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Abstract
Automatic Speech Recognition (ASR) systems
have become an integral part of daily lives. De-
spite their widespread use, these systems can ex-
hibit biases that express themselves in the differ-
ences in their accuracy and performance across dif-
ferent demographic groups. Methods quantifying
these biases have been developed. This paper inves-
tigates the relationship between bias and the acous-
tic characteristics of speakers. By examining vari-
ous acoustic embeddings, derived from models like
wav2vec 2.0 and XLSR, we aim to identify which
embeddings correlate most strongly with bias. The
findings offer insights into improving the fairness
of ASRs by exploring how acoustic features influ-
ence bias in ASR systems. Future research direc-
tions include exploring isolated speech properties
and extending the study to diverse linguistic con-
texts to deepen understanding in this area.

1 Introduction
Automatic Speech Recognition (ASR) systems are systems
that convert speech to text. They operate through several
stages: capturing audio, extracting features, and using acous-
tic and language models to decode phonetic sequences into
text. These systems are becoming increasingly common in
our daily lives.

It is, therefore, critical to ensure that these systems are
working properly. The performance of ASR systems is typ-
ically measured by their speech recognition accuracy. Un-
fortunately, it is not uncommon for the ASR systems to be
biased against certain groups of people [11, 12]. Despite the
system being overall highly accurate, disparities in recogniz-
ing speech from different groups can lead to a worse user
experience for specific demographics. For example, the ASR
systems tend to recognise the speech with a different accu-
racy depending on the race [14], gender [2], or the age [2] of
the speaker.

Bias can have numerous different origins. The quality of
the data points in the training dataset, how varied its compo-
sition is, or even the diversity of the developer team can all be
the reasons for the existence of bias [12].

The direct cause where the bias occurs often lies in how
the ASR system processes its input. Factors such as speaker
vocabulary and acoustics significantly impact ASR perfor-
mance. Speech acoustics mirror the structure and character-
istics of the vocals that generated them [19]. Here, we refer
to acoustics as the features extracted from the speech signal
that allow for distinguishing between speakers. The main re-
search question that this paper answers is:

• How are the bias of an ASR system and the acoustics of
the speaker related?

It is unclear what features distinguish different types of
speech best. Different features are compared in order to find
a suitable one for a given task. For example, research con-
cerning the selection of a set of features that would best re-
flect the emotions of a speaker has been ongoing for many

years [3, 13]. In this paper, we refer to these features as
acoustic embedding. Instead of emotions, we aim to find an
acoustic embedding that reflects the bias experienced by the
speaker. Therefore, our secondary research question is:

• Which acoustic embedding best reflects the bias?

2 Background and related work

The two main components under investigation in this paper
are bias and acoustic embeddings. Research has been done
on their relationship with other factors but not with each other
[5, 6, 11, 12].

Previous studies have analyzed the relationship between
bias and phonemes, revealing that certain phonemes are more
prone to misrecognition, which can contribute to bias against
specific groups of speakers [11, 12]. By examining phoneme
error rates (PER), researchers have identified atypical pronun-
ciations as a potential source of bias.

Next to the bias, acoustic embeddings play an important
role in this research. They are numerical representations
derived from speech signals encapsulating essential acous-
tic features. They represent speech characteristics such as
intonation, pitch, energy distribution, and phonetic content.
The idea is similar to textual word embeddings, which create
similar vector representations for words with similar mean-
ings. However, acoustic embeddings are designed to capture
acoustic similarities rather than semantic ones. In the acous-
tic embedding space, the goal is to organize speech in a way
that groups together similar sounds.

Previous studies investigated the relationship between
acoustic embeddings and native-likeness ratings. These rat-
ings are assessments by native speakers on how closely
speech resembles native speech patterns. Acoustic embed-
dings derived from methods like Fourier transforms and neu-
ral networks, such as wav2vec 2.0 and XLSR, have shown
significant correlations with these ratings [5, 6].

In this paper, we explore how the bias of the ASR system
is related to the variability in the acoustics of the speech cap-
tured by acoustic embeddings. By examining the relationship
between the differences in these embeddings and bias, it is
possible to find how variations in the acoustic embeddings
could reflect underlying biases in the ASR system’s perfor-
mance across different speaker groups.

