
Dit PDF-pakket bevat meerdere bestanden.

Adobe beveelt Adobe Reader of Adobe Acrobat versie 8 of hoger aan om te werken met
documenten uit een PDF-pakket. Als u een update naar de meest recente versie uitvoert,
profiteert u van de volgende voordelen:

• Efficiënte, geïntegreerde PDF-weergave

• Eenvoudig afdrukken

• Snelle zoekacties

U hebt niet de meest recente versie van Adobe Reader?

Klik hier om de meest recente versie te downloaden
van Adobe Reader

Als u Adobe Reader 8 al hebt,
klikt u op een bestand in dit PDF-pakket om het weer te geven.

http://www.adobe.com/nl/products/acrobat/readstep2.html
http://www.adobe.com/nl/products/acrobat/readstep2.html

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Domain analysis
May 14, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

1. Introduction ..2
2. Glossary ...2
3. General knowledge about domain ...3
4. Users ...3
5. Environment ...3
6. Basic flow diagram ..4
7. Competing software ...5

2

1. Introduction

The International Institute of Human Capital (IHC) is an institute that provides courses in soft
skill enforcement for mainly students in hospitality management, but also other students can
apply. With these courses a lot of paperwork comes by. It would be really helpful to have an
e-learning environment so cost can be reduced for printing. Furthermore IHC would like to
implement e-learning to provide better support for the students and save time. This also
would include options to upload and comment on videos taken by the students or teachers.

2. Glossary

Program: The total of lectures, tours and work experience combined.
Courses: IHC provides several modular courses which contain both lectures and tours. The
main courses are image management, customer service and service communication.
Eventually the goal is to provide three different levels for each different course.
Lectures: Lectures are parts of the course where the students learn detailed information
about a subject.
Tours: An external event for learning practical implementation of the subjects learned in the
lectures.
Work experience: A 150 to 200 hour part of the program where the student will work in a
work environment.
Questionnaires: The students will be asked to fill in several questionnaires for assessing their
abilities and knowledge. These questionnaires are divided into the assessment in the
beginning and the assessment at the end of the course, including evaluation.

 Readiness questionnaire: A questionnaire where the student answers a series of

closed questions to assess their skill level.
 Pre-performance record: A questionnaire where the student answers a series of open

and closed questions to assess their objectives and their skill level.
 Post-performance record: The evaluation questionnaire filled in by the teacher. This

consists of a series of ratings and comments.
 Industry professional evaluation:
 Evaluation questionnaire: A questionnaire where the student answers a series of

closed questions and a comment to evaluate the course.
 Participant’s profile form: A form where the basic information of a student is filled in.

Quiz: The knowledge from lectures will be tested in quizzes. These quizzes will be graded.
Soft skills: The cluster of personality traits, social graces, communication, language, personal
habits, friendliness, and optimism that mark people. These are trained by the institute.
Teachers: The persons that prepare and give the lectures.
Industry professional: A person from a work environment with specialist knowledge that

enhances the institute with that knowledge by giving courses.
Dual technology: The program is divided into lectures and work experience, which is referred
to as the dual technology approach.
Learning management system (LMS): Software for delivering, tracking and managing
courses. LMS’s range from systems for managing course records to software for distributing
courses over the Internet and offering features for online collaboration.

3

3. General knowledge about domain

People who work in the same field as the IHC should generally know:

 When someone is capable for the advanced courses
 3 courses exists (preferable with three different experience levels):

o Image management
o Customer service
o Service communication

 The demands from companies concerning the students
 Competence management

4. Users

Administrators: The administrators (management) of IHC creates the courses, shapes the
courses.

Teacher: The teacher should be able to communicate with the students and set-up and
prepare a course. Also the teachers should have access to statistics from the questionnaires

Student: Students should be able to enroll in courses, take the questionnaires and have
access to all the documents provided by the teacher.

5. Environment

In the current setup there is a lot of manual work. There is no website or any other online
environment. All the questionnaires and handouts are copied and manually put into the
computer. There are PowerPoint slides available, which are printed out on request for the
students. Most of the contact goes through the personal email of a teacher. Photo’s are taken
and sent by email. Videos are recorded on tape, and students can view them at the institute.

4

6. Basic flow diagram

Introduction

Questionnaires

Lectures Tours

Questionnaires &

Evaluation

Endorsement

The starting questionnaires

consist of the following:

- profile form

- readiness questionnaire

Workshop

planning

Lectures are given at the

institute by either teachers or

industry professionals

Needed for the decision:

- overview of the students

- statistics of readiness

questionaire

Grading

Application form

Personal information is

submitted to the institute

Setting up

course

Tours let the students see

practical use of the learned

skills. This is also evaluated

at the institue.

Work experience

This is the part where the

student and IHC have

intensive contact. This is

40% of the entire program.

The work experience is the

second part of the program

where the student learns in a

practical enviroment. This

takes up 60% of the

program.

5

7. Competing software

Since the institute has a learning environment, the choice for a learning management system
is clear. We have seen that there are several available LMS’s:

 Blackboard
 Moodle
 Osiris

Already advised by CICAT to choose for Moodle as LMS, we also noticed that the available
funds from the institute are not sufficient for one of the commercial options. The possibility to
work with modules in Moodle also has advantages if we look at the future, since new
modules can be easily added.

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Requirement Analysis Document
July 20, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

1. Problem definition ... 2
2. Functional requirements ... 3

2.1. Teacher .. 3
2.2. Student .. 4
2.3. Administrator .. 5
2.4. System ... 6
2.5. Entities ... 6
2.6 Dependency diagram .. 7

3. Non-functional Requirements .. 10
4. Constraints ... 11
5. Scenarios ... 11
6. Use case model ... 18
7. Use cases ... 22
8. Data dictionary .. 30
9. Class diagrams .. 31
10. Dynamic model ... 33

10.1 Payment and transactions .. 33
10.2 Resume ... 35
10.3 Enrol request ... 37

11. User interface.. 38

2

1. Problem definition

A problem can generally be defined as a difficulty or an opportunity. In this case we can
define this project as an opportunity to improve workflow and reduce costs by implementing
a Learning Management System (LMS).

This LMS should be built to provide IHC with an online environment which will enable
publishing information online and facilitate easier communication between students and
teachers. For example students will have the opportunity to enrol themselves for a course by
using the system.

We discovered that Moodle has a limited way of enrolling students in courses. Either a course
is open to enrol or a course is closed by default, so the administrator will have to enrol
students in those courses manually. This is why we will design an enrolment extension which
will suit the specific needs of IHC.

The system should also provide the opportunity for video uploads and playback. This will
open up new opportunities for students to share and discuss their recorded videos as a part
of the course.

Furthermore, the system will help to automate most of the administrative functions of
enrolling, following and evaluating courses. It will also reduce costs for the Institute of
Human Capital (IHC), by publishing course material and forms online. Finally, it will automate
the payment registration system and will implement a part of the courses given at IHC by
using a resume builder.

3

2. Functional requirements

Just like Moodle, the system defines 3 types of users: teachers, students and administrators.
The abilities and constraints on each user are listed below, as are some of the requirements
for the system. We will use T for teacher, S for student, A for administrator and U for system.

2.1. Teacher

Courses

T01 The teacher can create a course.
T02 The teacher can edit a course.
T03 The teacher can delete a course.
T04 The teacher can view a course.
T05 The teacher can list all courses.

Lectures/tours

T06 The teacher can create a lecture/tour.
T07 The teacher can edit a lecture/tour.
T08 The teacher can delete a lecture/tour.
T09 The teacher can view a lecture/tour.
T10 The teacher can list all lecture/tour.

Resources (documents, images, videos and other files)

T11 The teacher can upload a resource.
T12 The teacher can delete a resource.
T13 The teacher can view a resource.
T14 The teacher can download a resource.

Questionnaires/quizzes

T15 The teacher can create a questionnaire/quiz.
T16 The teacher can edit a questionnaire/quiz.
T17 The teacher can delete a questionnaire/quiz.
T18 The teacher can view a questionnaire/quiz.
T19 The teacher can list all questionnaires/quizzes.
T20 The teacher can view independent questionnaire/quiz results.
T21 The teacher can view summarized questionnaire/quiz results.

Communication

T22 The teacher can list the emails of all students enrolled to a course.
T23 The teacher can announce messages on the website.

Students

T24 The teacher can view a student profile.
T25 The teacher can view an overview of student profiles.
T26 The teacher can contact a student.

Resume

T27 The teacher can view the resume of a student.
T28 The teacher can update the resume of a student.
T29 The teacher can provide feedback on the resume of a student.
T30 The teacher can download the resume of a student.
T31 The teacher can delete the resume of a student.

4

Payment registration
T32 The teacher can view the transactions of a student.
T33 The teacher can create a transaction of a student.
T34 The teacher can update the transactions of a student.
T35 The teacher can view payment overview.
T36 The teacher can update payments.
T37 The teacher can create payments.
T38 The teacher can close/open payments.
T39 The teacher can delete the transactions of a student.

Forum

T40 The teacher can create a message
T41 The teacher can delete any message
T42 The teacher can update his own message
T43 The teacher can create a new topic
T44 The teacher can delete a topic
T45 The teacher can update his own topic
T46 The teacher can add a resource to a message

Enrolment

T47 The teacher can accept an enrolment request
T48 The teacher can delete an enrolment request

2.2. Student

Registration

S01 The student can register on the website.
S02 The student can view his profile.
S03 The student can update his profile.

Courses

S04 The student can request enrolment in a course.
S05 The student can un-enrol from a course.
S06 The student can list all courses.
S07 The student can view a single course.

Lectures/tours

S08 The student can view a lecture/tour.
S09 The student can list all lectures/tours.

Resources (documents, images, videos and other files)

S10 The student can view a resource.
S11 The student can download a resource.
S12 The student can upload a resource.
S13 The student can delete a resource.

Communication

S14 The student can view the announced messages from a course.
S15 The student can contact the teacher.

Questionnaires/quizzes

S16 The student can view a questionnaire/quiz.
S17 The student can take a questionnaire/quiz.
S18 The student can view his grades from quizzes.

5

Resume
S19 The student can create his resume.
S20 The student can update his resume.
S21 The student can view his resume.
S22 The student can download his resume.

Payment registration

S23 The student can view his payment status.

Forum
S24 The student can create a message
S25 The student can delete his own message
S26 The student can update his own message
S27 The student can create a new topic
S28 The student can delete his own topic
S29 The student can update his own topic
S30 The student can add a resource to a message

2.3. Administrator

The administrator can do all the things teachers and students can do. Besides those abilities
he has a few others.

Students

A01 The administrator can create students.
A02 The administrator can edit students.
A03 The administrator can delete students.
A04 The administrator can view a student.
A05 The administrator can list all students.

Teachers

A06 The administrator can create teachers.
A07 The administrator can edit teachers.
A08 The administrator can delete teachers.
A09 The administrator can view a teacher.
A10 The administrator can list all teachers.

Administrator

A11 The administrator can create administrators.
A12 The administrator can edit administrators.
A13 The administrator can delete administrators.
A14 The administrator can view an administrator.
A15 The administrator can list all administrators.

System

A16 The administrator can run the install procedure.
A17 The administrator can create backups of the system.
A18 The administrator can restore backups of the system.

Forum

A19 The administrator can create a message
A20 The administrator can delete any message
A21 The administrator can update any message
A22 The administrator can create a new topic
A23 The administrator can delete any topic
A24 The administrator can update any topic
A25 The administrator can add a resource to a message

6

2.4. System

Authentication

U01 The system can authenticate users.
U02 The system can authorize actions performed by users.

Information handling

U03 The system can summarize questionnaire results.
U04 The system can summarize student profiles.
U05 The system can summarize payments/transactions.

2.5. Entities

The students profile should contain the following properties:

 Name
 Nickname
 Address
 Phone number
 Date of birth
 Highest educational Attainment
 Present employment, position, company and duration

The students resume should contain the following properties:
 Full name
 Address
 Phone number
 Email address
 Career objective
 Education
 Work experience
 On the job experience
 Trainings and seminars
 Skills

 Hobbies and interest
 References
 Personal

o Nickname
o Date of birth
o Status
o Height
o Weight
o Civil status
o Office
o Present employment, position, company and duration
o Highest educational attainment

The payment system should contain the following properties:

 Students information
 Payments

o Amount
o Course
o Due date

 Transactions

o Transactions method
o Amount
o Date of transaction

7

2.6 Dependency diagram

T
0

1

T
0

2

T
0

3

T
0

4

T
0

5

T
1

1

T
1

2

T
1

3

T
1

4

T
1

5

T
1

6

T
1

7

T
1

8

T
1

9

T
2

0

T
2

1

T
2

4

T
2

5

T
2

7

T
2

8

T
2

9

T
3

0

T
3

1

T
3

2

T
3

3

T
3

4

T
3

5

T
3

6

T
3

7

T
4

7

T
4

8

T13 D D D X

T27 D X

T28 D X

T29 D D X

T30 D X

T31 D X

T32 D X D D

T33 D X

T34 D D X

T35 D X D

T36 D X D

T37 D X

T38 D D

T39 D D

T47 D X

T48 D X

S19 D

S20 D

S21 D

S22 D

S23 D

S24 D

S25 D D

U03 D D

U04

U05 D D

Dependency diagram for the functional requirements of the teacher.

When a D is noted, the functional requirement on the horizontal axis is dependent on the
functional requirement on the vertical axis.

Fields noted with an X are linked to themselves and therefore not possible.

8

S
0

1

S
0

2

S
0

3

S
0

4

S
0

5

S
0

6

S
0

7

S
1

0

S
1

1

S
1

2

S
1

3

S
1

6

S
1

7

S
1

8

S
1

9

S
2

0

S
2

1

S
2

2

S
2

3

S
2

4

S
2

5

T13 D

T27 D D D

T28 D D D

T29 D D D

T30 D D D

T31 D D D

T32 D D

T33 D D

T34 D D

T35 D D

T36 D D

T37 D D

T38 D D

T39 D D

T47 D D

T48 D D

S19 D D X

S20 D D X

S21 D D D D X

S22 D D D X

S23 D D D X

S24 D D D X

S25 D D X

U03 D D D D D

U04 D

U05 D D

Dependency diagram for the functional requirements of the student.

When a D is noted, the functional requirement on the horizontal axis is dependent on the
functional requirement on the vertical axis.

Fields noted with an X are linked to themselves and therefore not possible.

9

A
0

1

A
0

2

A
0

3

A
0

4

A
0

5

A
0

6

A
0

7

A
0

8

A
0

9

A
1

0

U
0

1

U
0

2

U
0

3

U
0

4

U
0

5

T13 D D D

T27 D D D D

T28 D D D D

T29 D D D D

T30 D D D D

T31 D D D D

T32 D D D D D

T33 D D D D

T34 D D D D

T35 D D D D D

T36 D D D D

T37 D D D D

T38 D D D D

T39 D D D D

T47 D D D D

T48 D D D D

S19 D D D

S20 D D D

S21 D D D

S22 D D D

S23 D D D

S24 D D D

S25 D D D

U03 D D D X

U04 D D D X

U05 D D D X

Dependency diagram for the functional requirements of the administrator and the system.

When a D is noted, the functional requirement on the horizontal axis is dependent on the
functional requirement on the vertical axis.

Fields noted with an X are linked to themselves and therefore not possible.

10

3. Non-functional Requirements

User interface
The system has to provide a good interface for mostly the two primary groups, the students
and the teachers. Both interfaces have to be simple and easy to understand, since not much
computer knowledge is expected.

Documentation
Every function of the system will be documented. Most functions will have already been
documented by Moodle, for extensions new documentation will be provided.

Installation
The system should be easy to install on a server. We will provide a package which is easy to
install, using a self written manual.

Hardware considerations
The system will run on an external web-server connected to the internet. The system will
expect students to have access to an internet connection. Moodle has some hardware
requirements which should be considered when implementing our system.

Performance characteristics
The system should be able to load a page in about 5 seconds. We expect that the system will
have about 20 simultaneous users at its peak. Video streaming and other downloads could be
slowing down the system, and should thus be taken in account.

Error handling and extreme conditions
The system should log all errors if they occur. At certain points of the application (i.e.
submitting quizzes) special measures should be taken to prevent the loss of data. The system
should be robust, on extreme conditions the performance should decrease gradually instead
of locking up completely.

Security issues
The system will contain a lot of private information, certainly for the personal information of
the student, needs to be secure. Also is it important that people don’t fill in questionnaires
twice or can get information about other tests. Restricted access needs to be implemented
for this. Moodle will provide a basic set of security constraints which solve these problems.
When customizing the Moodle system, we will write by their guidelines to ensure the security
of the LMS.

Resource issues
Moodle stores the information in a central database. Because the institute is a small
organization, the size of the database will be relatively small. Resource issues could be
created by uploading large videos and photos. We will take the size and formatting of these
larger files into account.

Back-ups
When arranging an external host, back-ups will probably be available through the host. It is
important that it is not overlooked when finding a host. Moodle provides a backup system
that the system can use.

11

4. Constraints

 The system will run on Moodle 1.9.
 The code must be written in PHP5 due to the previous constraint.

 The system will run on a MySQL database.
 The modelling (UML) will be done with Microsoft Visio.

5. Scenarios

Most of our scenarios are basic functions that are already implemented in Moodle. This is why
for the following functional requirements we will not make the scenarios:

Teacher

 Courses: T01 – T05
 Lectures/tours: T06-T10
 Resources: T11, T12, T14 (because there are various resource types, T13 will be

specified)
 Questionnaires/quizzes: T15-T21
 Communication: T22-T23
 Students: T24 - T26
 Forum: T40-T46

Student
 Registration: S01-S03
 Courses: S05-S07
 Lectures: S08-S09
 Resources: S11-S13
 Communication: S14-S15
 Questionnaires/quizzes: S16-S18
 Forum: S24-S30

Administrator
 Students: A01-A05
 Teachers: A06-A10
 Administrators: A11-A15
 System: A17-A18
 Forum: A19-A25

System
 Authentication: U01-U02
 Summarizing: U03-U05

12

Scenario 1
Name: View a resource
Actor 1: Teacher or Student
Implements: T13, S10

Flow of events:

1. Actor 1 would like to view a resource.
2. Actor 1 logs into the system.
3. Actor 1 navigates to the specified resource.
4. Actor 1 clicks on the view resource link.
5. The system will check the resource type:

a. If the resource is an image, the image will be shown to Actor 1.
b. If the resource is a video, the video will be shown as a streaming video to

Actor 1.
c. In other cases, the browser of Actor 1 will have to try and open the resource.

Scenario 2
Name: View resume of a student
Actor 1: Teacher
Implements: T27

Flow of events:

1. The teacher wants to view the resume of a student.
2. The teacher logs into the system.
3. The teacher navigates to the resume section.
4. The teacher selects the student of which the resume is to be viewed.
5. The teacher clicks on show resume.
6. The system will generate a view of the resume and show it to the teacher.

Scenario 3
Name: Update the resume of a student
Actor 1: Teacher
Implements: T28

Flow of events:

1. The teacher wants to update the resume of a student.
2. The teacher logs into the system.
3. The teacher navigates to the resume section.
4. The teacher selects the student of which the resume is to be updated.
5. The teacher selects the option to update the resume.
6. The teacher updates the fields of the resume.
7. The teacher saves the changes.

Scenario 4
Name: Provide feedback on a resume
Actor 1: Teacher
Implements: T29

Flow of events:

1. The teacher wants to provide feedback the resume of a student.
2. The teacher logs into the system.
3. The teacher navigates to the resume section.
4. The teacher selects the student.
5. The teacher selects the option to provide feedback to the student concerning the

resume.
6. The teacher fills in the feedback form.
7. The system delivers the feedback to the student.

13

Scenario 5
Name: Download a resume
Actor 1: Teacher
Implements: T30

Flow of events:

1. The teacher wants to download the resume of a student.
2. The teacher logs into the system.
3. The teacher navigates to the resume section.
4. The teacher selects the student.
5. The teacher selects the option to download the resume of the student.
6. The teacher downloads the resume.

Scenario 6
Name: Delete a resume
Actor 1: Teacher
Implements: T31

Flow of events:

1. The teacher wants to delete the resume of a student.
2. The teacher logs into the system.
3. The teacher navigates to the resume section.
4. The teacher selects the student.
5. The teacher selects the option to delete the resume of the student.
6. The system deletes the resume of the student.

Scenario 7
Name: View the transactions of a student
Actor 1: Teacher
Implements: T32

Flow of events

1. The teacher want to see the transactions of a student
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the student of whom the teacher wants to check the

transactions.
5. The teacher selects the option to see the overview of the transactions.
6. The system will generate a view of the transactions and show it to the teacher.

