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page 2 line 20 should read: "the laminar boundary layer is only 

4 /o of that for the turbulent case." 

page 9 in equation (2.1) and (2.2) the terms - — — and - — — should 
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page 35 the left hand side of equation (5.14) should read "A„". 

page 42 line 5: "fig. 5.8" should be replaced by "fig. 5.7". 

page 72 line 10 below equation (7.68): "for N = 5 to 10" should be 

replaced by "for N = 5 to 9". 

page 81 the first line below equation (7.96) should read "and for p 

odd and > 1" . 

page 86 the first line below equation (7.102) should read 

"The parameters 5 , 9 and 6 as ", 

page 89 in line 11 from the bottom the first "a " should read "Va " 
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page 109 line 6: "(8.61)" should be replaced by "(8.50)". 
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u u ^2 

page 163 the last line should read "laminar separation point and 

the predicted transition position becomes". 

page 168 in line 18 and 19 delete the words "where also the measured 
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table 11.2 the title of this table should read "position of pressure 

orifices in the suction model". 
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this figure appears on the next page. 

fig. 8.26 in the lower right hand corner " ^. x" should be replaced 

by " m^ \f^" . 
fig. 8.28 in the title of this figure the word "multimoment" should 

be replaced by "momentum". 

fig. 11.55 the number 3.7 in this figure should be replaced by 3.37. 
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Summary. 

In this dissertation the results are presented of some theoretical and 

experimental investigations of two-dimensional laminar boundary layers 

with and without suction. Throughout the work the velocities involved 

are assumed to be of such a small magnitude that the effects of 

compressibility can be neglected. The investigations were undertaken 

with the purpose to clarify some points concerned with maintaining 

laminar flow in a boundary layer by means of suction through a porous 

surface. In the course of this work several results were obtained which 

also may be of interest for laminar boundary layers without suction. 

A first investigation is concerned with the calculation of laminar 

boundary layers by means of approximate methods of the type introduced 

by Pohlhausen. A new method is described which, by a special choice of 

the velocity profile, is capable of providing accurate results in those 

cases where the suction velocity is not too large. 

The second theoretical investigation deals with a "phase plane" 

description of the laminar boundary layer flow between non-parallel 

plane walls. Here shear T is plotted versus the velocity component u 

parallel to the wall. 

This is analogous to the use of the phase plane method in the theory of 

non-linear oscillations with one degree of freedom where speed is plotted 

versus displacement. In the latter theory singular points in the phase-

plane correspond to equilibrium positions of the oscillation. For the 

flow between non-parallel plane walls the singularities in the "phase 

plane" are shown to correspond to the edge of a boundary layer. It is 

shown that the occurrence of boundary layer type solutions depends on 

the character of the singularity which is determined by the amount of 

suction. 
2 

For the case of inflow between converging walls without suction T can 

be expressed as a polynomial in u. From this observation a new calculation 

method for laminar boundary layers evolves which is described in detail. 
2 

The method assumes for T a polynomial expression in u with coefficients 

depending on the streamwise coordinate x. These coefficients are 

determined from compatibility conditions and from moments of a modified 

form of Crocco's boundary layer equation. In contrast to existing 
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approximate methods the new approach allows the degree N of the 

polynomial to be increased without unduly complicating the method. 

For increasing N the results of the approximate method seem to converge 

to the exact solution. 

The experimental part of the work consists of measurements on two 

airfoil sections in a low speed wind tunnel. The first model is a 28 /o 

thick laminar flow airfoil section with an impermeable surface and a 

chord length of 1 meter. A detailed survey of the velocity profiles 

in the laminar boundary layer was made with hot wires; the measurements 

were extended so far downstream as to include the laminar separation 

point. Results of the measurements and a comparison with laminar boundary 

layer theory are presented. 

The second model is a 15 /o thick, 1.35 meter chord, laminar flow wing 

section with porous upper- and lower surfaces between the 30 /o and 

90 /o chord positions. The inside of the model is divided into 40 

different compartments each with its own suction line, flow-regulating 

valve and -measuring device. Hence the chordwise suction distribution 

could be varied between wide limits. Wake drag and transition position 

were measured for several suction distributions; for some of these 

detailed boundary layer surveys were made. In one case the suction 

distribution was chosen in such a way that a separating laminar boundary 

layer was obtained. 

From the transition measurements on the porous model a semi-empirical 

method is derived which permits the determination of the transition 

position for two-dimensional incompressible laminar boundary layers with 

arbitrary pressure- and suction distributions. This method is an 

extension of an existing method which was shown to be valid for the 

no-suction case both by Smith and Gamberoni f-'-'̂J and the present author 

[3,4,5]. 

The boundary layer calculation methods and the transition criterion 

provide the means for a rational design of the suction distribution 

needed to maintain laminar flow for a given pressure distribution. For 

instance a suction distribution may be determined for which the total 

drag coefficient is as small as possible. 
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Introduction and outline of thesis. 

Introduction. 

During the development of the airplane to its present form a continuous 

reduction of aerodynamic drag has been achieved. This drag reduction was 

made possible by the practical application of wing theory beginning around 

1918 and the introduction of streamlined shapes beginning after 1929. The 

year 1929 is marked by Mellvil Jones' well-known paper "The streamline 

aeroplane" [ 6 ] in which he indicated the improvements in performance to 

be obtained from streamlining. 

Streamlining has been realised by the introduction of the cantilever 

monoplane, the retractable undercarriage, improved flow around the engines, 

better construction methods leading to a smoother surface etc. Finally the 

use of jet engines - being smaller than piston engines of the same power -

led to a cleaner aeroplane with less drag than its predecessors. 

The situation now is such that for big airliners the major part of the 

non-induced drag is due to skin-friction. Values of the non-induced drag 

found in practice for this type of airplane are about 25 /o higher than 

the friction drag calculated for a turbulent boundary layer over the 

aircrafts wetted surface. 

In view of this it is clear that a further important reduction of the non-

induced drag can only be obtained by a further decrease in friction drag. 

This can be achieved naturally by a reduction of the wetted surface of 

the airplane. However, only a limited reduction in drag will be possible 

in this way since the minimum extent of the wetted surface is dictated by 

the requirement that sufficient volume should be provided for payload, 

fuel etc. Hence, for a further drag reduction the intensity of skin 

friction itself has to be decreased. It is well known that the skin 

friction is much higher for a turbulent boundary layer than for a laminar 

one. As an example fig. 1.1.a shows the friction drag coefficient of a 

flat plate for both laminar and turbulent flow as a function of the 
Ux 

Reynolds number -^ using the familiar logarithmic presentation. Here U 

is the windspeed, V the coefficient of kinematic viscosity and x the 

length of the plate. The curve in fig. 1.la for the laminar boundary layer 

follows from Blasius' theory to be discussed in chapter 3. The friction 
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drag for the turbulent flow is given by a formula due to Schlichting ([|7], 

chapter 21) which correlates a number of different experiments. The 

experimental results indicated in the figure for both laminar and 

turbulent flow are taken from unpublished measurements in the low speed 

wind tunnel of the Department of Aeronautical Engineering at Delft 

Technological University. The experimental observations show that for the 

smooth plate above a certain Reynoldsnumber there is a gradual change 

from laminar to turbulent flow. Fig. 1.1.b shows the same results given 

in fig. 1.1.a but now using a linear scale for c which indicates more 
f 

clearly the difference in skin friction for laminar and turbulent flow. 

The situation for an aircraft wing or fuselage is approximately similar 

to a flat plate and fig. 1.1 can be used to get an idea about the 

differences in friction drag, which can exist for an airplane with laminar 

or turbulent boundary layers. For instance for a typical jet airliner in 
7 

cruising flight the Reynoldsnumber based on wing chord is about 2.5 x 10 . 

Hence, if fig. 1.1 is considered to be applicable to the wing, it follows 

that the skin friction drag for a laminar boundary layer is only 10 /o of 

the value obtained for a turbulent flow. For the fuselage the Reynolds 
g 

number based on length is about 2,5 x 10 and hence the friction drag for 

the laminar boundary layer is onlylO /o of that for the turbulent case. 

It is clear therefore that a considerable advance in drag reduction can 

be made by maintaining laminar flow in the boundary layer along an 

airplane. A necessary requirement for the occurrence of laminar flow in 

the boundary layer is that the body surface be smooth. This requirement 

is not sufficient however since even on a smooth body the boundary layer 

may become turbulent due to instability against small disturbances. As an 

example fig. 1.1 shows that for the smooth flat plate the boundary layer 
Ux 

becomes turbulent for stations on the plate where the Reynoldsnumber —^ is 

higher than about 3 x 10 . 

It is found (chapter 9) that instability and transition are strongly 

influenced by a streamwise pressure gradient. When the static pressure 

increases in the downstream direction the instability and hence the 

danger of transition to turbulence become very marked. Such an "adverse" 

pressure gradient is found for instance downstream of the maximum 
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thickness of an airplane wing in cruising flight. 

In order to increase the extent of the region with laminar flow on a 

smooth wing the position of maximum thickness has to be moved rearwards, 

Airfoil sections designed with this objective in mind are the "laminar 

flow airfoil sections" which have been in use since about 1940, 

Another method to stabilise the laminar boundary layer is to make the 

surface impervious in order to suck away a very small amount of air 

from the boundary layer. This method has been proposed first, as far as 

the author knows, by Griffith and Meredith in 1936 [s]. 

In fig, 1.1 the drag of a flat plate with a sufficient amount of suction 

to stabilise the boundary layer is shown (see section 9.8). Due to suction 

the skin friction rises above the value for the Blasius boundary layer 

but it remains much smaller than the value for the turbulent flow occurring 

without suction. The power needed to drive the suction pump can be 

converted to an equivalent "suction drag coefficient" to be added to the 

wake drag (see appendix 1). For the flat plate the total drag coefficient 

including the suction drag is also shown in fig. 1.1. 

For complete airplanes the nett reduction in power required which would 

result from laminarisation by suction is substantial (see for instance 

Lachmann rlOl) . For a present-day modern jet airliner for instance, skin 

friction on the wing alone amounts to about 25 /o of the total drag in 

subsonic cruising flight. Laminarisation of the wing would lead to about 

75 /o reduction in its non-induced drag even when allowance is made for 

the suction power. Hence the total drag in cruising flight would be 
o 

reduced by about 20 /o if the boundary layer on the wing could be kept 

laminar. Lachmann states Lioj that by laminarisation of the wing and 

tailplanes and optimisation of the airplane design for the application of 

suction the lift to drag ratio would be doubled as compared with the 

optimised conventional airplane. 

The potential improvement in aircraft performance indicated above has 

stimulated so many investigations in the field of laminarisation that a 

large part of a recent two-volume work on "Boundary layer and flow control" 

Fgl is devoted to this problem. In these books a detailed account of the 

historical development of the subject may be found. In what follows only 
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a few of these investigations will be mentioned to place the present work 

in the proper perspective. 

Early wind tunnel investigations have been made by Holstein [llj , Pfenniger 

[12] and Kay [131. Holstein and Pfenniger tested airfoil sections with 

suction through a number of slots; Kay applied suction to a porous flat 

plate. Later experiments were made in flight by Head [14] using a small 

aircraft to carry an airfoil section model with a porous surface. The 

geometry of the test airfoil was chosen in such a way that in the suction 

region the pressure distribution for a flat plate was simulated. The 

amount of suction needed to keep the boundary layer laminar corresponded 

approximately to the theoretical predictions of Ulrich based on stability 

theory (see chapter 9). Subsequent experiments in high speed flight by 

Head and Johnson [l5] and Pfenniger [16,17] showed that also at chord-
n 

Reynoldsnumbers of the order of 30 x 10 laminarisation could be achieved 

by suction. 

As suction through a porous surface consisting of very fine pores may 

present practical difficulties a number of experimental investigations 

have been made in England with perforated surfaces obtained by drilling 

small holes in the skin [isj . It appears that these perforated surfaces 

can be useful for unswept wings but that it will be very difficult if not 

impossible to design a suitable perforation pattern for a swept wing. 

Pfenniger's experiments both in the wind tunnel and in free flight have 

been made with suction through a large number of narrow spanwise slits. 

A full scale flight experiment using Pfenniger's slot suction scheme is 

being made by the Northropp Co in the U.S.A. [20,2l] . 

Theoretical investigations have been mainly concerned with porous surfaces 

because suction through discrete holes or slots is much more difficult to 

treat theoretically. In calculating the suction flow required to prevent 

transition most investigators choose the suction distribution in such a 

way that the laminar boundary layer remains neutrally stable all the way 

to the trailing edge of the body. Since it is well-known that instability 

of the boundary layer does not imply that turbulence will immediately 

appear (see chapter 9) it is clear that this procedure leads to a 
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conservative estimate of the suction flow. As transition can not yet be 

predicted theoretically it is much more difficult to indicate the 

- less intense - suction distribution which is sufficient to prevent 

transition. 

One of the aims of the present work was to improve upon this situation 

by designing a method which allows the calculation of the transition 

point for arbitrary pressure- and suction-distributions. Such a method 

for the no-suction case had already been given independently of each 

other by Smith and Gamberoni [l>2j and the present author [ 3,4,5]. The 

method for the case of suction is a straightforward extension of the 

earlier version. 

In this method the amplification of unstable disturbances in the boundary 

layer is calculated using linear stability theory. It is shown that for 

different experiments actual transition occurs at nearly the same value 

of a calculated "amplification factor". 

To extend this method to the case of suction it was necessary to obtain 

experimental results on transition of boundary layers with suction. For 

this purpose an airfoil section model with a porous surface between the 

30 /o and 90 /o chord positions was tested in the low speed wind tunnel 

of the Department of Aeronautical Engineering at Delft. 

In connection with this work a study was made of available methods for 

the calculation of laminar boundary layers. A new method of the 

Pohlhausen type was designed with application to suction problems in mind 

(chapter 5). 

The accuracy of methods of this type is normally assessed by comparison 

with exact solutions of the boundary layer equations. One of the available 

exact solutions is due to Pohlhausen [22] and concerns the inflow between 

non-parallel plane walls without suction. This flow had been studied 

already in 1916 by Jeffery [23] and Hamel [24] using the Navier-Stokes 

equations. From a consideration of this flow it appeared that a clear 

picture could be obtained by studying the solutions of the equations in 

a plane where shear stress T is plotted versus the velocity component u 

parallel to the wall. Also the effects of suction and blowing can easily 

be shown in this way (chapter 6) . 

This procedure is analogous to the use of the phase plane in the study of 



- 6 -

non-linear oscillations of autonomous systems with one degree of freedom 

where speed is plotted versus displacement. In the mechanical problem 

the oscillation can be described by an ordinary differential equation of 

the first order. Singular points of this equation correspond to equilibrium 

positions of the oscillation while the type of stability of the motion 

is determined by the character of the singularity. In the flow problem 

the singular points are shown to correspond to the edge of a boundary 

layer. The equation only allows solutions of the boundary layer type -

for which the velocity becomes practically constant at large distances 

from the wall - when the singularity is a saddle point or a stable node. 

In the phase plane study, referred to above, it was found that for inflow 

between impervious walls the boundary layer equations give a solution for 
2 

which 1 is a simple polynomial in u. This observation has been put to 

advantage for the design of a practical calculation method for boundary 
2 

layers. In this method x is assumed to be a polynomial in u with 

coefficients depending on the streamwise coordinate x (chapter 7). 

The boundary layer equation is written in a form where x and u are used 
2 

as the independent variables and t as the dependent variable. The 
2 

coefficients of the polynomial expression for T are determined from 

moments and compatibility conditions of this equation. 

Essentially the new approach consists of the application of the well 

known von Karman-Pohlhausen technique to a slightly changed form of 

Crocco's boundary layer equation. The moments have been designed in such 

a way that the degree N of the polynomial can easily be increased without 

complicating the method too much. For increasing values of N the results 

of the method seem to converge to the exact solution. For special 

suction- and pressure distributions the method allows a power series 

solution. 

Results of accurate experimental investigations of laminar boundary 

layers which might be compared with results of boundary layers theory 

are very rare. Except for the flat plate - which has been considered by 

several investigators - the only accurate experiments known to the author 

are provided by Schubauer's investigation of the boundary layer on an 

elliptic cylinder [ 25]. Since the publication of [25] nearly all newly 

designed calculation methods have been applied to Schubauer's measured 
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pressure distribution. Some controversy has existed about these data 

because some calculation methods did not predict separation of the laminar 

boundary layer while the experiment had clearly shown that separation was 

present. It appears that the difficulty arises from the sensitivity of 

the boundary layer calculation to small changes in the pressure 

distribution near separation. According to Hartree [26] a very small 

change of the experimentally determined pressure distribution is sufficient 

to obtain separation. 

As Schubauer's investigation has been made with a small chord model (11.78 

inches) at the very low chord Reynoldsnumber of 72000 it was thought worth 

while to undertake an independent investigation on a larger scale. 

Therefore measurements were performed on a 28 /o thick laminar flow airfoil 

section with a chord of 1 meter. A detailed survey of the velocity profiles 

in the laminar boundary layer was made using hot wires and pitottubes. 

Special attention was given to the laminar separation point (chapter 10). 

For the case of suction through a porous surface with a streamwise 

pressure gradient no results of accurate boundary layer measurements were 

known to the author. Therefore measurements were made on the model with 

the porous surface - already referred to - for such a suction distribution 

that laminar separation occurred in the suction region. Also pressure 

distributions and wake drag coefficients were measured for this model 

(chapter 11). 

Outline of thesis. 

Chapter 2 reviews the basic equations of two-dimensional incompressible 

laminar boundary layer flows. Included are Prandtl's boundary .̂ayer 

equations, the von Karman-Pohlhausen momentum equation, the kinetic 

energy equation and compatibility conditions of the boundary layer 

equations. Chapter 3 is concerned with known methods for the solution 

of the boundary layer equations. Similar solutions and series expansion 

methods are discussed; finite difference methods are only briefly 

mentioned. Chapter 4 reviews some existing approximate methods using 

the von Karman-Pohlhausen technique. Chapters 2,3 and 4 do not contain 

new results and therefore readers acqainted with boundary layer theory 
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can omit this part of the present work. 

In chapter 5 the new method of the Pohlhausen type is presented together 

with some applications. The "phase plane" representation of the boundary 

layer flow between non-parallel plane walls with and without suction is 

given in chapter 6. The new calculation method which evolved from this 

study is described in chapter 7; some applications of both new methods are 

presented in chapter 8. The following chapter first reviews the subject 

of transition and linear stability theory and then describes the semi-

empirical method for the calculation of the transition region. 

Chapters 10 and 11 are devoted to the experimental investigations of the 

laminar boundary layer on the impervious and the porous airfoil section 

respectively. Where possible, results of the experiments have been 

compared with boundary layer theory. 

Conclusions about the results of the investigations are mentioned in 

chapter 12. An important result of the present work is that it has become 

possible to calculate the characteristics of the laminar boundary layer 

including the transition position for arbitrary chordwise pressure - and 

suction distributions. This provides, for the first time, the means for 

a rational design of the most economic suction distribution needed to 

maintain laminar flow for a given pressure distribution. 



- 9 -

The equations for two-dimensional laminar boundary layer flows. 

The Navier-Stokes equations. 

Two-dimensional flows of an incompressible viscous fluid are governed 

by the Navier-Stokes equations and the continuity equation. Omitting 

body forces the equations may be written in cartesian coordinates as 

follows (see [7], chapter 3). 

3" + uè^+ v|H= - i|P + V ( ^ + ̂ 1 (2.1) 

(2.2) 

3t ^x a y - - p ^ x -̂,̂ 2 ^ 2 

^ + u ̂  + V ̂ '= - i èZ + V f'Ll + ^ 
2t " "^x " ^ 2)y - - Pöy " \̂ ^̂ 2 -^-^2 

N2 

P^^=0 (2.3) 
^x ^y 

Equations (2.1) and (2.2) are the equations of motion in x and y 

direction respectively; (2.3) is the continuity equation. The notation 

is as usual: u and v are the velocity components in x and y direction, 

p is the pressure, p the density and •^ the coefficient of kinematic 

viscosity. Throughout the present work p and v̂  are assumed to be constant. 

At the surface of a body placed in the flow the relative velocity 

vanishes. This leads to the usual boundary conditions that the normal 

and tangential components of the relative velocity vanish at the 

surface. In the present investigation problems with suction and blowing 

are considered so that a small normal component of the relative 

velocity at the surface will be allowed. 

The Navier-Stokes equations are difficult to solve for flows around 

bodies of arbitrary shape. In a few cases where the geometry of the 

problem is very simple exact solutions show that for high values of the 

Reynoldsnumber ——- the effect of viscosity is confined to a narrow region 

near the surface called the boundary layer and a region behind the body 

called the wake. Within the boundary layer the relative velocity component 

tangential to the surface rises very fast from zero at the wall to a 

nearly constant value at a small distance from the wall. 
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This observation led Prandtl in 1904 [27] to his boundary layer theory 

which simplifies the Navier-Stokes equations by expressing the fact that 

there is a boundary layer of which the thickness is small compared to 

the body length. 

2.2. Prandtl's boundary layer equations. 

Prandtl's simplification of the Navier-Stokes equations leads to the 

following set of equations for the case of steady flow along a plane wall: 

u ^ + v ^ = - i ^ + V ^ (2.4) 
dx 2y p 5x -s 2 

4^+|X=o (2.5) 
^x iy 

Here x and y are taken along and normal to the wall respectively. Eq.(2.4) 

is the boundary layer equation and results from (2.1). The equation of 

motion in y-direction (2.2) leads to the result that within the boundary 

layer .̂ -̂  can be neglected and hence for steady flow p only depends on x. 

The continuity equation (2.3) remains unchanged (2.5). A discussion of 

the boundary layer equations may be found in the books by Schlichting 

[7], Curie [28] and also in [ 29]. 

It can be shown that (2.4) and (2.5) are valid also for a two-dimensional 

curved body provided the radius of curvature is large compared to the 

boundary layer thickness and no rapid changes of curvature occur 

([7], chapter 7). For curved bodies an orthogonal curvilinear coordinate 

system (x,y) should be used where x and y are measured parallel and 

normal to the wall respectively (fig. 2.1). 

Outside the boundary layer the velocity gradient -̂ — can be neglected 

and hence (2.4) reduces to: 

u 5 H = _ i É P (2.6) 
dx p dx 

Using this, (2.4) may be written as 

u > l + v ^ = u f + V ^ (2.7) 
2>x dy dx ->, 2 
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Together with the continuity equation (2.5) this equation determines the 

development of the boundary layer flow downstream of an initial station 

X = X when the velocity profile at x = x is known. Solutions of (2.5) 
o o 

and (2.7) are subject to the following boundary conditions: 

y = 0: u = 0, V = V (x) (2.8) 
o 

y->oo: u ». U (2.9) 

In boundary layer theory the velocity U at the edge of the boundary 

layer is assumed to be known either from a calculation using potential 

flow theory or from measurements. 