3 Methodology

This section outlines the methodology of an experimental
study that is conducted to answer the research questions. This
section describes the dataset, the design choices, and the ex-
periment. Figure 1 depicts the workflow of the experiment.
The starting point from which all the components are derived
are the speech files, transcriptions, and the metadata of the
speakers, which constitute the dataset used. The following
steps involve deriving the acoustic-based embeddings, calcu-
lating the distances between them, and calculating the bias.
Finally, a method to relate the acoustic-based distances and
bias is described, which is the focus of this paper.



Figure 1: Diagram illustrating the experiment procedure. The arrows indicate the derivation order, and the question
mark symbolises relating speaker acoustics to bias.

Datasets
The Spoken Dutch Corpus (CGN) is the dataset that was by
Patel et al [17] for training the ASR systems for which the
bias is calculated (ASR system in Figure 1). The dataset con-
tains 900 hours of spoken Dutch which amounts to about 9
million words. The speakers come from different regions of
the Netherlands as well as the Flanders region in Belgium and
are aged 18-65 years. There are a total of 1185 female and
1678 male speakers who speak in various styles, from non-
staged casual talk to reading. In this study, we build on the
information derived from the outputs of ASR systems found
by Patel et al [17].

The Jasmin-CGN [9] is the dataset used for the experi-
ments. It consists of the speech files, manual audio transcrip-
tions, and speaker metadata. It contains two types of speech:
read (Read) and human-machine interaction speech (HMI). In
this study, we use a subset of the dataset focusing on Dutch-
native children aged 7 to 16 years. The group includes 52
males and 48 females.

ASR system
The study employs two primary ASR models: a Conformer
model and the OpenAI Whisper small model. The Conformer
model, a state-of-the-art neural network for speech recog-
nition, is available in three configurations: NoAug, SpAug,
and SpSpecAug. The second model is the OpenAI Whisper,
which comes in two configurations: Ws and WsFTcgn. For
detailed configuration specifics of these models, readers are
encouraged to refer to the paper by Patel et al [17]. In the
experiments, the word error rates (WERs) based on the out-
put of these systems, as calculated by the author cited in this
paper, are utilized.

Ground truth for the bias
The bias metrics aim to capture the performance differences
of an ASR between different speakers. The performance
is measured by how similar the output is to the reference
human-made annotation of what was said. Ideally, the ASR
system would produce identical text to the annotation. The

similarity between the annotation and the output of the system
is measured using the word error rate (WER). A low WER
indicates high similarity, while a high WER indicates greater
dissimilarity. The calculation of WER is as follows:

WER =
S + I +D

W
(1)

where:
S = the number of substitutions
I = the number of insertions
D = the number of deletions
W = the number of words in the reference text

Substitution takes place when a word in the result is re-
placed by another word that does not exist in the reference
text. For example, if the reference text states ”It is sunny” and
the ASR output transcribes it as ”It is cloudy”, this constitutes
a substitution error. Insertions include additional words that
appear in the ASR results but not in the reference text, e.g.
recognising ”red apple” instead of ”apple” in effect adding
the word ”red”. On the other hand, deletion occurs when a
word from the reference text is missing in the ASR results,
e.g., ”mobile phone” is interpreted as ”phone” and the word
”mobile” is omitted.

The bias metrics used are those proposed by Patel et al
[17]:

• group-to-min absolute:

bias(spk) = WERspk − WERmin (2)

• group-to-norm absolute:

bias(spk) = WERspk − WERnorm (3)

• group-to-min relative:

bias(spk) =
WERspk − WERmin

WERmin
(4)



• group-to-norm relative:

bias(spk) =
WERspk − WERnorm

WERnorm
(5)

There are two different baselines these metrics utilise:
comparing the WER to the WER of the normative (norm)
group (equations 3 and 5) or the speaker group with the low-
est WER (equations 2 and 4).

For this research, we opted for the metric that uses min
group because it can be calculated using a dataset that lacks
a norm group, thereby enhancing reproducibility. We chose
the absolute (abs) metric because of its simplicity and intu-
itive understanding. The chosen metric is, therefore, the one
presented in equation 2.

Acoustic-based embeddings
Given the uncertainty regarding the relationship between
acoustic variability and bias size, different ways of capturing
the acoustic variability are considered. These representations
are in the form of sequences of numbers that capture acoustic
properties from speech. We present four candidates, of which
two are chosen for the experiments.

