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Abstract
Deep Learning models can use pretext tasks to
learn representations on unlabelled datasets. Al-
though there have been several works on repre-
sentation learning and pre-training, to the best of
our knowledge combining pretext tasks in a multi-
task setting for relational multimodal data has not
been done before. In this work, we implemented
4 pretext tasks on top of a framework for han-
dling relational multi-modal data and evaluated
them based on two datasets. We first identified the
best-performing masking strategy for pretext tasks
that require masking. Then, we compared differ-
ent combinations of the pretext tasks based on self-
supervised metrics as a proxy for the quality of
the representation learned. The results reveal that
masking values by replacing from the column’s em-
pirical distribution yields 4.6% and 4% higher ac-
curacy on each dataset respectively than replacing
them with a fixed value. We also found that differ-
ent combinations of pretext tasks, even with differ-
ent numbers of tasks, converge to marginally dif-
ferent values and MoCo further reduces this differ-
ence. Our findings imply that the number of pre-
text tasks can scale efficiently allowing for a more
diverse representation to be learned.

1 Introduction
Relational multimodal tabular data appears often in practice.
Tree-based ensemble models, such as XGBoost, have consis-
tently proven to outperform other Deep Learning (DL) mod-
els on tabular data [1]. The recent breakthroughs in Deep
Learning on the Computer Vision (CV) and Natural Lan-
guage Processing (NLP) domains have inspired research [2]
into applying Deep Learning for tabular data, with the am-
bition of matching the performance of tree-based ensembles.
Multiple DL models have been proposed for tabular data re-
cently, such as ResNet [2] and the FT-Transformer [2]. Re-
search in DL approaches is incentivised by the advantages
DL offers over tree-based ensembles, such as accommodat-
ing multimodal data, minimizing manual data pre-processing,
offering a theoretically higher performance ceiling [3], han-
dling relational data by modelling them as graphs and the
ability to pre-train to learn a representation of the data.

In this work, we investigate the potential of learning rep-
resentations through pre-training a model capable of han-
dling relational multimodal data. Pre-training has proven
powerful in CV and NLP, as there are strong inductive bi-
ases in images and text. While there has been some suc-
cess in pre-training DL models for tabular data [3], the suc-
cess has not been as decisive as in the CV and NLP do-
mains. Finding novel pre-training objectives for tabular data
is an active area of research, with multiple recent works such
as MET [4], SubTab [5], TransTab [6] and others [7; 8; 9;
10] introducing novel pre-training objectives.

Pre-training is the process of learning a representation from
an unlabelled dataset, in a self-supervised or unsupervised

setting, with the hypothesis that there are inductive biases
that can be learned and used in a downstream task after pre-
training. Pre-training involves pretext tasks each of which op-
timizes a pre-training objective, which may not be relevant for
downstream tasks but are useful for learning a representation.
Usually, pre-training objectives define a way to mask or pro-
duce different views of the data followed by a loss function
which defines how well the model has performed in the pre-
text task. Pre-training plays a regularization role [11] which
allows DL models to generalize well across multiple datasets.
Pre-training is especially valuable in cases where the labelled
dataset is expensive to obtain, for example classifying a rare
disease. A large unlabelled dataset is used to learn generic
patterns and after pre-training a DL model to discover those
generic patterns, we can fine-tune it on a labelled dataset. Pre-
training therefore allows for more sample-efficient and accu-
rate learning when labelled data are scarce.

The framework we use for pre-training contains a fused
DL architecture that handles both tabular data and graph
data representing the relations in the data. This means
two types of pre-training objectives can be combined: pre-
training on tabular data and pre-training Graph Neural Net-
works (GNN) for graph data. There is extensive literature
on pre-training tabular data [3] and pre-training GNNs [12;
13] but to the best of our knowledge, combining pre-training
tabular and GNN pre-training objectives has not been ex-
plored before for relational multimodal data. There are also
recent multi-task learning works which provide a strong foun-
dation for combining pre-training objectives. One such work
is MoCo, which treats the optimization of each pre-training
objective as a multi-objective problem and finds a Pareto op-
timal solution for all objectives, which summing the losses
does not guarantee.

This leads us to a natural question: can a combination
of pre-training objectives improve self-supervised metrics
within the relational multimodal framework? This is broken
down into the following sub-questions.

• (SQ1) Which masking strategy is best for the pretext
tasks that depend on a masking strategy?

• (SQ2) Can a combination of tabular pretext tasks and
GNN pretext tasks improve self-supervised metrics?

• (SQ3) Can the multi-task algorithm MoCo [14] improve
the performance of combinations of pretext tasks on self-
supervised metrics?

The first sub-question investigates different strategies for
masking the data since some pre-training objectives require
masking the data. The second sub-question is a proxy to
the main research question. The third sub-question, which
is closely related to the second, delves into a design decision
in multi-task pre-training which could improve the represen-
tation learned. Our main findings, which answer the three
sub-questions, are summarized below:

• Using a masking strategy which makes it harder for the
model to distinguish masked values from real values
yields a better representation.