The boundary conditions (2.8) imply that no oblique suction or blowing 

is considered. 

Although the boundary layer equations are much simpler than the full 

Navier-Stokes equations, they can only be solved exactly for special 

types of the functions U(x) and v (x). Some of the available exact 

solutions will be reviewed in chapters 3 and 8. 

The application of finite difference methods to obtain accurate numerical 

solutions has been limited in the past due to the large amount of work 

required. However, due to the introduction of high speed digital computers 

this situation has changed, so that now a number of accurate solutions 

has been made available. Some of these solutions will be discussed in 

chapter 8. In what follows both the exact solutions and accurate finite 

difference solutions of the boundary layer equations will be denoted as 

"exact" solutions. Approximate methods of solution have found a wide 

application in the past due to the difficulty of obtaining "exact" 

solutions. An important approximate method was introduced by Pohlhausen 

in 1921 [22] (see also [_7 [ chapter 4). In methods of this type the 

boundary layer equations are not satisfied from point to point but 

relations are sought which fulfil certain more simple formulae derived 

from (2.5) and (2.7). Some of these formulae will be described in the 

remaining sections of the present chapter. 

It should be stated in advance that these equations do not provide 

information which goes beyond the boundary layer equations; they only 

give a part of the information contained in the boundary layer equations 

in a different form. 
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Compatibility conditions of the boundary layer equations. 

If the boundary conditions at the wall (2.8) are substituted into the 

boundary layer equation (2.7) the following result is obtained 

where the subscript 0 denotes values at the wall (y = O). Equation 

(2,10) is called the first compatibility condition at the wall; it 

relates the curvature of the velocity profile at the wall to the shear 

stress, pressure gradient and suction velocity. Compatibility 

conditions of higher order can be obtained by repeated differentiation 

of (2.7) with respect to y and using (2.5) and (2.8). The second 

compatibility condition thus obtained reads 

Î'l-N , 4 ~ \ (2.11) 
'°(ï7) 

o 

and the third is found to be 

^y^ 

'° "V^y Jr. \^y 
(If) l{^) ' - ^ ' - 1 =>''^i 

o 

Moments of the boundary layer equations. 

The boundary layer equation (2,7) can be written symbolically as 

F(x,y) = 0 (2.13) 

It follows that solutions of the boundary layer equations satisfy 

equations of the type: 

cry 

h(x,y) G(x,y)dy = 0 | (2.14) 

o 

Where G(x,y) may be any function subject to the Condition that the 

integral (2.14) exists. Relations of the form (2.14) are called moments 

of the boundary layer equations. Since a wide class of functions G may 

be used many different moments can be obtained. 
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Von Karman's momentum equation. With G(x,y) = 1 the well known von 

Karman momentum equation is found (|_7], chapter 8 ) . This equation can be 

written in the forms 

d (U^o) = !^ + V U - U6* ^ (2.15) 
dx p O dx 

2 V Ö T Ö 
ue de ,„ „̂  e du o o .„ ,̂ ^ 

and TT X- + (2+H) -^ ^ = —;- (2.16) 
V dx V dx 5̂  |_iU 

with T , 8 , e and H denoting respectively 

T = LLII^I = pV l ^ \ = wall shear stress (2.17) 

o \öyj„ iDy]^ 

8 = j ( l - r r ) d y = displacement thickness (2.18) 

o 
en 

o 

(1 - 7T)dy = momentum loss thickness (2.19) 

H = ^ = shape factor of the velocity profile (2.20) 

Equation (2.15) was first obtained by von Karman [30 J as an equation 

expressing the momentum balance in the boundary layer. Later Pohlhausen 

[22] gave the derivation referred to above. 

The kinetic-energy equation. With G(x,y) = u equation (2.14) leads to: 

^ (U^£) = V U^ + D (2.21) 
dx o 

(see for instance [7], chapter 8 and 13). Equation (2.21) is called the 

kinetic energy equation, while £. and D denote the energy-loss thickness 

and dissipation integral. They are defined by 

2i 

and _ ^ 
>2 k) 

I - (-) 
^U 

dy (2.22) 

D = 2 V ƒ fi dy (2.23) 
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Usually from £ and 9 a second shape factor H is defined by 

iï - i " - e (2.24) 

The kinetic-energy equation expresses the balance between mechanical 

energy and heat developed through frictional forces; it was first given 

by Leibenson [3l] and later by Wieghardt [32]. 

Other moment equations can be derived for instance by taking G(x,y) = u 

with k^ 1. The resulting expression becomes 

dx 
[u^^2 

k+2 
V U*̂ *̂  + (k+1) U ^ 
o dx 

o CO 

^ - < ï ï > 

k-1 

v'(k+l) / u 
k cTu 

dy 

dy 

(2.25) 

in which 
[ - k+1 -| 
u 

•'k+2 " J Ü 
o 

dy (2.26) 

It can easily be shown that equation (2.25) reduces to the momentum 

equation (2.15) for k = 0 and to the kinetic energy equation (2.21) for 

k = 1. 
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3. Some known methods to obtain accurate solutions of the boundary layer 

equations. 

3.1. Similar solutions. 

3.1.1. General. 

The partial differential equations (2.5) and (2.7) can be reduced to one 

ordinary differential equation for "similar" boundary layer flows. Here 

similarity means that the velocity profiles for all different stations x 

can be reduced to a single curve by rescaling the y and u variables with 

scaling factors depending on x. Well known examples are the flat plate 

boundary layer flow (Blasius, 1908, [ 33]) and the plane stagnation point 

(Hiemenz, 1921, [34]). A detailed discussion of the occurrence of similar 

boundary layers may be found in Goldstein [35], Mangier [^36,37], 

Schlichting[7] (chapter 8) and [29] (chapter V). 

It was found that similarity is only possible if the velocity U at the 

edge of the boundary layer is given by one of the following three 

expressions. 

m. 

(3.1) 

(3.2) 

(3.3) 

where u , u and m are constants. 

Expression (3.1) corresponds to the potential flow in the neighbourhood 
of the vertex of a wedge with an angle nP where 

2 m 
p = —-± (3.4) 

m +1 

The related boundary layer flows have been calculated by Hartree; they 

will be discussed further in section 3.1.2. 

In potential flow, (3.2) corresponds to a line source or-sink and hence 

the related boundary layer flow is that between non-parallel plane walls. 

It will be discussed extensively in chapter 6. 

u 

u 

u 

= "1 

= "1 

= "1 

1 
X 

- 1 
X 

e 



16 

Finally (3.3) describes the potential flow through a channel with curved 

walls (Goldstein [35], Mangier [36,3?]); it will not be discussed further 

in the present work. 

3.1.2. Hartree's boundary layer flows for U = u x 

m, 
For the wedge-type similar flows U = u x the proper non-dimensional 

variables are r\ and f(T|) defined by 

Ti = y 
"i^^ u 

and y^ (x,y) = 
2Vu 

vx 

-» "i+l 

ra +1 
1 

^ X ^ f(Tl) 

(3.5) 

(3.6) 

In (3.6) /^denotes the streamfunction which is related to the velocity 

components u and v by 

u = + - i - ; v=---!-
^y c)x 

(3.7) 

From (3.5), (3.6) and (3.7) it follows that 

u = U f • (TI) 

and 
m +1 m -1 

- 2 - ^ " l ^ 

m -1 
t + -!—p Tl f ' 

m +1 ' 

(3.8) 

(3.9) 

where primes denote differentiation with respect to T]. 

With (3.7) the continuity equation (2.5) is already satisfied. The boundary 

layer equation (2.7) reduces to 

f" ' + f f" + P(l - f' ) = 0 

The boundary conditions (2.8) and (2.9) lead to 

1-m. 

TI = 0 : f(o) = -v 
' c 

Ti-»co: f'—»-l 

niĵ  + l i? Uj^ 

(3.10) 

f'(o) = 0 (3.11) 

(3.12) 



- 17 -

Equation (3.10) was first given - in a slightly different form - by 

Falkner and Skan in 1930 [ss] and is usually called after them. Special 

cases of (3.10) had been given earlier for the flat plate (P=0) by 

Blasius and for the stagnation point flow (P=l) by Hiemenz (see sections 

3.1.3 and 3.1.4). Solutions of (3.10) for the no-suction case (f(o) = 0) 

were obtained by Hartree in 1937 [39 J using a differential analyser. 

He found that for p'^ O the boundary conditions (3.11) and (3.12) specify 

a unique solution of (3.10) whereas for p<Ĉ  0 an infinity of solutions 

exists, all satisfying the boundary conditions. This is illustrated in 

fig. 3.1 where velocity profiles are sketched which correspond to 

solutions of (3.10) satisfying 3.11. It is seen from the figure that 

for p ^ 0 there is only one solution for which (3.12) is fulfilled; for 

P <r0 all solutions satisfy (3.12). For negative values of P Hartree 

selected as the relevant solution that one which satisfied the extra 

condition (see fig. 3.1): 

" f' = — ^ 1 as fast as possible without making an overshoot" 

With this choice the skin friction considered as a function of p becomes 

continuous at p=0. For P = -0.198838 the solution determined in this way 

gives f''(o) = 0 indicating that a boundary layer occurs which is on the 

verge of separation at all values of x. 

Subsequent to Hartree's work many investigations have been made of the 

characteristic features of solutions of (3.10). An extensive review may 

be found in [29], chapter V.21. The extra condition at the edge of the 

boundary layer Introduced by Hartree to obtain a unique solution has 

become known as the "Hartree condition". A mathematical justification 

for its use has been described recently by Goldstein [40j. 

It follows from (3.11) that in the case of suction similar solutions can 

be found if the suction distribution v (x) is chosen in such a way that 

f(o) is constant. The permissible suction distribution follows then from 
m^-1 

2 
-V (x) = constant . x (3.13) 
o 

Solutions of (3.10) for the case of suction have been obtained by various 

authors. A review of work in this field may be found in | 29], chapter V.21. 
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3.1.3. Blasius' solution for the flat plate without suction. 

For the flat plate — = 0 and hence P=0; this reduces the Falkner-Skan 

equation (3.10) to the well known Blasius equation 

f" ' + f f" = 0 (3.14) 

Boundary conditions for solutions of (3.14) in the no-suction case are 

r| = 0 : f = f ' = 0 (3.15) 

Tl-x^ : f' > 1 (3.16) 

The solution of (3.14) has been given already by Blasius in 1908 [33]. 

Improved solutions were given later by Töpfer, Hartree, Howarth, Smith 

and others, (see [29]). 

Experimental observations of the flat plate boundary layer were made by 

Burgers and van der Hegge Zijnen in 1924 [4l] and later by Hansen [42]. 

These investigations fully confirmed the validity of Blasius' solution 
Ux 

at least for not too high values of the Reynolds number —j-. Fig. 3.2 

shows the boundary layer velocity profile according to this theory as 

compared with results of a recent experimental investigation in the low 

speed wind tunnel of the Department of Aeronautical Engineering at Delft 

Technological University (unpublished). 

According to the theory the shearing stress at the wall is given by 

W -2_ = 0.33206 \/ ;^ (3.17) 
pU 

Upon integration of (3.17) x = 0 to x = c the friction drag coefficient 

c of one side of a plate with unit span and length c is found to be 
f 

c ƒ T dx o 

c,=^^.i^2ilL 
2^ \ ^ 

Experimental results for the friction drag, taken from the measurements 

already referred to, are given as fig. 3.3. 

It should be noted that for airfoil sections with unit span the drag 
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coefficient is defined as the drag due to both the upper and the lower 
1 2 surface divided by 5pU c where c is the chord length of the airfoil. 

Hence, if the flat plate is considered as an airfoil section with zero 

thickness the drag coefficient should be given twice the value following 

from (3.18) . 

4. The plane stagnation point without suction. 

For a plane stagnation point U varies linearly with x a s 

U = Uĵ  X (3.19) 

and hence p = 1. In this case (3.10) reduces to 

f" ' + f f" + 1 - f'̂  = 0 (3.20) 

with boundary conditions (3.15) and (3.16). This equation was obtained 

and solved in 1911 by Hiemenz [34]; later investigations were made by 

Hartree, Smith and many others (see section 3.1.2.). Results of these 

calculations will be given in chapter 8. 

5. The asymptotic suction boundary layer. 

A very special similar solution is given by the asymptotic suction 

boundary layer. Experimentally this layer is expected to occur far from 

the leading edge of a porous flat plate with constant suction velocity 

V (note that v is negative for suction). 
o -J o ^ 

Assuming .r— = 0 in (2.5) and (2.7) it is easily found that ax 

V 
u V 
^ = 1 - e (3.21) 

The solution (3.2.1) is due to Griffith and Meredith [s]. The special 

feature of this boundary layer is that the velocity profiles at different 

values of x are not only similar but even identical, (see also section 

8.11). From (3.21) it is easily found that for this case 

-V 8* -V e T 9 
— - — = 1 ; —^ =0.5 ; H = 2 and t = - ^ = 0.25 

y> V )J.U 
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3.2. Solutions in series. 

3.2.1. General. 

In section 3.1 it was indicated that for a number of special functions 

U(x) and v (x) similar boundary layers are obtained for which the governing 

equations (2.5) and (2.7) are reduced to one ordinary differential 

equation. For more general functions U(x) and v (x)it is possible to obtain 
o 

solutions of the boundary layer equations by solving a series of ordinary 

differential equations. In what follows some examples will be given. 

3.2.2. Blasius' series. 

For blunt-nosed bodies which are symmetrical with respect to the direction 

of the oncoming flow the velocity U at the edge of the boundary layer can 

be developed in a power series of the form 

- - -3 -5 V - " ^ 
U = u,x + u„ X + u^ X + = / u„ , X (3.22) 

l o o „ ^n+1 

The coefficients u depend on the shape of the body. In (3.22) x = x/c 
.̂ n+l 

and U = U/U^^ where c and U^^ are a constant reference length and -speed 

respectively. Using a non-dimensional wall distance T] defined by 

Tl = y \/ - (3.23) 

the streamfunction \M can be written in the form 

j/̂ = (u^Vc)2 2 _ x^"^^ 2̂n+l̂ '>̂  ^̂ -̂ "̂ ^ 
n=0 

If, using (3.7) the expressions (3.22), (3.23) and (3.24) are introduced 

into the boundary layer equation (2.7) and the coefficients of the various 

powers of x are equated to zero a sequence of ordinary differential 

equations for the functions F is obtained. These equations can be 

solved in succession giving F , F , ... etc. The procedure indicated 

above has been given by Blasius in 1908 331. 

The equation for F is found to be non-linear and identical to equation 
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(3.20) given by Hiemenz for the plane stagnation point flow. Hence it 

follows that the boundary layer on any symmetrical blunt-nosed body 

starts at the leading-edge as the plane stagnation point flow discussed 

in section 3.1.4. 

The functions F„ , for n > 0 are obtained from linear differential 
2n+l ^ 

equations in which the coefficients are determined by the functions 

F„, , with k < n . Hiemenz showed r34 "l that the solution of the 
2k+l ^ L J 

differential equations for F and F can be made independent of u and 

u by introducing new functions f and f defined by 

^ = ^1 

u (3.25) 

Fo = 4 — f̂  
3 "̂1 -̂  

Later Howarth showed that all the functions F„ can be written as sums 
2n+l 

of universal functions which are independent of the u_ and hence can 

be calculated once for all. Calculations were made by Howarth, Frössling, 

Ulrich and most recently by Tifford. At present the functions are 

available up to and including n = 5; hence six terms of the series 

(3.24) can be determined. References to the investigations mentioned 

above and abstracts of Tiffords tables may be found in Curie [28], 

chapter 2; (see also [_7̂  and [29*]) . 

A similar procedure can be used for the non-symmetrical case when also 

even powers of x occur in the power series development of U (Howarth, 

[43]). However, only very few of the universal functions have been 

calculated. 

Series solution from a cusped leading-edge. 

The procedure given by Blasius for bodies with a blunt leading-edge can 

be generalised to bodies with any wedge-shaped leading edge for which 

m, 
-"1 r 

U = u X 1 + a X 
+ â  x^ + 1 (3.26) 

In this case also it may be expected that the boundary layer calculation 

is reduced to the solution of a series of ordinary differential 

equations. The first of these equations then would be the Falkner-Skan 
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equation (3.10) with P determined by m according to (3.4). Hence, it may 

be assumed that the boundary layer on a body with a cusped leading-edge, 

for which m = p = 0, would start like the Blasius flat plate boundary 

layer. 

As far as the author knows, this case has not been worked out in as much 

generality and detail as the Blasius series. Only for the special case 

U = 1 - X calculations have been made by Howarth [44] for J = 1 and by 

Tani [45] for J = 2, 4 and 8. Their results show indeed that the first 

differential equation of the series thus obtained is the Blasius equation 

(3.14); the remaining equations are linear. Results of the calculations 

by Howarth and Tani will be given in chapter 8. 

3.2.4. Görtler's series method. 

The most refined application of the series method available up till now 

is due to Görtler [46, 47, 48, 49] ; see also Schlichting [ ?], chapter 9. 

This method can be applied to any wedge-shaped leading-edge; it contains 

the blunt and cusped leading-edge as special cases. 

Görtler introduces new variables 3 and r| by 

X 

% =- I U dx (3.27) 

o 
X 

r| = yU (2 )> [ U dx)"* (3.28) 

The streamfunction U^is written in the form 

^(x,y) = V V 2 è F(| ,Ti) (3.29) 

Introduction of (3.27) through (3.29) in the boundary layer equation (2.7) 

leads to the following differential equation for the non-dimensional 

streamfunction F( i, ,T|): 

F + FF + P(J) 1 - F ̂  = 
Tl^n ^T L ^ J 

2 I [ F F, - FÉ F (3.30) 
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In this equation P(^) depends on the given pressure distribution according 

to o dU ^ „ , 
2 -— / U dx 

dx -J 

P(4) = \ (3.31) 
U 

Boundary conditions for (3.30) in the no-suction case are: 

Ti = 0 : F = 0 ; F = 0 (3.32) 

Tl^co : F — > 0 (3.33) 

"l 
For the similar boundary layers corresponding to U = u x the function 

P(5) becomes a constant; eq. (3.30) then reduces to the Falkner-Skan 

equation (3.10). For functions U(x) of the form 

m 
U = X 

m +1 3 

S + S, X + S, X + S„ X 

o \ 1 3 

P(>) = p^ + p. I* + p^ ̂ ^ + ̂ 3 ^ ̂  + (3.35) 

(3.34) 

with s ?̂  0, m ?̂  -1 the function P(5) is given by 

2 

The coefficients in the right-hand side of (3.35) follow from the 

coefficients of (3.34); especially p is given by 
o 

2 m 
P = \ (3.36) 
o m +1 

Görtler assumes the following series for the streamfunction F(» ,T)) 

3 

F( | ,Tl) = F^(TI) + F.(r)) M + Fĵ (n) S.^ + ^3(11)^^ + ... (3.37) 

2 
When this expression is substituted into (3.30) and the coefficients 

of various powers of > are equated to zero a series of differential 

equations is obtained. The first of these equations is non-linear and 

contains only F and p ; it is identical to the Falkner-Skan equation 
o o 

(3.10) for p = p . Hence it follows that for bodies allowing an expansion 
o 
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edge angle n P . For 3 = 0 and P 
o o 

(3.34) for U(x) the boundary layer at x = 0 starts as one of Hartree's 

boundary layers. The differential equations for the functions F of higher 

order are linear, the coefficients of the equations depend on the F's of 

lower order. It was shown by Görtler that the functions F can be split 

up into universal functions which depend only on P . Hence these 

functions can be tabulated once for all for each value of the leading-

1 the universal functions are 

1 sufficient 

functions have been calculated to form F for n>s 0, J, 1, ..., 2 [48]. 

With the aid of the tabulated functions boundary layer calculations 

can easily be made for U(x) conforming to (3.34); however in general 

the results are not sufficiently accurate near a separation point 

(section 3.2.5) . 

The series method was extended by Görtler to the case of suction in [ 49]. 

For pressure distributions given by 

available to calculate F for n = 0, 1, ...., 5; for P 
n o 

m +1 2(m +1) 
S + S, X + S„ X + 

o 1 2 ••] (3.38) 

the permissible suction distribution follows from 

m +1 2(m +1) 
0 + 0, X + 0„ X + 
o 1 2 

V = X 
o 

m^-1 

2 
(3.39) 

The number of universal functions to be calculated is becoming very large 

in the case of suction and - for so far the author knows - these 

calculations have not yet been performed. Therefore this method will not 

be discussed further. Results of Görtler's method for some cases without 

suction will be mentioned in chapter 8 of the present work. 

3.2.5. Disadvantages of the series methods. 

For slender bodies like airfoil sections it is impossible to represent 

U by one of the series (3.22) or (3.34) with a resonable number of terms. 

Hence the series methods can not be used for practical boundary layer 

calculations. Of course they remain useful for small values of x to start 

the calculation near the leading-edge. 
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Another disadvantage is the following. Even if an expansion (3.22), 

(3.26) or (3.34) is possible with a small number of terms the number 

of differential equations to be solved is in principle infinitely large. 

The relatively small number of universal functions which is available, 

is in general sufficient for boundary layer calculations not too near 

separation. However, when separation is approached more functions are 

needed to obtain sufficient accuracy. Therefore in this region the 

available series methods have to be supplemented by different calculation 

methods. 

Finite difference methods. 

Various authors devised methods to solve the boundary layer equations 

with finite difference methods. A discussion of these methods is outside 

the scope of the present work however. Reviews of available methods may 

be found in [29] . Where they are available results obtained from these 

methods will be used in chapter 8 to test the accuracy of the new 

calculation methods. 
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Approximate boundary layer calculations using moment equations and 

compatibility conditions. 

4.1. General. 

For bodies with arbitrary pressure- and suction distributions the 

similarity and series solutions as discussed in chapter 3 can not be 

used. In this case only the finite-difference methods can be applied 

to provide accurate solutions of the boundary layer equations. In the 

past however use of these methods on a large scale has been prohibited 

by the large amount of work required. Therefore approximate methods 

have been used to a great extent and possibly they will continue to 

be used in the future for technical applications. An important class 

of these methods is based on the von Karman-Pohlhausen technique. In 

these methods the requirement that the boundary layer equations should 

be satisfied for every fluid element within the boundary layer is 

abandoned. Instead a plausible form of the velocity profile is assumed. 

This expression contains a few parameters to be chosen in such a way 

as functions of x that certain moment equations and compatibility 

conditions are satisfied. This technique will be illustrated in 

section 4.2. for the well known Pohlhausen method. In later sections 

of this chapter some other methods will be mentionefl. 