Scenario 8
Name: Create transactions of a student
Actor 1: Teacher
Implements: T33

Flow of events

1. The teacher want to create the transactions of a student
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the student that paid.
5. The teacher selects the option to create a transaction.
6. The teacher creates a transaction.
7. The system will create a transaction.

14

Scenario 9
Name: Update the transactions of a student
Actor 1: Teacher
Implements: T34

Flow of events

1. The teacher wants to update the transactions of a student
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the student of whom the teacher wants to update the

transactions.
5. The teacher selects the option to update the transactions of the student.
6. The teacher updates the transactions.
7. The system updates the transactions.
8. The system will generate a view of the update and show it to the teacher.

Scenario 10
Name: View a payment overview
Actor 1: Teacher
Implements: T35

Flow of events

1. The teacher wants to see an overview of the payment.
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the students of whom the teacher wants to check the payment.
5. The teacher selects the option to see the overview of the payment.
6. The system will generate a view of the payment and show it to the teacher.

Scenario 11
Name: Update payments
Actor 1: Teacher
Implements: T36

Flow of events

1. The teacher wants to update a payment.
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the option to edit a payment.
5. The teacher edits the payment.
6. The teacher saves the changes to the payment.

Scenario 12
Name: Create payments
Actor 1: Teacher
Implements: T37

Flow of events

1. The teacher wants to create a payment.
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects add payment.
5. The teacher enters the information.
6. The system will add the payment to the database.

15

Scenario 13
Name: Close/Open payments
Actor 1: Teacher
Implements: T38

Flow of events

1. The teacher wants to close/open a payment.
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the option to close a payment.
5. The system closes/opens the payment.

Scenario 14
Name: Delete the transactions of a student
Actor 1: Teacher
Implements: T39

Flow of events

1. The teacher wants to delete the transactions of a student
2. The teacher logs into the system.
3. The teacher navigates to the payment section.
4. The teacher selects the student of whom the teacher wants to delete the

transactions.
5. The teacher selects the transaction to be deleted.
6. The teacher selects the option to delete the transactions of the student.
7. The teacher deletes the transactions.
8. The system deletes the transactions.

Scenario 15
Name: Create resume
Actor 1: Student
Implements: S19

Flow of events

1. The student wants to create his resume.
2. The student logs into the system.
3. The student navigates to the resume section.
4. The student selects the option to build a resume.
5. The student fills out the required forms.
6. The system saves the resume.
7. The system will generate a preview of the resume.
8. The student can download the resume.

Scenario 16
Name: Update resume
Actor 1: Student
Implements: S20

Flow of events

1. The student wants to update his resume.
2. The student logs into the system.
3. The student navigates to the resume section.
4. The student selects the option to update his resume.
5. The student fills out the required forms.
6. The system will save the changes.
7. The system will generate a preview of the resume.
8. The student can download the resume.

16

Scenario 17
Name: View resume
Actor 1: Student
Implements: S21

Flow of events

1. The student wants to view his resume.
2. The student logs into the system.
3. The student navigates to the resume section.
4. The student selects the option to view his resume.
5. The system will generate a preview of the resume.

Scenario 18
Name: Download resume
Actor 1: Student
Implements: S22

Flow of events

1. The student wants to download his resume.
2. The student logs into the system.
3. The student navigates to the resume section.
4. The student selects the option to download his resume.
5. The system will return the resume.

Scenario 19
Name: View the payment status
Actor 1: Student
Implements: S23

Flow of events

1. The student wants to see an overview of his payment.
2. The student logs into the system.
3. The student navigates to the payment section.
4. The student selects the option to see his overview of the payment.
5. The system will generate a view of the payment and show it to the student.

Scenario 20
Name: Add a resource to a message
Actor 1: Administrator
Actor 2: Teacher
Actor 3: Student
Implements: T46, S30, A25

Flow of events

1. The actor would like to add a resource to a message.
2. The actor logs into the system.
3. The actor navigates to the message.
4. The actor selects the option to add a resource.
5. The actor selects the resource to add to the message.
6. The system will add the resource to the message.

17

Scenario 21
Name: Run the install procedure
Actor 1: Administrator
Implements: A16

Flow of events

1. The administrator wants to install the system.
2. The administrator runs the setup file.
3. The administrator creates his account.
4. The system generates a working customized Moodle system.

Scenario 22
Name: Enrolment
Actor 1: Student
Actor 2: Teacher
Implements: T47, S04

Flow of events:

1. The student logs into the system
2. The student navigates to the course he wants to enrol
3. The student clicks on the enrol request button
4. The system sends a notification to the teacher
5. The teacher logs into the system
6. The teacher navigates to the enrolment section
7. The teacher clicks on the accept enrolment button
8. The system enrols the student into the course
9. The system creates a payment for the student

18

6. Use case model

view resource

login

«uses»

requires

«uses»

view resume of a

student

login

«uses»

requires

update resume of a

student

«uses»

requires

provide feedback on

resume of a student

«uses»

requires

download resume of

a student

«uses»

requires

19

login

create / update /

delete / view transactions

«uses»

requires

create / update /

delete / view payments

«uses»

requires

update resume

«uses»

view resume

«uses»

create resume

«uses»

download resume

«uses»

login

requires requires requires
requires

20

view the payment

status

«uses»

login

requires

run the install

procedure

«uses»

add resource to

message

«uses»

login

requires

«uses» «uses»

21

create an enrol

request

«uses»

login

requires

«uses»

accept an enrol

request

login

requires

delete an enrol

request

«uses»

requires

22

7. Use cases

Using the provided scenarios, we will define our use cases:

Use case 1
Name: View a resource
Actor 1: Teacher or Student
Goals: The actor can view a resource in the system.

Pre condition: Actor is authenticated.

Flow of events:
Actor actions System Response

1. Actor 1 navigates to the specified resource 3a. If the resource is an image, the image
will be shown to Actor 1

2. Actor 1 clicks on the view resource 3b. If the resource is a video, the video will
be shown as a streaming video to Actor 1

 3c. In other cases, the browser of Actor 1 will

have to try and open the resource

Post condition: The resource has been viewed.

Use case 2
Name: View resume of a student
Actor 1: Teacher
Goals: The actor can view a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a view of the
resume and show it to the teacher

2. The teacher selects the student of which
the resume is to be viewed

3. The teacher clicks on show resume

Post condition: The resume has been viewed.

23

Use case 3
Name: Update the resume of a student
Actor 1: Teacher
Goals: The actor can update a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a form to update
the resume

2. The teacher selects the student of which
the resume is to be updated

7. The system updates the resume

3. The teacher clicks on update resume

5. The teacher updates the fields of the
resume

6. The teacher clicks on save resume

Post condition: The resume has been updated.

Use case 4
Name: Provide feedback on a resume
Actor 1: Teacher
Goals: The actor can provide feedback on a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a form to provide
feedback

2. The teacher selects the student whose
resume is to be given feedback

7. The system sends the feedback to the
student

3. The teacher clicks on provide feedback

5. The teacher fills in the fields of the form

6. The teacher clicks on send feedback

Post condition: Feedback to the student about their resume has been given.

Use case 5
Name: Download a resume
Actor 1: Teacher
Goals: The actor can download the resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will provide the resume

2. The teacher selects the student whose
resume is to be downloaded

3. The teacher clicks on download resume

Post condition: The resume has been downloaded.

24

Use case 6
Name: Delete a resume
Actor 1: Teacher
Goals: The actor can delete the resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will delete the resume

2. The teacher selects the student whose
resume is to be deleted

3. The teacher clicks on delete resume

Post condition: The resume has been deleted.

Use case 7

Name: View the transactions of a student
Actor 1: Teacher
Goals: The actor can view the transactions done by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate a view of the
transactions made by the student

2. The teacher selects the student whose
transactions he wants to see

3. The teacher clicks on overview of
transactions

Post condition: The overview of the transactions made by the student has been given.

Use case 8
Name: Create the transactions of a student
Actor 1: Teacher
Goals: The actor can create new transactions done by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate a form for a new
transaction

2. The teacher selects the student who has
done a transaction

7. The system adds the transactions

3. The teacher clicks on create transaction 8. The system updates the payment

5. The teacher fills in all the required
information

9. The system will generate a view of the
update and show it to the teacher

6. The teacher clicks on add transaction

Post condition: The teacher has created a transaction done by the student and received an
update concerning the payment status of the student.

25

Use case 9
Name: Update the transactions of a student
Actor 1: Teacher
Goals: The actor can update the transactions did by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate a form of the
transactions made by the student

2. The teacher selects the student whose
transactions he wants to update

7. The system saves the transactions

3. The teacher clicks on update transactions 8. The system updates the payment

5. The teacher updates the transactions 9. The system will generate a view of the
update and show it to the teacher

6. The teacher clicks on save transactions

Post condition: The teacher has updated the transactions done by the student and received
an update concerning the payment status of the student.

Use case 10
Name: View a payment overview
Actor 1: Teacher
Goals: The actor can view a payment overview of the student

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate an overview of
the payment of the student

2. The teacher selects the student whose
payment he wants to see

3. The teacher clicks on overview of payment

Post condition: The teacher has viewed an overview of the payment of the student.

Use case 11
Name: Update payments
Actor 1: Teacher
Goals: The actor can update payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will save the changes to the
payment

2. The teacher clicks on edit payment

3. The teacher clicks on submit

Post condition: The teacher has updated the payment.

26

Use case 12
Name: Create payments
Actor 1: Teacher
Goals: The actor can create payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will add the payment to the
database

2. The teacher clicks on add payment

3. The teacher clicks on submit

Post condition: The teacher has created a payment.

Use case 13
Name: Close/Open payments
Actor 1: Teacher
Goals: The actor can close/open payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

3. The system will close/open the payment

2. The teacher clicks on close payment

Post condition: The teacher has closed/opened a payment.

Use case 14
Name: Delete the transaction of a student
Actor 1: Teacher
Goals: The actor can delete a transaction of the student

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

5. The system deletes the transaction

2. The teacher selects the student whose
transaction he wants to delete

3. The teacher selects the transaction he
wants to delete

4. The teacher clicks on delete the
transaction

Post condition: The teacher has deleted the transaction of a student.

27

Use case 15
Name: Create resume
Actor 1: Student
Goals: The actor can create a resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a form for
creating a resume

2. The student clicks on create resume 6. The system saves the resume

4. The student fills in the form for creating a
resume

7. The system will generate a preview of the
resume which the user can download

5. The student clicks on save resume

Post condition: The resume has been created.

Use case 16
Name: Update resume
Actor 1: Student
Goals: The actor can update his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a form for
updating a resume

2. The student clicks on update resume 6. The system saves the resume

4. The student fills in the form for updating a
resume

7. The system will generate a preview of the
resume which the user can download

5. The student clicks on save resume

Post condition: The resume has been updated.

Use case 17
Name: View resume
Actor 1: Student
Goals: The actor can view his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a preview of the
resume

2. The student clicks on view resume

Post condition: The resume has been viewed.

28

Use case 18
Name: Download resume
Actor 1: Student
Goals: The actor can download his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate the resume
which the user can download

2. The student clicks on download resume

Post condition: The resume has been downloaded.

Use case 19
Name: View the payment status
Actor 1: Student
Goals: The actor can view his payment status.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the payment
section

3. The system will generate a view of the
payment and show it to the student

2. The student clicks on overview of payment

Post condition: The actor has viewed an overview of his payment.

Use case 20

Name: Add a resource to a message
Actor 1: Administrator
Actor 2: Teacher
Actor 3: Student
Goals: The actor can add a resource to a message

Pre condition: Actor is authenticated.

Flow of events:
Actor actions System Response

1. The actor navigates to the message 5. The system saves the resource to the
message

2. The actor clicks on add resource

3. The actor selects the resource

4. The actor clicks on save resource

Post condition: The actor has added a resource to a message.

29

Use case 21
Name: Run the install procedure
Actor 1: Administrator
Goals: To install the system

Pre condition: none

Flow of events:
Actor actions System Response

1. The administrator runs the setup file 2. The system will generate the necessary
files and databases for the system

4. The administrator creates his account 3. The system will start the install procedure

 5. The system will customize Moodle

Post condition: The system has been installed.

Use case 22
Name: The student applies for a course
Actor 1: Student
Goals: The student applied for a course.

Pre condition: Actor 1 is authenticated.

Flow of events:
1. The student navigates to the course he
wants to enrol.

3. The system sends a notification to the
teacher

2. The student clicks on the enrol button

Post condition: A notification has been made by the system towards the teacher.

Use case 23

Name: The teacher accepts a student enrolment
Actor 1: Teacher
Actor 2: Student
Goals: The student is enrolled into a course.

Pre condition: Actor 1 is authenticated. Actor 2 has applied for a course.

Flow of events:
1. The teacher navigates to the enrol section 2. The system notifies the teacher on new

requested enrolments

3. The teacher clicks on the accept enrolment
button

4. The system enrols the student into the
course

 5. The system creates a payment for the
student

Post condition: The student is enrolled into the course and a payment has been created. The
enrolment request has been deleted.

30

8. Data dictionary

Account: The system representation of a user which is connected to the authentication
system.

Administrator: A user that can use all the functionalities of the system.

Backup: The backups will be done by the administrator and stored locally.

Course: A course is the part of the system where teachers and students can work together,
share resources and make both questionnaires and quizzes.

Form: A part of a page that is shown. This can be an overview or a interactive form.

Lecture: A lecture is a part of the course where the resources are linked to. The lectures are
for acquiring theoretical knowledge.

Moodle: Moodle is the open source learning management system that will be used as a base
for the system.

Payment: The payment is the total amount of money a student has to pay to the IHC for
following a course.

Profile: The profile is the part of the system where basic information of the user is stored.
This is linked to the account.

Questionnaire: A questionnaire is a part of the course where a student can fill in answers to
questions of which the teacher can get a good overview what the overall opinion, knowledge
or skills of the students are. Individual results are available, but no grades are assigned.

Quiz: A quiz is a part of the course where a student can fill in answers to questions that test
knowledge or skills. The teacher is able to grade students for their quiz.

Resource: A resource can be a file, video or other attachment that is used during the course
and should be available through the system.

Resume: The resume of a student contains a lot of information about the skills, knowledge
and experience of a student. The resume is linked to a user and can be generated through
the system.

Student: A student is a user with limited capabilities. He will be able to follow a course by
sharing resources, fill in questionnaires and quizzes and view announcements.

Teacher: A teacher is a user with several capabilities. He will be able to create, update and
delete courses and will be able to contribute to the course by sharing all the resources which
are necessary for the students to properly follow a course.

Tour: A tour is a part of the course where the resources are linked to. The tour will be for
learning from practical work environments.

Transaction: A transaction is a part of the payment where money is transferred from the
student to the institute.

User: The user is every individual that uses the system.

View: The PHP file that decides how a page will look in the plug-in. The view has several
forms.

31

9. Class diagrams

block_base block_payment

moodleform

lib

payment_overview

block_payment_form_add_payment

block_payment_form_add_transaction

block_payment_form_payment_overview

block_payment_form_transaction_overview

block_payment

This is the

language file

displaylib

print

«uses»

«uses»

settings

«uses»

tablelib

«uses»

«uses»

«uses»

«uses»

«uses»

transaction_overview

«uses»

«uses»
«uses»

Class diagram for the payment plug-in

tablelib libdisplaylib

resume_tagsblock_resume_form

block_resume_form_tag

«uses»

«uses»

resume_overviewblock_resume_form_overview «uses»

moodleform

resumeblock_resume_form_item

«uses»

convert

«uses»

«uses»

block_resume

block_base

«uses»

«uses»

«uses»

Class diagram for the resume plug-in

32

enrol

block_enrol

block_base block_enrol

The english

language strings

access

The definition

of the rights

displaylib lib enrolrequests«uses»

tablelib

«uses»

lib

enrol_request_form_enrol

«uses»

moodleform

formslib

«uses»

enrol_request_form_overview

«uses»

«uses»

«uses»

«uses»

«uses»
lib

in: /blocks/payment/

«uses»

in: \group\

enrol.class «uses»

Class diagram for the enrol request plug-in

33

10. Dynamic model

These are the dynamic models for the plug-ins. Since the resources are part of the Moodle
functionality, the use case for view resource (1) and for add resource (19) or upload resume
(12) have been left out. Also the feedback (4) and the install procedure (20) use case will be
done by clicking through the Moodle interface.

10.1 Payment and transactions

For both the payment and transactions, the sequence diagrams are the same. Therefore the
transaction sequence diagrams are left out.

payment_view

view_payment()

user

get_payment

payment_lib moodle_core

get_records

record

payment

view

update_payment()

update_payment

update_record

boolean

boolean

Payment and transaction sequence diagram 1

First: use case 7, 10 and 18.
Second: use case 9.

34

payment_view

create_payment()

user

create_payment

payment_lib moodle_core

insert_record

id

id

delete_payment

delete_payment

delete_records

Payment and transaction sequence diagram 2

First: use case 8.
Second: use case 11.

35

10.2 Resume

The view and download functions for the resume sequence diagrams are similar, only the
output is different. With the download function the user will get the HTML output, generated
as a PDF and with the view function only an HTML output will be given. In the other
sequence diagrams all the sub elements of the resume class have the same update function
and are therefore left out.

resume_view

view_resume()

user

get_resume

resume_lib moodle_core

get_records

record

resume

view

update_resume

update_resume

update_record

boolean

boolean

Resume plug-in sequence diagram 1

First: use case 2, 5, 15 and 16
Second: use case 3 and 14

36

resume_view

create_resume()

user

create_resume

resume_lib moodle_core

insert_record

id

id

delete_resume

delete_resume

delete_records

Resume plug-in sequence diagram 2

First: use case 13
Second: use case 6 and 17

37

10.3 Enrol request

create_enrolment_request

insert_record

id

enroluser moodle_core

Enrol request plug-in

Sequence diagram of use case 22

enroluser moodle_core

get_enrolrequests()

get_records

record

enrolment_request

accept_enrolrequest()

insert_record

id

payment

add_payment

update_records

delete_enrolrequest()

delete_records

Enrol request plug-in

Sequence diagram of use case 23

38

11. User interface

Payment: overview

39

Payment: add transaction

40

Resume: overview

41

Resume: add information

42

Resume: create / edit

Resume: finalize

43

Enrol request: overview

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Architectural Design Document
July 20, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

1. Purpose of the document ... 2
2. Design goals ... 2
3. Design outline ... 3
4. Major design issues ... 4
5. Access management .. 7
6. Other details of the design ... 8
7. Database model .. 9

2

1. Purpose of the document

This document describes the trajectory we have been following to finalize the design for the
Learning Management System. The Architectural Design Document (ADD) describes the
physical and logical structure of the system.

Scope of the system

The International Institute of Human Capital (IHC) is in need of a Learning Management
System, which will enable them to automate the administrative functions that are currently
done by hand. Most of this functionality is provided by Moodle, which we will use as our basis
for this system. The remaining functionality will be designed and the decisions made will be
covered in this document.

The remaining functionality consists of four parts:

1. Enrol request plug-in
2. Payment plug-in
3. Resume plug-in
4. Video streaming

All other functionality can be achieved by properly configuring Moodle to the needs of the
IHC.

The enrol request plug-in will provide proper enrolling for courses. The payment plug-in will
provide some basic features to enable a simple payment registration. The resume plug-in will
be an interface where students can create their resume, and submit it to a teacher for
feedback. Finally, video streaming will be used by students to review themselves and other
students.

2. Design goals

In the previous documents we have defined the requirements of our system. In this chapter
we will define our priorities in the system.

Our main priority is to build a system with high usability. Since not much Computer Science
knowledge is present at the institute, we will have to make sure that the interface of the
system is user friendly and intuitive. Easy GUI’s and friendly names will make sure that
everyone who’s using the system will know their way around and will not have to read a
hundred page manual before they’re able to use the system.

A second priority is to make the system reliable. The system, once deployed, will need to
operate for a long time and maintenance to the system should be easy. In this way the
institute will be able to maintain their system on their own and will not need an external
administrator, which of course will cost money.

Finally, the system will have to be close to the current workflow at the institute. It will be
replacing most of the manual administrative functions, so the current functions will have to
be imitated quite precise.

3

3. Design outline

The system consists of 5 different parts:

1. Moodle
2. Enrol request extension
3. Payment plug-in
4. Resume plug-in
5. Video streaming

Moodle is the basis of our system. It will provide basic functionality such as user
administration, course administration, lecture administration, permission management and
resource management.

The administrator and teachers will be able to create a course, filled with lectures and add
resources to these lectures. Students will be able to register in the system. Teachers will then
add them to the correct courses using the enrol request plug-in, which will give the students
the proper permissions to view the lectures and resources available in the course. Once the
course is finished, the students will be un-enrolled by the teacher.

