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Imitrob: Imitation Learning Dataset for Training and
Evaluating 6D Object Pose Estimators

Jiri Sedlar , Karla Stepanova , Radoslav Skoviera , Jan K. Behrens , Member, IEEE, Matus Tuna,
Gabriela Sejnova , Josef Sivic , and Robert Babuska , Member, IEEE

Abstract—This letter introduces a dataset for training and eval-
uating methods for 6D pose estimation of hand-held tools in task
demonstrations captured by a standard RGB camera. Despite the
significant progress of 6D pose estimation methods, their perfor-
mance is usually limited for heavily occluded objects, which is a
common case in imitation learning, where the object is typically
partially occluded by the manipulating hand. Currently, there is
a lack of datasets that would enable the development of robust
6D pose estimation methods for these conditions. To overcome this
problem, we collect a new dataset (Imitrob) aimed at 6D pose
estimation in imitation learning and other applications where a
human holds a tool and performs a task. The dataset contains image
sequences of nine different tools and twelve manipulation tasks
with two camera viewpoints, four human subjects, and left/right
hand. Each image is accompanied by an accurate ground truth
measurement of the 6D object pose obtained by the HTC Vive
motion tracking device. The use of the dataset is demonstrated by
training and evaluating a recent 6D object pose estimation method
(DOPE) in various setups.

Index Terms—Learning from demonstration, computer vision
for automation, perception for grasping and manipulation, 6D
object pose estimation.
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I. INTRODUCTION

D ESPITE the recent progress [1], [2], 6D object pose es-
timators have rarely been applied to image sequences

capturing manipulation of hand-held objects. However, such
a set-up has a huge potential in imitation learning scenarios
where expert demonstrations are used to teach robots new tasks
(e.g. a human demonstrator manipulating a glue gun to apply
glue along specified trajectories). One of the reasons is that
there are no datasets and benchmarks that would allow training
for such setups. To overcome this problem, we have collected
and annotated a real-world hand-held tool manipulation dataset
(Imitrob) that allows training and evaluating 6D object pose
estimators in such conditions.

Acquiring data from videos of humans demonstrating a task
has several potential advantages over other approaches such as
kinesthetic teaching [3], teleoperation [4], or motion tracking
systems with markers on the objects or human body parts [5].
First, such a setup can provide more detailed information about
the interaction of the tool with the environment. Second, it is
much easier for a skilled worker to perform the task in the usual
way rather than to demonstrate it by holding a robot arm. Third,
such a setup enables easier transfer to different robotic platforms.
Finally, vast amounts of visual data are already available (e.g. in-
structional videos on YouTube) and can be used for learning in
industrial, household, and similar settings.

However, there are also several critical challenges that need
to be addressed. First, one has to deal with the fact that hand-
held objects are partially occluded by the demonstrator, exhibit
various symmetries, and lack a distinctive texture. These charac-
teristics make training of 6D object pose estimators difficult. It is
also hard to estimate a priori whether the tracking accuracy will
be sufficient for the robotic task at hand. Second, to guarantee
a reasonably short setup time (e.g. data collection, processing,
and annotation), the 6D object pose estimator must be trainable
on a limited amount of demonstration data. Finally, the 6D pose
estimator should preferably work without a 3D model of the
tool. However, current model-based pose estimation methods
often require high-quality object models, which are difficult to
acquire in real-world imitation learning applications.

The development of data-efficient and occlusion-insensitive
6D object pose estimators requires datasets focused on ma-
nipulation with hand-held tools, as well as a methodology for
evaluating the performance with regard to imitation learning
tasks. Neither of these currently exists. Our paper addresses this
problem and provides tools that help to improve the performance
of 6D object pose estimation in such challenging cases. Our main
contributions include:

1) We have collected, annotated, and published a real-world
hand-held tool manipulation dataset, called Imitrob [6]
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Fig. 1. Imitrob dataset for 6D object pose estimation of hand-held tools in
real-world manipulation tasks in uninstrumented environments. (a) ImitrobTest
dataset for benchmarking 6D object pose estimation methods, and (b) Imitrob-
Train dataset for training 6D pose estimators without a 3D model of the tool; (c)
the nine tools are in both datasets. The bounding boxes visualize the predicted
(red) and reference (green) object poses.

