
 
 

Delft University of Technology

Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators

Peltenburg, Johan; Hadnagy, Ákos; Brobbel, Matthijs; Morrow, Robert ; Al-Ars, Zaid

DOI
10.1109/ICFPT52863.2021.9609833
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 International Conference on Field-Programmable Technology (ICFPT)

Citation (APA)
Peltenburg, J., Hadnagy, Á., Brobbel, M., Morrow, R., & Al-Ars, Z. (2021). Tens of gigabytes per second
JSON-to-Arrow conversion with FPGA accelerators. In 2021 International Conference on Field-
Programmable Technology (ICFPT): Proceedings (pp. 1-9). Article 9609833 (2021 International Conference
on Field-Programmable Technology, ICFPT 2021). IEEE.
https://doi.org/10.1109/ICFPT52863.2021.9609833
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICFPT52863.2021.9609833
https://doi.org/10.1109/ICFPT52863.2021.9609833


Tens of gigabytes per second JSON-to-Arrow
conversion with FPGA accelerators
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Abstract—JSON is a popular data interchange format for
many web, cloud, and IoT systems due to its simplicity, human
readability, and widespread support. However, applications must
first parse and convert the data to a native in-memory format
before being able to perform useful computations. Many big data
applications with high performance requirements convert JSON
data to Apache Arrow RecordBatches, the latter being a widely-
used columnar in-memory format for large tabular data sets
used in data analytics. In this paper, we analyze the performance
characteristics of such applications and show that JSON parsing
represents a bottleneck in the system. Various strategies are
explored to speed up JSON parsing on CPU and GPU as much
as possible. Due to performance limitation of the CPU and GPU
implementations, we furthermore present an FPGA accelerated
implementation. We explain how hardware components that can
parse variable-sized and nested structures can be combined to
produce JSON parsers for any type of JSON document. Several
fully integrated FPGA-accelerated JSON parser implementations
are presented using the Intel Arria 10 GX and Xilinx VU37P
devices, and compared to the performance of their respective
host systems; an Intel Xeon and an IBM POWER9 system. Result
show the accelerators achieve an end-to-end throughput close to
7 GB/s with the Arria 10 GX using PCIe, and close to 20 GB/s
with the VU37P using OpenCAPI 3. Depending on the complexity
of the JSON data to parse, the bandwidth is limited by the host-
to-accelerator interface or available FPGA resources. Overall,
this provides a throughput increase of up to 6x, compared to
the baseline application. Also, we observe a full system energy
efficiency improvement of up to 59x more JSON data parsed per
joule.

Index Terms—JSON, parsing, Apache Arrow, FPGA, acceler-
ator

I. INTRODUCTION

Today, many systems exchange large amounts of data using
a human-readable format described in the JavaScript Object
Notation (JSON) Data Interchange Standard. These systems
include web and cloud services, non-relational databases,
Internet-of-Things devices, and many others. A consuming
system has to deserialize JSON data before it can be used,
which can take up a significant amount of time and energy,
sometimes causing bottlenecks in systems that require high
performance in terms of throughput, latency, or energy effi-
ciency.

Recent state-of-the art contributions have shown to squeeze
out the last bit of CPU performance possible for JSON parsing
using SIMD extensions [1]. Yet, many applications still require
the parsing step to be performed with even higher throughput
and/or lower latency. Considering that nowadays FPGA ac-
celerators are readily available in data centers worldwide, we

explore parsing JSON data with FPGA accelerators to provide
high performance and energy-efficiency [2].

In this paper, we focus on a real-world application that
receives a large amount of JSON-formatted data. The ap-
plication converts the JSON data to Apache Arrow inter-
process communication (IPC) messages, which is a format that
is immediately usable by downstream consuming processes
without parsing. Finally, these messages are published to the
distributed streaming platform Apache Pulsar [3].

We consider two realistic fully integrated use-cases with
data following a simple model and a more complex model.
We then contribute the following:

• We present and measure several approaches to achieve
the best possible software performance for our use cases,
as a fair point of comparison for the FPGA accelerator
implementation.

• We present a vendor-agnostic open-source FPGA imple-
mentation of parsing components for various JSON value
types.

• We present and measure parsing and conversion through-
put of the FPGA accelerator within a fully integrated
application setup working on the two use-cases.

• We show that within the context of our application, the
FPGA accelerated implementation can achieve close to
20 GB/s of parsing and conversion throughput when
the accelerator host-to-device interface provides enough
bandwidth and when enough FPGA resources are avail-
able.