4.2. Pohlhausen's method. 

In 1921 Pohlhausen published a method [22] which allowed the approximate 

calculation of laminar boundary layers without suction using the momentum 

equation (2.16). This method was considerably simplified by Holstein and 

Bohlen in 1940 I 501; a description of the modified method may be found 

in chapter 12 of Schlichting's book[7J. In what follows the main 

characteristics of this method will briefly be discussed. 

In the Pohlhausen method the boundary layer thickness 6 is assumed to 

be finite. The velocity profile is approximated by the following quartic 

polynomial in T] = y/8. 

— 2 3 4 
u = u /U = a T i + b r | + C T I + d T i O ^ T j ^ l ( 4 . 1 ) 

Ü = 1 T] > - l ( 4 . 2 ) 
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The coefficients 8, a, b, c and d are functions of x to be determined 

from the following relations: 

the momentum equation (2.16) for v = 0 (4.3) 
o 

the first compatibility condition (2.10) for v = 0 (4.4) 

the boundary conditions 
Tl = 0 : Ü = 0 (4.5) 

Tl= 1 : ïï=l, 1 ^ = ^ = 0 (4.6) 

Using the conditions (4.4), (4.5) and (4.6) the coefficients a, b, c 

and d can be expressed in terms of a parameter A defined by 

X 5" dU 
2 

1 - 1 1 I 

(4.7) >> dx 

The parameter \ is then found as function of x from the momentum 

equation. Equation (4.1) for the velocity profile can be written in the 

form 

Ü = F(TI) + A G(TI) (4.8) 

with (for 0 ^ n < 1) 

F(TI) = 1 - (1 + TI)(1 - Ti)̂  (4.9) 

and 

G(ri) = i Ti(l - Ti)̂  (4.10) 

Holstein and Bohlen use the parameter 

A - ?_ ËH 
1 ~ v» dx 

2 
r\\ I 

(4.11) 

instead of A . This is attractive since-A., occurs in the momentum 

equation; T V , is directly related to A • The shape of the velocity 

profile depends only on A . and hence onJ\ . Therefore the non-dimensional 

T 9 g» 

quantities -t = —TT— and H = ^— can be considered as given functions of A . 

Then, using the abbreviations given in the list of symbols, the momentum 

equation (2.16) may be written in the form 
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d9^ ^ ^ \ ^ 
2 ^ = — - ^ (4.12) 
dx U 

It follows that the boundary layer calculation is reduced to the solution 

of an ordinary differential equation. The function F(A ) is universal 

for Pohlhausen's method and is given as fig. 4.1; a table of F(A ) may 

be found in [7]. 

Normally the calculation is started in a stagnation point where U = O-
de ;2 

To avoid an infinite value for it is assumed that in the stagnation 
—odx „ 

A do 0 
point also F(J\. ) = 0. Then assumes the undetermined value —; it 

dx 
can be made determinate using -t' Hopital's rule (see [7] , chapter 12). 

An inspection of fig. 4.1 shows that F(A ) has a zero f o r W = 0.0770 

which can be chosen to represent the stagnation point. Other important 

points in fig. 4.1 are-A. = 0 (flat plate) and/V = -0.1567 

(separation, T = 0). 

Walz [ 5l] has been the first to notice that equation (4.12) can be 

integrated directly when the relation between F(/\. ) andV^. is of the 

form 
F(A^) = a^ - b ^ A ^ (4.13) 

Using (4.13) the result of the integration is 

X 

ue^ 1̂ r -h'^ ~ 
-gi-j- / U •" dx (4.14) 
U o 

where x = O corresponds to the stagnation point. A reasonable approximation 

of F(A ) is obtained for a = 0.470 and b = 6 (see fig. 4.1). From 

applications of Pohlhausens method it is known that the results are 

reasonably accurate for favourable pressure gradients (A >• 0). However, 

for adverse pressure gradients (A <^ 0) the accuracy is rather poor; 

in general the method predicts separation too late (see [28], chapter 5). 

4.3. Other methods using the momentum equation and compatibility conditions. 

Following Pohlhausen many authors developed similar methods using other 

compatibility conditions or different expressions for the velocity 
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profile. In this section some of these methods will be briefly described, 

The treatment cannot possibly be exhaustive due to the large number of 

methods available. Only the methods, to be referred to later, will be 

mentioned; extensive reviews may be found in [7, 28, 29 I. 

The characteristic features of the methods to be described are collected 

in table 4.1; in what follows some additional remarks on these methods 

will be made. 

Timman's method. [52 In this method the velocity profile is chosen in 

such a way that the right asymptotic behaviour for large values of y is 

obtained. Slight modifications have been introduced by Zaat[53 and 

Nunnink [_54̂ . 

Schlichting's method. [55] Here the velocity profile is chosen in such 

a way that two important cases with and without suction are represented 

with good accuracy. For these cases the flat plate without suction and 

the asymptotic suction boundary layer were selected. The expression for 

the velocity profile, given in table 4.1, reduces to the asymptotic 

suction profile for K =0 and to u = sin (— TI) for K = -1; the sine 
6 

function is used as approximation to Blasius' velocity profile. A 

disadvantage of the method is that no unique solution is obtained near 

separation; to overcome this difficulty Schlichting had to introduce a 

rather arbitrary separation criterion. A critical review of Schlichting's 

method has been given by Truckenbrodt [56 who at the same time developed 

a different method. 

A new method. The present author designed a method which may be considered 

as a further development of Schlichting's method. Here a third velocity 

profile - namely the separation profile of Timman's method - is introduced 

into the general expression of the velocity profile, A detailed discussion 

of the new method will be given in chapter 5, The method will be referred 

to as the "momentum method", 

Thwaites' method, [57] An interesting type of method, valid for the 

no-suction case, has been given by Thwaites, The momentum equation is 

used - in a form similar to (4,12) - to find the non-dimensional momentum 

loss thickness 0. It was observed by Thwaites that for this calculation 
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no necessity exists to specify the velocity profile in advance; all 

that is needed is a function similar to F(A,) of the Pohlhausen method. 

To obtain this function Thwaites plotted F(A,) versus TV for available 

exact solutions of the boundary layer equations and selected a linear 

relationship of the type (4.13) to represent mean values. The values 

a = 0.45 and b = 6 give a reasonably good average of the exact 

solutions. By plotting 't and H versusV\., for exact solutions and 

deducing average curves Thwaites was able also to specify -t and H as 

functions of/V . From the first compatibility condition at the wall 

(2.10) it follows that for the no-suction case TV, = -m- Hence, once Q 

and/V, are known from the momentum equation as functions of x also 'L, 

m and H are known. Then, if needed, a velocity profile can be composed 

which has the right values for -t, H and m. 

A slight modification of the method has been introduced by Curie and 

Skan [58J. Due to lack of exact solutions for cases with suction the 

method cannot be generalised easily to suction problems. 

Methods using the kinetic energy equation in addition to the momentum 

equation. 

The approximate methods, using only the momentum equation, described 

in section 4.3, do not always give an accurate description of the 

boundary layer especially near the separation point. To improve upon 

this, methods have been devised which use the kinetic energy equation 

(2.21) in addition to the momentum equation. Such methods have been given 

for instance by Walz [59], Tani [ 6O], Wieghardt [ 32], Truckenbrodt [6I] 

and most recently by Head [62, 63, 64]. Reviews of these methods may be 

found in [28] and [29]. 

The method of Head seems to be the most accurate. In this method the 

momentum equation (2.15), the kinetic energy equation (2.21) and the 

first compatibility condition (2.10) are used. A wide range of velocity 

profiles is defined graphically from which relations between the 

characteristic boundary layer parameters H, H, 2D , 't and m are derived. 

These relations are plotted in charts to be used for the boundary layer 

calculations. Available results of the method show a good agreement with 
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exact Solutions. A disadvantage is the use of charts which makes it 

somewhat difficult to program the method for automatic computation. 

Possible methods using moment equations of higher order. 

It is a disadvantage of all the approximate methods mentioned so far that 

the accuracy can only be assessed by comparison with exact solutions. In 

the no-suction case a sufficient number of exact solutions is available 

for this purpose but the situation is different for suction boundary 

layers. In the latter case the number of available exact solutions is 

too small to provide a good check. Such a check is necessary however 

since a method which works well in the no-suction case will not 

necessarily be satisfactory in the case of suction. This is caused by 

the fact that for suction boundary layers a far larger variety of 

velocity profiles has to be included than in the case of no-suction. 

A striking example is given by the Pohlhausen method. If in this method 

the momentum equation and compatibility condition are modified to include 

the effect of suction it is found that a complex boundary layer thickness 

is predicted for the asymptotic suction profile. 

In order to acquire confidence in the approximate methods it should be 

possible to estimate their accuracy without making reference to exact 

solutions. 

The improvement obtained by the use of the kinetic energy equation in 

addition to the momentum equation suggests that such a method might be 

constructed by using a whole series of moment equations as defined by 

equation (2.25) for k = 0,1,2,..,K. Then it can be expected that the 

results obtained converge to the exact solution for K—^cr>. As far as 

the author is aware no succesful method has been developed along these 

lines. The practical application of such a method will be cumbersome for 

large values of K. To see this let the velocity profile be defined by 

N 

n=0 

The 8 - occurring in the moment equations (2.25) then are algebraic 

expressions of degree k+2 in the coefficients a defined by equation 
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(2.26). The step by step solution of the moment equations requires the 

determination of the a once the 8, „ are known for all values of k to 
n k+2 

be used. This leads to the solution of a set of non-linear algebraic 

equations in a . For K=0 essentially the Pohlhausen method appears which 

in its simplest form requires the solution of one quadratic equation. 

For K==l a method like Head's is obtained, which requires the simultaneous 

solution of a quadratic and a cubic equation. In a method for which K=2 

a quartic equation would be added, etc. This situation makes the 

application of this method difficult for large values of K. 

To obtain a workable method the moments should be defined in such a way 

that the moment equations can be written in the form 

— - ^ = K (4.16) 
dx k 

where the J are linear functions of the parameters specifying the velocity 

profile. In this case the step by step calculation requires only the 

solution of a set of linear algebraic equations. 

In chapter 7 a method will be described which is designed along these 

lines. From applications of this method, to be given in chapter 8, it 

appears that the results converge to the exact solution when the number 

of moment equations is increased. 
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5. An approximate method using the momentum equation for the calculation 

of boundary layers with and without suction. 

5.1. Introductory remarks. 

In this chapter an approximate boundary layer calculation method, designed 

for application to suction problems will be described. A preliminary 

version of the method has been given in [65]. The essential point of the 

method is that an expression for the velocity profile is chosen which 

contains three important velocity profiles as special cases. These 

profiles are selected to be 

the boundary layer on a flat plate without suction, 

the asymptotic suction profile, 

and the separation profile from the method of Timman. 

The expression contains three parameters to be determined as functions of 

X from the momentum equation and the first and second compatibility 

condition at the wall. The method can be regarded as an extension of 

Schlichting's method discussed in section 4.3; the extension consists 

of adding the separation profile and the second compatibility condition. 

The results of the method are in good agreement with exact solutions 

without suction and with weak suction. For large values of the suction 

velocity the method breaks down because the expression selected for the 

velocity profile is not flexible enough to represent the wide class of 

velocity profiles, needed under greatly varying suction conditions. 

However, in most of the cases to be discussed in the present work the 

suction velocities will not be so high as to raise serious difficulties. 

The accuracy of the method may be assessed from the examples to be given 

in the present chapter and in chapters 8, 10 and 11. 

5.2. The expression for the velocity profile and related parameters. 

For the velocity profile the following expression is assumed: 

Ü = ^ = F^(TI) + K F2(TI) + L Fg(Ti) (5.1) 

In this expression K and L are shape parameters; T] is the non-dimensional 

wall distance defined by 
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Tl = J (5.2) 

in which 0 is a scaling factor related to the boundary layer thickness. 

The functions F , F and F are chosen in such a way that some special 
1 ^ o 

boundary layer velocity profiles are reproduced as accurately as possible 

for certain values of K and L. The functions F , F and F are defined 

by the equations (5.3) - (5.9) 

F^(T1) = f̂ (Ti) (5.3) 

F2(T1) = f̂ (Ti) - f2(Tl) (5.4) 

F3(TI) = f̂ (Ti) - f3(Ti) (5.5) 

with 

f̂ (Ti) = 1 - ê l̂ (5.6) 

f2(Ti) = 2 bTi - 5(bT])'̂ + 6(bTi)^- 2(bT])^ for 0 :$ bT] ̂  1 

(5.7) 

f2(Tl) = 1 for bTi:̂  1 (5.8) 

2 2 
f3(Ti) = 1 - e"'̂  - i T] e"^ (5.9) 

In these equations u = f (tj) represents the asymptotic suction profile 
a v i 

for — = -J-; f„(Ti) is a good approximation of the Blasius profile (see 
0 v ^ 

section 5.4.2.) while f„(Ti) is the separation profile from Timman's 

method (section 4.3). The coefficients a and b are scaling factors which 

later on will be given the values 1.3 and 0.3 respectively. These values 

were determined in such a way that some important boundary layers 

different from the three mentioned above, will be reproduced as 

accurately as possible. This point is discussed in detail in section 

5.8. The functions defined by equations (5.3) to (5.9) are shown in 

figure 5.1 for a = 1.3 and b = 0.3. 

Using the expressions (5.3) to (5.9) and the definitions (2.17) and (2.18) 

for the displacement thickness 8 and the momentum-loss thickness 9 it is 

found that 
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Pi = 

P2 = 

P3 = 

0.76923 

-0.18315 

-0.33855 

P4 = 

P5 = 

P6 = 

0.38462 

-0.01925 

-0.01817 

^ = P, +P2 K + P3 L (5.10) 

6 2 2 
and ö ^ P4 "̂  P5'̂  "̂  P6^ "̂  P7'̂  "̂  Ps^ "*" P9 ^^ (5-11) 

The coefficients p in (5.10) and (5.11) are rather complicated 

expressions in a and b containing error functions. For a = 1.3 and 

b = 0.3 the following values are obtained 

p = -0.03938 

p„ = -0.10771 (5.12) 

p = -0.12361 

Other important relations, to be used in what follows, are (see also the 

list of symbols) 

A = 52 d£ ̂  ̂  dU ̂  ̂  du/ e\2 ̂  . (ef (5.13) 
dx dx dx \ o / V 0 ' 

-v 9 -V a ^ -

2=V^=-^=-^l=^2§ 

= - a + (a - 2b)K + aL (5.16) 

For a = 1.3 and b = 0.3 the last relation becomes 

-t = - (1.3 + 0.7 K + 1.3 L) (5.17) 
0 

The momentum equation and compatibility conditions. 

The present method employs the momentum equation (2.16) which, using the 

abbreviations given in the list of symbols, may be written in the form 
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^-2 2l - 2(2+H)A^ - 2A2 

dx U 

M 

ÏÏ 

(5.18) 

In addition to (5.18) the first and second compatibility conditions (2.10) 

and (2.11) are used. These may be written as 

-t„ 
-du 

^L \ = -t. W ^ fü 

-̂ 49 
3-

f] /o 

a^u 
}-' 

(5.19) 

(5.20) 

Together with the expressions (5.3) to (5.9) defining the velocity 

profile, equations (5.19) and (5.20) lead to the following relations 

between K, L, 't, and -t^, 

K = 

L = 

-a ̂ /-(a^+1)^-t^ + a \ + a^ 

't2^(a-2a^b-2b) + 2 a \ l^- a^ 

2 a^b ^2^- 2 a^b l^ + a^ l^l^ - s . \ 

l,\a 2 a^b - 2b) + 2 a^b t^ 

(5.21) 

(5.22) 

In (5.21) and (5.22) a and b should take the values 1.3 and 0.3 

respectively. The boundary condition u = 1 for T)—> o^ does not introduce 

additional relations between the parameters involved because this 

condition is satisfied already through the special choice for the 

functions F (TI) , F (TJ) and F (TI) . 

Similar solutions. 

.4.1. General, 

For similar boundary layers the velocity profile - if suitably made non-

dimensional - has to be independent of the streamwise coordinate x 

(section 3.1). Then, characteristic boundary layer parameters like -t 

and H become constants. In the present method this requires constant 

values for K and L and hence also j \ , J \ and M should be independent 

of X. 
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Elimination of 6 from the following expressions 

A ^ = ê2 ^ (5.23) 
dx 

(5.24) 
-2 

and d9 _ M 

dx ÏÏ 

leads to 

. d ÏÏ 
Ai ^ 

ƒ " + ^ ^ = 0 (5.25) 
dU U dx 

dx 

Equation (5.25), in which M and A are constants, defines the functions 

U(x) for which similar solutions may be obtained. Integration of (5.25) 

gives 

A^^n dU 

dx 
+ M 'tn U = constant 

and after rearrangement 

- 7\i _ — 
constant . U dU = dx (5.26) 

A second integration leads to 

_ c x 
U = c e if M = - A ^ (5.27) 

_ _ m, . 
and to U = u X if M ^ - A (5.28) 

In (5.27) and (5.28) c , c and u are irrelevant integration constants; 

m is a constant defined by 

1 A i + 
(5.29) 

M 

Equations (5.27) and (5.28) show, that the present approximate method 

leads to the same permissible pressure distributions for the occurrence 
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of similar solutions as the exact theories, discussed in section 3.2. 

In what follows only the wedge-type flows, defined by (5.28) will be 

discussed further. 

The permissible suction distribution is deduced from the requirement that 

also A should be a constant. Then from (5.23) and 

A „ = V .6 (5.30) 
2. o 

it follows, through elimination of 9, that 

(5.31) 

With (5.28) this leads to 

V = A \ 
^o 2 \ 

m - 1 

/ A i 
(5.32) 

which reproduces the exact result given by equation (3.13). In view of 

further use (5.32) may be rewritten in the form 

- ' o \ / H . . , A ^ 
VA^+M' 

-"l 
5.4.2. The similar boundary layers for U = u x without suction. 

For the similar boundary layer flows corresponding to (5.28) without 

suction Hartree's velocity profiles are obtained, (section 3.1.2.). In 

the present method these boundary layers are obtained as follows. 

If suction is absent ^- = 0 and the boundary layer parameters become 

functions of 't only; they can easily be calculated using the formulae 

given in sections 5.2 and 5.3. The value of Hartree's parameter P then 

follows from (5.29) and (3.4). 

Results of the calculations are given in fig. 5.2 where also a comparison 
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is made with the exact solution. Velocity profiles are shown in fig. 5.3 

for the flat plate (P = O) and the plane stagnation point (P = 1). 

Numerical values for some characteristic boundary layer parameters have 

been collected in table 5.1. 

3.4.3. The plane stagnation point flow with suction. 

It follows from section 3.1.4 that for the plane stagnation point flow 

m = 1; then equation (5.29) shows that M should be zero. Due to this 

restriction only one independent parameter remains for which 't will be 

selected. Inspection of (5.32) shows that, as a consequence of m = 1, 

V is independent of x. Some results of the present method for this case 

are collected in table 5.2; they are plotted as a function of 

K---;^v Ux —- in fig. 5.4 and compared to exact solutions by 
Schlichting and Bussmann. (quoted by Mangier [37]). 

Comparison with section 3.1.5 shows that both the exact and approximate 

solution tend to the asymptotic suction layer for A _—^^o. 

-i 
5.4.4. The flat plate with v c--, x ''. 

° 0^ dU 
For a flat plate U is constant and hence from -t, = —;- -;— it follows that 

1 v' dx 
-t = 0; equation (5.28) shows that also m = 0. Equation (5.32) then 

indicates that for similar boundary layer flows v should be proportional 
_l o 

to x . From 't = 0 it follows that the boundary layer parameters are 

functions of -t„ only in this case. 

Results are given in fig. 5.5 and compared to exact solutions by 

Schlichting and Bussmann (quoted by Mangier |_ 37j) and Thwaites [ee]; 

Also for this case the boundary layer tends to the asymptotic suction 

layer for A „ —><^ . 

5.5. Step by step calculation of the boundary layer starting from given initial 

conditions. 

— dU — 
In the boundary layer calculations it is assumed that U, — and v are 

dx 
known functions of x. Furthermore at an initial station x = x a starting 
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value for 9 should be known. (The determination of this starting value 

will be discussed in section 5.6). 

For the step by step integration of the momentum equation (5.18) it is 

necessary to find M once 9 is known. This requires the knowledge of 't 

and -tn which are determined by equations (5.13) and (5.14): 

2 

A^ = \ (§) (5.34) 

^ 2 = ̂ 2 ^ (5.35) 

where v V , and_/V a r e known f r o m / V , = 9 — a n d / V „ = v . 6 . The 
1 2 1 ^— 2 o 

dx 

relations between 't , 't and — are rather complicated (see eqs. (5.11), 

(5.21) and (5.22) and it is not easy to solve (5.34) and (5.35) directly 

for 't and -t„. However, it was found that a simple iterative procedure 
1 ^ 

can be used for this. 

Starting from known values of A and yV and an estimated value of —, 

values of 't and 't„ are found from (5.34) and (5.35). Then K and L follow 

e 

from (5.21) and (5.22) which determine an improved value of — using 

(5.11). Except very close to separation this process converges rapidly; 

in calculated typical examples each step in the iteration procedure 
9 

increased the number of exact significant figures of — by one. The 

iteration should be stopped as soon as two consecutive values of — 

agree within a certain prescribed tolerance. Once this accuracy is 
9 J achieved —, -t and -t are known, satisfying (5.13) and (5.14). Then K 

and L follow from (5.21) and (5.22); — from (5.10); H from (5.15) and 

-t from (5.17). Now, all factors occurring in M are known and hence 9 

at the next station can be found, etc. From the known values of K and 

L all boundary layer parameters and the velocity profile are known as 

functions of x. 

In all applications of the method, to be described in the present report, 

the iteration procedure outlined above was used. The step by step 

integration was performed by means of the four point Runge-Kutta method. 

In all cases the calculations were made on the Telefunken TR-4 digital 

.computer of Delft Technological University. 
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It would be possible to speed up the calculation considerably if M were 

known directly as a function of A and A since then the iteration 

process could be left out. This can be achieved by plotting M on a large 

scale as function of A . and-A-,̂  according to the formulae given in 

section 5.2 and 5.3. Fig. 5.7 shows a small scale version of such a plot. 

For use on a digital computer it would be necessary to feed the graph 

into the computer, either by fitting approximation formulae to the 

curves or by reading a table into the computer's memory. This method has 

not been used in the present work; for hand computation it would be an 

advantage to use the graph however. 

A discussion of fig. 5.7 will be appropriate at this stage since it 

brings out clearly some characteristic features of the present method. 