(see Fig. 1). The dataset consists of RGB-D videos with
ground truth annotations of the tool 6D poses and bound-
ing boxes. The pose annotations are generated using the
HTC Vive motion tracking system, and the bounding
boxes are derived from the tracked pose and a tracing-
based object surface estimation. The Imitrob dataset con-
tains 9 hand-held tools (four glue guns, grout float, roller,
heat gun, power drill, soldering iron), manipulated by 4
demonstrators, using left/right hand, and recorded from 2
camera viewpoints. The test part of the dataset (100 332
images, ImitrobTest), includes videos of 12 manipulation
tasks in realistic environments. The training part of the
dataset (83 778 images, ImitrobTrain), contains random
motion of the tools in front of green background.

2) We provide a methodology (accompanied by a software
package [7]) to collect ground truth training data for new
objects or manipulation tasks in an affordable way. The
methodology can also be used to introduce further vari-
ability into the dataset. The data acquisition methodology
does not require a CAD model of the tracked tool to obtain
the ground truth 6D pose. For application in industrial
environments, the methodology requires only simple mod-
ifications (e.g. attaching a tracker to the tool), which we

regard as essential for practical use of imitation learning
in real-world set-ups, e.g. in industrial environments.

3) To illustrate how the Imitrob dataset can be used to com-
pare the performance of various algorithms for hand-held
object pose estimation, we trained and evaluated the accu-
racy of a selected 6D object pose estimator (DOPE [2]).

4) We demonstrate how the generalization capabilities of the
6D object pose estimator can be enhanced by augmen-
tation of the ImitrobTrain dataset. For this purpose, we
compared several data augmentation techniques; the best
performance was achieved by a method that leverages the
blending of the original and random background.

The dataset, code [7], and supplementary material [8] are
available on the Imitrob project web page [6]. The supplementary
material contains the calibration details (Secs. A.1-A.2), full
definition of the evaluation metrics (Section A.3), details about
the object segmentation methods (Section A.4), values of the
DOPE estimator parameters (Section A.5), ablation studies on
the impact of image resolution, batch size, and segmentation
technique (Secs. A.6-A.7), complete results of all experiments,
including metric values that did not fit into the main paper
(Secs. A.8-A.13), comparison of the model-free estimator DOPE
with a model-based object pose estimator CosyPose [1] on the
power drill tool (Section A.14), and evaluation of robustness to
a change in the tracker position (Section A.15).

II. RELATED WORK

In this section, we focus on the current datasets aimed at
static 6D object pose estimation and on those that include
videos depicting manipulated objects for imitation learning. We
also mention the state-of-the-art methods in 6D object pose
estimation from RGB and RGB-D images or videos.

A. 6D Object Pose Estimation

Motivated by applications in robotics, 6D object pose estima-
tion has recently attracted significant attention [2], [9], [10]. In
the case of richly textured objects, methods based on matching of
local invariant features such as SIFT [11] or SURF [12] produce
reasonable results. Unfortunately, many hand-held tools are not
richly textured. The more complicated 6D estimation of texture-
less objects can be handled by models based on Convolutional
Neural Networks. Methods such as [13], [14] use CNNs to
directly regress 6D object pose. In another approach, methods
like [15], [16], [17], [18], [19], [20], [21] predict the correspon-
dences between the 2D input image and either a 3D model of an
object or specific keypoints on an object, which are then used to
compute the object 6D pose via the PnP algorithm. The DOPE
algorithm [2] is a keypoint matching method that predicts the
object’s 3D bounding box vertices and centroid locations in the
2D coordinate system of the input RGB image. This approach
was shown to outperform other models like the PoseCNN [13].
There are also more recent methods, such as [1], [15], which
estimate the 6D pose based on the alignment of 3D object models
with the input images. However, these “render-and-compare”
methods require a known 3D model of the object. Obtaining
such accurate 3D models quickly is a nontrivial task in real-world
imitation learning scenarios. Hence, we choose DOPE [2] as our
exemplar 6D pose estimation method as it does not require a 3D
model of an object to estimate the pose. Instead, only visual
data and reference 6D pose data are needed. DOPE is thus more
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suitable for imitation learning setup as it only requires the user
to record a few short training videos with the hand-held tool.

