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Layman’s Abstract

Medical imaging is a technique to make an image of the interior of a body thereby revealing internal struc-
tures which would normally be hidden behind skin and bones. The goal here is to visualizing the function of
organs and tissues to be able to diagnose diseases and detect deficiencies in a noninvasive way. A CT scan is
one of the most used medical imaging tools and is a abbreviation of Computed Tomography. A CT scanner
machine however does not directly provide an image. The machine makes measurements of the body and
from these measurements an image needs to be produced which reconstructs the interior of the body. These
reconstructions involve quite some mathematics and thus there exist multiple mathematical models to tackle
this reconstruction problem. When using such a mathematical method one has to careful because the mea-
surements of the body made by the CT scanner machine may contain noise, so to say additional information,
and this noise can cause the image to be blurry. Various mathematical tools exist which improve the qual-
ity and accuracy of the reconstructed CT image. Using those tools, doctors are more able to make a correct
diagnosis. This thesis explains how the reconstruction of a CT image comes to be and describes multiple of
such mathematical tools. The thesis mainly focuses on one method in specific called DART by analyzing the
reconstructions made with this method and comparing it to reconstructions made using other techniques.
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Abstract

This thesis aims to introduce the reader to the mathematical principles underlying X-ray computed tomogra-
phy. It begins with the derivation of both filtered and unfiltered back-projection reconstruction techniques.
Following this, the thesis delves into two algorithms based on algebraic reconstruction techniques (ART): the
Simultaneous Algebraic Reconstruction Technique (SART) and the Discrete Algebraic Reconstruction Tech-
nique (DART). This includes the derivation and implementation of both methods and the analysis and com-
parison of the DART algorithm to the aforementioned methods, all using simulated data. These ART methods
approach the reconstruction problem by iteratively optimizing a large system of linear equations. In addition,
DART leverages prior knowledge on grey values to steer the final reconstruction towards one that only con-
tains these pre-determined grey values. Based on the experiments using simulated data it is shown that DART
effectively deals with both errors in the approximation of the grey values as well as with noisy projection data.
Furthermore, it is found that DART computes relatively accurate reconstructions using only a small number
of projections or projections from a small angular range.
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1
Introduction

In 1895, Wilhelm Röntgen discovered X-rays [11]. This groundbreaking discovery has forever changed the
way physicians go about their work. This tool for medical imaging provides a look into the hidden struc-
tures of the physical world. Since 1895 the medical imaging field has experienced major developments, the
emergence of X-ray computed tomography (CT) soon followed after the establishment of computers around
the 1970’s. This development brought medical imaging techniques to a new level. Where X-ray images are
planar (two-dimensional), CT images are cross-sectional (three-dimensional). Although X-ray (computed)
tomography is not entirely risk-free [6], it presented the first noninvasive medical imaging method. Previous
to this discovery, patients had to be cut open for us to be able to see inside of the body which is invasive
and harmful to the human body. We are now able to diagnose patients and do research into how the human
body is composed without physically invading the body. Mathematical methods are used in reconstructing
these medical images from X-ray projections. Allan Cormack was the first person to realise the importance of
mathematics in the reconstruction of medical images from projections. He recognised that the reconstruc-
tion problem involved determining a function from its line integrals [13]. In 1972 Godfrey Hounsfield used the
methods developed by Allan Cormack to compute the very first computed tomography (CT), together they
received the Nobel Prize in Medicine in 1979 [11]. To this day this method still lays the foundation of medical
imaging. In the method, Allan Cormack uses the Radon transform to model how X-rays propagate through
an object and are detected by a sensor. Initially, the effect of the X-rays within the object was determined
by using a method called Back-Projection, which attempts to reverse the projection process. Following this
discovery, numerous other reconstruction techniques were developed, aiming to improve the reconstruction
quality. Drawing from various branches of mathematics, making X-ray imaging methods interdisciplinary.
For instance, the problem can be approached with a Bayesian inverse model. Using random variables, the
reconstruction problem becomes a question of statistical inference. Alternatively, considering the discretized
version of the Radon transform the problem can be formulated with matrix notation. This formulation allows
for retrieving the solution using inversion, which may propose an unstable problem for which multiple reg-
ularization techniques exist. Additionally, the matrix notation of the discrete version can be seen as a system
of linear equations, resulting in a more algebraic approach. All methods have their advantages, the Bayesian
method allows for quantification of uncertainty in its solution but is more complex to implement than the
other mentioned methods. This thesis will study a version of the algebraic approach, this method has the
advantage of enabling the incorporation of prior knowledge.

The aim of this thesis is firstly to introduce the underlying principles of X-ray computed tomography. This
includes the more physical aspects, like the ionization of atoms, as well as the Radon transform. The sec-
ond objective is to reconstruct the internal structure of objects from measurement data using the Discrete
Algebraic Reconstruction Technique (DART). DART incorporates a sub-algorithm for which several options
are possible. This thesis, however, employs the simultaneous algebraic reconstruction technique (SART). Be-
sides the DART and SART algorithm reconstruction using Filtered Back Projection is introduced to be able
to compare the performance of the methods. The discussed methods are shown through reconstructions of
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2 1. Introduction

simulated data in MATLAB. The Shepp-Logan phantom, a widely-used test image that models a human head
for which the resolution can be determined, is used as simulated data. Figure 1.1 shows two Shepp-Logan
phantoms, one of smaller resolution (on the left) in which the image is made up of 50×50 pixels and one of
larger resolution (on the right) where the image is made up of 200×200 pixels. An explanation of how these
test images can be used as simulated data and how the reconstructions can be tested both visually and using
multiple performance metrics is also included in this thesis.

This thesis adheres to the following structure. Chapter 2 provides an introduction to the physical properties
related to X-rays. This introduction enables the derivation of the fundamental attenuation law. Leading to
the Radon transform from which we are able to introduce Filtered Bac- Projection as the continuous case
of X-ray computed tomography. Chapter 3 includes the more applicable case of X-ray computed tomogra-
phy, discrete tomography described as an inverse problem. Discrete measurements are taken and pixels with
constant values form the basis of the reconstruction. Furthermore, the chapter includes explanations on im-
portant concepts of inverse problems known as well-posedness and inverse crime. In Chapter 4 Algebraic
Reconstruction Techniques are introduced and an explanation of SART is provided from which some recon-
structions are shown. Thereafter, Chapter 5 contains a detailed explanation into the DART algorithm together
with several reconstructions. Lastly, the main takeaways and discussion points can be found in Chapter 6.

Figure 1.1: The original Shepp-Logan phantom of resolution 50×50 on the left and resolution 200×200 on the right.



2
X-rays

When studying X-ray computed tomography, it is essential to understand the basics of the underlying phys-
ical properties. This chapter provides an introduction to the physics behind the X-ray; Sections 2.1 and 2.2
will dive into the physical aspects of tomography. Most importantly, explaining ionization through the atomic
structure. Eventually, we are able to get more into the mathematics of it, in Section 2.3 numerous attenua-
tion laws will be derived and in Section 2.4 the Radon transform is introduced and related to the exponential
attenuation law. Furthermore Section 2.4 contains an explanation on filtered and unfiltered back-projection.
This chapter is based on a book by Price and Links [11] and a book by Mueller and Siltanen [9].

2.1. Ionization

A tomogram is an image of a plane, or ’slice’, of the body. Therefore X-ray computed tomography generates
an image of a slice within the body, representing the conveyance of an X-ray through the human body. Com-
puting a tomogram relies on two separate components. Firstly a source, the ‘X-ray tube’, produces a beam
of ionizing radiation which is then transmitted through the patient. Whilst passing through the patient the
the intensity of the radiation is reduced, this phenomenon is called attenuation. The second component, the
radiation detectors, thereafter collect the new intensity of the beams on the other side of the patient, this is
depicted in Figure 2.1. Here the X-ray source is positioned at x = 0 and the X-ray detector is positioned at
x = xd . The amount in which the intensity is attenuated is determined by the attenuation ability, which is a
physical characteristic of materials. The individual processes happening inside the source and detector are
outside the scope of this paper, for those interested, further details can be found in [14]. What happens in
between will however be explained briefly.

Figure 2.1: Visual representation of X-rays travelling from the X-ray source x = 0 through an object to the X-ray detector x = xd .

3



4 2. X-rays

Electromagnetic radiation

Where the amount of attenuation is determined by the characteristics of the material the radiation beam
passes through, the existence of attenuation is caused by the beam’s ionization ability. X-rays are electromag-
netic radiation (EM), a type of radiation capable of ionization. That is, radiation capable of ejecting electrons
from atoms creating a free electron and ion. A free electron is thus an electron that is not bound to an atom
and an ion is an atom that has either lost or gained electrons. Other types of EM are UV rays, visible light and
radio waves. Generally, electromagnetic radiation with a large enough energy level is considered ionizing,
resulting in X-rays being ionizing but visible light not. Electromagnetic radiation can act as a particle and a
wave since the phenomenon has no mass and no charge. When treated as a particle, EM radiation can be
seen as "packets" of energy which are called photons. On the contrary, when considered to be a wave, the
radiation can be characterised by its wavelength.

Atomic structure

The ejection of electrons depends on the atomic structure. An atom consists of a centre called the nucleus
which is orbited by electrons, as can be seen in Figure 2.2. Since a stable atom is always electrically neutral
and the nucleus has a positive charge, there must be as many electrons as there is a positive charge to balance
the charge. These orbiting electrons are arranged in shells, where each shell can contain a growing amount
of electrons as we move further from the nucleus. It is common for the electrons to be positioned in the
shell as close to the nucleus as possible, since there the energy level is as low as possible. This guideline is
called the ground state, it is nature’s preferred arrangement of electrons over the shells. Another important
characteristic of electrons is that it is energetically favourable to be bound to an atom rather than to be a
free electron. Implying that the energy of a complete atom is smaller than the energy of the electron plus
the energy of the atom without that electron. This difference in energies is called the electron binding energy
and plays an important role in radiation. We denote the shell in which an electron is located with the orbit
number. Note that electron binding energy decreases when the orbit number increases. Thus if an electron
is positioned in a shell further away from the nucleus the electron binding energy is lower than when the
electron is close to the nucleus. The electron binding energy plays an important role. When radiation passes
through a certain material it also passes through the atoms within. More specifically, it passes energy to
orbiting electrons in that atom. If this energy is greater or equal to the electron binding energy this electron
gets ejected from the atom, this process is called ionization. The ejected electron is called the photo-electron.
On the contrary, when the energy of the passing radiation is lower, the electron will move to a higher shell
which will leave a ‘hole’ in the lower shell.

Figure 2.2: Visualization of atomic structure.

2.2. Effects

The electron binding energy, being the reason for an electron to be either ejected or moved, can cause two
different effects, the photoelectric effect and the Compton scatter. As these effects both occur when an X-ray
photon interacts with an atom the difference is rooted in the level of absorption.
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Photoelectric effect

Firstly, in the photoelectric effect, the photon interacts with the atom, where the photon will be absorbed
completely, causing the atom to eject an electron. This happens as the photon that is absorbed carries energy,
as explained the energy level of a stable atom is always neutral and thus the energy level has to be restored.
This is done by transferring the energy of the photon to an electron within the atom. The transferred energy
helps to overcome the binding energy which holds the electron in the atom. Thus the electron is ejected
from the atom, taking a part of the energy with it. When this interaction happens in one of the inner shells,
it leaves the atom with a ‘hole’ which must be filled by an electron from an outer orbit, now the outer orbit
experiences a loss in energy which in turn creates an EM photon called the characteristic radiation. This
process is shown in Figure 2.3. It is called characteristic radiation since the energy of the photon equals the
difference in electron binding energies of the shells in consideration. This energy level differs per atom and
thus is a characteristic of particular atoms.

Figure 2.3: Visualization of the photoelectric effect.

Compton scatter

Secondly, in Compton scattering the photon interacts with an outer shell electron and is only partly absorbed
creating a loss of energy and changing its direction. This direction change limits the resolution of X-ray im-
ages. The outer shell electron, now called the Compton electron, is in this case also ejected from the atom.
Compton scattering is depicted in Figure 2.4.

Figure 2.4: Visualization of Compton scatter.

2.3. Attenuation

As explained the Photoelectric effect and Compton scattering cause a loss in strength of the EM radiation
beam, and as stated we call this attenuation. The difference in strength depends on the characteristics of
the atom which the radiation passes through. To be able to model this, we define several characteristics of
the X-ray beam. Firstly, we can measure the strength of an X-ray beam which is commonly referred to as the
photon fluence.

Definition 2.1. The photon fluence Φ is the number of photons N in a radiation beam spread over the area A



6 2. X-rays

that the beam covers and is therefore given by

Φ= N

A
.

A possibility is to take time into account as well since measurements take place over fixed time interval ∆t , this
gives

Φ= N

A∆t
.

Secondly, we define the intensity I of a beam by the photon fluence together with the energy these pho-
tons carry:

Definition 2.2. The intensity of a radiation beam is given by

I = EΦ

where E = hv with h being Plank’s constant and v being the frequency of the beam.

In reality, photon beams are poly-energetic, meaning that the photons may have differing energy levels.
The poly-energetic case however is more complicated thus the mono-energetic, in which all N photons are
of the same energy, will be considered.

Starting off with placing a homogeneous object, being of one material, between the photon source and
the detector. We can determine the total change in the number of photons due to attenuation in an object
using the following theorem

Theorem 2.1. Let N0 be the initial number of photons and let Nd describe the number of photons measured by
the detector. Furthermore, let ∆x be the distance an X-ray travels through the object. Assume that the attenua-
tion coefficient, µ, is constant. Then the fundamental photon attenuation law is given by

Nd = N0e−µ∆x (2.1)

Proof. Let N be the total number of photons present in the beam and take N ′ to be the number of photons
measured by the detector. Note that N ′ ≤ N since some photons will be absorbed due to the photoelectric
effect and some photons may be deflected away from the detector due to Compton scattering. We expect that
the amount of photons that are lost due to attenuation, ∆N = N −N ′, is proportional to N and∆x thus giving

∆N =−µN∆x.

Letting the object become thin and considering N to be a continuous quantity leads to

d N

N
=−µd x

as the distance travelled by the X-ray through the object is also becoming smaller when the object becomes
thinner. We are interested in the total change in the number of photons between the source, which is equal
to the initial number of photons N0, and the number of photons at the detector, which is assumed to be Nd ,
due to attenuation while travelling through an object for a distance of ∆x. We find this by integration:∫ Nd

N0

d N

N
=−

∫ ∆x

0
µd x

Nd

N0
= e−µ∆x

Nd = N0e−µ∆x ,

which concludes our proof.
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Similarly, let I0 be the initial intensity, this can be determined through calibration. The calibration can
be done by sending an X-ray through empty space and detecting the non-attenuated intensity. In the mono-
energetic case equation (2.1) can be written in terms of intensity as the energy level is irrelevant.

I = I0e−µ∆x (2.2)

From now on we will only consider the intensity as Equations (2.1) and (2.2) are similar when considering the
mono-energetic case. Moving on to the non-homogeneous case, where the object consists of multiple mate-
rials. In that case, the attenuation coefficient depends on the position x within the object as well, therefore
the following theorem applies.

Theorem 2.2. Let I (x) be the intensity of the beam at position x and let I0 be the initial intensity. Take∆x to be
the distance an X-ray travelled through the object to get to position x. Assume that the attenuation coefficient
µ(x) depends on position x within the object. Then the exponential attenuation law is given by

I (x) = I0exp

{
−

∫ ∆x

0
µ(x)d x

}
. (2.3)

Proof. Following the proof of Theorem 2.1 we must solve

d I (x)

I
=−µ(x)d x.

We are interested in the total change in intensity between the source, which is equal to I (0) = I0, and then the
intensity at position x, which is assumed to be I (x), due to attenuation while travelling through an object for
a distance of ∆x. We find this by integration:∫ I (x)

I0

d I (x)

I
=−

∫ ∆x

0
µ(x)d x

I (x)

I0
= e−

∫ ∆x
0 µ(x)d x

I (x) = I0e−
∫ ∆x

0 µ(x)d x ,

which concludes our proof.

Equation (2.3) models the line integrals which can be interpreted to be the individual radiation beams
shown in Figure 2.1. Let I (xd ) = Id to be the intensity at the position of the detector for which we write xd .
Let ∆xd denote the distance the X-ray travelled through the object to get to the detector. Note that since Id

and I0 are known we now can determine the linear attenuation coefficient by the log difference in intensities:

−
∫ ∆xd

0
µ(x)d x = log

( Id

I0

)
= log (Id )− log (I0). (2.4)

This equation forms the basis of X-ray computed tomography.

The above model is a simplification of the reality. Besides a photon beam being poly-energetic multiple
other issues are being neglected. For instance, the used photon count is modelled to be deterministic whilst
it is better modelled as a random variable. To take this into account without making it too complicated the
measurement is often modelled as

−
∫ ∆xd

0
µ(x)d x +ϵ= log (Id )− log (I0).

with ϵ ∼ N (0,σ2) a Gaussian random variable. The noise amplitude σ2 can be estimated by measuring the
same object repeatedly and calculating the sample variance.
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Figure 2.5: Illustration of line Ls,θ on the left and six parallel X-ray beams with fixed θ and differing s on the right.

2.4. Continuous tomography

Recall that we want to model the events happening during X-ray computed tomography. The exponential
attenuation law provides a step in the right direction. However, to be able to reconstruct a traditional X-ray
image considering one X-ray separately is not enough. A collection of X-rays is needed. Additionally, when we
consider X-ray computed tomography we need collections of X-rays from different angles around the object.
For this we consider lines

Ls,θ = {x ∈R2|x ·Θ= s}, s ∈R
which are illustrated in Figure 2.5. Here Θ is the unit vector with angle θ ∈ R (in radians) with respect to the
x1-axis, denoted

Θ=
[

cosθ
sinθ

]
.

