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a b s t r a c t 

This work presents a new discrete fracture model, namely the Projection-based Embedded Discrete Frac- 

ture Model (pEDFM). Similar to the existing EDFM approach, pEDFM constructs independent grids for the 

matrix and fracture domains, and delivers strictly conservative velocity fields. However, as a significant 

step forward, it is able to accurately model the effect of fractures with general conductivity contrasts rel- 

ative to the matrix, including impermeable flow barriers. This is achieved by automatically adjusting the 

matrix transmissibility field, in accordance to the conductivity of neighboring fracture networks, along- 

side the introduction of additional matrix-fracture connections. The performance of pEDFM is investigated 

extensively for two- and three-dimensional scenarios involving single-phase as well as multiphase flows. 

These numerical experiments are targeted at determining the sensitivity of the model towards the frac- 

ture position within the matrix control volume, grid resolution and the conductivity contrast towards the 

matrix. The pEDFM significantly outperforms the original EDFM and produces results comparable to those 

obtained when using DFM on unstructured grids, therefore proving to be a flexible model for field-scale 

simulation of flow in naturally fractured reservoirs. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Accurate and efficient simulation of flow through subsurface

ormations is essential for effective engineering operations (in-

luding production, storage optimization and safety assessments).

longside their intrinsic heterogeneous properties, the target ge-

logical formations often contain complex networks of naturally-

ormed or artificially-induced fractures, with a wide range of

onductivity properties. Given their significant impact on flow

atterns, the accurate representation of these lower-dimensional

tructural features is paramount for the quality of the simulation

esults ( Berkowitz, 2002 ). 

Discrete Fracture Models (DFM) reduce the dimensionality of

he problem by constraining the fractures, as well as any inhibit-

ng flow barriers, to lie at the interfaces between matrix rock

ells ( Ahmed et al., 2015 ; Karimi-Fard et al., 2004 ; Reichenberger

t al., 2006 ). Then, local grid refinements are applied, where a

igher level of detail is necessary, leading to a discrete repre-

entation of the flow equations on, sometimes complex, unstruc-

ured grids ( Karimi-Fard and Durlofsky, 2016 ; Matthäi et al., 2007 ;
∗ Corresponding author. 
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ahimi et al., 2010 ; Schwenck et al., 2015 ; Tatomir et al., 2011 ).

lthough the DFM approach has been extended to include com-

lex fluids and rock physics – e.g. compositional displacements

 Moortgat et al., 2016 ; Moortgat and Firoozabadi, 2013 ) and ge-

mechanical effects ( Garipov et al., 2016 ) – its reliance on com-

lex computational grids may raise important challenges in real-

eld applications. 

This has led to the emergence of models which make use of

on-conforming grids w.r.t. fracture-matrix connections, such as

Xtended Finite Element Methods (XFEM, see Flemisch et al., 2016 )

nd Embedded Discrete Fracture Models (EDFM, introduced in Lee

t al., 20 0 0 ; Li and Lee, 20 08 ). This paper focuses on the lat-

er, which are especially appealing due to their intrinsic ability

o deliver mass-conservative flux fields. To this end, the lower-

imensional structural features with relatively small lengths (i.e.

ully contained in a single fine-scale matrix cell) are first homog-

nized, by altering the effective permeability of their support rock

 Pluimers, 2015) . Then, the remaining fracture networks are dis-

retized on separate numerical grids, defined independently from

hat of the matrix ( Deb and Jenny, 2016 ; Karvounis and Jenny,

016 ). A comprehensive comparison between DFM and EDFM,

long with other fracture models, is performed by Flemisch et al.

2017) . 

The EDFM has been applied to reservoirs containing highly-

onductive fractures with complex geometrical configurations, 

hile considering compositional fluid physics ( Moinfar et al., 2014 )
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and plastic and elastic deformation ( Norbeck et al., 2016 ). It

has seen used as an upscaling technique ( Fumagalli et al., 2016 ;

2017 ) and was successfully paired with multiscale methods for

efficient flow simulation ( Hajibeygi et al., 2011 ; Shah et al., 2016 ;

Ţ ene et al., 2016a ; 2016b ). However, the experiments presented in

this paper show that, in its current formulation, the model is not

suitable in cases when the fracture permeability lies below that of

the matrix. In addition, even when fractures coincide with the in-

terfaces of matrix cells, the existing EDFM formulation still allows

for independent flow leakage (i.e. disregarding the properties of

the fracture placed between neighbouring matrix cells). To resolve

these important limitations, this work proposes a new formulation

for embedded fracture approaches, namely, the projection-based

EDFM (pEDFM). The pEDFM is shown to successfully accommodate

to lower-dimensional structural features with a wide range of per-

meability contrasts towards the matrix. This includes highly con-

ductive fractures and flow barriers with small apertures, relative to

the reservoir scale, which allows their representation as 2D plates.