• Combining multiple pretext tasks marginally affects
self-supervised metrics. This means that the encoder of



the fused architecture can learn multiple inductive biases
of different pretext tasks without significantly harming
the performance of individual tasks.

• Using MoCo to combine the tasks slightly improves self-
supervised metrics but significantly decreases the vari-
ance in the self-supervised metrics they converge to.
Therefore, MoCo allows more pretext tasks to be jointly
trained, leading to a more diverse representation.

This paper is structured as follows. In Section 2 we cover
the background to our work, which provides a brief explana-
tion of the framework used in the experiments, related work
and the formal problem description. Section 3 outlines our
method to answer the sub-questions and the experiment setup
is reported. Section 4 presents the results of our experiments,
followed by Section 5 with a discussion of the results and
how they relate to existing literature. Finally, we disclose eth-
ical concerns in Section 6 and we conclude and discuss future
work in Section 7.

2 Background
To introduce our work, we first explain the background lead-
ing up to our work. First, the multi-modal DL framework
used for this work is briefly described. Secondly, related work
in the fields of pre-training and multi-task learning is covered.
Lastly, we formalize the problem this work aims to solve in
order to answer the main research question.

2.1 Muti-modal DL framework
The DL framework this work builds upon is a bidirectionally
fused model inspired by [15]. The framework was provided
by the project supervisors. The details of the design deci-
sions of the architecture are outside the scope of this paper
but a high-level overview of the architecture is presented. The
architecture, simplified and illustrated in Figure 1, takes a re-
lational multimodal dataset as input and encodes each of its
modalities into a vector format. Then, it transforms them into
a table and a graph and applies a series of convolutions with
a tabular transformer and a GNN. The output of this architec-
ture is the embedding of the input table, the embeddings of
the input nodes of the graph and the embeddings of the in-
put edges of the graph. The framework then stacks a Mask
Cell Modelling (MCM) decoder on top of the tabular embed-
dings which aims to reconstruct the input data, and a Link
Prediction (LP) decoder is stacked on top of the edge embed-
dings to predict the existence of edges in the input graph. It
is important to note that each pretext task requires a separate
decoder and each decoder has its own individual loss function
and metric function. The framework also provides an imple-
mentation of MoCo [14].

The model outputs tabular embeddings and node/edge em-
beddings, meaning tabular and GNN objectives can be used.
Yasunga et al. [15] from which the architecture is inspired,
chose to use Link Prediction and a variation of Mask Cell
Modelling for hiding and predicting text tokens. However,
Yasunga et al. did not explore different pre-training objec-
tives or combinations of objectives. This motivates the re-
search question this work aims to address. Related work into
candidate pre-training objectives for this project follows.
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Figure 1: Our fused encoder architecture. It consists of a modality
encoder, a backbone which consists of a series of tabular transformer
and GNNs, and finally one or more decoders.

2.2 Related Work
Pre-training DL models is not new and its benefits have been
proven. As Bengio et al. [16] have found, the success a DL
model will have on a downstream task depends on how the
data is represented since different representations can hide or
amplify the explanatory factors of variation behind the data.
Certain representations of data can help DL models perform
better on downstream tasks. DL models can automatically
learn a useful representation of an unlabelled dataset with
pre-training objectives, which gives the model a ”head start”
in performing supervised tasks. We focus on related work in
tabular and GNN pre-training as they are required by the re-
lational multimodal framework. We also focus on multi-task
learning as we aim to learn a representation by concurrently
optimizing multiple pretext tasks.

Tabular Pre-training Objectives
Several works have recently been proposed for tabular pre-
training, each of which claims competitive results with XG-
Boost after fine-tuning the pre-trained models. We highlight
three simple objectives described in [3].

Mask Cell Modelling (MCM). Used in [3], this objective
involves corrupting parts of the input, reconstructing the input
and finally evaluating the reconstruction with a loss function
per modality.

Mask Vector Prediction (MV). Introduced in VIME [7],
Mask Vector Prediction aims to generate a mask vector which
indicates which columns will be masked for each row. The
columns indicated by the mask vector are then masked by re-
placing them with a value from the column’s empirical distri-
bution. The reconstructive pretext task is to predict which
columns were masked. The loss function is cross-entropy
loss. Replacing from the column’s distribution makes it
harder for the model to distinguish masked values so it learns
more complex intrinsic patterns, potentially leading to learn-
ing a good representation.

SCARF [17]. A contrastive learning objective, which gen-
erates positive samples by corrupting a subset of features of
the input by replacing with a value from the feature’s empir-
ical distribution, and treating all other rows in the batch as
negatives. InfoNCE loss is used to maximize the similarity
between the input and its corrupted views.

Multiple other works introduce pre-training objectives in
their pipeline. These include XTab [9], MSLR [8], TransTab
[6], SAINT [10], MET [4] and TabNet [18]. Each of them
has been evaluated in a different environment, making it dif-
ficult to objectively compare them. An objective comparison



by Rubachev et al. [3] found that reconstruction objectives,
specifically Mask Cell Modelling and Mask Vector Predic-
tion, performed better than SCARF on a variety of datasets
while also being much simpler to implement.