In Section II, we briefly introduce the JSON format, the
Apache Arrow in-memory format to which the JSON data
needs to be converted, and we discuss related work. Section III
gives an overview of the application and explores the run-time
profile for the two use-cases. The architecture of the FPGA
accelerator design and details of the parser implementation are
described in Section IV. Section V presents measurements of
the accelerated solution. We conclude the paper in Section VI.

II. BACKGROUND

A. JSON

JSON is a human-readable format for data exchange or
storage. Data serialized in the JSON format is typically called
a JSON document. Once a JSON document is successfully
parsed, its DOM (Document Object Model) is known. The
DOM is a tree that represents the logical structure of the



data. Each node of the tree represents one of the 7 possible
types of JSON values: objects with members that are key-value
pairs, arrays, strings, numbers, boolean values ”true”, ”false”,
and the value ”null” indicating there is no data. An example
of a JSON document is shown in Listing 1. The structural
characters { and } are used to represent object boundaries.
The members of an object consist of key names delimited by
quotation marks ( ” ) placed before the structural character :
(colon), and values placed after the colon. Keys and string
values are enclosed in ” (quotes). Array values are separated
by , (comma).

1 { "id": 11,
2 "message": "Hi FPT!",
3 "read": false,
4 "meta": {
5 "refs": [42, 1337],
6 "tag": null
7 }
8 }

Listing 1: An example of a JSON document.

A JSON document is a form of human-readable serialized
data that is typically exchanged between two software systems.
Due to its human-readable nature, it is not known to be the
most compact data serialization format, yet it is so ubiquitous,
well-supported, and simple, that it is used even in systems
exchanging massive amounts of information.

Software applications consuming JSON documents typically
use libraries to parse them, of which there are many (at the
time of writing, https://www.json.org shows a non-exhaustive
list of 172 JSON parser implementations across 61 software
languages). The most typical use case of such libraries is
to either provide a way to construct JSON documents from
native representations of objects (serialization), or to parse
JSON documents and navigate their DOM to reconstruct native
representations of (parts of) objects (deserialization) before
continuing to operate on the data. More advanced JSON
parsers allow pushing filter predicates into the parser to operate
on the data while it is being parsed [4].

B. Apache Arrow

For the application presented in this article, we are interested
in deserialization of JSON documents. The application takes
a JSON document and converts it to the Apache Arrow in-
memory format [5]. Arrow is a project aiming to unify the
in-memory representation of data sets found in data analytics
applications across multiple software languages. This provides
a means to exchange information between heterogeneous soft-
ware systems without making copies in memory. It is (being)
integrated in widely used (big) data analytics frameworks such
as Apache Spark [6], Pandas [7], Dask [8], Dremio [9], and
Polars [10].

The Arrow in-memory format is a hardware-friendly format,
allowing to store tabular data sets in a columnar-oriented
fashion (rather than row-oriented) in an abstraction called a

id message read metaName refs tagSchema
fields Type uint64 string bool list(uint64) string

11 Hi FPT! false 42, 1337 ∅
404 Beans true 11 coffeeData

... ... ... ... ...

Fig. 1: Example Arrow RecordBatch. The first row contains
the data from the JSON example in Listing 1.

RecordBatch. In Figure 1, an example of an Arrow Record-
Batch is shown, where the first row holds the same data as the
JSON document shown in the example of Listing 1. The names
and data types of the values in each column of a RecordBatch
are described by the schema of the RecordBatch.

In a random-access memory, each column consists of a
typically small number of large contiguous buffers holding
raw data such as integers, UTF8 characters, or, in the case
of variable-sized lists, offsets into other buffers that are part
of the column. This allows to traverse a minimum amount of
pointers to be able to access data randomly and in parallel.

The Arrow format furthermore allows accelerating many
operations by SIMD instructions due to its contiguous nature.
As a mental exercise, one can imagine having to sum all
values by some constant in a table column, where the values of
interest are placed between values from other columns (row-
oriented). Now consider the column-oriented approach, where
the values in a column are placed contiguously in a buffer.
Here, it is easy to accelerate the sum operation using SIMD
by loading multiple values from the column into an SIMD
register at once, while this is not practical for the row-oriented
approach.

Arrow also defines a data serialization format for inter-
process communication (IPC) of RecordBatches, which, apart
from some metadata in the header of an IPC message, holds
the same column-oriented data as in a RecordBatch. This
prevents the need to make copies of the data to some other
in-memory format once it has arrived in the memory of the
receiver.