Attached to Moodle, we will develop another two plug-ins, which will add extra functionality
to Moodle. The payment plug-in will provide teachers and student with an overview of the
payment that has to be made in order to follow a course. The system will also keep track of
open debts. Transactions will have to be entered in the system by the teacher manually.

Another functionality of the system will be provided by the resume plug-in. One very
important subject of the courses given at IHC is to build a proper resume. Our plug-in will
enable students to create a resume, based on a prebuilt form, which will generate a
standardized resume. This resume can then be reviewed by a teacher, who can provide
feedback on the resume to the student, by sending a message through the system. Output of
the resume plug-in will be in such a format that students will be able to reuse the resume
they built during the course.

The recording and playback of videos are used in courses given by the institute. Students
should be able to view their own videos, and receive feedback from teachers and other
students. Students should as well be able to submit their videos for review by peers. There
are some choices that need to be made in the recording process, as well as the upload and
download restrictions. We will focus on these choices in the Major Design Issues section.

4

Webserver

Moodle Moodle database

Resume plug-inPayment plug-in

*

*

Local PC

GUI (browser)
*

-HTTP

1

-load PHP*

*

Enrol request plug-in

*

*

*

*

-XMLDB*

*

*

*

Deployment Diagram of the system

4. Major design issues

During the design phase, we encountered the following major design issues:

- Bandwidth and storage restrictions
- Moodle upgradeability
- Analogue versus digital recording

Bandwidth and storage restrictions

Both the server and the end-user are limited to a certain amount of bandwidth. Since we
don’t want to overload the server if many users are online, the resources on the server must
be compressed (especially the videos). On the other hand, even if the server would be able
to serve high quality resources, the end-user is limited to an internet connection which is not
as fast as we are used to in the Netherlands.

Low quality resources High quality resources

++ Low server load -- High server load

-- Video quality restrictions ++ High quality videos

++ Cheap -- Expensive

++ Easy to download at home -- Hard to download at home

++ Low storage requirements -- High storage requirements

Resources (again especially videos) require a lot of space on the disk. The server is limited to
a certain amount of data (unless you pay for a bigger account of course), so we will have to
make a decision about the way we store the data.

This leads us to the following design decision: we will try and compress the resources as far
as possible for them to be acceptable to view by the end-user. This way we will keep the
server load low and users will be able to have short download times at home.

We have done some tests with YouTube1 videos to give us an impression about different
video sizes and quality.

1 YouTube – http://youtube.com/

http://youtube.com/

5

Video properties FLV (Youtube) MP4 (Youtube)

Video size (MB/min) 2.5 4.5

Video length (Min) 5.0 5.0

Total size (MB) 12.5 22.5

User info

Download speed (MB/s) 0.1 0.1

Download time (Min/vid) 2.1 3.8

Course info

Users per course (users/course) 20.0 20.0

Videos per course 20.0 20.0

Expected video views per user/course 10.0 10.0

Expected video views per course 200.0 200.0

Required video bandwidth per course (MB) 2500.0 4500.0

Courses per month 1 1

Archived online courses 3.0 3.0

Minimal Server requirements (video only)

Monthly bandwidth (MB) 2500 4500

Storage space (MB) 750 1350

As the table above shows, web quality videos will require about 750-1500 MB of storage
capacity per course, and a monthly bandwidth of 2500-4500 MB.

Peer-to-peer technology

Our coordinator Vicente Pijano III suggested we should look at a previous project using peer-
to-peer technology (P2P) for video streaming to limit the server load. TriblerCampus uses P2P
to deliver high quality content to a large number of users.2

The power of P2P technology starts showing when there are a lot of simultaneous downloads.
Most courses that are given at the institute consist of 20-30 students. This implies that most
videos won’t be downloaded by more than 30 people.

Concluding, we think P2P technology could be a method to reduce bandwidth on the server,
but the number of users who will be using the system is too small to really make a difference.

Moodle upgradability

Moodle is an open source Learning Management System, which means the project is always
under development. While designing our system, we will have to make a decision about how
customized our Moodle install should be, since the more you customize the system, the
bigger the chance it that it won’t be compatible with the next major version. Functionality can
be added to Moodle by using already developed modules or by designing your own plug-ins.

2TriblerCampus – M. Meulpolder, V.A. Pijano III, D.H.J. Epema and H.J. Sips 2007: Integrated
peer-to-peer technology file distribution in Course Management Systems -
http://www.pds.ewi.tudelft.nl/pubs/papers/edmedia2007.pdf

http://www.pds.ewi.tudelft.nl/pubs/papers/edmedia2007.pdf

6

While reading on the Moodle forums3 online we noticed that it is common to design a
customized Moodle system. Security patches are distributed among the last three releases
(i.e. 1.7, 1.8 and 1.9), so security risks should be limited.

Basic Moodle install Specific Moodle install

++ Easy upgrading -- (Possibly) hard upgrading

-- Not many customizations ++ System specific customizations

+ Using already designed modules +/- Designing your own plug-in

We searched the Moodle module directory for plug-ins that already had the functionality we
needed. But the system the institute needs is a very specific one. This is why we will use

some self written plug-ins to enable the functionality that is needed. We will completely
customize Moodle release 1.9 to our needs. Because we will write our plug-ins following the
Moodle Code Guidelines, the chances of upgradability are still quite large. This will have to be
thoroughly tested though, before the upgrade is processed.

Furthermore when we finish our project, we can submit the plug-in to the Moodle project as
an open source initiative. This way people who will be looking for the same functionality as

our system can re-use our code.

Analogue versus digital recording

The recording of videos is currently done with an analogue camcorder. The videos are stored
on tape. They have to be converted to digital formats before they can be posted on the
website. This is the reason why a digital camcorder has some advantages. We will specify

some details of both options:

Option 1: Analog video recorder

1. Record video on tape.
2. Connect camera to computer through recording device (i.e. TV card or graphics card

with video-in).
3. Use playback function from camera to convert video to digital format.
4. Split video into separate scenes.
5. Re-encode video and audio to web friendly format. (i.e. Flash Video format)
6. Upload video to website.

Option 2: Digital video recorder

1. Record video on memory card.
2. Connect memory card to computer.
3. Re-encode video and audio to web friendly format. (i.e. Flash Video format)
4. Upload video to website.

Aspect Option 1 Option 2

Costs ~6000 pesos (Recording device) ~24000 pesos (Digital video
recorder)

Processing time Long (video playback, encoding) Medium (encoding)

Quality Medium (Analog-Digital conversion
loss)

High

Usability Low Medium

Concluding, we advice the institute to buy a digital camcorder. It is an investment, but we
think the advantages of a digital camcorder outweigh the initial investment. This way, less
quality is lost in converting the video, and putting the video’s online will be a lot easier.

3 Moodle forums - http://moodle.org/forums/

http://moodle.org/forums/

7

5. Access management

Authentication and authorization are important aspects of our system. For example, students
should not be able to update their own payments, or view content that is not meant for
them. We will implement access rights through the interfaces provided by Moodle. Here we
will define different types of user accounts, as well as the permissions they have in the
system.

Roles

Moodle defines seven default roles in their system. Each role has different permissions, which
can be set in the system. These roles will be sufficient for our system, so we will keep them
as defined by Moodle.

Role Description
Administrator Administrators can usually do anything on the

site, in all courses.

Course creator Course creators can create new courses and

teach in them.

Teacher Teachers can do anything within a course,
including changing the activities and grading
students.

Non-editing teacher Non-editing teachers can teach in courses
and grade students, but may not alter
activities.

Student Students generally have fewer privileges
within a course.

Guest Guests have minimal privileges and usually
cannot enter text anywhere.

Authenticated user All logged in users.

(source: Moodle website)

Contexts

Moodle defines several environments within the system where users have different
permissions. These environments are called contexts. Contexts are ordered hierarchically,
where lower contexts inherit the permissions specified in higher contexts. The different
contexts are illustrated below.

(source: http://docs.moodle.org/en/Assign_roles)

8

Role assignments

When students are registered on the website, they have the rights of an Authenticated user
in the system. While it would seem more logical to give them the Student role, this is because
Moodle defines the Student role as a Student which is already enrolled in a course. Since we
do not want each registered student to be enrolled in each course automatically, the default
role for a student is Authenticated user.

Teachers at IHC will be assigned to the Teacher role in the system context. Guest teachers
could be assigned a Non-editing Teacher role, but this should be in a course context.

Finally, the administrators of the IHC will have a system wide Administrator role.

Permissions

We will keep most of the permissions on their default values as set by Moodle. For our own
plug-ins, we have defined new permissions, which we will describe here.

Permission name Module Description

block/resume:viewresumeoverview Resume The user is able to view the
overview of other resumes.

block/resume:buildresume Resume The user is able to build his own
resume.

block/payment:viewstudentblock Payment The user is able to view his own
payment status inside a course.

block/payment:viewpaymentoverview Payment The user is able to view the
overview of all payments in the
system, and update them.

block/enrol:viewblock Enrol The user is able to view the
enrolrequests block, and
accept/delete enrolrequests.

6. Other details of the design

In our system we will need an option to take questionnaires with customized questions. This
is not a standard functionality in Moodle 1.9, so we installed the Feedback module4.

Furthermore, to improve usability, we will try and disable as many functions as possible in
Moodle, but still keep the functions needed for the system. This way the future administrator
of the system will not have to worry about options that might influence the system in a bad
way. If it is necessary the administrator will still have the ability to reactivate the
functionality.

4 Feedback module - http://moodle.org/mod/data/view.php?d=13&rid=95&filter=1

http://moodle.org/mod/data/view.php?d=13&rid=95&filter=1

9

7. Database model

The database model for Moodle is available in the Moodle documentation5.

For our enrol, payment and resume plug-in, we will use the following database diagram:

user

1

1

The user is a Moodle class

-id

-userid

-courseid

-requestdate

enrol_enrolrequest

course

The course is a Moodle class

1

*

Database Diagram for the enrol plug-in

user

1

*

The user is a Moodle class

-id

-ihcpayment_paymentid

-transaction_amount

-transaction_method

-transaction_date

ihcpayment_transaction

-id

-userid

-courseid

-payment_amount

-payment_due_date

-payment_closed

ihcpayment_payment

1

*

course

The course is a Moodle class

1*

Database Diagram for the payment plug-in

5 Moodle Database Diagram - http://docs.moodle.org/en/Development:Database_Schema

http://docs.moodle.org/en/Development:Database_Schema

10

user

1

1

The user is a Moodle class

-id

-userid

-resume_career_objective

-resume_hobbies

-resume_skills

-resume_references

-resume_date_created

-resume_date_finalized

ihcresume

-id

-resumeid

-tagid

-item_place

-item_subject

-item_description

-item_begin_date

-item_end_date

ihcresume_resumeitem

1

*

-id

-tag_name

-tag_order

ihcresume_tag

* 1

Database Diagram for the resume plug-in

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Technical Design Document
July 20, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Packages .. 2
2. Class diagrams .. 6
3. Class specification and methods .. 8
Appendix A: Coding guidelines .. 9

2

Preface

The purpose of this document is to create a technical design of the system. By looking at the
technical design at an early stage, we are able to identify and prevent possible future
problems. Preventing problems now will save a lot of time in the implementation and testing
phase.

We will discuss the following parts in this document:

 Packages
 Class diagrams

 Class specification and methods
 Access management

In the packages part we will describe the various large parts of the system. By dividing the
code in packages we will be able to see what part of the code is dependent on what other
parts. This will clarify the objectives during the implementation phase.

The class diagrams speak for themselves. We have extended the class diagram from the
Architectural Design Document and this document includes the final version. This version will
also used as the base of our implementation.

In the class specification and methods the functions of the code will be described. Finally, we
will describe the way we will handle access management in the system.

1. Packages

We will divide our system in 4 packages:

1. Moodle
2. Payment plug-in
3. Resume plug-in
4. Enrol request plug-in

The Moodle system itself is documented and will therefore not be explained here. We will
only customize the system and not implement code or add packages. The adding of packages
is only done with the implementation of the plug-ins.

All the customizations will be done by following the Moodle coding guidelines1, which are
explained in appendix A.

1 Moodle coding guidelines - http://docs.moodle.org/en/Coding

http://docs.moodle.org/en/Coding

3

The payment plug-in will contain the following files:

Name Directory Description
block_payment.php \blocks\payment\ Payment block in

interface.

block_payment_form_add_payment
.php

\blocks\payment\ Form to add a payment

block_payment_form_add_transaction
.php

\blocks\payment\ Form to add a
transaction.

block_payment_form_payment_overview
.php

\blocks\payment\ Form for the overview
of a payment.

block_payment_form_transaction_
overview.php

\blocks\payment\ Form for the overview
of a transaction.

config_instance.html \blocks\payment\ Configuration form.

displaylib.php \blocks\payment\ Library with all the
display functions.

lib.php \blocks\payment\ Library with the core

functions.

payment_overview.php \blocks\payment\ Module that displays
the forms.

print.php \blocks\payment\ Module that displays a
printable version.

settings.php \blocks\payment\ Module containing
configuration settings.

transaction_overview.php \blocks\payment\ Module that displays
the forms.

ihc_payment.css \blocks\payment\css\ The general style sheet
file.

ihc_payment_print.css \blocks\payment\css\ The style sheet for the
print output.

access.php \blocks\payment\db\ File controlling who is
allowed to access what.

install.xml \blocks\payment\db\ XMLDB database
installation file.

block_payment.php \blocks
\payment\lang\en_utf8

English language
strings.

paymenttest.php \blocks\payment
\simpletest\

The file to set up the
simpletest.

testlib.php \blocks\payment
\simpletest\

The file with the test
functions.

4

The resume plug-in will contain the following files:

Name Directory Description
block_resume.php \blocks\resume\ Resume block in

interface.

block_resume_form.php \blocks\resume\ Resume form to update
a resume.

block_resume_form_item.php \blocks\resume\ Resume form to add
resume items.

block_resume_form_overview.php \blocks\resume\ Resume form for the
overview.

block_resume_form_tag.php \blocks\resume\ Resume form to add
tags.

config_instance.html \blocks\resume\ Configuration form.

convert.php \blocks\resume\ Module that makes a
printable version of the
resume.

displaylib.php \blocks\resume\ Display function library
module.

lib.php \blocks\resume\ Core function library
module.

resume.php \blocks\resume\ Module that displays
the forms.

resume_overview.php \blocks\resume\ Module that displays
the overview.

resume_tags.php \blocks\resume\ Module that displays
the tags.

settings.php \blocks\resume\ Module containing
configuration settings.

ihc_resume.php \blocks\resume\css\ General style sheet.

ihc_resume_print.php \blocks\resume\css\ Style sheet for the
printable version.

access.php \blocks\resume\db\ File controlling who is
allowed to access what.

install.xml \blocks\resume\db\ XMLDB database
installation file.

block_resume.php \blocks\resume\lang
\en_utf8

English language
strings.

resumetest.php \blocks\resume
\simpletest\

The file to set up the
simpletest.

testlib.php \blocks\resume
\simpletest\

The file with the test
functions.

5

The enroll request plug-in will contain the following files:

Name Directory Description
block_enrol.php \blocks\enrol\ Enrol request block

interface

install.xml \blocks\enrol\db\ XMLDB installation file.

access.php \blocks\enrol\db\ File controlling who is
allowed to access what.

block_enrol.php \blocks\enrol\lang
\en_utf8\

English language
strings.

config.html \enrol\enrolrequest\ Configuration file

displaylib.php \enrol\enrolrequest\ Library with the display
functions.

enrol.php \enrol\enrolrequest\ Module that handles the
enrolment.

enrol_enrolrequest_form_enrol.php \enrol\enrolrequest\ The form for a student
to make a request.

enrol_enrolrequest_form_overview.php \enrol\enrolrequest\ The form for the
overview of requests.

enrolrequests.php \enrol\enrolrequest\ Module that displays
the forms.

lib.php \enrol\enrolrequest\ Library with the core
functions.

enrol_enrolrequest.php \enrol\enrolrequest
\lang\en_utf8\

English language
strings.

6

2. Class diagrams

block_base +init()

+applicable_formats()

+specialization()

+get_content()

+instance_allow_multiple()

+has_config()

+instance_allow_config()

block_payment

moodleform

+payment_add_transaction_instance(in transaction : ihcpayment_transaction) : Integer

+payment_update_transaction_instance(in transaction : ihcpayment_transaction) : Boolean

+payment_delete_transaction_instance(in transaction_id : Integer) : Boolean

+payment_get_transaction(in transaction_id : Integer) : ihcpayment_transaction

+payment_get_transactions_by_payment(in payment_id : Integer, in sort : String, in is_asc : Boolean, in start : Integer, in limit : Integer) :

ihcpayment_transaction[]

+payment_get_transactions_overview(in payment_id : Integer, in sort : String, in is_asc : Boolean, in start : Integer, in limit : Integer, in start_date : Integer,

in end_date : Integer) : Object[]

+payment_get_transaction_record_count(in payment_id : Integer, in start_date : Integer, in end_date : Integer) : Integer

ihcpayment_transaction

+payment_create_payment(in user_id : Integer, in course_id : Integer) : Integer

+payment_add_payment_instance(in payment : ihcpayment_payment) : Integer

+payment_update_payment_instance(in payment : ihcpayment_payment) : Boolean

+payment_close_payment(in payment_id : Integer) : Boolean

+payment_open_payment(in payment_id : Integer) : Boolean

+payment_delete_payment_instance(in payment_id : Integer) : Boolean

+payment_get_payment(in payment_id : Integer) : ihcpayment_payment

+payment_get_remaining_amount(in payment : ihcpayment_payment) : Integer

+payment_get_remaining_days(in payment : ihcpayment_payment) : Integer

+payment_get_payment_methods() : String[]

+payment_get_payments() : ihcpayment_payment[]

+payment_get_payments_overview(in user_id : Integer, in course_id : Integer, in show_closed : Integer, in sort : String, in is_asc : Boolean, in start :

Integer, in limit : Integer) : Object[]

+payment_get_payment_record_count(in user_id : Integer, in course_id : Integer, in show_closed : Integer) : Integer

ihcpayment_payment

lib

payment_overview
+definition()

+definition_after_data()

+validation(in data)

block_payment_form_add_payment

+definition()

+definition_after_data()

+validation(in data)

block_payment_form_add_transaction

+definition()

+definition_after_data()

+validation(in data)

block_payment_form_payment_overview

+definition()

+definition_after_data()

+validation(in data)

block_payment_form_transaction_overview

block_payment

This is the

language file

+build_payment_navigation(in action : String) : Object

+setup_payment_table() : Object

+print_flexible_payment_record_table(in table : Object, in records :

ihcpayment_payment[])

+cmp_remaining_amount(in a : ihcpayment_payment, in b :

ihcpayment_payment) : Integer

+get_payment_overview_sorted(in table : Object, in user_id : Integer, in

course_id : Integer, in show_closed : Integer) : Object

+setup_transaction_table(in page_seze : Integer) : Object

+get_transaction_overview_sorted(in table : Object, in payment_id :

Integer, in start_date : Integer, in end_date : Integer) : Object

+print_flexible_transaction_record_table(in table : Object, in records :

ihcpayment_transaction[])

displaylib

print

«uses»

«uses»

settings

«uses»

tablelib

«uses»

«uses»

«uses»

«uses»

«uses»

transaction_overview

«uses»

«uses»

«uses»

Class diagram for the payment plug-in

7

tablelib

lib

+build_resume_navigation(in action : String) : Object

+setup_resume_table() : Object

+get_resume_overview_sorted(in table : Object, in user_id : Integer, in course_id : Integer, in show_finalized : Integer) : Object[]

+print_flexible_resume_record_table(in table : Object, in records : Object[])

+resume_print_user_info(in user : user)

+resume_print_tags(in resume_id : Integer, in context_id : Integer)

+resume_get_resume_tabs(in current_tab : String) : Object

+build_resume_tag_navigation(in action : String) : Object

+resume_get_resume_tag_tabs(in current_tab : String) : Object

displaylib

resume_tags

+definition()

block_resume_form

+definition()

block_resume_form_tag

«uses»

«uses»

resume_overview

+definition()

block_resume_form_overview «uses»

moodleform

resume

+definition()

+validation(in data : Object[], in files : Object[])

+display()

+get_data() : Object[]

block_resume_form_item

«uses»

convert

«uses»«uses»

+init()

+applicable_formats() : Object[]

+specialization()

+get_student_block(in context_id : Integer) : Object

+get_admin_block() : Object

+get_content() : Object

+instance_allow_multiple() : Boolean

+has_config() : Boolean

+instance_allow_config() : Boolean

block_resume

block_base

«uses»

