

Delft University of Technology

Investigating Type Declaration Mismatches in Python

Pascarella, Luca; Ram, Achyudh; Nadeem, Azqa ; Bisesser, Dinesh; Knyazev, Norman; Bacchelli, Alberto

DOI
10.1109/MALTESQUE.2018.8368458
Publication date
2018
Document Version
Accepted author manuscript
Published in
2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)

Citation (APA)
Pascarella, L., Ram, A., Nadeem, A., Bisesser, D., Knyazev, N., & Bacchelli, A. (2018). Investigating Type
Declaration Mismatches in Python. In 2018 IEEE Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE) (pp. 43-48). IEEE. https://doi.org/10.1109/MALTESQUE.2018.8368458

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MALTESQUE.2018.8368458
https://doi.org/10.1109/MALTESQUE.2018.8368458

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Investigating Type Declaration
Mismatches in Python

Luca Pascarella, Achyudh Ram, Azqa Nadeem, Dinesh
Bisesser, Norman Knyazev, and Alberto Bacchelli

Report TUD-SERG-2018-005

SERG

TUD-SERG-2018-005

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Van Mourik Broekmanweg 6
2628 XE Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
https://se.ewi.tudelft.nl/tr.html

For more information about the Software Engineering Research Group:
https://se.ewi.tudelft.nl/

This paper is a pre-print of: Luca Pascarella, Achyudh Ram, Azqa Nadeem, Dinesh Bisesser, Norman
Knyazev, and Alberto Bacchelli – Investigating Type Declaration Mismatches in Python.
In Proceedings of the Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE-
2018), Mar 20-23, 2018. Campobasso, Italy
doi: https://doi.org/10.1109/MALTESQUE.2018.8368458

Acknowledgments. This project has received funding from the European Unions’ Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954 and the Swiss
National Science Foundation through the SNF Project No. PP00P2 170529.

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/MALTESQUE.2018.8368458

Investigating Type Declaration Mismatches in Python
Luca Pascarella, Achyudh Ram

Delft University of Technology
The Netherlands

{L.Pascarella, A.R.Keshavram-1}
@tudelft.nl

Azqa Nadeem, Dinesh Bisesser, Norman Knyazev
Delft University of Technology

The Netherlands
{A.Nadeem, S.P.D.Bisesser, N.Knyazev}

@student.tudelft.nl

Alberto Bacchelli
University of Zurich

Switzerland
bacchelli@ifi.uzh.ch

Abstract—Past research provided evidence that developers
making code changes sometimes omit to update the related
documentation, thus creating inconsistencies that may contribute
to faults and crashes. In dynamically typed languages, such as
Python, an inconsistency in the documentation may lead to a
mismatch in type declarations only visible at runtime.

With our study, we investigate how often the documentation is
inconsistent in a sample of 239 methods from five Python open-
source software projects. Our results highlight that more than
20% of the comments are either partially defined or entirely
missing and that almost 1% of the methods in the analyzed
projects contain type inconsistencies. Based on these results, we
create a tool, PyID, to early detect type mismatches in Python
documentation and we evaluate its performance with our oracle.

I. INTRODUCTION

Creating a proper software system is a big challenge [3],
[16]. To support, quicken, and ease development, software
engineers often rely on the work of external developers who
write software, such as libraries and remote services, also
known as Application Programming Interfaces (API). These
APIs are often provided with as an aid in understanding how
to use them properly [21].

Several researchers conducted interviews, surveys, and ex-
periments to define how much of this documentation is
enough [28]. Recently, de Souza et al. investigated [4] the
impact of the agile product development method on software
documentation, confirming that source code and annexes code
comments are the most important artifacts used by developers
in maintainability processes. Forward and Lethbridge [13]
conducted a survey discovering that also dated documentation
may be relevant, nevertheless, referring to a not up to date
documentation may be dangerous for developers. In fact,
developers are found to be sometimes dangerously careless
when it comes to keeping this documentation updated [13],
[8]. This behavior leads to poor or unaligned documentation,
which may create delays in the software development or, even
worse, faults in software artifacts [20], [25].