C. Related work

We emphasize the need of our application to convert JSON
documents to Apache Arrow RecordBatches. The Arrow li-
braries already provide JSON parsing functionality that is of
interest to our application. Internally, the official Arrow C++
implementation uses RapidJSON [11], one of the more popular
and faster JSON parsing implementations.

The state-of-the-art CPU implementation for JSON parsing
is simdjson [1]. The implementation makes use of the SIMD
extensions of x86, ARM and POWER processors. simdjson
applies specific byte and bit-level manipulations on consecu-
tive raw JSON bytes in SIMD vectors in order to speed up
lexical analysis (including UTF8 validation) and parsing.

Few JSON parsing FPGA accelerator implementations have
been published in academic literature. Recent work on the
Fleet language for streaming hardware designs shows a JSON-
related application as an example design [12]. This part of
the work focuses on extracting byte strings of object field
values according to some schema. These values still need to

https://www.json.org
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be converted, e.g. to two’s-complement binary, before being
able to use them in some downstream process. In addition,
for the specific object model of the JSON parsing experiment,
the work reports a throughput of 21.39 GB/s. However, this
is the throughput with the accelerator card on-board DDRs
as source and sink; the data is not communicated from/to the
host system, which is typically required by applications.

In a recent survey paper [13], the potential for FPGA
accelerators in non-relational database systems is discussed,
where the JSON format is widely used as well. The authors
also express the lack of academic literature of JSON parsing
implementations in FPGA. At the same time, the work pro-
vides a good overview of FPGA implementations related to
(and sometimes parsing) Extensible Markup Language (XML)
documents, that share some similarities to JSON documents.
In the XML space, previous work explored performing queries
on XML documents, where the queries involve computing
only on specific parts of the XML DOM values [14]. Fil-
tering uninteresting parts of the XML DOM is accelerated
by FPGA through the use of skeleton automata, allowing run-
time reconfiguration of the filter functionality; a technique that
could be used in future work of our JSON parsing accelerator
implementation.

III. APPLICATION

A. Overview

In this paper, a design is shown of an FPGA accelerator for
JSON parsing that immediately writes the deserialized data
into host memory in the Apache Arrow columnar in-memory
format. The accelerator operates in a real-world application
context, shown in Figure 2. Here, many sources send JSON
documents via TCP to the application, followed by a convert
and publish service, for this article considered to run on a
single server. The application accepts the TCP connections,
receives the JSON documents, deserializes the JSON data,
turns it into Apache Arrow formatted data, serializes it into
Arrow IPC messages, and publishes them to a broker instance
of the distributed low-latency streaming platform Apache
Pulsar (which runs as a separate process either on the same or
an external server). The application and its sources are freely
available [15].

The application consists of five stages, also shown in
Figure 3:

1 { "voltage": [1337, 1024, 768, 384, 42] }

Listing 2: Example of the simple JSON use-case

1 { "timestamp":"2021-03-09T13:37:42Z",
2 "odometer":80201,
3 "hypermiling":true,
4 "avgspeed":69,
5 "sec_in_band":[14,22,28,205,110,261,302,260,
6 220,100,30,10],
7 (+7 other fields omitted for brevity) }

Listing 3: Partial example of the complex JSON use-case

A Receive - handles incoming connections and places in-
coming JSON documents into a set of buffers, separated
by newline characters.

B Parse - parses JSON documents from the buffers and
deserializes data into an Arrow RecordBatch.

C Resize - The Arrow RecordBatch is potentially split up
into multiple Arrow RecordBatches, not to exceed the
maximum message size of Pulsar messages.

D Serialize - The Arrow RecordBatches are serialized into
Arrow IPC messages.

E Publish - The IPC messages are published to a Pulsar
topic via a Pulsar broker instance.

The receive and publish stages are handled by third-party
programs (respectively the operating system and the Pulsar
client library), placing these stages out of scope of acceler-
ation. We therefore focus on the middle three stages, which
we call the conversion stages. These three stages are multi-
threaded.

B. Use-cases

We study the application and potential for FPGA acceler-
ation in the context of two use-cases, where both schemas
do not change for months or even years while the system
operates. For the first use-case, the application receives JSON
documents with voltage values of batteries in an IoT envi-
ronment. The JSON documents have only one field that is
a variable-length array of integers. An example is shown in
Listing 2.

For the second use-case, the application receives JSON doc-
uments from motorized vehicles with usage statistics, which
is more complex. Each document consists of twelve fields;
two boolean fields, four integer fields, one string field and
five arrays of integers. As an example, a JSON with some of
those fields is shown in Listing 3.