I-vectors are fixed-length low-level representations of
speech that are meant to be used in tasks such as speaker
verification [10]. They are derived from features like Mel-
Frequency Cepstral Coefficients (MFCCs), which capture the
spectral properties of speech. These properties are, for ex-
ample, pitch peaks or smoothness of the sound. However,
a study on language characterisation has shown that the i-
vectors have the highest correlation with syntax differences
but do not correlate with phonology or the phoneme inven-
tory [18]. This limitation suggests that i-vectors might not be
suitable for capturing the differences in the speech across dif-
ferent ages, for example. The authors of a study on speech
differences between 5 and 10-year-old children and adults
suggest that although children have developed the phoneme
inventory, the phonological aspects might not be fully devel-
oped yet at that age [15]. For this reason, the i-vector repre-
sentation is not used in the experiments.

An embedding method proposed by Bartelds et al. [6],
for a large part, builds on Mel-Frequency Cepstral Coeffi-
cients (MFCCs). Apart from MFCCs, it augments the en-
ergy derived from the speech. In the same study, it was
found that distances between these representations strongly
correlate (absolute value of 0.71) with how natural or native-
like the speech sounds. In other words, the closer the dis-
tances between these representations are, the more closely
the speech is perceived by listeners as resembling natural or
native speech. This correlation suggests that their method ef-
fectively captures features in the speech signal that are impor-
tant for producing speech that sounds natural or native-like to
the ears of a native speaker. Although this correlation value is
considered strong, two embedding methods achieved a higher
one, and they will used in our experiments.

The model wav2vec 2.0 (w2v2) [4] is a self-supervised
speech representation model developed by Facebook AI. It
converts raw audio into latent speech representations in a way
inspired by methods used in natural language processing. The
model was pre-trained on the large, unlabeled Librispeech

dataset [16], which includes 960 hours of English speech.
The model’s architecture consists of multiple hidden layers
that capture information about the speech signal. Although
the specific nature of these encoded properties is not explic-
itly defined, research has demonstrated a strong correlation
(absolute value of 0.86) between w2v2’s representations and
native-likeness, highlighting its capability to capture essential
features of speech [5].

Cross-Lingual Speech Representation (XLSR) [8] is an-
other self-supervised model that uses neural networks. How-
ever, in contrast to w2v2, it is designed to generalize to multi-
ple languages. It was trained on 56,000 hours of speech from
53 languages to achieve this. This model correlated with the
absolute value of 0.78 to the native-likeness labels [5]. Along
with w2v2, the model achieves the highest correlation with
native-likeness labels and is therefore incorporated in the ex-
periments.

However, these two embedding methods require training
in contrast to the one based on MFCC. The trained models
fine-tuned for Dutch for both w2v2 and XLSR are publicly
available [7] and are used in this research. It is worth noting
that they have been trained on a dataset different from Jasmin-
CGN so they do not overfit on the data that is used in the
experiments.

The output produced from the speech of a speaker as input
by w2v2 or XLSR is the acoustic embedding. The acoustic
embeddings are calculated for every speaker’s speech. The
resulting embedding is a list of variable-length vectors that
capture the speech properties. The number of these vectors
is the same for all speakers but the length of the vectors is
dependent on the length of their speech. In this study, we call
a single vector a feature vector.

Distance between embeddings
The two embedding methods used in the experiments output
embeddings in the form of a list of multiple variable-length
feature vectors. Each vector within these embeddings en-
codes distinct acoustic information about the speaker. De-
spite variations in the specific information encoded by each
vector, corresponding vectors from different embeddings can
still be compared.

The distance between two embeddings is calculated using
Dynamic Time Warping (DTW) [1], which is also known as
the sequence alignment algorithm. All considered embedding
methods yield variable-length feature vectors, and DTW is
well-suited for this task. Moreover, speed differences that
potentially propagate from the speech to the embedding are
also considered in DTW. The total distance is the average of
distances between corresponding feature vectors. We call this
distance an acoustic distance.

