in Text S6. 
Furthermore, the economic cost analysis was conducted based on pre
vious studies (Yuan et al., 2024). The detailed information are provided 
in Text S7.

2.4. Analytical methods

The C, N, and S contents in the sludge components were determined 
using an elemental analyzer (Vario Macro Cube, Elementar, Germany) 
with a detection limit of 0.01 %. The VFA content (i.e., the sum of ac
etate, propionate, butyrate, and valerate) was detected using a Shi
madzu GC-2010 Plus (Shimadzu, Japan) instrument equipped with a 
hydrogen flame detector. According to previous reports (He et al., 
2012), the released H2S was collected by absorption in a cadmium 
hydroxide–ammonium alcohol polyvinyl phosphate solution and 
measured using the methylene blue spectrophotometric method. The P 
contents in sludge components and COD were determined using stan
dard methods (APHA, 2017). The life time of exogenous hydrolase was 
reported to be limited to <24 h in sludge (Odnell et al., 2016; Yang et al., 
2010), thus the samples were collected for hydrolase extraction and 
activity analysis on Day 2 to block the effects of the exogenous enzyme. 
The extraction of attached and free hydrolase followed previously re
ported methods (Guo et al., 2021), and the detailed process is provided 
in Text S8. The activities of amylase and protease were individually 
analyzed using an Amylase Activity Assay Kit (Solarbio, China) and a 
Neutral Proteinase Activity Assay Kit (Solarbio, China) with a multi
mode microplate reader (Spark, Tecan, Switzerland). The hydrolase 
activity measurements for both methods were performed at 37◦C. The 
concentrations of NO3

− -N were determined using the chromatography of 
ions (ICS-2000, DIONEX, USA). Optical density at 600 nm (OD600) was 
determined using the multimode microplate reader (Spark, Tecan, 
Switzerland).

2.5. RNA extraction, transcriptome sequencing, and metatranscriptome 
analysis

To elucidate the expression levels of genes involved in element 
metabolism, sludge samples for the fermentation prophase (Day 1), 
metaphase (Day 4), and anaphase (Day 15) were collected and stored at 
− 80 ◦C until use. RNA extraction was performed using the E.Z.N.A.® 
Soil RNA Midi Kit (Omega Bio-tek, Norcross, GA, U.S.) according to the 
manufacturer’s protocol. The procedures for RNA extraction, library 
construction, transgenomic sequencing, and genome assembly are 
detailed in Text S9. Afterward, gene taxonomy, functional annotation, 
and metabolic pathway analysis were conducted according to previously 
reported methods, and the detailed procedure is provided in Text S10. 
Notably, the abundance of genes in each sample was quantified using 
reads per kilobase per million mapped reads (RPKM) (Kojima Conner 
et al., 2022).

2.6. Data analyses

All tests in this study were conducted in triplicate, and the values are 
presented as means ± standard deviation. Data processing was con
ducted using OriginPro 2023b and R studio (R studio version 1.4.1106, 
R version 4.0.3). The student’s t-test was used to assess the significance 
of the results, with p < 0.05 considered statistically significant.

3. Results and discussion

3.1. Distribution and stoichiometry of C, N, and P in enzymatic 
fermentation

To investigate the effects of enzymatic pretreatment and fermenta
tion on resources redistribution in the sludge, the stoichiometric analysis 

of C, N, and P was conducted for different sludge fractions and enzy
matic hydrolysis was observed to greatly affect their redistribution be
haviors (Fig. 1& Table S3). Specifically, the C proportions in the 
supernatants increased significantly from 1.0 % in RS to 23.4 % and 10.2 
% in the Amy and Pro groups, and that in the Con group was as low as 
1.6 %. Protease and amylase pretreatment also contributed to significant 
N release of 12.0 % and 27.8 % into the supernatant, and this was 
accompanied by the reduced N proportions in EPS and sludge residue. In 
Pro group, this may be attributed to the unlocking effect of protease 
towards the nitrogen-rich organics such as amino acids and proteins in 
Pro group (Guérard et al., 2002). In Amy group, although amylases had 
limited capacity to hydrolyze nitrogen-rich organics into small mole
cules, its hydrolysis of polysaccharides reduced EPS structural 
complexity and the interlinking between proteins and polysaccharides 
(Basuvaraj et al., 2015). This effect might promote the N solubilization 
and release in the Amy group. In practical applications, amylase might 
be more effective in rapidly releasing and co-recovering the C and N 
resources from sludge during pretreatment. Interestingly, P redistribu
tion showed insignificant difference among different sludge samples, 
and enzyme hydrolysis can hardly improve P release. Orthophosphate, 
polyphosphate and organophosphates, such as phospholipids and DNA, 
were reported to be the predominant forms of P within intracellular 
components and EPS of sludge (Cassidy and Belia, 2005; Ding et al., 
2022). This insignificant P release may be ascribed to the stabilization of 
organophosphates compounds and phosphates species during enzymatic 
hydrolysis (Saktaywin et al., 2005).