Graph Neural Network Pre-training Objectives
We use graphs to model relations in the relational tabular
data, which requires GNNs. Xie et al. [13] have classified
pre-training objectives into contrastive and predictive objec-
tives. Contrastive objectives require a view generation strat-
egy, which generates different variations of the graph and then
uses a contrastive objective based on Mutual Information. On
the other hand, predictive objectives like GraphSAGE [19]
remove parts of the graph or hide attributes in the graph and
then reconstruct them. We highlight link prediction, the graph
pre-training objective used in the paper [15] that inspired the
framework’s architecture as well as the two objectives in [12].

Link Prediction (LP) [15]. This predictive objective holds
out some edges and predicts them. The aim is to make the
model predict the real held-out (positive) edges while cor-
rectly identifying that other non-existent (negative) edges do
not exist. The balance between predicting which edges ex-
ist and which do not make the model learn representations of
local neighbourhoods in the graph structure.

Context Prediction [12]. Subgraphs are used to predict
their surrounding graph structures. The aim is to map nodes
appearing in similar subgraphs close to the embedding space.
This objective requires a definition of neighbourhood sam-
pling to generate subgraphs, which can be computationally
expensive.

Attribute Masking (AM) [12]. Node or edge attributes
in the graph are masked and the GNN tries to reconstruct
them. More specifically the attributes are masked, and then
the GNN creates node or edge embeddings. A linear model is
added as a decoder on top of the GNN embeddings to predict
the original attributes.

Multi-task learning
The DL architecture can benefit from multiple pre-training
objectives. The concurrent learning of multiple pre-training
objectives can be considered a multi-objective optimization
problem [20] and has been widely studied in the field of Ma-
chine Learning as multi-task learning. Multi-task learning
can lead to more robust and universal representations [21] as
knowledge is shared between the tasks being learned and in-
ductive biases can be shared between the objectives. To en-
sure no objective dominates over others, algorithms such as
the Multiple-Gradient Descent Algorithm (MGDA) [22] have
been developed. These algorithms can provably converge to
a Pareto stationary point, where no objective can be improved
without harming another.

While multi-task learning can improve performance over
single-objective training, it has been shown [23] that it can
lead to negative transfer learning especially when the objec-
tives are conflicting. Another issue with multi-task learning
is that although the deterministic and computationally expen-
sive MSGA algorithm can provably converge, its stochastic
batch counterpart may have gradient bias which can lead it
to not finding the optimal solution [14]. MoCo [14] solves

this by providing a provably unbiased approach for finding
the Pareto stationary point.

2.3 Formalized problem
Given are the candidate tabular pre-training objectives Ot =
{Ot

1, O
t
2, ..., O

t
n} and the candidate GNN pre-training objec-

tives Og = {Og
1 , O

g
2 , ..., O

g
m}. Further, consider the mask

types M = {m1,m2, ...,mk} each of which defines the strat-
egy of how to mask the input data for the pretext tasks. Let
c denote a function that takes a subset of pretext tasks and a
mask type and combines the pretext tasks. In this work, we
restrict c to be either

∑
o∈Ot∪Og Lo, where Lo denotes the

loss function of each pretext task, or MoCo.
Find the subset of pre-training objectives S ⊂ Og∪Ot, the

mask type m and the combination function c such that

arg max
S⊂Og∪Ot,m,c

{SSM1(c(S,m)), ..., SSMn(c(S,m))}

(1)
where SSMi denotes a self-supervised metric as a proxy

to estimate the quality of the representation learned since they
indicate how well the data distribution is learned.

This general problem formulation covers all 3 sub-
questions. It covers SQ1 by finding an optimal mask type and
it covers SQ2 by finding the subset of candidate pretext tasks
that perform best on the selected metrics. It also answers SQ3
as it considers the two options of combining objectives. The
problem formulation is used and made more concrete in the
method section.

3 Method and Experimental Setup
In this section, we present the method we followed to answer
the sub-questions. We first present and explain which pre-
training objectives we chose to consider in our experiments.
We then describe the three experiments we conducted, each
aimed at answering a corresponding sub-question. An illus-
tration of the method is shown in Figure 2.

3.1 Pre-training objectives chosen.
We narrowed down the candidate objectives into 2 tabular
and 2 GNN objectives. For the tabular objectives, we se-
lected Mask Cell Modelling and Mask Vector Prediction for
three reasons. First, Rubachev et al. [3] found that either
one of these two objectives performs best over other con-
trastive objectives. Secondly, as Rubachev et al. also con-
cluded, they are easier to implement. Thirdly, Mask Cell
Modelling was already implemented in the provided frame-
work, meaning only Mask Vector Prediction would have to
be implemented. We chose our candidate tabular pre-training
objectives Ot = {MCM,MV } for these reasons.