Evaluation of the relationship between the bias and
acoustics
For each speech file, the acoustic distance from the minimum
group is matched with its corresponding bias, resulting in in-
dividual scatter plots for each ASR model and acoustic-based
embedding. Pearson correlation coefficients are computed
to determine the strength of the relation. The acoustic em-
bedding demonstrating the highest correlation across various



ASR models is identified as the most effective method for re-
flecting the bias.

4 Results
Experimental setup
The data used in this study is a subset of the Jasmin dataset
containing 100 speakers. Bias calculations are performed on
a per-speaker basis, as the group-level calculation would re-
sult in too few data points to calculate the correlation. Acous-
tic embeddings are computed for the entire speech, though
for practical reasons, distances between embeddings are cal-
culated based on the first 10 feature vectors out of 1024 that
comprise each embedding. The implementation is inspired
by the code used in the study conducted by Bartelds [7].

Additionally, in human-machine interaction (HMI) speech
recordings, the audio is stereo, with one channel capturing the
speaker’s speech through a microphone while the other chan-
nel records the text-to-speech prompts the speaker interacts
with. Both channels are averaged into the mono format to
mitigate any potential interruptions in speech flow caused by
these prompts. This ensures that pauses due to text-to-speech
prompts are not interpreted as hesitations from the speaker.

Results

Table 1: WER and bias for different models on Read
and HMI speech types.

ASR system Read HMI
WER Bias WER bias

NoAug 0.418 0.350 0.446 0.334
SpAug 0.400 0.322 0.541 0.349
SpSpecAug 0.384 0.305 0.477 0.299
Ws 0.406 0.307 0.496 0.319
WsFT cgn 0.409 0.291 0.520 0.370

Table 1 summarizes the mean Word Error Rates (WERs)
and biases across different ASR models for both Read and
HMI speech types. Generally, biases are comparable between
the two speech types, while WERs tend to be higher for HMI
speech.

Table 2: Correlation between the bias and acoustic dis-
tance for different models with w2v2 and XLSR for
HMI and Read speech types.

ASR system Read HMI
w2v2 XLSR w2v2 XLSR

NoAug 0.594 0.550 -0.023 -0.264
SpAug 0.538 0.445 0.191 -0.069
SpSpecAug 0.553 0.500 0.362 0.030
Ws 0.537 0.471 0.029 -0.088
WsFT cgn 0.473 0.425 -0.052 -0.042

In Table 2, the correlation values between different ASR
models and acoustic embeddings (w2v2 and XLSR) are pre-
sented for Read and HMI speech types. Notably, w2v2 shows
higher correlations with bias compared to XLSR for Read
speech. Conversely, for HMI speech, significant correlations
are generally absent across most models, with some even
displaying unexpected negative correlations, suggesting ran-
domness in the results. Only w2v2 with SpSpecAug exhibits
a slight correlation above 0.3.

Figure 2: Scatter plot for the acoustic distance of the
w2v2 embedding against the bias for the SpSpecAug
model on the HMI speech.

Figure 3: Scatter plot for the acoustic distance of the
w2v2 embedding against the bias for the SpSpecAug
model on the Read speech.

For HMI speech using the ASR model with the highest cor-
relation (SpSpecAug and w2v2), the scatterplot in Figure 2 il-
lustrates that the data points do not exhibit a clear correlation
line. In contrast, for the Read speech (Figure 3, there is a no-
ticeable trend where the acoustic distance increases linearly
for some speakers with low bias. However, there are also in-
stances where the distance remains similar despite variations
in bias. Similar patterns are observed across all ASR and
acoustic-embedding models in their respective scatterplots.

Figures 4, 5, and 6 present the scatterplots for Read speech



Figure 4: Scatter plot for the acoustic distance of the
w2v2 embedding against the bias for the NoAug model
on the Read speech. The first feature vector is used to
calculate the distance.

Figure 5: Scatter plot for the acoustic distance of the
w2v2 embedding against the bias for the NoAug model
on the Read speech. The first 10 feature vectors are used
to calculate the distance.

Figure 6: Scatter plot for the acoustic distance of the
w2v2 embedding against the bias for the NoAug model
on the Read speech. All 1024 feature vectors are used
to calculate the distance.

for the NoAug model and w2v2, using 1, 10, and 1024 (all)
feature vectors to calculate the acoustic distance, respectively.
While using only one feature vector does not resemble the
scatter plot for all the feature vectors, using ten shows resem-
blance, and the correlation values are similar.