+resume_add_resume_instance(in resume : resume) : Integer

+resume_update_resume_instance(in resume : resume) : Boolean

+resume_delete_resume_instance(in resume_id : Integer) : Boolean

+resume_get_resume_by_id(in resume_id : Integer) : resume

+resume_unfinalize(in resume_id : Integer) : Boolean

+resume_get_resume_by_user(in resume_id : Integer) : resume

+resume_get_resume_overview(in user_id : Integer, in course_id : Integer, in show_finalized : Integer, in sort : String, in is_asc : Boolean,

in start : Integer, in limit : Integer) : resume[]

+resume_get_resume_record_count(in user_id : Integer, in course_id : Integer, in show_finalized : Integer) : Integer

+resume_get_users_with_resume() : user[]

+resume_get_custom_userfields(in user : user) : Object[]

resume

+resume_add_resumeitem_instance(in resumeitem : resumeitem) : Integer

+resume_update_resumeitem_instance(in resumeitem : resumeitem) : Boolean

+resume_delete_resumeitem_instance(in resumeitem_id : Integer) : Boolean

+resume_get_resumeitem(in resumeitem_id : Integer) : resumeitem

+resume_get_resumeitems(in resume_id : Integer) : resumeitem[]

+resume_get_resumeitems_by_tag(in resume_id : Integer, in tag_id : Integer) : resumeitem[]

resumeitem

+resume_add_tag_instance(in tag : tag) : Integer

+resume_update_tag_instance(in tag : tag) : Boolean

+resume_delete_tag_instance(in tag_id : Integer) : Boolean

+resume_get_tag(in tag_id : Integer) : tag

+resume_get_tags() : tag[]

+resume_swap_tag_order(in tag_id : Integer, in direction : String) : Boolean

resumetag

«uses»

«uses»

Class diagram for the resume plug-in

8

+print_entry(in course : Object)

+check_entry(in form : Object, in course : Object)

+config_form(in form : Object)

+proces_config(in config : Object) : Boolean

+cron()

+get_access_icons(in course : Object) : Boolean

enrol

+init()

+applicable_formats() : Object[]

+specialization()

+get_content() : Object

+allow_multiple() : Boolean

+has_config() : Boolean

+instance_allow_config() : Boolean

block_enrol

block_base block_enrol

The english

language strings

access

The definition

of the rights

+build_enrolrequest_navigation(in info : Object) : Object

+setup_enrolrequest_table() : Object

+get_enrolrequest_overview_sorted(in table : Object, in

user_id : Integer, in course_id : Integer) : enrolrequests[]

+print_flexible_enrolrequest_record_table(in table :

Object, in records : enrolrequests[])

displaylib

lib enrolrequests«uses»

tablelib

«uses»

lib

+definition()

enrol_request_form_enrol«uses»

moodleform

formslib

«uses»

+definition()

enrol_request_form_overview

«uses»

«uses»

«uses»

«uses»

«uses»lib

in: /blocks/payment/

«uses»

in: \group\

+enrolrequest_create_enrolrequest(in user_id : Integer, in course_id : Integer) : Integer

+enrolrequest_delete_enrolrequest(in enrolrequest_id : Integer) : Boolean

+enrolrequest_get_enrolrequest(in enrolrequest_id : Integer) : enrolrequest

+enrolrequest_accept_enrolrequest(in enrolrequest : enrolrequest) : Boolean

+enrolrequest_get_enrolrequest_overview(in user_id : Integer, in course_id : Integer, in sort : String, in is_asc : Boolean, in start : Integer, in limit : Integer) : Object[]

+enrolrequest_get_enrolrequest_record_count(in user_id : Integer, in course_id : Integer) : Integer

+enrolrequest_get_users_with_enrolrequest() : Object[]

enrolrequest

+factory(in enrol : String)

enrol.class «uses»

Class diagram for the enrol request plug-in

3. Class specification and methods

For the class specification and the methods, PHPdocs were created, which can be found in
appendix B.

9

Appendix A: Coding guidelines

We will keep strict to the Moodle coding guidelines. In this appendix we will elaborate on
every part of the coding guidelines.

Moodle architecture
Moodle tries to run on the widest possible range of platforms, for the widest possible number
of people, while remaining easy to install, use, upgrade and integrate with other systems.
Therefore all the criteria2 concerning the Moodle architecture should be kept in mind when
changing the core code, because people at the IHC have little technical knowledge to reverse
changes if needed.

Plug-ins
We will build three plug-ins following the guidelines provided by Moodle as defined in
previous documents.

Coding style
Since the IHC has still a lot of growth opportunity, there is a big chance that the basic system
as we will implement it will be expanded. A standard style helps to ensure that the code is
easier to read and understand which will also help the next generation of developers. Besides
that it will help us with keeping the quality of the code high.

Moodle has a standard style3 with the following abstract goals:

 Simplicity

 Readability
 Tool friendliness, such as the use of method signatures, constants, and patterns that

support IDE tools and auto-completion of method, class, and constant names

When considering the goals above, each situation requires an examination of the
circumstances and balancing of various trade-offs. As mentioned earlier in the project
approach, we will focus especially on both consistent naming conventions for methods,
classes and variables and the comments for PHPdoc.

Security
Security is about protecting the interests and data of all our users. It is about protecting a lot
of sensitive and important data such as private information, resumes and grades from outside
eyes as well as protecting the users from spammers and other internet predators.

Building a system like this also means running scripts on servers, so Moodle needs to be a
responsible Internet citizen and not introduce vulnerabilities that could allow crackers to gain
unlawful access to the server it runs on. Any single script (in Moodle core or a third party
module) can introduce a vulnerability to thousands of sites, so we will follow the Moodle
security guidelines4. The focus here will be the usage of user input variables (get, post and
cookie) and the database access using XMLDB.

XHTML
It's important that Moodle produces strict, well-formed XHTML code, compliant with all
common accessibility guidelines (such as W3C WAG)5. This helps consistency across browsers
in a nicely-degrading way (especially those using non-visual or mobile browsers), as well as
improving life for theme designers. Certainly at the IHC this is important because they give
courses to various schools.

2 Moodle architecture criteria - http://docs.moodle.org/en/Moodle_architecture
3 Moodle standard style - http://docs.moodle.org/en/Development:Coding_style
4 Moodle security guidelines - http://docs.moodle.org/en/Development:Security
5 Moodle XHTML guidelines - http://docs.moodle.org/en/Development:XHTML

http://docs.moodle.org/en/Moodle_architecture

http://docs.moodle.org/en/Development:Coding_style

http://docs.moodle.org/en/Development:Security

http://docs.moodle.org/en/Development:XHTML

10

Javascript
Javascript guidelines6 exists as well. In general, everything in Moodle should work with
Javascript turned off in the browser. If Javascript is enabled it should only improve usability
(not add features). This is important for accessibility, and in line with the principles of
unobtrusive Javascript and progressive enhancement.

Internationalization
We will look at the internationalization guidelines7, but it will not have our focus since
everyone here speaks English or is able to understand it.

Usability
The interface should be clear and easy to understand, since the users will consist mostly of
people with little computer skills. Therefore the usability guidelines8 will be followed carefully.

Database
Moodle has a powerful database abstraction layer that was developed by Moodle developers,
called XMLDB. This lets the same Moodle code work on MySQL, PostgreSQL, Oracle and
MSSQL. There are tools available and an API for defining and modifying9 tables as well as
methods for getting data in and out of the database.

Unit tests
Unit testing is not simply a technique but a philosophy of software development. The idea is
to create automatable tests for each bit of functionality that you are developing (at the same
time you are developing it). This will not only help testing the software, but also helps the
development itself, because it forces you to work in a modular way with very clearly defined
structures and goals.

Moodle uses a library called Simpletest (not very extensively though!) that makes writing unit
tests fairly simple. Our unit testing currently is not deep but we want to improve this. Full
information can be found in the Moodle Unit Test documentation10.

6 Moodle Javascript guidelines -
http://docs.moodle.org/en/Development:JavaScript_guidelines
7 Moodle internationalization guidelines

http://docs.moodle.org/en/Development:Internationalisation
8 Moodle usability guidelines - http://docs.moodle.org/en/Development:Interface_guidelines
9 Moodle XMLDB_Documentation
http://docs.moodle.org/en/Development:XMLDB_Documentation
10 Moodle Unit Test – http://docs.moodle.org/en/Development:Unit_tests

http://docs.moodle.org/en/Development:JavaScript_guidelines

http://docs.moodle.org/en/Development:Internationalisation

http://docs.moodle.org/en/Development:Interface_guidelines

http://docs.moodle.org/en/Development:XMLDB_Documentation

http://docs.moodle.org/en/Development:Unit_tests

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Implementation plan
July 20, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Task partitioning ... 3
2. Planning and milestones ... 5

2

Preface

The purpose of this document is to create a global implementation plan of our project. We
will describe how we will do our task partitioning, what milestones we will reach and how our
global planning will be defined.

This implementation plan is important to this project because it will give us a clear overview
of the phase to come. Since time is scarce, our implementation phase should be as efficient
as possible to make sure there is enough time left to properly train the end-users of the
system.

3

1. Task partitioning

Creating a task partitioning with such a small group is hard. During our project we will try to
make sure that everyone contributes an equal part to the project. Therefore the name noted
in this chapter is the person who initiated and managed the document or functionality.

We can describe our way of work as follows: a person initiates the work on a document or
functionality. After he finishes a large part of the work, the other group members review the
work and fill in the parts that were not completed by the initiator. Before finalizing the
document or functionality the document or code is once more reviewed by all the group
members before it is sent to the coordinators.

This leads to the following global task partition:

Week 1 (11 May – 15 May):
Planning Aad
Project Approach Maarten

Week 2 (18 May – 22 May):
Domain Analysis René

Week 3 (25 May – 29 May):
Requirement Analysis Document René
Architectural Design Document Maarten

Week 4 (1 June – 5 June):
Technical Design Document Aad
Implementation Plan Maarten
Test Plan René
MoSCoW Document Maarten

Week 5 (8 June – 12 June):
Payment plug-in
 Create, update and delete Aad
 Overview Maarten
 Search and select René

Week 6 (15 June – 19 June):
Payment plug-in
 Search and select René
 Finalizing and documenting Aad

Resume plug-in
 Create, update and delete (student) Maarten

Week 7 (22 June – 26 June):
Resume plug-in
 Feedback (teacher) René
 Overview Aad
 Search and select (teacher) Maarten

4

Week 8 (29 June – 3 July):
Resume plug-in
 Finalizing and documenting Maarten

Video functionality
 Process René
 Playback Aad

Week 9 (6 July – 10 July):
Video functionality
 Playback Aad
 Upload René
 Feedback Maarten

Week 10 (13 July – 17 July):
Testing and training Maarten, Aad, René

Week 11 (20 July – 24 July):
Testing and training Maarten, Aad, René

5

2. Planning and milestones

Milestones are important in a project, because they define points in your implementation that
give a good stepping stone for further development. Milestones also are a great opportunity
to provide information about the project to the end-user and receive feedback about things
that you might have looked over.

During our project we will come by the following milestones:

Documentation and Requirement documents finished
At this milestone all the documents from the requirements phase will find their definitive
form.

Mid-project demo
This milestone will be used as an evaluation moment for the first part of the implementation
phase. We will also display our system so far to the end-users, so they can provide feedback.
An internal peer review will also take place to evaluate the contributions of the students to
the project.

Fully functional system
Our main milestone. At this milestone the system will be fully functional and ready to use for
the end-user.

Final report
This last milestone will be our final document which will provide information about the system
itself, the problems and decisions we went through to build the system and some final
remarks on the project itself.

Besides our milestones, it is important to define in what order we will implement our system.

We will start with the payment plug-in. Code for this plug-in is significantly smaller than the
code for the resume plug-in and it should provide us with a good way to get to know the
Moodle code system.

Our first priority is to be able to create, update and delete transactions and payments. After
that, a feature to view an overview of the payment is needed and finally search and select
functionality will be built.

After the payment plug-in is programmed, we will start on the resume plug-in. Again
creating, updating en deleting resumes is our first assignment. Next is the functionality for
teachers to be able to provide feedback on the resumes in the system. An overview of the
resumes is also required and finally search and select functionality will be added to this plug-
in.

After the resume plug-in, we will start on the enrol request plug-in. For this plug-in we will
need to start with enabling students to enrol in a course. Next, we will add an extra step to
the process, where enrol requests can be accepted or deleted.

Finally we will start working on the option to work with videos. We will have to define the
precise process of uploading a video and create functionality to play videos. Next, we will
provide the users the possibility to upload their own videos and link the videos to messages.

Of course, considering the fact that it’s hard to work on the same file with two persons at
once, some of the coding will overlap. Still, this document should provide a good overview of
the phases of implementation we will go through.

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

MoSCoW document
June 1, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Must have .. 2
2. Should have .. 2
3. Could have ... 3
4. Would like .. 3
5. Summary .. 3

2

Preface

The MoSCoW document describes the priority of the functions of the system. Functions are
divided in 4 parts1:

M: Must have
S: Should have
C: Could have
W: Would like

“Must have” functions are functions that are required for the system to function. If these
functions are not finished, the project is considered a failure. “Should have” functions are also
critical for the success of the system, but are less important to be fully implemented and are
generally extensions to the must have functions. “Could have” functions are functions that
would be nice to implement to improve workflow or create gimmicks. “Would like” functions
finally, are functions that are not going to be implemented during this project, but might be
nice to add in future versions.

1. Must have

The basic functionality of the system consists of students being able to follow courses online.
This means the system must be able to create, update and delete courses, lectures and
resources attached to the lectures. Since using video resources is a key issue to the institute,
we chose to add this functionality to the “Must haves”.

These “Must haves” include the following functional requirements as referenced in the
Requirement Analysis Document:

T01 – T24, T26
T40 – T46
S01 – S18
S24 – S30
A01 – A25
U03 – U04

2. Should have

For the system to function properly, not all users should be able to create, update or delete
random items in the system. This is why permission management is needed. This also
includes options to define which users are allowed to enter certain courses or download
resources in the system.

Besides these basic functionality’s, we also chose to add our payment and resume plug-ins to
the ”Should haves”. These functions are critical for our project to be successful. Without
them, the system would function, but not in the way it is meant to be. Finally, the enrol
request plug-in is needed for the system to suit the needs of IHC.

These “Should haves” include the following functional requirements:

T27 – T34
T36 – T39
T47 – T48
S19 – S23
U01 – U02

1 MoSCoW method - http://en.wikipedia.org/wiki/MoSCoW_Method

http://en.wikipedia.org/wiki/MoSCoW_Method

3

3. Could have

Could have functions generally add functionality to the system that improve workflow and
just makes the system easier to work with. In our case this means the implementation of
search filters, while searching for students or courses, or overview pages for the resume and
payment plug-in. Furthermore options to extend the resume functionality (for example
ordering the items in the resume) would be a nice addition. Database entries for ordering
resume items are already planned. Finally extended video functionality is an option.

These “Could haves” are already documented in the functional requirements:

T25
T35
U05

4. Would like

If the IHC grows in the years to come, it would be nice to take a look at the opportunity to
add Peer-to-peer technology to the system, for instance Tribler Campus2. Also, more
functions could be built to further automate the work process at the institute, for example
extending the payment plug-in to automatic spreadsheet generating.

5. Summary

One of the goals of this project is to implement a fully working system. This means not only
will we have to implement the “Must haves”, but “Should haves” provide so much
functionality that they will need to be implemented as well. Finally it would be nice to be able
to implement some of the “Could haves”, to enhance the system and assist the IHC even
more.

2 TriblerCampus – M. Meulpolder, V.A. Pijano III, D.H.J. Epema and H.J. Sips 2007:
Integrated peer-to-peer technology file distribution in Course Management Systems -
http://www.pds.ewi.tudelft.nl/pubs/papers/edmedia2007.pdf

http://www.pds.ewi.tudelft.nl/pubs/papers/edmedia2007.pdf

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Test plan
June 1, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Unit testing ... 2

1.1 Resume plug-in .. 3
1.2 Payment plug-in ... 6
1.3 Enrol request plug-in .. 10

2. Integration testing ... 12

2

Preface

In this document we will describe the test strategies we will use to test the system. We will
start with the Unit tests, where we will separately test the functions and modules. The second
phase of testing will be Integration testing. Because we are developing plug-ins for an
existing system, we will have to pay extra attention to this phase, since our plug-ins will have
to work well with Moodle.

1. Unit testing

Moodle provides an interface for running Unit tests, which is based on SimpleTest1.
SimpleTest is an open source unit testing for PHP, like JUnit in Java. We will strive to use the
Black box testing methodology. This allows us to define test cases, before the code is actually
implemented.

In Moodle development, there are many different methods of implementing the same
functionality. However, Moodle documentation dictates the use of some functions, and
prohibits the use of others (which could for instance cause security issues). By using black
box testing, no matter what kind of implementation we will use, there should always be tests
that make sure the function meets its requirements.

Since most our tests require database access, we will write base classes, payment_test,
resume_test and enrolrequest_test, to setup and tear down test tables. We will do this the
same way Moodle implements these tests in for instance the grade_test class.

Each test class we will write will extend the appropriate base class, to make sure it will only
use the test tables. Moodle provides more information about Unit testing in their
documentation2.

Furthermore, our tests will be based on the contracts of the different functions, as specified
in our Technical Design. We will test each pre and post condition to make sure our functions
meet the specified requirements.

1 SimpleTest - http://www.simpletest.org/
2 Moodle Unit Tests - http://docs.moodle.org/en/Development:Unit_tests

http://www.simpletest.org/

http://docs.moodle.org/en/Development:Unit_tests

3

1.1 Resume plug-in

For the Resume plug-in, we will define the following tests:

Function Test parameters Expected
result

resume_add_resume_instance(resume) Invalid resume False is returned

Valid resume
User already as a
resume

False is returned

Valid resume

User has no
resume

Resume has

been added to
the database and
return id

Function Test parameters Expected
result

resume_update_resume_instance(resume) Invalid resume False is returned

Valid resume Resume has
been updated
and return true

Function Test parameters Expected
result

resume_delete_resume_instance(resumeid) Invalid resume id False is returned

Valid resume id Resume has
been deleted and
return true

Function Test parameters Expected

result

resume_get_resume_by_id(resumeid) Invalid resume id False is returned

Valid resume id The requested
resume is
returned

Function Test parameters Expected
result

resume_unfinalize Valid user id The resume
finalized date is
set to null, return
true

Function Test parameters Expected
result

resume_get_resume_by_user(userid) Invalid user id False is returned

Valid user id The requested
resume is
returned

4

Function Test parameters Expected
result

resume_get_resume_overview(userid, courseid,
show_finalized, sort, is_asc, start,limit)

Empty parameters All the records
are returned

Valid user id The requested
records are
returned

Finalized resume The requested
records are
returned

Function Test parameters Expected
result

resume_add_resumeitem_instance(resumeitem) Invalid
resumeitem

False is returned

Valid resumeitem
User already as a
resume

Resumeitem has
been added to
the database and
return id

Valid resumeitem
User has no
resume

False is returned

Function Test parameters Expected
result

resume_update_resumeitem_instance(resumeitem) Invalid
resumeitem

False is returned

Valid resumeitem The resume item
is updated and
return true

Function Test parameters Expected
result

resume_delete_resumeitem_instance(resumeitemid) Invalid
resumeitem id

False is returned

Valid resumeitem
id

The resume item
is deleted and

return true

Function Test parameters Expected
result

resume_get_ resumeitem(resumeitemid) Invalid
resumeitemid

False is returned

Valid
resumeitemid

Return
resumeitem

Function Test parameters Expected
result

resume_get_resumeitems(resumeid) Invalid resumeid False is returned

Valid resume Return
resumeitems

5

Function Test parameters Expected
result

resume_get_resumeitems_by_tag(resumeid, tagid)

Invalid resumeid False is returned

Invalid tagid False is returned

Valid resumeid
Valid tagid

Return
resumeitems

Function Test parameters Expected
result

resume_add_tag_instance(tag) Invalid tag False is returned

Valid tag The tag is added
and return id

Function Test parameters Expected

result

resume_update_tag_instance(tag)

Invalid tag False is returned

Duplicate names
in tag

False is returned

Valid tag Tag is updated
and return true

Function Test parameters Expected
result

resume_delete_tag_instance(tagid) Invalid tag id False is returned

Valid tag id The tag is
deleted and
return true

Function Test parameters Expected
result

resume_get_tag(tagid) Invalid tagid False is returned

Valid tagid Return tag

Function Test parameters Expected
result

resume_get_tags() No parameters All the tags are
returned

Function Test parameters Expected
result

resume_swap_tag_order(tagid, direction) Valid swap up Update tag order
and return true