The problems created by unaligned documentation become
even more significant both (1) for dynamically typed lan-
guages, such as PYTHON, where code comments provide
valuable information regarding method specification for both
internal and external developers [29], and (2) for API docu-
mentation where the source code is not available (e.g., web
APIs). Shi et al. explored the co-evolution of the API and
related documentation of big libraries finding that the code of

two nearby releases may evolve dramatically, thus requiring
also a crucial evolution of the annexed documentation, which
underlines the relevance of the topic.

Zhou et al. proposed one of the most recent investigations
on the frequent inconsistencies between source code and API
documentation [31]. They proposed an automated approach
based on program comprehension and natural language pro-
cessing to address the inconsistencies in method’s parameters
by creating constraints and exception throwing declarations.
Such solution becomes particularly useful when integrated into
IDEs, as it creates timely alerts asking developers to handle
the mismatches between types declared in the documentation
and types referred in the source code.

Despite the innovative technique proposed by Zhou et al.,
their model is limited to statically typed languages, such as
JAVA. Nevertheless, developing code in dynamically typed
languages makes the code even more prone to hidden vulner-
abilities stemming from code-comment inconsistencies [26].
In fact, a type mismatch may trigger an error far away from
where the type mismatch initially occurred or, even worse, it
may never trigger a runtime error while failing silently with
serious consequences.

In the work we present in this paper, we conducted a first
step in investigating and supporting the alignment between
documentation and source code in dynamically typed lan-
guages. In particular, we investigated the alignment between
methods and comments in five popular OSS Python projects.
We started with an empirical analysis of how careful open-
source software (OSS) projects developers are about main-
taining aligned documentations. For this purpose, we manually
inspected the alignment between methods’ body and docstring
of 239 methods from the aforementioned OSS Python projects.

Our results show that the Python developers of the five
OSS systems we sampled do care about documentation. In
fact, even though developers left incomplete or totally pending
more than 20% of the analyzed public methods, less than
1% of the analyzed methods contains mismatches between
declared and used types. This finding empirically underlines
how important documentation is deemed to be by developers
of dynamically typed languages. Since even a 1% of unaligned
methods may become problematic, we designed PyID, an OSS
tool based on machine learning aimed at helping developers
to early detect type mismatches in documentation.

SERG L. Pascarella et al. – Investigating Type Declaration Mismatches in Python

TUD-SERG-2018-005 1

II. MOTIVATING EXAMPLE

1 def method (param1 , param2=” ” , param3=” True ”) :
2 ””” R e t u r n s a c o n c a t e n a t e d s t r i n g o f g i v e n e l e m e n t s
3
4 P a r a m e t e r s
5 −−−−−−−−−−
6 param1 : s t r i n g
7 f i r s t p a r a m e t e r t o c o n c a t e n a t e
8
9 param3 : b o o l e a n

10 add a d o t t e r m i n a t i o n t o t h e c o n c a t e n a t e d s t r i n g
11
12 R e t u r n s
13 −−−−−−−
14 R : C o n c a t e n a t e d o b j e c t
15 ”””
16
17 temp = param1 + param2
18 i f param3 == ” True ” :
19 temp = temp + ” . ”
20 re turn temp

Listing 1. Example of a Python method.

In a well-documented project, different kind of source
code comments can support developers who are performing
different tasks, such as understanding a method’s behavior,
being aware of authors’ rationales, and finding additional
references [18]. Source code comments can even be used to
automatically generate external documentation, as it is often
the case for external APIs, which rely on documentation gen-
erated from comments using automatic tools such as SPHINX.1

However, comments may not always be present, complete,
or updated to support the developers in their tasks, thus
hindering the fluency of the tasks’ execution. In particular,
suboptimal comments (and, consequently the automatically
generated documentation) may become very problematic when
the source code is not visible (e.g., for certain web APIs),
because it may lead a developer to write code that is prone
to hidden issues. In this paper, we focus on misaligned
documentation and at type declaration mismatches between
code and comments.