B. Datasets for 6D Object Pose Estimation

One of the frequently used static datasets for object pose
estimation is Linemod [22], which consists of 15 textureless
household objects with annotations and a test set that includes
these objects in cluttered scenes. An extended version Linemod-
Occluded [23] introduces a more challenging occluded testing
scenario. The T-LESS dataset [24] features 30 objects from
an industrial environment, which lack an easily discriminative
texture and are symmetrical along one or more axes. Another
industry-oriented dataset is ITODD [25], but its reference anno-
tations are not available for the test images. The recent YCB-M
dataset consists of real-world static scenes recorded using 7
different cameras [26]. In all of the above-mentioned datasets,
the objects are static and captured by a camera moving around the
object at an approximately constant distance. However, for more
realistic real-world 6D object pose estimation, it is beneficial to
train the estimators on datasets depicting manipulated objects.
Creating such datasets is even more technically challenging.
Hence, the existing datasets are small or employ methods that
simplify the annotation task [13], [27]. For example, the authors
of the YCB-Video dataset [13] avoided full manual annotation
by keeping the recorded objects at fixed positions and moving
the camera only, leading to a high correlation of the objects’
relative poses throughout the data. Compared to the Linemod
or YCB-Video datasets, we focus on specific tasks and tools
typical for industrial manufacturing environments. A real human
activity RGB dataset focused on task-oriented grasping [28]
includes both synthetic and real RGB-D videos of manipulated
objects. However, the annotations are mainly focused on the
hand joint positions, and only a small proportion of the objects
are provided with their meshes and 3D poses. Probably most
related to ours is the dataset [29], which consists of three objects
recorded with the Kinect sensors. Our dataset differs in the
three main aspects. First, we obtain the reference 6D pose from
an HTC Vive controller attached to the object, whereas [29]
used manual annotation. Second, [29] provides 3 187 images
in total, whereas our whole dataset contains more than 184 000
images. Third, [29] lacks variability across several subjects, left
and right hand, different camera views, tasks, or clutter in the
scene. Furthermore, [29] expects a known 3D model of the
object and thus cannot be used for the training of 3D model-
independent estimators. We are unaware of any other 6D object
pose estimation video dataset besides ours that would enable
the evaluation of trained models for so many different types
of generalization, i.e. across different human operators, left-
handed and right-handed manipulation, task variations, camera
viewpoints, occlusions, and backgrounds. To demonstrate its
utility, we measure the impact of each of these challenges on the
accuracy of 6D object pose estimation provided by the DOPE
algorithm [2].

III. DATA ACQUISITION SETUP

The basic data acquisition setup (see Fig. 2(a)) consists of a
desk with two Intel RealSense D455 RGB-D cameras and an
HTC Vive VR set. The data from all sensors are broadcast as
Robot Operating System (ROS [30]) messages and stored in
ROS bag files. The cameras produce 848 × 480 RGB-D images

Fig. 2. Experimental setup for collection of ImitrobTest and ImitrobTrain
datasets. (a) The setup consists of RGB-D cameras, HTC Vive lighthouses,
and a tracker attached to the tool. (b) The surface calibration process. (c) The
resulting voxel grid (dark gray) and bounding box (light gray).

at 60 Hz, and the HTC Vive produces 6D poses at 30 Hz. For
the data collection, each task was performed on a table with
task-related or clutter objects (see Fig. 3).

A. Sensor Setup Calibration and Data Synchronization

For the cameras, we estimated the intrinsic parameters and
the radial and tangential distortion coefficients from several
views of the chessboard calibration pattern using the OpenCV
library [31]. The extrinsics were calibrated from a single view
of the chessboard pattern. The origin of the chessboard (world)
coordinate system Ow was defined in one of the chessboard
corners, and the camera poses relative to Ow were estimated
by solving the PnP problem in combination with the RANSAC
algorithm. To calibrate the HTC Vive coordinate frame Ohtc (in
one of the lighthouses marked as HTC Vive in Fig. 2(a)) to
the chessboard coordinate frame Ow, spherical motion patterns
centered at different chessboard corners pw were recorded using
a tracked pointing device (tracker mounted on a pointed metal
rod, shown in Fig. 2(b)). More technical details of the calibration
are presented in [8]. The average deviation (residual ravg) of
the acquired center points from the regular chessboard grid
pattern (acquired from the cameras) was below 2 mm for all
experiments. The HTC Vive pose data were interpolated to
calculate the reference object poses for the times when the
individual camera images were captured. When the time dif-
ference between consecutive HTC Vive frames is longer than
100 ms, the corresponding camera images are discarded to
ensure sufficiently accurate ground truth data.