C. Run-time profile

To get a clear overview of which stages form bottlenecks
in the full pipeline, we profile the application thoroughly by
varying the number of JSONs to parse, as well as the number
of threads used to perform the parsing.

Figure 4 shows the average run-time of each of the convert
stages of 8 repetitions of the experiment. Here, we observe that
irrespective of the total input size of JSON data bytes, the parse
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Fig. 4: Baseline run-times of application processing stages on
an Intel Xeon Silver 4215R CPU.

stage dominates the total run-time of the conversion stages,
taking roughly one to two orders of magnitude longer than
serialization and resizing. The implementation of this stage
uses Arrow’s JSON parser library of the C++ implementation,
which uses RapidJSON internally.

Resizing is expected to be fast, since for Arrow Record-
Batches it is a zero-copy operation (only objects managing
metadata have to be reconstructed in memory, but the actual
bulk data stays in the same memory location without being
copied in order to construct smaller batches). Serialization
does involve a copy of the data, but only of a few contiguous
buffers, since, in the Arrow IPC format, no compression
or other type of encoding of the data is required. Observe
that for the smallest input size, as the number of threads
increases, the resizing time drops significantly because the
multi-threaded implementation schedules the JSON documents
over the available threads, effectively resizing at the input of
the convert stages.

D. Parsing

The application profile exposes the parsing stage to be
a bottleneck. Since Arrow uses RapidJSON internally while
simdjson claims better performance, we investigate speeding
up the parse stage in software first as much as possible, before
moving to an FPGA accelerated solution. To this end, we tried
the following approaches:

1) RapidJSON — A previously discussed framework,
which is used by Arrow internally. We use RapidJSON in
a stand-alone manner to parse JSONs specific to our schemas
of interest only.

2) simdjson — Currently regarded as the state-of-the-art
software framework to quickly parse JSON data. We use it
in a similar manner to RapidJSON.

3) Boost Spirit.X3 — A parser-combinator framework [16],
which we use to construct parsers specifically for the schemas
of interest (not the whole JSON language). The motivation to
include Boost Spirit.X3 is that we take an approach similar to
our hardware accelerated solution (presented in Section IV),
where we aim to (automatically) create schema-specific JSON
parsers. These parsers do not parse the whole JSON language
to construct a traversable DOM tree, but only a subset specific
to an expected schema, and construct an Arrow RecordBatch.
The expectation for this approach is that by constructing
recursive descent parsers for only a schema-specific sub-set,
faster implementations can be realized. We stipulate that some
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Fig. 5: Throughput of various JSON parsing strategies for CPU
and GPU.

assumptions about the input are made for this implementation.
First, it assumes the input only contains well-formed UTF8
characters, and we do not need to validate UTF8 correctness.
Second, we assume the order of object fields is fixed and pre-
defined, such that fields cannot appear in a seemingly random
order. These two assumptions are not made by RapidJSON
and simdjson, and are likely to impact performance in favor
of this parser.

4) Custom — A completely hand-written and optimized
recursive-descent solution with the same assumption as the
Boost Spirit.X3 parser.

5) cuDF — A relatively new CUDA dataframe library as
part of the RAPIDs GPU acceleration framework that also
works with Apache Arrow data sets in memory [17]. At the
time of writing, the framework only supports primitives and
strings as JSON member values, and therefore incorrectly
infers JSON arrays with integers (which are used heavily
throughout our use-cases) as strings.

The motivation to create the Boost Spirit.X3 and custom
hand-optimized solution is that the widely-used (production-
ready) JSON parsing frameworks RapidJSON and simdjson
include many features that are required by its general use in
the field (e.g. a generic API to walk the DOM tree of any type
of JSON document at run-time which is inherently schema-
less), and by production environments (e.g. UTF8 validation).
While such features are paramount, we consider that they
are not necessary to study the highest CPU performance
possible in a controlled experimental environment. We also
tried parser-generator frameworks such as ANTLR4 [18], but
these implementations only provided several megabytes per
second of throughput. These frameworks are not designed to
deliver high performance, but to be highly flexible for language
front-end design (e.g. performing lexing and parsing to build
up easily manipulable abstract syntax trees).

In Figure 5, we show measurements of the single-threaded
throughput (or fully utilized GPU throughput) of the men-
tioned parsing implementations for two schemas on an Intel
Xeon Silver 4215R CPU running at 3.20 GHz (which is one
of our target systems for FPGA acceleration as well). For all



approaches, we created several variants that e.g. pre-allocate
output buffers rather than growing them dynamically, and use
different APIs provided by the frameworks that have different
performance characteristics. For clarity and brevity, we report
only the fastest variants for each of the approaches (while the
sources of the other variants are publicly available [19]).