The curve forA = 0 corresponds to the case of zero suction and should 

be compared to fig. 4.1 for Pohlhausens F(-A- ) discussed in section 4.2; 

this will be pursued further in section 5.7. 

Point P corresponds to K = -1, L = 0 and hence represents the flat 

plate without suction; P„ is given by K = 0, L = 0 and hence represents 

the asymptotic suction profile. Furthermore P represents Timman's 

separation profile without suction for which K = 0 and L = -1. 

Certain curves in fig. 5.7 represent a class of boundary layers. It has 

been mentioned already that all boundary layers without suction fall on 

the curve P.,P. for which A „ = 0. Similarly P,Ppi for which A = O, 

covers all flat plate boundary layers with arbitrary suction distributions. 

All plane stagnation point flows with suction, discussed in section 5.4.3 

fall along P^^d' 

The graph is closed on the upper left hand side by a curve which for 

A <^0.30 denotes separation. ForiV ^ 0.30 separation is not yet 

reached on the bounding curve but here double valued functions start to 

appear. To avoid this complication the calculations are deliberately 

stopped when this line is reached. Using the iteration process described 

above, the calculation stops automatically because the iteration fails 

to converge in this region. This difficulty is similar to the one 

mentioned in section 4.3 for Schlichting's method; in the present 

method the complication arises at larger values of A than for 
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Schlichting's method. 

From the similar solutions, already discussed and from some further 

examples to be given in chapters 8, 10 and 11 it is found that the 

present method can be used with some confidence for 0 ̂  A. .̂  0.5. 

This is not surprising since in the points P , P and P of fig. 5.8 
1 ^ o 

this was ensured a priori by the choice for the functions F', , F„ and 
•' 1 2 

F . Furthermore a and b have been given such values (see also section 

5.8) that the results along P,Po ^nd P P P became as accurate as possible. 

The remarks given above about the accuracy of the method are not applicable 

to cases where large discontinuities in pressure gradient or suction 

velocity occur; for such problems the accuracy may be rather poor 

(cf . section 8.12). 

5.6. Determination of the starting value for 9. 

The boundary layer calculation has to start in the stagnation point where 

dö^ 
U = 0. Hence it follows from (5.18) that in the stagnation point > <-5 

dx 

unless M = 0. This means that the boundary layer starts as one of the 

plane stagnation point flows discussed in section 5.4.3. 

From the relations given in table 5.2 and fig. 5.4 the starting values can 

be determined if v j — I in the stagnation point is known. The value of 

° A A -2 dÏÏ 
0 follows directly from the given value ofVV by usingy\. , = 9 — . 

-2 dx 
However, — — takes the undeterminate value p-; this can be made determinate 

dx 
by applying L'Hopital's rule to eq. (5.18). The result is 

-2 d̂ ÏÏ ^ M -pr "̂"̂o ^ M 
6 7r + e . . -p-

,-2 dx ^Al dx ^-^2 
^ = _ (5.36) 
dx — (I '^ "•) _^ AJ^ 

dx ^Ai 29 "^^2 

where all values in (5.36) are to be taken in the stagnation point. In 

general suction will not be applied near the stagnation point because 

there is no tendency for transition or separation in this region. For the 

no-suction case (5.36) takes a simple form analogous to a relation 
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obtained for the Pohlhausen method ( [ 7 ] , chapter 12) . 

• ^ du. j ^ d ^ 

,2 . dx-2 M l 1 dx ' ^ A i 

-2 d_U du. yY dJJ bjA 

f ^ ) = - = —-^ (5.37) 
Idx 4^ dU (̂  _ 3M^ /du\ / _ 2u^ 

dx «>Ai Ux/ I 2)Ai, 

A ^M 
, = 0.08572 and = -4.844 in the stagnation point 
'1 '^Ai 

d ' ï ï 

"^^^ = -0.07105 i^Zi!^ (5.38) 
dx / / dU \ ̂ 2 

St 
dx, ^ 

St 

In general the step by step calculation will require short steps near 

the stagnation point; moreover for experimentally determined pressure 

distributions U and its derivatives will not be known with great 

accuracy near the stagnation point. Therefore it is recommended to start 

the step by step solution a small distance x away from the stagnation 

point. The starting value for 9 may then be found by applying one of the 

similar - or series solutions from x = 0 to x . For the case of zero 
o 

suction the simple formulae (5.40) to be discussed in section 5.7 should 

be used. 

It was found that for the typical case of an airfoil without suction 

the solution at larger distances from the stagnation point is rather 

insensitive to the starting values used. Therefore it appears that the 

calculation of the starting values may be rather inaccurate. 

Simplification of the method for the no-suction case. 

When no suction is applied eq. (5.21) and (5.22) show that K =-1-^ and 

L = 't. ; this leads to a considerable simplification because only one 

parameter ('t.) occurs and the method becomes analogous to the Pohlhausen 

method. Important boundary layer parameters for 't. = 0 have been given 

in table 5.3 as a function of 't.; the results are plotted in fig. 5.6 

as a function of A . Assuming a linear relationship between M andy\. 

'of the form 



- 44 -

M = a - b A (5.39) 

(compare Walz, section 4.2) the momentum equation (5.18) can be 

integrated from x to x giving 

^2 
J'X _2 -̂ 'l -2 ( -^1-^ 
(U 9 ) - - (U e ) - = a I U dx (5.40) 

X2 ^1 1 ^ 

From an inspection of fig. 5.6 it is seen that for the present method 

the best values of a and b are as follows 

region of applicability 

1 near stagnation point (M = 0) 

from stagnation point (M = 0) to 

pressure minimum (A, = 0) 

from pressure minimum ( A = 0) 

to separation ( A = -0.087072) 

\ 

0.415 

0.437 

0.437 

\ 

4.84 

5.10 

6 

For engineering applications the results will be sufficiently accurate 

if the values a = 0.437 and b = 6 are used all the way from stagnation 

point to separation. 

Then, if the calculation is started in the stagnation point eq. (5.40) 

reduces to 

ü«ë' 0.437 j ÏÏ -^dx (5.41) 

5.8. Determination of the best values for a and b. 

5.8.1. Determination of b. 

In section 5.2 it was mentioned that a and b should take the values 1.3 

and 0.3 respectively to obtain the best overall results of the present 

method. This may be discussed now in some more detail. 
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For boundary layer flows without suction it was found in section 5.7 

that K = -1-t and L = 't . Hence (5.1) reduces to 

ü = (1+t^) f2(Tl) - \ f3(Ti) (5.42) 

showing that f (t]) and hence the coefficient a no longer occur in the 

expression for the velocity profile. Therefore the results of the present 

method, for boundary layers without suction, only depend on b. 

For -t = -1 only the separation profile f„(Ti) is obtained, which is 

independent of b. For -t = 0 only f„(Ti) remains which gives the flat 
1 ^ 

plate boundary layer without suction. The expressions (5.7) and (5.8) 

for f„(T|) contain b but only as a scaling factor for y which does not 

influence the non-dimensional boundary layer parameters like -t, m, H 

etc. Hence both for -t = 0 and -1 the results of the present method are 

independent of b. For other values of 't however they depend rather 

strongly on b. The best value of b was defined as the value which leads 

to the best representation of the Hartree profiles (cf. section 5.4.2). 

It was found that b = 0.30 should be taken to obtain this. 

5.8.2. Determination of a. 

Once a value for the scaling factor b has been chosen only the scaling 

factor a remains to be determined; this was done as follows. 

For the flat plate with constant suction velocity -v an exact solution 

has been given by Iglisch [67j this solution will be discussed in 

chapter 8. The present approximate method was used to calculate the 

boundary layer for this case, using different values for a. By 

comparison with the exact solution it was found that a = 1.30 shows 

the best overall results. 
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Phaseplane description of the boundary-layer flow between non-parallel 

plane walls. 

Introductory remarks. 

From the examples discussed in chapter 5 it follows that the behaviour of 

boundary-layer flows strongly depends on the streamwise pressure gradient 

and the suction velocity. 

Another important example which may illustrate this is the viscous flow 

between non-parallel plane walls. This flow has been discussed already 

in 1915 and 1916 by Jeffery [23] and Hamel [ 24 ] respectively using the 

Navier-Stokes equations. From their work it is known that in the case of 

inflow between non-porous walls the Navier-Stokes equations admit a 

boundary layer type solution for which the radial velocity component 

becomes practically constant at large distances from the wall. 

For inflow between impervious walls such a boundary layer type solution 

is also allowed by the boundary layer equations. This solution was given 

in closed form by Pohlhausen in 1921 [ 22]; it will be discussed further 

in section 6.3. 

For outflow between diverging walls it is only possible to obtain boundary 

layer type solutions in case a sufficient amount of suction at the wall is 

applied. 

This characteristic difference between the cases of inflow and outflow 

becomes very clear when the flow is studied in a "phase plane" where shear 

T is plotted versus the velocity component u parallel to the wall. 

The phase plane concept is known from the theory of oscillations of non

linear autonomous systems with one degree of freedom where speed is plotted 

versus displacement. These oscillations are described by a second order 

ordinary differential equation in the variables displacement x and time t 

of the form 

d x , dx. „ /•c 1 \ 

^ + g(x, ̂ ) = 0 (6.1) 
dt 

As the time t does not appear explicitly in this equation it can be 

eliminated between (6.1) and 

«* 
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y - % 

where y denotes the speed. 

The resulting equation is of the form 

dy _ P(x,y) 

Singular points of this equation occur for values of x and y where both P 

and Q vanish; the singular points correspond to equilibrium positions of 

the oscillation. The type of singularity determines the character of the 

stability (or instability) of the oscillation. 

A general theory of equation (6.3) has been given by Poincaré [68]; 

reviews of this theory may be found for instance in the books by Minorsky 

[69] and Stoker [70]. 

If the origin of a Cartesian coordinate system coincides with the singular 

point under investigation equation (6.3) may be written in the form 

dy ^ ax + by + Pi(x,y) ^^ 
dx ex + dy + Q^(x,y) 

2 2 
where P (0,0) = Q (0,0) = 0. If P and Q vanish like x +y when x and y 

tend to zero and if furthermore ad - be ?̂  0 the type of singularity is 

determined by the simpler equation 

dy^ax_i^by ^^^^ 
dx ex + dy 

A classification of the singularities may then be given in terms of the 

constants a, b, c and d (see for instance StokerL7oJ) and hence the 

different kinds of singularities of (6.3) may be determined without actually 

solving the equation. 

In the following section it will be shown that for the flow between non-

parallel plane walls the boundary layer equations can be reduced to the 

form (6.1) so that the phase plane method may be used to study the flow 

problem. It follows also that the singular points correspond to the edge 

of the boundary layer; solutions of the boundary layer type will only 

occur when the singularity is a saddle point or a stable node. The kind of 
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singularity will depend on the amount of suction or blowing; it is found 

for instance that for outflow between diverging walls a minimum amount 

of suction has to be exceeded before a boundary layer type solution will 

be possible. 

A similar treatment may be given for the full Navier-Stokes equations; 

the results are essentially the same as for the boundary layer equations. 

In some cases it is even possible to transform the Navier-Stokes 

equations into the boundary-layer equations by introducing suitable new 

variables; only the boundary conditions remain different. This difference 

in boundary conditions vanishes when the Reynoldsnumber becomes large and 

the solutions of the Navier-Stokes equations then tend to those of the 

boundary layer equations. In this thesis only the results for the boundary 

layer equations will be given. A more detailed review of this work, 

together with the phase plane description applied to the Navier-Stokes 

equations, may be found in [71 J. 

As far as the author is aware, the only other phase plane representation 

of viscous flow has been given by Ku [72] who discussed the boundary 

layer flow for the flat plate and the plane stagnation point. As the equations 

(3.14) and (3.20) describing these flows are of the third order a phase 

space is needed instead of a phase plane. Since the general theory for 

singularities in a three dimensional space is more complicated than for 

the two-dimensional problem, Ku was unable to establish a relation between 

the types of singularities and the character of the flow. 

The boundary layer equations for the flow between non-parallel plane walls. 

For radial flow between non-parallel plane walls (fig. 6.1) the potential 

flow velocity distribution is given by 

U = u x"''" (6.6) 

where u is a constant. For u > 0 equation (6.6) represents outflow 

from a two-dimensional source at x = O; for u. < 0 inflow into a sink 

is obtained. It has been mentioned already in section 3.1.1 that for 

U = u x the boundary layer equation (2.7) and the continuity equation 

(2.5) admit a similar solution. To obtain this solution the non-dimensional 
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wall distance T| is introduced with 

and the non-dimensional streamfunction f(Ti) by 

^ = \ / M " i | (̂n) - A \ / ' | " I | ^ ^ (6.8) 

In equation (6.8) A is a constant which determines the suction velocity 

at the wall according to equation 6.15. 

With (3.7) and (6.8) the continuity equation (2.5) is satisfied; the 

velocity components u and v follow from 

lul 
u = ^ ^ f'(Ti) = |ul f'(Ti) or u = iA.= f'(Ti) (6.9) 

-=\p\^\ ^t'ir^) ̂ èV^hll (6.10) 

In (6.9), (6.10) and subsequent equations in this chapter primes denote 

differentiation with respect to ri. 

Introduction of (6.9) and (6.10) in the boundary layer equation (2.7) 

leads to 

f " - A f" + (f')' - 1 = 0 (6.11) 

Since f does not occur in (6.11) the order of this equation may be 

reduced through the introduction of f' = u. The resulting equation is 

ÏÏ" - A Ü' + u' - 1 = 0 (6.12) 

Boundary conditions for solutions of (6.12) are at the wall 

Tl = 0 : Ü = 0 (6.13) 

and at the edge of the boundary layer Ti->t>̂  : 

u —3» +1 for outflow (u >• 0) 

ü-^> -1 for inflow (u < 0) ? (6.14) 

u'—^ O both for outflow and inflow 
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It follows from (6.10) that the normal velocity at the wall (TI = 0) is 

given by 

This equation shows that v should be inversely proportional to x to 

obtain similar solutions; blowing occurs for X > 0 and suction for 

> < 0. 

The non-porous wall ( X = O) 

For the non-porous wall ( A = 0) equation (6.12) can easily be integrated 

after multiplication with 2 u'. The result is 

- 2 2 -3 
(u') + 3 U - 2 u = A (6.16) 

where A is an integration constant. 

For inflow the boundary conditions (6.14) at the edge of the boundary 
4 

layer require that A = + —. Then it follows from (6.16) that at the wall 
_ 2 4 3 
(u') = ^; hence the non-dimensional shear stress at the wall is given by 

u'(o) = -2/V3. The negative root is taken because in the present 

coordinate system both the velocity and shear stress are negative for the 

case of inflow. 

For outflow the conditions (6.14) at the edge of the boundary layer lead 
4 

to A = - —. However, from (6.16) it follows that A should be non-negative 

to obtain a real value for the skin friction at the wall (u = 0). Hence 

it is concluded that (6.16) does not allow a real boundary layer type 

solution for outflow. 
4 

The solution for inflow with A = + — can be written in the forms 

2H.Ü. = -\/|..I.|« = 

--I i VÏ 
'" (6.18) 

n - 2-3 
+ 2 u - - u 
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Again the minus-signs in (6.17) and (6.18) are introduced since for the 

case of inflow both u and u' are negative. Integration of (6.18) leads 

to the following expression for the velocity profile 

3 tgh' -=3: + 1.146 (6.19) 

A graph of the velocity profile is shown in fig. 6.2. The solution (6.19) 

was obtained by Pohlhausen in 1921 [22J . (see also[7], chapter 9. b) . 

That a corresponding solution for outflow does not exist can easily be 

demonstrated by studying equation (6.12) in the phase plane. 

Introducing the non-dimensional shear stress T by 

T = ü ' = ^ (6.20) 

equation (6.12) may be written, for A = 0, in the form 

g=l-ïï' (6.21) 
dri 

Elimination of T) between (6.20) and (6.21) leads to the following first 

order differential equation 

^ = i £ ^ (6.22) 
du T 

Since equation (6.22) is of the form (6.3) it can easily be studied 

using Poincaré's general theory. Singular points are obtained for T = O 

and u = -1 or +1; these points in the phase plane correspond to the edge 

of the boundary layer in the physical plane for Inflow and outflow 

respectively. Solutions of (6.22) are easily found to be 

T = 2 Ï Ï - | ü ^ + A (6.23) 

where A is an arbitrary integration constant. Integral curves for 

different values of A are shown in fig. 6.3. These trajectories were 

obtained by solving (6.12) on an analog computer for different initial 
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conditions; the curves in fig. 6.3 were drawn by a plotting machine 

coupled to the analog computer. Arrows in fig. 6.3 indicate the direction 

in which the trajectories are traversed with increasing wall distance T\. 

This direction follows from (6.20) which shows that TI increases with u 

when T is positive. 

The singularity at (-1,0) in the phase-plane is a saddle point; it 

corresponds to the edge of the boundary layer for inflow. At (+1,0) a 

center occurs which represents the edge of the boundary layer for 

outflow. 

A solution of (6.22) which satisfies the boundary conditions (6.13) and 

(6.14) should produce a trajectory in the phaseplane connecting a point 

on the T-axis (T) = u = 0) with one of the singularities. It follows from 

fig. 6.3 that such a solution may be found for inflow; it is defined by 
4 

the trajectory PS for which A = + —. This trajectory clearly represents 

Pohlhausen's solution (6.17). 

The boundary layer velocity profile follows from 

u 

Tl = r ^ (6.24) 
^ T 
O 

it can easily be produced by the analog computer. The velocity profile 

obtained in this way is shown in fig. 6.4 together with the profiles 

corresponding to some adjacent trajectories in fig. 6.3. The figure 

shows that Pohlhausen's solution is a unique one. It should also be noted 

that the solutions of (6.22) for the case of inflow show the same 

behaviour as the Hartree solutions for the Falkner-Skan equation in 

case P > 0 (cf. section 3.1.2) . 

It is clear from fig. 6.3 that no boundary layer type solution can be 

found for outflow because (+1,0) is an isolated singular point. It will 

be shown in the next section that for outflow boundary layer type 

solutions may be found only if a sufficient amount of suction is applied 

at the wall. 

4. The effects of suction and blowing (A ^ 0). 

ForX ^ 0 the walls of the channel should be porous giving a normal 
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9 

velocity distribution in accordance with equation 6.15. This equation 

shows that there is suction at one wall and blowing at the other one with 

a normal velocity inversely proportional to x. In what follows only the 

lower wall will be considered for which A *C 0 or A ^ 0 means suction 

or blowing respectively. A solution of (6.12) in closed form can not be 

found for A 4 0. According to Mangier [37 J numerical solutions have 

been obtained by Holstein [73]; detailed numerical results will not be 

given in the present work however. Instead of this, equation (6.12) will 

be studied in the phase plane giving a better insight into the structure 

of the equation. 

Introducing T = 3— and eliminating ri from (6.20) and (6.12) leads to 
dT] 

the following equation 

gï . XT + 1 - ü' (6.25) 
du T 

Equation (6.25) is again of the type (6.3) and hence can easily be studied 

using Poincaré's theory. For all values of A the singular points are found 

at T = 0, u = + 1 and hence are the same as in the no-suction case (A = 0) 

It is easily found that the singular point (-1,0), representing the edge 

of the boundary layer for inflow, is always a saddle point irrespective 

of the amount of suction or blowing. The type of the singularity at (+1,0), 

corresponding to the edge of the boundary layer for outflow, depends on 

the value of A according to table 6.1. 

Phase plane portraits for different values of A , obtained from the analog 

computer, are shown in fig. 6.5. 

Since the singularity at (-1,0) is always a saddle point there is a unique 

boundary layer type solution for the case of inflow irrespective of the 

amount of suction or blowing. These solutions correspond to the 

trajectories connecting the - T axis with the singularity (-1,0). The 

corresponding velocity profiles are shown in fig. 6.6 for different values 

of A . 
A boundary layer type solution for outflow would require a trajectory in 

the phase plane connecting some point on the + x-axis with the singularity 

(+1,0). Fig. 6.5 shows that for blowing ( A ̂  0) all trajectories lead 
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away from the singular point. Hence, a boundary layer type solution is 

not possible for outflow with blowing at the wall. From section 6.3 it 

is known already that also for the impervious wall (X = 0) no solution 

is possible. 

For suction at the wall (A<C 0) an infinity of solutions exists; however 

not all these solutions are physically acceptable. For -2 Y 2 <. A •̂  0 

the singularity at (+1,0) is a spiral point which produces velocity 

profiles of the type shown in fig. 6.7. In this case u approaches 1 in 

an oscillatory manner which is physically not acceptable. With increasing 

intensity of suction the spiral changes into a stable node for A ^ -2 7 2; 

the corresponding velocity profiles are of the type shown in fig. 6.8. 

Some of the velocity profiles have an overshoot and hence are rejected 

as physically unacceptable. There remains however an infinity of 

solutions for which u — > 1 from below; it is not clear on physical 

grounds which of these solutions should be selected as the relevant one. 

This situation is analogous to the problem encountered by Hartree in his 

study of solutions of the Falkner-Skan equation (3.10) for P "x 0 (see 

section 3.1.2). To obtain a unique solution Hartree introduced the extra 

condition that the relevant solution is the one for which u — > • 1 as 

fast as possible without making an overshoot. If this "Hartree condition" 

is also accepted for the present problem it follows that the steeper 

main branch of the stable node should be used (fig. 6.9). Some further 

arguments in favour of Hartree's choice can be produced in the present 

case. If it is required that u approaches 1 exponentially it should be 

possible to develop T in a power series in (u-1) starting with a term 

of the first degree. This is only possible for the two main branches of 

the node; the other trajectories through the node can only be represented 

by non-analytical series. The power series for the steeper main branch 

has finite coefficients for all values of \ ^ - 2\l 2; for the other 

main branch however some of the coefficients in the series may become 

infinite at certain values of A . Hence if u should tend to 1 exponentially 

with T] for all values of A > only the steeper main branch of the node may 

be used; this is in agreement with Hartree's choice. 

A further argument follows from an inspection of the phase plane portraits 

in fig. 6.5. It follows that with increasing suction the steeper main 
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branch moves into a region with higher shear and hence produces a 

thinner boundary layer. For the other main branch, however, increased 

suction produces a smaller values of T and a thicker boundary layer; this 

conflicts with our physical ideas about the effects of suction on boundary 

layer flows. 

If, finally, the steeper main branch of the node is selected as 

representing the relevant boundary layer type solution for the case of 

outflow a unique velocity profile is obtained for A ^ - 2 7 2 . The 

velocity profiles for some values of A are shown in fig. 6.6. 