As for GNN objectives, Link Prediction was chosen be-
cause it was used in a similar architecture in [15] and because
it was already implemented in the provided framework. We
also chose Attribute Masking as described in [12], as it was
the simplest GNN pretext task to integrate with the rest of the
framework. Therefore, the candidate GNN pre-training ob-
jectives were Og = {LP,AM}. We followed the implemen-
tation of each objective as described in the paper that intro-
duced them but we summarize them here for completeness.
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Figure 2: High-level overview of our method. Firstly, we choose
and implement 4 pre-training objectives, then answer SQ1 with ex-
periment 1. Secondly, we use the best masking strategy found in
experiment 1 and use it in experiment 2 to answer SQ2. Lastly,
for experiment 3, we run the same subsets of pretext tasks as ex-
periment 2 but with MoCo and observe the difference in results to
answer SQ3.

Mask Cell Modelling was implemented by masking one
feature per row. The masking strategy was decided after con-
ducting experiment 1 and answering the first sub-question.
After masking, a decoder is stacked on top of the framework’s
architecture which reconstructs the original values. Only nu-
merical and categorical modalities are supported for masking,
but the framework can be extended for more modalities. The
loss function for numerical features was Root Mean Squared
Error (RMSE) while for categorical features it was Cross En-
tropy Loss (CE).

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

CE(y, ŷ) = −
n∑

i=1

C∑
c=1

yi,c log(ŷi,c) (3)

where for numerical features yi denotes the ground truth
value for the i-th data point, ŷi denotes the predicted value
and for categorical features yi,c is 0 if the i-th data point does
not belong to the c-th class, and 1 if it belongs. ŷi,c is the
output of our decoder, which is the predicted probability dis-
tribution of the categorical feature. The metric functions asso-
ciated with this pretext task are RMSE for numerical columns
and accuracy (ACC) for categorical columns.

ACC(y, ŷ) =
1

n

n∑
i=1

1(yi = ŷi) (4)

where yi represents the class the i-th data point belongs to
and ŷi is the class with the highest predicted probability from
the decoder. An RMSE of 0 is the best, with larger values
being worse. For ACC, 0 is the worst possible value and 1 is
the best.

Mask Vector Prediction was implemented by generating
a mask vector mv = {0, 1}n where n is the dimensionality of

the data. If mvi = 0, then the i-th feature will not be masked
but if mvi = 1 the value is masked with the masking strat-
egy found in sub-question 1. We only mask one feature per
row, so

∑n
i=1 mvi = 1. A decoder is consequently stacked

on the framework’s model that predicts mv and uses Cross
Entropy Loss for the loss function between the model’s pre-
diction and the real mask vector. The metric function is ACC,
where the accuracy of predicting the correct masked column
is measured.

Link Prediction works as follows. First, all edges in the
current training batch are considered positive edges and are
removed from the graph. Secondly, the neighbourhood is
sampled to obtain a larger subgraph, which acts as the con-
text from which we can predict the positive edges. Lastly,
we create artificial negative edges such that the model learns
that negative edges do not exist, while positive edges do ex-
ist. After sampling positive and negative edges, we stack a
linear decoder on top of the GNN’s predictions for positive
and negative edges and compute the loss as

LPpos(pred
+) = − 1

n

n∑
i=1

log(pred+
i + ϵ) (5)

LPneg(pred
−) = − 1

m

m∑
j=1

log(1− pred−
j + ϵ)

(6)

LP (pred+,pred−) = LPpos(pred
+) + LPneg(pred

−)
(7)

where pred+ of size N and pred− of size M are the pre-
diction vectors after going through our fused architecture and
then through the MLP. Intuitively, each pred+

i is the pre-
dicted probability of positive edge i existing and pred+

j rep-
resents the predicted probability of negative edge j existing.
The loss function wants to maximize the predicted probabil-
ity of positive edges while minimizing the predicted proba-
bility of negative edges existing. We add a small fixed value
ϵ = 10−12 to avoid passing 0 to the log function. The met-
ric function for LP is the Mean Reciprocal Rank (MRR). It
works by ordering the LP positive edge predictions of the LP
decoder from highest to lowest and averaging the reciprocal
rank ri of each batch, where ri is the position of the first true
positive edge in the ordered list of predictions. The worst
MRR value is 0, the best is 1.

MRR =
1

n

n∑
i=1

1

ri
(8)

Attribute Masking followed a similar implementation to
Mask Cell Modelling. We mask one value in the attribute vec-
tor of each edge and then let the GNN reconstruct the masked
value. The masking strategy is the same as in Mask Cell Mod-
elling and Mask Vector prediction, found in sub-question 1.
The loss and metric functions are again the same as MCM,
with the only difference being that instead of stacking the de-
coder on top of the tabular embeddings of the fused model, it
is stacked on top of the edge embeddings.



3.2 Metric and pretext subsets selection
We chose three metrics as the self-supervised metrics from
the problem formulation. The first is accuracy (ACC), primar-
ily for the MCM decoder but we also investigate the accuracy
of the AM decoder as an extra metric. The second metric is
RMSE of the MCM decoder. The third metric is MRR. These
three metrics were chosen since they were already provided
in the given framework.

The number of runs required to evaluate all combinations
of the candidate pretext tasks grows exponentially with the
number of candidate tasks. Despite recent approaches to min-
imize the number of runs required to identify the best combi-
nation of pretext tasks, such as by analyzing the Conditional
Independence of each pretext task [24], most studies adopt an
empirical search. This work also adopts an empirical search,
but the method used for this work can be extended to use
Conditional Independence.