For the simple schema, we vary the maximum number of
values that the ”voltage” array holds. When the maximum
number of values is low, more time is spent in processing
keys and structural characters (e.g. ”voltage” and { ) than
in values, and vice versa when the number of values is high.

The measurements show that the throughput of simdjson
and RapidJSON is similar and does not vary much with the
maximum number of values. We find RapidJSON to be slightly
faster than simdjson for our specific purpose, which is likely
due to the difference between the event-driven API of the
former, which better fits our use-case, and the DOM-walking
API of the latter, that builds a DOM tree in memory first before
allowing the DOM to be traversed and building up the Arrow
RecordBatch to take place.

When mainly parsing structural characters in case the max-
imum number of array values is low, Boost Spirit.X3 provides
almost two-thirds additional throughput over simdjson and
RapidJSON, although the improvement is only one-third when
the maximum number of array values is high. The custom
implementation performs best when the number of voltage
values is eight or higher, becoming slightly faster than the
Boost Spirit.X3 implementation. To get an idea of the GPU-
accelerated cuDF performance, we report our measurement
using an NVIDIA Tesla T4 GPU, although, as explained,
the output has an incorrect schema, yet the JSON document
structure is still parsed. cuDF parses arrays of integers as
strings, and did not yet convert these text-based integers to
binary integers, which will require additional processing.

Concluding, the custom implementation is on average the
fastest functionally correct implementation of a JSON-to-
Arrow converting parser that we could produce. Although
it is unlikely to be used in a production-ready system, we
include it in our experiments for evaluation within a controlled
environment. For our use cases, simdjson on average does not
provide an improvement over RapidJSON. Since Arrow uses
RapidJSON internally, we consider the Arrow implementation
to be the baseline for evaluation as the best production-ready
implementation.

IV. FPGA ARCHITECTURE AND IMPLEMENTATION

A. System architecture

Designing a JSON parsing FPGA accelerator knows several
challenges and opportunities. For clarity, we reiterate the
context in which our proposed system operates: the system
must deserialize many JSONs with the same DOM to the
Arrow in-memory format for a long period of time. Therefore,
the system does not require parsing of JSON documents with
different (perhaps at compile-time unknown) DOMs without
reconfiguration of the architecture implemented by the FPGA.

This provides the opportunity to construct the JSON parsing
circuit at compile time.

One challenging aspect is that both JSON and Arrow
allow nested and variable-length data such as objects holding
other objects and arrays of arbitrary size. Communicating
such data between hardware components requires an interface
specification that supports such constructs. Industry-standard
solutions such as e.g. AXI4-Stream and Avalon-ST only focus
on variable-length streams of bytes, and do not describe how
nested structures should be signaled from source to destination.
To solve this challenge, we use Tydi [20], which provides
a specification for streaming dataflow interfaces between
hardware components that transfer complex (e.g. with nested
records, unions, etc.) and dynamically-sized data structures
over hardware streams.

Once Tydi streams of parsed JSON data are available,
another challenge is that the data has to be transferred to host
memory (in the Arrow format) for downstream processing.
To communicate between the accelerator and host memory,
we use Fletcher [21]. Fletcher generates DMA engines based
on schemas of RecordBatches that on the one side can read
and write from random-access memory, and on the other
side provides streams for accelerator components to work
with. These streams are (with a small amount of glue logic)
compatible with Tydi streams.

We contribute support to Fletcher for the accelerator plat-
form of one of our systems, the Intel Programmable Ac-
celeration Card with Intel Arria 10 GX FPGA [22] (which
we will abbreviate as Intel PAC henceforth), to the open-
source community [23]. The platform is based on the Open
Programmable Acceleration Engine (OPAE) project.. The Intel
PAC card is connected to the host system using PCIe x8 Gen3.

The second system on which we evaluate the accelerator
is an Inspur Power Systems FP5290G2 with two POWER9
CPUs and an Xilinx VU37P on an AlphaData ADM-PCIE-
9H7 accelerator card which (despite its name) is connected
using OpenCAPI 3. The accelerator has direct access to the
shared virtual memory of the host system. We use the OC-
Accel project and Fletcher to interface between the accelerator
kernel and host CPU.