In the subsequent acidogenic fermentation, the introduction of 
exogenous hydrolase greatly promoted C dissolution and intracellular C 
(intra-C) accumulation and decreased CO2 release accordingly. Never
theless, the C contents as VFAs were determined to be in the range of 
21.4 %–26.2 % in different scenarios, and this was relatively lower than 
the total C content in the supernatants, i.e., 29.3 %–43.0 %. Addition
ally, the N proportions in residues of all sludge samples were above 43.0 
%, and this was indicative of the insufficient degradation and trans
formation of macromolecules with refractory organic nitrogen. Amylase 
hydrolysis slightly increased the N content by 2.9 % in the fermentation 
liquid, and the proportion of intracellular N (intra-N) increased to 29.4 
% and was 1.9-fold higher than that of 15.1 % in the Con group. By 
contrast, protease significantly increased the N content in the superna
tant from 20.6 % in the Con group to 39.8 %. Although protease released 
less N content than amylase during pretreatment, the micromolecular 
peptides and amino acids generated from hydrolysis may further 
enhance N transformation and release during fermentation. In practical 
applications, protease-enhanced anaerobic fermentation may offer 
greater potential for the targeted co-recovery of C and N, particularly for 
producing single-cell proteins and amino acids. Furthermore, 62.6 %– 
67.1 % of P remained in the sludge residues upon enzymatic pretreat
ment, and the further fermentation slightly increased the ratios to 73.7 
%–81.1 %. Enzymatic pretreatment slightly favored P migration into the 
supernatant as compared to the conventional fermentation. The high 
contents of residue P may be attributed to the formation of chemical P 
precipitates involved in the P removal by Al salts in the mainstream 
processes (Text S1), and the persistent P resources in sludge residues was 
also reported in other WWTPs (Liu et al., 2019; Yao et al., 2024). 
Enzyme introduction also affected the sulfur (S) elements redistribution 
and H2S release was observed to be decreased by 37.5 % (Table S3, 
Figure S2, Figure S3 & Supplementary Results and Discussion). Overall, 
enzymatic hydrolysis was observed to greatly promote the dissolution of 
C and N into the supernatants, and this may affect their metabolism and 
the fermentation behaviors thereafter

3.2. Effects of enzymatic pretreatment on C, N, and P metabolism in 
fermentation

3.2.1. Carbon hydrolysis and metabolism
The metabolic profiles of elemental C in fermentation communities 
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were illustrated by transcriptome sequencing and gene-normalized 
transcript abundance analysis, and the high expression levels of 
organic carbon hydrolase genes were observed (Fig. 2a & b). In the 
fermentation, numerous glycohydrolase genes, i.e., α-amylase (EC 

3.2.1.1), trehalose-phosphatase (EC 3.1.3.12), trehalase (EC 3.2.1.28), 
phosphoglucomutase (EC 5.4.2.6), endoglucanase (EC 3.2.1.4), and 
β-glycosidase (EC 3.2.1.4), were observed to upregulate in both Amy and 
Pro groups. The enzymes of trehalose and cellulose were reported to 

Fig. 1. Redistribution of carbon, nitrogen, and phosphorus among sludge components. (a) Control group; (b) Amy group; (c) Pro group. Intra-C/N/P represent the 
intracellular C, N or P.

