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A B S T R A C T

The vacuum referred binding energy of the electron in the Bi2+ ground state has been determined in 15 different
compounds. This shows that the electron binding energy in the ground state of Bi2+ is at lower (more negative)
energy compared to the electron binding energy in the excited state of Bi3+. This means that electron transfer
from the excited state of one Bi3+ to a neighboring Bi3+, forming a Bi2 + −Bi4+ pair, acts as a quenching route
for the Bi3+ emission. Electron back transfer in the Bi2 + −Bi4+ pair is then suggested to be the origin for the
frequently observed pair emission. This paper shows that vacuum referred electron binding energy diagrams can
provide a unique physical insight in the properties of inorganic compounds.

1. Introduction

Bi3+ shows a complex temperature and concentration dependent
luminescence quenching [1–3]. The luminescence quenching cannot be
explained by multi-phonon relaxation because of a too large energy gap
between the 3P1 excited state and the 1S0 ground state. A transfer of an
electron from the excited state to the conduction band is often used to
describe the quenching, like for example in (In,Lu)BO3 and Ca(Zr,Sn)O3

compounds [4,5]. Another possibility for luminescence quenching is via
the charge transfer (CT) of an electron in the valence band to a bismuth
ion as has been proposed for example in LaOBr [6]. These two
quenching routes involving CT apply to isolated bismuth centers. A
third type of quenching occurs in Bi-pairs, which becomes important at
high concentrations of bismuth or in the case of preferential formation
of bismuth pairs or clusters [7–9]. The mechanism of such type of
quenching has always remained open.

Recently, we determined the vacuum referred electron binding
energies (VRBE) in the Bi3+ [ S ]0

1 and [ P ]1
3 levels in 44 different

compounds [10]. The VRBE of Bi3+ in a selection of 10 of those
compounds is shown in Fig. 1. The VRBE in the 1S0 ground state varies
between − 5 and − 10 eV and in the 3P1 excited state between − 2 and
− 4 eV in a systematic fashion with the chemical and structural
properties of the compound. When Bi3+ is doped in compounds with
a low lying conduction band, e.g. compounds containing transition
metals with d0 configuration such as YNbO4 and YVO4 in Fig. 1, the 3P1
excited state appears above the conduction band (CB) bottom. In these
cases photoionization to the CB occurs without generating any Bi3+

emission. In stead a metal-to-metal charge transfer (MMCT) emission is
often observed in these compounds [11,12]. Besides Bi3+, also lumi-

nescence from Bi2+ has been reported in fluorides, phosphates,
sulphates and borates [13–16]. For Li2BaP2O7 and YPO4, we concluded
that the VRBE in the Bi2+ 2P1/2 ground state is at approximately− 4 eV,
which is below the 3P1 excited state of Bi3+ in those compounds
[17,18]. This means that electron transfer from the excited state of one
Bi3+ ion to a neighboring bismuth ion is energetically favorable. Such
electron transfer provides then a mechanism for the quenching of the
Bi3+ emission.

This mechanism is illustrated in Fig. 2. Two Bi3+ ions labeled I and
II that form a Bi–Bi pair are shown, and after exciting an electron to the
3P1 excited state of bismuth ion I (arrow 1), energy will be released in
the electron transfer to the neighboring bismuth ion II (arrow 2),
effectively forming a Bi2+-Bi4+ pair. Recombination of the Bi2+-Bi4+

electron-hole pair (arrow 3) can be radiately or non-radiatively. If the
recombination occurs radiatively, a broad emission band with a large
Stokes shift typical for CT transitions can be observed. This also
provides a quenching route for the Bi3+ P → S1

3
0

1 emission. In this
paper we will demonstrate that electron transfer between neighboring
bismuth ions is a general phenomenon for Bi3+-doped compounds
when either Bi enters in pairs or cluster or when the Bi concentration is
sufficiently high to generate pairs based on statistical grounds. For that
we have collected information on Bi2+ in the 15 compounds listed in
Table 1.