For the remainder of the paper, they will be referred to, simply, as

fractures , regardless of their conductive properties. 

The devised pEDFM formulation retains the geometric flexibil-

ity of the classic EDFM procedure. More specifically, once the frac-

ture and matrix grids are independently defined, and the cross-

media communication points are identified, pEDFM adjusts the

matrix-matrix and fracture-matrix transmissibilities in the vicin-

ity of fracture networks. This ensures that the conductivity of the

fracture networks, which can be several orders of magnitude be-

low or above that of the matrix, are automatically taken into ac-

count when constructing the flow patterns. Finally, when fractures

are explicitly placed at the interfaces of matrix cells, pEDFM auto-

matically provides identical results to DFM. 

The paper is structured as follows. First, the governing equa-

tions are presented and discretized according to the pEDFM ap-

proach. Then, a series of numerical experiments are presented, tar-

geted at validating pEDFM by comparing it to DFM (i.e. using un-

structured grids with fractures being confined at the interfaces)

and EDFM. The sensitivity of pEDFM with respect to fracture posi-

tion and orientation, grid resolution and the conductivity contrast

towards the matrix is studied extensively. Finally, the results are

summarized, conclusions are drawn and possible directions for fu-

ture work are discussed. 

2. pEDFM formulation 

In order to accommodate fractures with a wide range of con-

ductivity contrasts towards the matrix, pEDFM extends the classic

EDFM discretization of the governing flow equations by automati-

cally scaling the matrix-matrix connections in the vicinity of frac-

ture networks. At the same time, additional fracture-matrix con-

nections are added in order to keep the system of equations well-

posed in all possible scenarios. This is explained in detail in the

following subsections. 

2.1. Governing equations 

The mass-conservation equations for isothermal Darcy flow in

fractured media, without compositional effects, can be written as

[ 
∂(φρi s i ) 

∂t 
− ∇ · (ρi λi · ∇p) 

] m 

= Q 

m + [ ρi q ] 
m f on �m ⊂ R 

n 

(1)

for the matrix (superscript m ) and 

[ 
∂(φρi s i ) 

∂t 
− ∇ · (ρi λi · ∇p) 

] f 
= Q 

f + [ ρi q ] 
f m on � f ⊂ R 

n −1 

(2)
or the fracture (superscript f ) spatial domains. Here, φ is the rock

orosity, p the pressure, while s i , λi and ρ i are the phase satura-

ion, mobility and density, respectively. The q mf and q fm stand for

he cross-media connections, while Q 

m and Q 

f are source terms,

.g. due to perforating wells, capillary and gravity effects, in the

atrix and fracture domain, respectively. 

.2. Discretization 

In order to solve the coupled system of Eqs. (1) and (2) , inde-

endent grids are generated for the rock and fracture domains (See

ig. 1 ). This approach alleviates complexities related to grid gener-

tion, since, unlike in DFM, fractures do not need to be confined to

he interfaces between matrix grid cells. 

The advection term from Eqs. (1) and (2) is defined for each

matrix-matrix and fracture-fracture) grid interface, following the

wo-point-flux approximation (TPFA) finite volume discretization

f the flux F ij between each pair of neighbouring cells i and j as

 i j = T i j (p i − p j ) . (3)

ere, T i j = 

A i j 

d i j 
λ̄i j is the transmissibility, A ij is the interfacial area,

 ij is the distance between the cell centers, λ̄i j is the effective fluid

obility at the interface between i and j (absolute permeabilities

re harmonically averaged, fluid properties are upwinded ( Chen,

007 )). 