Selecting a feasible amount of subsets required filtering
certain subsets as there are 24 − 1 = 15 subsets of the 4
pre-training objectives when excluding the empty set. We
reduced the number of combinations to 9 since some self-
supervised metrics would not apply to certain subsets. For
example, MV with AM would not have any of the three self-
supervised metrics chosen. A more detailed explanation of
why each subset was included or not is in Appendix A.

3.3 Experiments
We conducted three experiments to answer the sub-questions.
We used two datasets in our experiments, namely IBM Trans-
actions for Anti Money Laundering [25] (IBM AML) and
Amazon Review Fashion [26]. The IBM AML dataset was
used as it was provided, with minimal pre-processing. The
Amazon Fashion dataset was sampled to reduce its size from
883,636 rows to 400,000 rows because of the limited re-
sources available for this work. A summary of the datasets
is provided in Table 1. Finding compatible datasets for the
framework’s model is not trivial, as the dataset needs to con-
tain a single well-structured intrinsic graph, and be stored as
a single table.

Experiment 1: Masking Strategy.
To find which masking strategy is best with regard to self-
supervised metrics (SQ1), we investigated the effect of three
different masking strategies. The first strategy for masking
was to remove values by masking categorical values with a
[MASK] token and numerical values with the mean of their
column’s distribution.

The second strategy was to replace the values to mask by
sampling from their column’s empirical distribution, similar
to VIME [7]. For categorical columns, the replace strategy
replaces the value to be masked with another value, that is not
the same, with probability proportional to the frequency of
the alternative value in the column. For numerical columns,
we sample from a Gaussian distribution, with the mean and
standard deviation equal to the mean and standard deviation
of the column.

The third strategy, inspired by BERT [27], combines the
previous two while sometimes not changing the value to be
masked. We remove with a probability of 80%, we replace

with a probability of 10% and do nothing with a probability
of 10%.

Of the 4 selected pre-training objectives, only Mask Cell
Modelling, Mask Vector Prediction and Attribute Masking
are affected by the masking strategy. To quantify the effect
of the masking strategy in this experiment, we compared self-
supervised metrics on the model pre-trained with MCM, MV
and AM with each of the three masking strategies. We ran
each of the three pre-training configurations 2 times on the
two datasets to accommodate for randomness in parameter
initialization, for 10 epochs each.

The dataset is split into a train, validation and test set. The
train set is used for training the model, while the test set is
used to obtain the unbiased estimate of the representation
learned through self-supervised metrics on the test set. For
the IBM AML dataset, we split the dataset 60/20/20 for train,
validation and test sets respectively while for Amazon Fash-
ion we split it 70/10/20. Hyperparameter tuning on the valida-
tion set was part of the design decisions for the framework’s
architecture, which was done before this work.

Experiment 2: Combining pretext tasks.
This experiment aimed to compare the representation learned
with different objectives with regard to self-supervised met-
rics to answer SQ2. The pretext tasks that depend on a mask-
ing strategy are set to use the masking strategy found in ex-
periment 1. The experiment is carried out by running each
of the 9 different chosen subsets of the pretext tasks on the
two datasets. The loss functions in this experiment are com-
bined by unweighted summing. We run each subset twice.
The same train, validation and test split is used as experiment
1.

Experiment 3: Combining pretext tasks with MoCo.
The third experiment, aimed at answering SQ3, follows a
similar setup to experiment 2. We only consider the 6 sub-
sets of pretext tasks with more than one pretext task, since
this experiment aims to investigate the effect of combining
multiple tasks. The loss functions of each of the 6 subsets are
combined with MoCo. Each run is run twice. We do not in-
clude Amazon Fashion in this experiment as it was shown in
experiment 2 that it would not give meaningful results for this
experiment. The same train/validation/test set split is used as
in experiment 2.

Experimental setup. Our architecture and pre-training ob-
jectives were implemented in PyTorch, PyTorch Frame and
PyTorch Geometric. All runs on the IBM AML dataset were
run on a cluster of A100 GPUs, while all runs on Amazon
Fashion were run on a GTX1660ti and a GTX1060 GPU.

4 Results
Experiment 1: Masking Strategy
The results of experiment 1 are summarized in Table 2. The
”replace” mask type achieves a 4.6% higher MCM accuracy
than the ”remove” mask type. Despite ”replace” showing bet-
ter performance on the categorical columns through increased
accuracy, it does not show any significant improvement for
numerical columns in terms of RMSE for both MCM and
AM. The accuracy of the MV decoder in predicting which



Table 1: Summary statistics of the datasets used for the experiments.

Dataset #Columns #Categorical #Numerical #Text #Timestamp #Rows
IBM AML 5 3 1 0 1 5,078,345
Amazon Fashion 5 1 1 2 1 400,000

column has been masked is almost 1 for ”remove” on both
datasets since it is trivial for the model to learn masked values
are marked as a fixed value: [MASK] for categorical columns
and the mean for numerical columns. When the mask type is
”replace” it is harder for the model to predict which model
has been masked, so the MV accuracy drops.