2. Results and discussion

For almost all compounds, the listed VRBE at the valence band (VB)
top and conduction band (CB) bottom were presented earlier, and
together with the VRBE in the Bi3+ ground and excited states are taken
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from Ref. [10]. There are several methods to estimate the VRBE in the
Bi2+ ground and excited state. One may seek for information on the
VB → Bi3+ charge transfer. However, we only found a report on

MgGeO3 by Katayama et al. from which a Bi2+ location at −3.8 eV is
derived [19]. Another method is to determine the energy barrier EΔ q

for thermal quenching of Bi2+ emission. However, detailed studies on
the quenching of Bi2+ emission to determine such energy barrier are
not available. At best one may find the temperature T0.9, the tempera-
ture where the intensity has dropped by 10% and the quenching starts
to become significant. Using methods similar as described in Ref. [20],
the quenching energy barrier EΔ q is approximately T /6200.9 eV. The
electron does not need to be transferred as high in energy as the
conduction band bottom for quenching to occur. We will assume that

E E− Δ −E E
q em

+
2

BiC X 2+
provides a fair estimate for the VRBE in the Bi2+

ground state (Eg.s.
Bi2+

), with EC the VRBE of the electron at the conduction
band bottom and EX the VRBE of the electron in the exciton state. The
relevant values, including the references to the literature we used for
Eem

Bi2+
, the Bi2+ emission energy, can be found in Table 1.

A final method to obtain indications on the VRBE in the Bi-levels is
from pure Bi- compounds. Usable information was found for BiF3,
BiPO4, and Bi2O3. The top of the VB has here a strong Bi3+ ground state
component and the CB-bottom a strong Bi2+ contribution. For BiF3 the
VRBE at the VB-top is found at −9.6 eV and is derived from the X-ray
photoelectron spectroscopy studies by Poole et al. [22], and by adding
information on the band gap the CB-bottom is found at −4.4 eV. BiPO4

has been studied for its photo-catalytic activity and from those studies
the CB-bottom was found about 0.4 eV above that of TiO2 [23] which
has the CB-bottom at −4.2 eV [24]. Bi2O3 has also been studied for its
photocatalytic activity and Lin et al. [25] places the CB-bottom at
0.1 eV below the H+/H2 redox potential which translates to a VRBE of
−4.5 eV. Combined with band gap information, the data as compiled in
Table 1 were obtained.

The data from Table 1 are presented as a stacked VRBE diagram in
Fig. 3. The Bi3+ ground and excited states are indicated by the blue
horizontal bars within the forbidden gap. The VRBE in the Bi2+ ground
state (g.s.) and excited states are illustrated by the horizontal red bars.
In the case when only an upper limit VRBE estimation is available, a
small down pointing arrow has been added. The true position, depend-
ing on the actual emission quenching temperature, can well be 0.5 eV
lower. For the pure Bi-based compounds the top of the valence band is
regarded as representative for the VRBE in the Bi3+ g.s. and the bottom
of the CB for the VRBE in the Bi2+ g.s. For example, the electron
binding energy in the ground state of Bi2+ in YPO4 is located at
−3.28 eV, which is only 0.5 eV different from the binding energy in the
conduction band bottom of BiPO4. Also the electron binding energy in
Bi3+ ground state located at −8.2 eV in YPO4 differs only by 0.5 eV
from the binding energy in the valence band top of BiPO4. The different
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Fig. 1. Stacked VRBE diagrams for 10 different Bi3+ doped compounds with EC the
binding energy at the conduction band bottom, EV the binding energy at the valence band
top and EX the binding energy in the exciton state. The blue bars labeled 1S0 and 3P1
indicate the electron binding energy in the Bi3+ ground and excited state, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to
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Fig. 2. The proposed quenching model of the Bi3+ luminescence and generation of pair
emission via electron transfer between neighboring bismuth ions.

Table 1
Spectroscopic and VRBE data on Bi2+ in compounds and on pure Bi compounds. All
energies are in eV.

Host compound EV EC Eem
Bi2+ T0.9 Eg.s.

Bi2+ Ref.

BiF3 −9.60 −4.42 – – −4.42 –
SrF2 −12.13 −0.69 2.07 >300 K −3.66 [13]
CaF2 −12.33 −0.34 2.25 >300 K −3.52 [13]
BaSO4 −8.93 −0.12 1.98 >300 K −2.91 [14]
SrB4O7 −9.59 −0.79 2.1 >300 K −3.70 [16]
SrSO4 −8.93 0.12 2.03 >300 K −2.73 [15]
BaBPO5 −8.98 −0.29 1.94 >300 K −3.03 [21]
SrBPO5 −9.08 −0.21 1.94 >300 K −2.96 [21]
CaBPO5 −9.24 −0.01 1.97 >300 K −2.80 [21]
CaSO4 −8.94 0.19 2.1 >300 K −2.73 [15,14]
Li2BaP2O7 −9.23 −0.86 1.81 >600 K −3.95 [17]
BiPO4 −8.73 −3.83 – – −3.83 –
YPO4 −9.77 −0.53 1.85 350 K −3.28 [18]
MgGeO3 −8.70 −2.22 n.a. n.a. −3.81 [19]
Bi2O3 −7.53 −4.18 – – −4.18 –