The fracture-matrix coupling terms are modelled similar to

ajibeygi et al. (2011) ; Li and Lee (2008) , i.e., for matrix cell i (with

olume V i ) connected to a fracture cell f (of area A f ), 

 i f = 

∫ 
V i 

q m f 

i f 
dV = T i f (p f − p i ) (4)

nd 

 f i = 

∫ 
A f 

q f m 

f i 
dA = T f i (p i − p f ) , (5)

here T i f = CI i f λi f = T f i is the cross-media transmissibility. In ad-

ition, λif is the effective fluid mobility at the interface between

atrix and fracture (just as before, absolute permeabilities are har-

onically averaged, fluid properties are upwinded), while the CI if 
s the conductivity index, defined as 

I i f = 

S i f 

〈 d〉 i f 

, (6)

here S if is the surface area of the connection (to be further spec-

fied below) and 〈 d 〉 if is the average distance between the points

ontained in the rock control volume V i and the fracture surface A f 

 Hajibeygi et al., 2011 ; Li and Lee, 2008 ), i.e., 

 d 〉 i f = 

1 

V i 

∫ 
�i 

d i f d v i , (7)

here d if stands for the distance between finite volume dv i and

racture plate. Appendix A gives an analytical method for its com-

utation on 2D structured grids. 

.2.1. EDFM 

Consider the fractured medium from Fig. 2 , which is discretized

n a structured grid. Let A if be the area of intersection between

racture cell f and matrix volume i (highlighted in yellow in Fig. 2 ).

he classical EDFM formulation ( Hajibeygi et al., 2011 ; Li and Lee,

008 ) defines the transmissibility as 

 i f = 

2 A i f 

〈 d〉 i f 

λi f (8)

here, in this case, S i f = 2 A i f for computing CI in Eq. (6) and λif 

s the effective cross-media mobility. The transmissibility of the
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Fig. 1. In pEDFM, independent grids are defined separately for the matrix and fracture domains. 

Fig. 2. Illustration of pEDFM on a 2D structured grid. The matrix cells highlighted 

in yellow are connected directly to the fracture, as defined in the classic EDFM. 

The cells highlighted in orange take part in the additional non-neighbouring con- 

nections between fracture and matrix grid cells, as required by pEDFM. (For inter- 

pretation of the references to color in this figure, the reader is referred to the web 

version of the article.) 
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atrix-matrix connections in the neighborhood of the fracture (be-

ween control volumes i and j, k , respectively) are left unmodified

rom their TPFA finite volumes form, i.e 

 i j = 

A i j 

�x 
λi j T ik = 

A ik 

�y 
λik . (9)

here A ij , A ik are the areas and λij , λik the effective mobilities of

he corresponding matrix interfaces. 

.2.2. pEDFM 

The paper proposes an extension to the EDFM formulation, by

odifying the matrix-matrix and fracture-matrix in the vicinity of

ractures. This enables the development of a general embedded

iscrete fracture modeling approach (pEDFM), applicable in cases

ith any conductivity contrast between fractures and matrix. To

his end, first a set of matrix-matrix interfaces is selected, such

hat they define a continuous projection path of each fracture net-

ork on the matrix domain (highlighted in red on the right side

f Fig. 2 ). While, devising a generic algorithm for the construction

f these paths lies outside the scope of this paper, it is important

o ensure their continuity for each fracture network. 

Consider fracture cell f intersecting matrix volume i on an n -

imensional structured grid over a surface area, A if . Let A i f⊥ x e be its

orresponding projections on the path, along each dimension, e =
 , . . . , n (depicted in red on the left side of Fig. 2 ). Also, let i e be the

atrix control volumes which reside on the opposite side of the

nterfaces affected by the fracture cell projections (highlighted in
range in Fig. 2 ). Then, the following transmissibilities are defined

 i f = 

A i f 

〈 d〉 i f 

λi f , T i e f = 

A i f⊥ x e 
〈 d〉 i e f λi e f and T ii e = 

A ii e − A i f⊥ x e 
�x e 

λii e , (10)

here A ii e are the areas of the matrix interfaces hosting the frac-

ure cell projections and λif , λi e f , λii e are effective fluid mobili-

ies between the corresponding cells. Notice that the projected ar-

as, A i f⊥ x e , are eliminated from the matrix-matrix transmissibili-

ies and, instead, make the object of stand-alone connections be-

ween the fracture and the non-neighbouring (i.e. not directly in-

ersected) matrix cells i e . Also, the matrix-matrix connectivity T ii e 
ill be eventually zero if the fracture elements (belonging to one

r multiple fractures) cross through the entire matrix cell i . 