Valid swap down Update tag order
and return true

Invalid tagid Return false

6

1.2 Payment plug-in

For the Payment plug-in, we will define the following tests:

Function Test parameters Expected
result

payment_add_payment_instance(payment) Invalid payment Return false

Valid payment Payment has
been added to
the database and
return the id

Function Test parameters Expected
result

payment_update_payment_instance(payment) Invalid payment Return false

Valid payment Payment has
been updated in
the database and
return true

Function Test parameters Expected
result

payment_close_payment_(paymentid) Invalid payment id Return false

Valid payment id Payment has

been updated in
the database and
return true

Function Test parameters Expected
result

payment_open_payment_(paymentid) Invalid payment id Return false

Valid payment id Payment has
been updated in
the database and
return true

Function Test parameters Expected
result

payment_delete_payment_instance(paymentid) Invalid payment id Return false

Valid payment id Payment has
been deleted
from the
database and
return true

Function Test parameters Expected
result

payment_get_payment(paymentid) Invalid paymentid Return false

Valid paymentid Return payment

7

Function Test parameters Expected
result

payment_get_remaining_amount(payment) Invalid payment Return false

Valid payment
Sumof(transactions)=0

Return
target

Valid payment
Sumof(transactions)<target

Return
positive
amount

Valid payment
Sumof(transactions)=target

Return 0

Valid payment
Sumof(transactions)>target

Return
negative
amount

Function Test parameters Expected
result

payment_get_remaining_days(payment) Invalid payment Return false

Valid payment
Today<=deadline

Deadline not
passed

Valid payment
Today>deadline

Deadline has
passed

Valid payment
Deadline = null

Return false

Function Test parameters Expected
result

payment_get_payments() No parameters Return payments

Function Test parameters Expected
result

payment_get_payments_overview(user_id,
course_id, show_closed, sort, is_asc, start, limit)

All default values Return payments

Valid userid, other
default values

Return payments

Invalid userid,

other default
values

Return false

Valid courseid,
other default
values

Return payments

Invalid courseid,

other default
values

Return false

Valid userid and
valid courseid

Return payments

8

Function Test parameters Expected
result

payment_get_payment_record_count(user_id,
course_id, show_closed)

All default values Return number
of payments

Valid userid, other
default values

Return number
of payments

Invalid userid,
other default
values

Return 0

Valid courseid,

other default
values

Return number

of payments

Invalid courseid,
other default
values

Return 0

Valid userid and
valid courseid

Return number
of payments

Function Test parameters Expected
result

payment_add_transaction_instance(transaction) Invalid transaction Return false

Valid transaction
with invalid
payment id

Return false

Valid transaction
with valid
payment id

Transaction has
been added to
the database and
return the id

Function Test parameters Expected
result

payment_update_transaction_instance(transaction) Invalid transaction Return false

Valid transaction
with invalid
payment id

Return false

Valid transaction

with valid
payment id

Transaction has

been updated in
the database and
return the id

Function Test parameters Expected
result

payment_delete_transaction_instance(transactionid) Invalid transaction
id

Return false

Valid transaction
id

Transaction has
been deleted
from the
database and
return true

9

Function Test parameters Expected
result

payment_get_transaction(transactionid) Invalid transaction
id

Return false

Valid transaction Returns
transaction

Function Test parameters Expected
result

payment_get_payment_methods() No parameters Return payment

methods

Function Test parameters Expected
result

payment_get_transactions_by_payment(paymentid) Invalid payment id Return false

Valid payment id
Payment has
transactions

Returns list of
transactions

Function Test parameters Expected
result

payment_get_transaction_overview(payment_id,
sort, is_asc, start, limit)

All default values Return
transactions

Invalid payment id Return false

Valid payment id Return
transactions

Function Test parameters Expected
result

payment_get_transaction_record_count(paymentid) Invalid payment id Return 0

Valid payment id Return amount
of transactions

10

1.3 Enrol request plug-in

For the enrol request plug-in, we will define the following tests:

Function Test parameters Expected
result

enrolrequest_create_enrolrequest(user_id,
course_id)

Invalid user id,
valid course id

Return false

Valid user id,
invalid course id

Return false

Valid user id, valid

course id

A enrol request

was created with
the course and
user, return id

Function Test parameters Expected
result

enrolrequest_delete_enrolrequest(enrolrequest_id) Invalid enrol
request id

Return false

Valid enrol request
id

A enrol request
was deleted and
return true

Function Test parameters Expected
result

enrolrequest_get_enrolrequest(enrolrequest_id) Invalid enrol
request id

Return false

Valid enrol request
id

Return enrol
request

Function Test parameters Expected
result

enrolrequest_accept_enrolrequest(enrolrequest) Invalid enrol
request

Return false

Valid enrol request
id

Return true

Function Test parameters Expected

result

enrolrequest_get_enrolrequest_overview(user_id,
course_id, sort, is_asc, start, limit)

All default values Return enrol
requests

Invalid user id,
other default
values

Return false

Valid user id,
other default
values

Return enrol
requests

Invalid course id,
other default
values

Return false

Valid course id,
other default
values

Return enrol
requests

Valid user id, valid
course id, other
default values

Return enrol
requests

11

Function Test parameters Expected
result

enrolrequest_get_enrolrequest_record_count(
user_id, course_id)

All default values Return enrol
requests

Invalid user id,
default course id

Return false

Default user id,
invalid course id

Return false

Valid user id, valid
course id

Return enrol
requests

12

2. Integration testing

After we finish the Unit tests, we are ready to test the interface, the forms, and the rest of
the system all together. We will do this guided by the use cases specified in our
Requirements Analysis Document (RAD). Using these, we make sure the system complies
with the requirements.

Another important issue is security; we have to make sure that students cannot
view/update/delete the resume of another student. Also, students shouldn’t be allowed to
have edit permissions in the payment section. Some security checks can be done in the Unit
Tests, but we have to test other possible security issues as well.

To make the testing easier, we will try to use Selenium3 as a testing tool. Selenium is a tool
to record and debug tests. With this tool, we could record the actions specified in our use
cases, so they can be retested each time we make a change in the system (regression
testing). According to Moodle however, it has some limitations when used with Moodle. So
we will try to use it, but if it fails we have to do our tests manually.

3 Selenium - http://www.openqa.org/selenium-ide/

http://www.openqa.org/selenium-ide/

13

[Moo001TAS]: View a resource
Goals: The actor can view a resource in the system.
Pre condition: Actor is authenticated.

Flow of events:
Actor actions System Response

1. Actor 1 navigates to the specified resource 3a. If the resource is an image, the image
will be shown to Actor 1

2. Actor 1 clicks on the view resource 3b. If the resource is a video, the video will
be shown as a streaming video to Actor 1

 3c. In other cases, the browser of Actor 1 will

have to try and open the resource

Expected result: The resource shows up on the screen.

[Res002TA]: View resume of a student
Goals: The actor can view a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a view of the
resume and show it to the teacher

2. The teacher selects the student of which
the resume is to be viewed

3. The teacher clicks on show resume

Expected result: The resume shows up correctly on the screen.

[Res003TA]: Update resume of a student

Goals: The actor can update a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a form to update
the resume

2. The teacher selects the student of which
the resume is to be updated

7. The system updates the resume

3. The teacher clicks on update resume

5. The teacher updates the fields of the
resume

6. The teacher clicks on save resume

Expected result: The resume has been updated, check this by viewing the resume.

14

[Res004TA]: Provide feedback on a resume
Goals: The actor can provide feedback on a resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will generate a form to provide
feedback

2. The teacher selects the student whose
resume is to be given feedback

7. The system sends the feedback to the
student

3. The teacher clicks on provide feedback

5. The teacher fills in the fields of the form

6. The teacher clicks on send feedback

Expected result: Feedback to the student about their resume has been given, check this.

[Res005TA]: Download a resume
Name: Download a resume
Actor 1: Teacher
Goals: The actor can download the resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will provide the resume

2. The teacher selects the student whose
resume is to be downloaded

3. The teacher clicks on download resume

Expected result: The resume has been downloaded.

[Res006TA]: Delete a resume
Goals: The actor can delete the resume of a student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the resume
section

4. The system will delete the resume

2. The teacher selects the student whose
resume is to be deleted

3. The teacher clicks on delete resume

Expected result: The resume has been deleted.

15

[Pay007TA]: View the transactions of a student
Goals: The actor can view the transactions did by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate a view of the
transactions made by the student

2. The teacher selects the student whose
transactions he wants to see

3. The teacher clicks on overview of
transactions

Expected result: The overview of the transactions shows up on the screen.

[Pay008TA]: Create the transactions of a student
Goals: The actor can create new transactions done by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment

section

4. The system will generate a form for a new

transaction

2. The teacher selects the student who has
done a transaction

7. The system adds the transactions

3. The teacher clicks on create transaction 8. The system updates the payment

5. The teacher fills in all the required
information

9. The system will generate a view of the
update and show it to the teacher

6. The teacher clicks on add transaction

Expected result: The teacher receives an update concerning the payment status of the
student.

[Pay009TA]: Update the transactions of a student
Goals: The actor can update the transactions done by the student.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate a form of the
transactions made by the student

2. The teacher selects the student whose
transactions he wants to update

7. The system saves the transactions

3. The teacher clicks on update transactions 8. The system updates the payment

5. The teacher updates the transactions 9. The system will generate a view of the
update and show it to the teacher

6. The teacher clicks on save transactions

Expected result: The teacher receives an update concerning the payment status of the
student.

16

[Pay010TA]: View payment overview
Goals: The actor can view a payment overview of the student

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will generate an overview of
the payment of the student

2. The teacher selects the student whose
payment he wants to see

3. The teacher clicks on overview of payment

Expected result: The teacher can view an overview of the payment of the student.

[Pay011TA]: Update payments
Goals: The actor can update payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will save the changes to the
payment

2. The teacher clicks on edit payment

3. The teacher clicks on submit

Expected result: The teacher has updated the payment.

[Pay012TA]: Create payments
Goals: The actor can create payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

4. The system will add the payment to the
database

2. The teacher clicks on add payment

3. The teacher clicks on submit

Expected result: The teacher has created a payment.

[Pay013TA]: Close/Open payments
Goals: The actor can close/open payments

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

3. The system will close/open the payment

2. The teacher clicks on close payment

Expected result: The teacher has closed/opened a payment.

17

[Pay014TA]: Delete the transaction of a student
Goals: The actor can delete a transaction of the student

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The teacher navigates to the payment
section

5. The system deletes the transaction

2. The teacher selects the student whose
transaction he wants to delete

3. The teacher selects the transaction he
wants to delete

4. The teacher clicks on delete the
transaction

Expected result: The transaction is deleted, check this by viewing the payment status.

[Res015STA]: Upload a resume
Goals: The actor can upload a resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a form for
uploading a resume

2. The student clicks on upload resume 5. The system will receive the file and check
the size and format

4. The student selects a file 6. The system will accept or reject the input
based on size and format

 7. The system saves the resume

Expected result: The resume of the student has been saved to the system.

18

[Res016STA]: Create a resume
Goals: The actor can create a resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a form for
creating a resume

2. The student clicks on create resume 6. The system saves the resume

4. The student fills in the form for creating a

resume

7. The system will generate a preview of the

resume which the user can download

5. The student clicks on save resume

Expected result: The resume has been created, check this by viewing it.

[Res017STA]: Update a resume
Goals: The actor can update his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume

section

3. The system will generate a form for

updating a resume

2. The student clicks on update resume 6. The system saves the resume

4. The student fills in the form for updating a
resume

7. The system will generate a preview of the
resume which the user can download

5. The student clicks on save resume

Expected result: The resume has been updated, check this by viewing the resume.

[Res018STA]: View a resume
Goals: The actor can view his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate a preview of the
resume

2. The student clicks on view resume

Expected result: The resume is shown to the user.

19

[Res019STA]: Download resume
Goals: The actor can download his resume

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the resume
section

3. The system will generate the resume
which the user can download

2. The student clicks on download resume

Expected result: The resume download will start, check the download after it finishes.

[Pay020STA]: View the payment status
Goals: The actor can view his payment status.

Pre condition: Actor 1 is authenticated.

Flow of events:
Actor actions System Response

1. The student navigates to the payment
section

3. The system will generate a view of the
payment and show it to the student

2. The student clicks on overview of payment

Expected result: An overview of the payments shows up on the screen.

[Moo021STA]: Add a resource to a message
Goals: The actor can add a resource to a message

Pre condition: Actor is authenticated.

Flow of events:
Actor actions System Response

1. The actor navigates to the message 5. The system saves the resource to the
message

2. The actor clicks on add resource

3. The actor selects the resource

4. The actor clicks on save resource

Expected result: The resource is added to the message.

20

[Moo022A]: Run the installation procedure
Goals: To install the system

Pre condition: none

Flow of events:
Actor actions System Response

1. The administrator runs the setup file 2. The system will generate the necessary
files and databases for the system

4. The administrator creates his account 3. The system will start the install procedure

 5. The system will customize Moodle

Expected result: The system has been installed, check if everything works.

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Test report
July 7, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Unit testing ... 2
2. Integration testing ... 3
3. Security .. 3
3. Conclusion .. 4
Appendix A: Unit test results .. 5

A.1 Resume plug-in .. 5
A.2 Payment plug-in ... 8
A.3 Enrol request plug-in .. 12

Appendix B: Integration test results .. 14

2

Preface

In this document we report the results of both the unit- and integration tests of our Moodle
plug-ins. This will be done according to the test plan we defined before the implementation of
the system. First, we describe our experiences and problems we encountered during the
testing process. Actual test results can be found in the appendices.

1. Unit testing

We have implemented the tests we specified in the test plan. During the testing phase, we
encountered some difficulties. First we will describe our experiences with the Moodle
SimpleTest environment, after which we will describe our testing methodology.

Moodle provides an interface for running Unit tests, which is based on SimpleTest1.
SimpleTest is an open source unit testing for PHP, like JUnit in Java. The framework provided
by Moodle proved to be sufficient in most cases, but in some cases we had to write some
extra code for the tests to function correctly. For instance, we had to write some extra code
to set up the test database tables, including default Moodle tables as user and course. In the
end we managed to get all tests running in a secure environment, as can be seen in the
Appendix.

With the first plug-in, we tried to use the test driven development methodology. This meant
we wrote our tests before actually implementing the code. While this made sure we had a
solid backend of our system, we soon found out that our design required some extra frontend
functionality (i.e. sorting of a table). Each functionality that required some changes in the
backend of the code, forced us to rewrite some test-cases as well. This whole process turned
out to be quite time consuming and even frustrating in some cases. So we decided to write
the tests for the other plug-ins afterwards.

The unit tests proved to be quite rewarding in keeping our backend solid and working. When
bugs turned up in the system, we could easily find if they where in the backend or frontend
of the system. One downside is that a lot of code is also present in the main module/frontend
of the plug-in, which cannot easily be tested with unit tests. We will test those parts of the
plug-ins with the integration tests.

1 SimpleTest - http://www.simpletest.org/

http://www.simpletest.org/

3

2. Integration testing

After our unit tests where completed, it was time to make sure the separate functions worked
together as a complete system. To make sure of this, we have defined our link tests in the
test plan, based on the original requirements of the system.

In our test plan we also stated that we would try Selenium IDE as a testing tool. While we did
mostly manual testing in the early implementation phase, we wrote Selenium test cases
based on our scenarios.

Selenium turns out to be a very effective tool to record/write and replay scenarios. The ability
to define test suites consisting of different test cases allowed us to write our tests modular,
which saved a lot of time by re-using tests cases.

One downside of using Selenium is that recorded tests often result in badly constructed XPath
queries to identify elements. For instance, a button that was clicked on could be identified
purely on its position relative to another element. This often results in tests that are
dependent on many different factors, and can result in failing tests. To avoid this, we had to
write some XPath queries ourselves.

While recording and writing our tests, we found some nasty bugs that did not show up in the
unit tests. Also, because the tests we have written are according to the scenarios and
requirements of the system, we can now assure the system complies with the requirements
of the end-user.

3. Security

While we haven’t mentioned security in our test plan, we noticed it is important that the
security requirements are fulfilled. We can divide security related problems in two categories:

 User management/access rights

 Input validation/corrupt data

User management in our system basically consists of making sure students can only edit their
own data, and view only the information they are supposed to view. We have used the
Moodle user rights management system based on roles and permissions to provide basic
protection.2 Because Moodle is designed so that each permission can be configured for each
type of user, we can only test the default values of each permission and system action. We
have tested this manually, and some tests are executed through unit and integration tests.

Input validation has to be done for each user input in the system. By using the Moodle
functions for getting input parameters, parameters are already cleaned before they are used,
which prevent SQL injections in most cases. Still, we have tested each form with invalid input
parameters, to make sure exceptions are handled correctly. Some checks are also built in unit

tests and integration tests.

2 More information about Moodle user rights management can be found in our design
documents.

4

3. Conclusion

In this document we reported the outcomes of the testing phase of our project. To
summarize:

 The unit tests verify that the backend of the system is solid, and that the database
contains consistent data.

 The integration tests can guarantee that the system successfully implement the
requirements of the end-user.

 Finally, manual security tests make sure the system is safe to use and that the data
in the system is protected.

Concluding, our system has successfully survived the testing phase. Because of the extensive
test suites we can say that this system is stable.

5

Appendix A: Unit test results

A.1 Resume plug-in

Notice: ex_simple_test.php / ►
Find File Notice [moodle/blocks/resume/simpletest/testlib.php] with status [Found unit test
file, 1]

Function Test
parameters

Expected
result

Test
result

resume_add_resume_instance(resume) Invalid resume False is

returned

PASS,

line 53

Valid resume
User already as
a resume

False is
returned

PASS,
line 54

Valid resume
User has no
resume

Resume has
been added
to the
database and
return id

PASS,
line 55

resume_update_resume_instance(resume) Invalid resume False is
returned

PASS,
line 74

Valid resume Resume has
been updated
and return
true

PASS,
line 75

resume_delete_resume_instance(resumeid) Invalid resume
id

False is
returned

PASS,
line 92

Valid resume id Resume has
been deleted
and return
true

PASS,
line 93

resume_get_resume_by_id(resumeid) Invalid resume
id

False is
returned

PASS,
line 109

Valid resume id The
requested
resume is
returned

PASS,
line 108

resume_unfinalize(resumeid) Valid resume id The resume
finalized date
is set to null,
return true

PASS,
line 121,
line 124,
line 127

resume_get_resume_by_user(userid) Invalid user id False is
returned

PASS,
line 143

Valid user id The
requested
resume is
returned

PASS,
line 142

6

Function Test
parameters

Expected
result

Test
result

resume_get_resume_overview(userid,
courseid, show_finalized, sort, is_asc, start,
limit)

Empty
parameters

All the
records are
returned

PASS,
line 157,
line 158,
line 159

Valid user id The
requested
records are
returned

PASS,
line 162,
line 163

Finalized
resume

The
requested
records are
returned

PASS,
line 169,
line 170,
line 173,
line 174,
line 175

resume_add_resumeitem_instance(

resumeitem)

Invalid

resumeitem

False is

returned

PASS,

line 233

Valid
resumeitem
User already as
a resume

Resumeitem
has been
added to the
database and
return id

PASS,
line 235

Valid
resumeitem
User has no
resume

False is
returned

PASS,
line 234

resume_update_resumeitem_instance(
resumeitem)

Invalid
resumeitem

False is
returned

PASS,
line 268

Valid
resumeitem

The resume
item is
updated and
return true

PASS,
line 269

resume_delete_resumeitem_instance(
resumeitemid)

Invalid
resumeitem id

False is
returned

PASS,
line 289

Valid
resumeitem id

The resume
item is
deleted and
return true

PASS,
line 290

resume_get_ resumeitem(resumeitemid) Invalid
resumeitemid

False is
returned

PASS,
line 310

Valid
resumeitemid

Return
resumeitem

PASS,
line 311

resume_get_resumeitems(resumeid) Invalid
resumeid

False is
returned

PASS,
line 336

Valid resume Return
resumeitems

PASS,
line 337

resume_get_resumeitems_by_tag(resumeid,
tagid)

Invalid
resumeid

False is
returned

PASS,
line 368

Invalid tagid False is
returned

PASS,
line 369

Valid resumeid
Valid tagid

Return
resumeitems

PASS,
line 370

7

Function Test
parameters

Expected
result

Test
result

resume_add_tag_instance(tag) Invalid tag False is
returned

PASS,
line 385

Valid tag The tag is
added and
return id

PASS,
line 383

resume_update_tag_instance(tag)