A. Type Mismatch in Statically Typed Languages.

In a statically typed language (e.g., Java, C, C++), the type
of a variable is usually explicitly defined by the author and
checked statically at compile time. Even though a less restric-
tive version of statically typed languages (e.g., Scala) offer
a type inference mechanism to deduce types from variables
assignment, a compile-time check may still prevent erroneous
operations. In such scenario, the author is forced to respect
the variable type during the math operations, comparisons,
assignments etc.. However, this should not be considered a
limitation because almost every language offers a workaround
solution to explicitly force not allowed operations (generally
known as cast). For example, an expert developer may force
the assignment of a floating point value to an integer variable
knowing the consequence of such operation. The practical
benefit for a developer, that programs in a statically typed
language, is that the compiler cares of types checking creating
appropriate warnings in case of problems, thus classes of bugs
may be caught in advance during the compilation phase. In
the case of statically typed languages, an automatic tool, such
as the one proposed by Zhou et al. [31], is able to conduct

1http://www.sphinx-doc.org/en/stable/

advanced static analysis to detect type mismatches between
code and documentation.

B. Type Mismatch in Dynamically Typed Languages

In a dynamically typed language (e.g., Python) variables
types are usually not explicitly declared in the code, but they
are evaluated at runtime offering to developers the possibilities
to produce compact, flexible code. However, this advantage
becomes a source of mistake when, relying only on the
documentation, a developer reuses a third-party code in form
of library or API. In that scenario, a type mismatch in the
API documentation may create an unexpected condition in the
latest deployed software creating potential faults.

Listing 1 shows an ad hoc method and a relative Docstring
that provides an explanation of the required parameters. A
Doctring is a special kind of comment in Python language
usually used to document methods, classes, or, in general,
Python code. Similarly to the Javadoc2, Docstring is used
to generate API documentation in Python code. The main
difference between the two languages is that the first refers
to the strict Doc Comments format to generate the API
documentation, instead, the latter supports many formats i.e.,
Numpydoc, Epytext, or reStructuredText, which look inherently
different from each other (this may create confusion when
multiple formats are chosen for the same project).

The example in Listing 1 collects issues that may be present
in a real scenario. In particular, method requires 3 parameters:
param1, param2, and param3. All parameters are string types,
however, only the first has a correct description, while the
second is missed and the third is declared as boolean but used
as string. An API derived by such example may lead to a
wrong usage, thus creating an unexpected crash. The method
nonisomorphic trees3 of the project NETWORKX represents
a realistic example of the confusion that can be inducted in
an external developer: The parameter create is used as string,
but this information is not clear by reading only the natural
language documentation.

Even though documentation misalignment is a critical issue
for dynamically typed languages, recent studies have only
focused so far on investigating types mismatches in statically
typed languages [31].

Overall, with our work, we specifically focus on devising
an empirical evaluation of how much developers care about
the importance of creating aligned documentation. Our aim is
to get a comprehensive view of the developers’ trend in open
source Python projects by focusing on mismatches between
method code and documentation. Moreover, we create a tool
to help automatically finding certain cases of misaligned doc-
umentation. Besides improving our scientific understanding
of this type of artifacts, it is our hope that our work could
also be beneficial, for example, to developers that want an
automated support to recognize misalignments and improve
their documentation quality [13].

2https://docs.oracle.com/javase/1.5.0/docs/tooldocs/solaris/javadoc.html
3https://goo.gl/fYbtwA

L. Pascarella et al. – Investigating Type Declaration Mismatches in Python SERG

2 TUD-SERG-2018-005

III. METHODOLOGY

A. Research Questions

The goal of our work is understanding and quantifying
misaligned software documentation in a dynamically typed
language, i.e., Python. In addition, we investigate the per-
formance of an automatic tool aimed at preventing type
declaration mismatches in Python.