Fig. 2. Organic carbon transformations in enzymatic anaerobic fermentation systems. (a) Diagram of organic carbon decomposition. (b) Differential expression 
abundances of enzymes related to polysaccharide, trehalose, and cellulose hydrolysis in sludge fermentation. (c) Fold change (FC) in critical genes related to 
glycolysis, amino acid fermentation, pyruvate metabolism, and the Wood–Ljungdahl pathway. (d) Diagram of carbon metabolism involved pathways in enzymatic 
anaerobic fermentation systems.
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play important roles in the decomposition of extracellular poly
saccharides in sludge flocs (Yu et al., 2015). Meanwhile, several protease 
related genes were also observed to upregulate in the fermentation 
prophase (Figure S4). In the fermentation prophase, the amylase activity 
were determined to be 10.5 U/ml and 10.3 U/ml, and these were 1.67 
and 1.64-fold higher than in the Con group. The protease activity were 
determined to be increased by 48.4 % in the Pro group and by 72.7 % in 
the Amy group (Figure S5). It was inferred that the generation of 
endogenous hydrolases involve in enzymatic fermentation, and the hy
drolysis of organic carbon by them occurred therein.

Furthermore, hydrolyzed organic carbon, primarily sugars and 
amino acids, underwent further degradation and transformation within 
anaerobic microbes via key intra-C metabolic pathways, including 
glycolysis, amino acid fermentation, pyruvate metabolism, and the 
Wood–Ljungdahl pathway (Pan et al., 2024; Wang et al., 2016). It was 
observed that these four pathways showed different transcript responses 
towards enzymatic pretreatment (Fig. 2c). Upon introducing exogenous 
hydrolases, the genes linked to glycolysis were highly expressed in 
enzymatic fermentation systems, and 84.6 % and 91.7 % of genes 
exhibited higher transcript abundance in the Pro and Amy groups in 
fermentation prophase, respectively. Amino acids, as another micro
molecular substrates for sludge fermentation, were also catabolized 
within the intracellular space. All genes in this pathway exhibited 
significantly greater transcriptional activity during prophase. Compared 
with the Amy group, the Pro group exhibited a stronger enhancement of 
amino acid fermentation during prophase. This effect might be attrib
uted to the direct stimulation of this pathway by amino acids and pep
tides released by protease hydrolysis during pretreatment. The 
enhanced catabolism of glucose and amino acid efficiently generated 
pyruvate and ketoacid-CoA, and this effect triggered the transcriptional 
upregulation of pyruvate metabolism in enzymatic fermentation systems 
(Kierans and Taylor, 2024; Song et al., 2025). Among these, eight dif
ferential transcripts were highlighted and were observed to be upregu
lated in the Pro and Amy groups during metaphase and anaphase. 
Beyond organic carbon catabolism, the Wood–Ljungdahl pathway 

associated with CO2 fixation was also observed to be more significantly 
active with enzymes introduction. Within this pathway, 40.0 % and 73.3 
% of genes in the Pro and Amy groups exhibited significant upregulation 
(Log2FC>1) as compared with that in the Con group, respectively. This 
included multiple key enzymes in CO2 reduction pathways, such as 
formate dehydrogenase (FdhAB, CO2→formate), formate tetrahy
drofolate ligase (Fhs, formate→formyl-THF), and methylenetetrahy
drofolate reductase (Met, CH2-THF→CH3-THF). (Fig. 2d). These findings 
demonstrate that exogenous hydrolases promotes intracellular carbon 
metabolism and transformation, particularly the amino acid fermenta
tion pathway activated by protease, and this effect enhances intra-C 
fixation potential and reduces CO2 release during anerobic fermenta
tion (Fig. 2d).