From fig. 6.5 it follows that for A — > - c o the wall shear stress 

becomes very high and the steeper main branch of the node tends to a 

straight line through (+1,0). In the same way the relevant trajectory 

through the saddle point becomes a straight line. This property is shown 

more clearly after introduction of the following transformations 

X (6.26) 

T T = ^ = S ^ (6.27) 

Substituting (6.26) and (6.27) into (6.25) leads to the following 

equation 

- l-u' 
-T, + 

dT^ ' K^ 
—=^ = (6.28) 
du T 

which for A — > - «^ reduces to 

dT 

dü 
i = - 1 (6.29) 

From (6.29) it follows that the trajectories through the singularities 

(+1,0) are given by 

T = 1 - u for outflow (6.30) 

T =-1 - ÏÏ for inflow (6.31) 
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Using (6.26), (6.27) and integrating (6.30) and (6.31) leads to 

I-I '"̂ 1 "̂̂  u = l - e = l - e (6.32) 

With (6.7) and (6.15) equation (6.32) may be written in the form 

I - I V 
u = 1 - e (6.33) 

Equation (6.33) shows that both for outflow and for inflow with increasing 

suction the velocity profile tends to the asymptotic suction profile 

discussed in section 3.1.5. This result had been obtained already by 

Pretsch L743 (see Mangier [37]). 

6.5. Consequences of some results of the phase plane description for practical 

boundary layer calculations. 

For the case of inflow between impervious walls equation (6.17) shows 
—2 -

that the relation between 1 and u is given by the following polynomial 

—9 9 —T — 4 
T ^ = - £ u-^+2u + | (6.34) 

or ?' = I (Ü + 1)̂ (2 - Ü) (6.35) 

In the last part of section 6.4 it was shown that both for outflow and 

for inflow the asymptotic suction profile is obtained when A — > -'^^ • 

From equations (6.30) and (6.31) it follows that also in these cases 
-2 -

the relation between T and u is a simple polynomial. 

It can be shown that for the case of inflow, at arbitrary values ofA , T 

may be developed in a power series in (u + 1) of the form 

T = rĵ (ü+i) + r^ (Ü+1) + r3(ü+i)"^ + (6.36) 

(note that for inflow u = -1 at the singularity). It may be shown 

that the series converges rapidly for all values of A . ForA = 0 the 
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series expansion of \/ ̂  (u+1) (2-u) is obtained. ion of y i 
For the case of outflow with A ^ -2 \/ 2 a series expansion around 

u = +1 is possible of the form 

? = Tj^d-ïï) + r2(l-ü)^ + Tgd-ü)^ + (6.37) 

It is found that the series converges well except for values of A near 

the limiting value -2 7 2. 

The numerical results quoted above suggest the idea that a practical 

calculation method of the Pohlhausen type can be developed in which the 

velocity profile is defined by a polynomial expression of the form 

—2 — —2 
T = a + a u + a u + (6.38) 

Such a method will be described in the next chapter. 
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A new multimoment method to obtain solutions of the boundary layer 

equations. 

Introductory remarks. 

It was shown in chapters 4 and 5 that - at least for cases without 

suction - reasonably accurate solutions of the boundary layer equations 

can be obtained by means of the von Karman-Pohlhausen technique. In 

methods of this type a suitable expression for the velocity profile is 

used in combination with certain compatibility conditions and moments. 

Since these methods in themselves do not provide a check on their 

accuracy, it will only be possible to get an idea about their validity 

by applying them to boundary layer flows for which exact solutions are 

available. If such a method works well for a specific example it may 

reasonably be expected that the results for similar cases will also be 

sufficiently accurate. For widely different cases however the results 

may be entirely useless. 

It may be expected that the accuracy of the Pohlhausen-type methods 

can be improved by increasing the number of parameters in the expression 

for the velocity profile. These extra parameters then have to be 

determined from additional compatibility conditions and/or moment 

equations. Since moment equations are relations between mean quantities 

in the boundary layer while compatibility conditions give relations 

between quantities at the wall or at the edge of the boundary layer only, 

it can be expected that the best results will be obtained from taking 

additional moment equations. 

Increasing the number of moment equations leads to considerable 

difficulties for existing methods however; it has been explained already 

in section 4.5. that the difficulties arise from the fact that non-linear 

algebraic equations have to be solved. 

Therefore if a workable Pohlhausen-type method, using many moment 

equations, is to be developed the moments should be defined in such a 

way that the moment equations reduce to relations of the form (4.16) 

= M, (7.1) 
dx 
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where the J are linear in the parameters specifying the velocity profile. 

Such a method will be described in the present chapter; the principle idea 

is outlined below. 

It was shown in chapter 6 that for some special configurations a simple 

description of the boundary layer may be given in the"phase plane", where 

the shear T is plotted versus the velocity component u parallel to the 

wall. For the case of inflow between impervious non-parallel plane walls 
2 

and for the asymptotic suction boundary layer the relation between T and 

u is given exactly by a simple polynomial (eqs 6.34 and 6.30-6.31 

respectively). This observation suggested the idea to develop a kind of 

Pohlhausen method starting from the boundary layer equations written in 
— x — u —2 

a form, where x = — and u = — are the independent variables and T is the 

dependent variable. Here T is the non-dimensional shear stress to be 

defined by equations (7.11) and (7.20). The governing equation is a modified 

form of the well known Crocco equation L?^] where T is used instead of T 

and where moreover compressible flow is assumed. In what follows the new 

equation will be called the "modified Crocco equation"; a slightly 

different form has been used by Schönauer [ 76, 77] to develop a finite 

difference method. 
—2 — 

In the present method T will be approximated by a polynomial in u of 
degree N. Moments are obtained by multiplication of the modified Crocco 

—k 
equation with u for k = 0, 1, 2 followed by integration over the 

interval u = 0 to u = 1. The method allows N to be increased by taking 

more moment equations without unduly complicating the procedure. 

For special forms of the functions U(x) and v (x) solutions in series 

are possible; this series method shows many features similar to the exact 

series solutions discussed in section 3.2. 

In the application of the method, to be discussed in subsequent chapters, 

the calculations were made on the Telefunken TR 4 computer of Delft 

Technological University. 

The modified Crocco equation. 

Crocco [75] was the first to introduce a form of the boundary layer 

equations in which x and u are used as independent variables and T as 
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dependent variable. This equation will be derived in the present section 

for the special case of incompressible flow with constant viscosity. 

The equations to be transformed are the boundary layer equation (2.7) 

du du 
U 'T— + V .^-— Ox Oy 

dU ^ A 
dx ^ 2 

oy 

and the continuity equation (2.5) 

(7.2) 

1^ + ^ = 0 
ÜX dy 

(7.3) 

New independent variables x and y are introduced by 

y = y(x ,y ) 

From (7.4) it follows that 

2)x t) X c)y 2)x 

y 

}•• 
(7.4) 

oy* 

> (7.5) 

21 y 2)j 

3_ = 3_ 1_ 
^^ ~Dx* ŷ 

3y 
31 

y 
3 * 

> (7.6) 

Crocco selects y to be u; a partial differentiation with respect to x 

then leaves u constant. Using (7.6) and noting that U does not depend 

on y it follows that 
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du 2u dy 
7>x - '2y 2,^» 

du 
-3y " 

Jv 
iy 

dU 
dx 

1 

l)y 
-. 3u 3v 
au 
7)y 
3u 

dU 
, » 

> (7.7) 

dx 

au With T = n ̂  and introducing (7.7) into (7.2) and (7.3) the following 
dy 

equations are obtained 

2> y u ,, dU 1 3 T 
u — i + V = - U + -,:^ 
-̂  » T , « p7)u 
7)x dx "̂  

(7.8) 

7) 
^ + ^ = 0 

* y>u 
(7.9) 

Finally v is eliminated from these equations by differentiating (7.8) 

with respect to u and subtracting (7.9) from the result. If in the 

resulting equation x is again replaced by x and after some 

rearrangement, the following equation is obtained 

-P l-i "llJb'^(0) - - " S ( M i - <-> 
The subscripts u and x in equation (7.10) are added to emphasize that 

the differentiations have to be performed at constant u and x 

respectively. The equation is equivalent to Crocco's equation for the 

special case of constant p and p.. 

Equation (7.10) will be transformed further by introducing non-dimensional 

quantities, defined as follows 
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— X 
X = — 

c 

y-i 

— u 
" = ü 

T8 

l̂U 

Uco 

s 

" l 

Al 

= 

= 

= 

- 2 
T 

ÏÏ 

8^ 

5^ 

dü 

dx 

> (7.11) 

8= S V ^ 
c I V 

In (7.11) c and U^^ represent a constant reference lenth and velocity 

respectively; 8 is a given function of x related to the boundary layer 

thickness. In section 7.3 the choice for 8 will be specified. 

In what follows x and u are taken as independent variables while S is 

the dependent variable. The transformation to the non-dimensional 

variables follows from the following equations. 

l^^iu ^üUx/ l)x\c)J u u 

l^^/x DüUuJ dxUJ 
X X 

f 3 ü \ _ _ H_ dU . IZ_x\ ^ 1 
U x j •" " 2 dx ' \èxl " c * u U u 

m = è ^ (M) -
> X X 

Introducing (7.11) and (7.13) into (7.10) leads to 

(7.12) 

in which 

(7.13) 

^ (ÏÏS) ̂ '^'^ 

( -Z^ - ̂ X j u S + S S" - |(S')^-A^(l-u^)S' 

(7.14) 

In equation (7.14) and in the remainder of the present chapter primes 
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denote differentiation with respect to u. Equation (7.14) will be called 

"the modified Crocco equation". The boundary condition for (7.14) at the 

edge of the boundary layer is S(l) = 0. At the wall (u = 0) a boundary 

condition is provided by the first compatibility condition (2.10); this 

will be discussed further in section 7.4. 

If the requirement is made that at the edge of the boundary layer 1-u 

tends to zero as e~ the shear stress T behaves like 1-u for u — > 1 
—2 — 2 — 

(compare section 6.4). Hence S = T tends to zero like (1-u) for u — > I; 

this leads to the following boundary conditions for equation (7.14) at 

Ü = 1 

S(l) = S'(l) = 0 (7.15) 

Equation (7.14) permits the calculation of S(u) provided for a certain 

initial value of x the profile S(u) is known and U and v (x) are known 

as functions of x. 

7.3. A special choice for 8. 

Although 8 may be any known function of x it is convenient to choose 

it in such a way that for some similar boundary layer flows the shear 

function S will not depend on x but only on u. To point this out more 

clearly possible similar solutions of (7.14) will be studied first. 

If S does not depend on x equation (7.14) reduces to 

- ^ - s X j US + SS"- i(S')^-\ fl-ir̂ )S' = O (7.16) 
dx - ^ 

This equation admits solutions independent of x only if both A and 
da 

are constants. Hence it follows that 
dx 

a = ÏÏ 8^ = a X + a (7.17) 

A = 8^ ^ = constant (7.18) 
dx 

where Oi and Oi are constants. 
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It CC 4 O it is possible, without loss of generality, to make Ct = 1 and 

Ct = 0 by a trivial change of the variable x. 

Equation (7.17) then reduces to 

a = ÏÏ 8^ = X (7.19) 

implying that 

8=\/-^ or IV ? = ^ ''•"'' 
_2 

Elimination of 8 between (7.18) and (7.19) gives 

Xl •- dü ,_ -^, 
— dx = — (7.21) 

X Ü 

and upon integration 

- X l 
U = constant . x (7.22) 

Hence a first class of similar solutions, for which S becomes independent 

of X, may be obtained for pressure distributions defined by 

- ""l 
U = constant . x (7.23) 

where m = A = constant and 8 is defined by equation (7.20). This is 

in agreement with the exact results discussed in section 3.1. 

A second class of similar solutions is obtained from the case O; = 0 

which was hitherto excluded. This case may be shown to lead to 

"^2 
U = constant . e (7.24) 

where both A and b„ are constant. Hence also for CC = 0 one of the 

results discussed in chapter 3 is regained; in this case 8 is defined 
— —2 

by a = U 8 = constant. 

In what follows always the definition (7.20) for 8 will be used; the 

corresponding expressions for CX, and A , then become 
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a =x ; A, = r 2H=4 ̂  (7.25) 
dx U dx 

while equation (7.14) reduces to 

(1-3 A^) Ü S + SS" - J(S')^ - A^(l-ü^)S' 
} ~ (ÏÏ S) = 

(7.26) 

From the derivation of equation (7.26) it follows that for pressure 

distributions defined by equation (7.22) solutions may be found for which 

S is independent of x. 

7.4. The polynomial approximation for S and compatibility conditions of the 

modified Crocco equation. 

It was shown in chapter 6 that for some special cases of similar boundary 

layer flows S(u) is given by a simple polynomial. For instance for inflow 

between impervious non-parallel plane walls the following result was 

obtained (equation 6.34) 

_2 4 _ 2 ? 
S = T = | + 2 u - - u ' ' (7.27) 

For the asymptotic suction profile equations (6.30) or (6.31) lead to 

—2 — 2 
S = T = constant (1 - u) (7.28) 

In the present method it will be attempted to obtain solutions of the 

modified Crocco equation (7.26) by assuming that in all cases S can be 

approximated by a polynomial expression of the following form 

— —2 -Ü 
S = a + a u + a„ u + + a,, u (7.29) 

o 1 2 N 
In (7.29) the coefficients a are functions of x for general boundary 

n 
layer flows and constants for the similar boundary layers defined by 

U = u X . Introducing (7.29) into (7.26) gives 
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X ^ I T~ a ü^'^^ = d + d,ïï + d„ü + ... + d ü* (7.30) 
•>- \ r^ ^ J o 1 2 e 
O X \ n=0 ' 

where e = N+1 for N < 3 and e = 2N-1 for N ̂  3. 

In equation (7.30) the coefficients d are quadratic expressions in the 

a . The first few of these read as follows 
n 

d = 2 a â  i \ - Xl \ (7.31) 

d̂  = a + 6 a a^ - X, (3 a + 2 a„) (7.32) 
1 o o 3 1 o 2 

d2 = a^ + 12 a^a^ + 3 a^ag - Xi(2 a^ + 3 a^) (7.33) 

If (7.30) is valid for all values of u the coefficients of equal powers 

of u in the left- and right-hand sides of the equation have to be equal. 

This leads to 

0 = d (7.34) 
o 

X — ^ = d (7.35) 
dx 

da 
X ^ ^ = d . (7.36) 
dx ^ 

or using (7.31), (7.32) and (7.33) 

0 = 2 a^a2 - i a^^ - A^a^ (7.37) 

_ '̂ ^ 
X — - = (1-3 A ,)a + 6 a a^ - 2 X a^ (7.38) 

,— 1 o o 3 1 z 
dx 

X = a, + 12 a a, + 3 a a^ - 2 A â  - 3 X , a^ (7.39) 
,— 1 o 4 1 3 1 1 I d 
dx 

Equations (7.37) to (7.39) are compatibility conditions at the wall 

for the modified Crocco equation. They are the analogues to the 

compatibility conditions discussed in chapter 2 for Prandtl's form of 
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the boundary layer equations. 

In the derivation of the modified Crocco equation the normal velocity v 

has been eliminated. In order to be able to specify a boundary condition 

on V at the wall and to discuss problems with suction, the normal velocity 

V has to be introduced again by means of the compatibility conditions 

of Prandtl's boundary layer equations. 

The first and second of these compatibility conditions read (see section 

2.3) 

iüu\ .. dU ^,1 t 
V 

(7.41) 

Writing these -equations in terms of S and u leads to 

(7.43) 

-A2\r^^=X,-q^ (7.42) 

- A2 S'(o) = S"(o) V S(o) 

in which A o stands for 

(7.44) 

while V is defined by 
o 

(7.45) 

If S(o), S'(o) and S''(o) are expressed in terms of the a 's equations 
n 

(7.42) and (7.43) can be written in the form 

â  = -2 \ ̂  - 2 \ 2 V a^ (7.46) 

a2 = 1 ^ (7.47) 
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Elimination of X g from (7.46) and (7.47) again leads to (7.37). This 

means that the first and second compatibility condition of Prandtl's 

boundary layer equation include the first compatibility condition of 

the modified Crocco equation. This, of course, could be expected from 

the derivation of the modified Crocco equation. 

Some further relations between the coefficients a are obtained from 
n 

the conditions (7.15) at the edge of the boundary layer. They lead to 

N 
JZ \ = ° (7.48) 
n=0 n 

N 
and y~ n a = 0 (7.49) 

n=l 

In what follows both conditions (7.48) and (7.49) at u = 1 will be 

retained together with the equations (7.38), (7.46) and (7.47). In the 

next section these equations will be supplemented by some moment 

equations. 

Moments of the modified Crocco equation. 

In taking moments of the modified Crocco equation it should be tried 

- in order to fulfill the requirement set out in section 7.1 - to 

reduce the left-hand side of (7.26) to the form — in which J is a 
dx 

linear combination of the a 's. Evidently such a relation can be 

obtained by multiplying the equation with some function G(u) and 

integrating the resulting equation w.r.t. u from 0 to 1. 
1̂  

In what follows G(u) = u will be used where k in turn takes the 
values 0,1,2,..., K. This leads to K+1 moment equations defined by 

X — i = M^ (7.50) 
dx ^ 

\ = (̂ -̂ X ,)J^ - X,P^ + Qj, (7.51) 

N 

"̂k = ^ Jk n \ ^̂ -̂ ^̂  
" n=0 ^'" *" 
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N 
P, = Z P| a k ^ k,n n n=0 

N N 

'̂  JC"o "ZJ k,'t,n 't n 

(7.53) 

(7.54) 

N, 

-'k,n k+n+2 

Pk,0 = ° 

O < n < N 

2n 
k,n (k+n)(k+n+2) 

\,0,0 \,0,1 

n(n-l) 

= O 

k,0,n k+n-1 

*k,l,l k+1 

n(n-2) 
k+n 

è t^-t 

2 < n < N 

k,l,n 

\ , l , l = k+2t-l 

n(n-l)-£«+t('t-l) 

2 4 n 4: N 

2 4l^ü 

> (7.55) 

'k,t,n k+̂ l+n-l 
2 4't< N 
't< n ^ N 

6. Summary of the formulae to be used in the new calculation method. 

This section summarizes the formulae derived in the preceding sections 

which have to be used in the new calculation method. 

The flow outside the boundary layer is determined by U(x) and 

the suction distribution by v (x) with 

dU 

dx 

o 

ïïz; 
U^c (7.56) 

Furthermore the following definitions are used 
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\ / - ' 
5= V ' 

V ÏÏ 
\ R2 dÏÏ 
A l = 8 - = 

dx 

\ = ^ o - ^ = 

X 

ÏÏ 

v 
o 

U 

dU 

dx 

Vf' 

(7.57) 

(7.58) 

(7.59) 

It should be noted that the pressure distribution only enters the 

calculation through A ^nd A„ while the suction distribution only 

enters through A . The shear stress function S is approximated by the 

polynomial 

N 
S = y a u'̂  (7.60) 

„ n n=0 

where the coefficients a are determined as functions of x from the 
n 

following equations. 

Compatibility conditions at the wall: 

X — - = (1-3 A^)a + 6 a a „ - 2 X , a„ (7.61) 
1 o o 3 1 2 

dx 

1̂= -2X, -2 X2VI7 (7.62) 

X2 ^1 
a2 = - - — (7.63) 

Conditions at the edge of the boundary layer (u = 1): 

a + 2 a + 3 a + + N a = 0 (7.64) 

a + â  + a„ + a„ + + a„ = 0 (7.65) 
o 1 2 3 N 

Moment equations: 

X = M for k = 0,1,2 K (7.66) 
dx ^ 
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where the M follow from equations (7.51) - (7.55). The total number of 

equations (7.61) to (7.66) thus obtained is K+6. These equations should 

yield the N+1 coefficients a ; hence it follows that 
•̂  n 

K = N - 5 (7.67) 

Some further remarks on the compatibility conditions at the wall and the 

moments may be made here. The choice of the moments and the compatibility 

conditions to be used has been made in a rather arbitrary manner. No 

systematic investigation has been made of the best possible choice. 

However there is an argument in favour of the present choice which will 

be given now. The compatibility conditions (7.37) through (7.39) have 

been obtained by equating to zero the coefficients of terms with various 

powers of u in (7.30). The same result will be obtained by repeated 

differentiation of (7.30) w.r.t. u and putting u = 0 in the resulting 

equations. A natural complement to these compatibility conditions would 

be a set of moment equations obtained by repeated integrations of (7.30) 

w.r.t. u from u = 0 to u and putting u = 1 in the final results. This has 

in fact been precisely achieved because it can be shown that the members 

of the present set of moment equations are linear combinations of the 

equations which appear upon repeated integration of (7.30). The number 

of compatibility conditions was taken as small as possible because it 

was felt that the moment equations might be more decisive for the mean 

boundary layer characteristics than the compatibility conditions. However, 

since in the first compatibility condition (7.62) the square root of a 

already occurs it was decided to go on and to include (7.61) in the system 

which provides a differential equation from which a can easily be 

calculated. 

r.7. Step by step solution starting from given initial conditions. 

In this section it is assumed that at some station x = x starting values 
o 

of the a 's are known (The determination of the starting values will be 
n 

discussed in section 7.9). The a downstream of x can be determined in 
n o 

the following way using one of the numerical methods for the integration 

•of a system of ordinary differential equations. 
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From the given starting values at x = x the value of a at the next 
o o 

station is found using equation (7.61). Then a and a follow from 
1 ^ 

(7.62) and (7.63) respectively. The values of the J at the next station 
follow from equations (7.66). The only remaining problem is to find the 
a for n > 3 from the values of the J, . As the J, are linear relations 
n ^ k k 
in the a (equation 7.52) this leads, in combination with the conditions 

n 

(7.64) and (7.65) at the edge of the boundary layer, to the following set 

of linear equations. 

3 a3 + 4 a^ + 5 a^ + + N a^ = -a^ - 2 a2 = P^ 

^3 ^ ^4 + ^ + + ^N = - % - \ - \ = ^2 (̂ -̂ «̂  

^3 ^4 ^5 . ^N , % ^ ^2 , 
k+5 k+6 k+7 k+N+2 k k+2 k+3 k+4 '•̂ k+3 

where the coefficients p have been introduced to denote the known right-
n 

hand sides. The last equation should be used for k = 0,1,2 N-5. 

The left hand sides of (7.68) do not contain specific data of the boundary 

layer being calculated and therefore the coefficient matrix of the 

equations can be inverted once for all, for all values of N to be used. 

As the original matrix is very orderly built the inverse can easily be 

obtained by hand computation for increasing values of N. Denoting with 
a. . the coefficient of a. „ in the J row of the set (7.68) the elements 
ij 1+2 

of the inverse matrix will be denoted by A.. where i and j assume the 

values 1,2,3 N-2. The results are given in table 7.1 for N=5 to 10. 