Despite the importance of a correctly updated documen-
tation is widely recognized [11], time pressure and strict
deadlines may lead developers to sometimes forget to update
documentation [13]. As argued in the previous sections, this
behavior may be particularly problematic for dynamically
typed languages as it may lead to hidden issues only discov-
ered at runtime. We start with an exploratory study aimed
at understanding how frequently the documentation and the
corresponding source code are not aligned for popular Python
projects; this leads to our first research question:

RQ1. How often are inconsistencies present in OSS Python
documentation?

The results to RQ1 support the claim that having aligned
documentation is important for Python developers: Even
though developers left incomplete or totally pending more
than 20% of the analyzed public methods, less than 1% of
the analyzed methods contains mismatches between declared
and used types. However, these misalignments are still present
and they may conceal a runtime crash; this leads to our second
research question:

RQ2. How effective is an automated tool in discovering
mismatches in type definitions between comments and
source code?

B. Selection of Subject Systems

To conduct our analysis, we focused on a single dynamically
typed programming language (i.e., Python, one of the most
popular dynamically typed languages [5]) and on OSS projects
whose source code is publicly available. In the selection phase
of a representative subset of five open source projects (selected
from 150, 000 active Python repositories hosted by GitHub4)
we introduced two constraints to filter out undesired projects.
The first filter discards every project that does not use a single
documentation format and the second keeps only projects that
adopt Numpydoc technical documentation format, based on the
reStructuredText syntax elements.5

To perform this selection we combined the results of a
manual inspection conducted by considering the most popular
Python projects hosted by GitHub and the list of open source
projects that adopt the Numpydoc style accordingly to the
Sphinx website [9].

With this process, we selected five heterogeneous software
systems: SCIKIT–LEARN, SCIKIT–IMAGE, MATPLOTLIB,

4https://github.com/
5http://docutils.sourceforge.net/rst.html

NETWORKX, and NEUPY. Successively, we downloaded the
latest snapshot for each of them and we used S. Cloc [17] to
retrieve the basic statistic information such as number of code
lines, number of comments, and number of methods.

Table I
OVERVIEW OF THE PROJECTS USED IN THIS STUDY

Project Commits Contributors Code Comments Methods Samples
Scikit–Learn 22251 932 104843 62667 3391 96
Scikit–Image 9467 233 40591 24229 1563 44
Matplotlib 22759 637 120820 54598 1758 50
NetworkX 5366 193 51620 40591 1563 44
NeuPy 713 4 19162 8612 168 5
Overall 61k 2k 335k 191k 9k 239

C. Documentation Definitions

To answer the first research question, we need to recognize
different categories of comments that may express the correct-
ness of declared types.

In dynamically typed language the documentation of a
method contains the high-level description and may or may not
contain the type of declarations of the required parameters. In
Python, the Numpydoc (a widely adopted variant of docstring
format style [19]) encourages developers to explicitly declare
parameter types aimed at reducing the usage confusion. In
such scenario, an ad hoc reStructuredText parser could be
used to catch the declaration of variable types, if present.
Consequently, we could run into comments of three types:

• Complete – A docstring that describes all the parameters
of a method.

• Partial – A docstring that describes at least one param-
eter (but not all) of a method.

• Missing – A docstring that does not describe any param-
eter in a method.6

In the first two cases (Complete and Partial), a docstring
that follows Numpydoc format style may or may not have
type declaration inconsistencies; we distinguish between two
alternative cases:

• Valid – A Numpydoc docstring, with or without minor
variations from the Numpydoc specification (such as
missing or additional white-spaces), which represents a
complete and exhaustive documentation.

• Inconsistent – Any type inconsistency in describing the
data type of a parameter in a docstring. This may range
from completely incorrect data types (e.g., comment
stating that param is an int while it is used as a str in
the code) to describing the data type in a language that
may be ambiguous to a reader (e.g., stating that param
is tensor or color raises questions about whether they are
strings, sequences or objects).

6This can either happen when the developers have really not stated the
parameters for the method, or if the comment is written in a format other
than Numpydoc in which case the docstring parser fails and assumes that the
comment is absent.