Finally, note that, for fractures that are explicitly confined to lie

long the interfaces between matrix cells, the pEDFM formulation,

s given in Eq. (10) , naturally reduces to the DFM approach on un-

tructured grids, while the EDFM does not. 

Given the above TPFA finite-volume discretization of the advec-

ion and source terms from Eqs. (1) and (2) , after applying back-

ard Euler time integration, the coupled system is linearized with

he Newton–Raphson scheme and solved iteratively. 

. Numerical results 

This section presents the results of numerical experiments

f single- and two-phase incompressible flow through two- and

hree-dimensional fractured media. Their aim is to validate pEDFM,

hose formulation was presented in the previous section, and

tudy its sensitivity to fracture position, grid resolution and

racture-matrix conductivity contrast, respectively. The reference

olution for these studies is obtained on a fully resolved grid, i.e.

here the size of each cell is equal to the fracture aperture. This

llows the following model error measurement, 

‖ ε‖ 1 

N coarse 
= 

∑ N 
1 | p ′ f ine 

− p coarse | 
N coarse 

(11) 

here N coarse is the number of grid cells used by pEDFM and p ′ 
f ine 

s the corresponding fully-resolved pressure, interpolated to the

oarse scale, if necessary. Some of the experiments were repeated

or the classic EDFM, as well as unstructured DFM, for comparison

urposes. 

For simplicity, but without loss of generality, the flow in these

xperiments is driven by Dirichlet boundary conditions, instead of

njection and production wells, while capillary and gravity effects

re neglected. 
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Fig. 3. Fully-resolved (c) EDFM (d) and pEDFM (e) pressure solutions in a homogeneous reservoir containing a + −shaped highly-conductive fracture network (top). 
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Finally, the simulations were performed using the DARSim 1 in-

house simulator, using a sequentially implicit strategy for the mul-

tiphase flow cases. 

3.1. pEDFM validation 

In order to validate pEDFM as a fine-scale model suitable to

accommodate fractures with a wide range of permeabilities, a 2D

homogeneous domain ( k m = 1 ) is considered, having a + −shaped

fracture network, located in the middle. In order to drive the in-

compressible single-phase flow, Dirichlet boundary conditions with

non-dimensional pressure values of p = 1 and p = 0 are imposed

on the left and right boundaries of the domain, respectively, while

the top and bottom sides are subject to no-flow conditions. 

As shown in Fig. 3 , the study is first conducted in a scenario

where the fractures are 8 orders of magnitude more conductive

than the matrix. The reference solution, in this case, is computed

on a 1001 × 1001 structured cartesian grid. From the bottom of

Fig. 3 , it is clear that both EDFM and pEDFM, on a coarser 11 × 11

domain, can reproduce the behavior of the flow as dictated by the

highly-conductive embedded fracture network. 

As shown in Fig. 4 , the same experiment was rerun for the case

where the fracture permeability lies 8 orders of magnitude below

that of the host matrix. The results expose the limitations of EDFM,

where the impermeable fractures are simply by-passed by the flow

through the (unaltered) matrix, resulting in a pressure field corre-

sponding to a reservoir with homogeneous (non-fractured) perme-

ability. On the other hand, through its new formulation, pEDFM is

able to reproduce the effect of the inhibiting flow barrier (see bot-

tom of Fig. 4 ), confirming its applicability to this case. 

These experiments confirm that pEDFM is a suitable extension

of EDFM to a wider range of geological scenarios, being able to

reproduce the correct flow behaviour in the presence of both high

and low permeable fractures, embedded in the porous matrix. 
.2. Sensitivity to the fracture position within the grid cell 

Given that pEDFM typically operates on much coarser grids

han the fully resolved case, it is of interest to elicit its sensitiv-

ty to the fracture position within the host grid cell. To this end,

he + −shaped fracture configuration is considered; the reference

olution is computed on a 3 7 × 3 7 (i.e., 2187 × 2187) cell grid,

hile pEDFM grid operates at 10 × 10 resolution. 

From Fig. 3 , it appears that in the case when the fracture net-

ork is highly conductive, the horizontal fracture is the one that

ictates the flow. Consequently, successive simulations are con-

ucted for both EDFM and pEDFM, while moving the horizontal

racture from top to bottom, as shown in Fig. 5 . Their accuracy is

easured using Eq. (11) . 