The learning curve of the metrics over the 10 epochs for the
IBM AML dataset is visualized in Figure 3. The visualization
includes an estimate of the uncertainty in the results by dis-
playing the difference between each of the two runs for each
mask type. Both runs for each mask type appear to converge
to a similar value for each metric.
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Figure 3: Comparison of the three mask types with the
{MCM,MV,AM} subset on the IBM AML dataset. The shaded area
for each mask type represents the area between the two runs.

Experiment 1 summary: The ”replace” mask type per-
forms best for categorical columns, but not for numerical
columns.

Experiment 2: Combining pretext tasks
The results of self-supervised learning on the two datasets
with the different subsets of pretext tasks are summarized in
Table 3. The difference in results is marginal for all subsets
of pretext tasks. Despite the marginal difference in results for
each metric across subsets, smaller subsets tend to perform
slightly better than larger subsets. On the IBM AML dataset,
the subset achieving the highest MCM accuracy is {MCM},
while the subset achieving the highest MRR is {LP}. The
subset reaching the lowest RMSE is {MCM,LP}, however
the difference is less than 0.2% compared to the next lowest
RMSE result from {MCM,AM} which could be an indication
that this is attributed to randomness.

The learning curve for each of the subsets for accuracy,
RMSE and MRR are plotted in Figure 4. The visualiza-
tion shows that the accuracy on all subsets might still be in-
creasing, even at epoch 10. This is an indication that the

model might have not converged yet with some of the sub-
sets. A similar trend appears with MRR. Nevertheless, the
visualization shows subsets with more pretext tasks such as
{MCM,MV,LP} and {MCM,MV,AM,LP} converge slower
for accuracy and MRR.

The results on Amazon Fashion do not vary much. All of
the subsets are able to reach an accuracy of 1, or at least very
close to 1, and all of the subsets perform poorly on MRR. As
for RMSE, there is a slight difference, with {MCM,MV,AM}
performing the best. Considering accuracy was perfect on
Amazon Fashion and could not be increased with MoCo and
that all subsets performed very poorly on MRR, indicating
that the graph structure of the dataset was poor, the Amazon
Fashion dataset is not used in the final experiment.

Summary experiment 2: The difference in all metrics
across subsets of pretext tasks is marginal. However,
smaller subsets of pretext tasks perform better on individ-
ual metrics than larger subsets.

Experiment 3: Combining pretext tasks with MoCo
The comparison between using Sum and using MoCo to com-
bine subsets with multiple pretext tasks is shown in Table 4.
MoCo improves for accuracy on all subsets of pretext tasks.
It also improves MRR for two of the three subsets with an
LP decoder. However, MoCo worsens RMSE for all except
two subsets. A possible explanation is that the loss for MCM
combines the individual losses of the numerical and categor-
ical columns by summing. This means that despite all losses
in the subset being Pareto optimized and not harming each
other, no such guarantee applies between numerical the cat-
egorical columns. A solution would be to decouple the loss
of each modality and optimize each of them independently,
rather than summing the loss of each modality and then opti-
mising the summed loss. This becomes especially important
when more modalities are included.

A key advantage of using MoCo is that all subsets appear
to converge to a more similar value for each metric compared
to using sum to combine the tasks. The standard deviation for
ACC decreases by 30.4%, indicating all subsets converge to
a closer value within each other. The difference is even more
profound for MRR, where a 75.4% reduction in standard de-
viation is reported when using MoCo. This increased stability
in results across subsets implies that using MoCo allows the
subset size of pretext tasks to scale better than using sum, al-
lowing the model to learn a more diverse representation using
more pretext tasks.

The learning curve in Figure 5 highlights this stability in
converging for all metrics across subsets. Despite converging
at slower speeds, with smaller subsets converging faster than
larger subsets, all subsets converge at similar values in Epoch
10. When compared to Figure 4 which visualizes the learning



Table 2: Comparison of the effect of each of the three masking strategies. The best results for each metric on each dataset are highlighted in
bold iff the result dominates all other masking strategies by at least 1%.

IBM AML Amazon Fashion

Mask Type ACC↑ RMSE↓ MV ACC↑ ACC↑ RMSE↓ MV ACC↑
MCM AM MCM AM MCM AM MCM AM

replace 0.8517 0.8545 0.0925 0.0908 0.8341 1 0.9999 1.5046 1.5042 0.9671
bert 0.8207 0.8240 0.0933 0.0892 0.9065 0.9620 0.9616 1.5687 1.5179 0.9295
remove 0.8136 0.8170 0.0927 0.0908 0.9992 0.9608 0.9607 1.5203 1.5019 0.9976
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Figure 4: Results of experiment 2 on IBM AML. The learning curve of the different subsets of pretext tasks. The shaded area for each run
represents the area between the two runs.

Table 3: Comparison of the performance of different combinations of pretext tasks without MoCo at epoch 10. The best result for each metric
is highlighted in bold iff the result dominates all other subsets by at least 1%. The result for {AM} for Amazon Fashion is left out due to a
technical error.