A high-level overview of the accelerator architecture and
the host application is shown in Figure 6. From the network,
the TCP client receives raw JSON data and places it in one of
multiple buffers (residing in pinned huge pages for the Intel
PAC-based design) that are for both systems directly accessible
by the accelerator, managed by the converter threads. Since the
data is fully streamable through the design, it would also be
possible to stream in data through e.g. a TCP offload engine,
directly from a network interface that many contemporary
commercial FPGA accelerator cards have. When a converter
encounters a buffer that is not empty, it starts one of the
multiple available hardware parsers through the control path
provided by Fletcher, the OPAE/OC-Accel libraries/drivers,
the OPAE/OC-Accel and Fletcher shells and the generated
interconnect and DMA engines specific to the schema of the
output RecordBatch(es). The parser first requests all bytes of
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the input buffer. It then parses and converts the raw bytes
to Tydi streams corresponding to the Arrow schema of the
destination RecordBatch. These schema-specific streams are
consumed by the Fletcher-generated interface and placed in the
CPU’s main memory over the PCIe or OpenCAPI interfaces.

B. JSON parser construction

To construct FPGA-based JSON parsers corresponding to
specific Arrow schemas, a modular approach is taken. This
way, it becomes easy to construct or even automatically
generate JSON parsers. Figure 7 shows the architecture of
a parser implementation for JSON documents that follow a
DOM of Listing 1. The figure explains how basic components
can be combined to construct a parser for specific JSON DOM
/ Arrow schema. We explain each of the components and their
interfaces with this example, as annotated in Figure 7:

(a) A stream of raw bytes enters the parser, with an addi-
tional signal marking the last byte from the input buffer.

(b) The object parser component expects an object to be
delimited by the structural character { at the start, and by }
at the end. All bytes in between, the object content bytes, are
passed onto the output stream, together with signals marking
whether the byte is part of the key or the value part of a field.
It also provides a signal for the last byte in the field value,
the last byte in the whole object, and the last byte from the
input buffer. We will continue to name these signals the last
signals, which are inherently supported by Tydi interfaces.

(c) A stream synchronizer duplicates the object content
bytes stream with the object contents for each of the four
object members of the example schema.

(d) The object contents streams are filtered by key filter
components, one for each expected object member. To do so,
the key filter first attempts to match the expected key string
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Fig. 7: Example parser design for JSONs from Listing 1

(e.g. ”id” ). Once this key appears on the input stream, all
subsequent bytes after the structural character : , the value
bytes, are passed to the output, until the structural character
, is encountered (which denotes the end of the member’s

value). The output stream again signals the end of the value,
but also passes on the last signals from the upper levels of the
hierarchy. When a different key appears on the input stream,
the component simply discards the bytes. Note that it therefore
does not matter what the order of the fields in an object is.

(e) The streams of value bytes are passed on to subsequent
parser, depending on the expected value type. For example, the
integer parser converts a sequence of numerals to its two’s-
complement binary representation (e.g. a 64-bit integer). The
string parser simply strips the outer quotation marks ( ” ) and
adds a signal denoting the end of a string.

(f) The array parser component is used to parse array
values. It strips the array delimiters [ and ] , the element
separator , and adds signals to denote the end of an element
in addition to the last signals from the upper levels of the
hierarchy.

(g) Finally, streams for all JSON values for all object
members appear at the output of this schema-specific parser.
With the addition of a small amount control logic, these
streams are made compatible to work with the Fletcher-
generated interface. From this point onward, the Fletcher-
generated interface takes care of placing the data as an Apache
Arrow RecordBatch in the main memory of the host CPU.
Using the last signals from all levels of the hierarchy, the
control logic knows when to close a stream flowing into the
Fletcher generated interface, such that Fletcher may make the
RecordBatch available to the downstream software processes.

In the manner of the example given above, we constructed
accelerator designs for both the simple and the complex
schema.

The parsers are able to absorb multiple bytes per handshake
at the input stream, which can happen every cycle. All
implementations currently use a maximum of eight bytes per



handshake, which gives each parser a peak theoretical input
throughput of 1.6 GB/s when running at 200 MHz. In practice,
this throughput is often not reached, as some transfers can hold
multiple JSON values at the same time. For example, a single
transfer on the input byte stream could hold three array values:
10,20,30 . The output of a parser component delivers at most

one value per transfer, causing back-pressure of the input (for
two cycles in this example).

Note that the design is a dataflow design that does not
require intermediate results to be written/read to/from memory.
This means no on-board accelerator memory is needed, and
the performance will mostly depend on the host-to-device
interface bandwidth, which can be saturated as long as there
are FPGA resources available to increase the number of
parsers.