3.2.2. Nitrogen transformation and metabolism
To investigate the relationship between enzymatic hydrolysis and N 

metabolism, the N transformation profiles within the fermentation 
communities were correlated, and the primary metabolic differences 
were predominantly observed in the fermentation prophase. For nitro
gen reduction, genes encoding for nitrate reductase (NO3

− →NO2
− ) were 

downregulated by over 66.1 % upon hydrolase introduction. In contrast, 
genes encoding for nitrite reductase (NO2

− →NH3) exhibited higher 
expression with the increases of 17.1 %–110.8 % (nrfA, EC 1.7.2.2) and 
1973.3 %–2821.2 % (nir, EC 1.7.2.15) (Fig. 3a & b-1). Moreover, the 
aqueous NH4

+-N concentrations increased significantly owing to the 
solubilization and disintegration of protein by enzymatic pretreatment 
(Figure S6). Thus, the ammonium transporter was regulated in response 
to the extracellular NH4

+-N enrichment in the fermentation prophase. 
The transcript abundance of the ammonium transporter (amt family) 
was increased by 395.3 % and 581.9 % in the Pro and Amy groups, 
respectively (Fig. 3b-2).

The more significant nitrite reduction and ammonium transport 
effectively supported the synthesis of intra-N within the fermentation 
communities, and this effect further stimulated the glutamate synthesis 
pathway (Fig. 3a & b-3). Specifically, genes encoding for glutamine 

Fig. 3. Transcriptome analysis results of nitrogen metabolism involved functions. Relative expression levels of (a) critical enzyme genes for nitrate/nitrite reduction 
and glutamate synthesis; (b-1) ammonium transporter (K03320), (b-2) nitrite reductase (EC 1.7.1.15), and (b-3) glutamate synthase (EC 1.4.7.1); (c) critical enzyme 
genes for the urea cycle; (d) arginine biosynthesis in fermentation prophase. Control % = 100 %. (e) Diagram of nitrogen transformations involved pathways in 
enzymatic anaerobic fermentation systems.
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synthetase (EC 6.3.1.2, NH3→glutamine) were upregulated by 8.4 % in 
the Pro group and by 45.9 % in the Amy group. The genes encoding 
glutamate synthetases, particularly gltS (EC 1.4.7.1, gluta
mine→glutamate), also exhibited significantly higher transcriptional 
activity. Although the transcript abundance of glutamate dehydrogenase 
genes was slightly decreased by 3.2 %–34.1 %, the active expression of 
glutamine and glutamate synthetase genes suppressed this effect and 
remarkably enhanced glutamate synthesis. The stimulation of the 
glutamate synthesis module was reported to play important roles in 
driving the urea cycle and arginine biosynthesis pathway (Song et al., 
2025; Xue et al., 2024). As expected, nearly all genes in urea cycle and 
arginine biosynthesis pathway showed increased expression in enzy
matic fermentation (Fig. 3c & d). For example, key genes involved in the 
glutamate transformation (glutamate→N-acetyl-ornithine), including 
EC 2.3.1.1, EC 2.7.2.8, EC 1.2.1.38, and EC 2.6.1.11, were upregulated 
by 67.4 %–1123.9 % in the Pro and Amy groups. The gene coding 
argininosuccinate lyase (EC 4.3.2.1, L-argininosuccinate→arginine) 
showed the upregulation by 308.4 %–422.4 % accordingly. In living 
organisms, the urea cycle is central to ammonia homeostasis and ensures 
the adequate cellular N supply and efficient ammonia metabolism (Hu 
et al., 2023). Moreover, the urea cycle and arginine synthesis act as the 
gating pathways for polyamine and protein biosynthesis, and were re
ported to directly regulate the functional activity and cellular prolifer
ation of organisms (Li et al., 2019; Oratz et al., 1983). The active NH4

+-N 
conversion, as induced by enzymatic pretreatment, stimulates the syn
thesis of functional proteins and the enhancement of key functions in the 
subsequent fermentation community, such as the secretion of endoge
nous organic carbon hydrolases (Fig. 2b). These results indicate that 
enzymatic pretreatment improved the synthesis and bioconversion of 
organic N, especially amino acids, during the fermentation. This sup
ports a functionally robust fermentation community through improved 
protein availability and synthesis (Fig. 3e). Among the pretreatments, 
protease exhibited a more significant promoting effect on N metabolism, 

primarily owing to stimulation by N-hydrolyzing products. It was re
ported that the release of appropriate amounts of ammonia improved 
anaerobic fermentation performance (Lauterböck et al., 2012; 
Procházka et al., 2012), except at extremely high ammonia concentra
tions of >6000 mg NH4

+-N/L with inhibitory effects. The relativity be
tween NH4

+-N release and the N transformation within the fermentation 
communities, as documented by metatranscriptomics in this study, has 
not been reported before and potentially advance us the understanding 
and optimization of sludge fermentation process.