Note that line Ls,θ is perpendicular to [s cosθ, s sinθ]T trough the point (s cosθ, s sinθ), thus we can write it as

Ls,θ = {x = (x1(t ), x2(t )) = (s cosθ+ t sinθ, s sinθ− t cosθ) ∈R2|t ∈R}. (2.5)

Modelling the difference in intensity along the line Ls,θ can be done using the Radon transform. In a two-
dimensional space, the Radon transform is an integral transform mapping a function to line integrals [16].

Definition 2.3. The Radon Transform of function u(s,θ) :R2 →R is defined as

Ru(s,θ) =
∫

x·θ=s
u(x)d x

with s ∈R and θ ∈ [0,2π].

Note that the Radon transform of the attenuation coefficient gives the same expression as the derivation
we made by examining the physical properties of the intensity in Equation (2.4) when we take x = (x1(t ), x2(t ))
to be the same as in Equation (2.5) and by noting that taking θ = π

2 models an equation parallel to the x-axis:

Rµ(s,θ) =
∫

x·θ=s
µ(x)d x

=
∫ ∞

−∞
µ(x1(t ), x2(t ))d t

=
∫ ∞

−∞
µ(scos

π

2
+ t si n

π

2
, ssi nn

π

2
− tcos

π

2
)d t

=
∫ ∞

−∞
µ(t , s)d t

=
∫ ∆xd

0
µ(x, y)d x

= log
( Id

I0

)
.
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Figure 2.6: On the left the Shepp-Logan phantom at resolution 200×200 and on the right the measured data (sinogram) from 180 angles
ranging from 0 to π.

Note that the radon transform models the CT measurements in which µ(x1, x2), being the attenuation coeffi-
cient, corresponds to the underlying unknown we wish to reconstruct. A pictorial representation of the radon
transforms Rµ(s,θ), where s and θ serve as rectilinear coordinates (forming a straight line), of µ(x1, x2) is a
sinogram. This represents the data which is needed to reconstruct µ(x1, x2). Figure 3.1 shows an object, the
Shepp-Logan phantom, and its sinogram, which is generated by making projections (180 to be exact) of the
phantom with an angle range of 0 to π. We start with a projection at angle θ = 0, this is a projection compris-
ing vertical integrals of the object (to understand this the reader is referred to Figure 2.5). Note that in Figure
2.6 the phantom is the most narrow in the horizontal direction, therefore there will be the least data retrieved
from vertical integrals and thus the sinogram, starting at the left is also the most narrow. As we move along
our angle range, our sinogram becomes wider as our projections widen. Arriving at the angle of θ = π

2 , notice
that the phantom is at its widest and thus giving us the widest projection which is evident in the middle of
the sinogram. Approaching an angle of θ = π we return to a projection comprising almost vertical lines and
there is no need to proceed as these projections are redundant.

2.4.1. Back-projection

As explained in Definition 2.3 , the radon transform models the CT measurements. We, however, want to
reconstruct an image of attenuation coefficient µ given these measurements. During the reconstruction pro-
cess the data from the radon transform, which is represented by the sinogram, is taken and processed so that
it shows the cross-section which it came from. For this reconstruction process, we use the method of back-
projection which will now be introduced.

Consider a projection for angle θ = θ0 with radon transform Rµ(s,θ0). Generally, there are an infinite
number of functionsµ(x1, x2) that could result in this projection and thus it is not possible to retrieveµ(x1, x2)
from a single projection. Speaking to the readers intuition, if Rµ(s,θ0) is large for s = s0, then µ(x1, x2) must
be large somewhere (or everywhere) along line Ls0,θ0 . Creating an image with that property can be done by
letting every point on that line equal Rµ(s0,θ0). Now repeating this for all values of s will result in the back-

projection image bθ0 =Rµ(s,θ0) which is shown in Figure 2.7 for θ0 = pi
2 . When considering multiple angles

the separate reconstructions will be placed on top of each other. The reconstruction with two angles, see
Figure 2.8, already shows more of the shape of the original object but also contains a lot more colours, this
phenomenon we will address as artefacts. Adding up the back-projection images of all the measured angles
ranging from 0 to π by integral, gives us the back-projection, formally defined by

Definition 2.4. Back-projection B of function f = f (s,θ) is

B f (x) =
∫ π

0
f (x1 cosθ+x2 sinθ,Θ)dθ

Applying this back-projection to the radon transform of the attenuation coefficient µ(x1, x2) we get

BRµ(x1, x2) =
∫ π

0
Rµ(x1 cosθ+x2 sinθ,Θ)dθ =

∫ π

0
Rµ(s,Θ)dθ.

When applying the back-projection method to (noise-free) measurements retrieved from the Shepp-Logan
phantom it can be noted that the reconstruction, using 180 angles as shown in Figure 2.10, is still very blurry.
In fact, no matter how much angles will be used this method will always give a blurry reconstruction. This is
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Figure 2.7: Reconstruction using back-projection for
one angle.

Figure 2.8: Reconstruction using back-projection for
two different angles.

caused by letting every point on the projection line equal the measurement for one angle. Thus if two points
lie on a line from one measurement these points will be given the same value during reconstruction whilst
one point may lie inside of the object and the other outside of the object.

2.4.2. Filtered Back-projection

As the reconstructions using back-projection are still quite blurry we will introduce a second method, fil-
tered back-projection. Filtered back-projection uses Fourier transforms to suppress certain frequencies and
amplify others during the back-projection giving a less blurry result. In order to define the filtered back-
projection method we need to concepts, that of the Fourier transform and the central slice theorem which
will now both be defined.

Definition 2.5. Let u(x) :Rn →R be an integrable function. The Fourier transform of u, denoted Fu, is defined
as

Fnu(ξ) = û(ξ) =
∫
Rn

u(x)e−i 2πx·ξd x

If u and û ∈ L1(R), then the inverse Fourier transform is defined by

F−1
n u(x) =

∫
Rn

u(ξ)e i 2πx·ξdξ.

Additionally, we need to define a relation between the one dimensional Fourier transform of the radon
transform and the two dimensional Fourier transform of the object.

Theorem 2.3. (Central slice theorem). Let u be integrable on R2. For all s ∈R and θ ∈ [0,2π] we find that

F2u(r cosθ,r sinθ) =F1Ru(r,Θ),

where F1 is the Fourier transform with respect to the first parameter.

Proof. Note that

F2u(r cosθ,r sinθ) =
∫ ∞

−∞

∫ ∞

−∞
u(x1, x2)e−i 2π(x1,x2)·(r cosθ,r sinθ)d x1d x2

Using the following change of variables

x = (x1, x2) = (s cosθ− t sinθ, s sinθ+ t cosθ).

We get the following determinant of the Jacobian

det

[
∂x1
∂t

∂x1
∂s

∂x2
∂t

∂x2
∂s

]
= det

[−sinθ cosθ
cosθ sinθ

]
=−1,
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thus d x1d x2 = d td s. Note that x1r cosθ+x2r sinθ = r s and thereby write

F2u(r cosθ,r sinθ) =
∫ ∞

−∞

∫ ∞

−∞
u(s cosθ− t sinθ, s sinθ+ t cosθ)e−i 2πr s d td s

=
∫ ∞

−∞

(∫ ∞

−∞
u(s cosθ− t sinθ, s sinθ+ t cosθ)d t

)
e−i 2πr s d s

=
∫ ∞

−∞
Ru(s,Θ)e−i 2πr s d s

=F1Ru(r,Θ),

Where Fourier transform F1 is taken with respect to the first parameter.

We are now able to propose filtered back-projection with which we can recover µ(x1, x2) from it’s radon
transform

Theorem 2.4. Let u and û be integrable functions. Then

u(x) =
∫ π

0

∫ ∞

−∞
e i 2πr x·ΘF1Ru(r,Θ)|r |dr dΘ.

Proof. Note that

u(x) =F−1
2 F2u(x) =

∫ ∞

−∞

∫ ∞

−∞
F2u(ξ1,ξ2)e i 2π(x1,x2)·(ξ1,ξ2)dξ1dξ2.

Do change of variables (ξ1,ξ2) = (r cosθ,r sinθ) to be able to use the central slice theorem. Here we have r ∈R
and θ ∈ [0,π]. We get the following determinant of the Jacobian

det

[
∂ξ1
∂r

∂ξ1
∂θ

∂ξ2
∂r

∂ξ2
∂θ

]
= det

[
cosθ −r sinθ
sinθ r cosθ

]
= r,

thus giving dξ1dξ2 = |r |dr dθ. Now using the central limit theorem and the above change of variables we can
write

u(x) =
∫ π

0

∫ ∞

−∞
F2u(r cosθ,r sinθ)e i 2π(x1,x2)·(r cosθ,r sinθ)|r |dr dθ

=
∫ π

0

∫ ∞

−∞
F1Ru(r,Θ)e i 2πr (x1,x2)·(cosθ,sinθ)|r |dr dθ.

Recall that the radon transform of µ is given by the measurement and thus we can use above theorem to
recover the attenuation coefficient from noiseless full-angle X-ray measurements. Note in the above theorem
first the Fourier transform is calculated of the radon transform where after we calculate the inverse Fourier
transform of this multiplied with filter |r |, this gives the ability to filter out low-frequency components and
amplifying high-frequency components. Then we conclude the filtered back-projection process by taking the
back-projection of the filtered Fourier transform. Figure 2.10 also shows a reconstruction using filtered back-
projection of noise-free measurements. The noise free measurements, depicted in a noise free sinogram, can
be seen in the left of Figure 2.9. Using this sinogram gives a perfect reconstruction. However, when 5% noise
is added to the measurements, we see that the sinogram, shown on the right of Figure 2.9, is pretty noise and
the reconstruction is also noisy.
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Figure 2.9: On the left the ideal measurement, so a noise free sinogram made from the original Shepp-Logan phantom as shown in
Figure 2.10 using 180 projections ranging from 0 to π. On the right the same sinogram but with 5% noise.

Figure 2.10: Original Shepp-Logan phantom compared to the unfiltered back-projection and filtered back-projection without and with
5% noise



3
Discrete tomography

Filtered back-projection models a solution for a continuous problem, implying that we have continuous data.
In reality, the data is generated via a finite collection of lines as shown in Figure 2.5. In this chapter, X-ray
computed tomography will be derived as a discrete inverse problem.

3.1. Inverse Problems

In a direct problem the cause is known and we want to know the effect. An inverse problem is the opposite of
the direct problem, we know what the effect is but what was the cause? In X-ray computed tomography the
direct problem is to determine a projection image, which was defined in Section 2.4 as a sinogram, when we
know the internal structure of the body precisely. The corresponding inverse problem is to determine how
the internal structure of the body looks like when all we are given are projection images. Recall that these
projection images are the measurements made by the detector when X-ray beams have been sent through
the patient and the attenuated intensity leaves the body. Figure 3.1 shows a Shepp-Logan phantom together
with its noiseless sinogram determined by making 180 projections of the phantom with angle range [0,π].

Figure 3.1: The Shepp-Logan phantom at resolution 200×200 and the measured data (sinogram) from 180 angles.

Having defined the concepts of a direct and an inverse problem, we need to delve into the criteria that
determine whether a proposed problem, either direct or inverse, is tractable. More specifically, we distinguish
between well-posed and ill-posed problems to define the conditions under which a solution to the given
problem can be reliably obtained and utilized. The direct problem is well-posed; generally numerically stable,
can be solved reliably and has a unique solution. A problem is well-posed if it complies with the following
conditions as defined by Jacques Hadamard in 1923

• H1 Existence: there should be at least one solution.

• H2 Uniqueness: there should be at most one solution.

• H3 Stability: the solution must depend continuously on data.

13
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A problem is ill-posed if it breaks at least one of the above conditions. In contrary to the direct problem, the
inverse problem is generally ill-posed, thus more difficult to solve than the direct problem and very sensitive
to noise and errors. Thus we need to ensure that we model the inverse problem such that it is well-posed.
For this, we first define a basis model for the discrete inverse problem and then we will look at how this
formulation can break well-posedness.

3.2. Discretization

We model the direct problem as follows. The measurements, which are made by the X-ray detector, are
stacked in a vector such that we get m ∈ Rk . Here k depends on the measurement device. In the case of
X-ray computed tomography, k is determined by how many measurements are made by the X-ray detec-
tor. Then, the unknown in the case of X-ray computed tomography is µ, the attenuation coefficient, which
is also stacked in a vector. The unknown µ is originally modelled as a piece-wise continuous function but
to be able to model this as a discrete problem we need to introduce a finite-dimensional approximation of
µ ∈RD . Naturally, µ does not have one ideal discretization, we have to choose the discretization method and
level d . In Figure 3.2 multiple discretization levels are shown of the Shepp-Logan phantom, here the value
for D expresses in how many pixels the projection image is divided in total. The discretization level d gives
the number of pixels in which the image is divided in terms of the height and width of the image, therefore
D = d 2. The bigger d , the more details the reconstruction will show but also the more computing power is
needed to make that reconstruction. We want to estimate µ to be able to recreate the internal structure of the
patient. For this, we need the forward operator A. The forward operator maps the unknown object µ (cause)
to the measurement m (effect) which is perturbed by noise n. A is modelled as a matrix A ∈Rk×D such that it
agrees with the formatting of m and µ. With that, we are able to describe the discrete inverse problem in the
following manner

m = Aµ+n. (3.1)

The direct problem of determining m, is well posed if A is well-defined, single-valued and continuous [9]. The
inverse problem, determiningµ, is then ill-posed when A−1 does not exist or is not continuous. Recall that
m ∈Rk , µ ∈RD and A ∈Rk×D , therefore we are able to write Equation (3.1) in the following mannerm1

...
mk

=

a11 . . . a1D
...

. . .
...

ak1 . . . akD


µ1

...
µD

+

n1
...

nk

 . (3.2)

The inverse problem, recover µ ∈ RD from the measurement m = Aµ+n, can fail to fulfil the well-posedness
conditions as follows

• H1 Assume that D < k. Then we have more measurements than unknowns, which makes the system
overdetermined. Which means that when noise is present there is no solution to solve (3.1). For X-ray
computed tomography this would result in pixels that are left ’empty’ where A−1m is not defined. How
these empty pixels look depends on the initialization of the problem as we will see in Chapter 4, most
of the time it means that the pixels are simply black.

• H2 Assume that D > k. Then there are more unknowns than measurements and the system is under-
determined. Now there are several solutions possible. For X-ray computed tomography this means that
the measurements can belong to several attenuation coefficients, thus we do not know which material
was measured. For X-ray computed tomography, this implies that the values of the reconstruction can
be off, as there are multiple possibilities. This causes the reconstruction to be off.

• H3 Assume that D = k and there exists A−1. The problem may be extremely sensitive to errors in the
measurement, producing a reconstruction dominated by noise. This is the case when the condition
number κ = λ1

λk
is very large. Here λ1 and λk > 0 are the biggest and smallest singular values of A.

What these singular values are and why a big condition number results in an unstable solution will be
explained in Section 3.3.
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In Section 3.3 we will also see that the last condition will affect the X-ray computed tomography reconstruc-
tion the most. With Equation (3.2), we have modelled X-ray computed tomography in a discrete manner.

Figure 3.2: Shepp-Logan phantoms with discretizations 25x25, 50x50, 100x100 and 200x200.

However, we have not established yet the precise meaning of the entries of the separate components m, µ
and A. Thus, we will now adapt the tomography model as established in Sections 2.3 and 2.4 to fit (3.2).
Firstly, we will model our measurements in a discrete manner. Let θ ∈ [0,π] be sampled with equidistant
steps

θ j = θ1 + (
j −1

J −1
)π, 1 ≤ j ≤ J

with θ1 being a reference angle and J being the total number of steps taken, so the amount of different mea-
surement angles. Let s be sampled with equidistant steps over interval [−S,S] where S > 0 gives

sn =−S +2(
n −1

N −1
)S, 1 ≤ n ≤ N

with N is the total number of steps. Thus for J angles, we measure from N different distances to the origin,
as in Figure 2.5, and this gives us k = J N measurements in total. Therefore we can write our measurements
taken during X-ray computed tomography using Definition 2.3 as follows

m =


∫

L1
µ(x1(t ), x2(t ))d t

...∫
Lk
µ(x1(t ), x2(t ))d t

 .

Secondly, we model the unknown by dividing the projection image into D pixels, where we can set the atten-
uation coefficient constant in each pixel. In the continuous case, we have established that the log difference
of the intensity equals the summation over the attenuation coefficients times an infinitely small distance
which resulted in the integral. For the discrete case we will now do the same, we however leave the distance
to be determined by the pixels instead of letting them become very small. This leaves us with a summation
over all distance intervals of the attenuation times the distance we call this the ray-sum. An estimation of one
noiseless measurement mi , the value measured by the detector along a radiation beam (thus line integral Li ),
relates to the entries of one row in matrix A, which denotes the distance that beam travels through a pixel.
Multiply that row by the attenuation coefficient values and we get

mi =
∫

Li

µ(x)d x ≈
D∑

j=1
ai jµ j (3.3)

with ai j being the distance beam Li travels through pixel j, see Figure 3.3a.

Note that ai j are the entries of the forward operator A with i = 1, ...,k, j = 1, ...,d . For many pixels ai j = 0,
this makes matrix A a sparse matrix. When a beam travels through an object it only passes through a certain
area. The attenuation ability of the beam has an impact on the pixels which it travels through and the intensity
of the pixels that are not crossed by this beam are left unchanged. To be more precise, considering Figure
3.3b, beam i only crosses 5 pixels, therefore measurement mi is only affected by the attenuation coefficients
of those 5 pixels. The entries ai j of A corresponding to those 5 pixels have a non-zero value whilst all the other
ai j are equal to zero making sure that in Equation (3.3) the attenuation coefficients of all the other pixels do
not contribute to measurement mi . With Equation (3.3) and taking noise into account again we are back to
the expression in Equation (3.2).



16 3. Discrete tomography

(a) Square grid imposed over the unknown image with assigned cell
values µi and parallel measurements mi and mi+1. Highlighted
value ai j denotes the distance beam mi travels through pixel j .

(b) Visualization of beam i travelling through only 5 pixels, ensuring
matrix A to be a sparse matrix.