Invalid tag False is
returned

PASS,
line 419

Duplicate

names in tag

False is

returned

PASS,

line 413

Valid tag Tag is
updated and
return true

PASS,
line 409

resume_delete_tag_instance(tagid) Invalid tag id False is
returned

PASS,
line 442

Valid tag id The tag is
deleted and
return true

PASS,
line 439

resume_swap_tag_order(tagid, direction) Valid swap up Update tag
order and
return true

PASS,
line 480,
line 485,
line 486

Valid swap
down

Update tag
order and
return true

PASS,
line 470,
line 475,
line 476

resume_get_tag(tagid) Invalid tag id False is
returned

PASS,
line 504

Valid tag id Return tag PASS,
line 505

resume_get_tags() No parameters All the tags
are returned

PASS,
line 520

8

A.2 Payment plug-in

For the Payment plug-in, we will define the following tests:

Function Test
parameters

Expected
result

Test
result

payment_add_payment_instance(payment) Invalid
payment

Return false PASS,
line 53

Valid payment Payment has
been added
to the
database and
return the id

PASS,
line 54

payment_update_payment_instance(payment
)

Invalid
payment

Return false PASS,
line 71

Valid payment Payment has
been updated
in the

database and
return true

PASS,
line 70

payment_close_payment(paymentid) Invalid
payment id

Return false PASS,
line 90

Valid payment
id

Payment has
been updated

in the
database and
return true

PASS,
line 91,

line 92

payment_open_payment(paymentid) Invalid
payment id

Return false PASS,
line 114

Valid payment
id

Payment has
been updated
in the
database and
return true

PASS,
line 115,
line 116

payment_delete_payment_instance(paymentid
)

Invalid
payment id

Return false PASS,
line 133

Valid payment
id

Payment has
been deleted
from the
database and
return true

PASS,
line 134

payment_get_payment(paymentid) Invalid
paymentid

Return false PASS,
line 150

Valid
paymentid

Return
payment

PASS,
line 151

9

Function Test
parameters

Expected
result

Test
result

payment_get_remaining_amount(payment) Invalid
payment

Return false PASS,
line 170

Valid payment
Sumof(transacti
ons)=0

Return target PASS,
line 171

Valid payment
Sumof(transacti
ons)<target

Return
positive
amount

PASS,
line 178

Valid payment
Sumof(transacti
ons)=target

Return 0 PASS,
line 185

Valid payment
Sumof(transacti
ons)>target

Return
negative
amount

PASS,
line 192

payment_get_remaining_days(payment) Invalid
payment

Return false PASS,
line 212

Valid payment
Today<=deadli
ne

Deadline not
passed

PASS,
line 214,
line 215

Valid payment
Today>deadlin

e

Deadline has
passed

PASS,
line 213

payment_get_payments() No parameters Return
payments

PASS,
line 232

payment_get_payments_overview(user_id,
course_id, show_closed, sort, is_asc, start,
limit)

All default
values

Return
payments

PASS,
line 279

Valid userid,
other default
values

Return
payments

PASS,
line 289,
line 298,
line 304

Invalid userid,
other default
values

Return false PASS,
line 309

Valid courseid,
other default
values

Return
payments

PASS,
line 328,
line 333

Invalid
courseid, other
default values

Return false PASS,
line 338

10

Function Test
parameters

Expected
result

Test
result

payment_get_payment_record_count(user_id,
course_id, show_closed)

All default
values

Return
number of
payments

PASS,
line 365

Valid userid,
other default
values

Return
number of
payments

PASS,
line 366

Invalid userid,
other default

values

Return 0 PASS,
line 367

Valid courseid,
other default
values

Return
number of
payments

PASS,
line 368

Invalid
courseid, other
default values

Return 0 PASS,
line 369

Valid userid
and valid
courseid

Return
number of
payments

PASS,
line 370

payment_add_transaction_instance(
transaction)

Invalid
transaction

Return false PASS,
line 393

Valid

transaction
with invalid
payment id

Return false PASS,

line 400

Valid
transaction
with valid
payment id

Transaction
has been
added to the
database and
return the id

PASS,
line 397

payment_update_transaction_instance(
transaction)

Invalid
transaction

Return false PASS,
line 423

Valid
transaction
with invalid
payment id

Return false PASS,
line 425

Valid
transaction
with valid
payment id

Transaction
has been
updated in
the database
and return
the id

PASS,
line 424

payment_delete_transaction_instance(
transactionid)

Valid
transaction id

Transaction
has been
deleted from
the database
and return
true

PASS,
line 443

payment_get_transaction(transactionid) Invalid
transaction id

Return false PASS,
line 460

Valid
transaction

Returns
transaction

PASS,
line 461

payment_get_payment_methods() No parameters Return
payment
methods

PASS,
line 470

11

Function Test
parameters

Expected
result

Test
result

payment_get_transactions_by_payment(
paymentid)

Invalid
payment id

Return false PASS,
line 491

Valid payment
id
Payment has
transactions

Returns list
of
transactions

PASS,
line 492

payment_get_transaction_overview(
payment_id, sort, is_asc, start, limit)

All default
values

Return
transactions

PASS,
line 546

Invalid
payment id

Return false PASS,
line 544

Valid payment
id

Return
transactions

PASS,
line 545

payment_get_transaction_record_count(
paymentid)

Invalid
payment id

Return 0 PASS,
line 565

Valid payment
id

Return
amount of
transactions

PASS,
line 566

12

A.3 Enrol request plug-in

For the enrol request plug-in, we will define the following tests:

Function Test
parameters

Expected
result

Test
result

enrolrequest_create_enrolrequest(user_id,
course_id)

Invalid user id,
valid course id

Return false PASS,
line 41

Valid user id,
invalid course
id

Return false PASS,
line 42

Valid user id,
valid course id

A enrol
request was
created with
the course
and user,
return id

PASS,
line 43

enrolrequest_delete_enrolrequest(

enrolrequest_id)

Invalid enrol

request id

Return false PASS,

line 58

Valid enrol
request id

A enrol
request was
deleted and
return true

PASS,
line 59,
line 60

enrolrequest_get_enrolrequest(

enrolrequest_id)

Invalid enrol

request id

Return false PASS,

line 75

Valid enrol
request id

Return enrol
request

PASS,
line 76

enrolrequest_accept_enrolrequest(
enrolrequest)

Invalid enrol
request

Return false PASS,
line 91

Valid enrol
request id

Return true PASS,
line 92

enrolrequest_get_enrolrequest_overview(
user_id, course_id, sort, is_asc, start, limit)

All default
values

Return enrol
requests

PASS,
line 169

Invalid user id,
other default
values

Return false PASS,
line 161

Valid user id,
other default
values

Return enrol
requests

PASS,
line 162

Invalid course
id, other
default values

Return false PASS,
line 164

Valid course id,
other default
values

Return enrol
requests

PASS,
line 165

Valid user id,
valid course id,
other default
values

Return enrol
requests

PASS,
line 156

13

Function Test
parameters

Expected
result

Test
result

enrolrequest_get_enrolrequest_record_count(
user_id, course_id)

All default
values

Return enrol
requests

PASS,
line 191

Invalid user id,
default course
id

Return 0 PASS,
line 192

Default user id,
invalid course
id

Return 0 PASS,
line 193

Valid user id,
valid course id

Return enrol
requests

PASS,
line 194

14

Appendix B: Integration test results

We have divided the Selenium test cases over four test suites, namely:

 [Suite]Payment.xml
 [Suite]Resume.xml
 [Suite]Resume tags.xml
 [Suite]Enrolrequest.xml

Each test suite consists of all the test cases defined for the plug-in. Each suite is build up with
the creation of the needed resources such as user and course objects. After the tests have
run, all created objects are destroyed again.

Below is an overview of the contents of the different test suites and how they correspond to
the test scenarios.

Resume Test Suite Test Scenarios

CreateStudent

CreateCourse

EnrollStudent

LoginAsStudent

LoginToCourse

CreateResume(Student) Res013STA

FillResumeFields Res003TA/ Res014STA

Add Education Res003TA/ Res014STA

Add Seminar Res003TA/ Res014STA

Edit Education Res003TA/ Res014STA

Add OJT Res003TA/ Res014STA

Add Education invalid Res003TA/ Res014STA

Return as Admin

Goto Resume overview

Select student resume

Finalize Resume Res003TA/ Res014STA

Resume unfinalize Res003TA

Remove Education Res003TA/ Res014STA

Resume export Res002TA/Res005TA

Delete Resume Res006TA

DeleteCourse

DeleteStudent

Resume tags Test Suite

ViewTags

AddTag

MoveTagUp

MoveTagDown

EditTag

DeleteTag

15

Payment test suite

CreateStudent

CreateCourse

LoginAsStudent

StudentEnrol

ReturnAsAdmin

AcceptEnrolrequest

View Payments Pay010TA

VerifyPayment5100

EditPayment Pay011TA

VerifyPayment5100

AddPaymentDuplicate Pay012TA

ViewTransactions Pay007TA

Add Transaction Pay008TA

VerifyPayment4100

View transactions Pay007TA

Add Transaction invalid Pay008TA

VerifyPayment4100

View transactions Pay007TA

Edit transaction Pay009TA

VerifyPayment100

ViewTransactions Pay007TA

Close Payment Pay013TA

VerifyPayment100

ViewTransactions Pay007TA

Delete Transaction fail Pay014TA

Edit Transaction fail Pay009TA

VerifyPayment100

Open Payment Pay013TA

Delete Transaction Pay014TA

DeletePayment

AddPayment Pay012TA

VerifyPayment1200

View transactions

DeletePayment

DeleteStudent

DeleteCourse

Enrolrequest Test Suite

CreateStudent

CreateCourse

LoginAsStudent

StudentEnrol request

ReturnAsAdmin

DeleteEnrolrequest

LoginAsStudent

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

IHC Moodle manual
July 20, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Index

Preface .. 2
1. Install procedure ... 3

1.1 Post install settings ... 3
1.2 Theme settings .. 4
1.3 Block settings... 4
1.4 Course settings .. 5
1.5 Video functionality settings .. 7
1.6 Front page settings ... 7

2. Course management .. 8
2.1 Creating a course ... 8
2.2 Editing mode ... 8
2.3 Adding a resource .. 9
2.4 Adding a quiz ... 9
2.5 Adding videos .. 10
2.6 Create a backup / template ... 12
2.7 Create a course from a template .. 13

3. Enrol request .. 14
4. Payment ... 15

4.1 Payment overview .. 15
4.2 Adding a transaction ... 16
4.3 Transaction overview .. 17

5. Resume .. 18
5.1 Creating a resume .. 18
5.2 Defining tags ... 19
5.3 Resume overview ... 20

6. User management ... 21
6.1 Adding a user .. 21
6.2 Editing users .. 22

2

Preface

This document contains the manual for the system developed for the International Institute
of Human Capital (IHC). The manuals will cover some basic information about Moodle usage
and of course detailed information about the plug-ins we wrote.

The basis of the system is Moodle. This open source Learning Management System has a lot
of prebuilt functions which are of great value to IHC. On top of Moodle, 3 plug-ins were
installed:

1. Enrol request
2. Payment
3. Resume

Enrol request is a plug-in which takes care of the enrolment of students. This plug-in enables
students to request an enrolment for a course (after registering to the site). The student will
then have to wait for a teacher or administrator to accept or decline the enrolment.

The payment plug-in takes care of the payments done by the student. When a student is
enrolled in a course, a payment is created (with a debt equal to the price of following the
course). The teacher of administrator can then input information about the transactions
(small payments) made by the student to IHC in the system. The payment plug-in will keep
track of how much students have paid over time and gives an overview of open debts to IHC.

The resume plug-in finally, is a plug-in which facilitates a part of the courses provided by IHC.
One of the tasks students are asked to do while following a course at IHC is to build a
resume. The resume plug-in provides the students with forms and information to help them
create a standardized resume. This standardized resume is then also used in the
endorsement of the students.

3

1. Install procedure

The system can be installed by unpacking the zip-file containing both Moodle 1.9 and the
plug-ins on the web server. Next, a database has to be created (or an existing database can
be used) where Moodle can store its data. Both actions can be done through the control
panel of the web server.

The Moodle installation can be run by visiting the location where you extracted the zip-file.
On this website, the Moodle installation will appear where it will guide you through the
installation wizard. This process is described at the following website:
http://docs.moodle.org/en/Installing_Moodle

Note: We recommend that the installation should be run by someone with experience in
installing and configuring web servers.

1.1 Post install settings

After all the database tables have been created, a screen with options for the Administrator
account will appear:

Fill in the required information and click on “Update profile”.

On the next page, fill in “International Institute of Human Capital” as Full site name. In the
second field, fill in “IHC”. Next, scroll down and in the Self Registration dropdown box select
“E-mail based self-registration”:

This will enable students to register themselves for the system. Click on “Save Changes” to
finalize the installation.

http://docs.moodle.org/en/Installing_Moodle

4

1.2 Theme settings

After the system is installed, some basic settings need to be changed. First of all, the theme
of Moodle needs to be changed.

To do this, the administrator navigates to “Theme Selector” in the administrator menu on the
left:

Choose a theme from the list (the default IHC theme is called Foodle) and click on “Choose”
to enable the theme.

1.3 Block settings

Next it’s time to clean up the user interface by disabling some of the blocks we won’t use.
The administrator navigates to “Manage blocks”:

A list of installed blocks is displayed. The blocks we won’t need are:

 Latest News
 Recent Activity
 Search Forums

Disable them by clicking on the eye right of the block’s name. The name of the block will turn
grey once it has been disabled.

Now we will make sure that the Enrol request, Payment and Resume block are displayed in
the system. The administrator navigates to “Sticky blocks”, the option below “Manage
blocks”.

At the dropdown box select “Course page”. Use the “Add...” option, to add Payment and
Resume to the page.

5

Adding these blocks to the page will make sure that the Enrol request, Payment and Resume
blocks are always visible in a course.

Finally, we will add a “Courses” block to the front page. This block displays the courses a user
is enrolled in.

The administrator navigates to the front page. To add blocks to the front page, editing must
be enabled. Click on the “Turn editing on” button in the top right corner to do this:

You will notice that a lot of new icons appeared. These can be used to move, edit, delete or
add things to the page. Again, we use the “Add...” option to add the block:

Use the arrows to move the block to the left side of the screen:

When the block is in place, click on “Turn editing off”, to disable editing.

1.4 Course settings

Now we will have to set some course default settings. The administrator navigates to the
“Course default settings” menu:

In this screen, set the Format to “Topics” and the Number of weeks / topics to “5”. Also,
make sure that “Maximum upload size” is set at 16 MB. (For more information see the Video
functionality settings section)

Next, click on “Enrolments”. A list with enrolment methods is displayed.

6

Enable the Enrol Request plug-in, and make sure it is set to “default”. This will enable the
Enrol request plug-in as the default enrolment for courses in the system.

7

1.5 Video functionality settings

The Moodle system implements video functionality through the forums. When a student
wants to upload a video for others to review, he can create a new topic in the appropriate
forum. (For more on forums, see the Adding video’s section)

To enable the video functionality in the forums, there are two choices to make:

- What is the maximum allowed video size?
- What different video formats can the system handle?

For the video size, we recommend a single video should not be larger than 16 MB. This
should be more than sufficient for most videos, and prevents the users from uploading
bloated files.

 To enable the different video formats to be recognized by Moodle, the administrator
navigates to “Manage Filters” in the administrator menu on the left:

Click on the disable/enable button of “Multimedia plugins” to enable the video player. Next,
click on the “Settings” button of the “Multimedia plugins” to choose the different supported
formats. We recommend you keep these settings on their default values.

1.6 Front page settings

Finally, it’s time to customize the appearance of the Front page. The administrator navigates
to Front Page settings in the administrator menu:

Then change the settings, so that they match the following picture:

8

2. Course management

The default Moodle install has no courses. Using this manual, we will create one and add
some resources to the course.

2.1 Creating a course

First, we will need to create the course. To do this, log in as an administrator and check the
menu on the left:

When clicked on “Add/edit courses”, an overview of course categories will appear. Choose in
which category the course needs to be created or create a new category to put the course

into. Next, click on the “Add a new course” button.

Enter a full name and short name and do not forget to fill in the “cost” of the course. After
submitting, click on “Click here to enter your course” to access the course.

2.2 Editing mode

You will see the overview of the course. Off course the course materials are still missing. To
add resources to a course, editing must be enabled. Do this, by clicking “Turn editing on” in
the top right corner of your screen:

This mode will enable you to edit your course. You will notice that on a lot of places new
icons appeared. Every row with a number in front of it is called a “topic”. A topic defines a
part of the course. In a topic, 2 dropdown boxes appeared: “Add a resource” and “Add an
activity”. We will use these dropdown boxes to add resources to the course.

9

2.3 Adding a resource

First of all, let’s start by adding a simple document to a topic. Navigate to the topic you want
to add a resource to and select “Link to a file or web site” from the dropdown box “Add a
resource”.

Enter a name for the resource you want to add. Then use the “Choose or upload a file ...”
button to upload a file. When finished, press “Save and return to course” and the resource
will be added to the course.

2.4 Adding a quiz

Next, we will add a small quiz to the course. Choose “Feedback” from the “Add an activity”
dropdown box. Again, enter a name and description and under “Record user names” choose
if you want to results to be anonymous or with names. Define what message a user sees

when he finished the quiz at “Page after submit”. Click on “Save and display” to start creating
questions:

Navigate to “Edit questions” to add questions to the quiz. Choose what kind of question type
you would want to add using the dropdown box. A page will appear, in which you can define
your question:

10

Repeat these steps to add different questions to the quiz. As you can see, several other
options are available in the Feedback module:

 Templates (create and restore templates for quizzes)
 Analysis (analyse results)
 Show responses

When students have filled in the questions you can use these options to analyse the results.
When you’re done adding questions, navigate back to the course overview.

2.5 Adding videos

Next, we want to enable students to post their videos. We will use Moodle’s built-in Forum for
this. Select “Forum” from the “Add an activity” dropdown box. Enter a forum name and forum
introduction. Make sure you set the “Maximum attachement size” setting to “Course default”
and click “Save and display” to navigate to the Forum.

As you can see, no discussion topics have been defined. Click on “Add a new discussion topic”
to create one:

Enter a subject and a message. Use the “Attachment” to add a video of your own to the post.
The video will automatically be embedded in the post. Click on “Post to forum” to save the
post.

11

You’ll see that a new topic has been created. Click on the name of the topic to enter it. Inside
you will see your post:

Students will be able to see this forum and reply to the videos in the same way we’ve just
added one.

It’s time to head back to the course and see what we have created. Navigate to the course
and click on “Turn editing off” to disabled editing. Your course will look something like this:

As you can see we have created a course with 3 items:

 Resource
 Quiz / Questionnaire
 Forum / Video

Your course is ready to be used. Repeat the steps above to add more items to the course.

12

2.6 Create a backup / template

For the creation of a backup of a course the administrator goes to the course introduction
screen en clicks on backup in the administration block.

Now a screen with a lot of options will be shown. With these options the administrator can
select which data should be saved. All the activities are shown (like questionnaires,
documents and other resources) and whether to save the user data or not.

When making a template, all user data checkboxes should not be selected. This can be done
by clicking on the “all/none” at the top.

When making a template there is also a possibility to deselect the activity specific checkboxes

for course specific data. Also the users should not be in the backup when making a template,
so “none” should be selected in the users selection box.

For backups, all data should be included so all the checkboxes should be selected. And the
user select box should be set to the default value “course”.

Now all data has been selected the administrator clicks “continue”. A new screen will be
shown where the backup can be given a name and check if you are sure you selected the
correct data. This information should be checked and then “continue” can be clicked.

The result of the backup will be shown and the administrator can click “continue” again.

When successful, the data has been created and the directory where the backup is stored is
shown. Now the administrator is able to download it to the hard disk or restore the backup.

13

2.7 Create a course from a template

For creating templates the administrator needs to import all the data from a template course.
The template course can be made by the backup option. For importing the data the
administrator has to navigate to a course. In the course the administrator can click on
“Restore” in the administrator block. If a template course is already in the system, the
“Import” option can be used. This works almost the same as the restore option.

In the restore screen, the administrator can select the data to be restored. The administrator
should select the backup file. Older backup files can be uploaded to the system.

When the correct backup file is selected, the administrator clicks on “restore”. The
administrator should check if the information on the next screen is correct and click on “yes”.
Again information will be shown, which follows by “continue”. When clicked, a new screen will
be shown with all the options what to do.

The first option is if the template is to be added to an existing course or a new course. Select
the preferred option here. If a new course is created, the category, short name and course
name should be filled in.

After that, the options of what to restore is shown. This data should be correct, since it
comes from a template and all can be left to default. If there are options which are not to be
included, here is the possibility to deselect the specific activities or resources.