SERG L. Pascarella et al. – Investigating Type Declaration Mismatches in Python

TUD-SERG-2018-005 3

D. A Dataset of Categorized Methods

Sampling approach. We used random sampling to produce
a statistically significant set of code comments from each one
of the five subject OSS projects. To calculate the size of such
a statistically significant sample set, we use simple random
sampling without replacement, according to the formula:

n =
N · p̂q̂

(
zα/2

)2

(N − 1)E2 + p̂q̂
(
zα/2

)2

where: p̂ is a value between 0 and 1 that represents the
proportion of methods with valid docstrings associated, q̂
is the proportion of methods not containing such kind of
documentation, N is the size of the population, α is the
confidence interval (which we took as 95%) and, E is the
error allowed (a 5% margin).

Combining all the methods with associated docstrings for
the given projects we get N = 8, 443 methods. Out of N , 80%
(p̂ = 0.8) of the docstrings were valid, meaning that they could
be further processed on, while 20% (q̂ = 0.2) were invalid
docstrings. The rest of the parameters were set to E = 0.05
and zα/2 = 1.96. The calculated n value is 239.

Manual classification. Once the sample of methods with
internal documentation was selected, each of them had to
be manually classified according to our definitions. For each
method taken from the sample set, we proceeded with a
manual inspection by: (1) counting the number of parameters
in both comment and code and (2) inspecting the code to find
the data type associated to each argument in the method.

Four authors of this paper conducted a multiphase iterative
content analysis session [14] by manually inspecting the
sample set composed of 239 Python methods. In the first
iteration, a small number of 5 files was randomly picked to
conduct a preliminary analysis aimed at understanding how
correctly proceed with the classification of the docstrings
documentation. In the second step, three authors of this
paper independently annotated all sample methods and in the
third phase, a fourth author verified the correctness of such
classification. This third step was necessary to verify their
agreement highlighted only negligible differences.

E. Automated Detector of Type Mismatches

In the second research question, we investigate to what ex-
tent and with which accuracy an automatic tool can recognize
parameter type mismatches in Python methods. To accomplish
this task, we adopted a combination of classification tech-
niques (e.g., based on deep learning approaches [10]) that led
to the design of an open source tool.

Python Inconsistency Detector. The dynamic-type nature
of Python makes type checking a difficult problem [1]. For
this aim, we used MYPY [15] that is a Python library that
statically checks Python data types. MYPY builds an AST-
like structure and verifies if the intended types (expressed in
his specific format) match up with the true types in the source
code. We built an open source tool named PyID as a chain
of scripts to determine whether a given pair code-comment is
aligned. To this aim, we followed these logical steps:

1) A parser reads the docstrings of each method and collects
the data type of each parameter;

2) A script identifies the methods with complete docstrings
filtering out undesired docstrings;

3) For complete cases a script generated and inserts MyPy-
supported comments at the beginning of each method
stating the name and data type of each parameter;

4) The updated source code with MyPy-supported com-
ments is then fed to MYPY to run the static type
checking;

5) Finally, the output of MYPY is collected and checked for
any detected type inconsistencies.

MyPy comment generator. The output of the docstrings
parser is a list of tuples. Each tuple refers to a method. It
contains the source file’s path, the method name, the line
number of the method declaration, the list of parameter types
as read from the docstrings, and a tag stating whether it is a
complete, partial or missing comment. To infer the data type of
each parameter (mostly described in natural language) we used
an approximate sentence matching technique otherwise known
as fuzzy sentence matching [30]. This technique is a machine
learning information retrieval approach used to assign a label
to a natural language sentence by evaluating the meaning
of recurrent terms. The technique relies on NLTK Python
library [2] and uses several word-transformation such as:

• tokens: divide text in to words, numbers, or other “dis-
crete” unit of text.

• stems: words that have had their “inflected” pieces re-
moved based on simple rules, approximating their core
meaning.

• lemmas: words that have had their “inflected” pieces
removed based on complex databases, providing accurate,
context-aware meaning.

• stopwords: low-information, repetitive, grammatical, or
auxiliary words that are removed from a corpus before
performing approximate matching.