3.3. Reconstruction methods

Now that we have modelled X-ray computed tomography in a discrete manner we can start with solving the
inverse problem, reconstructing the measured object. This can be done in several ways, first of all, we will
look at the naive reconstruction method which is simple and intuitive but has big problems.

Assume that matrix A is a square and invertible matrix. When looking at our model m = Aµ+n, we can
simply rewrite it such that we solve for the unknown

m = Aµ+n

A−1m =µ+ A−1n

µ= A−1m − A−1n. (3.4)

Considering the above equation, we see that the inverse of A is also applied to the noise, thus even if the
noise ∥n∥ is small it could still be that ∥A−1n∥ is large. This results in an unstable solution, breaking Hamard
condition H3 and making the reconstruction inaccurate.
We will first test this method with ideal data. Let n = 0, data which does not contain any noise. In Figure 3.4
left you can see the naive reconstruction gives a perfect reconstruction. This perfect reconstruction is sadly
too good to be true as this result is obtained with inverse crime. Inverse crime occurs with simulated data
when the exact same model is used to generate the measurements and to invert it. In reality, there can the
discrepancies and uncertainties in the model. Also, the detector, when making measurements, can introduce
noise. This noise can be caused by slight variations in sensitivity within the detector or it can be caused by
environmental effects like temperature dependence or mechanical vibrations. These factors can all impact
the quality of the reconstruction. When working with simulated data we can choose to perturb the data such
that it models these variations and includes noise present in real-life data. By doing this we avoid inverse
crime and create reconstructions which better reflect the performance of a method in real-life applications.
To avoid inverse crime we will generate the data (sinogram) using a 200×200 phantom, then interpolate the
data to the 55× 55 resolution used in the reconstruction. Additionally, we introduce some noise with the
measurements, this will be be explained more thoroughly in Section 4.2.1.

However, when matrix A is not square, when the rows or columns of A are not linearly dependent or when
A has eigenvalue zero we can not invert it. Instead, we can search for an approximation of the unknown
µappr ox such that the distance between Aµappr ox and m is as small as possible. This more general solution is
the least squares naive solution

argmin
µ

∥Aµ−m∥2
2
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Figure 3.4: Naive reconstruction applied to noise-free data and the naive reconstruction applied to data with 0.1% noise.

which is solved by
µr econ = (AT A)−1 AT m

with AT being the transpose of A. Note that when we have more measurements than unknowns, the problem
is overdetermined and we break Hamard condition H2. Therefore when noise is present this method does
not have a solution. Furthermore, this method has some other problems as minimizing over the distance po-
tentially yields in multiple solutions, as multiple attenuation coefficients µ could result in the same distance
between Aµappr ox and m, which breaks well-posedness condition H2. Also, when there is noise present we
will create the same situation as in Equation (3.4) where the multiplication of A−1 with n could result in an
unstable solution, breaking Hamard condition H3

The above-stated problems can be solved in multiple manners. Firstly, the Truncated singular value de-
composition (TSVD) is a method in which instead of A−1 a truncated version of the pseudo inverse of matrix
A is used to ensure stability. This pseudo inverse is obtained by factorizing the matrix A into multiple ma-
trices using singular value decomposition. One of the matrices from this singular value decomposition is a
diagonal matrix consisting of fractions within the denominator the square roots of the eigenvalues of AT A,
we call these the singular values. Since the singular values are in the denominator, very small singular values
will result in a reconstruction dominated by the noise term A−1n. By truncation the smallest singular values
from this diagonal and setting them to zero we ensure stability. Another method to avoid instability is using
Tikhonov regularisation or Total variation regularisation which are both methods that add a certain penalty
term to the least squares problem to address the instability. Further information into these three methods
can be read in a book by Mueller and Siltanen [9].



4
Algebraic Reconstruction Techniques

In Chapter 3 we have defined the discrete model for X-ray computed tomography. This discrete approach
is more simplistic than the continuous approach with transform-based methods as in Section 2.4. On the
other hand, it can therefore also lack in speed and accuracy. The continuous transform based solutions are
however not always possible, for example in situations where it is not possible to measure a large number
of projections. One method that does work in the case of a limited amount of projections is the algebraic
reconstruction technique. Other methods, like total variation regularisation as shortly discussed in Section
3.3 also perform quite well in the case of limited projection data, the advantage here however is that the
matrix inversion operation becomes an iterative operation therefore it is more easily implemented when the
matrix is not square. In this chapter, a specific version of the algebraic reconstruction technique, called SART,
is discussed. SART attempts to improve the accuracy of algebraic techniques. First, in Section 4.1, we lay
the basis of algebraic reconstruction techniques. Thereafter, in Section 4.2 this theory is used to define the
improved version of this basis technique. The contents of this chapter are based on the book by Slaney and
Kak [15] and the article by Andersen and Kak [1].

4.1. Projection representation

As in Section 3.2 we divide the unknown, the image which we want to reconstruct, into pixels. More specific,
we cover the image with a square grid and we assume that the unknown, the attenuation coefficient µ in the
case of X-ray computed tomography, is constant within each pixel cell. Thus we denote the constant value
of pixel, or cell, j with µ j . Recall that D is the total number of pixels, meaning that µ ∈ RD . We again look at
the representation in Figure 3.3a, however now keep X-ray computed tomography in mind. The fat blue line
in Figure 4.1 represents a radiation beam. Where ai j in Figure 3.3a represented the distance beam i travels
through pixel j we now look at wi j which represents the contribution of pixel j to ray integral i . This factor
wi j is equal to the area of pixel j covered by ray i . Like the ai j ’s most wi j ’s are zero. The interpretation of wi j ,
being to consider radiation as a fat beam, may come closer to reality as radiation beam is not exactly a ’line’
as the interpretation of ai j suggests. However, a detector is only able to detect a discrete amount of values,
spread over a few millimeters for each detector value and a beam has a width of only a few militarise [12].
Therefore we choose to use the notation and interpretation of ai j to keep a more simplistic model, and thus
we consider Figure 3.3a with the following equation again

mi =
D∑

j=1
ai jµ j , i = 1, ...,k. (4.1)

Equation (4.1) provides us with k different equations as i = 1, ...,k, with D unknowns in each equation giving
us D degrees of freedom. To be able to better explain this we will look at an example in which we consider a

18
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Figure 4.1: Square grid imposed over the unknown image with assigned cell values µi and parallel measurements mi and mi+1.
Highlighted value wi j denotes the contribution of pixel j to ray integral i .

two-dimensional case using equations

(4.2)

m1 = a⃗1µ⃗= a11µ1 +a12µ2 (4.3)

m2 = a⃗2µ⃗= a21µ1 +a22µ2, (4.4)

this case is visualized in Figure 4.2. We consider D = 2 pixels, and thus we have 2 unknowns representing
the pixel values denoted µ1 and µ2. Additionally, we have two measurements m1,m2 and therefore values
a11, a12, a21, a22 define the forward operator. Note that for instance a12 denotes the contribution that beam 1
has to cell 2 as visualized in Figure 4.2. Now these two equations, with two unknowns, result in two degrees of
freedom and therefore we can visualize the equations from (4.2) as in Figure 4.4 with a µ1-axis and a µ2-axis.
When we consider the more general case, where we have D unknowns we get an image covered by a grid of
D cells (pixels) and thus the image will be defined by it’s definite pixel values (µ1, ...,µD ). The definite pixel
values can be considered to represent a single point in a D-dimensional space. Just like (µ1,µ2) with fixed
values denotes one point in the 2-dimensional space. Only now we can not visualize the problem anymore
as there are D axes, and thus each equation mi = ∑D

j=1 ai jµ j represents a hyperplane. Figure 4.3 shows for
example two equations in a 3-dimensional space, note that since there are 3 degrees of freedom the equations
represent a plane in stead of a line. When system of Equations (4.1) has a unique solution, the intersection
of all the hyperplanes is a single point providing that unique solution. Note that Figure 4.3 does not have a
unique solution as there are only two planes in the 3-dimensional space. The problem is underdetermined
and thus the intersection of the equations results in a line, so many solutions, instead of one point. In Figure
4.4 there is however a unique solution and it is located at the intersection, denoted S. The process of finding
such a unique solution will described using the 2-dimensional case.

The solution to Equations (4.2) can be found by making an initial guess µ⃗(0), most often this initial guess
is taken to be the zero vector. The initial guess is projected onto the first line in our system of equations m1,
see Figure 4.4(1). This results in one point on the first line µ⃗(1) where after this point is again projected onto
the second line, resulting in a new guess µ⃗(2) shown in Figure 4.4(3). The solution on the second line is back
projected on the first line and so on. If a unique solution exists, the iterations will always converge to that
point. This procedure is show in Figure 4.4, where the unique solution is the intersection of the two lines
denoted S. Note that initial guess in the D-dimensional case is denoted as µ⃗(0) = (µ(0)

1 , ...,µ(0)
D ). This method

of solving a system of equations is known as the Kaczmarz method.

Theorem 4.1. Take a⃗i to be the ith row vector of forward operator A, let mi be the measurement of the ith beam.
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Figure 4.2: Visualization of 2-dimensional case.

Figure 4.3: Enter Caption, https://www.quora.com/What-is-the-intersection-of-two-planes-called

Take µ⃗( j ) to be the projection of the (j-1)th guess on the ith measurement line, then this is calculated by

µ⃗( j ) = µ⃗( j−1) − (µ⃗( j−1) · a⃗i −mi )

a⃗i · a⃗i
a⃗i . (4.5)

Proof. For clarification we use the 2-dimensional case such that we can easily link it to the visualization in
Figure 4.4. The proof of the D-dimensional case is however the exact same except for the indices.

Let µ⃗(0) be the initial guess. When considering Figure 4.5, we want to project µ⃗(0) onto m1 to get a better
guess µ⃗(1). Also, note that our new guess is our current guess minus the projection on line m1 = a⃗1µ⃗, thus we
have

µ⃗( j ) = µ⃗( j−1) −pr o j ect i on.

The projection, depicted as the line from the initial guess µ⃗(0), denoted C for simplicity, to D in Figure 4.5, will
therefore be derived by only considering the first equation in (4.2), m1 = a⃗1µ⃗. We set initial guess µ⃗(0). To find
an expression for line segment C D we need to determine the direction and the length of this line segment.
The direction of C D can be determined using vector a⃗1 as a⃗1 is perpendicular to the equation m1 = a⃗1µ⃗. We
normalize a⃗1 to determine the direction of C D ,

a⃗1√
a⃗1 · a⃗1

. (4.6)

Now note that the length of line segment C D is equal to

|C D|= |B |−|A|

https://www.quora.com/What-is-the-intersection-of-two-planes-called
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Figure 4.4: Visualization for iteratively solving algebraic equations, starting with initial guess µ⃗(0) projected on the line corresponding to
the first equation. The resulting point is projected onto the line corresponding to the second equation. With only two equations
present, the projections will be continued back and forth between the two lines as illustrated. Intersection S denotes the unique

solution to the problem as proposed in Equations (4.2).

where |A| is the perpendicular distance from the origin to the line m1 = a⃗1µ⃗ which is given by

|A|= a⃗1√
a⃗1 · a⃗1

µ⃗= m1√
a⃗1 · a⃗1

and note that the perpendicular distance from the origin to µ⃗(0) denotes |B | with

|B |= a⃗1√
a⃗1 · a⃗1

µ⃗(0).

Combining this we get

|C D| = |B |−|A|

= a⃗1√
a⃗1 · a⃗1

· µ⃗(0) − m1√
a⃗1 · a⃗1

= a⃗1 · µ⃗(0) −m1√
a⃗1 · a⃗1

. (4.7)

Now the only things that is left is combining Equation (4.6) and (4.7)

C D = a⃗1√
a⃗1 · a⃗1

a⃗1 · µ⃗(0) −m1√
a⃗1 · a⃗1

= a⃗1 · µ⃗(0) −m1

a⃗1 · a⃗1
a⃗1.

Therefore the orthogonal projection of µ⃗(0) onto m1 is given by

µ⃗(1) = µ⃗(0) − a⃗1 · µ⃗(1) −m1

a⃗1 · a⃗1
a⃗1

which can be generalised to

µ⃗( j ) = µ⃗( j−1) − a⃗i · µ⃗( j ) −mi

a⃗i · a⃗i
a⃗i .

This concludes our proof.

Using the Kaczmarz method in the algebraic reconstruction technique follows the steps as described in
the example using Figure 4.4 and can be described with the following pseudo-code
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Figure 4.5: Visualization derivation Equation (4.5) using line a⃗1 · µ⃗= m1.

Algorithm 1 The SART algorithm

Set initial guess µ⃗(0)

for m = 1 to selected maximum iteration do
for i = 1 to D do

j = (m −1)k + i

µ⃗( j ) = µ⃗( j−1) − a⃗i ·⃗µ( j )−mi
a⃗i ·a⃗i

a⃗i

end
end

Note that in one iteration every measurement line will be considered once, therefore the current recon-
struction denoted j depends on in which iteration we are and which measurement we are considering. The
amount of iterations for which this algorithm is run needs to be predetermined. Tanabe [17] has proven that
if there exists a unique solution µ⃗s to the system of equations in (4.1), then

lim
n→∞ µ⃗

(nk) = µ⃗s . (4.8)

This convergence of the current reconstruction to the exact solution takes a lot of iterations. However, this
convergence to the exact solution is not necessarily needed as a not fully converged reconstruction can still
be close enough to the wanted solution [18]. To ensure a fast convergence to a reconstruction of acceptable
quality one can consider to make sure that the hyperplanes are perpendicular to each other. In Figure 4.6
note that when the hyperplanes have a very small angle between them it takes much more iterations to reach
the solution than when there is a large angle between the hyperplanes. In theory perpendicular hyperplanes
would be best for convergence, orthogonal hyperplanes could be ensured using the Gramm-Schmidt proce-
dure. This however is computationally not feasible. Another method would be to ensure pairwise orthogonal
hyperplanes. Easier however is to choose the order of considered angles wisely. The hyperplanes represent
ray integrals and therefore it is likely that adjacent rays will be almost parallel. Thus by choosing hyperplanes
which represent a more separated range of ray integrals the convergence is also enhanced.

We will now consider the Hadamard conditions for well-posedness regarding the algebraic reconstruction
technique. When the system is overdetermined and there is noise present in the measurement there is no so-
lution as there is not one intersection of all hyperplanes as can be seen in Figure 4.7. Note that the guesses
µ⃗( j ) can not converge to one solution and therefore will oscillate around the intersections instead. When the
system is underdetermined there are multiple solutions possible, like in Figure 4.3. In that case Tanabe [17]
proved that the iterative process converges to a solution, denoted µ⃗s . This µ⃗s is the point on the line which is
closest to the initial guess which minimizes |⃗µ(0) − µ⃗s |. Thus in the case of the initial guess being close to line
mi , µ⃗s will be the point on line mi such that µ⃗s is minimized. Note that in the 2-dimensional example at the
beginning of this section that would mean that the projection of our initial guess, so µ⃗(1) would result in the
best reconstruction. However, it could be that our initial guess is closest to another line than m1, say mi (i ̸= 1)
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, and then the best reconstruction would not be given by µ⃗(1). Thus when we let the amount of iterations go
to infinity as in Equation (4.8) we would get solution µ⃗s minimizing |⃗µ(0)−µ⃗s | however as we can not compute
infinitely many iterations the given solution may not be the best one.

This iterative method, besides being computationally efficient, is attractive since it is possible to incor-
porate prior knowledge about the object. µ can for instance be set to zero outside a certain range of values,
as we know that if we consider grey values they should range from 0 to 255. A problem which arises is the

Figure 4.6: Illustration slow versus fast convergence depending on the angle between projections.

Figure 4.7: Illustration overdetermined system resulting in non-unique solution.

amount of storage needed for all the different weights ai j . Therefore it can be chosen to replace the ai j ’s by
1’s and 0’s, depending on if the center of the j th cell is within the i th ray. This approximation of the weights
introduces an error which causes salt and pepper noise. The amount of noise is worsened due to the iterative
nature of the method. An initial guess is made and with each iteration the goal is to adjust this guess such that
it minimizes the distance from the current guess to the measured projections mi . The measured projections
however contain noise, and each iteration will try to fit to this noise. Over multiple iterations the small errors
in the initial data mi and ai j ’s can accumulate and become more problematic. This effect can be reduced by
introducing relaxation. There the cell value is updated by the preceding guess minus only a fraction of the
projection instead on the whole projection

µ⃗( j ) =µ⃗( j−1) −λ a⃗i · µ⃗( j ) −mi

a⃗i · a⃗i
a⃗i .

4.2. Simultaneous Algebraic Reconstruction Technique

In the above explained method one projection at a time is processed. To even further reduce the noise dis-
cussed in the above section all projections can be processed simultaneously. This approach is a variation on
the algebraic approach explained in Section 4.1 called Simultaneous Algebraic Reconstruction Technique or
SART in short. The simultaneous approach is incorporated by replacing Equation (4.5) with the following
equation

µ⃗( j ) = µ⃗( j−1) −λ
k∑

i=1

(µ⃗( j−1) · a⃗i −mi )

a⃗i · a⃗i
a⃗i . (4.9)
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Besides this, SART also differs from the above described basic algebraic reconstruction technique as it uses
a longitudinal Hamming window. Applying a Hamming window means that we apply additional weights
during the reconstruction process as follows

µ⃗( j ) = µ⃗( j−1) −∑ (µ⃗( j−1) · a⃗i −mi · c(i ))

a⃗i · a⃗i
a⃗i . (4.10)

This additional weight c(i ) emphasizes the correction terms near the middle of the ray relative to the correc-
tion terms applied at its ends. Weights c(i ) are defined by the following equation

c(i ) = 0.54−0.46cos
(
2π

i

k

)
.