It is noticed that the elements of A become very large for large values 

of N. This is caused by the tendency of the coefficient matrix of (7.68) 

to become singular at large values of N. It may be noted that the tendency 

to singularity had no influence on the accuracy of the inverses presented 

because these were obtained by hand computation in the exact number of 

figures. 

Solutions of (7.68) can now be given in the form 

N-2 
a = > A „ . P. (7.69) 
n j^Y n-2,J J 

in which n ̂  3. 
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When the value of N is increased, only the number of linear equations to 

be solved increases but the method remains in principle the same. Hence 

it may be conjectured that the approximate solution will approach the 

exact solution when N is successively increased. 

A practical limit to the maximum permissible value of N is imposed however 

by the loss of significant figures which occurs in (7.69) for large values 

of N. This is due to the fact that both the a and P. are of order 1 while 
n J 

the A. . are of a considerably larger order of magnitude (see table 7.1). 

This difficulty may be postponed to large values of N if the procedure 

outlined above is not applied to the a and J, but only to the increments 
^ n k •' 

of these quantities. 

When values at the initial station are denoted by a bar the increments 

follow from 
A a = a - a 

n n n 

As both the initial and final values satisfy the linear equations (7.68) 

it follows that also the increments are determined by the equations 

(7.68) when the a , J, and P. are replaced by /̂  a , A J, and A P. 
n k J •' n k j 

respectively. Hence for n ̂  3 the A a are given by 
n 

N-2 
Aa„ = 7 " A ^ ^ A P, (7.71) n ^ n-2,J J 

or after separating the contributions of A a , L^a. , iX a and A J : 
o 1 2 k 

A a = - A a 
n o 

N-2 A „ . 
A + y~ "-2. J 
^-2,2 ^^3 J-1 

f N-2 A -1 

^^[v2,i-V2,2-i: ^4^J (̂-̂^̂  
^ N-2 A -, 

A-2[^V2,l-V2,2-r3 -1^\ 
N-2 

S -̂2.j ̂ ĵ-3 
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The number of significant figures retained is made as large as possible 

by first evaluating the terms between brackets in (7.72). 

Once the A a are obtained from (7.72) the values of a at the next 
n n 

station follow from (7.70). These values can be used as starting values 

for the next step etc. 

In all examples given in the present work the integration was performed 

by a third order Runge-Kutta method. It should be understood that in this 

method a full step is made up of some sub-steps and that the procedure 

outlined above has to be applied in each sub-step. As in certain 

applications of the method the largest permissible step length may vary 

considerably with x use was made of one of the Runge-Kutta formulae with 

self-adjusting step length given by Zonneveld [78]. These formulae 

provide explicit expressions for the last term of the Taylor series 

taken into account. The step length used is adjusted in such a way that 

the absolute value of this last term is equal to a certain tolerance, 

to be specified in the program. 

_ -^1 
7.8. Similar solutions for U = x 

- - ^ 1 X 

It was shown in section 7.3 that for U = x with constant A similar 

solutions may occur for which the a are constants. From the compatibility 

conditions (7.62) and (7.63) it follows that also A should be constant. 

Therefore the permissible suction distribution for this class of similar 

boundary layers is given by 

V = X„ X ^ (7.73) 
o z 

From the fact that the a are constant for the similar solutions under 
n _ ̂  

consideration it follows that all terms with x — vanish from the 
dx 

equations (7.61) to (7.66). Hence the moment equations for this case 

reduce to M = 0 with k = 0,1,2 N-5. 

Since the resulting equations contain non-linear terms they are not easy 

to solve directly; However, solutions can easily be obtained by 

interpolation or iteration. In what follows two different procedures 

•which were used for this purpose will be described. 
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It should be noted that due to the non-linearity multiple solutions 

may occur. One of these solutions is always a = 0 which of course is 

an unrealistic one. In all the examples to be discussed in chapter 8, 

only one realistic solution occurred. 

A procedure to obtain similar solutions by interpolation. If values for 

a , a , a , a are assumed, the compatibility conditions (7.61) 

to (7.63) with the additional condition x — = 0 provide values for a , 
dx 

a„ and a„ while a_ and a^ can be expressed as a linear relation 
z 3 4 5 
in a using (7.64) and (7.65). In this way the moment equations M^ = 0 

are reduced to quadratic equations in a„; real roots of these equations 
6 

provide, for each value of k, one or two values of a^ for which M, = 0 . 
6 k 

Repeating this procedure for other values of a , a , a , a , ... it is 

rather easy to find by interpolation values for the a for which all 

compatibility conditions and moment equations are satisfied. The method 

outlined above works well for N 4 7; for higher values of N however it 

becomes too complicated. Therefore an iterative procedure was designed 

which will be outlined in the remainder of the present section. 

An iteration procedure to obtain similar solutions. At first it was 

attempted to use the step by step method of section 7.7 for this purpose 

by starting from guessed initial values and running the program for 

constant A , and A „ until the a 's became constant. It was found that 
1 2 n 

the required solutions were stable so that the proposed procedure was 

convergent. However, a large amount of computation was required to 

obtain the solutions with sufficient precision. It turned out that the 

solutions could be obtained much more rapidly by using the following 

iteration procedure. 

For the similar solutions equations (7.61) through (7.66) reduce to: 
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E, = (1-3 A , ) a + 6 a a ^ - 2 A 
1 1 o o 3 

= 2 = ^ ̂
 + 2 A^ ^2K^\fr 

= 2 2̂ \r% + X 2 â  
^4 = ^ + 2 a2 + 3 a3 + 

E = a + a + a + a + . . . . + a 
5 o 1 2 3 ' 

6+k k 

1 ^2 

N 

^N 

^N 

= 

= 

= 

= 

= 

-

0 

0 

0 

0 

0 

0 

> ( 7 . 7 4 ^ 

The last equation written down in (7.74) has to be used for 

k = 0,1,2 N-5. The equations (7.74) can be solved using an iterative 

procedure equivalent to Newton's method for one equation. 

If initial values a for all a are assumed to be known, then also initial 
_ n n 

values E. of the functions E. can be calculated. Now, the E will in 
1 1 1 

general be different from zero; to make them zero the a should be changed 
n 

by amounts 8a . For small variations the E. may be replaced by their 

Taylor series expansions using only terms up to and including those of 
^E. 

the first degree. Hence, if r̂ —i- is denoted by e and 8a by t the 
^ ?)a in n •' n 

n 
equations (7.74) are replaced by 

^ = ^ + ''lo ^ + ^2 s ^ ^3 h = ° 

=2 = ^2 + ^20 \ + ^21 *1 = 0 

^3 = ̂  " ̂ 3̂0 K -̂  -̂ 31 h + ̂ 32 S = ° 

E. = E^ + y e^ t 
4 4 —̂ 4n n 4 4 

= O 
n=0 
N 

E = E^ + 5- e^ t = 0 
5 5 ^L- 5n n 

n=0 
_ N 

E = E + Y " e t = 0 
6+k 6+k L- 6+k,n n 

n=0 

k (7.75) 

k = 0,1,2, . . ,N-5 

The derivatives e. are given by 
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^ 0 = ^-^ X , + 6 a3 

' 1 2 = -2 X , 

13 o 

'6+k,n •^a 

x̂  
20 Vs 

••21 = 1 

e . = n fo r n = 0 , 1 , 2 , N 
4n 

e = 1 for n = 0 , 1 , 2 , , N 
on 

fo r ƒ k = 0 , 1 , 2 , . . . , N-5 

I n = 0 , 1 , 2 , . . . , N 

^30 = vr 
^ 3 1 = ^ 2 

^32 = " V ^ ^(7.' .76) 

From e q u a t i o n s (7 .51 ) th rough (7 .54 ) i t fo l lows t h a t 

— = (1-3 A^)J^_^ - Xl Pk.n ^ ^ Q \,l,n % 

N 
+ 5" q, P an (7 .77 ) 

j ^ ^ k , n , - t ' t 

It is convenient to select the initial values a in such a way that the 
n 

compatibility conditions at the wall (equations 7.61 to 7.63) and the 

conditions at u = 1 (7.64) and (7.65) are satisfied which means that 

Ë = O for i = 1,2 5. Then, denoting E^ , by M, the equations (7.75) 
1 6+k k 
reduce to the following set of linear algebraic equations . 

^O^o + ^2*2 + ^ 3 ^ 

^20'o + ̂ 2lh 

^ 3 0 ^ + ^3l'l + ̂ 3 2 ^ 
N r 
n=0 
N z 
n=0 

N 2 \ 

4n n 

5n n 

0 

0 

0 

= o 

^ (7.78) 

- M, for 
k 

0,1,2 N-5 
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Solving these equations for the t gives improved values for the a from 
n n 

a = a + t ; these values for the a can be used as new starting values 
n n n n 

a etc. It should be noted that throughout the iteration process E to 

E remain zero which means that the compatibility conditions are always 

satisfied. The Iteration procedure serves to adjust the a such that 
n 

also the moment equations are satisfied. 

7.9. Series solutions for special types of the functions U(x) and v (x). 

7.9.1. General remarks. 

In section 7.7 it was assumed that for a certain initial value of x 

starting values for the a were known. It will be shown now that these 
n 

starting values can be determined from a series solution starting from 

X = 0. 

In the series solution a new variable z is used defined by 

z = X* (7.79) 

where f may be any real positive number. Series solutions for the 

coefficients a will be obtained for those functions A , and A_ which 
n 1 2 

can be developed in power series in z of the following form 

CO 

(7.80) 

(7.81) 

The expressions (7.80) and (7.81) correspond to special forms of the 

pressure- and suction distributions. They are sufficiently general however 

to be applied near x = 0 for all problems likely to be encountered. The 

pressure- and suction distributions which lead to (7.80) and (7.81) will 

be obtained first. 

From (7.80) and 

X = ^ ^ = !^ ^ = fz ̂  (̂ n Ü) (7.82) 
U dx U dz dz 

\ ^ 

K' 

L 
p=0 

p=0 

A,p 

X g ' P 

zP 

zP 
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i t follows tha t 

Ai.o 
+ X, , + ^n 9 Z + X Z^ + + X zP"-"- + ., 

1,1 1,2 1,3 l,p 

= f ̂  ('f̂  ÏÏ) (7.83) 
dz 

Integration of (7.83) leads to 

X 
1,0 

U = constant . z 

Al,l , \,2 2 A i 
- ' z + 4 — ^ z + ... + —'-f- zr+ pf 

(7.84) 

Development of the exponential function in a power series in z results 

in the following expression for U 

Xl,0 r 
Q —. 

U = z * u + u,z + u_ z +....+ u zP + .... (7.85) 
o 1 z p 

In terms of x the permissible pressure distribution follows from (7.79) 

and (7.85) 

\ 
ÏÏ=x ' (u +u, X + u „ x + . . . . + U X +...) (7.86) 

o 1 z p 

The permissible suction distribution then follows from (7.57), (7.59) and 

(7.86) \ 
Ai,o-^ '1,0 

V = X „ x 2 
o 2 

—f — 2f 
(u + u x + u X +....)' (7.87) 

Noting that \ _ is represented by the series (7.81) and developing the 

square root in (7.87) gives the following expression for the permissible 

suction distribution 

Xi,o-^ 
2 —f — 2f pf 

V = X (s + s, X + s„ X + .... + s X + ...) (7.88) 
o o 1 2 p 

In practical applications of the series method the coefficients u and 

s in (7.86) and (7.88) are given while the coefficients of the series 
P 
(7.80) and (7.81) have to be determined. It is possible to derive 
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universal formulae from which these coefficients can be calculated but 

they will not be given here. In the examples of the method to be discussed 

in chapter 8 the series developments of A, and A will be given directly 

for each case. 

The series solutions are obtained from equations (7.61) to (7.66) if in 
- d d 

these equations x — is replaced by f z — . The equations obtained in 
dx 

this way read as follows: 

da 
fz 

dz 

2 
N 
/ n a 
n=l 
N 

^—^ n 
n=0 

dJ 
fz 

dz 

(1-3 A,) a + 6 a a ^ - 2 A , a „ 
1 o o J 1 z 

= -2X^-2 X 2 V ^ 
A2 ^ 

V̂% 
> (7.89) 

= 0 

= 0 

= M for k = 0,1,2,..., N-5 

In sections 7.9.2 to 7.9.4 the solutions in series of the equations (7.89) 

will be given. 

Series expressions for some functions occurring in the theory. 

For pressure- and suction distributions which conform to 

and 

\ '•̂  
(7.90) 

(7.91) 

Solutions of the equations (7.89) will be sought of the form 

z a z 
" pTo "'P 

(7.92) 

To do this some functions occurring in the equations have to be expressed 

in the form of a power series in z. This will be done in the present 

section. 



For K the following series is used 

I r z 
o ^~X p 

p=0 
(7.93) 

where the r follow from: 
P 

o V o.o 

r = °'P 
p 2 r 0 for p > 0 

(7.94) 

(7.95) 

in which for p even and ^ 2 

V̂2> 1 I-
O = — ë + — / r.r . 
p 2 r r '—: i p-i 

o o 1=1 

(7.96) 

and for p odd and 1 

P r 

P-1 

1 # 
— / r.r 
O 1=1 1 p-1 

(7.97) 

The sums in (7.96) and (7.97) must be omitted when the upper bound is 

smaller than 1. 

The series development (7.93) is not possible for a = 0 ; this means 
o, o 

that the series method is not applicable in cases where the boundary 

layer starts at x = 0 with a separation point. As such a boundary layer 

cannot easily be imagined this seems no real limitation of the method. 

Other series expressions to be used are the following 

= 1 
^ ptb l^'P 

^ pto '^'P 
op 

Q = r Q zP 
^ pto ^ 'P 

to 

p=0 

> (7.98) 
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J = y J a 
k,p j^Q •'k,n n,p 

N 
p, = y P, a 
k,p /^ k,n n,p 

n=l 
N N p 

\ , p = H X. H <̂- » -

't=0 n='t 
N N 

k,'t,n -t, i n,p-i 

(a 

0 n=-V 1=0 

N N 
, 0 (an a + an a ) 
k,'L,n 'U, o n,p -VtP n,o 

p-1 
+ 5~ 5~ 1i J) y~ ap . a /=n ^ k,'L,n f— -t, i n,p-i 't=ü n='u 1=1 

)> (7.99) 

M, = J, + Q, 
k,p k,p k,p 

J- ^1,1 \ ,p-i 
p 

1=0 

The coefficients j, , p, and q, n follow from equations (7.55). 
k,n k,n k,'t,n 

If the series expressions given above are inserted into the equations 

(7.89) and the coefficients of successive powers p of z are equated 

to zero a set of algebraic equations is obtained for each value of p. 

Coefficients in these equations are determined by the a for j <(, p 

and by A 1 • and A r, • for j .̂  p. For p = 0 the set of equations 

contains non-linear terms and hence is not easy to solve directly; it 

will be discussed further in section 7.9.3. For p ^ 0 the equations are 

linear in the unknown a and can be solved easily provided the 
n,p 

solutions of the sets of order less than p are known. This will be 

discussed further in section 7.9.4. 

The zero-order terms of the series solution. 

For p=0 the following set of equations is obtained 
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(1 -3 \ ^ ^ ) a + 6 a a - 2 A, a = O 
1,0 o , o o , o 3 ,o l , o 2 , o 

2 \ - - \ / a + a + 2 \ = 0 
2 , 0 y o , o l , o l , o 

2 a \ / a + A a = 0 
2 , o V o ' ° 2 , o l , o 

a, + 2 a_ + . . . + N a„ = 0 
1, o 2 , o N, o 

a + a + a + 
o, o 1, o 2 , o 

N , o 

> (7 .100) 

M, = (1-3 X, ) J, - A , P, + Q, = 0 
k , o l , o k , o l , o k , o k , o 

( f o r k = 0 , 1 , 2 N-5) 

In t h e l a s t e q u a t i o n J, ; P and Q, fo l low from e q u a t i o n s (7 .99 ) 
k,o k,o k,o 

for p = O. The equations (7.100) are non-linear due to the occurrence 
of U a ; a a and the Q, which contain quadratic terms in the 

" o,o o,o 3,o k, o 
a . However, a comparison with equations (7.74) shows that the 
n, o 
solution for p=0 corresponds to the similar solution for A , = A , 

*̂  1 l,o 

These similar solutions have been discussed already in section 7.8 and 

hence the solutions of (7.100) can be considered as known. 

From the preceding remarks it follows that the present approximate method 

reproduces the result known from exact solutions (see chapter 3) in this 

respect that a boundary layer for which U(x) and v (x) are given by (7.86) 

and (7.88) with f=l, starts at x = 0 as a similar boundary layer. 

7.9.4. The terms of order p > 0 of the series solution. 

For p "> 0 the following set of equations is obtained 

(fp-1 + 3^^ - 6 a„ )a + 2A , a„ - 6 a a„ 
1,0 3,0 o,p 1,0 2,p 0,0 3,p 

p p-1 p 
= -3y A , ^ a . + 6 y a .a„ . - 2 y \ , . a „ 

/t"i l>i o,p-i fzi O'i 3,p-i ^ ^ A 1,1 2,p-1 

X2,o „ . . _ o \ ^ o A a + a , = 2 A r , 0 - 2 
o,p l,p 2,0 p 1,P ' ̂  ̂ 1 X 2,i ""p-i 
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2 ,o 
a + A „ a, + 2 r a „ 

o ,p 2 , 0 l , p o 2 , p 

= 2 o a 
P 2 , 0 

p-1 

2 r 
i = l 

a„ r 
2 , 1 p - 1 

P 

1=1 
f-^ A 2 , 1 ^ l , p - i 

N 

I 
n=l 

N 

n=0 

n a = 0 
n , p 

n , p 

and for k 

= O 

0 , 1 , 2 , 

N 

n=0 

N-5 

a + A, i : 
: ,n n, p 1, o .i—. 

(fp-1 + 3 X , ^ „ ) Z 
n=C 

N N 
- 5~" y q n (an a + a an ) 

YZQ ^ k,'L, n -V,o n , p n , o 't., p 
P 

^^ X i , i \ , p _ i 

P, a k , n n , p 

> (7.101) 

3 y An • Ji 
f-, ' ^ 1 , 1 k , p - i 1=1 

N N 

60 n=-

p-1 

k,-t,n A-. ^ , i n,p-
1=1 

From an inspection it follows that the equations are linear in the a 
n,p 

with coefficients depending only on p and the leading-edge conditions 
(These leading-edge conditions depend on A , ; A ^ and N; they are 

1,0 ^,o 

given by the quantities with second subscript equal to zero). 

The conditions downstream of x = 0 enter only through the right-hand 

sides of the equations. Therefore the coefficient matrix of the equations 

can be inverted once for all for given leading-edge conditions. For a 

specific example with the same leading-edge conditions the coefficients 
a can then be obtained by simple multiplications of the right hand 
n,p 

sides of the equations with universal constants obtained from the inverse 

matrix. 

This is analogous to what happens in Görtler's method where universal 

functions are used which only depend on the leading-edge conditions. 

In the present approximate method it is of no use to calculate and store 

the universal constants for a whole series of leading-edge conditions and 

values of p. It is easier to store the values of the a corresponding 
n,o ° 
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to given A J A o '̂̂ d N (which in fact corresponds to the solutions 
1,0 z,o 

for p = 0) together with a machine-program which calculates the a for 
n,p 

successive values of p ]>• O. 

7.9.5. Comparison of the new series method with existing series methods. 

From the preceding sections it follows that the series solution for the 

present approximate method displays several features of the exact methods 

discussed in chapter 3. Some important points are listed below. 

Both in the exact and approximate methods the zero-order terms correspond 

to one of the similar solutions. In the exact methods this solution 

follows from a non-linear ordinary differential equation whereas in the 

approximate method a set of non-linear algebraic equations has to be 

solved. 

For the exact methods further terms of the series solution are obtained 

from linear ordinary differential equations in which the coefficients 

depend on the leading-edge conditions only. The full solution is obtained 

by multiplication of the universal functions with constants depending 

on the pressure- and suction distributions downstream of x = 0. In the 

approximate method the terms of higher order follow from a set of linear 

algebraic equations. The coefficient matrix of these equations only 

depends upon the leading-edge conditions and the order of the terms to 

be found. 

An advantage of the present approximate method above the exact series 

methods is, that the calculation of higher order terms is so simple that 

it can be done anew for each example to be calculated whereas in the 

exact methods a considerable number of universal functions has to be 

tabulated. 

A further advantage of the present series method is that the same 

quantities are used as in the step by step method discussed in section 

7.7. Hence the series method need only be used near x = O to start the 

calculation. As soon as the series is no longer sufficiently convergent 

the boundary layer calculation may be continued using the step by step 

method. In existing series methods however, an entirely different method 
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is used for the continuation in regions where the series is not 

sufficiently convergent. Such a continuation is always necessary near 

separation. 

7.10. Calculation of some characteristic boundary layer parameters from the 

coefficients a . 
n 

In the present method the boundary layer calculation is reduced to the 

determination in terms of x of the coefficients a in the polynomial 

expression (7.29). The familiar boundary layer parameters can easily be 

calculated from these coefficients. The related formulae will be 

summarised in the present section. 

Once the a are known the shear stress may be calculated from (7.29). 
n 

Then the velocity profile follows from 

o 

The parameters 8 , 6 and as defined by (2.18), (2.19) and (2.22) are 

given by 

1 
n _77i 

du 
T 

O 

e \ / Ux "_ Q _ f ü(i-ü) 
X V V - 8 ~ 

du 

f 
X 

•^ T 

idü 

> (7.103) 

The integrals in (7.103) can be found numerically using Simpson's rule 

for instance. The integrals have to be evaluated with some care near 

ÏÏ = 1 because T — ? - 0 for u >1. Therefore, in the examples to be 

discussed in chapter 8, the integrals were calculated using Simpson's 

rule from u = 0 to u = 0.99. For 0.99 î  u .̂  1.00 the integrals were 

calculated as follows. 
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Because T — ^ 0 like 1-u for u ^-> 1 (see section 7.2) the following 

approximation for T may be made in the interval 0.99 ^ u .$^1 

" = ^°° ^0.99 (̂ -") 
(7.104) 

Now, using (7.104) the integrals in (7.102) and (7.103) can be found 

analytically for 0.99 .̂  u .^1 and hence the equations reduce to 

0.99 

y \r^= [ 
X V V J 

0 
, , o.<._ 

0 
0.99 

0 

0.99 
£ \ / Ux 
X Y V 

100 T 
'tn 100 (1-u) 

du 10 
— + — 

0.99 

4 

X y y - j -

0.99 

-u)du 0.995 10 

r u(l-u )du ^ 1_ 

0.99 

985033 10 

0.99 

> (7.105) 

Once the integrals have been calculated all parameters of interest can 

easily be found. 