The results show that EDFM is more accurate when fractures

re placed at the cell center, rather than when they are close to the

nterface. However, once the fracture coincides with the interface,

DFM connects it to both matrix cells (each, with a CI calculated

sing S i f = A i f in Eq. (6) , instead of 2 A if as was the case in Eq. (8) ),

hus explaining the abrupt dip in error. In contrast, the pEDFM er-

or attains its peak when fractures are placed at the cell centers

nd does not exhibit any jumps over the interface. The error of

oth methods lies within similar bounds (still pEDFM is more ac-

urate) showing that they applicable to the case when fractures

re highly conductive. The consistent aspect of pEDFM is that, its

esults for the case when fractures coincide with the matrix inter-

aces, its results are identical to the DFM method, while –as ex-

lained before– this is not the case for EDFM. 

When the network is nearly impermeable, the location of the

ertical fracture is critical to the flow ( Fig. 4 ). As such, for the

urposes of the current experiment, it will be shifted from left to

ight, as shown in Fig. 6 . The resulting error plot shows a dramatic

ncrease for EDFM, when compared to Fig. 6 , due to its inability to

andle fractures with conductivities that lie below that of the ma-

rix. pEDFM, on the other hand shows a similar behavior and error
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Fig. 4. Fully-resolved (c) EDFM (d) and pEDFM (e) pressure solutions in a homogeneous reservoir containing a + −shaped nearly impermeable flow barrier (top). 

Fig. 5. Sensitivity of pEDFM to the position of highly conductive fractures, embedded within the matrix grid cells. To this end, the horizontal fracture of the + −shaped 

network is successively moved from top to bottom over a 2 grid cell window (top), while monitoring the pressure mismatch towards the corresponding fully resolved 

simulation (bottom). 
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ange as was observed in the case with highly conductive fractures,

.e., it retains its high accuracy. 

These results show a promising trend for pEDFM, which is able

o maintain reasonable representation accuracy of the effect of

he embedded fractures. The slight increase in error for fractures

laced near the matrix cell centers may be mitigated by employ-

ng moderate local grid refinements. 
.3. Sensitivity to the grid resolution 

Another important factor in assessing the quality of an embed-

ed fracture model is its order of accuracy with respect to the grid

esolution. A series of nested matrix grids for the + −shaped frac-

ure test case of Figs. 3 and 4 was constructed. The number of

ells over each axis is gradually increased using N x = N y = 3 i for-
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Fig. 6. Sensitivity of pEDFM to the position of nearly impermeable fractures, embedded within the matrix grid cells. The vertical fracture of the + −shaped network is 

successively moved from left to right over a 2 grid cell window (top), while monitoring the pressure mismatch towards the corresponding fully resolved simulation (bottom). 

Fig. 7. Grid resolution sensitivity of pEDFM, EDFM and DFM on the case with highly conductive fractures. The sequence of plots on the top shows pressure error maps for 

the three methods, when N x = N y = 3 6 (or h = 0 . 0015 ) holds for pEDFM and EDFM, and DFM employs comparable total number of elements. 
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Fig. 8. Grid resolution sensitivity of pEDFM, EDFM and DFM on the case with nearly impermeable fractures. The sequence of plots on the top shows pressure error maps 

for the three methods, when N x = N y = 3 6 (or h = 0 . 0015 ) holds for pEDFM and EDFM, and DFM employs comparable total number of elements. 
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ula, where i = 2 , 3 , . . . , up to a reference grid resolution, where

 = 7 . At the same time, the fracture grid is also refined accordingly

uch that its step size approximately matches the one in the ma-

rix, h = �x = �y . The measure of accuracy for this case is similar

o Eq. (11) , where, this time, no interpolation is necessary, since

he cell centroids are inherited from one level to another in the

ested grid hierarchy. 

For a better comparison, alongside pEDFM and EDFM, the same

equence of geological scenarios was simulated using DFM on a 2D

nstructured grid ( Karimi-Fard et al., 2004 ), where the number of

riangles was tweaked to match N = N x × N y as closely as possible

nd without imposing any preferential grid refinement around the

ractures. 