B. HTC Vive Tracker to Tool Calibration

To be able to provide the reference bounding boxes for the
Imitrob dataset, we first have to find the bounding boxes of the
manipulated objects relative to the tracker. To find the object
dimensions relative to the tracker, we traced the tool and tracker
surfaces with a tracked pointing device while recording the
positions of both trackers (see Fig. 2(b)). Contour tracing for sur-
face reconstruction was described in [32]. The acquired surface
points are filtered (points that are likely not part of the surface are
removed), and a voxel grid with the dimensions of the object is
created. Finally, we calculate a minimal bounding box aligned
with the tracker’s z-axis using the trimesh library [33] while
evaluating volumes for different rotations. Fig. 2(c) visualizes
the resulting voxel grid and bounding box for the roller. Note
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Fig. 3. Overview of the variability of setups provided in our ImitrobTest dataset. Tools (rows): glue gun, grout float, roller, glue gun 2, glue gun 3, glue gun 4,
heat gun, power drill, soldering iron. Cameras: front (C1) and right hand side (C2), synchronized in the ImitrobTest dataset. Tasks: frame (T1), dense wave (T2),
and sparse wave (T3) for glue gun; round (T1) and sweep (T2) for grout float; press (T1) for roller. Subjects: four demonstrators (S1, S2, S3, S4). Hands: left (LH)
and right (RH) hand. Clutter: workspace with only the gluing frame (No Clutter, default) and with other objects on the table (Clutter).

that a small systematic error in the computed bounding boxes
should not affect the performance of 6D pose estimators because
the training and testing are executed using the same bounding
box calibration. The accuracy of the pose annotations is mainly
determined by the HTC Vive dynamic accuracy, which was
evaluated in [34] as typically around 1 mm. The details of the
whole procedure and its accuracy are described in [7] and [8].

IV. THE IMITROB DATASET

Our Imitrob dataset provides annotated videos of manipula-
tion tasks with hand-held tools in settings simulating a controlled
factory environment. The motivation for the tools used in the
Imitrob dataset comes from actual industrial cases. For instance,
glue guns are used in the production of aerospace equipment
for airplanes, including baggage bins, trolleys etc., among many
other applications. Due to the large variability in this equipment,
a large amount of repetitive manual labor is involved, which
is very difficult to automate. Another example is the sealing
of plastic foil in car doors, where rollers are used to press the
foil against the metal frame on which glue has been applied. In
contrast, there is less need for imitation learning for tools such as
saws and screwdrivers, which are typically part of specialized
robot end-effectors and thus already commonly used in many
robotic applications.

We see the following three main usages of the provided dataset
and methods: 1) Benchmarking 6D pose estimation methods for
hand-held tools in manipulation tasks; 2) Methodology for data
acquisition and 6D pose estimator training for new tools/tasks;
and 3) Guideline for collecting more extensive datasets and
benchmarking 6D object pose estimators on tasks with hand-
held tools, e.g. in imitation learning.

The Imitrob dataset consists of: 1) ImitrobTest dataset and
evaluation metrics for benchmarking 6D object pose estimation
methods and 2) ImitrobTrain dataset and augmentation methods
for training 6D pose estimators that do not require a 3D model
of the object. The following sections describe these components
in detail. The dataset and methods can be downloaded at [6].

A. ImitrobTest: Benchmarking Dataset

The ImitrobTest dataset (see Fig. 3) provides real-world
benchmarking data for 6D object pose estimation in an
imitation learning setup. It enables the evaluation of various

setup combinations that one typically expects in the case of
imitation learning in industrial settings. These variations in-
clude the manipulated tool, performed task, camera viewpoint,
demonstrating subject, hand used for manipulation, or pres-
ence of clutter in the scene. In total, there are 208 different
tool/task/camera/hand/demonstrator/clutter combinations in the
ImitrobTest dataset. Inspired by common trajectory-dependent
industrial tasks, we focus on the scenario where the robot is
observing a manipulation of a tool by a human operator in order
to imitate the demonstrated trajectories. The operator holds the
tool in one hand and performs various tasks, such as applying
hot glue with a glue gun along various trajectories, polishing a
surface with a grout float, or flattening a cloth with a roller. To
learn from such demonstrations, the robot has to identify the 6D
pose of the tool.