The Hamming window is used because we are dealing with circular reconstruction regions, we take caution
in weighing the correction terms when a ray enters the circle and when it exits the circle again as is showed
in Figure 4.8. Lastly, SART uses bilinear interpolation. Bilinear interpolation is a method of interpolating
within a 2-dimensional grid. First linear interpolation in performed in one direction and then in the other
direction. The linear interpolation is performed over directly neighbouring pixels (thus over a 4-connected
neighbourhood as will be explained in Section 5.2.2). This ensures that the values of neighbouring pixels are
considered in calculating the pixel value as well. Therefore creating smooth transitions between different
different coloured areas. This also enhances the capability to handle noise as the noisy pixel values can be
smoothed out by the interpolation. For more detail into how the hamming window weights are calculated or
how the bilinear interpolation is applied during the algorithm the reader is referred to the book by A. Kak [15].

Figure 4.8: Hamming window, depicted as blue lines, for a set of three straight parallel rays over a round object

4.2.1. Implementation of SART

We will look at multiple reconstructions of the Shepp-Logan phantom using the SART method. This imple-
mentation is made in MATLAB using the ASTRA Toolbox [2], the code can be found in Appendix A.

We first consider the most idealistic case where we have access to sufficient data, a SART reconstruc-
tion in which we have parallel projector beams which range from 0 to π radians in 180 different angles with
no noise present. When we create a sinogram with this amount of measurement the ASTRA Toolbox de-
pends the amount of beams used on the amount of detector values, thus the amount of unknowns. There-
fore, when we consider a Shepp-logan phantom of resolution 50× 50, 50 beams will be used to create the
measurements. The measurements are made with inverse crime. The projections are considered in order
[0 : 5 : 175,1 : 5 : 176,2 : 5 : 177,3 : 5 : 178,4 : 5 : 179], this makes sure we start with the angle at 0 radians and
take steps of 5 until we get to the angle at 175 radians and then go back to the start again until we have consid-
ered all angles. Thus creating the following sequence of angles [0,5, ...,175,1,5, ...,176, ...,179]. By doing this



4.2. Simultaneous Algebraic Reconstruction Technique 25

we make sure that we do not consider adjacent rays as they will almost be parallel and that delays conver-
gence as is explained in Section 4.1. The reconstruction of this idealist case is shown in Figure 4.9 and 1800
iterations are used here.

Figure 4.9: SART reconstruction of the Shepp-Logan phantom without noise for discretization levels 10×10, 50×50, 100×100 and
200×200. 180 different angles are considered for projection rays considered in order [0 : 5 : 175,1 : 5 : 176,2 : 5 : 177,3 : 5 : 178,4 : 5 : 179]

Next this simplistic reconstruction will be compared to reconstructions with differing parameters only
looking at the case where d = 100. Multiple performance metrics are used, the Structural Similarity Index
(SSIM) measures the similarity between two images in which it primarily focuses on differences in structural
information like luminance and contrast [8]. In contrast to this, the Relative Error (RE) is a measure for the
difference between the true grey value of the reconstruction and the original image. Lastly the Pixel Error
(PE) quantifies the total number of pixels from the reconstruction that differs fro the original image. Note in
Figure 4.10 image (a) is the same as the d : 100 case in Figure 4.9, the settings for this reconstruction will be
used as basis and for the other reconstructions parameters will be changed or added to show the effect. Since
these images are created with a discretization of d = 100 there are 10,000 pixels in total per image. Firstly, in
reconstruction (b), we added a Gaussian noise level of 0.1% to the measurement which is present in all other
reconstructions as well. Now note in reconstruction (c) that a white haze is present. Here a linear projection
order is chosen, thus the angle sequence [0,1, ...,179] is used in the reconstruction. As explained before this
works less good than the projection order used in reconstruction (b) since adjacent angles are almost par-
allel resulting in the reconstruction guess oscillating around the actual value in stead of converging towards
it. When looking at the performance metrics they all agree with this theory, the relative error and pixel error
are higher than the previous reconstructions and the similarity index is lower. However, the difference is not
alarmingly big, this can be explained as we used many iterations thus ensuring convergence to a reconstruc-
tion of good quality. Furthermore, in reconstruction (d) only 45 projection angles are used in stead of 180,
causing a lot of background noise and the projection lines to be clearly visible. In reconstruction (e) prior
knowledge is used by putting the constraint on the values to be non-negative. As the value 0 corresponds to
black all negative values are clipped to zero and thus set to black. This reduces the amount of background
noise, note that the pixel error is more than halved in comparison to reconstruction (b) for which all the other
settings are the same. Lastly when using less iterations, in this case 50, a lot more background noise is present
but also the phantom itself is less clear The three small dots in the lower portion of the phantom are almost
invisible and the boundaries are less clear. Overall looking at the performance measures reconstruction (e) is
the best and reconstruction (f) is the worst, which visually it indeed is.

Note that in the reconstructions in Figure 4.10 inverse crime is present. Next we will reconstruct the im-
age again using differing parameter settings but now we will avoid inverse crime. This will be done by first
generating the Shepp-Logan phantom using a higher resolution, this means using a larger value for the di-
mension d of the phantom grid. A high resolution phantom ensures that all the features of the phantom are
respresented in detail. Thereafter, using this high resolution phantom we will generate the measurements,
thus the sinogram. Now comes the difference, to simulate a more realistic scenario and to avoid invers crime
we interpolate the high resolution sinogram to a lower resolution. We reduce the resolution of the sinogram
data which reflects the loss of detail that occurs in real world data retrieval. Now with this interpolated sino-
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Figure 4.10: Reconstructions with inverse crime (a) simple reconstruction, (b) reconstruction with a Gaussian noise level of 0.1%, (c)
reconstruction with projection order [0,1, ...,179] and 0.1% of Gaussian noise, (d) reconstruction with 45 projection angles and 0.1% of

Gaussian noise, (e) reconstruction with non-negativity constraint to the pixel values and 0.1% of Gaussian noise, (f) reconstruction with
50 iterations.

gram we perform the reconstruction. Additionally, adding randomized noise, so Gaussian distributed noise
for instance, also helps to avoid inverse crime. Both steps ensure that the reconstruction process is not able
to unrealistically benefit from knowing under which the data has been generated creating a more realistic
reconstruction.

In Figure 4.11 the reconstructions are shown, the same parameter settings are used for each reconstruc-
tion as in Figure 4.10. In reconstruction (c) a white haze is still present and reconstructions (d) and (f) still
show some lines, however all reconstructions look more alike now. This is caused as when avoiding inverse
crime different discretizations are used for the data generation and the reconstruction, ensuring that the
reconstruction process reflects complexities and inaccuracies of real-world scenario’s better. Thus the recon-
structions are more blurry and noisy but more realistic. Even though the reconstructions look more alike, the
performance measures still show that reconstructions (c), (d) and (f) are not favourable.

Note that some reconstructions from Figure 4.11 are better than it’s corresponding reconstruction from
Figure 4.10. This improvement can be due to the fact that when using different discretization levels and meth-
ods for reconstruction than with which we generated the data the resulting discrepancies force the algorithm
to handle interpolation errors and inaccuracies. This results in a reconstruction that is better able to handle
noise. This improvement is due to the model containing inverse crime being able to perfectly fit the data.
The same methods and levels for for instance discretization are used for both data generation as reconstruc-
tion, thus the model knows exactly how to use the measurements. However when we create measurements
avoiding inverse crime the algorithm can not perfectly fit the data and this may result in a more generalized
and smoothed result. The specific reconstructions that have a lower relative error in Figure 4.11 compared to
Figure 4.10 are (d) where we used a limited amount of angles to create the measurements and (f) where we
used less iterations. These specific cases can also be explained. In case (d) with a limited amount of angles, so
limited data, the reconstruction from Figure 4.10 shows artifacts in the background and more noise. Because
the data is incomplete the model with inverse crime might overfit on this limited data, trying to reconstruct
exactly what was measured and only that. Whilst the reconstruction without inverse crime is less prone to
overfitting the data as it simply can not match the data perfectly. This leads to a more stable result in which
noise can be better dealt with. Then for the reconstructions (f) where fewer iterations were used, when com-
mitting inverse crime the model may not able to converge properly. However when avoiding inverse crime,
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the algorithm is focussed on the main features of the data potentially leading to better performance with
limited iterations.

Figure 4.11: Reconstructions without inverse crime (a) simple reconstruction, (b) reconstruction with a Gaussian noise level of 0.1%, (c)
reconstruction with projection order [0,1, ...,179] and 0.1% of Gaussian noise, (d) reconstruction with 45 projection angles and 0.1% of

Gaussian noise, (e) reconstruction with non-negativity constraint to the pixel values and 0.1% of Gaussian noise, (f) reconstruction with
50 iterations.



5
DART

SART is a good starting point, but we will try to incorporate more prior knowledge with the goal of increasing
accuracy and the ability to deal with noisy projection data while decreasing computational effort even more.
We do this using DART, Discrete Algebraic Reconstruction Technique. This reconstruction algorithm alternates
iteratively between update steps in which a sub-algorithm is used to make a reconstruction and discretization
steps in which we incorporate prior knowledge on the grey levels. As a sub-algorithm, we will use SART as
described in Section 4.2 as a sub-algorithm.

The prior knowledge that will be exploited in DART is based on the assumption that the unknown object
consists of a small number of different materials, all corresponding to a characteristic grey value. This grey
value is approximately constant and thus we assume it to be. Based in this assumption we have that bone
is of one constant density. Realistically, this is not the case, however to see whether a bone is broken we
do not need to see all the different densities. DART consists of several steps, in this chapter, an overview of
these steps will be given firstly in Section 5.1, whereas in Section 5.2 these steps will be further explained
individually. Lastly, in Section 5.3 some results will be presented. The contents of this chapter are based on
an article by Batenburg and Sijbers [3] and the implementation, for which the code can be found in Appendix
B, is based on code by D. Oeronymakis and M. Ieronmaki [7].

5.1. Algorithm overview

As explained above, DART is an iterative process structured in various steps, which will now be shortly intro-
duced with the help of Figure 5.1. In Section 5.2 each step will be defined in more detail. Note that in Figure
5.1 a discretization of d = 200 is used so that there are D = 40,000 pixels in total, and the projection data was
not perturbed by noise. Further parameter settings and the approach of generating Figure 5.1 can be found
in Appendix B.3.

We start with an initial reconstruction computed using SART as can be seen in Figure 5.1(b). This SART
reconstruction will be segmented such that it only contains certain grey levels as is shown in Figure 5.1(c).
The amount of grey levels and their exact values are considered prior knowledge, as we approximately know
what tissues are present in for instance the brain. This segmented reconstruction will be divided into two
sets, a set with free pixels and a set with fixed pixels. These fixed pixels are pixels that are either within the
interior of the object far away enough from a boundary or they are background pixels not too close to a
boundary. The fixed pixels are set to the correct grey value as we are sure of what value they need to be, with
this we are again incorporating the prior knowledge we have about the object. The remaining pixels, closer to
a boundary, are called boundary pixels and are depicted in Figure 5.1(d). Fixing all non boundary pixels to a
set value does however limit the possibility of creating another boundary if there is for example a hole in the
object. To be able to deal with holes a small subset of non boundary pixels are randomly selected from the
fixed pixels during each DART iteration, as shown in Figure 5.1(e). This updating of non-boundary pixels also
helps with noise and errors, this will be explained further in Section 5.2.2. The boundary pixels are combined

28
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with the additional randomly selected fixed pixels as is depicted in Figure 5.1(f) and are defined to be the free
pixels. For these free pixels, we compute several SART iterations again. After the SART reconstruction, the
fixed pixels are combined with the newly computed values of the free pixels. During the SART reconstruction
each free pixel can vary independently possibly resulting in large variations, therefore as the last step of the
DART procedure smoothing is applied to the newly computed pixel values. We use Gaussian smoothing with
a standard deviation of 1 pixel. This completes one iteration of the DART algorithm. The result of this single
iteration is then used as input for the next iteration. DART terminates when a certain stopping criterion is
met. This stopping criterion can for instance be a fixed amount of iterations or can depend on a performance
measure with which we want to reach a certain performance level. Note that in Figure 5.1 with each recon-
struction step within one iteration the pixel error (PE) decreases, implying an improved result. This process
is shown in Figure 5.2.

Figure 5.1: Steps of the DART algorithm applied to the Shepp-Logan phantom: (a) original phantom, (b) initial SART reconstruction, (c)
grey value segmentation, (d) boundary pixels, (e) additional free pixels with probability p, (f ) all free pixels, (g) final reconstruction after

10 iterations.

5.2. Algorithm definition

As in Section 3.2, we have J angels for which we measure from N different distances to the origin, giving us
k = J N different measurements in total. Let m⃗ ∈ Rk again be a vector containing all (mi ) measurements and
let µ⃗ = (µi ) ∈ RD represent the unknown object. Finally, let A = (ai j ) ∈ Rk×D be the projection matrix that
maps the unknown to the measurement

Aµ⃗+ n⃗ = m⃗.

Note that n⃗ here denotes the noise. Recall that µ⃗ is the attenuation coefficient per pixel, thus the entries of
µ⃗ determine the grey value in the corresponding pixel. If the attenuation coefficient is low it will result in a
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Figure 5.2: Flowchart of the DART algorithm.

darker grey value and a higher coefficient will result in a lighter grey value. Furthermore, entries (ai j ) deter-
mine the weight of the contribution of pixel i to measurement j , which is the intersection length between the
pixel and the projection line. Furthermore we are given grey levels R = {ρ1, ...,ρl }.

As we are given measured data m⃗, know A ∈ Rk×D
≥0 and can estimate the size of n⃗ we are left with the in-

verse problem of finding µ⃗ such that Aµ⃗+n⃗ = m⃗ just as before. The estimation of n⃗ can be done by measuring
empty space, so without an object present.

5.2.1. Segmentation

In each iteration of the algorithm, the current reconstructed image gets segmented such that a new image
is obtained which has only grey values from the set R = {ρ1,ρ2, ...,ρl }. Typically, grey values range from 0
to 255, with 0 meaning the pixel is black and 255 meaning the pixel is white. R is considered to be prior
knowledge. It could for instance be that we want to reconstruct a binary image, thus we assume that we
have two grey levels (black and white). From this assumption we determine that only grey values {0,255}
are present and thus by segmenting the reconstruction we make sure that no other grey values are present
besides black and white. When we consider the Shepp-Logan phantom, the following grey values are present
R = {0,25.5,51,76.5,102,255}.

To segment the image, we first need to determine a thresholding scheme according to which we will assign
a grey value from set R to each pixel. Define thresholds τ1, ...,τl−1 by τi = ρi+ρi+1

2 . In this way, the thresholds
lie in between two grey values. Next define thresholding function r :R→R as

r (v) =


ρ1 if v < τ1

ρ2 if τ1 ≤ v < τ2

...

ρl if τl−1 ≤ v

where v is the pixel intensity, so the grey value, of the considered pixel.

5.2.2. Pixel selection

The pixel selection can start when the image is segmented into only a few grey values. For this we first de-
fine what it means to be neighbouring pixels, we use an 8-connected neighbourhood, also called an indirect
neighbourhood of Moore neighbourhood.
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Figure 5.3: Visualization of different types of connectedness (a) an 8-connected neighbourhood (b) an 4-connected neighbourhood.

Definition 5.1. Pixel Q is an 8-connected neighbour of pixel P if they share either an edge or a vertex. Thus
pixel (x, y) has neighbours (x −1, y,1), (x −1, y), (x −1, y +1), (x, y −1), (x, y +1), (x +1, y −1), (x +
1, y), (x +1, y +1).

In Figure 5.3 (a) such an 8-connected neighbourhood is shown and in Figure 5.3 (b) an 4-connected neigh-
bourhood is shown also known as the direct neighbour. An 8-connected neighbourhood is used since this also
captures diagonal connections which leads to a smoother and more accurate reconstruction. Furthermore,
the inclusion of diagonal neighbours can also help average out noise which again creates a more accurate
reconstruction. One would choose to incorporate an 4-connected neighbourhood to reduce computational
load.

Next, we define the concept of boundary pixels.

Definition 5.2. Pixel Q is a boundary pixel if at least one neighbour of Q has a different grey value.

To reduce the impact of noise we introduce a threshold here, changing the formal definition slightly to
enhance performance. We consider a neighbour to have a different grey value when the grey value of the two
pixels, ranging from 0 to 255, differ more than 10.

Now the set of free pixels is the set of boundary pixels with additionally a random sample of non-boundary
pixels. These additional free pixels allow for the creation of new boundaries in the reconstruction and help
reduce the impact of noise in the measurements. A pixel may be fixed to the wrong grey value due to noise,
thus adding some of the fixed pixels into the free pixel subset allows for correction of this mistake. In Section
5.3.6 we explore what amount of free pixels delivers the best reconstruction. We define the amount of fixed
pixels that are added into the subset of free pixels as follows

Definition 5.3. The fix probability, denoted 0 ≤ p ≤ 1, is the independent probability with which a non-
boundary pixel is fixed on its current value. Therefore 1−p denotes the independent probability with which a
non-boundary pixel is included in the subset of free pixels.

5.2.3. SART with free pixels

When the free pixels are determined, the SART algorithm will be applied to those free pixels. Consider the
previously determined system of equations as in (3.2) without noise

 | |
a⃗1 . . . a⃗D

| |


µ1

...
µD

= m⃗. (5.1)
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Now when we consider variable µi to be a fixed pixel, thus setting it at a fixed grey value vi , we transform
system (5.1) to the following

 | | | |
a⃗1 . . . ⃗ai−1 ⃗ai+1 . . . a⃗D

| | | |




µ1
...

µi−1

µi+1
...
µD


= m⃗ − vi a⃗i . (5.2)

This new system has the same amount of equations as system (5.1), the number of variables, however, de-
creases by the number of fixed pixels. Although SART is used as reconstruction method, the reduction in the
number of variables makes DART computationally efficient. Even if some pixels are fixed at a wrong value
in one or more iterations K. Batenburg and J. Sijbers showed that the algorithm still converges towards the
original object [3].

5.2.4. Smoothing

Reducing variables can cause fluctuations in the grey values of pixels that are not fixed. By solely adjusting
the values of the free pixels, errors that occur due to fixing a pixel to the wrong grey value are unaccounted
for. To reduce the influence of errors we apply a Gaussian smoothing filter with a standard deviation of 1 pixel
to the free pixels. This regularization step is applied at the end of each iteration, after applying SART, except
for the last iteration.