3.2.3. Phosphorus turnover and metabolism
To explore the P recovery efficiency and feasibility by enzymatic 

anaerobic fermentation, further analysis focused exclusively on genes 
encoding proteins involved in the microbial P turnover, including the 
regulation, solubilization, and uptake of extracellular P sources. It was 
observed that the Pro and Amy groups exhibited the strong similarity in 
the fermentation prophase. The majority (~80 %) of these genes 
exhibited significantly higher transcript abundance (Log2FC>1) as 
compared to that in the Con group (Fig. 4a). This suggests that enzy
matic hydrolysis considerably boosted the secretion of microbe-derived 
enzymes, including alkaline phosphatase (encoded by phoD), acid 
phosphatase (phoN), phosphonatase (phnX), and phosphodiesterase 
(phnP). These beneficial effects improved the release of free ortho
phosphate from recalcitrant organic P in sludge (Grafe et al., 2018; 
Rossolini et al., 1998). Meanwhile, under the regulation of the 
two-component system, i.e., phoB, phoR, and phoU, the expression levels 
of genes encoding the inorganic P transporter (Pit) and the multimeric 
ABC-type P specific transporter (PstABCs) were also observed to increase 
significantly, and this potentially enhanced bacterial P uptake and 
mitigated intracellular P deficiency (Wanner, 1993). Interestingly, in the 
Amy group the genes associated with inorganic P solubilization were 
upregulated significantly during fermentation anaphase. This might be 
attributed to the formation and accumulation of organic acids such as 

Fig. 4. Transcriptome response of phosphorus metabolism involved functions. Relative expression levels of critical genes for (a) inorganic phosphorus solubilization, 
organic phosphate mineralization, and phosphate regulation and transport, and (b) phosphotransferase system (PTS). (c) Diagram of phosphorus metabolism 
involved pathways in enzymatic anaerobic fermentation systems.
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gluconic acid, and this effect stimulated the microbial solubilization of 
recalcitrant inorganic P (Liang et al., 2020). The microbial P uptake and 
cycling processes was also enhanced in the subsequent fermentation 
anaphase accordingly. Regarding to P polymerization, enzymatic hy
drolysis enhanced the degradation rather than the synthesis of poly
phosphate in anaerobic fermentation (Figure S7). These results 
highlighted the involvement of microbial-assisted P transformation in 
enzymatic fermentation of sludge, and offered insights into the bio
accessibility of various P forms and P recovery accordingly.

In addition to microbe-driven P uptake and recycling, intracellular 
phosphoryl group transfer plays a prominent role in substrate meta
bolism and energy generation (Kornberg et al., 2000; Xu et al., 2023). As 
a representative phosphorylation cascade, the genetic potential of 
phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) 
was analyzed to investigate the effects of enzymatic hydrolysis on the 
intracellular phosphoryl group transfer and microbial metabolism. As 
core PTS components, the Enzyme I (EI, encoded by ptsl) and Enzyme II 
complex (EII, comprising EIIA, EIIB, and EIIC/D) exhibited significantly 
increased transcriptional activities upon enzymatic pretreatment 
(Fig. 4b). Specifically, the transcript abundance of ptsl increased by 
288.2 % and 535.1 % in the Pro and Amy groups. The corresponsive 
genes encoding EII increased by 233.0 % and 318.4 % during fermen
tation prophase. The important roles of phosphate in cellular compo
nents and metabolic processes have been widely reported (Reizer et al., 
1996; Walton et al., 2023; Westheimer, 1987). The PTS involves in the 
uptake of diverse carbohydrates and the regulation of carbon catabolite 
repression, and this effect has been extensively illustrated in different 
model microorganisms (Görke and Stülke, 2008; Long et al., 2017; Rojo, 
2010). These results indicated the positive effects of enzymatic hydro
lysis on carbohydrate uptake and metabolic versatility optimization as 
mediated by intracellular phosphoryl group transfer, and this activated 
intracellular P cycle may affect the C biological cycle accordingly 
(Fig. 4c). Overall, the introduction of protease and amylase promoted P 
solubilization and release from sludge residue, as well as 
microbial-mediated P turnover. Upon enzymatic pretreatment, P meta
bolism might be more strongly coupled with polysaccharide uptake, 
especially in the Amy group, thereby exhibiting close cooperation with C 
metabolism. It was noted that upon the introduction of enzymes, nearly 

all genes relevant to sulfate transport and assimilatory sulfate reduction 
exhibited increased expression levels (Figure S8, Figure S9 & Supple
mentary Results and Discussion).