The results of this study, in the case when the fractures are

ighly conductive, are depicted in Fig. 7 . It follows that all three

ethods experience a linear decay in error with increasing grid

esolution. The three error snapshots, which were taken when

 x = N y = 3 6 (or h = 0 . 0015 ), show that the pressure mismatch is

ainly concentrated around the tips of the horizontal fracture,

hich represent the network’s inflow and outflow points, respec-

ively. For EDFM, the error decays radially for points further away

rom these fracture tips. For pEDFM, the contour curves are slightly

kewed, depending on the choice between upper and lower ma-

rix interfaces for the fracture projection (both are equally prob-

ble since the horizontal fracture crosses the grid cell centroids).

inally, for DFM the error distribution shows some heterogeneity,

hich is a consequence of using unstructured grids in a medium

hich, except for the neighborhood of the fractures, is homoge-

eous. 

The scenario when the fracture network is considered almost

mpermeable can not be properly handled by EDFM, regardless of

hich grid resolution is used ( Fig. 8 ). This serious limitation is,
nce again, successfully overcome by using pEDFM, which, similar

o DFM, maintains its linear scalability with grid refinement on this

hallenging test case. The error snapshots depict that, this time,

he pressure is inaccurate around the tips, as well as the body,

f the vertical barrier. This can be explained by the fact that an

mbedded model on a coarse grid can have difficulty in placing

he sharp discontinuity in the pressure field at exactly the right

ocation. Still, the pressure mismatch decays with increasing grid

esolution, suggesting that local grid refinements around highly

ontrasting fractures can benefit pEDFM, in a similar manner

o DFM. 

To conclude, pEDFM shows a similar convergence behavior, in

erms of grid resolution, to the widely used DFM approach. This

onfirms that, in order to diminish the model representation error,

oderate local grid refinements can be applied near fractures. 

.4. Sensitivity to the fracture-matrix conductivity contrast 

This last sensitivity study is aimed at determining the re-

ponse of pEDFM while changing the conductivity contrast be-

ween the + −shaped fracture network ( k f = 10 −8 , . . . , 10 8 ) and

he matrix ( k m = 1 ). To this end, a coarse grid resolution of N x =
 y = 3 5 was used and the resulting pressure was compared to that

rom the reference case, where N x = N y = 3 7 , using Eq. (11) . 

The results are depicted in Fig. 9 and are in line with the

onclusions from previous sections. Namely, for fracture log-

ermeabilities on the positive side of the spectrum, the results of

DFM and pEDFM are in agreement. As the permeability contrast

asses 5 orders of magnitude, the pressure error plateaus, since, at

eyond this stage, the fractures are the main drivers of the flow.

owever, for fracture permeabilities close to or below that of the

atrix, the error of EDFM increases dramatically. pEDFM, on the
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Fig. 9. Sensitivity of pEDFM to the fracture-matrix conductivity contrast on the + −shaped fracture network case with a grid resolution of 3 5 × 3 5 . The sequence of plots 

on the top show pressure error maps for pEDFM, when k f = 10 −5 , 1 and 10 5 , respectively. 

Fig. 10. Fracture permeabilities (top-left), pressure field (top-right) and time-lapse saturation results (bottom) on a 2D test case with homogeneous matrix conductivity, 

under incompressible 2-phase flow conditions. 
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Fig. 11. Heterogeneous matrix and fracture permeability maps (top), pressure and time-lapse saturation results for EDFM (middle) and pEDFM (bottom) on a 2D densely 

fractured test case, under incompressible 2-phase flow conditions. 

Fig. 12. 3D porous medium containing 3 layers of fractures with heterogeneous properties. 
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ther hand is able to cope with these scenarios, due to its for-

ulation, its behavior showing an approximately symmetric trend,

hen compared to that of the positive side of the axis. 

The snapshots on the top of Fig. 9 , taken for lower, similar and

igher fracture permeabilities w.r.t. the matrix, show the error in

he pressure produced by pEDFM. It is clear that the model inac-

uracy is concentrated around the tips of fractures which actively

nfluence the flow. Also note that there is a small error even in the

ase when k f = k m , since the pEDFM discretization ( Section 2 ) is
lightly different than that of a homogeneous reservoir. Of course,

his result is only presented here for academic purposes – in realis-

ic scenarios, when the contrast is not high enough, such fractures

an be homogenized into the matrix field. 