A Gaussian smoothing filter with a standard deviation of 1 pixel is a 3×3 matrix, called the kernel. This
kernel contains values that are determined by a Gaussian function serving as weights. The weight of the
central kernel entry typically being higher than that of the surrounding entries. The matrix, or kernel, moves
over the image during which for each pixel in the image the kernel is centered on that pixel. The pixels that
the kernel covers are multiplied with the corresponding weights in the Gaussian kernel. The resulting values
are summed together to provide a weighted average which will replace the original pixel value. This results in
a smoothed image where the noise is reduced but the overall structure is preserved.

5.2.5. Termination

DART is a heuristic algorithm, meaning that it does not guarantee an optimal reconstruction under pre-
determined conditions. Therefore, in this thesis, as termination criterion a fixed number of iterations is per-
formed. Another termination criterion could be set using a threshold for a certain performance metric, for
example the relative error. The relative error could be calculated between the current reconstruction and one
before that to see if there is much change between iterations. Such that, when the relative error reaches below
a certain level, the process is terminated.

5.3. Results

The performance of the DART algorithm is evaluated by comparing the reconstructions of DART to those
of aforementioned reconstruction methods while differing the parameter settings. In this Section we will
analyse the results of certain experimental parameter settings, using this analysis we will be able to draw
our conclusions in Chapter 6. For the evaluations the Shepp-Logan phantom is used, which was introduced
in Chapter 2. Additionally a binary image is used to evaluate the performance when the only present grey
values are black and white. Figure 5.4(a) shows the original image used, which can be downloaded from
the ASTRA Toolbox documentation [10]. It has a resolution of 512× 512, as this is an image size common
in practical CT applications [4]. Figure 5.4(b) shows the generated measurement, the sinogram, using 180
projections with an angle range of 0 to π. This is an ideal measurement, meaning that it was not perturbed by
noise. When reconstructing an image from measurements each time the same size image (512×512) is used.
The measurements are however sampled using different parameter settings, the number of projections and
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the angle range are for instance varied during each specific experiment. Additionally noise may be added
to perturb the measurements, it was chosen to not perturb every measurement with noise but also look at
noiseless reconstructions to be able to analyse the effects of differing certain parameters to create better
understanding. The used parameter settings will be mentioned for each experiment and can be found in
Appendix B. To create the reconstructions the ASTRA Toolbox [2] was used and the implementation was based
on that of D. Ieronymakis and M. Ieronymaki [5].

Figure 5.4: Binary phantom and the belonging sinogram (a) binary phantom (b) sinogram of the binary image.

5.3.1. Tuning parameters

In Figure 2.10 it was shown that, if enough projections and a big enough angular range are used to make the
measurements, filtered back projection is able to obtain an almost perfect reconstruction for noiseless mea-
surements. Since DART is a heuristic algorithm, as explained in Section 5.2.5, there are no pre-determined
conditions for which DART is able to create a perfecr reconstruction. The quality of the reconstruction using
DART strongly depends on the amount of iterations that are used for DART and the amount of iterations that
are used in the sub algorithm, which in our case is SART. Additionally, the fix probability affects the quality
of the reconstruction. Before starting with experiments in which the performance of DART will be evaluated,
we will tune these parameters. By doing this we will make sure DART’s performance can be evaluated fairly.
The parameters will be tuned using 90 projections equally divided over an angle range of 0 to π. Table 5.1 and
Figure 5.5 show the results obtained during the tuning experiment.

To start of 200 iterations were chosen for DART, 3 iterations were chosen for SART and the fixed probabil-
ity was set to 0.85 since these were the parameters used in the reference paper [3]. As can be seen in Figure
5.5(a) these settings do not obtain a preferred reconstruction. In addition, the computation time using these
parameter settings was the longest of all parameter setting tries. While working with SART in Chapter 4 the
computation time was significantly lower than for this first reconstruction. Thus the presumption was made
that the extensive computation time was due to DART, therefore in the second try the amount of DART it-
erations was lowered to 100 and to compromise, the amount of SART iterations was increased to 10 while
keeping the fix probability the same. This resulted in a slightly better reconstruction as the relative error has
decreased and Figure 5.5(b) already shows more of the round characteristic of the Shepp-Logan phantom. To
try to improve even further, the amount of DART iterations was even more decrease to 50 and with this 100
SART iterations were used, again keeping the fix probability the same. This resulted in a reconstruction in
which all properties of the original Shepp-Logan phantom are visible. Trying to improve it even further with
10 DART iterations and 1000 SART iterations while still keeping p the same again resulted in a lower relative
error. The amount of SART iterations however seemed extensive, thus a reconstruction with 10 DART itera-
tions and only 200 SART iterations were tried. The 200 SART iterations were chosen here since that amount
of iterations proved to be sufficient when working with SART in Chapter 4. It can be concluded that indeed a
1000 iterations for SART is extensive as 200 SART iterations resulted in an improved relative error compared
to the 1000 SART iterations and significantly reduced the computational efforts due to reduction in iterations
it was chosen to proceed with these parameter settings. Lastly the fix probability was increased to 0.9 and this
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resulted in a higher relative error. Computation time decreased using a fix probability of 0.9, therefore we will
move forward with the following parameter settings

• Dart iterations: 10

• SART iterations: 200

• fix probability p: 0.9
unless specified otherwise. When trying to decrease the fix probability, the computation time became an
obstacle. Thus, as we want to be able to compare as much reconstructions as possible, I chose to break the
program while reconstructing with a lower fix probability. The parameter tuning experiment was only run for
the Shepp-Logan phantom as we are most interested in the performance for a phantom containing multiple
grey levels. However, since our implementation approach was similar to that of [7], based on their tuning
experiment it was concluded that the experiment was sufficient to conclude these parameter settings to be
appropriate.

An interesting observation can be made about Figure 5.5(a) and (b). These reconstructions are quite far
away from the original phantom and almost look like a reconstruction made with limited angle data, which
we will encounter in Section 5.3.3. This is mainly due to the small number of SART iterations as only 3 or
10 iterations are not sufficient to refine the reconstruction before being segmented in the next DART step.
While te SART reconstruction has not converged yet to an acceptable reconstruction, DART will apply the
different steps, which possibly makes the reconstruction even worse. By enforcing the SART reconstruction
to be segmented into a few grey levels the reconstruction might get further away form the original even more.
The segmentation can introduce artifacts, like we see when we use limited angle data and therefore the re-
constructions have the same properties. Additionally, this many DART iterations worsen the reconstruction
as well since the errors made in the early iterations accumulate leading to a final reconstruction that still
contains these errors and artifacts. Therefore an appropriate DART-SART iteration balance is of importance.
There should be enough SART iterations such that the initial reconstruction is of sufficient quality and there
must not be too much DART iterations such that the errors get accumulated too much. However, there should
be enough of both to be able to create a reconstruction of acceptable quality.

Shepp-Logan phantom
DART iter SART iter p Relative Error

a 200 3 0.85 78.9
b 100 10 0.85 71.0
c 50 100 0.85 24.1
d 10 1000 0.85 22.3
e 10 200 0.85 21.9
f 10 200 0.9 23.8

Table 5.1: Parameter tuning results, corresponding to the images in Figure 5.5, for different values of the amount of DART and SART
iterations and fix probability on the Shepp-Logan phantom, based on the relative error.

5.3.2. Varying number of projections

Firstly, we will analyze the performance of the different reconstruction methods with respect to the consid-
ered number of projections. It is intuitive that for more projections all methods will perform better, therefore
only cases of a small number of projections are evaluated. A proof that reconstructions of all methods de-
scribed in this thesis improve as the number of projections increases can be read in [3].

Reconstructions were evaluated for 20 and 10 projections divided over an angle range from 0 to π for
DART, SART and Filtered Back Projection (FBP). Here we evaluated both the Shepp-Logan phantom and the
phantom introduced by Figure 5.4. Lastly note that noiseless measurements were used. In Figure 5.6 all
above mentioned reconstructions are shown. As expected, since more measurements, thus more data and
more knowledge, result in a better reconstruction. The errors increase and the similarity index decreases
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Figure 5.5: Comparison of the Shepp-Logan phantom during tuning parameter settings as specified in Table 5.1

when the number of projections decreases from 20 to 10 projections for all methods. There seems to be a
minimum number of projections required to obtain an acceptable reconstruction. Although this minimum
differs per phantom and per reconstruction method, it seems to lie closer to 20 projections than to 10 for each
reconstruction phantom and method pair in Figure 5.6. For more exact and substantiated answers, additional
experiments should be conducted in which for instance the number of projections could range from 15 to 25.
For each parameter setting DART achieves the best result when looking at the performance metrics. When
comparing the reconstructions visually it can be concluded that FBP shows the least performance regarding
limited projections. FBP shows artefacts in the background as well as in the phantom itself. These artefacts
are aliasing effects. Aliasing is the effect of incorrectly reconstructing the original measurement because the
sampling frequency is too low. The sampling frequency is how often the X-ray detector captures data points,
which is also influenced by how many projection angles we choose to measure from. If this is too low when
the Nyquist sampling criterion is not met.

Definition 5.4. Take fmax to be the highest frequency detected in the measurement and let fs be the frequency
with which the samples, or measurements, are taken. Then the Nyquist rate is defined as

fs > 2 fmax .

When this Nyquist rate is not met high-frequency components will be misinterpreted as low-frequency
components, resulting in streaking artifacts in the reconstructions.

Comparing SART and DART there we may not be able to appoint one winner. While DART is more de-
tailed, it also shows more noise. In comparison, SART looks more smoothed. When solely comparing recon-
structions (c) and (d) to (g) and (h) respectively, DART can be appointed as the winner as the reconstruction
should only consist of black and white pixels. Therefore the noise can be distinguished easily. The DART
reconstructions in comparison to the SART reconstructions also show a better ability to reconstruct small
regions. Figure 5.6(c) for example shows all different regions of the phantom whereas Figure 5.6(g) does not
show the smallest black oval regions in the bottom of the phantom. However, comparing the Shepp-Logan
phantoms in (a) and (b) to (e) and (f) it becomes more difficult as now multiple grey levels are present and
noise can not be distinguished as easily. The application of the method decides which method, DART or
SART, is better to use. In medical applications, one could imagine that a wrongly coloured segment, like in
the lower right portion of the phantom in Figure 5.6(b), could result in a wrong conclusion. The difference in
performance for these two phantoms can be explained by how DART incorporates prior knowledge on grey
levels. DART uses the fact that we know what certain grey levels should be present in the reconstruction, it
however does not incorporate any information on what grey levels should be used where. When only using
black and white we know all other grey levels should be changed to either black or white. However, when
looking at a phantom with more grey levels it becomes more difficult to say that a certain pixel is assigned
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Figure 5.6: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for Shepp-Logan phantom (columns 1 and 2) and phantom
introduced in 5.4 (columns 3 and 4) using 20 (column 1 and 3) and 10 projections (column 2 and 4). (a) DART 20 projections (b) DART
10 projections (c) DART 20 projections (d) DART 10 projections (e) SART 20 projections (f) SART 10 projections (g) SART 20 projections

(h) SART 10 projections (f) FBP 20 projections (j) FBP 10 projections (k) FBP 20 projections (l) FBP 10 projections.

to a wrong grey value if it is a value of our prior knowledge list. Therefore we may end up with the right grey
levels, but in the wrong places.
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5.3.3. Varying number of angles

Figure 5.7: Person in a CT scanner, https://my.
clevelandclinic.org/health/diagnostics/

4808-ct-computed-tomography-scan

In a medical application of tomography reconstruction tech-
niques we are able to collect data from a full angular range of
180◦, so from 0 to π. Meaning that we are able to look at the ob-
ject in question, in that case the patient, from every angle as a ct
scanner device wraps around the whole patient as is shown in
Figure 5.7. However, in other, more industrial, applications the
angular range to sample data from is often more limited. In-
dustrial applications of tomography reconstruction techniques
could for instance be material analysis, which materials are
present in a certain construction and what are their properties.
Another industrial application is quality control in which the
quality of manufactured parts is analysed for instance in the
automotive or aerospace industry. As this is only a small por-
tion of all the applications of discrete tomography, it shows the
versatile applications of reconstruction techniques besides the

medical one. Therefore, although it may not be of importance to X-ray applications, it is still of importance
to also test the performance of DART considering a limited angle range.

When using a limited amount of angles there will always be a part of the object that is not measured
and therefore will always be improperly reconstructed as the data is simply non existent. Thus, to keep the
reconstructions somewhat meaningful it was chosen to conduct this limited angle range experiment first us-
ing half of the full angular range corresponding to π

2 or approximately 90◦ and the secondly one third of the
full angular range is used corresponding to π

3 or approximately 60◦. In this the projections are sampled at
1◦ intervals, thus the number of projections increases linearly with the angular range. In Figure 5.8 recon-
structions are shown again using DART, SART and FBP for both phantoms using angular ranges of π

2 and π
3 .

Note that again FBP, in the bottom row, shows the least performance. The FBP reconstructions shows arti-
facts, in the form of vertical and horizontal streaks. When comparing the DART and SART reconstructions
(Figure 5.8(c),(d) and (g),(h) respectively) of the phantom from Figure 5.4 we can again conclude that DART
has the better performance. Especially the DART reconstruction in Figure 5.8(c), examined visually, shows a
reconstruction quite close to the original phantom. Then considering the DART and SART reconstructions of
the Shepp-logan phantom in Figure 5.8(a), (b) and (e), (f). The same effects as in Section 5.3.2 can be noted
as SART again produces more smoothed reconstructions and DART shows a more pixel dominated image.
The same conclusion can therefore be repeated, depending on the application one can prefer one of the two
methods.

5.3.4. Noisy measurements

The previous reconstructions were all obtained from noiseless measurements. In reality, measurements of-
ten contain a certain amount of noise. Therefore DART’s performance with respect to noisy projection data
needs to be evaluated. The original measurements were polluted with Poisson-distributed noise, with noise
levels ranging from 0% noise to 17% noise. Poisson distributed noise is chosen since our measurements are
based on the detection of photons, being discrete and independent particles. Because of the independence
and each photon having a constant probability the Poisson distribution applies to this situation.

As expected all reconstruction methods showed decreasing reconstruction quality when increasing the
noise level both visually as performance metric wise. In the experiment conducted by [7] it was concluded
that the errors increased linearly with increasing Poisson noise perturbing the measurements for all recon-
struction methods evaluated in this thesis. Not enough noise levels were tested to conclude this within this
thesis due to computational limitations. In Figure 5.9 that all reconstructions perform relatively well with
the highest noise level of 17%. Again, reconstructions using SART (row 2 Figure 5.9) show the smoothest re-
sults, reconstructions using FBP (row 3 Figure 5.9) show the most background artifacts and reconstructions
using DART (row 1 Figure 5.9) show the most pixel dominated results. Although FBP shows more artifacts
in the background, the reconstructed phantom itself shows all details present in the orignial Shepp-logan
phantom. For the noise level of 17% the performance metrics agree that FBP shows the lowest performance.
However, analyzing visually, I do not fully agree with the performance metrics. The reconstruction using FBP

https://my.clevelandclinic.org/health/diagnostics/4808-ct-computed-tomography-scan
https://my.clevelandclinic.org/health/diagnostics/4808-ct-computed-tomography-scan
https://my.clevelandclinic.org/health/diagnostics/4808-ct-computed-tomography-scan
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Figure 5.8: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for Shepp-Logan phantom (columns 1 and 2) and phantom
introduced in 5.4 (columns 3 and 4) using an angular range of 90◦ (column 1 and 3) and 60◦ (column 2 and 4). (a) DART 90◦ (b) DART

60◦ (c) DART 90◦ (d) DART 60◦ (e) SART 90◦ (f) SART 60◦ (g) SART 90◦ (h) SART 60◦ (f) FBP 90◦ (j) FBP 60◦ (k) FBP 90◦ (l) FBP 60◦.

shows more detail than the reconstruction using DART, especially in the two small light grey circles present
in the middle of the phantom between the black ovals.

More interesting however is to compare the methods’ performance regarding noisy data with a limited
amount of projections. As explained in Section 5.3.2 performance with a limited amount of projections is
of importance, by incorporating noise into the limited projections experiment we come closer to reality. In
Figure 5.10 reconstructions are shown with the same parameter settings and noise levels as in Figure 5.9, only
know instead of sampling the projections in 1◦ intervals, only 10 projections are sampled over the entire full
angle range of 180◦. As was concluded in Section 5.3.2, FBP does not perform well with a little amount of
projections. Therefore, even tough the method deals well with noise, with a limited amount of projections
the performance lacks. The comparison between DART and SART will lead to the same conclusions as in all
preceding subsections of this section. SART has more smoothed reconstructions and while DART performs
better error wise, the reconstructions are pixel dominated and one should decide which method works better
dependent on the application.

The same experiment was conducted using the phantom introduced in Figure 5.4. As the reconstructions
show the same results and the same conclusions can be drawn from them, the results will not be displayed
here to limit the number of images shown, rather the results can be found in Appendix C.

5.3.5. Varying grey levels

For the same reason why the experiment in Section 5.3.4 was conducted we will now perturb the grey lev-
els, assumed to be prior knowledge, with noise. In practical applications the precise grey levels might not be
known. Since only DART requires the usage of prior knowledge of the grey levels we only consider DART in
this subsection we chose to not compare the performance to another reconstruction methods. Nevertheless,
we are able to compare something as the noise will be added to the grey values in three different manners.
We test the effect of overestimation, underestimation and a combination of both. In the overestimation the
grey values where estimated higher than the actual values by adding a certain percentage of it’s original value.
In the underestimation the same method was used however now this value, calculated by taking the percent-
age of the original grey value in consideration, was deducted from the the original value. In the combined
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Figure 5.9: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for Shepp-Logan phantom using data perturbed by a noise level
of 0 (column 1), 5.6% (column 2), 8.4% (column 3) and 16.8% (column 4). (a) DART 0% noise (b) DART 5.6% noise (c) DART 8.4% noise

(d) DART 16.9% noise (e) SART 0% noise (f) SART 5.6% noise (g) SART 8.4% noise (h) SART 16.9% noise (i) FBP 0% noise (j) FBP 5.6%
noise (k) FBP 8.4% noise (l) FBP 16.9% noise.