After this pre-processing step is completed and the data
type is derived by the documentation, an additional script
transforms the Python source file in a format compatible with
MYPY input by adding the detected type near to each method.

Classification evaluation. To evaluate the effectiveness of
our automated technique to classification code comments into
our taxonomy, we measured three well-known Information
Retrieval (IR) metrics for the quality of results [22], named
precision, recall, and F-measure.

IV. RESULTS

Table II
COMPLETENESS OF COMMENTS IN SAMPLE SET

Complete Partial Missing Other
Scikit–Learn 87 5 1 3
Scikit–Image 43 1 0 0
Matplotlib 30 8 5 7
NetworkX 40 3 1 0
NeuPy 4 1 0 0
Overall 204 18 7 10

L. Pascarella et al. – Investigating Type Declaration Mismatches in Python SERG

4 TUD-SERG-2018-005

RQ1 - Inconsistencies in OSS Python Documentation

The first question investigates the frequency of inconsisten-
cies in type declaration in the sampled Python projects.

Table II contains the results of the manual inspection
reporting the absolute number of Complete, Partial, Missing,
and Other methods. We observe that the developers tend to
produce software with well-formatted documentation, indeed,
only 1 analyzed project MATPLOTLIB lacks of documentation
for 5 methods. In addition, only 2 projects SCIKIT–LEARN
and MATPLOTLIB have a generic format inconsistency in
method’s documentation. These observations suggest that,
against previous research [13], open source developers of the
selected Python projects follow good practices when creating
and update their documentation.

Going more in-depth into the achieved results by measuring
the number of data type mismatches in the Complete and
Partial methods, we found that less than 1% of the analyzed
cases are classified ad Inconsistent. In addition, for 4 projects
the amount of partial comments is proportional to the number
of missing comments, ranging between 5 − 20%, with the
exception of MATPLOTLIB. SCIKIT-IMAGE, together with
NEUPY, exhibited a high number of complete comments at
approximately 75%.

Overall, the high number of comments classified as Missing
may be attributed to developers intentionally writing com-
ments not adhering to Numpydoc standard, while the docstring
may still provide all required information. The non-negligible
occurrence frequency of Partial comments may be important
for developers to prevent misunderstanding.

Result 1: The manual inspection of 239 public methods
highlights that, overall, code and comments in the sampled
methods are well aligned, with less than 1% of the methods’
documentation being Inconsistent and less than 20% being
either Partial or Missing.

Table III
PERFORMANCE EVALUATION OF PYID

Precision Recall F-measure
Scikit–Learn 0.38 0.71 0.50
Scikit–Image 0.80 0.80 0.80
Matplotlib 0.75 0.60 0.67
NetworkX 0.67 0.67 0.67
NeuPy 1.00 1.00 1.00
Overall 0.58 0.71 0.64

RQ2 - Automatically Detecting Type Mismatches

PyID has two main modules where the detection perfor-
mance can be measured: Docstring parser and inconsistency
detection. In order to evaluate the performance of PyID, we
ran it on the methods sampled from the dataset as described
in Section III-D.

Due to space limitations, we only report the average percent-
age of precision and recall achieved by the first part of PyID
that are 99% and 99%, respectively. These values are achieved

because PyID uses both an AST and a less stringent regular
expression to parse the docstring, indeed, for SCIKIT–IMAGE,
NETWORKX, and NEUPY, the docstring parser successfully
parses all complete, Partial and Missing comments, hence
achieving a precision and recall of 100%.

Table III shows the performance of the second part of PyID
aimed at detecting type mismatches. The results highlight that
there is a significant variation between projects, which is due
to MYPY not being able to properly detect some derived types.
However, the performance is promising for projects such as
SCIKIT–IMAGE and NEUPY where F-measure is between 80−
100%.

Result 2: The results achieved executing PyID on a real
dataset manual classified shows promising performance
with an overall F-measure up to 64%.