This concludes the sensitivity studies conducted in this paper.

he test cases presented in the following subsections are meant to

est the applicability of pEDFM to more complex 2D and 3D frac-

ured media. 
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Fig. 13. Fracture-conforming unstructured grid constructed by DFM for the 3D test 

case. 
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3.5. Time-lapse 2D multiphase results 

This set of experiments is aimed at determining the perfor-

mance of pEDFM in multiphase flow scenarios on 2D porous media

with increasingly complex fracture geometries and heterogeneities.

3.5.1. Homogeneous matrix 

pEDFM is first applied in an incompressible 2-phase flow sce-

nario through a 2D homogeneous domain which is crossed by a

set of fractures with heterogeneous properties, as shown in Fig. 10 .

The boundary conditions are similar to those used for previous ex-

periments, namely Dirichlet with non-dimensional values of p = 1

and p = 0 on the left and right edges, respectively, while the top

and bottom sides are subject to no-flow conditions. 

The low permeable fractures inhibit the flow, leaving only two

available paths: through the middle of the domain and along the

bottom boundary. As can be seen in the time-lapse saturation

maps presented in Fig. 10 , the front, indeed, respects these em-

bedded obstacles. The injected fluid is mostly directed through the

permeable X-shaped network and surpasses the vertical barrier, in

the lower right part of the domain, on its way to the production

boundary. 

This result reinforces the conclusion that the conservative pres-

sure field obtained using pEDFM leads to transport solutions which

honour a wide range of matrix-fracture conductivity contrasts. 

3.5.2. Heterogeneous matrix 

The following experiment compares the behaviour of EDFM and

pEDFM for simulating 2-phase incompressible flow through a 2D

porous medium with heterogeneous (i.e. patchy) matrix perme-

ability ( Fig. 11 ). The interplay between the large- (matrix-matrix)

and small-scale (fracture-matrix) conductivity contrasts raises ad-

ditional numerical challenges ( Hamzehpour et al., 2016 ) and is a

stepping stone in assessing the model’s applicability to realistic

cases. 

The embedded fracture map used for this test case (top of

Fig. 11 ) is based on the Brazil I outcrop from Bertotti and Bisdom ;

Bisdom et al. (2016) . The conductivities of the fractures forming

the North-West to South-East diagonal streak, were set to 10 −8 ,

thus creating an impermeable flow barrier across the domain (no-

ticeable in dark blue on the top-right of Fig. 11 ). For the rest of

the fractures, permeabilities were randomly drawn from a log-

uniform distribution supported on the interval [10 −8 , 10 8 ] . Finally,

similar to previous experiments, fixed pressure boundary condi-
ions p = 1 and p = 0 are set on the left and right edges, re-

pectively, while the top and bottom sides are subject to no-flow

onditions. 

The middle row of plots from Fig. 11 show the pressure field

nd time-lapse saturation results obtained using EDFM. Note that

he injected fluid is allowed to bypass the diagonal flow barrier,

owards the production boundary. This, once again shows the limi-

ation of EDFM, which is only able to capture the effect of fractures

ith permeabilities higher than the matrix. However, by disregard-

ng flow barriers, EDFM delivers an overly optimistic and nonreal-

stic production forecast. 

In contrast to EDFM, the pressure field obtained using pEDFM

hows sharp discontinuities (bottom-left of Fig. 11 ). The accompa-

ying saturation plots confirm that the injected phase is confined

y the diagonal barrier and forced to flow through the bottom of

he domain, thus significantly delaying its breakthrough towards

he production boundary. 

These results confirm that pEDFM outperforms to EDFM, due to

ts applicability in cases with complex and dense fracture geome-

ries and in the presence of matrix heterogeneities. 

.6. Comparison between 3D pEDFM and unstructured DFM 

Finally, a test case on a 3D domain containing 3 layers of frac-

ures, stacked along the Z axis ( Fig. 12 ) is conducted. The top layer

s a vertically extruded version of the 2D fracture map from Fig. 10 .

he second layer consists of a single fracture network whose in-

ersecting plates have highly heterogeneous properties. Finally, the

hird layer is represented by 3 large individual plates, with a clus-

er of small parallel fractures packed in between. 

In this scenario, the incompressible single-phase flow is driven

rom the left boundary, where the pressure is set to the non-

imensional value of p = 1 , towards the right, where p = 0 , while

ll the other boundaries of the domain are subject to no-flow con-

itions. No other source terms are present and gravity and capil-

ary effects are neglected. The results of pEDFM, on a matrix grid

ith N x = N y = N z = 100 and a total of 23381 fracture cells, are

ompared to those obtained using DFM on an unstructured grid

 Fig. 13 ), where the number of tetrahedra (matrix) and triangles

fractures) were chosen to approximately match the degrees of

reedom on the structured grid. 