IBM AML Amazon Fashion
Pretext tasks ACC↑ RMSE↓ MRR↑ ACC↑ RMSE↓ MRR↑

MCM AM MCM AM
{AM} n/a 0.8532 n/a n/a n/a - n/a n/a
{LP} n/a n/a n/a 0.8244 n/a n/a n/a 0.0769
{MCM} 0.8533 n/a 0.0931 n/a 1 n/a 1.5916 n/a
{MCM,AM} 0.8522 0.8533 0.0927 n/a 1 1 1.6523 n/a
{MCM,MV} 0.8474 n/a 0.0931 n/a 0.9993 n/a 1.5853 n/a
{MCM,LP} 0.8511 n/a 0.0926 0.8139 0.9998 n/a 1.6426 0.0749
{MCM,MV,AM} 0.8496 0.8536 0.0932 n/a 1 0.9999 1.5046 n/a
{MCM,MV,LP} 0.8468 n/a 0.0934 0.8012 0.9994 n/a 1.5837 0.0768
{MCM,MV,AM,LP} 0.8469 0.8529 0.0926 0.7645 0.9996 1 1.6130 0.0379
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Figure 5: Experiment 3 results on IBM AML. The learning curve of the different subsets of pretext tasks. The shaded area for each run
represents the area between the two runs. The second run for {MCM,MV,AM,LP} was stopped after 6 epochs due to a technical limitation.



Table 4: Comparison on the effect of using MoCo instead of Sum for
multi-task learning at epoch 10. The bold value represents whether
MoCo or Sum yields the best value in the given metric and subset.

Pretext tasks
IBM AML

ACC↑ RMSE↓ MRR↑
Sum MoCo Sum MoCo Sum MoCo

{MCM,AM} 0.8522 0.8531 0.0927 0.0929 n/a n/a
{MCM,MV} 0.8474 0.8530 0.0931 0.0932 n/a n/a
{MCM,LP} 0.8511 0.8520 0.0926 0.0937 0.8139 0.8032
{MCM,MV,AM} 0.8496 0.8522 0.0932 0.0928 n/a n/a
{MCM,MV,LP} 0.8468 0.8488 0.0934 0.0932 0.8012 0.8153
{MCM,MV,AM,LP} 0.8469 0.8508 0.0926 0.0930 0.7645 0.8063
σ 0.0023 0.0016 0.0004 0.0003 0.0256 0.0063
% Change in σ -30.4% -25% -75.4%

curve for the pretext tasks with sum instead of MoCo, we
notice more stability in converging.

Summary experiment 3: MoCo provides a significant
improvement in the stability of convergence across sub-
sets. It also helps larger subsets converge to better values.

5 Discussion
Mask Type. The first experiment showed that masking val-
ues in a way that makes it difficult for the model to distinguish
real values from masked values leads to better self-supervised
metrics. This finding replicates what the authors in VIME [7]
found, from which this masking strategy was inspired. The
VIME authors hypothesized this might be attributed to the
fact that the model learns more complex non-linear correla-
tions between the features of the data. For example, masking
the column containing the currency of the transaction from
”USD” to ”EURO” when the transaction is between two US
banks it might allow the model to learn that transactions be-
tween US Banks are usually in ”USD” and not in ”EURO”. In
this example, the mask type allows the model to learn that (1)
transactions between US Banks are usually in ”USD” and (2)
transactions between US Banks are not usually in ”EURO”.
If the remove mask strategy was used, the model would not
learn the second pattern, so this could be a potential expla-
nation as to why replace performs significantly better. It can
learn negative and positive patterns at the same time, while
the remove mask type only learns positive patterns.

The superiority of the ”replace” type is only evident in cat-
egorical columns, for numerical columns there is almost no
impact. A possible explanation for this was the choice of dis-
tribution used to fit the numerical columns. The Gaussian dis-
tribution was used, however, numerical columns might have
different distributions such as exponential or logarithmic, so
the distribution of the numerical columns needs to be better
approximated.

Combining pretext tasks. Subsets with different pretext
tasks reach a similar value in all metrics. Despite reaching
similar values, {MCM} obtains the best accuracy and {LP}
reaches the highest MRR. This could be a sign that the ad-
dition of other pretext tasks harms the learning of the previ-
ous pretext task. Therefore, if there are multiple pretext tasks

there might be conflicting inductive biases leading. This an-
swers SQ2, as a combination of pretext tasks does not im-
prove self-supervised metrics.

Effect of using MoCo. Using MoCo to combine the losses
of the pretext tasks provides two benefits over summing the
loss functions. First, MoCo reaches slightly higher values in
the metrics for most subsets. Secondly, MoCo reduces the
gap between the value of the metrics all subsets converge to.
The second benefit is an impactful finding, as it allows the
fused architecture to be trained with a larger amount of pre-
text tasks with minimal impact on individual pretext tasks.
This finding can be exploited to pre-train the fused architec-
ture with a more diverse set of pretext tasks. This is espe-
cially useful for pre-training with a diverse set of pretext tasks
and then used for fine-tuning downstream tasks. It has been
shown a larger set of pretext tasks for pre-training can lead to
better downstream task performance [28].