1) Objects and Environment Setups: The Imitrob dataset
features nine tools (glue gun, grout float, roller, glue gun 2,
glue gun 3, glue gun 4, heat gun, power drill, soldering iron),
four demonstrators (subjects S1-S4), and manipulations by the
left (LH) and right (RH) hand. The 6D poses of the tools were
measured by the HTC Vive see Section III-B, and the image data
were recorded using two RGB-D cameras from the front (C1)
and right-hand side (C2) viewpoints (see Fig. 2(a)). While we do
not utilize the depth component in this work, it is included in the
published dataset, along with the raw data and the code for cus-
tom data extraction. We also included challenging, textureless
and small tools. The dataset contains multiple glue gun tools to
enable testing how pose estimators generalize to different objects
of the same type; while glue gun, glue gun 2, and glue gun 3 differ
in color and size, glue gun 3 and glue gun 4 differ in the position
of the HTC Vive tracker (on top vs. left side, respectively). The
power drill provides a 3D model in the YCB Object set [35],
which allows evaluation of model-based object pose estimation
methods on this tool.

2) Tasks: The ImitrobTest dataset contains twelve tasks with
different tool trajectories: three for glue gun, two for grout float,
and one for each other tool (see Fig. 3 Tasks). In addi-
tion, the glue gun frame task was recorded in two environ-
ments: with only the gluing frame on the table (NoClutter,
default) and with a clutter of other objects around the glu-
ing frame (Clutter) (see Fig. 3 Clutter). Each task was per-
formed by all four demonstrators (S1-S4) to simulate the
variability of tool manipulation by humans. The dataset can
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thus be used for learning task-specific motions from human
demonstration.

3) Labeling of the Data: All RGB-D images collected in
the Imitrob dataset are accompanied by a reference 6D pose
of the tool. The 6D poses were acquired from HTC Vive at
30 Hz frequency and interpolated to match the timestamps of the
camera frames (see Section III-A for the HTC Vive calibration
details). The ImitrobTest dataset contains 100 332 annotated
frames.

4) Evaluation Metrics: To evaluate the performance of 6D
object pose estimators on the ImitrobTest dataset, we use the fol-
lowing three metrics (further details are available in Section A.3
of the supplementary material [8]):

1) The ADD pass rate (ADDt) measures the percentage of
predictions (P ) with ADD value lower than a selected
threshold (t):

ADDt =
|{P |ADD ≤ t}|

|{P}| · 100% (1)

where ADD [2] is the average distance between the cor-
responding predicted (pipre) and reference (piref ) vertices
(p1, . . . , p8) and centroid (p9) of the object bounding box:

ADD =
1

9

9∑
i=1

||pipre − piref ||2. (2)

A higher ADDt value for a given threshold t indicates a
better prediction accuracy of the object 3D bounding box.
The ADDt metric is useful in imitation learning where we
are interested in the absolute error regardless of the size of
the manipulated object. For comparison of models trained
with (ADDaug

t ) and without (ADDnoaug
t ) augmentation,

we use the ratio of their respective ADD pass rates:

ADDratio
t =

ADDaug
t

ADDnoaug
t

. (3)

A higher ADDratio
t value indicates a bigger benefit of the

augmentation.
2) The rotation error (Erot) measures the angle between the

predicted (Rpre) and reference (Rref ) object orientations:

Erot = arccos

(
trace(Rpre

−1Rref)− 1

2

)
. (4)

A lower Erot value corresponds to a better estimate of the
object orientation.

3) The translation error (Etra) measures the distance between
the predicted (tpre) and reference (tref ) object positions:

Etra = ||tpre − tref ||2. (5)

A lower Etra value indicates a better localization of the
object in space.