Figure 5.10: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for Shepp-Logan phantom using data perturbed by a noise
level of 0 (column 1), 5.6% (column 2), 8.4% (column 3) and 16.8% (column 4) of 10 projections. (a) DART 0% noise (b) DART 5.6% noise
(c) DART 8.4% noise (d) DART 16.9% noise (e) SART 0% noise (f) SART 5.6% noise (g) SART 8.4% noise (h) SART 16.9% noise (i) FBP 0%

noise (j) FBP 5.6% noise (k) FBP 8.4% noise (l) FBP 16.9% noise.
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Figure 5.11: Comparison on the effect of different levels of overestimation within the grey values used in DART showed on the
Shepp-Logan phantom. (1) overestimation of 0.02% (2) overestimation of 0.1 % (3) overestimation of 0.18 % (4) overestimation of 0.26 %

(5) overestimation of 0.34 % (6) overestimation of 0.4.

approach, the sign of the percentage was sampled randomly such that a random mix of over and under es-
timation is used. For all three experiments the following percentages of over- or underestimation were used
[0.02,0.1,0.18,0.26,0.34,0.4].

First, Figure 5.11 shows the reconstructions for the overestimation of the grey levels for six different per-
centages. As one might expect, the reconstruction performance of DART decreases as the percentage per-
turbing the grey values increases. Only above overestimating the grey values by 0.26% the overestimation
becomes visually bothersome. However, when comparing this to Figure 5.12, we can conclude that overes-
timating the grey values results is better reconstructions. The errors of the reconstructions while underesti-
mating the grey values are higher. Especially visually, starting from overestimating the gray values by 0.26%,
the reconstruction becomes incomprehensible. This is due to the fact that underestimation of the grey levels
the pixel values are closer to zero, thus darker and therefore it can lead to loss in detail and loss in contrast.

Finally, Figure 5.13 shows reconstructions dealing with both underestimations and overestimations of the
grey values. By sometimes overestimating the grey level and sometimes underestimating the grey level we
balance out the overall error as it could happen that the threshold between an underestimated value and an
overestimated value is still correct. Whereas when considering for instance only underestimated values the
threshold is shifted lower. The combination could even ensure that lighter areas are not overestimated and
darker areas are not underestimated. The quality of the reconstruction thus depends on which values are
underestimated and which values are overestimated, resulting in a potentially better performance in Figure
5.13(5) whilst the grey levels are estimated further away from the truth than in for example Figure 5.13(2).
The same experiment was conducted using the phantom introduced in Figure 5.4, for these reconstruction
the reader is referred to Appendix C.

5.3.6. Varying fix probability

One of the most influential parameters of DART is the fix probability p. As explained, using relatively low fix
probabilities will result in higher computational time, therefore it was chosen to run this experiment using
only three different values for p which were evaluated for six different noise levels, The noise is computed
in the same manner as in Section 5.3.4. This experiment was only run using DART as the other mentioned
methods do not include this parameter. The reconstructions were made using measurements from 180 pro-
jections ranging from 0 to π.

A lower fix probability, one of p = 0.5 as shown in Figure 5.16 results in a better reconstruction than higher
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Figure 5.12: Comparison on the effect of different levels of underestimation within the grey values used in DART showed on the
Shepp-Logan phantom. (1) underestimation of 0.02% (2) underestimation of 0.1 % (3) underestimation of 0.18 % (4) underestimation of

0.26 % (5) underestimation of 0.34 % (6) underestimation of 0.4.

Figure 5.13: Comparison on the effect of different levels of a combination of underestimation and overestimation within the grey values
used in DART showed on the Shepp-Logan phantom. (1) estimation error of 0.02% (2) estimation error of 0.1 % (3) estimation error of

0.18 % (4) estimation error of 0.26 % (5) estimation error of 0.34 % (6) estimation error of 0.4%.
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Figure 5.14: Comparison reconstructions of the Shepp-Logan phantom made using DART for different noise levels and a fix probability
of p = 0.9. (1) noise level of 0% (2) noise level of 2.8% (3) noise level of 5.6%(4) noise level of 8.5%(5) noise level of 14.1%(6) noise level of

16.8%.

fix probabilities of p = 0.7 show in Figure 5.15 and p = 0.9 shown in Figure ??. This is due to more free pix-
els means more flexibility in representing a smooth transition between different coloured regions. More free
pixels also enables the algorithm to better adapt to noise. Increasing the amount of free pixels however also
means increasing computation time. This trade-off can be made depending on the context, as I have limited
computation power I might choose for a larger fix probability as opposed to one who might have more com-
putational power and needs more detailed reconstructions. Although this experiment was run for only three
different fix probabilities, from the results in combination with the reference paper [7] it can be concluded
that the overall reconstruction quality improves as the fix probability decreases.
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Figure 5.15: Comparison reconstructions of the Shepp-Logan phantom made using DART for different noise levels and a fix probability
of p = 0.7. (1) noise level of 0% (2) noise level of 2.8% (3) noise level of 5.6%(4) noise level of 8.5%(5) noise level of 14.1%(6) noise level of

16.8%.

Figure 5.16: Comparison reconstructions of the Shepp-Logan phantom made using DART for different noise levels and a fix probability
of p = 0.5. (1) noise level of 0% (2) noise level of 2.8% (3) noise level of 5.6%(4) noise level of 8.5%(5) noise level of 14.1%(6) noise level of

16.8%.
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Conclusion and discussion

The aim of this thesis was to give an introduction to the mathematics of X-ray computed tomography and to
reconstruct the internal structure of objects from measurement data using DART. For this a basic understand-
ing of the sub-algorithm SART was needed. DART and SART both consider the discrete version of the X-ray
computed tomography. Besides this filtered back-projection was introduced which models X-ray computed
tomography as a continuous problem. The three methods were visualized by reconstructions of simulated
data using the Shepp-Logan phantom. Each reconstruction was evaluated using multiple performance met-
rics and visually.

Filtered and unfiltered back-projection

Back-projection was only applied to noise free data. This reconstruction is blurry resulted through back-
projecting the measurement values evenly throughout the reconstruction. Filtered back-projection was ap-
plied to both noise free data and to data perturbed by 5% noise. This data is ideal, meaning that there is
enough measurement data made from an acceptable angular range. For the noiseless data filtered back-
projection shows an almost perfect reconstruction. The reconstruction from the noisy sinogram is clearly of
lower quality however the main characteristics of the Shepp-Logan phantom are still visible. During the anal-
ysis of DART multiple reconstructions using filtered back-projection were made as well to compare the per-
formances. With these it us concluded that with limited projection data available the method however does
not perform as well. In the frequency domain insufficient sampling leads to aliasing. Because the Nyquist
sampling criterion is not met high-frequencies components will be misinterpreted as low-frequency compo-
nents, resulting in streaking artifacts in the reconstructions.

DART and SART

DART and SART were evaluated with all kinds of different parameter settings, from noisy measurement data
to limited data. Both DART and SART are robust when using limited measurements, therefore these methods
have a preference over filtered back-projection. When looking solely at the performance metrics, DART over-
all performs better than SART. However, visually we are not always able to appoint a winner. Reconstructions
from both methods have their advantages and disadvantages. While DART is more detailed, it also shows
more noise. In comparison, SART looks more smoothed, but it therefore also lacks detail. This difference
can be explained as follows; DART constraints the the pixel values to a discrete and limited set of grey values.
Therefore it maintains sharp boundaries between different coloured regions. Additionally, DART includes
the step to refine the boundaries, again enhancing the sharp edges. With this DART effectively maintains
boundaries, even of smaller regions. In contrast, SART can be considered the more continuous approach as
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the pixel values are not restricted to a discrete set of grey levels. SART instead aims to minimize the overall
projection error in a way that often averages out the pixel values. This creates a more gradual and smooth
change between different coloured regions, thus not displaying as sharp edges as DART. This smoothing ef-
fect also helps to reduce noise as it mitigates random fluctuations in pixel values. For DART, which was our
main focus, it was concluded that a low fix probability works best. When considering the pre-determined
grey levels we conclude that overestimation results in better reconstructions than underestimation. A combi-
nation of both however works best, a combination of both is also closest to reality and therefore we conclude
that DART is robust when making errors in the pre-determination of the grey levels.

Recommendations further research

This report used simulated data in it’s reconstructions, no real life data was used. Therefore it is recom-
mended to considered real-life data and compare the reconstructions using real-life data to the simulated
data reconstructions. Furthermore, parameter tuning could be performed more extensively to find the opti-
mal parameters. These optimal parameters should thereafter also be used during the reconstructions, as in
this thesis the used fix probability was not optimal. This decision was due to computational limitations.

The methods TSVD, Tikhonov regularisation and Total variation minimization were only introduced briefly
due to time limitations and no reconstructions were made using these methods. These methods could poten-
tially perform well in situations with limited data, therefore it is recommended to also generate reconstruc-
tions using these methods and compare them to the reconstructions from DART and SART.
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A
Matlab code SART

This Matlab code, which is used in Chapter 4, was adapted from [7] and uses the ASTRA Toolbox to generate
reconstructions of the Shepp-Logan phantom using the SART algorithm.

A.1. SART function using the ASTRA Toolbox

This code includes the function to create SART reconstructions.

1 function [V, ssim_values , relative_errors , pixel_errors] = SART(d_high , d_low ,
noise_level , order , m, iter , J)

2 % Generate high -resolution phantom
3 V_exact_high = phantom(d_high);
4

5 % Create high -resolution projection geometry
6 proj_geom_high = astra_create_proj_geom(’parallel ’, 1.0, d_high , linspace(0, pi, J)

);
7 vol_geom_high = astra_create_vol_geom(d_high , d_high);
8 proj_id_high = astra_create_projector(’linear ’, proj_geom_high , vol_geom_high);
9

10 % Generate high -resolution sinogram
11 [~, sinogram_high] = astra_create_sino(V_exact_high , proj_id_high);
12

13 % Add Gaussian noise to the sinogram
14 noise = noise_level * randn(size(sinogram_high));
15 noisy_sinogram_high = sinogram_high + noise;
16

17 % Create low -resolution projection geometry
18 proj_geom_low = astra_create_proj_geom(’parallel ’, 1.0, d_low , linspace(0, pi, J));
19 vol_geom_low = astra_create_vol_geom(d_low , d_low);
20 proj_id_low = astra_create_projector(’linear ’, proj_geom_low , vol_geom_low);
21

22 % Rescale the noisy sinogram to low resolution
23 noisy_sinogram_low = imresize(noisy_sinogram_high , [size(noisy_sinogram_high , 1),

d_low], ’bilinear ’, Dither=false ,Antialiasing=false);
24

25 % Perform ASTRA reconstruction
26 recon_id = astra_mex_data2d(’create ’, ’-vol’, vol_geom_low , 0);
27 cfg = astra_struct(’SART’);
28 cfg.ProjectorId = proj_id_low;
29 cfg.ProjectionDataId = astra_mex_data2d(’create ’, ’-sino’, proj_geom_low ,

noisy_sinogram_low);
30 cfg.ReconstructionDataId = recon_id;
31 cfg.option.ProjectionOrder = ’custom ’;
32 cfg.option.ProjectionOrderList = order;
33 cfg.option.MinConstraint = m;

47
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34 sart_id = astra_mex_algorithm(’create ’, cfg);
35

36 % Perform iterations
37 astra_mex_algorithm(’iterate ’, sart_id , iter);
38 V = astra_mex_data2d(’get’, recon_id);
39

40 % Clean up ASTRA resources
41 astra_mex_algorithm(’delete ’, sart_id);
42 astra_mex_data2d(’delete ’, recon_id);
43 astra_mex_projector(’delete ’, proj_id_high);
44 astra_mex_projector(’delete ’, proj_id_low);
45

46 % Normalization
47 max_val = max(V(:));
48 normalised = V / max_val;
49

50 % Resize exact high -resolution image for comparison
51 V_exact_low = imresize(V_exact_high , [d_low , d_low], ’bilinear ’,Dither=false ,

Antialiasing=false);
52

53 % Define margin for pixel comparison
54 margin = 0.0050;
55

56 % Calculate differences and errors
57 diff_matrix_n = abs(V_exact_low - V) > margin;
58 pixel_errors = sum(diff_matrix_n (:));
59 ssim_values = ssim(V_exact_low , V);
60 relative_errors = norm(V_exact_low - normalised , ’fro’) / norm(V_exact_low , ’fro’)

* 100;
61 end

A.2. Generate Figure 4.11

Note that Figure 4.10 can be generated using the same code as below only using dlow = 200.

1 figure;
2

3 % Simple reconstruction with no noise
4 [V1 , V1a , V1b , V1c] = SART (200, 100, 0, [0:5:175 , 1:5:176 , 2:5:177 , 3:5:178 , 4:5:179] ,

-inf , 180, 180);
5 subplot(2,3, 1);
6 imshow(V1, []);
7 xlabel(’(a)’); % Simple reconstruction
8 title ([’SSIM:’, num2str(V1a), ’ RE:’, num2str(V1b), ’ PE:’, num2str(V1c)]);
9

10 % Reconstruction with noise level 0.5
11 [V2 , V2a , V2b , V2c] = SART (200, 100, 0.1, [0:5:175 , 1:5:176 , 2:5:177 , 3:5:178 ,

4:5:179] , -inf , 180, 180);
12 subplot(2,3, 2);
13 imshow(V2, []);
14 xlabel(’(b)’); % Noisy
15 title ([’SSIM:’, num2str(V2a), ’ RE:’, num2str(V2b), ’ PE:’, num2str(V2c)]);
16

17 % Reconstruction with noise level 0.1 and linear projection order
18 [V3 , V3a , V3b , V3c] = SART (200, 100, 0.1, 0:179, -inf , 180, 180);
19 subplot(2,3, 3);
20 imshow(V3, []);
21 xlabel(’(c)’); % Noise and linear projection order
22 title ([’SSIM:’, num2str(V3a), ’ RE:’, num2str(V3b), ’ PE:’, num2str(V3c)]);
23

24 % Reconstruction with noise level 0.1 and fewer angles
25 [V4 , V4a , V4b , V4c] = SART (200, 100, 0.1, [0:5:40 , 1:5:41 , 2:5:42 , 3:5:43 , 4:5:44] , -

inf , 45, 45);
26 subplot(2,3, 4);
27 imshow(V4, []);
28 xlabel(’(d)’); % Noise and fewer angles
29 title ([’SSIM:’, num2str(V4a), ’ RE:’, num2str(V4b), ’ PE:’, num2str(V4c)]);
30
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31 % Reconstruction with noise level 0.1 and minimum constraint
32 [V5 , V5a , V5b , V5c] = SART (200, 100, 0.1, [0:5:175 , 1:5:176 , 2:5:177 , 3:5:178 ,

4:5:179] , 0, 180, 180);
33 subplot(2,3, 5);
34 imshow(V5, []);
35 xlabel(’(e)’); % Noise and min constraint
36 title ([’SSIM:’, num2str(V5a), ’ RE:’, num2str(V5b), ’ PE:’, num2str(V5c)]);
37

38 % Reconstruction with noise level 0.1 and 50 iterations
39 [V6 , V6a , V6b , V6c] = SART (200, 100, 0.1, [0:5:175 , 1:5:176 , 2:5:177 , 3:5:178 ,

4:5:179] , -inf , 50, 180);
40 subplot(2,3, 6);
41 imshow(V6, []);
42 xlabel(’(f)’); % Reconstruction with 50 iterations
43 title ([’SSIM:’, num2str(V6a), ’ RE:’, num2str(V6b), ’ PE:’, num2str(V6c)]);



B
Matlab code DART

This Matlab code, which is used in Chapter 5, was adapted from [7] and uses the ASTRA Toolbox to generate
reconstructions DART algorithm.

B.1. DART algorithm

The following Matlab code shows the class which defines the DART algorithm.