-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

Ba
BP
O

Sr
BP
O

Sr
B
O

C
aB
PO

Ba
SO

Sr
SO

C
aS
O

Bi
O

M
gG
eO

Li
Ba
P
O

Bi
POBi
F

Sr
F

C
aF

VR
BE

(e
V)

YP
O

Fig. 3. Stacked diagram with the VRBE at the VB-top and the CB-bottom of various
compounds with the Bi3+(blue horizontal bars) and Bi2+(red horizontal bars) levels. Also
the VRBE at the CB-bottom and VB-top in BiF3, BiPO4, and Bi2O3 is shown. (For
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crystal structures, but also orbital mixing of Bi-states with that of other
host atoms may account for such 0.5 eV difference.

The newly added information in this paper is the VRBE in the Bi2+

ground state, which appears in the range between −3.5 and −4 eV,
and is indeed below the Bi3+ excited state usually found near −3 eV in
fluoride and oxide compounds. The energy difference between the
VRBE in the Bi3+ excited state and Bi2+ ground state appears to be
about 0.7± 0.3 eV. If approximately 1 eV lattice relaxation loss is
taken into account, the remaining energy for possible pair emission is
then expected 1.7±0.5 eV lower than the Bi3+ emission energy which
is indeed the typical Stokes shift observed. For example, in YPO4:Bi3+

the pair emission band at 325 nm is 1.6 eV Stokes shifted from the Bi3+

excitation.
Depending on the transition rates, complicated dynamics as in the

Bi3+ doped garnet systems [26–28] may now occur. It is not the
purpose of this paper to enter in too much detail but some general ideas
can be launched. The typical luminescence decay rate at room
temperature of the Bi3+ emission is found near 1 μs and the lumines-
cence decay of the pair emission is typically 100 μs [28,29]. The
radiative decay rate of the Bi3+ emission (arrow 1 in Fig. 2) has to
compete with the electron transfer rate to the neighboring Bi ion (arrow
2 in Fig. 2). In such electron transfer, the above found 0.7±0.3 eV
energy difference needs to be emitted as phonons and a temperature
dependent rate is to be expected. Once in the Bi4+-Bi2+ pair state,
again different rates apply. With only 0.7 eV energy difference,
thermally activated electron back transfer to the higher energy
Bi [ P ] − Bi [ S ]3+

1
3 3+

0
1 pair state is possible (reverse of arrow 2 in

Fig. 2). In addition, there are the luminescence decay rates of Bi-pair
emission, and its thermal quenching rate.

Srivastava et al. [2] studied the luminescence intensity as function
of temperature of the Bi3+ emission at 385 nm (3.22 eV) and observed
an additional emission band labeled as VIS-band at 514 nm (2.41 eV)
when exciting Bi3+ at 290 nm (4.27 eV) in 0.5% Bi3+ doped La2Zr2O7.
From 0 K to 60 K the Bi3+ emission quenches whereas the VIS-band
grows in intensity, and from 70 K to 120 K the process is reversed and
the Bi3+ emission grows again with decreasing VIS-band intensity.
Above 120 K both bands quench until at RT no emission remains.
Although the origin of the VIS-band was not clear, one may also
interpret it as Bi-pair emission. Intensity first grows at the expense of
Bi3+ emission, above 70 K electron back transfer to the Bi3+ excited
state reverses the process, and above 120 K the radiation-less electron
transfer to the Bi3+ ground state starts to quench both emissions.
Energetically such processes are well-possible. More detailed studies on
the luminescence dynamics as function of temperature and Bi concen-
tration would be required to verify or falsify such dynamics.

3. Conclusion

We have shown that in general the VRBE in the Bi2+ ground state is
located at lower energy as compared to the VRBE in the Bi3+3P1 excited
state. In the presence of Bi-Bi pairs, it is then upon excitation of one
Bi3+ energetically favorable for electron transfer to occur, and to form a
Bi2+-Bi4+ pair. Based on the estimated VRBEs in the Bi2+ ground state
in 15 different compounds, the electron transfer between neighboring
Bi ions appears always energetically possible. The recombination of the
electron and hole on the Bi2+-Bi4+ pair can occur non-radiatively or
radiatively, in the later case the resulting visible emission band is often
observed and ascribed to pair emission. The proposed mechanism of
charge transfer between Bi-pairs can also explain the quenching
behavior of Bi3+ luminescence when the Bi3+ concentration increases.
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