Some related methods known from the literature. 

In the literature two methods are found which have some features in 

common with the present method. However, for so far known to the author 

they have not been worked out in as much detail as the present method. 

The first one is due to Trilling [79 | who starts from Crocco's equation 

in the form (7.10), the compatibility condition at the wall (7.42) and 

the condition at the edge of the boundary layer 

T = 0 for 

Furthermore the following approximation for T is used 

o f 
T + T.,U + T„U + .... + T„U 
O 1 z 6 

(7.106) 

(7.107) 
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Substituting (7.107) into (7.10) and (7.42) and using (7.106) leads to 

an ordinary differential equation for T (X) which contains the known 

functions v (x), -;— and their derivatives with respect to x. The 
o dx 

application of the method seems rather cumbersome; only one example has 

been given in I 79j . 

The second method has been designed by Dorodnitsyn [soj . In his method 

the von Karman-Pohlhausen momentum equation (2.15) is used together with 

some related moment equations of the type 2.14 . The resulting equations 

are written in terms of T, — and u. 
T 

Then, solutions of the equations are sought of the form 

- = —^^— (a + a^u + â ïï̂  + ) (7.108) 
T - o 1 2 

(1-u) 

T = (1-Ü) (b + b Ü + b u^ + ) (7.109) 

The coefficients a. and b. in (7.108) and (7.109) are expressed in the 

values of T at some equidistant values of u. 

It is shown in I 80] that a good agreement is obtained for the similar 

boundary layers corresponding to U = u x 
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Some applications of the new calculation methods. 

Introductory remarks. 

The present chapter contains some applications of the new calculation 

methods discussed in chapters 5 and 7. The results will be compared to 

available exact solutions. If for a specific example no results of the 

momentum method are quoted they have been presented already in chapter 5. 

The flat plate without suction. 

For the flat plate without suction — = v = 0 and hence equations (7.58) 
dx ° 

and (7.59) show that A = A = 0. Equations (7.62) and (7.63) then 
1 

lead to a, = a„ = 0 while from (7.61) it follows that a„ = - /6 if a 
1 2 da 3 

similar solution with — - = 0 is to be obtained. 
dx 

The values of a , a , a , .... are determined by equations (7.64) to 

(7.66). It is noted that the equations are non-linear and therefore may 

possess several solutions. For instance, a solution of the complete set 

of equations (7.61) to (7.66) is a = 0 for all values of N which 
n 

however is physically unrealistic. For N = 4 no moment equations are 

needed and the remaining equations (7.61) to (7.65) have only one 

solution in addition to the irrelevant one a = 0. The solution is found 

to be a = •'•/24 = 0.041667; a = a = O; a = -^/6 and a = """/S. From 

Blasius' theory, discussed in section 3.1.3, it is known that 
T X \ f > 
o \ / V 

a = —TT— 1/ —- = 0.33206 or a = 0.11026 which shows that the approximation 
o |j.U V Ux o ^ 

to the exact solution is rather poor for N = 4. A substantial improvement 

is obtained however for N ^ 4, which implies the use of moment equations. 

Results for N = 5 to 9 were obtained, using the procedures outlined in 

section 7.8; as starting value for a in the iteration method a =0.11 
o o 

was used throughout. Since the final results for the a show a regular 
n 

pattern (see table 8.1) it was easy to estimate good starting values for 
the other a 's at N = N, once the results for N <. N were known. 

n 1 1 

It may be remarked that no difficulties were encountered from the 

occurrence of multiple solutions; in a wide region around the relevant 

one there were no other solutions. 
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Values for the a 's at different values of N have been collected in 
n _ 

table 8.1. From the formulae given in section 7.10 the functions S(u), 

the velocity profiles and some familiar boundary layer parameters were 

calculated. The results are given in table 8.2 and figs 8.1 and 8.3. 

All data show a monotonie convergence towards the exact solution with 

increasing values of N. However, the convergence slows down for N >• 7 

and therefore it seems to be of little use to go beyond N = 7 or 8 for 

practical applications. Table 8.2. and fig. 8.3. show, that in this 

way the usual boundary layer parameters are predicted within a few 

percent of the exact values. 

The results, given in table 8.2, suggest that the differences with the 

exact solution are approximately halved if N is increased from 6 to 7 

or from 7 to 8. Hence to obtain a more accurate result from the values 

for N = 6 and 7 corrected values for N = 7 - to be denoted by N = 7 

may be determined from 

a * = 2(a ) - (a^) (8.1) 
" N=7 " N=6 

The corrected results, obtained in this way, have been included in 

tables 8.1 and 8.2. The S(u) and velocity profiles for N = 7 are 

found to be so close to the exact solution that they have not been 

shown in fig. 8.1. 

8.3. The plane stagnation point without suction. 

For the plane stagnation point the potential flow velocity distribution 

is given by U = u x (equation 3.19). Hence it follows that A , = 1 and 

since v = O the suction parameter A „ is equal to zero. 

Results for different values of N have been determined in the same way 

as described in section 8.2 for the flat plate. The final results have 

been collected in tables 8.3 and 8.4 and figs 8.2 and 8.3. 

It follows that the approximation to the exact solution is better than 

for the flat plate. Again more accurate results can be obtained from 

the results for N = 6 and 7 using equation (8.1). The results for 

N = 7 , 8, 9 and 10 are sc 

not be shown in fig. 8.2. 

N = 7 , 8, 9 and 10 are so close to the exact values that they could 
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8.4. Hartree's boundary layers without suction. 

For the Hartree boundary layers the pressure distribution is defined by 

U = u x (see equation 3.1 and section 3.1.2.). Hence it follows that 

A = m and equation (3.4) then gives 

Xl = 2?p («-2) 

For several values of P between P = 1 (plane stagnation point) and 

P = -0.198838 (separation according to the exact solution) calculations 

have been made in the same way as described in sections 8.2 and 8.3 for 

the special cases P = 0 and P = 1. Results for a , which is essentially 

the square of the wall shear stress, are shown in figs 8.5a and 8.5b. 

It follows that a converges monotonically towards the exact solution 

for P "> -0.06. Near separation however, (P <̂  -0.06) a first 

decreases when N is increased from 5 to 6 and then increases towards 

the exact solution. Detailed results for P = -0.16 are given in table 

8.5 while the velocity profiles are shown in fig. 8.6. It follows that 

not only a but also other relevant parameters show a non-monotonic 

convergence to the exact solution. 
—2 — 

Figs 8.7 and 8.8 show the exact values of S = T and T as function of 

u for a series of values for p. 

From fig. 8.8 it is seen that T behaves like y u near the wall 

(u = 0) for the separation profile. This illustrates the advantage of 
—2 — 

using T instead of T as dependent variable. 

.5. The flat plate with v î o x~*. 
o 1 I \ 

For this similar solution (see section 5.4.4) A . = 0 and ^ „ = —rp V — 

is an arbitrary constant. 

Both from the exact solution and from the momentum method (see section 

5.4.4) it is known that for this flow the boundary layer tends to the 

asymptotic suction layer for A ̂ "^'^ . This result also holds for the 

multimoment method. For A = 0 of course the flat plate without suction, 

discussed in section 8.2, is obtained. 

For other values of A „ calculations were performed for different values 
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of N; the parameter a for N = 5 is shown in fig. 8.4 and compared to 
o 

the exact results due to Thwaites [66 J and Schlichting-Bussmann (quoted 

by Mangier [37]). Only the results for N = 5 are shown in the figure 

since those for higher values of N are close to the exact solution. 

8.6. The plane stagnation point with constant suction velocity. 

For the plane stagnation point A i = 1 (see section 8.3) and to obtain 

= O the a similar solution A„ = „ \/ — should be constant. For A 
2 U V 1/ 

plane stagnation point without suction is obtained while f or A „—5»''^ 
I ^ 

the asymptotic suction layer is found. ^ 

Results of the multimoment method for N = 5 are shown in fig. 8.9 and 

compared to the exact solution of Schlichting-Bussmann (quoted by 

Mangier [̂ 37]) . 

8.7. Howarth' boundary layer flow for U = 1 - x without suction. 

8.7.1. General. 

In [44] Howarth studied the boundary layer flow corresponding to a main 

stream velocity U defined by 

U = b - b, X 
o 1 

(8.4) 

in which b and b are constants. Defining the reference speed U^and 

-length c by 

b I 
U = b and c = -^ (8.5) 
'̂  o b. 

equation (8.4) reduces to I 

_ _ 
U = 1 - X (8.6) 

This boundary layer was calculated by Howarth using a series method 

with the following expansion for the stream function 

f =\\ 2 U^v^ x' |f̂ (Tl) + X f(Ti) + 'x' f2(Ti) + ... I (8.7) 
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in which 

ti= y ^ y (8.8) 

(see also section 3.2.3.). 

The function f (ri) was shown to satisfy the Blasius equation (3.14) while 

the functions f (TI) for n > 1 had to be calculated from a set of linear 
n 

differential equations. Howarth calculated the functions f for n X. 6 
n ^ 

which however was not sufficient for an accurate determination of the 

separation point. Therefore the result was improved as follows. It was 

noted by Howarth that the functions fr(Ti) and f_(Tl) have the same shape 

and this led him to assume that all f for n ^ 5 are the same in shape 
n 

so that equation (8.7) can be written in the form 
6 ^-v- y ; ; x" f (TI) + A(X) f_(ii) 
o '̂  ^ 

(8.9) 

The function A(x) is different from zero only in regions where the 

series (8.7) is not sufficiently convergent using 7 terms only; this 

occurs near separation. The function A(x) was determined by Howarth from 

the requirement that (8.9) should satisfy the von Karman momentum 

equation (2.15). In this way separation was found at x = 0.120; this result 

was confirmed from later calculations made by Hartree [si], Tani [45], 

Leigh [82] and Terrill[ 83]. 

8.7.2. The momentum method. 

For U = 1 - X the momentum equation (5.18) can be written in the form 

d9^ _ M 

dx 1-x 

which can be integrated to 

9^ 

(8.10) 

M 
Ml (l-x) = A ^ (8.11) 

o 

From U = 1 - X it follows that in this case the pressure gradient 
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parameter J V = e — reduces to jV = -9 . Since in the no-suction 
dx 

case M is a function of-A only (see table 5.3 and fig. 5.6) this 
-2 

parameter can also be considered as a function of 9 . Hence the integral 

(8.11) can easily be calculated. Some results are shown in fig. 8.10 

and compared to the exact solution due to Howarth. Separation is found 

at X = 0.123 as compared with x = 0.120 for the exact solution. 
sep 

A comparison of the velocity profiles for x = 0.10 and 0.12 is^own 

in fig. 8.11. 

8.7.3. The multi-moment method. 

For U = 1 - X the pressure gradient parameter A becomes 

X = ^ d£^ -^ , (g_^2) 
U dx l-x i' 

and hence the power series expansion (7.80) for A is easily found to 

b e j 

X = -X - x^ - x^ - r* I (8.13) . 

Since the zero-order term in (8.13) is absent it follows that the 

boundary layer at x = 0 will start as the similar solution for which 

A = 0; this is the flat plate boundary layer, discussed in section 

8.2. Therefore the zero-order terms of the expansion for a follow 
n 

from table 8.1. 
Results for a at N = 7 and different orders p of the series solution 

o 

are shown in fig. 8.12. It follows that the series converges well until 

very close to separation. Included in the figure as a dotted line is the 

result of a step by step calculation started at x = 0.08. 

Fig. 8.12 shows that in the step by step solution zero skin friction is 

only asymptotically reached. This behaviour is caused by equation (7.61) 

which for zero suction (a = A „ = 0) reduces to 
^ 2i I 

da 
o 

dx 
for a ^ 0 I (8.14) 

o 
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This anomalous behaviour is the prize to be paid for the convenience of 

using equation (7.61) which gives an easy means to determine a . In 

section 8.14 this difficulty will be discussed further. 

Results for different values of N have been collected in fig. 8.13; in 

each case the series method was used from x = 0 to 0.08 including terms 

of the 10th degree in x. Downstream of x = 0.08 the step by step method 

was used; for all values of N differences between the series- and 

step by step solutions became noticeable only for x > 0.10. Included 

in fig. 8.13 are the values of a according to the exact solution. 

It should be noted that far from separation there is a monotonie 

convergence to the exact solution with increasing N. Near separation 

however, the convergence is of the type displayed by the Hartree flows 

for P < -0.06. 

A comparison of figs 8.10 and 8.13 shows that the momentum method and 

the multimoment method with N = 8 have about the same accuracy for a . 

Results of Görtler's series for \/ a and a are given in fig. 8.14 
« o o 

and 8.15. It follows that Görtler's method, which is exact at x = 0, 

is not very accurate near separation due to lack of convergence. The 

present series method is in this region at least equally accurate and 

moreover easily allows a step by step continuation. 

Finally fig. 8.16 shows, to a large scale, results for a in the region 

near separation according to different methods. 

Tani' s boundary layers for U = 1 - x'̂ . 

Using essentially Howarth' procedure (see section 8.7.1) the boundary 

layer flows for 

U = 1 x'̂  (8.15) 

have been calculated by Tani [45] for j = 2, 4 and 8. The position of 

the separation point obtained in this way is shown in table 8.6. 
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For U = 1 - x'̂  without suction A ̂  = O while A becomes 
2 1 

\, = ̂  ^ = - Z j(xj)' i (8.16) 
U dx 1=1 ^ ^ 

Introducing a new variable z according to equation (7.79) with f = J, 

equation (8.16) may be written in the form 

CO I 

\^= -YL i ^^ \ (8.17) 
p=l 

Since (8.16) and (8.17) do not contain a zero-order term it follows that 

the multimoment method reproduces the result from exact theory that 

Tani's boundary layers start at x = 0 in the same way as the Blasius 

boundary layer. 
— -2 

Detailed results of the multimoment method with N = 7 for U = 1 - x 

are shown in fig. 8.17. It follows that the series solution including 
-20 

terms with x gives a good correspondence with the step by step 

solution until close to separation. 

Final results for N = 5, 6 and 7 are shown in fig. 8.18 where also a 

comparison is made with the exact solution due to Tani. It is seen that 

an accurate extimate of the position of separation can be obtained 

from a linear extrapolation of a for x <f 0.26. I 

In the same way results have been obtained for j = 4 and 8. The 

positions of separation for j = 1, 2, 4 and 8 at N = 7 are collected in 

table 8.6. 

,9. The boundary layer on a circular cylinder without suction: U = sin x. 

I 
8.9.1. General. j 

Boundary layer calculations for the pressure distribution corresponding 

to potential flow around a circular cylinder have been made by many 

authors. Possibly the most accurate result has been obtained to date by 

Terrill [83], using a numerical procedure. 

For this flow the velocity U is given by (see fig. 8.19) 

U = 2V sin cp = 2V sinf ^ I (8.18) 
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If the reference speed and -length U^^ and c are defined by 

U^^ = 2V ; c = R (8.19) 

equation (8.18) reduces to 

ÏÏ = sin X (8.20) 

8.9.2. The momentum method. 

For small x equation (8.20) reduces to U = x which shows that the 

boundary layer on the circular cylinder starts near x = 0 as the plane 

stagnation point flow. Hence starting values for the step by step 

calculation can be obtained from section 5.4.2. Results for a are shown 
o 

in fig. 8.20 and compared to the exact solution due to Terrill. The 

momentum method gives separation at x = 1.7 8 while the accurate value 

is 1.823. 

8.9.3. The multimoment method. 

With U = sin x the expression for A becomes 

x^^li (8.21) \ _ X dU — cos x 

2 - 6 
945" "" 

1 - 8 
" 4725 "" 

2 - 1 0 
93555 ^ 

(8 .22 ) 

U dx sin X 

which can be developed in the following power series 

\ , 1 - 2 1 - 4 
^1 = ^ - 3 " - 45 " 

Since in (8.22) the zero order term is 1 the boundary layer starts at 

X = 0 in the same way as the plane stagnation point without suction 

discussed in section 8.3. Hence, the zero-order terms of the series 

for a can be obtained from table 8.3. Results of the series method up 
"^ -10 

till and including terms with x have been obtained for N = 5, 6 and 7, 

The series (8.22) contains only terms of even order and hence this is 

also the case with the resulting series for a . Results for a at N = 7 
n o 

and different orders of the approximation are shown in fig. 8.20; the 
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curve for p = 8 which is not shown lies between those for p = 6 and 10. 

Results of a step by step calculation started at x = 1.50 are shown as 

a dotted line in fig. 8.20. It follows from the figure that only near 

separation the step by step solution differs from the series solution 

for p = 10. It should be emphasized that - in principle - the present 

series method can be used to much higher orders p which certainly would 

improve the correspondence between the step by step- and the series solution. 

However, this has not been done in the present example since it is very 

easy to continue with the step by step calculation. i 

Results for N = 5 and 6 are very close to those for N = 7 and therefore 

have not been given in fig. 8.20. Only near separation the solutions 

for N = 5 and 6 lay slightly above those for N = 7. 

Included in fig. 8.20 are the exact results due to Terrill; for this 

solution separation occurs at x = 1.823. It is seen that the multimoment 

method for N = 7 accurately approximates the exact solution except very 

near separation. However, with a short linear extrapolation of a for 
o 

X <̂  1.80 an accurate estimate of the separation point is obtained. 

Results obtained from Görtler's series are shown in fig. 8.21 and 8.22; 

the figure for y a is included since Görtler's method employs variables 

which express the wall shear stress in a parameter equivalent to V a 
' o 

instead of a . 
o 

A comparison of figs 8.21 and 8 22 clearly shows the advantage of using 
T instead of x (and hence a instead of \/ a ) as dependent variable. 

o ' o 
Near a separation point x ,the function a behaves like 

sep o 
- - 1 

a ^ (x - X ) (8.23) 
o sep 

and hence 

a t:s (x - X )2 I (8.24) 
o sep \F„ 

(see also Goldstein [̂84 ] and Terrill [83]). 

Of course it is easier to approximate (8.23) with a series than (8.24). 

From a comparison of figs 8.20 and 8.21 it follows that both the momentum 

method and the multimoment method give a better accuracy near separation 

than Görtler's method. 
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10. Curie's boundary layer flow for U = x - x , 

10.1. General, 

The boundary layer flow for the pressure distribution defined by 

ÏÏ = X - x^ (8.25) 

has been calculated by Curie [85] using Howarth' procedure, described 

in section 8.7.1. For this boundary layer separation was found at 

X = 0.655. 

10.2. The momentum method. 

For small values of x equation (8.25) reduces to U = x and hence the 

boundary layer starts as the plane stagnation point. Hence the step by 

step calculation can be started at a small distance from the stagnation 

point (x = 0) with a starting value for 6 obtained from section 5.4. 

Results for a are shown in fig. 8.23 and compared to the exact solution; 

separation is predicted at x = 0.640 . 

10.3. The multi-moment method. 

With U = X - X the series expansion for \ becomes 

X = l - 2 x ^ - 2 x ^ - 2 3 ^ . . . . (8.26) 

which again shows that the boundary layer starts at x = 0 as the plane 

stagnation point. Calculations have been performed for N = 5, 6 and 7 

using the series method from x = 0 to 0.55 and the step by step method 

downstream of x = 0.55. Final results for N = 7 are shown in fig. 8.23 

where also the exact solution is shown. Results for N = 5 and 6 are so 

close to those for N = 7 that the differences cannot be shown in the 

figure except very close to separation. Only the results for N = 5 are 

shown, those for N = 6 are between those for N = 5 and 7. It follows that 

the multimoment method gives a very good approximation to the exact 

solution. Also near separation the accuracy is gradually improved with 

increasing N. Although for this example again separation is reached with 
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da 
—5* O the curve for a bends so sharply into the horizontal axis, 

dx 
especially for N = 7, that a short linear extrapolation is sufficient 

to provide an accurate determination of the separation point. From a 

large scale version of fig. 8.23 the value of x at separation was found 

to be X = 0.652 which is very close to the exact value 0.655. 

8.11. Iglisch' solution for the flat plate with constant suction velocity. 

8.11.1. General. 

For the flat plate with constant suction velocity v , an exact solution 

of the boundary layer equations has been given by Iglisch [6?]. In this 

solution a new independent variable x is introduced by 

which implies that the reference length c is defined by 

UV 

o 

(8.28) 

If for the reference speed U,_̂  the constant main stream velocity U is 

used it follows that | 

- U 
U = ^ = 1 ' (8.29) 

From Iglisch' solution it is known that at x = 0 the boundary layer starts 

as the Blasius boundary layer while for x—>'-0 the asymptotic suction 

layer is obtained. 

,11.2. The momentum method. 

Using equations (8.27) to (8.29) it follows that for the present case 

(8.30) 

A , = ë^^=o ;' (8.31) 
dx 
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and -A. „ = V 9 = 6 (8.32) 
z o 

Hence the momentum equation (5.18) reduces to the simple form 

f _ = t - A (8.33) 
dx -̂  

which can be written as 

x = f j^_ , dA^ (8.34) 

o 
-^2 

ofA (see chapter 5) and equation (8.34) can easily be integrated 

numerically. It follows from equation (8.34) that x—^ <^ for -t—^ A - ; 

Since for the flat plateA. = o, the parameter 't is a known function 

er 5) £ 

follows 

this occurs for -t = •» ̂ „ = 0.50 which represents the asymptotic suction 

profile. Since the momentum method was designed to represent the 

asymptotic suction layer exactly it follows that the method gives exact 

results for x—ŝ i/i . 
-V e 

For X = 0 the momentum loss thickness 9 is zero and hence-'V = ——— = 0; 

which implies that the boundary layer starts at x = 0 as that on a flat 

plate without suction. 

Different parameters are shown as a function of y x in fig. 8.24 and 

compared to Iglisch' exact solution and an approximate solution due 

to Schlichting [55] (see also section 4.3). 

11.3. The multimoment method. 

From equations (8.27) and (8.29) it follows that 

\ - _i^ — _ _ = 0 (8.35) 
U dx 

X 2 = ^ \ / ^ = \/x (8.36) 

This shows that for x = 0 both A and A „ are zero and hence the 

multimoment method reproduces the exact result that at x = 0 the 

boundary layer starts as that for the flat plate without suction. 
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It can easily be shown that for A = 0 and A = y ^ 
1 z 

equations (7.61) to (7.66) for all N > 2 is 

a solution of 

a = X 
o 

a = -2x 

a2= X 

a = 0 
n 

for n > 3 

> ( 8.37) 

With (7.60) this leads to 

—2 — — 2 
S = T = x(l-u) (8.38) 

4v=ï=^(i-i) 
H\. 