C. Schema size and resource utilization considerations

For the complex schema, we experienced a high utilization
initially, because the Fletcher-generated interface becomes
relatively large for each kernel instance, as for each field a
separate DMA engine is generated. Naively duplicating the
kernel to achieve more parallelization yielded designs with
too high utilization already after one instance (e.g. with ALM
utilization already exceeding 45% for the Arria 10 GX for
a single kernel instance). To deal with this problem, for
the complex schema, we multiplex the output streams of
multiple parser instances onto a single bundle of streams to
the Fletcher generated interface, such that for N fields and P
parser instances, we do not have to place and route N ∗ P
DMA engines, but only N . These N DMA engines provide
ample bandwidth to keep up with the input streams. In terms
of throughput, one DMA engine for one single field already
provides enough bandwidth to prevent back-pressure on the
JSON byte input stream of a parser when it is operating at its
peak throughput, even for small integer or boolean values.

V. RESULTS

A. Throughput

We measure the end-to-end throughput (JSON bytes parsed
per second) of the parsing stage of the application. The end-
to-end throughput is the throughput as seen by the software
application, which includes data movement from the host main
memory to the accelerator, and vice versa. We vary the amount
of total JSON input bytes since, sometimes there will be a
large workload, but often there will be a small workload, so we
are interested in both cases. We also vary the amount of threads
(up to the system maximum hardware threads), and report the
end-to-end throughput. The number of values in the JSON
array fields are uniformly random, picked between 1 and some
maximum, where a maximum of 1, 8, 64, and 512 array values
was measured. These measurements are aggregated and the
average throughput over all maximums is reported. We present
an overall summary of the results in Table I, where the mean
throughput is calculated over the best performing configuration
(in terms of CPU threads or FPGA parser instances) for each
implementation and each input size.

System Intel Xeon +
Arria 10 GX

POWER9 +
VU37P

Schema Simple Complex Simple Complex

System
power

(J/s)

Idle 218.00 218.00 299.00 299.00
Arrow 427.47 423.94 611.26 641.92

Custom 406.48 402.18 651.39 633.15
FPGA 274.40 245.22 385.96 320.91

Mean
throughp.

(GB/s)

Arrow 1.68 1.64 2.93 2.70
Custom 5.60 5.07 11.84 9.77

FPGA 6.70 5.12 18.37 10.10

Speedup vs. Arrow 3.99 3.12 6.27 3.74
vs. Custom 1.20 1.01 1.55 1.03

Energy
eff.

(MiB/J)

Arrow 7.64 7.60 8.94 7.51
Custom 28.33 26.26 32.05 27.90

FPGA 113.30 179.43 201.42 439.85
Energy
improv.

vs. Arrow 14.83 23.61 22.53 58.58
vs. Custom 4.00 6.83 6.28 15.77

Peak
throughp.

(GB/s)

Arrow 2.10 2.11 4.11 2.70
Custom 7.81 7.04 17.60 14.69

FPGA 6.85 5.49 19.42 10.60
FPGA no. parsers 8 6 32 8

FPGA
util.
(%)

ALM/CLB 39 67 47.28 54.94
BRAM 30 42 62.8 29.66

DSP 0 0 0 0

TABLE I: Summary of performance, power consumption,
energy efficiency, and resource utilization.

In Figure 8, the measurements for the simple schema of
Listing 2 are shown. From the figure, it can be concluded
that on the Intel Xeon + Arria 10 GX setup, the accelerator
saturates the PCIe x8 Gen3 bandwidth already when eight
hardware parsers are instantiated. Increasing the number of
parser instances to sixteen does not help to increase the
throughput. In both the case of the Intel system, the accelerator
outperforms the baseline Arrow implementation, but does not
always outperform the experimental custom implementation
when the thread count is high and the workload is large. Still,
considering all input sizes, the mean throughput of the FPGA
accelerator has better throughput than the experimental custom
implementation. For all systems, it outperforms the Arrow
baseline by 4× to 6×, also shown in the summary of Table I.

In Figure 9, the measurements for the complex schema of
Listing 3 are shown. Here, for the Intel system, the PCIe link is
not completely saturated yet, but are limited by the maximum
number of parsers that can be instantiated in hardware while
closing timing. On the POWER9 system, that has a higher
amount of threads available compared to the Intel system,
we may conclude that spawning many threads only makes
sense if the workload is high enough, since some overhead is
associated with managing all threads, and performance drops
when spawning too many. Otherwise, similar observations can
be made, i.e. the mean throughput of the FPGA accelerator
is higher by around 3.5× versus the Arrow baseline, and
approximately equal to the custom implementation.