3.3. Recovery of C, N, and P by enzymatic anaerobic fermentation

To further illustrate the effects of enzymatic pretreatment on the 
resources recovery by anaerobic fermentation, the production of stru
vite, i.e., as precipitates to harvest ammonia and phosphate, and SCOD 
as carbon sources for denitrification were quantitatively compared. 
Upon anaerobic fermentation, the total phosphate concentrations in 
supernatants increased from 45.4 mg/L for the Con group to 62.0 mg/L 
for Pro group and 60.2 mg/L for Amy group, and the recovery of N and P 
as struvite was increased by 13.7 % and 19.0 % to 21.1 mg/g TS and 22.1 
mg/g TS accordingly (Fig. 5a). It was noted that enzymatic pretreatment 
rarely enhanced P release (Fig. 1), and the elevated phosphate concen
trations were attributed to the positive effects towards P metabolism and 
turnover involved in fermentation (Grafe et al., 2018). The more sig
nificant release of phosphate and ammonia improved their recovery as 
struvite upon enzymatic anaerobic fermentation.

After struvite crystallization, the SCOD in the supernatant were 
respectively determined to be 15,513 mg/L and 17,447 mg/L in the Pro 
and Amy groups, i.e., 1.3- and 1.4-fold higher than that in Con group 
(Fig. 5b). The growth curves of P. denitrificans in the Pro and Amy 
groups, as indicated by kinetic OD600 increase, were observed to be 
significantly higher than that in the Con group and to be slightly lower 
than the commercial acetate (Fig. 5c). After 30-hrs cultivation, the 
observed maximum specific growth rates of P. denitrificans in the Pro and 
Amy groups were higher to be 0.12 h-1 and 0.13 h-1 than that in the 
acetate group (0.09 h-1), whereas that in the Con group was 0.18 h-1. At 
initial NO3

− -N concentration of as high as 750 mg/L, the residual NO3
− -N 

concentrations were below 35.0 mg/L with the enzymatic-pretreated 
supernatants as carbon sources, whereas that in the Con group was 
observed to be 187.3 mg/L accordingly (Fig. 5d). The good assimila
bility may be primarily ascribed to the combined effects of enzymatic 
pretreatment and fermentation towards sludge EPS solubilization, the 
metabolism and transformation of slowly biodegradable organic matter 
(Cao et al., 2019; Kang et al., 2018). To further explore the utilization 

Fig. 5. Resource recovery of carbon, nitrogen, and phosphorus in enzymatic anaerobic fermentation systems. (a) Total phosphorus concentration in the sludge 
supernatant after fermentation and the efficiency of struvite recovery; (b) SCOD concentration in fermented sludge; (c) OD600 of P. denitrificans cultured with sludge- 
derived carbon source during denitrification, with acetate as the control; (d) Temporal variation of NO3

− -N concentration in denitrification systems of P. denitrificans 
with different carbon source; (e) NO3

− -N concentration variations in denitrification sludge systems with different carbon sources; (f) Dry solids of WAS and sludge 
upon fermentation and carbon source return, and the effective carbon source of supernatant for denitrification system.

G. Song et al.                                                                                                                                                                                                                                    Resources, Conservation & Recycling 225 (2026) 108578 

7 



feasibility in realistic WWTPs, the denitrification sludge was used to 
compare the denitrification performance among these different carbon 
sources (Fig. 5e). Upon 6-hrs denitrification, NO3

− -N removal was 
observed to be 93.9 % in the Pro group and 95.3 % in the Amy group, 
whereas that in Con group was lower to be 75.1 %. Additionally, the 
effective carbon source was determined to be 2.32 g COD/g NO3

− -N in 
the Pro group and 2.51 g COD/g NO3

− -N in the Amy group, and was near 
to the required C/N ratio of 2.86 : 1 to achieve theoretically complete 
denitrification (Fig. 5f). It was noted that in the Con group the C/N ratio 
was much lower to be 1.95 g COD/g NO3

− -N. These results indicated that 
enzymatic anaerobic fermentation enhanced the utilization efficiency 
and economic benefit with regard to waste sludge reclamation as carbon 
sources.