V. THREATS TO VALIDITY

Sample validity. One potential criticism of a scientific study
conducted on a small sample of projects is that it could deliver
little knowledge. This study highlights the characteristics and
distributions of five open source projects focusing from an
external perspective. Historical evidence shows otherwise:
Flyvbjerg gave many examples of individual cases contributing
to discoveries in physics, economics, and social science [7].
To answer our research questions, we read and inspected more
than 8, 000 lines of code and comments have been written by
more than 500 contributors (see Section Section III-D).

Taxonomy validity. To proceed with manual classification
we defined a tree-based taxonomy (see Section Section III-C).
To ensure that defined categories were exhaustive to classify
every type of documentation status we proceeded with a multi-
phase content analysis session were we iteratively explored
every condition of documentation. We obtained an agreement
of 100% on the 139 methods considered where we used the
provided categories to cover all inspected cases.

External Validity. This category refers to the generaliz-
ability of our findings. While in the context of this work we
analyze software projects having different size and scope, we
limit our focus to Python systems because the tool that we used
in our analysis infer type check only for this programming
language. Thus, we cannot claim generalizability with respect
to systems written in different languages as well as to projects
belonging to industrial environments. Future work can be
devoted to improving these aspects of our study.

VI. RELATED WORK

Tools exist to type check code written in statically typed
languages and detect code comment inconsistencies. Tan et
al. present @tComment to test method properties about null
values and related exceptions [27]. The authors evaluated
the tool on seven open-source projects and found 29 incon-
sistencies between Javadoc comments and method bodies.
Khamis et al. introduce JavaDocMiner, a heuristic based
approach for assessing the quality of in-line documentation,
targeting both the quality of language and consistency between

SERG L. Pascarella et al. – Investigating Type Declaration Mismatches in Python

TUD-SERG-2018-005 5

Java source code and its comments [12]. Further, generalized
frameworks like iComment by Tan et al. combine Natural Lan-
guage Processing, Machine Learning, Statistics and Program
Analysis techniques to achieve the same purpose of detecting
inconsistencies between comments and source code [25].

There are several studies on code comments and measuring
the quality of the commented code. Stamelos et al. tested
the hypothesis that software quality grows if the code is
more commented and suggest a simple ratio metric between
code and comments [23]. Fluri et al., to investigate whether
developers comment their code, present a heuristic approach
to associate comments with code. [6] Steidl et al. investigate
the quality of the source code comments [24].

While for a dynamically typed language such as Python,
it was expected to have a high number of mismatches, our
results of RQ1 appear to be similar to those of Tan et al.
who also found that under 1% of code-comment pairs contain
mismatches @tComment.

VII. CONCLUSION

The documentation of a software system is an important
source of information for developers, for example, if the
system is a third-party library or API. In particular, a correct
documentation becomes crucial when developers cannot read
the source code and the language is dynamically typed because
the incorrect use of data types arises only at runtime and
creates unexpected crashes.

In this work, we investigated how often developers leave the
documentation inconsistent and how accurately an automatic
tool based on machine learning can detect documentation
type mismatches. For this purpose, we manually analyzed 239
Python methods discovering that less than 20% of them are
Partial or Missing and less than 1% of Complete and Partial
methods contain types mismatches. This seems to indicate that
the developers of our selected systems are aware of the im-
portance of good documentation in their context. In addition,
we designed PyID with the purpose of helping developers to
keep their documentation and code well aligned. Testing PyID
with the manually classified methods, we reached an overall
precision and recall up to 58% and 71%, respectively.

ACKNOWLEDGMENT

Bacchelli gratefully acknowledges the support of the Swiss
National Science Foundation through the SNF Project No.
PP00P2 170529.

REFERENCES

[1] J. Aycock. Aggressive type inference. language, 1050:18, 2009.
[2] S. Bird, E. Klein, and E. Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

[3] M. Bloch, S. Blumberg, and J. Laartz. Delivering large-scale it projects
on time, on budget, and on value. Harvard Business Review, 2012.

[4] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A study of
the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information. ACM, 2005.