Overall, we stipulate that while the CPU implementation
can achieve a throughput close to that of the FPGA imple-
mentation, for both systems, it requires the use of all available
hardware threads of both CPU sockets of these machines.
Offloading the JSON parsing to the FPGA accelerator will
free up these threads such that they can be used to e.g.
perform downstream analysis on the deserialized data or run
an instance of a Pulsar broker.



12 4 8 12 16 20 24 28 32

Threads / Parser instances

0

2

4

6

8

Th
ro

ug
hp

ut
(G

B/
s)

Input size:16 MiB

12 4 8 12 16 20 24 28 32

Input size:128 MiB

12 4 8 12 16 20 24 28 32

Input size:1024 MiB

12 4 8 12 16 20 24 28 32

Input size:8192 MiB

Arrow Custom FPGA FPGA max.

(a) Intel Xeon + Arria 10GX

16 32 48 64 80 96 112128144160176

Threads / Parser instances

0
2
4
6
8

10
12
14
16
18
20
22
24

Th
ro

ug
hp

ut
(G

B/
s)

Input size:16 MiB

16 32 48 64 80 96 112128144160176

Input size:128 MiB

16 32 48 64 80 96 112128144160176

Input size:1024 MiB

16 32 48 64 80 96 112128144160176

Input size:8192 MiB

Arrow Custom FPGA FPGA max.

(b) POWER9 + VU37P

Fig. 8: Throughput for simple schema
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Fig. 9: Throughput for complex schema

B. Energy efficiency

We also measure the full system power consumption using
the Data Center Manageability Interface that both systems
support. In Table I, we show the power consumption, the
aforementioned mean performance and energy efficiency for
all implementations and schemas. To calculate the energy
efficiency, we use the power consumption difference between
the full system being idle and under load. For both systems and
schemas, we find the FPGA accelerated solution to perform
very well in terms of energy efficiency. We observe an increase
in energy efficiency of 14× to 59× over the baseline Arrow
implementation, and 4× to 16× over the experimental custom
implementation. The highest energy efficiency improvement
is achieved for the complex schema, where the accelerator
is controlled by one CPU thread only. This is because the
parser output stream multiplexing to the Fletcher-generated
DMA engines, that from an API perspective deliver just a
single Arrow RecordBatch, and are therefore controlled by a
single thread.

C. Resource utilization

Table I also shows the resource utilization of the FPGA
accelerator for the respective schemas and devices. Overall,
it seems that more parser instances may fit, since resource
utilization of the main resources used varies around 50% for
most implementations. However, in our design, we often ran
into timing issues due to local congestion, which is something
that can be further investigated in the future. In this way,
more parsers may fit, although as explained before, enough
host-to-accelerator interface bandwidth must be available to
be able to deliver enough data to work on. Other interesting
approaches with the remaining resources would be to reduce
the latency of the overall application by directly connecting the

accelerator card to the network, and by using a TCP offload
engine to stream the TCP payload with JSON data directly
into the parsers.

VI. CONCLUSION

We investigated an application that deserializes large
amounts of JSON data and converts it to the Apache Arrow
in-memory format before publishing it to the Pulsar streaming
platform. By profiling the application, we found JSON parsing
to be the bottleneck, being one to two orders of magnitude
slower than subsequent stages in the application pipeline.
We presented multiple approaches to accelerate this stage of
the application, including multiple JSON parsing frameworks
and custom recursive descent parsers for CPUs, and a GPU
acceleration framework. We furthermore thoroughly explained
how FPGA accelerators can be used to parse and convert
JSON data to Apache Arrow data, by using modular streaming
dataflow components for various JSON value types that can be
combined in a way that corresponds to the expected schema
of the JSON data. The FPGA accelerator design was imple-
mented for an Intel Arria 10 GX and a Xilinx VU37P FPGA,
hosted by an Intel Xeon and POWER9 server, respectively.
Results show that the parsing and conversion throughput of
the FPGA accelerator is between 3× and almost 6× higher,
with an energy efficiency increased of between 14× to 59×
compared to the baseline implementation that is based on
RapidJSON. A challenge that remains is how to deal with large
schemas that may cause the accelerator design to grow beyond
available FPGA resources. In conclusion, the presented FPGA
accelerator provides an interesting alternative to traditional
methods of JSON parsing in terms of throughput and energy
efficiency.
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