B. ImitrobTrain: Training Dataset

The ImitrobTrain dataset (see Fig. 4) is designed for training
6D object pose estimation methods that do not require a 3D
model of the object. Instead of creating a complex 3D model,
the dataset captures the tools in various orientations to provide
sufficient viewpoint variability for 6D object pose training. Each
tool was moved randomly in one hand for a short time (20-40 s)
to simulate the range of possible 6D poses during tasks. We

Fig. 4. Example frames from our ImitrobTrain dataset. Left: Bounding box of
the tool computed from the HTC Vive data. Right: Segmentation of the tool and
hand computed by the MaskFBA method. “LH, C1, S1,” for example, denotes left
hand, front camera, and first subject see Section IV-B. The images are cropped
to show finer details.

Fig. 5. Augmentation of a frame from the ImitrobTrain dataset. (a) Original
image (NoAug) and background augmentation by (b) BgNoise, (c) BgRandom
or BgAlternate, and (d) BgBlend.

designed this process to allow for a time and cost efficient
(e.g. without the requirement for manual annotation) extension
of the dataset to new tools, as 6D pose estimation methods
typically require object-specific training sets.

Similarly to the ImitrobTest dataset, the ImitrobTrain dataset
contains the same nine tools, four demonstrators (S1-S4), left
and right hand (LH and RH), and two cameras (C1 and C2).
In total, there are 144 different tool/camera/hand/demonstrator
combinations in the ImitrobTrain dataset. In contrast to the
ImitrobTest dataset, which contains task-specific motions and
environments, in the ImitrobTrain dataset the tools were ran-
domly rotated in front of a green background, which en-
ables automatic object segmentation for background augmen-
tation (see [6]). We include the segmented data as well as
the reference 6D object pose from HTC Vive in the pub-
lished ImitrobTrain dataset. The ImitrobTrain dataset con-
tains 83 778 frames. The size of the dataset corresponds
to the application area of imitation learning in industrial
settings, where real data has to be collected from human
demonstrators.

1) Augmentation Methods: We provide a collection of data
augmentation methods suitable for the ImitrobTrain dataset
(code at [7]). The augmentation significantly increases the size
of the training set and robustness of the trained model to
the variability of the test environment. First, we leverage the
green background to segment the tool and hand by thresholding
(MaskThresholding), followed by F , B, Alpha Matting [36]
(MaskFBA) (see Fig. 4, for details see Section A.4 in [8]).
Then we apply a random crop (constrained to keep all vertices
of the 3D bounding box inside the image) and horizontal flip,
and one of the following background randomization techniques.
BgRandom replaces the background with a random image [37].
The other three methods keep the original background for 25%
of the training images, and for the remaining 75% BgAlter-
nate replaces the background with a random image, BgBlend
blends the background with a random image, and BgNoise
blends the background with random color noise. In our exper-
iments, the random images were sampled from the miniIma-
geNet [38] dataset of 60 000 images. Fig. 5 shows a training
image without augmentation (NoAug) and after augmentation
by these methods.
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TABLE I
COMPARISON OF DATA AUGMENTATION METHODS (SEE SECTION IV-B)

V. EXEMPLAR 6D OBJECT POSE ESTIMATION PERFORMANCE

In the following experiments we demonstrate the utility of
the Imitrob dataset for 6D object pose estimation training and
testing. For this purpose we use the 6D object pose estimator
DOPE [2] (see Section A.5 in [8] for implementation details). We
train all models on the ImitrobTrain dataset (see Section IV-B)
and evaluate their performance on the ImitrobTest dataset (see
Section IV-A). We compute the ADD pass rates for threshold
t = 5 cm (ADD5), as well as the rotation (Erot) and translation
(Etra) errors. First, we present an ablation study to motivate our
choice of the data augmentation method (computed for glue gun,
grout float, and roller). Then we focus on the ability of the
6D object pose estimator to generalize to various training/test
setups, including combinations of front/side camera, left/right
hand, subjects (all computed for glue gun, grout float, and
roller), and background clutter (glue gun task frame). Finally,
we report performance for each tool and manipulation task. Full
results, including ADD values for thresholds t = 2 cm (ADD2)
and 10 cm (ADD10), ablation studies on the impact of image
resolution, batch size, and segmentation method, comparison
of model-free DOPE and model-based CosyPose object pose
estimation methods on the power drill tool, as well as robustness
to a different tracker position between tools glue gun 3 and
glue gun 4are available in the supplementary material [8] (see
Secs. A.6-A.15).