Datasets. The datasets used for the experiments could be
improved. The IBM AML dataset [25] was carefully con-
structed to have a well-structured transaction graph. On the
other hand, the graph structure of Amazon Fashion was not
explored before the experiments. This is a possible explana-
tion for the poor MRR results on Amazon Fashion. Another
issue is the low dimensionality of both datasets. There are not
many features in both datasets, so it could be that the results
can differ with higher dimensional datasets.

6 Responsible Research
Threats to validity
Our research has three threats to validity. Firstly, since our
DL model is stochastic with random parameter initialization,
it is prone to converge to different optima in different runs.
Our results partially account for this uncertainty by running
each combination of pre-training objectives twice. Secondly,
the performance of any DL model depends on the data itself,
so results on one dataset are not necessarily representative
of another. For this reason, we used two datasets to arrive at
more general conclusions. Nevertheless, our approach should
be applied to more and of higher quality datasets to mitigate
this threat further. Lastly, we have tested our implementation
of the DL model and the pre-training objectives to the best
of our ability but there exists the risk of having used an in-
efficient implementation for the provided results. We aim to
make our code accessible and public in the future so that our
results can be replicated and different implementations can be
investigated.

Environmental impact
Obtaining the results presented in this paper required approx-
imately 750 GPU hours of training time, which is a cost to
the environment. As with any ML model with many free pa-
rameters to be learned, the time it takes for the model to be
pre-trained on large datasets is significantly more than it takes
to be directly trained with supervised labels. Longer train-
ing times lead to more GPU resources used, which require
a significant amount of energy. We considered the trade-off
between the energy required to get results and the value of
results. We believe the environmental cost for this project



is justified, as researching more efficient and effective pre-
training can lead to more efficient downstream task training.
Pre-training is only done once, and the pre-trained model can
be used with a small amount of fine-tuning for a diverse range
of tasks. This offsets the computational resources and envi-
ronmental cost of pre-training.

7 Conclusions and Future Work
This experimental work investigated the effect of combin-
ing pretext tasks for multi-task self-supervised representation
learning on relational multimodal data. Three experiments
were conducted and each of them answered a specific sub-
question related to combining pretext tasks. The experiments
were built on top of a framework for relational multimodal
data provided by the project supervisors. Two datasets were
used for the experiments.

Main findings. For pretext masks which require masking
the data, using a masking strategy that replaces the value from
the empirical distribution of the column leads to better accu-
racy compared to replacing a fixed token. As for combining
pretext tasks, summing the losses of each pretext task leads to
similar results concerning self-supervised metrics. Neverthe-
less, smaller subsets of pretext tasks perform slightly better
than larger ones. This means combining pretext tasks does
not improve self-supervised metrics. However, by combin-
ing the losses with MoCo, this gap becomes smaller implying
that the number of pretext tasks can scale better with MoCo
rather than summing losses. This can lead to a more robust
and diverse representation learned.

Future work. The self-supervised metrics only provide
one dimension of the quality of the representation learned.
Another important aspect of the representation learned with
the pretext tasks is the performance of the pre-trained model
on downstream tasks after fine-tuning. A more robust eval-
uation of the impact of combining pretext tasks would con-
sider the performance of fine-tuning on a downstream task.
Additional work should also go into preparing higher-quality
datasets to improve the reliability of the results.
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A Pre-training objective subset selection

Subset of pre-training objectives Is Included Reason for exclusion
Single objective

Mask Cell Modelling (MCM) Yes n/a
Link Prediction (LP) Yes n/a

Mask Vector prediction (MV) No None of the metrics chosen for this paper apply to this objective.
Attribute Masking (AM) Yes n/a

Two objectives
MCM+LP Yes n/a
MCM+MV Yes n/a
MCM+AM Yes n/a

LP+MV No As introduced in VINE [7], MV should only be used in combination with MCM.
LP+AM No None of the metrics chosen for this paper apply to this objective.
MV+AM No None of the metrics chosen for this paper apply to this objective.

Three objectives
MCM+LP+MV Yes n/a
MCM+LP+AM No n/a
MCM+MV+AM Yes n/a

LP+MV+AM No As introduced in VINE [7], MV should only be used in combination with MCM.
Four objectives

MCM+MV+AM+LP Yes n/a

Table 5: Explanation on the reason for exclusion for each of the 15 possible combinations of the 4 pre-training objectives.

B Experiment 2 additional plots

2 4 6 8 10
Epoch

0.900

0.925

0.950

0.975

1.000

A
cc

ur
ac

y

MCM Accuracy

2 4 6 8 10
Epoch

1.00

1.25

1.50

1.75

2.00

R
M

S
E

MCM RMSE

2 4 6 8 10
Epoch

0.0

0.1

0.2
M

R
R

MRR

{MCM,MV,AM,LP}
{MCM,MV,LP}

{MCM,MV}
{MCM,LP}

{MCM,AM}
{MCM}

{LP}
{MCM,MV,AM}

Figure 6: Results of experiment 2 on the Amazon Fashion dataset.
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