Now all the options are set, the administrator can click “continue”. When an existing course is
selected, the list of current courses is shown. Select the course the data needs to be added
to. Otherwise, you will have the last option to cancel. The administrator can click on “Restore
this course now!”.

A list of what is done is now shown and the administrator can click “continue”. Now the
course is created and shown.

14

3. Enrol request

Students are free to register themselves into the system. However, by default, they are not
yet enrolled in any course. When a student logs into the system, he will see an overview of
the available courses.

When a student clicks on one of those courses, a page will appear with enrolment
information:

When the students chooses to enrol, an enrol request is created.

The administrator can then navigate to the enrol request section, by clicking on “View
enrolment requests” in the block on the right side of the page. This block will also display
information about how many requests are still open:

The administrator arrives on the enrol request overview screen:

On this page the administrator can:

 View user information (by clicking on the student)
 Accept the enrol request (green button)
 Delete enrol request

The dropdown boxes at the top of the page can be used to make a selection of all the enrol
requests that match those criteria.

When an enrol request is accepted, the student is enrolled in the course and a payment for
that course is created.

15

4. Payment

Once a student is enrolled in a course, a payment is created. For the student, details about
this payment are visible in a block on the right of the screen:

For the administrator a block with a link to the payment overview is displayed:

4.1 Payment overview

When a student has fulfilled a part of his debt to IHC, the administrator can put this
information in the system by clicking on the “view payment status” button. This will bring him
to the payment overview:

16

On the payment overview page, all the students who have debts to IHC are displayed. On
this screen, the administrator has the option to:

 View transactions of one user (by clicking on the user)
 Edit the payment information (i.e. when the cost of a course changed)
 Delete the payment (when a payment is no longer valid)
 Close the payment (when a payment is fulfilled)
 Add transactions to a payment (when a student fulfilled a part of his debt)
 Add a payment (when a new payment must be made)
 View all transactions
 Print this page

Using the dropdown boxes for users and courses, the administrator can search for payments
that fit the criteria. The checkbox “Show closed payments” is used whether to show
payments that have been closed.

4.2 Adding a transaction

The most common function in this plug-in will be the adding of a transaction, when a student
has (partially) fulfilled his debt to IHC. To do this, the administrator searches for the payment
of the student and clicks on “Add transaction”. The following page shows the required
information for adding this transaction:

17

4.3 Transaction overview

When the transaction has been added, click on the name of the student to see an overview of
all the transactions that the student has made:

Again, the administrator has several options:

 Edit the transaction

 Delete the transaction
 Add a new transaction
 Print the page
 Print all the selected records (when there are a lot of transactions, print them all

instead of just the visible page)

When a student has fulfilled his payment, the administrator navigates to his payment and
clicks on “Close payment”.

18

5. Resume

Part of the course given at IHC is creating a resume. For students, this option is accessible by
clicking on the block on the right site of the page, while in a course:

For the administrator, the resume overview is accessible by clicking on the “View resumes”
button in the block on the right site of the page:

5.1 Creating a resume

When a student clicks on “Continue editing your resume”, the following page is shown:

On this page, the student can:

 Edit his personal information (linked to the user information in the system)

 Add information (by tag, more on tags later)
 Edit information
 Delete information
 Finalize resume (bottom checkbox)
 Show preview (export resume to printable format)

19

Using this form, the student can build his standardized resume. When a student is done
building his resume, he can check the checkbox at the bottom of the page and click “Submit”.
The resume is then no longer editable by the student.

5.2 Defining tags

As stated before, the information (i.e. education, OJT or seminar) is defined by tags. These
tags can be created, edited or deleted by the administrator. To do this, the administrator
clicks on “View resumes” in the block on the right side of the page to access the resume
overview.

Using the menu on the top of the page, the administrator navigates to “Tag overview”, which
contains information about the tags used for building the resume:

On this page the administrator can:

 Re-arrange the tags order
 Edit a tag
 Delete a tag (all the information using this tag supplied by the students will be

deleted too!)
 Add a tag

Note: It is recommended to think about which tags will be used in the system, and only edit
them when no students are building their resume, because changes in the tags are system-
wide and affect all resumes.

20

5.3 Resume overview

When all tags are set properly, and students have built their resumes and finalized it, the
administrator can navigate to the resume overview, to see an overview of all the resumes in
the system:

On this page the administrator can use the dropdown boxes to select resumes matching the
criteria. The checkbox is used whether to show finalized resumes. Furthermore, the
administrator can:

 Edit a resume
 Delete a resume
 Un-finalize a resume
 Export resume (to a printable format)
 Send a message to the student (to comment on their resume)

21

6. User management

By default, users can register themselves for the system. Sometimes however, the
administrator will want to manually add users to the system.

6.1 Adding a user

The administrator navigates to the user menu:

A form is shown, where the administrator can input the account details:

To add the user to the system, click on “Update profile”.

22

6.2 Editing users

The system also allows an administrator to edit user information. This is handy, because this
way missing information about the students which they didn’t put in themselves can be
added.

The administrator menu on the left has an option to “Browse a list of users”. This displays an
overview of the users in the system:

When the administrator clicks on “Edit”, the form for editing a user is shown (the form is the
same as for adding a user, but now the information is already filled in). The administrator can
also choose to “Delete” or “Confirm” a user.

When a user has registered for the site, but did not reply on his confirmation e-mail (which is
sent automatically by the system) the user is shown as unconfirmed. By clicking “Confirm”
the administrator manually accepts the user in the system.

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Final Report BSc Project IN3405
September 21, 2009

Delft University of Technology

Faculty of EEMCS
Developed for IHC Maarten van der Beek - 1217356

Coördinator IHC: V.A. Pijano III Aad van Buuren - 1243950

Coordinator DUT: ir. B.R. Sodoyer René Pingen - 1263080

1

Preface

This document is the final part of our Bachelor-project for Computer Science at the Delft

University of Technology. This project, which was done at the International Institute of
Human Capital in Manila, Philippines, is about applying the concepts and technologies that

have been learned in earlier stages of the Bachelor program.

After completing this project, the students are able to analyze projects in teams, generate

solutions and select, specify, implement and test project based assignments. Furthermore
they have the capability to plan these assignments, execute them and finally present them to

the world.

With this document we will describe the process we have executed and evaluated the goals

we set at the beginning of the project. We will then present our results, conclude whether the
project was a success and provide recommendations.

We will start with a short introduction to the project. In Chapter 2, we will describe the

process we went through, divided in the different phases of the project. After describing our

process, we will show our results and draw conclusions in Chapter 3. In Chapter 4 we will
evaluate these results and conclusions and state our recommendations for future work.

Due to the fact that our technical documents of this project are very detailed, we have limited

this final report to describing the process of the project. For detailed information about the
technical specifications of the system, we refer you to the appendices.

We owe many thanks to several people that have helped us during the project. First of all to
Bernard Sodoyer and Tito Pijano III who have guided us through the different phases of the

project and gave invaluable information about the quality of our work. Furthermore we would
like to thank Jan de Vries and Bert Geers for making this international project possible. Doing

our Bachelor-project in de the Philippines was a chance we wouldn’t want to miss in a

lifetime. Finally many thanks to Noemi Cancio, Araceli Tiukinhoy and Felix Tiukinhoy, who
have made sure that we felt more than welcome in the Philippines and took great care of us

during our stay there.

2

Index

Preface ... 1
Summary .. 3
1. Introduction .. 4
2. Process description.. 5

2.1 Problem description and analysis .. 5
2.2 Design of the system.. 6
2.3 System implementation .. 7
2.4 Testing .. 8
2.5 Deployment and training .. 8

3. Results and conclusions ... 10
4. Recommendations ... 11
Appendix A: Project Approach .. 12
Appendix B: Domain Analysis ... 12
Appendix C: Requirements Analysis Document .. 12
Appendix D: Architectural Design Document ... 12
Appendix E: Technical Design Document .. 12
Appendix F: Implementation Plan .. 12
Appendix G: MoSCoW Document ... 12
Appendix H: Test Plan ... 12
Appendix I: Test Report .. 12
Appendix J: IHC Moodle Manual ... 12

3

Summary

This document is about our Bachelor-project which took place at the International Institute of

Human Capital (IHC) in Manila, Philippines. The project’s main goal was to create an online
learning environment to automate and support the daily activities of the students and

employees. Furthermore we focused on online video possibilities, quality assurance and the

deployment of a fully functional system.

To achieve these goals we followed the software engineering trajectory as taught at Delft
University of Technology (DUT). This trajectory consisted of creating several documents,

divided in project initiation, system design, implementation, testing and deployment. The
documents produces can be found in the appendices.

The initiation phase consisted of a project approach and a domain analysis. Thinking about
these subjects helped us in setting project boundaries and creating a problem description.

In the design phase we gathered requirements using interviews with the staff of IHC and

used these results to create a design for the system. Our design is based on a Moodle system

(an open-source e-learning system) with three additional plug-ins:

 The resume plug-in

 The payment plug-in

 The enrol request plug-in

After moving through the project initiation and system design phase, we could start

implementing the system. A decision was made to use test-driven development, which led to
some difficulties. Therefore we made a successful change in the way of implementing and

had a lot less trouble implementing the second and third plug-in. From thereon the project

went very smooth. A lot of code and comments was written and besides using Moodle’s
SimpleTest for unit testing, we were able to do integration testing using Selenium.

The deployment of the system was an important part of our project. We wanted to be sure

that the IHC staff would be able to use the system properly when our project in the

Philippines would end. This was the reason we put quite some time in training for the staff of
IHC, using the specially written manual as a basis.

In the end we met our goal to deliver a fully functional and reliable system. The 2½ months

we had set to finish the project proved to be enough. Because of our focus on deployment
the system is now completely ready to be used by the IHC, including all the required video

functionality. We can also assure the reliability of the system is high because of the extensive

testing. Taking all these factors into consideration, we can conclude that all requirements
were met and a fully functional system was successfully delivered for IHC.

4

1. Introduction

The International Institute of Human Capital (IHC) is an institute located in Metro Manila,

Philippines which provides soft skill courses for students in hospitality management. IHC is a
small institute, which is run by former teachers and trainers. Currently, the administration of

IHC is mostly handwritten, while communications go through phone and email.

Our primary assignment was to create an online learning environment to automate and

support the daily activities of the students and employees. With this system, the employees
have more time to focus on the courses, while the quality of the courses improves.

Another focus of our assignment was the possibility for online video playback. Role-playing is

a big part of most of the courses given by IHC and these sessions are recorded on video. The

ability to upload videos enables students to review each other, which is a great addition to
the learning process.

At the start of the project we executed an extensive domain analysis and interviewed the

employees of IHC. During this phase, we discovered some additional requirements for the

system. While keeping with the original assignment, we added the new requirements and
tried to deliver a system that completely fits the needs of IHC.

Besides our assignment’s goals, our main goal of this project was to deliver a fully functional

system, so that the work and research we had done during the project would actually make a
difference. This, besides giving a satisfactory feeling about the project, also was a great

advantage for IHC, since having this system would enable them to improve their efficiency

and enabling them to take the next step in becoming a larger institute with a wider reach.

5

2. Process description

In this chapter all parts of the project will be described more thoroughly and design decisions

will be explained. For the more technical details, we will mostly refer to the created
documents during the project. All of these documents can be found in the appendices.

During the project, we followed the process methods of the material used in the Software
Engineering course1 given by Delft University of Technology. In this course we learned the

basics of the software engineering trajectory. We started with the analysis of the problem,
followed by the design and implementation phase. We already had some experience with

designing software, acquired during projects in the bachelor phase of our study.

The process of testing and quality control is described in the material for the second course

of Software Engineering, Software quality and Testing2. We used this book as a guideline in
the testing phase.

Deployment was one important aspect for this project. From earlier projects we noticed that

students did not know whether their product was actually used after finishing their project.

We wanted to avoid this, by paying attention to the deployment of the system. To do this we
decided that writing manuals and the training of employees was an important part of our

project.

2.1 Problem description and analysis

When we started working on the project in the Netherlands we had already received some

information about the Terms of Reference of the project. This would define our first aim at
the problem description of the project. We also received some documentation from a similar

project from which we were able to construct a Project Approach3.

For the project approach we looked into related projects and did some research on different

technologies. The document explains that the goal of the project is to help the IHC improve
their way of teaching the students by automating some of the tasks necessary for these

courses. Following the goals, we made a planning to completely finish the product in 2½
months and defined the structure of the project. Quality assurance is also mentioned in the

project approach since it was important to make sure we would deliver a qualitatively good

product.

With the goals and structure of the project clear, we were able to clearly explain the project
details to the IHC. At this point, we were ready to go to the Philippines and really start the

project. Later in the project we did some small updates to the initial planning due to the fact
that we did not have all the required information at the beginning of the project.

When we arrived in the Philippines we walked through the project details and had a lot of
meetings with the staff about their wishes. The structure and the goal of the project were

quite clear, but the exact requirements needed to be gathered. We started with a Domain
Analysis4, which we used later for defining the requirements. Acquiring knowledge of the

domain made it possible to analyze the workflow of the institute, and allowed us to

communicate with the employees more clearly.

1 Object-Oriented Software Engineering, 2nd edition, Timothy C.Lethbridge and Robert

Laganiere, McGraw-Hill, ISBN 0-07-70109082
2 M. Pezze & M. Young. Software Testing and Analysis. Wiley, 2007, ISBN 978-0471455936
3 Project Approach – Appendix A
4 Domain Analysis – Appendix B

6

2.2 Design of the system

After our initial domain analysis and requirements elicitation, which resulted in our

Requirements Analysis Document5, we soon decided that Moodle6 was the framework on
which we would build the system. Moodle is an open source Learning Management System

(LMS), which is widely used around the world. By using Moodle, we made sure we had a solid

framework on which we could build the remaining functionality.

On top of Moodle, three plug-ins were required to fulfil all the requirements of IHC:

 The resume plug-in

 The payment plug-in

 The enrol request plug-in

Initially, we came to the conclusion that only two plug-ins were needed: one plug-in that

allows students to construct a standardized resume online and a second plug-in that made it

possible to keep track of payments and transactions made by students. Later we discovered
that the payment plug-in required a special enrolment system where students could request

enrolments for courses, by accepting a payment. This resulted in a third plug-in, the enrol
request plug-in.

Next to our plug-ins, video functionality was also a very important part of our assignment.
After some research we found out that Moodle supports the upload and playback of videos

within the forum functionality. Using this functionality, we had two more design issues to
process:

 Bandwidth and storage limitations

 Uploading the video’s from camera to our system

To figure out the bandwidth and storage limitations, we had two aspects to consider. First of

all, what size the videos would have to be, which depends mainly on quality and length of the
video. The second aspect was the hosting and internet availability in the Philippines. With

some simple calculations7, we decided that videos in ‘Youtube’ quality can be hosted on the
website IHC already owns, without having bandwidth and storage capacity limitations. We

should note however, that if IHC continues to grow, new hosting should be required in the

future.

Finally, the videos should be converted and uploaded from the recording device to the
website. While this is outside the scope of the system, it is an essential part of getting the

video functionality to work. In our Architectural Design Document8, we advice the institute
about our design goals, major design issues and an overview of the complete design of the

system.

Besides the RAD, which took care of the requirements, and the ADD, which took care of the

design decisions, we also constructed a Technical Design Document9. This document
contained detailed information about the technical specifications of the system, like the

packages that are developed and the class diagrams of the system.

From the information gathered with these three documents we could now see how the

system would be designed, which options would be implemented and how they would be
implemented.

5 Requirements Analysis Document – Appendix C
6 Moodle - www.moodle.org
7 The details can be found in the Architectural Design Document
8 Architectural Design Document – Appendix D
9 Technical Design Document – Appendix E

http://www.moodle.org/

7

2.3 System implementation

After completing a lot of documents it was time to actually start writing some of the code.

However, to just start coding away is not always proper way to develop a product. Therefore
we created an Implementation Plan10 and a MoSCoW Document11.

The implementation plan contains an overview of the different parts of the system that
needed to be programmed. These parts were then divided amongst the three of us to make

sure that everyone had about the same amount of work.

Besides stating the different parts of the system, the implementation plan also describes the
order in which these parts would be implemented. We figured that it would be best if we

started with the smallest plug-in. This way we could learn from the mistakes we would

inevitably make and still correct them easily.

The MoSCoW document was created to provide an overview of which functions must, should,
could and would like to be implemented. For this document we took the functional

requirements from the Requirements Analysis Document12 and divided all of these

requirements into the different categories. The ‘must have’ functionality consisted of users
being able to follow courses and using resources, while the ‘should have’ functionality

concentrated on permission management for example.

When we finished these two documents we started coding on the payment plug-in first. This
plug-in had the most basic functionality and was therefore a good place to start. We created

tests (thereby implementing test-driven development), wrote the stubs for the functions and

finally implemented these functions. After implementing the functions, all tests passed. When
we tried to attach our core functions to the graphic user interface, we encountered a

problem. Moodle has a very specified way of displaying information and we could not
immediately connect our functions to the Moodle interface.

To resolve the problem we created an extra file containing display-functions. These functions
wrapped the output of our functions to a format that Moodle easily understood. Using

Moodle’s internal display functions has a lot of advantages, for example a table in Moodle can
automatically be sorted on the columns specified in the function without having to write a

single extra line of code.

We had learned a lot from programming the payment plug-in. For developing the resume

plug-in we concentrated on creating our functions in a way that they could easily be tested
and displayed using the Moodle framework.

During the development of the payment and resume plug-ins, we had a lot of small meetings

with the employees of IHC to check if the system that we were implemented was coherent

with the way they operated at IHC.

The results of these meetings usually gave us some more insight about detailed processes at
IHC, which we could then apply to our code. During one of these meetings we found out that

the method of enrolling students for courses using the default Moodle method was not suited

for IHC. This meant we had to design a third plug-in, which would take care of the way
students enroll in the system. Since we wanted to deliver a fully functional system, the extra

work was necessary for our project to be successful.

10 Implementation Plan – Appendix F
11 MoSCoW Document – Appendix G
12 Requirements Analysis Document – Appendix C

8

2.4 Testing

Before we started the implementation phase of the project, we created a test plan, to make

sure our plug-ins will be tested thoroughly. The test phase was divided in two parts: unit
testing and link testing. We have designed the tests following the guidelines defined by

Moodle13.

Unit testing was done using the SimpleTest14 environment integrated within Moodle. While

designing the tests was a lot of work, the tests proved their usefulness in the end. We
managed to discover and resolve quite some bugs and could make sure every function

worked as specified by its contract.

In our test plan we defined scenario’s based on our use cases to create our integration tests.

After our system passed all the unit tests, we had to make sure that the different parts of the
system could work together as a whole system. While we initially planned on doing the

integration tests by hand, we soon discovered that Selenium15 is a powerful tool for running
integration tests. By running our integration tests we tested almost the entire interface and

back-end functionality of the plug-ins.

The system will contain sensitive information that needs to be protected, so security is also

an important aspect of the system. Assuming the Moodle framework itself is secure, we
focussed our manual tests on the security of the plug-ins. We did this by inserting falsified

data in the system and manually testing the permissions for each user.

Our testing phase turned out to be very effective. In the end the system could pass all tests,

and can now be considered stable and safe. For readers that are interested in technical
details of the testing phase, we refer you to the Test Plan16 and the Test Report17 documents.

2.5 Deployment and training

To make sure that the system we had developed would actually be used, training of the users
was needed. Moodle on itself is a very large system and users need some time to get to know

the system before they can really make proper use of it. On top of this, the plug-ins we wrote
added another layer of functionality (and therefore complexity) to the system.

To start off, we wrote a Moodle manual. This manual describes all the actions the users of
the system would have to be able to perform in detail, using screenshots and clear

descriptions of these functions. Most of the basic Moodle functions are already very well
documented on the Moodle website, so there was no need to copy and paste these into the

manual.

The trainings we did took place on a 1-to-1 basis. Having three people talking about their

system to a user that has never even completely seen that system is not very efficient.
Therefore we divided the trainings in three parts:

 Moodle management

 Payment plug-in

 Resume plug-in

13 Moodle documentation on unit testing - http://docs.moodle.org/en/Development:Unit_tests
14 SimpleTest - http://www.simpletest.org/
15 Selenium - http://www.openqa.org/selenium-ide/
16 Test Plan – Appendix H
17 Test Report – Appendix I

http://docs.moodle.org/en/Development:Unit_tests

http://www.simpletest.org/

http://www.openqa.org/selenium-ide/

9

The Moodle management training concerned using the basic functions of Moodle: creating

courses, adding resources to those courses, building course templates and of course creating
and enrolling users in the system using the enrol request plug-in.