A. Ablation Experiments

1) Benefits of Data Augmentation: Table I shows the effect
of the background augmentation methods from Section IV-B on
the performance of the 6D object pose estimator DOPE. For the
object segmentation step, we use the MaskFBA method, which
outperforms the simple MaskThresholding (see Section A.7
in [8]). Real-world images (BgRandom, BgAlternate, BgBlend)
clearly outperform color noise (BgNoise) as a random back-
ground for augmentation. Moreover, it is beneficial to keep
the original background for a portion (in our case 25%) of
training images (BgAlternate, BgBlend) rather than to replace
the background everywhere (BgRandom). The best results were
achieved by BgBlend, which (after the random crop, horizontal
flip, and segmentation by the MaskFBA method) blends the
original background with a random image for 75% of the training
images and keeps the original background for the remaining
25% of the training images. Compared to training without aug-
mentation (NoAug), the use of BgBlend augmentation increased
the ADD5 accuracy more than twofold (from 29.2% to 60.1%).
Thus, in all other experiments, we use the BgBlend background
augmentation.

2) Generalization Across Camera Viewpoints: In this exper-
iment, we study the robustness of the 6D object pose estimator
with respect to the camera viewpoint. The Imitrob dataset con-
tains one front camera (C1) and one right-hand side camera (C2).

TABLE II
GENERALIZATION ACROSS CAMERA VIEWPOINTS, LEFT/RIGHT, AND

DEMONSTRATORS (SEE SECTION V) FOR TOOLS GLUE GUN, GROUT FLOAT,
AND ROLLER (AVERAGE VALUES)

Table II compares results for the following scenarios: a) Same:
training and testing on the same camera; b) Other: training on
one camera and testing on the other; c) Both: training on both
cameras. The accuracy of using a different camera viewpoint
between training and testing was very low; on average, the
results were better for the transfer from C1 to C2 (ADD5 =
1.1%) than for the transfer from C2 to C1 (0.1%). The accuracy
was significantly higher when the camera used for testing was
included in the training. The best results for evaluation on C1
were achieved by models trained on both C1 and C2 (Both),
while the best results for evaluation on C2 were achieved by
models trained only on C2 (Same).

3) Generalization Across Left/Right Hand: We explore the
generalization of the 6D pose estimator to manipulation of the
tool by the left (LH) or right (RH) hand. Table II compares the
results for the following cases: a) Same: training and testing on
the same hand; b) Other: training on one hand and testing on the
other; c) Both: training on both hands. While training and testing
on the same hand (Same, ADD5 = 48.7%) is clearly better than
on the opposite hand (Other, 24.0%), using both LH and RH for
training further improved the accuracy (Both, 58.8%). The data
augmentation was more beneficial for training on both hands
(Both, ADDratio

5 = 2.1×) than for training only on the same
(Same, 1.9×) or opposite hand (Opposite, 1.5×). The ADD5

and ADDratio
5 values in this paragraph are averages across LH

and RH in the test set.
4) Generalization Across Demonstrators: To be transfer-

able, the 6D pose estimation algorithm should be invariant to
the subject that manipulates the tool. We examine the general-
ization of the DOPE estimator across 4 different subjects (S1-S4)
using the following setups: a) AllToAll: train one model on
all 4 subjects (i.e. train and test on S1-S4); b) ThreeToDiff:
train one model on 3 subjects and test it on the remaining
one (e.g. train on S1-S3 and test on S4); and c) OneToSame:
train one model for each subject and test it on the same subject
(e.g. train and test on S1). Table II averages the model accuracy
for each setup across all test subjects (i.e. S1-S4). The AllToAll
setup (ADD5 = 58.8%) outperformed the ThreeToDiff setup
(52.0%), which in turn clearly outperformed the OneToSame
setup (31.1%). Additionally, the augmentation improves the
accuracy more for ThreeToDiff (ADDratio

5 = 2.3×) than for the
AllToAll (2.0×) and OneToSame (1.7×) setups.