The two pressure fields are plotted in Fig. 14 using iso surfaces

or equidistant values, and are in good agreement, for decision-

aking purposes. 

This last numerical experiment shows that pEDFM has good po-

ential for field-scale application. 

. Conclusions and future work 

In this paper, a novel Projection-based Embedded Discrete Frac-

ure Model (pEDFM) was devised, for flow simulation through frac-

ured porous media. It inherits the grid flexibility of the classic

DFM approach. However, unlike its predecessor, its formulation

llows it to capture the effect of fracture conductivities ranging

rom highly permeable networks to inhibiting flow barriers. 

The new model was validated on 2D and 3D test cases, while

tudying its sensitivity towards fracture position within a matrix

ell, grid resolution and the cross-media conductivity contrast. The

esults show that pEDFM is scalable and able to handle dense and

omplex fracture maps with heterogeneous properties in single-, as

ell as multiphase flow scenarios. Finally, its results on structured

rids were found comparable to those obtained using the DFM ap-

roach on unstructured, fracture-conforming meshes. 

In conclusion, pEDFM is a flexible model, its simple formulation

ecommending it for implementation in next-generation simulators

or fluid flow through fractured porous media. 
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Fig. 14. Comparison between the pressures obtained using pEDFM and unstructured DFM (using similar grid resolutions) for a 3D incompressible single-phase test case with 

3 layers of heterogeneous fractures. 

Fig. A15. Analytical calculation of the average distance between a fracture and a matrix cell on 2D structured grids. Four right triangles are constructed by intersecting the 

cell’s edges with the fracture line. Note that triangles 3 and 4 overlap with triangles 1 or 2 (a,b). When the fracture coincides with the cell diagonal, triangles 3 and 4 have 

zero area (c). If the fracture is aligned with one of the axes, two rectangles are formed instead (e). Finally, the same procedure is followed when the fracture lies outside the 

cell (d). 
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Possible directions for future work include the extension of

EDFM to unstructured grids. Furthermore, systematic benchmark-

ng studies (including CPU time comparisons) between pEDFM

nd alternative mass-conservative DFM approaches on unstruc-

ured grids can provide valuable insights for its application and

erformance in real-field cases. 
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ppendix A. Average distance calculation 

The computation of the average distance between a matrix con-

rol volume and a fracture surface, which appears in Eqs. (6) and

10) , may involve numerical integration for arbitrarily shaped cells.
or 2D structured grids, however, analytical formulas were given in

ajibeygi et al. (2011) for a few specific fracture orientations. This

ubsection, an adaptation of Chapter 2.3.2 from Pluimers (2015) ,

rovides a general procedure to handle fracture lines with arbitrary

rientation. 

The interfaces of each cell intersected by a fracture are ex-

ended until they intersect the fracture line, resulting in four right

riangles with surfaces A 1 to A 4 , as shown in Fig. A.15 . Then, given

he average distance between each triangle and its hypotenuse,

 d 〉 1 to 〈 d 〉 4 , as (see Hajibeygi et al. (2011) ), 

 d〉 i = 

Lx i · Ly i 

3 

√ 

Lx i 
2 + Ly i 

2 
, (A.1) 

here Lx i and Ly i are the lengths of the axis-aligned sides of trian-

le i , the average distance between grid cell i and fracture line f is

btained, 

 d 〉 i f = 

A 1 〈 d 〉 1 + A 2 〈 d 〉 2 − A 3 〈 d 〉 3 − A 4 〈 d 〉 4 
A 1 + A 2 − A 3 − A 4 

. (A.2)

Note that no modification is required to the formula in the case

hen fractures lie outside the cell, i.e. for the non-neighbouring



216 M. Ţ ene et al. / Advances in Water Resources 105 (2017) 205–216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K  

L  

L  

 

M  

 

M  

 

M  

 

M  

N  

 

P  

R  

 

 

 

S  

 

 

 

 

 

T  

 

T  

 

connections from Eq. (10) . In addition, this procedure can be di-

rectly applied to 3D structured grids where fractures are extruded

along the Z axis, while a generalization for fracture plates with any

orientation is the subject of future research. 
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