In addition to the substitution of commercial acetate to reduce costs, 
enzymatic anaerobic fermentation also reduced the dry sludge solids 
due to the recycling of supernatants with extremely high SCOD con
centrations. On the basis of theoretical mass balance calculation 
(Table S3), the dry sludge solids were determined to be reduced by 24.3 
%–28.1 % as compared to WAS from the conventional A2/O process 
(Fig. 5f). To further assess the environmental impacts, LCA was used to 
compare the environmental benefits between the conventional anaer
obic fermentation and enzymatic anaerobic fermentation (Figure S10). 
Results indicated that the Pro and Amy groups exhibited significantly 
lower GWP at − 194.6 Kg GWP/t DS and − 311.0 Kg GWP/t DS, 
respectively, whereas the GWP value in Con group was calculated to be 
3.6 Kg GWP/t DS. These benefits may be attributed to the reduced 
sludge volumes for landfill and the lower non-point greenhouse gas 
emissions involved in enzymatic anaerobic fermentation. Additionally, 
the key pollution and toxicity indicators, i.e., AP, EP, FAETP, TETP, 
HTP, POCP, ODP, and MAETP, of enzymatic anaerobic fermentation also 
indicated the minimal environmental negative impacts. Furthermore, 
the economic cost analysis indicated that the introduction of amylase 
significantly increased the economic benefit of sludge treatment by 57.4 
% (Figure S11). In contrast, protease reduced the net economic benefit 
and rendered the enzymatic anaerobic fermentation nearly cost-neutral, 
and this might be attributed to the higher energy demand associated 
with protease pretreatment. Given that protease hydrolysis promotes the 
release of nitrogen-rich fermentation products, the targeted recovery of 
high-value sludge-derived proteins or amino acids may yield greater 
economic benefits (Xiao and Zhou, 2020). In future engineering appli
cations, producing enzymes from waste biomass might represent a 
cost-effective strategy to further improve the economic feasibility of 
sludge valorization (Gupta et al., 2016). These results highlighted the 
potential environmental and economic benefits of enzymatic anaerobic 
fermentation for sludge treatment, resources harvesting, and final 
disposal. Further piloting experiments are necessary to comprehensively 
evaluate its technical feasibility and economic viability for large-scale 
engineering applications.

4. Conclusion

This study focuses on the recovery of valuable C, N, and P resources 
from WAS by enzymatic anaerobic fermentation, and the redistribution 
and cycling of these elements and the microbial metabolic behaviors 
involved in are carefully investigated. Results indicate that enzymatic 
hydrolysis significantly increases the proportions of C and N in sludge 
supernatants by 21.8 %–26.3 %, and the subsequent fermentation in
creases these proportions of C, N, and P in the outer components by 7.4 
%–18.0 %. Interestingly, the introduction of amylase and protease 
significantly enhances the metabolism of C, N, and P such as organic 
carbon catabolism, NH4

+-N conversion, and P solubilization, in the 
subsequent anaerobic fermentation. The positive effects of enzyme 
improve the recovery efficiency of the C, N and P as dentification carbon 
source and struvite precipitates. In addition to these benefits, enzymatic 
anaerobic fermentation decreases the sludge production by 24.3 %–28.1 
% as dry sludge solids as compared to conventional A2/O process, and 

the GWP was calculated to be decreased from 3.6 Kg GWP/t DS in Con 
group to − 194.6 and − 311.0 Kg GWP/t DS in the Pro and Amy groups, 
respectively. This study advances the understanding of the C, N and P 
recovery potential and elemental metabolism within the fermentation 
microbiome, and provides practical insights to harvest multiple valuable 
resources from sludge and organic solid wastes towards the low-cost, 
value-added, and CO2 emission reduction biorefinery.
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