5) Robustness to Clutter: To explore the generalization of the
6D object pose estimator to clutter in the test data, we compare
its performance for the glue gun task frame with only the gluing
frame on the table (NoClutter, default) and with a clutter of other
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TABLE III
ROBUSTNESS TO CLUTTER (SEE SECTION V) FOR TOOL

GLUE GUN AND TASK FRAME

TABLE IV
COMPARISON OF PERFORMANCE ON DIFFERENT TOOLS

AND MANIPULATION TASKS

objects around the frame (Clutter) (see Table III). While the
model trained without data augmentation (NoAug) was clearly
worse on Clutter (ADD5 = 4.9%) than on NoClutter (22.8%),
the use of data augmentation not only clearly improved the
performance on both subsets but also increased the accuracy on
Clutter (61.5%) to the same level as on NoClutter (61.8%). The
ADDratio

5 improvement ratio was 12.6× for Clutter, compared
with 2.7× for NoClutter, indicating a big benefit of training with
data augmentation for 6D object pose estimation in cluttered
environment.

B. Final Results

1) Performance on Different Tools and Tasks: Table IV
shows 5 cm ADD pass rates and rotation and translation errors
for individual tools and tasks (see Fig. 3). The tested object
pose estimator performed comparably on different tasks of
the same tool. The best results were achieved for grout float
(ADD5 = 78.6%, Erot = 4.1◦, and Etra = 2.5 cm), while the
most challenging tools included glue gun 2 and glue gun 3
(small size and large occlusions) and soldering iron (textureless
glossy surface). Overall, the average 5 cm ADD pass rate was
ADD5 = 34.7% and the average rotation and translation errors
were Erot = 19.8◦ and Etra = 6.5 cm, respectively.

2) Qualitative Results: Fig. 6 presents example qualitative
results of the 6D object pose estimator DOPE trained on the
ImitrobTrain dataset using the best data augmentation (i.e. ran-
dom crop and horizontal flip, segmentation by the MaskFBA
method, and background randomization by the BgBlend method,
see Section IV-B) and tested on the ImitrobTest set. The predicted
bounding box is shown in red while the reference bounding

Fig. 6. Example qualitative results on the ImitrobTest dataset. Comparison of
the reference bounding box (green) and the bounding box predicted by the 6D
object pose estimator DOPE (red) trained on the ImitrobTrain dataset. More
results are available in the supplementary video on the Imitrob project web
page [6].

box, acquired through the camera-to-tracker and tracker-to-tool
calibration (see Section III), is green.

VI. CONCLUSION AND LESSONS LEARNED

In this letter, we address the problem of 6D pose estimation of
hand tools manipulated by human demonstrators in an industrial
environment from RGB image data. To investigate this problem,
we have collected a challenging real-world benchmark video
dataset (Imitrob dataset) of twelve manipulation tasks with nine
different tools performed by four human demonstrators using
left/right hand and recorded from two camera viewpoints (front
and side).

We performed a broad range of experiments with various parts
of the ImitrobTrain and ImitrobTest datasets using the object
pose estimation method DOPE [2] to show the suitability of
the Imitrob dataset for benchmarking 6D object pose estima-
tion methods as well as to point out the limitations of current
methods in this setup. The experiments imply that it is crucial
to include in the training data the camera viewpoint used during
the inference. Manipulation by the hand opposite to the side
camera led to lower occlusion of the tool and higher accuracy
of the pose estimator. The performance of models that used the
same subject/camera/hand combination in both training and test
data was often boosted by adding other demonstrators, camera
viewpoint, or the other hand into the training set (see Table II).

To enhance the training data, we proposed several data aug-
mentation methods that we provide together with the dataset.
The best results were achieved by the background blending
method BgBlend (see Table I), which increased the general-
ization capability of the trained models in all setups. To our
knowledge, this is the first application of the background blend-
ing augmentation, previously used in image classification [39],
[40], in the 6D object pose estimation domain.

The pose estimation accuracy correlated with the size and
texture of the tool as well as with the performed task or clut-
ter in the test environment (see Table IV). The best results
(ADD5 = 78.6%, Erot = 4.1◦, Etra = 2.5 cm) were achieved
for grout float, which is large and moved along a plane, while
the worst accuracy was observed for small tools with textureless
surface and less restricted movement. Although the achieved
accuracy of the evaluated method (DOPE) may not be sufficient
for some industrial applications, the results are promising and
show that the Imitrob dataset can be used to benchmark and select
6D object pose estimation methods for various tasks based on the
required accuracy. We hope that the presented dataset will trigger
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further development of 6D object pose estimation methods so
that learning by demonstration using only visual information
will soon become a reality.
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