For training the payment and resume plug-ins, we let the trainees create two accounts for

themselves. One user was created as an administrator and one as a student. This way we

could show both sides of the system, which would result in a better understanding of the way
the system works. Finally we suggested the trainees to go through the complete process of

the system in the order a normal student would do.

Besides training the users, we also needed a way to deploy the actual code within IHC. From
our repository we produced a folder containing our code for the plug-ins. We combined this

code with the latest Moodle package, hereby creating a package that, once it was uploaded

to a webserver, would automatically install Moodle and our plug-ins. Some of our plug-ins
required configuration but by using Moodle’s XMLDB structure we could add this configuration

to the install package using a XML file. Finally, to cover the complete process of installing and
configuring Moodle and our plug-ins, we added a full section about installing to the manual.

From a users point of view the system could now be properly used. However in case the
system would ever need to be adjusted or extended, detailed technical information would

also be needed. Therefore we have concentrated on creating detailed technical documents of
the system.

These technical documents, the installer and the trainings together make a package that

should be more than efficient for the system to work in a live environment and thereby

completing our goal to deliver a fully functional system.

10

3. Results and conclusions

Our primary goal, to create an online learning environment, is met. The staff of IHC is now

able to communicate through an online environment and the administration can be done
through this environment. This way the daily activities of students and employees are

automated and they will have more time to focus on the course.

The other focus, video playback, worked out very well. It is now possible to upload the videos

and review these through the online environment. This way the videos will be available for a
longer period and students can interact and learn from each other.

We have paid attention to quality assurance from the beginning. Because of our extensive

test suites, we can say that the system is highly reliable. Having looked at the problems that

might arise, like bandwidth shortage, we can say that the quality assurance this project is a
success. The Moodle framework really helped with this due to its usability and reliability.

Certainly the Moodle guidelines were of great help.

But not only does the system work in the technical way, the deployment was also success.

We managed to train the staff members using the specially written manual, on which we
received positive feedback. In the end we can say that the time we took for training

contributed to the successful deployment.

Several other things contributed to the success of this project as well. First the Software
Engineering course, which was of great help as a guideline for this project. Second the staff

members who were very willing to help us and tried to cooperate in the best way they could.

Last, we set achievable goals for the time that we had. This way the pressure was not really
high and we could focus on perfecting the deliverables.

Finally we can conclude we have met our main goal. We have produced a lot of documents,

tested much, trained hard and have delivered a fully functional system which IHC can

effectively use in their daily tasks.

11

4. Recommendations

Although we can conclude our project was a success, there is always room for improvement

and extension. Therefore we would like to make some recommendations:

For IHC, we advice that they will start using the system intensively as soon as possible. Even

though we wrote manuals and trained the users, the IHC employees and students will have
to implement the system in their workflow. This will take time and effort. We are aware that

Moodle is a complex system with a steep learning curve, but we are convinced that the
system we have delivered will be a valuable addition to IHC.

In the future, we think that the IHC could automate even more of their daily tasks. More

functions within Moodle could also be used to give the online learning environment an even

more important role within the courses, which will result in an even higher quality of
education.

We can also recommend using Moodle as a basis for an online learning environment. It has

proven itself as a reliable and pretty extensive framework, which is easy to extend with self

built plug-ins.

Delivering a fully functional system, by focussing extra on meeting the requirements, testing
and deployment is recommended. This will make sure that the project that has been done

will actually be used and can add value to the client it has been made for. It makes your work
relevant.

Before starting a project, it is important to research similar projects and technologies. We
decided to build our system on Moodle, which turned out to be a good decision. When

choosing a technology or framework, it is necessary to study the documentation. Neglecting
to do so can result in double work or invalid work, which is not desirable. Furthermore,

reading about similar projects can give you insights about pitfalls and problems which you

can then foresee and avoid.

Finally we have a recommendation for any student that is thinking about doing a project
abroad. You will have to start early with making arrangements, since communication and

actually getting things done in foreign countries can be quite a hassle. Furthermore it’s

important that you can work independent and you are disciplined. However don’t let small
fallbacks hold you back. In the end you will be the one doing your Bachelor-project in a

foreign country: learning new cultures, meeting new people and having one of the best
experiences in your life!

12

Appendix A: Project Approach

Appendix B: Domain Analysis

Appendix C: Requirements Analysis Document

Appendix D: Architectural Design Document

Appendix E: Technical Design Document

Appendix F: Implementation Plan

Appendix G: MoSCoW Document

Appendix H: Test Plan

Appendix I: Test Report

Appendix J: IHC Moodle Manual

A Learning Management System
for the International Institute
of Human Capital
In Makati City, Metro Manila, Philippines

Project approach
May 12, 2009

Maarten van der Beek - 1217356
Aad van Buuren - 1243950

René Pingen - 1263080

1

Preface

This document is a description of our approach to our bachelor project. It will supply us with
useful information about our planning, the requirements of the project, restrictions to the
project and the environment which we will encounter.

The information noted in this document will be used as a guideline for the project. This way
we will have a clear overview of what needs to be done and how we will accomplish our
goals.

We will start with a short introduction to our project, followed by a detailed description of the
project.

Summary

This project is about developing a Learning Management System for the International
Institute of Human Capital. We arrived at this institute through contacts provided by CICAT.
We plan to finish this project within 3 months divided in several phases including
documentation, testing and a final report.

Our major requirement will be to deliver a fully working project, within the given time. We
also will need to consider the costs and bandwidth use of the project. Quality will be assured
by regular meetings with our Philippine coordinator and contacts with our Dutch coordinator.

2

Index

1. Introduction .. 3
2. Project description ... 3

2.1 Project environment ... 3
2.2 Goal .. 3
2.3 Project description .. 4
2.4 Deliverables ... 4
2.5 Requirements and restrictions .. 4
2.6 Terms of reference ... 5

3. Time management .. 5

4. Project organization ... 6
4.1 Organization .. 6
4.2 Personnel .. 6
4.3 Financing... 6
4.4 Reporting .. 6
4.5 Resources .. 6

5. Quality assurance .. 7

Appendix A: Related projects .. 8
Asia-Link Programme: Mission Report ... 8
Office Skill Assessment Project: Design Document – Version 3.1...................................... 8
Bsc Project : Office Skill Assessment – Final report .. 8

Appendix B: Technologies to be used .. 9
The Moodle framework ... 9
Customizing Moodle ... 9

Testing ... 9
Other software used ... 9

Appendix C: Planning... 10

3

1. Introduction

In October 2008 we contacted Jan de Vries, the internship coordinator of our faculty, to talk
about the possibility to do a bachelor-project in a foreign country. He told us about CICAT1,
an institute with many contacts around the world, which was a perfect stepping stone for
finding a suitable project.

Bert Geers (our contact persons at CICAT) provided us with a list of options. We have had a
lot of contact with Harry Seip and Michel Meulpolder who have been to the Philippines before.
Also we have talked to Rutger Cobben and Roland de Boo who have been to Manila for their
bachelor-project as well. Since we heard some great stories from them, we knew the
Philippines were our place to go. Through Bert Geers we made contact with Vicente Pijano
III, who told us that the International Institute of Human Capital was looking for students to
develop an e-learning application. We discussed this project with Ir. B.R. Sodoyer, who
approved the project.

In the time between our approval and the actual beginning of the project we tried to arrange
financial support for our project and started working on our project approach and orientation
paper.

In this project approach we will give a detailed project description, containing the
environment, goals, deliverables, requirements and terms of reference. Next, we will provide
a detailed planning for our project. Since time is scarce, our planning will be quite strict.
Finally we will describe how tasks will be divided and how we make sure quality is ensured.

2. Project description

2.1 Project environment

The International Institute of Human Capital in Makati City, Metro Manila, Philippines is an
institute which supplies soft skill courses. The target of the institute is to provide courses for
a great number of people and universities and schools. Courses are sometimes given at the

institute itself, but providing courses on location is not uncommon. Because the building of
the institute itself is rather small, and courses are given on several different locations, a
central location where material could be stored would be an advantage.

The institute has been in business for a year now, and some courses have been given. In
order to broaden their customer base, the institute tried advertising and marketing their
product. Online marketing was not available yet, since a website had not yet been build.

Courses given by the institute involve a big number of printed papers, which include hand-
outs, course manuals, enrollment forms, evaluation forms and presentations.

2.2 Goal

The goal of this project is to help the institute improve their way of teaching the students by
automating some of the task necessary for these courses. Furthermore the resources
(including videos) used during the course will be made available online for the students and
trainers, which will help them in their learning process. The final goal will be to enable
students to access resources, videos and course material online.

1 CICAT – http://cicat.tudelft.nl/

http://cicat.tudelft.nl/

4

2.3 Project description

The institute intends to implement an ICT based knowledge platform supporting e-learning
practices for the programs of the institute. This platform enables students to participate in

courses and will allow them to communicate with their trainers. Course information will also
be provided by the system, as well as the recourses used during the lectures.

2.4 Deliverables

During the project we will produce the following deliverables:

 Project Approach
 Domain Analysis and Problem Definition
 Requirements Analysis Document
 Architectural Design Document
 Technical Design and Specification
 Test- and Implementation plan
 MoSCoW Document
 Test Report
 Manual
 Fully functional Learning Management System
 Final report

2.5 Requirements and restrictions

There are a few restrictions to this project. The institute has a limited amount of resources
available, and would like to limit their expenses. This means we will have to look for open
source or free solutions. Furthermore, the amount of bandwidth available to the institute is
limited. Finally, delivering a fully functional system is required. Delivering a nonfunctional
system, will mean that the institute will not be able to improve their work, and the project
could be seen as a failure. Since computer science knowledge is scarce, it will be very
important to provide proper documentation and training to the members of the institute.

For this project we will be in the Philippines for three months. In this period 12 weeks are
reserved for the project.

This provides us with the following requirements:

 Web enabled e-learning platform
 Low costs
 Bandwidth- and load-efficient
 Fully functional
 Proper documentation and training
 Ready within 12 weeks

5

2.6 Terms of reference

From Vicente Pijano III we received the following terms of reference:
The students will provide technical assistance in the following areas:

 Identify the detailed functional and technical requirements of the knowledge
platform needed by the institute. The requirements will include the functionalities
of the e-assessment environment as developed for the eBIT project at the
University of Colombo School of Computing

 Formulate, present and obtain approval for a detailed plan of approach for
selection, customization and implementation of the knowledge platform

 Customization may include the development of additional plug in modules for
advanced video presentation and/or simulations

 Project management of the implementation
 Preparation of related documents (amongst other: results of the requirements

analysis, documented decision making process for the selection of the knowledge
application software and databases, users guides, technical documentation etc)

 Training of end-users
 Training of the technical support staff responsible for the operations and

maintenance of the knowledge platform application software and database

To achieve a better understanding of possible requirements, problems and other knowledge
we looked at some old projects, which were similar to our project. The following was derived:

 We should take a good look at the availability of useful software (or modules of

software) which can meet a set of requirements for our project.
 The implementation should be compatible with versions of the environment that

will be released in the near future.
 The requirements must be made clear at the beginning of the project and extra

requirements should be known as early as possible.

More details about the projects can be in Appendix A and B.

3. Time management

Our main basis for this project will be to install and customize Moodle for the needs of the
institute. By using open source (thus free) software, we will meet the requirement of a low
cost product. Moodle itself provides a extensive Course Management System, whose basic
functions will enable the institute to start a very basic e-learning platform. It will be our job to
implement all of the functions that are missing from the system so that the institute will have
a fully functional system at the end of our project.

Since not much computer science knowledge is present at the institute, we will have to
provide proper training and documentation in order to make sure the system can be used
fully and can be extended easily if needed. We will meet this requirement by planning a
whole week of training and building proper documentation about the system during the
project. One advantage of using Moodle as a basis is also that it has an extensive
documentation available online.

Some time pressure for this project is present, because of the fact that we will only be in the
Philippines for a limited amount of time. This is why we have developed a strict planning to
finish the project within the given time. In the case of unexpected setbacks or delays, we
have built a flexible planning. We will also have the opportunity to work in weekends if
needed.

6

We will divide the project in five phases:

1. Orientation
2. Documentation and Requirements
3. Implementation
4. Testing and training
5. Report

All of these phases will need a certain amount of time, which we have specified in a detailed
planning in Appendix C.

4. Project organization

4.1 Organization

There are several distinct members of this project:

 Students
 Dutch coordinator
 Philippine coordinator

The students will acquire the requirements from the Philippine coordinator. They will then
implement the project and will keep regular contact with both coordinators in the Netherlands
and in the Philippines to make sure quality is maintained.

4.2 Personnel

The implementation of the project will be done by the students. They are required to have
knowledge about web development, software engineering techniques and basic
communication and planning skills. The project is meant as a final project for their bachelor
diploma, so a level of quality needs to be assured. Students are expected to work at the
project for 12 weeks (3 months) for 5 days a week.

4.3 Financing

The project will be implemented for free by the students. This means that the institute will
not have to pay for the work the students deliver. The students have made the proper
arrangements for financial support while staying on abroad themselves.

4.4 Reporting

Reporting will be needed to both the Dutch and Philippine coordinators. On a two week basis,
reports will be delivered about the progress that has been made and the expected problems.
In this way, the Dutch coordinator can assure that quality is maintained and the Philippine
coordinator can make sure that the result is exactly as the required it to be. Reports to the
Netherlands will be delivered by email. Reporting on the location itself will take place during
meetings with the coordinator.

4.5 Resources

The institute will provide the students will a place to work at the institute. This includes a
room to work, connection to the internet and coffee. Since open source software is being
used, no money for software is needed.

7

5. Quality assurance

Regular updates and meetings are needed to make sure that requirements and
implementation match and that the product at the end of the implementation phase will
match the stated requirements. By maintaining regular contact with both the coordinators,
we will try to assure quality to both sides. In our experience it was noted that regular
meetings will help to stay focused and make sure mistakes are noticed early. Too many
meetings won’t help due to the inefficiency, but we experienced that for us it is better to
have too much meetings rather than too less.

On the other hand regular meetings with the contact person in the Philippines won’t be a
problem because the company is small and we work very close together. The meetings will
probably consist of a weekly gathering where an update is given about what documents/parts
of the system are created. If we have any problems in between there is always someone
available to help us resolve those problems. At the end of each phase a larger feedback
session will be planned to make sure we can close that phase properly.

In these meetings we should be really careful how to handle feedback. An important aspect
of our project is the intercultural communication. The Philippines are over 10000 kilometers
away and that’s also noticeable in cultural differences. In our preparation we have read about
the Filipino culture, and tried to prepare for it. For instance, we read in a travel guide: “If a
Filipino sais yes, he could mean, yes, maybe, I’m not sure or he could even be too polite to
say no”. It will be a task for us to overcome these cultural differences and try to
communicate as clearly as possible.

The regular contact with the Dutch coordinator will be done by mail every time a document is
created. If no questions are to be asked or nothing is to be handled in a period of two weeks,
we will send a short update on what has been achieved. In case of any problems, the
coordinator should be contacted first, before making any big decisions. By filling in the
grading form for students abroad2 a clear view of the project will be given. Also a mid-project
evaluation document will be created and send to the coordinator. This document will be
reviewed thoroughly just like the end report.

2 Grading form students abroad - http://www.tudelft.nl/live/pagina.jsp?id=b397c3cc-7b19-
452a-8974-4b50cb0ff72e

http://www.tudelft.nl/live/pagina.jsp?id=b397c3cc-7b19-452a-8974-4b50cb0ff72e

http://www.tudelft.nl/live/pagina.jsp?id=b397c3cc-7b19-452a-8974-4b50cb0ff72e

8

Appendix A: Related projects

CICAT provided us with the documentation of a project in Sri Lanka. In this project an office
skill assessment program (OSAP) was developed and integrated in the open source course
management system Moodle3. We also approached other groups that had been to the
Philippines, but they were not able to supply documentation about their projects and only
provided us with practical tips.

Asia-Link Programme: Mission Report
E.M.A. Geers

This document describes the project for the UCSC in Shri Lanka. It contains information about
planning and the organization of the project. The project is divided in three parts, of which
the third will be done by students of DUT.

 track 1: designing and documenting the eBIT curriculum through drafting of the
respective syllabus;

 track 2: development of the required e-learning content;
 track 3: development of e-assessment practices

Office Skill Assessment Project: Design Document – Version 3.1
Bert Wolters and Rick van Nierop

The first students that started on implementing the OSAP project were Bert Wolters and Rick
van Nierop. They made a parser for the XML documents (one from the student with the
answers and one from the teacher with the answers) because the documents were not
comparable. After this the two documents could be compared and a grade was given to the
work.

To compare the documents and assign a grade, the following was done:

1. Parse an Office document to a XML document in object format. (level 1 parsing)
2. Parse a XML document in object format to a new Document object format, which

makes the actual assessment easier. (level 2 parsing)
3. Sweep the Document object, by removing irrelevant data and combining data where

possible.
4. Create a marking schema and compare the teacher's and student's documents, using

this schema.

With the prototype they met the requirements.

Bsc Project : Office Skill Assessment – Final report
Egbert Bouman

A year later Egbert Bouman worked on the project since the prototype had never been used,
because it needed to be extended and improved. In the first place the users should be able
to login into Moodle and make the tests. The second part was to make customizations of the
Moodle code to make it more suitable for the UCSC.

This project would be more interesting for us due to the connection with Moodle. From the
evaluation of this project we will look at the following:

 Availability of modules which meet a set of requirements for our project.
 Compatibility with versions of Moodle that will be released in the near future.
 Make requirements clear at the beginning of the project and try to get to know extra

requirements as early as possible.

3 Moodle - http://moodle.org/

http://moodle.org/

9

Appendix B: Technologies to be used

The Moodle framework

The project will be running on Moodle. Moodle is an open-source Learning Management
System (LMS) written in PHP. It consists of the most basic features our system will need,
including a Course Management System.

According to the Moodle website, the M in Moodle stands for Modular. Moodle provides a
solid framework that can be easily extended with modules and plugins. Each type of plugin is
documented on the Moodle wiki.

The Moodle framework is documented at http://docs.moodle.org . On this site there is
information about almost every aspect of Moodle. This documentation will provide us with
enough knowledge to start working with Moodle.

Customizing Moodle

Moodle provides development guidelines which are specified on their development wiki. We
will write a custom plugin which will allow us to implement the requirements of our project.
We will do this according to the development guidelines proposed by Moodle.

Coding guidelines

We will strive to comply with the coding guidelines as specified in the Moodle

documentation.4
Most important code guidelines:

 Consistent naming conventions for methods, classes and variables.
 Comments for PHPDoc.

Security

The system requires a certain level of security. Since the system handles personal information
of students, grades, and possibly other confidential information, we should guarantee the
safety of this information.
This is done mostly by following the Moodle developer Security guidelines.5 Most important
aspects:

 Usage of user input variables (get,post and cookie).
 Database access using XMLDB.

Testing

Moodle provides a built-in unit-testing framework that we will use. It is similar to JUnit in
Java. Furthermore, we will use Selenium for link testing.

Other software used

Version control: Subversion
Text editor: Notepad++
Documentation: Microsoft Word
Modeling: Microsoft Visio

4 http://docs.moodle.org/en/Development:Coding_style
5 http://docs.moodle.org/en/Development:Security

http://docs.moodle.org/en/Development:Coding_style

http://docs.moodle.org/en/Development:Security

10

Appendix C: Planning

Task name Deadline

BSc project for the International Institute of Human Capital 28-8-2009

1. Orientation 8-5-2009

1.1. Research 30-4-2009

1.1.1. Previous projects 30-4-2009

1.1.2. Technologies 30-4-2009

1.2. Planning 4-5-2009

1.3. Project approach 8-5-2009

Milestone 1: Delivery of orientation documents 8-5-2009

2. Documents and requirements 5-6-2009

2.1. Domain analysis 12-5-2009

2.2. RAD 22-5-2009

2.3. ADD 29-5-2009

2.4. TDD 29-5-2009

2.5. Testing plan 5-6-2009

2.6. Implementation plan 5-6-2009

2.7. MoSCoW 5-6-2009

Milestone 2: Delivery of documents and requirements 5-6-2009

3. Implementation 10-7-2009

3.1. Learning management system 10-7-2009

3.1.1. Moodle installation 10-6-2009

3.1.2. Moodle configuration 26-6-2009

3.1.3. Plug-in development 10-7-2009

3.1.3.1. Resume engine 10-7-2009

3.1.3.2. Payment 10-7-2009

Milestone 3: Mid project evaluation 19-6-2009

Milestone 4: Delivery of the system and documentation 10-7-2009

4. Testing and training 17-7-2009

Milestone 5: End of system delivery 17-7-2009

5. Report 28-8-2009