1 classdef DART < handle
2 properties
3 gray_levels
4 thresholds
5 p
6 rec_shape
7 vol_geom
8 all_neighbours_idx
9 proj_geom

10 projector_id
11 sinogram
12 sinogram_id
13 end
14

15 methods
16 % constructor to initialize
17 function obj = DART(gray_levels , p, rec_shape , proj_geom ,vol_geom , projector_id

, sinogram)
18 obj.gray_levels = gray_levels;
19 obj.thresholds = obj.update_gray_thresholds ();
20 obj.p = p;
21 obj.rec_shape = rec_shape;
22 obj.vol_geom = vol_geom;
23

24 %all_neighbors_idx is a cell array with in each cell an array of indices
25 obj.all_neighbours_idx = cell(rec_shape);
26 for i = 1: rec_shape (1)
27 for j = 1: rec_shape (2)
28 obj.all_neighbours_idx{i,j} = obj.pixel_neighborhood(rec_shape , i,

j);
29 end
30 end
31

32 obj.proj_geom = proj_geom;
33 obj.projector_id = projector_id;
34 obj.sinogram = sinogram;
35 obj.sinogram_id = astra_mex_data2d(’create ’, ’-sino’, proj_geom , sinogram);

50
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36 end
37

38 function rec = run(obj , iters , rec_iter)
39 % Create initial reconstruction , zero vector
40 curr_rec = obj.SART(zeros(obj.rec_shape), [], rec_iter);
41

42 for i = 1: iters
43 % Segment current reconstructed image
44 segmented_img = obj.segment(curr_rec);
45 % Calculate boundary pixels
46 boundary_pixels = obj.boundary_pixels(segmented_img);
47 % Calculate free pixels
48 free_pixels = obj.free_pixels ();
49 % Mask of all free pixels , the boundary pixels + extra free
50 % pixels from randomly picked with p
51 free_pixels = boundary_pixels | free_pixels;
52 % Take indexes of non -fixed pixels
53 free_pixels_idx = find(free_pixels);
54 % Fixed pixels
55 fixed_pixels = ~free_pixels;
56 % Take indexes of fixed pixels
57 fixed_pixels_idx = find(fixed_pixels);
58 % Create image to feed to reconstructor
59 curr_rec(fixed_pixels_idx) = segmented_img(fixed_pixels_idx);
60 % Run reconstruction algorithm on free pixels
61 curr_rec = obj.SART(curr_rec , free_pixels , rec_iter);
62

63 % Smoothing operation except on last iteration
64 if i < iters
65 smooth_rec = imgaussfilt(curr_rec , 1);
66 curr_rec(free_pixels_idx) = smooth_rec(free_pixels_idx);
67 end
68 end
69 rec = curr_rec;
70 end
71

72 function rec = SART(obj , rec , mask , iters)
73 if ~isempty(mask)
74 free_pixels_idx = find(mask);
75 fixed_rec = rec;
76 fixed_rec(free_pixels_idx) = 0;
77 [~, fixed_sino] = astra_create_sino(fixed_rec , obj.projector_id);
78 free_sino = obj.sinogram - fixed_sino;
79 free_sino_id = astra_mex_data2d(’create ’, ’-sino’, obj.proj_geom ,

free_sino);
80 rec_id = astra_mex_data2d(’create ’, ’-vol’, obj.vol_geom , rec);
81 else
82 rec_id = astra_mex_data2d(’create ’, ’-vol’, obj.vol_geom , zeros(obj.

rec_shape));
83 end
84

85 % Define configuration parameters
86 alg_cfg = astra_struct(’SART’);
87 alg_cfg.ProjectorId = obj.projector_id;
88

89 if ~isempty(mask)
90 alg_cfg.ProjectionDataId = free_sino_id;
91 else
92 alg_cfg.ProjectionDataId = obj.sinogram_id;
93 end
94

95 alg_cfg.ReconstructionDataId = rec_id;
96

97 alg_cfg.option.MinConstraint = 0;
98 alg_cfg.option.MaxConstraint = 255;
99 if ~isempty(mask)

100 mask_id = astra_mex_data2d(’create ’, ’-vol’, obj.vol_geom , mask);
101 alg_cfg.option.ReconstructionMaskId = mask_id;
102 end
103

104 % Define algorithm
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105 algorithm_id = astra_mex_algorithm(’create ’, alg_cfg);
106 % Run the algorithm
107 astra_mex_algorithm(’iterate ’, algorithm_id , iters);
108 % Get reconstructed values
109 rec = astra_mex_data2d(’get’, rec_id);
110 % Free memory
111 astra_mex_algorithm(’delete ’, algorithm_id);
112 end
113

114 function thresholds = update_gray_thresholds(obj)
115 %first add black in there as lowerbound
116 thresholds = zeros(1,numel(obj.gray_levels));
117 for i = 1: numel(obj.gray_levels) - 1
118 thresholds(i+1)=(obj.gray_levels(i)+obj.gray_levels(i+1))/2;
119 end
120 %also add white in there as upperbound
121 thresholds(end +1) = 255;
122 end
123

124 % Segment the image using the graylevels
125 function segmented_img = segment(obj , img)
126 segmented_img = zeros(size(img), ’uint8’);
127 for i = 1: length(obj.thresholds)-1
128 cond = (img >= obj.thresholds(i)) & (img < obj.thresholds(i+1));
129 segmented_img(cond) = obj.gray_levels(i);
130 end
131 end
132

133 % Calculate neighborhood of pixel
134 function neighbours = pixel_neighborhood (~, img_shape , x, y)
135 neighbours = zeros (8,2);
136 count = 0;
137 % Look at pixels next to the evaluated pixel lying at (x,y), 8-connectivity
138 for i = (x-1):(x+1)
139 for j = (y-1):(y+1)
140 % Make sure the pixels we consider lie within the image
141 if i > 1 && i <= img_shape (1) && j > 1 && j <= img_shape (2) && ~( i

==x && j==y)
142 count = count +1;
143 % Add a row to our list storing pixel with indices (i,j) as

neighbor
144 neighbours(count , :) = [i,j];
145 end
146 end
147 end
148 neighbours = neighbours (1:count , :);
149 end
150

151 function bool_mask = boundary_pixels(obj , img)
152 % Apply noise reduction to the image
153 img_smoothed = imgaussfilt(img , 1);
154 % Initialize the boundary mask
155 bool_mask = false(size(img));
156

157 % Define a threshold for edge detection
158 threshold = 10;
159

160 % Iterate over each pixel in the image
161 for x = 2:size(img , 1) -1
162 for y = 2:size(img , 2) -1
163 % Compute the difference between the central pixel and its

neighbors
164 diff = abs(img_smoothed(x, y) - img_smoothed(x-1:x+1, y-1:y+1));
165

166 % If any neighbor ’s difference is greater than the threshold , mark
the pixel as a boundary

167 if any(diff (:) > threshold)
168 bool_mask(x, y) = true;
169 end
170 end
171 end



B.2. Function to generate FBP reconstructions 53

172 end
173

174 function free_pixels = free_pixels(obj)
175 free_pixels = rand(obj.rec_shape) > obj.p;
176 end
177 end
178 end

The following function is used to implement DART using the above class

1 function [rec , ssim_values , relative_errors , pixel_errors] = DART_crime(img , proj_geom ,
vol_geom , proj_id , sinogram , dart_iters , sart_iters ,p,gray_levels)

2 rec_shape = size(img); % Assuming img is already defined in your workspace
3 dart = DART(gray_levels , p, rec_shape , proj_geom , vol_geom , proj_id , sinogram);
4

5 % Update gray levels and thresholds
6 dart.gray_levels = single(unique(img)); % Find unique gray levels and convert to

single precision
7 %dart.thresholds = dart.update_gray_thresholds (); % Update thresholds
8 rec = dart.run(dart_iters ,sart_iters);
9

10 rec(rec < 0) = 0;
11 rec(rec > 255) = 255;
12 % Define margin for pixel comparison
13 margin = 0.0050;
14

15 % Calculate differences and errors
16 diff_matrix_n = abs(img - rec) > margin;
17 pixel_errors = sum(diff_matrix_n (:));
18 ssim_values = ssim(img , rec);
19 relative_errors = norm(img - rec , ’fro’) / norm(img , ’fro’) * 100;
20 end

B.2. Function to generate FBP reconstructions

1 function [V, ssim_values , relative_errors , pixel_errors] = FBP_crime(img , vol_geom ,
proj_id , proj_geom , sino)

2 % Create reconstruction data structure in ASTRA
3 recon_id = astra_mex_data2d(’create ’, ’-vol’, vol_geom , 0);
4

5 % Configure the FBP algorithm
6 cfg = astra_struct(’FBP’);
7 cfg.ProjectorId = proj_id;
8 cfg.ProjectionDataId = astra_mex_data2d(’create ’, ’-sino’, proj_geom , sino);
9 cfg.ReconstructionDataId = recon_id;

10 cfg.option.MinConstraint = 0;
11 cfg.option.MaxConstraint = 255;
12 cfg.option.FilterType = ’ram -lak’;
13 fbp_id = astra_mex_algorithm(’create ’, cfg);
14

15 % Run the algorithm
16 astra_mex_algorithm(’run’, fbp_id);
17

18 % Retrieve the reconstructed volume
19 V = astra_mex_data2d(’get’, recon_id);
20

21 % Clip the values to enforce constraints
22 V(V < 0) = 0;
23 V(V > 255) = 255;
24

25 % Clean up ASTRA resources
26 astra_mex_algorithm(’delete ’, fbp_id);
27 astra_mex_data2d(’delete ’, recon_id);
28 astra_mex_data2d(’delete ’, sino);
29

30 % Define margin for pixel comparison
31 margin = 0.0050;
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32

33 % Calculate differences and errors
34 diff_matrix_n = abs(img - V) > margin;
35 pixel_errors = sum(diff_matrix_n (:));
36

37 % Structural Similarity Index (SSIM)
38 ssim_values = ssim(img , V);
39

40 % Relative Error Calculation
41 error_norm = norm(img - V, ’fro’);
42 img_norm = norm(img , ’fro’);
43 relative_errors = (error_norm / img_norm) * 100;
44 end

B.3. DART steps of reconstruction process as in Figure 5.1

1 figure;
2 d = 200;
3 phant = phantom(d);
4 img = phant *255;
5 angles = linspace(0, pi, 180);
6

7 subplot (3,3,1);
8 imshow(uint8(img));
9 xlabel(’a) origional phantom ’);

10

11 rec_shape = size(img);
12 proj_geom = astra_create_proj_geom(’parallel ’, 1, size(img , 1), angles);
13 vol_geom = astra_create_vol_geom(d,d);
14 projector_id = astra_create_projector(’linear ’, proj_geom , vol_geom);
15 [~, sinogram] = astra_create_sino(img , projector_id);
16

17 gray_levels = single(unique(img));
18 dart = DART(gray_levels , 0.99, rec_shape , proj_geom , vol_geom , projector_id , sinogram);
19

20 % Update gray levels and thresholds
21 dart.gray_levels = single(unique(img)); % Find unique gray levels and convert to

single precision
22 dart.thresholds = dart.update_gray_thresholds (); % Update thresholds
23

24 % Run the algorithm for 0 iterations
25 init_rec = dart.run(0, 100);
26

27 % Calculate the mean absolute pixel error
28 mean_abs_error = mean(abs(double(img (:)) - double(init_rec (:))));
29 fprintf(’Mean absolute pixel error: %f\n’, mean_abs_error);
30

31 % Display the image
32 subplot (3,3,2);
33 imshow(uint8(init_rec));
34 xlabel(’b) initial reconstruction ’);
35 title ([’PE:’, num2str(mean_abs_error)]);
36

37 % Update thresholds
38 dart.thresholds = dart.update_gray_thresholds ();
39

40 % Segmentation step
41 segmented_img = dart.segment(init_rec);
42

43 % Display initial gray levels
44 fprintf(’Initial gray levels: ’);
45 disp(dart.thresholds);
46

47 % Display gray levels in segmented image
48 unique_segmented_img_levels = unique(segmented_img);
49 fprintf(’Gray levels in segmented image: ’);
50 disp(unique_segmented_img_levels);
51
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52 % Calculate and display mean absolute pixel error
53 mean_abs_error_segmented = mean(abs(double(img(:)) - double(segmented_img (:))));
54 fprintf(’Mean absolute pixel error: %f\n’, mean_abs_error_segmented);
55

56 % Display the segmented image
57 subplot (3,3,3);
58 imshow(uint8(segmented_img));
59 xlabel(’c) segmentation ’);
60 title ([’PE:’, num2str(mean_abs_error_segmented)]);
61

62 % Calculate boundary pixels
63 boundaries = dart.boundary_pixels(segmented_img);
64

65 % Display the boundary pixels
66 subplot (3,3,4);
67 imshow(boundaries);
68 xlabel(’d) boundary pixels ’);
69

70 % Calculate free pixels
71 free_pixels = dart.free_pixels ();
72

73 % Display the free pixels
74 subplot (3,3,5);
75 imshow(free_pixels);
76 xlabel(’e) free pixels ’);
77

78 % Combine boundary and free pixels
79 all_free_pixels = boundaries | free_pixels;
80

81 % Display the combined free pixels
82 subplot (3,3,6);
83 imshow(all_free_pixels);
84 xlabel(’f) all free pixels ’);
85

86

87 % Fix gray levels and thresholds
88 dart.gray_levels = unique(img(:));
89 dart.gray_levels = cast(dart.gray_levels , ’double ’);
90 dart.thresholds = update_gray_thresholds(dart);
91

92 % Run the algorithm
93 full_rec = dart.run(10, 100);
94 mean_absolute_error_fin = mean(abs(img - full_rec), ’all’);
95 disp([’Mean absolute pixel error: ’, num2str(mean_absolute_error)]);
96

97 subplot (3,3,8);
98 imshow(uint8(full_rec));
99 xlabel(’g) final reconstruction ’);

100 title ([’PE:’, num2str(mean_absolute_error_fin)]);

B.4. Tuning the parameters of DART as in Figure 5.5

1 d = 512;
2 % Initialize the Shepp -Logan phantom
3 img_phant = phantom(d);
4 img_phant = img_phant * 255;
5

6 % Initialize projections
7 proj_geom = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi, 90));
8 vol_geom = astra_create_vol_geom(d, d);
9 proj_id = astra_create_projector(’linear ’, proj_geom , vol_geom);

10

11 % Create sinogram
12 [sinogram_id_phant , sinogram_phant] = astra_create_sino(img_phant , proj_id);
13 g = single(unique(img_phant));
14 %%
15 figure;
16 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
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sinogram_phant , 200, 3, 0.85, g);
17 subplot (2,3,1);
18 imshow(D1, []);
19 xlabel(’a’);
20 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
21 %%
22 [D2 , D2a , D2b , D2c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,

sinogram_phant , 100, 10, 0.85, g);
23 subplot (2,3,2);
24 imshow(D2, []);
25 xlabel(’b’);
26 title ([’SSIM:’, num2str(D2a), ’ RE:’, num2str(D2b), ’ PE:’, num2str(D2c)]);
27

28 %%
29 [D3 , D3a , D3b , D3c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,

sinogram_phant , 50, 100, 0.85, g);
30 subplot (2,3,3);
31 imshow(D3, []);
32 xlabel(’c’);
33 title ([’SSIM:’, num2str(D3a), ’ RE:’, num2str(D3b), ’ PE:’, num2str(D3c)]);
34

35 %%
36 [D4 , D4a , D4b , D4c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,

sinogram_phant , 10, 1000, 0.85, g);
37 subplot (2,3,4);
38 imshow(D4, []);
39 xlabel(’d’);
40 title ([’SSIM:’, num2str(D4a), ’ RE:’, num2str(D4b), ’ PE:’, num2str(D4c)]);
41

42 %%
43 [D5 , D5a , D5b , D5c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,

sinogram_phant , 10, 200, 0.85, g);
44 subplot (2,3,5);
45 imshow(D5, []);
46 xlabel(’e’);
47 title ([’SSIM:’, num2str(D5a), ’ RE:’, num2str(D5b), ’ PE:’, num2str(D5c)]);
48

49 %%
50 [D6 , D6a , D6b , D6c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,

sinogram_phant , 10, 200, 0.9, g);
51 subplot (2,3,6);
52 imshow(D6, []);
53 xlabel(’f’);
54 title ([’SSIM:’, num2str(D6a), ’ RE:’, num2str(D6b), ’ PE:’, num2str(D6c)]);

B.5. Varying the number of projections as in Figure 5.6

1 iters_sart = 200;
2 iters_dart = 10;
3 d = 300;
4

5 % Initialize phantoms
6 filename = ’cylinders.png’;
7 img_cyl = imreadgs(filename);
8 img_cyl = imresize(img_cyl , [d, d]);
9 img_phant = phantom(d);

10 img_phant = img_phant * 255;
11

12 % Initialize projections
13 proj_geom_10 = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi , 10));
14 proj_geom_20 = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi , 20));
15

16 vol_geom = astra_create_vol_geom(d, d);
17 proj_id_10 = astra_create_projector(’linear ’, proj_geom_10 , vol_geom);
18 proj_id_20 = astra_create_projector(’linear ’, proj_geom_20 , vol_geom);
19

20 % Create sinograms
21 [sinogram_id_cyl_10 , sinogram_cyl_10] = astra_create_sino(img_cyl , proj_id_10);
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22 [sinogram_id_cyl_20 , sinogram_cyl_20] = astra_create_sino(img_cyl , proj_id_20);
23 [sinogram_id_phant_10 , sinogram_phant_10] = astra_create_sino(img_phant , proj_id_10);
24 [sinogram_id_phant_20 , sinogram_phant_20] = astra_create_sino(img_phant , proj_id_20);
25

26 %%
27 figure;
28 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom_20 , vol_geom , proj_id_20 ,

sinogram_phant_20 , iters_dart , iters_sart);
29 subplot (3,4,1);
30 imshow(D1, []);
31 xlabel(’(a)’);
32 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
33

34 [D2 , D2a , D2b , D2c] = DART_crime(img_phant , proj_geom_10 , vol_geom , proj_id_10 ,
sinogram_phant_10 , iters_dart , iters_sart);

35 subplot (3,4,2);
36 imshow(D2, []);
37 xlabel(’(b)’);
38 title ([’SSIM:’, num2str(D2a), ’ RE:’, num2str(D2b), ’ PE:’, num2str(D2c)]);
39

40 [D3 , D3a , D3b , D3c] = DART_crime(img_cyl , proj_geom_20 , vol_geom , proj_id_20 ,
sinogram_cyl_20 , iters_dart , iters_sart);

41 subplot (3,4,3);
42 imshow(D3, []);
43 xlabel(’(c)’);
44 title ([’SSIM:’, num2str(D3a), ’ RE:’, num2str(D3b), ’ PE:’, num2str(D3c)]);
45

46 [D4 , D4a , D4b , D4c] = DART_crime(img_cyl , proj_geom_10 , vol_geom , proj_id_10 ,
sinogram_cyl_10 , iters_dart , iters_sart);

47 subplot (3,4,4);
48 imshow(D4, []);
49 xlabel(’(d)’);
50 title ([’SSIM:’, num2str(D4a), ’ RE:’, num2str(D4b), ’ PE:’, num2str(D4c)]);
51

52 %%
53 [V1 , V1a , V1b , V1c] = SART(1,d, d, 0, 0, iters_sart , 20,1);
54 subplot (3,4,5);
55 imshow(V1, []);
56 xlabel(’(e)’);
57 title ([’SSIM:’, num2str(V1a), ’ RE:’, num2str(V1b), ’ PE:’, num2str(V1c)]);
58

59 [V2 , V2a , V2b , V2c] = SART(1,d, d, 0, 0, iters_sart , 10,1);
60 subplot (3,4,6);
61 imshow(V2, []);
62 xlabel(’(f)’);
63 title ([’SSIM:’, num2str(V2a), ’ RE:’, num2str(V2b), ’ PE:’, num2str(V2c)]);
64

65 [V3 , V3a , V3b , V3c] = SART(2,d, d, 0, 0, iters_sart , 20,1);
66 subplot (3,4,7);
67 imshow(V3, []);
68 xlabel(’(g)’);
69 title ([’SSIM:’, num2str(V3a), ’ RE:’, num2str(V3b), ’ PE:’, num2str(V3c)]);
70

71 [V4 , V4a , V4b , V4c] = SART(2,d, d, 0, 0, iters_sart , 10,1);
72 subplot (3,4,8);
73 imshow(V4, []);
74 xlabel(’(h)’);
75 title ([’SSIM:’, num2str(V4a), ’ RE:’, num2str(V4b), ’ PE:’, num2str(V4c)]);
76

77 %%
78 [F1 , F1a , F1b , F1c] = FBP_crime(img_phant , vol_geom , proj_id_20 , sinogram_id_phant_20);
79 subplot (3,4,9);
80 imshow(F1, []);
81 xlabel(’(i)’);
82 title ([’SSIM:’, num2str(F1a), ’ RE:’, num2str(F1b), ’ PE:’, num2str(F1c)]);
83

84 [F2 , F2a , F2b , F2c] = FBP_crime(img_phant , vol_geom , proj_id_10 , sinogram_id_phant_10);
85 subplot (3,4,10);
86 imshow(F2, []);
87 xlabel(’(j)’);
88 title ([’SSIM:’, num2str(F2a), ’ RE:’, num2str(F2b), ’ PE:’, num2str(F2c)]);
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89

90 [F3 , F3a , F3b , F3c] = FBP_crime(img_cyl , vol_geom , proj_id_20 , sinogram_id_cyl_20);
91 subplot (3,4,11);
92 imshow(F3, []);
93 xlabel(’(k)’);
94 title ([’SSIM:’, num2str(F3a), ’ RE:’, num2str(F3b), ’ PE:’, num2str(F3c)]);
95

96 [F4 , F4a , F4b , F4c] = FBP_crime(img_cyl , vol_geom , proj_id_10 , sinogram_id_cyl_10);
97 subplot (3,4,12);
98 imshow(F4, []);
99 xlabel(’(l)’);

100 title ([’SSIM:’, num2str(F4a), ’ RE:’, num2str(F4b), ’ PE:’, num2str(F4c)]);

B.6. Varying the number of angles as in Figure ??