[5] N. Diakopoulos and S. Cass. The top programming
languages 2016. IEEE Spectrum, http://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2016, Jul 2016.

[6] B. Fluri, M. Wursch, and H. C. Gall. Do code and comments co-evolve?
on the relation between source code and comment changes. In Reverse
Engineering, 2007. WCRE 2007. 14th Working Conference on, pages
70–79. IEEE, 2007.

[7] B. Flyvbjerg. Five misunderstandings about case-study research. Qual-
itative inquiry, 12(2):219–245, 2006.

[8] A. Forward and T. C. Lethbridge. The relevance of software documenta-
tion, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering, pages 26–33. ACM, 2002.

[9] S. P. D. Generator., 2017. http://www.sphinx-doc.org/en/stable/.
[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive

Computation and Machine Learning series. The MIT Press, 2016.
[11] S. Haefliger, G. Von Krogh, and S. Spaeth. Code reuse in open source

software. Management Science, 54(1):180–193, 2008.
[12] N. Khamis, R. Witte, and J. Rilling. Automatic quality assessment

of source code comments: The javadocminer. In NLDB, pages 68–79.
Springer, 2010.

[13] T. C. Lethbridge, J. Singer, and A. Forward. How software engineers use
documentation: The state of the practice. IEEE software, 20(6):35–39,
2003.

[14] W. Lidwell, K. Holden, and J. Butler. Universal principles of design,
revised and updated: 125 ways to enhance usability, influence percep-
tion, increase appeal, make better design decisions, and teach through
design. Rockport Pub, 2010.

[15] MyPy., 2017. http://mypy-lang.org/.
[16] N. Nan and D. E. Harter. Impact of budget and schedule pressure

on software development cycle time and effort. IEEE Transactions on
Software Engineering, 35(5):624–637, 2009.

[17] C. L. of Code., 2017. https://github.com/AlDanial/cloc.
[18] L. Pascarella and A. Bacchelli. Classifying code comments in java

open-source software systems. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 227–237. IEEE
Press, 2017.

[19] reStructuredText Docstring Format., 2017. https://www.python.org/dev/
peps/pep-0287/.

[20] M. P. Robillard. What makes apis hard to learn? answers from
developers. IEEE software, 26(6), 2009.

[21] A. A. Sawant and A. Bacchelli. fine-grape: fine-grained api usage
extractor–an approach and dataset to investigate api usage. Empirical
Software Engineering, pages 1–24, 2017.

[22] H. Schütze. Introduction to information retrieval. In Proceedings of the
international communication of association for computing machinery
conference, 2008.

[23] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality
analysis in open source software development. Information Systems
Journal, 12(1):43–60, 2002.

[24] D. Steidl, B. Hummel, and E. Juergens. Quality analysis of source
code comments. In Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, pages 83–92. IEEE, 2013.

[25] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* icomment: Bugs or bad
comments?*. In ACM SIGOPS Operating Systems Review, volume 41,
pages 145–158. ACM, 2007.

[26] L. Tan, D. Yuan, and Y. Zhou. Hotcomments: how to make program
comments more useful? In HotOS, 2007.

[27] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @ tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, pages 260–269. IEEE, 2012.

[28] B. Thomas and S. Tilley. Documentation for software engineers: what is
needed to aid system understanding? In Proceedings of the 19th annual
international conference on Computer documentation, pages 235–236.
ACM, 2001.

[29] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect of modu-
larization and comments on program comprehension. In Proceedings of
the 5th international conference on Software engineering, pages 215–
223. IEEE Press, 1981.

[30] T. Yu. Email analysis using fuzzy matching of text, Jan. 5 2010. US
Patent 7,644,127.

[31] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall.
Analyzing apis documentation and code to detect directive defects. In
Proceedings of the 39th International Conference on Software Engineer-
ing, pages 27–37. IEEE Press, 2017.

L. Pascarella et al. – Investigating Type Declaration Mismatches in Python SERG

6 TUD-SERG-2018-005

TUD-SERG-2018-005
ISSN 1872-5392 SERG