Discussion
HMI speech shows little correlation between bias and any
acoustic embedding model across all ASR systems. This lack
of correlation might be because the recordings include both
microphone input from speakers and a channel for text-to-
speech prompts, which acts as noise. If the text-to-speech
prompts were consistently the same in content and order,
their presence might not affect the embedding distances sig-
nificantly because they would align closely during the DTW
alignment. However, in the HMI dataset used here, the text-
to-speech prompts varied between recordings and were not
scripted.

In contrast, the Read speech demonstrates a clear correla-
tion with bias. The scripted nature of Read speech recordings,
where speakers say the same words under controlled condi-
tions, helps isolate acoustic features. This controlled setup
allows for capturing distinct acoustic differences between
speakers, regardless of variations in vocabulary or other fac-
tors.

For the Read speech, the correlation is largest for the
NoAug model (see Table 2). This could be because this model
exhibits higher bias than other models, which could mean that
the bias is more dependent on the acoustics of the speakers
than in other models.

The number of feature vectors used also affects the accu-
racy of acoustic distance measurements. While using the en-
tire acoustic embedding provides the most accurate results,
even using a small subset of feature vectors—less than one
percent in the case of the w2v2 model—can effectively cap-
ture speaker acoustics (see Figures 5 and 6).

5 Responsible Research
To ensure reproducibility, detailed information is provided so
that others can verify and reproduce the results. The code
used to produce the results is made publicly available, along
with the specific library versions used. Although one of
the datasets used in the experiments is restricted to research
purposes, its structure is thoroughly described. This allows
for the possibility of reproducing the results with a similarly
structured dataset.

We believe the nature of this research is ethical. Bias in
software is important both socially and in terms of software
quality. Socially, equal treatment and rights for all people are
fundamental ethical principles. From a software quality per-
spective, it is important that software performs consistently
across diverse user groups, as overfitting to specific groups is
generally undesirable.

6 Conclusion and Future Work
The bias of the ASR system moderately correlates with the
acoustics of the speaker. The study shows that wav2vec 2.0
acoustic embedding, in combination with the DTW, has the



potential to quantify the acoustics of the speaker and explain
the bias associated with it. Moreover, the findings indicate
that a small subset of the wav2vec 2.0 embedding represents
the acoustics of the speaker well relative to the whole embed-
ding.

Despite the study considering multiple ASR systems and
acoustic embeddings, the fact that these are all design choices
cannot be overlooked. While the ASR systems used in the
study are considered state-of-the-art, what defines a good
acoustic embedding or bias metric is not set in stone. In
particular, the acoustic embeddings in this study were based
on neural network approaches, but perhaps, to get more in-
sight into what acoustic features play the most important role
in causing could be identified by looking at isolated speech
properties such as energy, pith, or the length of vowels.

Although a statistically significant correlation was found
between bias and acoustics, it could be that the relation is not
linear. In fact, after some threshold of bias value, the acoustic
distance remained within a fixed range. This hints at a non-
linear interrelation between bias and acoustics and should be
investigated with statistical metrics other than correlation.

To better understand which acoustic features and pronunci-
ations of specific words are related to bias, it would be benefi-
cial to isolate the speech into fragments with single sentences
or words. Identifying these features would help pinpoint the
potential causes of bias.

It would also be worth trying more acoustic embeddings if
they relate to bias. Perhaps acoustic embeddings that were not
considered in this study due to, for example, poor correlation
to the manual labels to native likeness would correlate much
with the bias.

Another area for future work is investigating the impact of
noise on the quality of acoustic embeddings. The disparity
in results for read and HMI speech suggests that the acoustic
embeddings used in this study do not handle noise well.

In addition to acoustic features, the vocabulary of the
speaker contributes to their profile. Investigating the relation-
ship between a speaker’s vocabulary and bias could provide
further insights.

Acoustic embeddings could be used not only to estimate
bias but also to predict the accuracy of an ASR system. While
bias is an important metric, accuracy is often the preferred
measure of ASR system performance.

Finally, this study focused only on the Dutch language. It
is unknown whether the results would be similar for other
languages. Conducting similar studies in different languages
would reveal how the variability in the acoustics of speakers
affects the relation with the bias in ASR systems across dif-
ferent languages.
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