1 iters_sart = 200;
2 iters_dart = 10;
3 d = 300;
4

5 % Initialize phantoms
6 filename = ’cylinders.png’;
7 img_cyl = imreadgs(filename);
8 img_cyl = imresize(img_cyl , [d, d]);
9 img_phant = phantom(d);

10 img_phant = img_phant * 255;
11

12 % Initialize projections
13 proj_geom_20 = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi/2, 90));
14 proj_geom_10 = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi/3, 60));
15

16 vol_geom = astra_create_vol_geom(d, d);
17 proj_id_10 = astra_create_projector(’linear ’, proj_geom_10 , vol_geom);
18 proj_id_20 = astra_create_projector(’linear ’, proj_geom_20 , vol_geom);
19

20 % Create sinograms
21 [sinogram_id_cyl_10 , sinogram_cyl_10] = astra_create_sino(img_cyl , proj_id_10);
22 [sinogram_id_cyl_20 , sinogram_cyl_20] = astra_create_sino(img_cyl , proj_id_20);
23 [sinogram_id_phant_10 , sinogram_phant_10] = astra_create_sino(img_phant , proj_id_10);
24 [sinogram_id_phant_20 , sinogram_phant_20] = astra_create_sino(img_phant , proj_id_20);
25

26 %%
27 figure;
28 [V1 , V1a , V1b , V1c] = DART_crime(img_phant , proj_geom_20 , vol_geom , proj_id_20 ,

sinogram_phant_20 , iters_dart , iters_sart ,0.85);
29 subplot (3,4,1);
30 imshow(V1, []);
31 xlabel(’(a)’);
32 title ([’SSIM:’, num2str(V1a), ’ RE:’, num2str(V1b), ’ PE:’, num2str(V1c)]);
33

34 [V2 , V2a , V2b , V2c] = DART_crime(img_phant , proj_geom_10 , vol_geom , proj_id_10 ,
sinogram_phant_10 , iters_dart , iters_sart ,0.85);

35 subplot (3,4,2);
36 imshow(V2, []);
37 xlabel(’(b)’);
38 title ([’SSIM:’, num2str(V2a), ’ RE:’, num2str(V2b), ’ PE:’, num2str(V2c)]);
39

40 [V3 , V3a , V3b , V3c] = DART_crime(img_cyl , proj_geom_20 , vol_geom , proj_id_20 ,
sinogram_cyl_20 , iters_dart , iters_sart ,0.85);

41 subplot (3,4,3);
42 imshow(V3, []);
43 xlabel(’(c)’);
44 title ([’SSIM:’, num2str(V3a), ’ RE:’, num2str(V3b), ’ PE:’, num2str(V3c)]);
45

46 [V4 , V4a , V4b , V4c] = DART_crime(img_cyl , proj_geom_10 , vol_geom , proj_id_10 ,
sinogram_cyl_10 , iters_dart , iters_sart ,0.85);

47 subplot (3,4,4);
48 imshow(V4, []);
49 xlabel(’(d)’);



B.7. Noisy measurement reconstructions as in Figure 5.9 and 5.10 59

50 title ([’SSIM:’, num2str(V4a), ’ RE:’, num2str(V4b), ’ PE:’, num2str(V4c)]);
51

52 %%
53 [V1 , V1a , V1b , V1c] = SART(1,d, d, 0, 0, iters_sart , 90,2);
54 subplot (3,4,5);
55 imshow(V1, []);
56 xlabel(’(e)’);
57 title ([’SSIM:’, num2str(V1a), ’ RE:’, num2str(V1b), ’ PE:’, num2str(V1c)]);
58

59 [V2 , V2a , V2b , V2c] = SART(1,d, d, 0, 0, iters_sart , 60,3);
60 subplot (3,4,6);
61 imshow(V2, []);
62 xlabel(’(f)’);
63 title ([’SSIM:’, num2str(V2a), ’ RE:’, num2str(V2b), ’ PE:’, num2str(V2c)]);
64

65 [V3 , V3a , V3b , V3c] = SART(2,d, d, 0, 0, iters_sart , 90,2);
66 subplot (3,4,7);
67 imshow(V3, []);
68 xlabel(’(g)’);
69 title ([’SSIM:’, num2str(V3a), ’ RE:’, num2str(V3b), ’ PE:’, num2str(V3c)]);
70

71 [V4 , V4a , V4b , V4c] = SART(2,d, d, 0, 0, iters_sart , 60,3);
72 subplot (3,4,8);
73 imshow(V4, []);
74 xlabel(’(h)’);
75 title ([’SSIM:’, num2str(V4a), ’ RE:’, num2str(V4b), ’ PE:’, num2str(V4c)]);
76

77 %%
78 [F1 , F1a , F1b , F1c] = FBP_crime(img_phant , vol_geom , proj_id_20 ,sinogram_id_phant_20);
79 subplot (3,4,9);
80 imshow(F1, []);
81 xlabel(’(i)’);
82 title ([’SSIM:’, num2str(F1a), ’ RE:’, num2str(F1b), ’ PE:’, num2str(F1c)]);
83

84 [F2 , F2a , F2b , F2c] = FBP_crime(img_phant , vol_geom , proj_id_10 ,sinogram_id_phant_10);
85 subplot (3,4,10);
86 imshow(F2, []);
87 xlabel(’(j)’);
88 title ([’SSIM:’, num2str(F2a), ’ RE:’, num2str(F2b), ’ PE:’, num2str(F2c)]);
89

90 [F3 , F3a , F3b , F3c] = FBP_crime(img_cyl , vol_geom , proj_id_20 ,sinogram_id_cyl_20);
91 subplot (3,4,11);
92 imshow(F3, []);
93 xlabel(’(k)’);
94 title ([’SSIM:’, num2str(F3a), ’ RE:’, num2str(F3b), ’ PE:’, num2str(F3c)]);
95

96 [F4 , F4a , F4b , F4c] = FBP_crime(img_cyl , vol_geom , proj_id_10 ,sinogram_id_cyl_10);
97 subplot (3,4,12);
98 imshow(F4, []);
99 xlabel(’(l)’);

100 title ([’SSIM:’, num2str(F4a), ’ RE:’, num2str(F4b), ’ PE:’, num2str(F4c)]);

B.7. Noisy measurement reconstructions as in Figure 5.9 and 5.10

1 iters_sart = 200;
2 iters_dart = 10;
3 d = 512;
4

5 % Initialize phantoms
6 % filename = ’cylinders.png ’;
7 % img_phant = imreadgs(filename);
8 % img_phant = imresize(img_phant , [d, d]);
9 img_phant = phantom(d);

10 img_phant = img_phant * 255;
11

12 % Initialize projections
13 proj_geom = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi, 180));
14 vol_geom = astra_create_vol_geom(d, d);
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15 proj_id = astra_create_projector(’linear ’, proj_geom , vol_geom);
16 noises = [0, 3000, 4500, 9000];
17

18 % Create sinograms
19 % [sinogram_id_cyl , sinogram_cyl] = astra_create_sino(img_cyl , proj_id);
20 [sinogram_id_phant , sinogram_phant] = astra_create_sino(img_phant , proj_id);
21 %%
22 i = 1;
23 figure;
24 for noise = noises
25 sinogram_phant_noisy = sinogram_phant + poissrnd(noise , size(sinogram_phant));
26 grays = [0 ,255];
27

28 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
sinogram_phant_noisy , iters_dart , iters_sart , 0.9, grays);

29 subplot(3,4,i);
30 imshow(D1, []);
31 xlabel(i);
32 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
33

34 [V1 , V1a , V1b , V1c] = SART_crime(img_phant , vol_geom , proj_id , proj_geom ,
sinogram_phant_noisy , iters_sart);

35 subplot (3,4,(i+4));
36 imshow(V1, []);
37 xlabel(i);
38 title ([’SSIM:’, num2str(V1a), ’ RE:’, num2str(V1b), ’ PE:’, num2str(V1c)]);
39

40 [F1 , F1a , F1b , F1c] = FBP_crime(img_phant , vol_geom , proj_id , proj_geom ,
sinogram_phant_noisy);

41 subplot (3,4,(8+i));
42 imshow(F1, []);
43 xlabel (8+i);
44 title ([’SSIM:’, num2str(F1a), ’ RE:’, num2str(F1b), ’ PE:’, num2str(F1c)]);
45

46 i = i + 1;
47 end
48

49 % Delete ASTRA objects
50 astra_mex_data3d(’delete ’, sinogram_id_phant);
51 astra_mex_projector(’delete ’, proj_id);

B.8. Varying grey levels as in Figures 5.12, 5.11 and 5.13

1 iters_sart = 200;
2 iters_dart = 10;
3 d = 512;
4

5 noises = [0.02, 0.1, 0.18, 0.26, 0.34, 0.4];
6

7 % Initialize phantoms
8 img_phant = phantom(d);
9 img_phant = img_phant * 255;

10

11 % filename = ’cylinders.png ’;
12 % img_phant = imreadgs(filename); files
13 % img_phant = imresize(img_phant , [d, d]);
14

15 % Initialize projections
16 proj_geom = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi, 50));
17 vol_geom = astra_create_vol_geom(d, d);
18 proj_id = astra_create_projector(’linear ’, proj_geom , vol_geom);
19

20 % Create sinograms
21 [sinogram_id_phant , sinogram_phant] = astra_create_sino(img_phant , proj_id);
22

23 %% overestimate
24 i = 1;
25 figure;
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26 for noise = noises
27 phant_grays = unique(img_phant (:));
28 phant_grays(phant_grays ==0) =1;
29 noised_gray = phant_grays + (1 + phant_grays) * noise;
30

31 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
sinogram_phant , iters_dart , iters_sart , 0.9, noised_gray);

32 subplot(2,3,i);
33 imshow(D1, []);
34 xlabel(i);
35 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
36

37 i = i + 1;
38 end
39 astra_mex_data2d(’delete ’, sinogram_id_phant);
40 astra_mex_projector(’delete ’, proj_id);
41 astra_mex_algorithm(’clear’);
42

43 %% underestimate
44 i = 1;
45 figure;
46 for noise = noises
47 phant_grays = unique(img_phant (:));
48 phant_grays(phant_grays ==0) =1;
49 noised_gray = phant_grays - (1 + phant_grays) * noise;
50

51 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
sinogram_phant , iters_dart , iters_sart , 0.9, noised_gray);

52 subplot(2,3,i);
53 imshow(D1, []);
54 xlabel(i);
55 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
56

57 i = i + 1;
58 end
59 astra_mex_data2d(’delete ’, sinogram_id_phant);
60 astra_mex_projector(’delete ’, proj_id);
61 astra_mex_algorithm(’clear’);
62

63 %% over & underestimate
64 i = 1;
65 figure;
66 for noise = noises
67 phant_grays = unique(img_phant (:));
68 signs = 2 * (rand(size(phant_grays)) > 0.5) - 1;
69 noised_gray = phant_grays + ((1 + phant_grays) .* signs * noise);
70

71 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
sinogram_phant , iters_dart , iters_sart , 0.9, noised_gray);

72 subplot(2,3,i);
73 imshow(D1, []);
74 xlabel(i);
75 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
76

77 i = i + 1;
78 end
79 astra_mex_data2d(’delete ’, sinogram_id_phant);
80 astra_mex_projector(’delete ’, proj_id);
81 astra_mex_algorithm(’clear’);

B.9. Varying fix probability as in Figures 5.14, 5.15 and 5.16

1 iters_sart = 200;
2 iters_dart = 10;
3 d = 300;
4

5 % Initialize phantoms
6 % filename = ’cylinders.png ’;
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7 % img_cyl = imreadgs(filename); % Use imread for standard image files
8 % img_cyl = imresize(img_cyl , [d, d]); % Use imresize for resizing
9 img_phant = phantom(d);

10 img_phant = img_phant * 255;
11

12 % Initialize projections
13 proj_geom = astra_create_proj_geom(’parallel ’, 1.0, d, linspace(0, pi, 180));
14 vol_geom = astra_create_vol_geom(d, d);
15 proj_id = astra_create_projector(’linear ’, proj_geom , vol_geom);
16

17 % Create sinograms
18 % [sinogram_id_cyl , sinogram_cyl] = astra_create_sino(img_cyl , proj_id);
19 [sinogram_id_phant , sinogram_phant] = astra_create_sino(img_phant , proj_id);
20 noises = [0, 1500, 3000, 4500, 7500, 9000];
21 grays = unique(img_phant (:));
22

23 %%
24 p = 0.5; % or 0.7, 0.9
25 figure;
26 i = 1;
27 for noise = noises
28 sinogram_phant_noisy = sinogram_phant + poissrnd(noise , size(sinogram_phant));
29

30 [D1 , D1a , D1b , D1c] = DART_crime(img_phant , proj_geom , vol_geom , proj_id ,
sinogram_phant_noisy , iters_dart , iters_sart ,p,grays);

31 subplot(2,3,i);
32 imshow(D1, []);
33 xlabel(i);
34 title ([’SSIM:’, num2str(D1a), ’ RE:’, num2str(D1b), ’ PE:’, num2str(D1c)]);
35

36 i = i + 1;
37 end
38

39 % Delete ASTRA objects
40 astra_mex_data3d(’delete ’, sinogram_id_phant);
41 astra_mex_projector(’delete ’, proj_id);



C
Additional results Section 5.3

This appendix includes reconstructions of the phantom introduced in Figure 5.4 where the amount of noise
both in the measurements and in the grey levels is varied as in Chapter 5.
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Figure C.1: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for reconstruction of the phantom introduced in Figure 5.4 with
measurements perturbed by a noise level of 0% (column 1), 5.6% (column 2), 8.4% (column 3) and 16.8% (column 4). (a) DART 0% noise

(b) DART 5.6% noise (c) DART 8.4% noise (d) DART 16.9% noise (e) SART 0% noise (f) SART 5.6% noise (g) SART 8.4% noise (h) SART
16.9% noise (i) FBP 0% noise (j) FBP 5.6% noise (k) FBP 8.4% noise (l) FBP 16.9% noise.

Figure C.2: Comparison of DART (row 1), SART (row 2) and FBP (row 3) for reconstruction of the phantom introduced in Figure 5.4 with
measurements taken from 10 projections perturbed by a noise level of 0% (column 1), 5.6% (column 2), 8.4% (column 3) and 16.8%

(column 4) of 10 projections. (a) DART 0% noise (b) DART 5.6% noise (c) DART 8.4% noise (d) DART 16.9% noise (e) SART 0% noise (f)
SART 5.6% noise (g) SART 8.4% noise (h) SART 16.9% noise (i) FBP 0% noise (j) FBP 5.6% noise (k) FBP 8.4% noise (l) FBP 16.9% noise.
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Figure C.3: Comparison on the effect of different levels of overestimation within the gray values used in DART showed on the phantom
introduced in Figure 5.4. (1) overestimation of 0.02% (2) overestimation of 0.1 % (3) overestimation of 0.18 % (4) overestimation of 0.26

% (5) overestimation of 0.34 % (6) overestimation of 0.4.

Figure C.4: Comparison on the effect of different levels of underestimation within the gray values used in DART showed on the
phantom introduced in Figure 5.4 . (1) underestimation of 0.02% (2) underestimation of 0.1 % (3) underestimation of 0.18 % (4)

underestimation of 0.26 % (5) underestimation of 0.34 % (6) underestimation of 0.4.
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Figure C.5: Comparison on the effect of different levels of a combination of underestimation and overestimation within the grey values
used in DART showed on the Shepp-Logan phantom. (1) estimation error of 0.02% (2) estimation error of 0.1 % (3) estimation error of

0.18 % (4) estimation error of 0.26 % (5) estimation error of 0.34 % (6) estimation error of 0.4%.
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