(8.39) 

After integration of (8.39) and using (8.27) it is found that 

Ü = 1 - e (8.40) 

This reproduces the asymptotic suction profile discussed in section 

3.1.5. Formally the solution (8.37) is valid from x = 0 to x-> vr>; 

however this would lead to the unrealistic solution a = 0 for x = 0 
n 

discussed in section 8.2 for the flat plate without suction. Therefore 

it is expected that the solution (8.37) is only approached asymptotically 

for x->^^ ; this is confirmed by further calculations, to be discussed 

below. 

In view of (8.36) a new variable z = \/ x was used in the series method. 

Results of the series method for N = 7 are shown in fig. 8.25 where 

also results of a step by step calculation and the exact solution are 

shown. 

Since a —>• x for large values of x it is advantageous to plot the 
o 

\rj: quantity x/a versus V x. This has been done in fig. 8.26 where results 

for N = 5, 6 and 7 are compared to the exact solution. In the same 

figure results of the momentum method have been included for comparison. 
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From the definitions of a and x (equation 8.27) it follows that 
o 

-V 6* 
o 

T 8 
o 

~w 

(8.41) 

and hence x/a can easily be found from the results of fig. 8.24. 

It is seen from fig. 8.26 that the result of the multimoment method 

converges well to the exact solution for increasing N. The accuracy for 

N = 7 is comparable to that of the momentum method. The advantage of the 

multimoment method is that its accuracy can be improved by increasing 

N; results for N = 8 are very close to the exact solution. 

12. Rheinboldt's boundary layer on a flat plate with discontinuous suction. 

12.1. General, 

Rheinboldt [86 J designed a special procedure for the calculation of 

suction boundary layers with discontinuities in the suction velocity; 

the method was illustrated with several examples. 

The first example discusses the boundary layer on a flat plate with non-

porous entry length c followed by a porous region Aiith constant suction 

for X > c (see fig. 8.27a). 

In a second example there is only suction for c <̂  x <^1.15c with a suction 
-V \ / • 

velocity v given by —rr—\/ —r =1.5 (see fig. 8.27b). In what follows 
•'o U v v " 

c and U will be used as reference length and velocity and hence 

X = - and ÏÏ = 1 (8.42) 
c 

12.2. The momentum method. 

The momentum method is found to be unable to cope with large discontinuities 

in the suction velocity; this may be seen as follows. 

For the present case of zero pressure gradient only one independent 

parameter occurs in the momentum method (see chapter 5); it is convenient 
. -V 9 

to select A = —^— for this parameter. 
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For the non-porous entry length the flat plate boundary layer without 

suction occurs which is represented by 

known that 

at X 

9 V Ux = 0.661 (see table 5.1) and hence 

-A „ = 0. From this solution it is 

0.661 - i \ r Uc J/ 

At discontinuities in v the momentum loss thickness 6 is supposed to 

be continuous and hence directly downstream of x = 1 it is found that 

-A = V .9 = 0.661 V 
2 o o 

If the suction velocity has such a magnitude that v = „ ' , it follows 
•̂  ^ o 0.661 

that A = 0.50; this implies that directly downstream of x = 1 suddenly 

the asymptotic suction profile would be established, (compare also 

section 8.11). It can be expected however that in reality the boundary 

layer will only gradually approach asymptotic conditions. 

Similarly the momentum method produces the erroneous result that the 

boundary layer velocity profile immediately returns to the Blasius shape 

if the suction is suddenly stopped at some station. 

The way in which the boundary layer develops according to the momentum 

method can easily be calculated as follows. 
From U = 1 

and 

-V 9 

A ^ . o 

V = - : ° \ / 

V . 9 o 

— = constant 
V 

K> (8.44) 

y 

it is found that the momentum equation (5.18) can be written in the form 

- 2 .- ^ : 
V dx = -n y^ d -/^„ 

O -t-A„ 2 
(8.45) 

or after integration 

v / (x-1) 

J" 

L/ 

0 . 

h 
661v 

A 2 dA„ (8.46) 
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The integration constant in (8.46) has been chosen in such a way that 

for X = 1 the suction parameter A has the value 0.661 v (see equation 
^ o 

8.43). Values of the shape factor H, as determined from equation 8.46; 

for different values of v are shown in fig. 8.28 and compared to 

available results from Rheinboldt's calculation. It is seen that the 

momentum method is very inaccurate directly downstream of large 

discontinuities in the suction velocity. 

12.3. The multimoment method. 

To check the accuracy of the multimoment method for discontinuously 

varying suction velocity only Rheinboldt's second example will be used. 

This is the most severe case of the two since here suction is started 

suddenly at x = 1 and stopped again at x = 1.15. 

In the non-porous entry length x < 1 the flat plate boundary layer 

without suction, discussed in section 8.2, is found. Hence table 8.1 

provides the starting values at x = 1 for the step by step solution. 

Since the boundary layer changes very rapidly near x = 1 very small 

steps had to be used in this region. Fig. 8.29 shows a in the suction 
o 

region for N = 5, 6 and 7; also the exact solution is given in the 

figure. It is seen that the results for N = 5 and 6 are not very 

accurate; those for N = 7 agree with the exact solution within the 

accuracy to which Rheinboldt's results can be read from the graphs in 

[86]. 
For the non-porous region downstream of x = 1.15 only results for N = 7 

are shown; a reasonably good correspondence with the exact solution is 

obtained. It should be noted that far downstream of the porous region 

again a — ^ 0.106 which is the value obtained for the flat plate without 

suction. 

13. Schubauer's elliptic cylinder. 

13.1. General. 

A detailed experimental observation of the laminar boundary layer on 

an elliptic cylinder has been made by Schubauer [25j. The lengths of the 
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major and minor axes of the cylinder were 11.78 and 3.98 inches 

respectively. The cylinder was placed in a wind tunnel with its major 

axis parallel to the flow. The measurements were performed at a windspeed 

of 11.5 ft/sec which resulted in the low value 72000 for the Reynolds 

number R based on the length of the major axis. 

The pressure distribution around the cylinder was measured by means of 

orifices in the surface. Velocity profiles in the boundary layer were 

determined using hot wires. From the experiments Schubauer concluded 

that separation occurred at x = 1.99 + 0.02 where x = x/c and c is the 

length of the minor axis of the cylinder. It was shown by Schubauer 

that application of Pohlhausen's method to the observed pressure 

distribution failed to show separation. Later an accurate numerical 

solution of the boundary layer equations for the observed pressure 

distribution was obtained by Hartree [26]. Again the theoretical results 

did not show separation. However, it was also shown by Hartree that a 

slight modification of the observed pressure distribution was sufficient 

to predict separation near x = 1.99. 

Due to the uncertainty about the experimentally determined pressure 

distributions to be used for the calculations it has - for so far the 

author knows - never been shown conclusively whether or not the boundary 

layer equations will be able to predict separation for experimentally 

determined pressure distributions. 

In chapter 10 some new measurements will be described which - in 

agreement with Schubauer's data - show that it is very difficult to assess 

the validity of the boundary layer equations close to separation from 

measured pressure distributions. In the next section some results will be 

presented of calculations with the momentum method and the multimoment 

method for Schubauer's observed pressure distribution and for the modified 

distribution. 

8.13.2. Results of boundary layer calculations. 

Calculations have been made with both new methods for the observed 

and the modified pressure distribution. To facilitate the computations, 

values of U and — taken from [26] have been plotted on a large scale. 
_ ^y dx 

Then U and — have been read from the graph for equidistant values of x; 
dx 
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the results have been colledted in table 8.7. In the table also values 

A X dU . A = — — — , to for A = -—— ^-, to be used in the multimoment method, are given. 
U dx _ 

It has been shown by Hartree that near the stagnation point (x = 0) the 

values of U can be approximated by 

ÏÏ = 8.7 X - 24 X + 24 X + (8.47) 

which leads to the following expression for \ 

X = 1 - 2.75862 X - 2.0927 x^ + 1.837 x"̂  + 10.84 x^ + 24.8 x^ + 

(8.48) 

To facilitate calculations with the multimoment method the values of A 

further downstream have been approximated by polynomial expressions of 

the form 

A , = y ex.'' (8.49) 
n=0 

The coefficients e have been collected in table 8.8. Fig. 8.30 shows 
n — 

the functions U, — and A in graphical form. 
dx 

Results of boundary layer calculations with the momentum method and the 

multimomentmethod are presented in figs 8.31 to 8.32. Fig. 8.31 shows 

a for the observed pressure distribution according to the momentum 

method and to the multimoment method for N = 7. Results for N = 5 and 6 

are close to those for N = 7 and therefore are not shown in the figure. 

The same curves are drawn to a larger scale in fig. 8.32 for 

1.6^ X ^2.10; now also results of the multimoment method for N = 5 and 

6 are included. 

It can be concluded that the results of the multimoment method for 

increasing N converge well to Hartree's solution. The accuracy of the 

momentum method is somewhat less than for the multimoment method at 

N = 7. However, all methods agree in this respect that they do not show 

separation. 

Similar results for the modified pressure distribution are included. 
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in fig. 8.32. It is noticed that the momentum method predicts separation 

at X = 1.92 as compared to 1.983 for Hartree's calculation and 1.99 + 0.02 

for the experiment. As usual the multimoment method gives no clear 

indication of separation. 

However, if the results for N = 6 and 7 are extrapolated using equation 

(8.1) the resulting curve comes very close to Hartree's values until 

near separation. 

14. Concluding remarks on the new calculation methods. 

From the examples discussed in the present chapter the following 

conclusions may be drawn. 

1. The momentum method leads to accurate results as long as no large 

discontinuities in the suction velocity occur. 

2. The accuracy of the multimoment method for N = 7 or 8 is comparable 

to or better than the accuracy of the momentum method. If 

discontinuities in the suction velocity occur, the multimoment 

method retains its accuracy while the momentum method (and all 

comparable methods) will fail. 

3. A more rapid convergence of the multimoment method with increasing 

N would be desirable near separation. 

4. A disadvantage of the multimoment method in the case of no suction 

is the following. 

For the no-suction case A = 0 and hence equation (7.61) reduces to 

- '^^ 
X — - = a (1 - 3 A, + 6 a^) (8.50) 

,— o 1 3 
dx 

da 
This equation shows that near separation where a —5» 0 also will 

dx 
|l - 3 X ^ + 6 a3|i tend to zero unless 1 - 3A + 6 a tends to infinity. 

From the results presented in this chapter it may be noticed that indeed 
da 

> 0 near separation making it difficult to give an accurate 
dx 
estimate of the position of separation. For some examples (see for 

instance figs 8.20 and 8.23) it is observed that the curve for a 

bends sharply into the x-axis especially at high values of N so that 
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the position of separation can easily be determined from a short 

extrapolation of the straight part of the curve. 

It is suggested by these results that for N —;=" ̂ O the derivative 
dx 

may tend to a constant non-zero value when separation is approached. 

This would be in agreement with Goldstein's theory [_84]. Equation 

(8.61) shows that in this case 1-3 A, + 6 a has to approach 
I 1 3 I 

infinity near separation. As an example fig. 8.33 shows -(1-3A. + 6a ) 
as function of x and a for U = sin x near separation. It is found indeed 

that -(I-3A, + 6a„) becomes very large for a —3=^0. 
1 3 o 

In view of these remarks it seems to be worth while to inquire whether 

the results near separation can be improved by omitting equation (7.61) 

and replacing it by an additional moment equation. 

The modification will slightly complicate the application of the method 

for the case of suction since then the non-linear factor y a appears 

as unknown parameter in equations (7.62) and (7.63). This possible 

modification of the method will not be pursued further in the present 

work however. 
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stability and transition. 

Introductory remarks. 

In the preceding chapters laminar boundary layers have been discussed 

only. It is known from experiments however, that solutions of the laminar 

boundary layer equations cannot always be realised in practice because 

transition to turbulent flow may occur. Fig. 3.3 for instance showed a 

comparison with experimental results of Blasius' theory for the laminar 

boundary layer on a flat plate. It is seen that the theory is confirmed 

by experiments only when the leading-edge of the plate has not been 

disturbed by a tripping wire and if only those stations on the plate 

are considered for which the Reynoldsnumber -^ is less than 3 x 10 . 

At higher Reynoldsnumbers or when the flow is disturbed a turbulent 

boundary layer is found. From detailed experiments by Schubauer and 

Skramstad [ 87 ] on a smooth plate in a wind tunnel with a degree of 

turbulence less than 0.1 /o it is known that the flow is completely 

laminar when -rj- is less than 2.8 x 10 and fully turbulent for 
TTx fi Ux 

-^ ^ 3.9 X 10 . For intermediate values of -rj- a transition region 

occurs where the flow passes from laminar to turbulent. A similar 

behaviour is shown by the flow around airfoil sections or through pipes. 

Although the phenomenon of transition has been known already since 

Reynolds' famous experiments on pipe flow in 1883 [_88 I the mechanism 

of transition is not yet completely understood. Neither is it possible 

to predict theoretically for an arbitrary body the position where 

transition will occur. 

For a long time there have been two conflicting opinions about the 

mechanism of transition. One school of thought supposes that 

disturbances in the flow outside the boundary layer cause fluctuations 

inside the boundary layer which lead to local and instantaneous separation 

followed by transition (Taylor [89]) . A different explanation is given 

by the so called stability theory as developed by Rayleigh, Tollmien, 

Schlichting, Lin, etc. (see [9o]and[7], chapter 16). 

In this theory it is shown that small harmonic disturbances in the 

boundary layer may become unstable and amplify. It is supposed that 

these disturbances cause transition as soon as they have gained a 
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sufficient amplification. The unstable oscillations, predicted by the 

stability theory were discovered in wind tunnel experiments on the 

boundary layer of a flat plate by Schubauer and Skramstad in 1940 [̂ 87]. 

It was found that the stability theory is valid only if the degree of 

turbulence in the airstream is less than 0.1 /o. For high turbulence 

levels Taylor's theory is more appropriate. In 1951 the existence of 

unstable oscillations was also shown in free flight by Malotaux et al. 

91 . In the free atmosphere and in modern low speed wind tunnels the 

degree of turbulence is considerably less than 0.1 /o and it is commonly 

accepted now that under these circumstances transition on smooth 

bodies - at least initially - is governed by the stability theory. An 

exception should be made for cases where the laminar boundary layer 

separates from the surface due to an adverse pressure gradient. It may 

be possible that a short distance upstream of the separation point 

Taylor's transition mechanism is the relevant one. Also transition in 

the separated layer may be governed by a different mechanism. 

This theory shows under which circumstances the laminar boundary layer 

may become unstable and predicts the initial growth of the disturbances. 

Since most of the existing theories are linearised by assuming small 

disturbances they cannot describe the complete transition to the 

irregular turbulent flow with relatively large disturbances. 

Our knowledge of transition has been steadily enlarged however through 

experiments starting with the investigations by Schubauer and Skramstad. 

A review of this work may be found in L29|. Some recent results have 

been described by Hinze et al. [92]. 

From the experiments it is known that in the transition region suddenly 

"turbulent spots" are generated. These spots grow and merge as they 

move downstream until finally at a certain position the flow is fully 

turbulent [93] . According to Klebanoff and Tidstrom £94] the spots seem 

to develop from threedimensional concentrations of disturbance energy 

in the originally two-dimensional disturbance waves. 

In the first few sections of the present chapter the main principles and 

results of linear stability theory will be collected for later use. In 

the final sections it will be shown that the stability theory may be 

'used to develop a semi-empirical method for the calculation of the 
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transition position on smooth bodies in an airstream with low degree of 

turbulence. Throughout the present work it is assumed that surface 

roughness is so small that it will have no influence on transition. 

Principles of linear stability theory. 

General. 

The stability theory considers a given laminar main flow upon which small 

disturbances are superimposed. It is assumed that both the undisturbed 

and the disturbed flow satisfy the Navier-Stokes equations. After 

linearisation a perturbation equation is obtained which under certain 

circumstances may possess unstable solutions. It is found that important 

factors determining the stability or instability are: 

the shape of the boundary layer velocity profile 
US* 

the Reynoldsnumber and 

the frequency or wavelength of the disturbances. 

The Orr-Sommerfeld equation. 

In what follows a two-dimensional flow is considered which is subjected 

to a two-dimensional disturbance. It is possible to omit three 

dimensional disturbances since, according to Squire [95^, the instability 

of incompressible boundary layer flows is initially determined by the 

two dimensional disturbances. For the stability investigation it is 

assumed that the u-velocity component of the undisturbed main flow 

depends only on the wall distance y and that the v component is zero; 

the pressure p only depends on the streamwise coordinate x. These 

assumptions hold exactly for pipe- or channel flow and also with a good 

approximation for boundary layers because here u changes much more 

rapidly with y than with x. (Pretsch [96]). 

On the main flow a disturbance is superimposed with velocity components 

u'(x,y,t) and v'(x,y,t); the fluctuating pressure component is p'(x,y,t). 

Hence the combined flow is given by 
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X 

u (x,y,t) = u(y) + u (x,y,t) 

v*(x,y,t) = v'(x,y,t) (9.1) 

p (x,y,t) = p(x) + p'(x,y,t) 

If (see for instance L7j, chapter 16) 

a) equations (9.1) are introduced into the Navier-Stokes equations 

(2.1) and (2.2) and the continuity equation (2.3); 

b) the resulting equations are linearised in the disturbance 

components; 

c) it is observed that also the undisturbed flow should fulfil 

equations 2.1 - 2.3; 

d) the fluctuating pressure component p' is eliminated from two of 

the resulting expressions; 

the following equations remain: 

\̂' - ^ /"^V ^ \ , fu^ 

^ \ ' i)\' 2>̂ v' 2>̂ v' 

'öxüy '̂  y <̂  X Oxdy 
(9.2) 

l^.lf-0 (9.3) 
7) X 2) y 

Now a periodic disturbance is assumed with a stream function/^ defined 

by 

^ (x,y,t) = cp(y)ê °̂'̂ -̂ *̂  (9.4) 

which, using 

u' ^ ^ and V' = -p^ (9.5) 
oy d X 

directly satisfies the continuity equation (9.3). Since (9.2) and (9.3) 

are linear in the fluctuating quantities more general periodic 

disturbances may be obtained by superposition of a number of components 

of the form (9.4). 

In the expression (9.4) it is assumed that a is a real quantity; it 

determines the wave length A of the disturbance by A = __ ; p is 
a 
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complex with P = P + i P. where — is the frequency of the disturbance. 

The sign of P. determines whether the disturbance is stable or unstable. 

For stable or unstable disturbances p. is negative or positive 

respectively; neutrally stable disturbances correspond to p. = 0 . The 

amplitude function cp(y) is complex and is assumed to depend on y only. 

Furthermore use will be made of 

P„ P. 
C = C + 1 C . = 

r 1 — a 
+ 1 (9.6) 

a 

the sign of c. again determines the stability of the disturbance; c 

is the wave speed. 

Using (9.4) and (9.5) equation (9.2) may be reduced to 

(u-c) 
^v^ 

- a 
fu 

a ^y^ 

2 a^ ^ + â q. 

^y' 

(9.7) 

This equation can be written in non-dimensional form by using the 

velocity U at the edge of the boundary layer and the displacement 

thickness 8 as reference velocity and -length respectively. The result 

is 

2 

(̂  - -) Û U'̂  
^ ^ Ê! . (a 8*) (-2-) 
y u 

^4 

U8 2)y^ u U8" 

(«5») ^ 

cp 8 

.̂̂  

2 ^2 „X 4 
2 (a8*) ^ ^ + (a8*) J L 

2) y U U8* 
(9.8) 

Equation (9.7) or (9.8) is known as the Orr-Sommerfeld equation. It 

is homogeneous in cp and hence admits the solution cp = 0; this of 

course represents the undisturbed flow. The stability investigation 

is concerned with non-zero solutions satisfying equation (9.7) or (9.8) 

together with some boundary conditions. These solutions are found by 

solving the resulting eigenvalue problem. This will not be pursued 

further here; extensive reviews may be found in L7, 29, 90j. 

In the following sections only those results of stability theory will 

be presented which are used in the remainder of the present work. 
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9.2.3. The stability diagram. 

X 
For a given laminar boundary layer -—— and the velocity profile u/^) are 

%) 
c c. 

known. Then in equation (9.8) Q!8 , -— and -— remain as parameters. Usually 

c c p P 8* 
r 1 r 1 

— and — are replaced by —=— and — j — using the following expressions. 

" U^ «8» ^ 

=̂1 Pi^' 1 

Now, when a value for one of these parameters is assumed (for instance 

Q;8 ) the values of the other ones may be determined for which (9.8) allows 

non-zero solutions. Results of these calculations are usually presented 

in an Q!8 - -r,— plane: the "stability diagram". As an example fig. 9.1 

shows the stability diagram for the flat plate boundary layer. The curve 
P. 8* 

for — — = 0 denotes the neutrally stable disturbances. Inside the loop 

p. is positive and outside negative. This means that unstable disturbances 

will be found only for combinations of Ü:8 and -^p— inside the loop. Below 

a certain value of —7— there are no values of OS* for which unstable 
US* disturbances are possible; this value of —j- is called the critical 

Reynoldsnumber. 

The Orr-Sommerfeld equation (9.8) has been obtained for parallel flows 
u y u5 only where u(y) - and hence — (.-—) and ^rj— - do not change with x. It is 

S 

general practice to apply results of stability calculations also to 

flows where u(y) changes slowly with x. This implies that at each station 

X the actual flow is replaced by a parallel flow with the same non-

dimensional velocity profile TT ( — ) and Reynoldsnumber -—- . 
8 

For a similar boundary layer the "shape of the velocity profile" —/ — | 
^ Q ' 

is independent of x and hence the same stability diagram applies at all 
P V r) 

values of X. If now a disturbance with a constant value of _I_ is ' 
U2 

considered which is convected downstream with the flow, it follows a 
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- because --;— increases with x - that the disturbance may at first be 

stable, then become unstable and finally become stable again. The same 

happens for non-similar boundary layers where however the stability 

diagram changes with x. 

It can be seen from the Orr-Sommerfeld equation (9.8) that the stability 

diagram depends on the shape of the velocity profile. It turns out that 

the curvature of the profile is very important: profiles with a point 

of inflexion have a much lower critical Reynoldsnumber and hence are 

much less stable than velocity profiles without inflexion point 

(fig. 9.2). Moreover, the height of the unstable loop is finite when 

US* 
—3» "^ for velocity profiles with an inflexion point while the 

m 

height tends to zero if there is no inflexion point. Hence it follows 

that factors determining the occurrence of an inflexion point have much 

influence on stability and hence on transition. 

^ \ 
An inflexion point occurs if —— at the wall is positive. From the first 

^y' 
compatibility condition at the wall (equation 2.10) it follows that 
^2 
0 u\ dU 

depends on the pressure gradient term U -j— and the suction 

'y 'o 

velocity v . An"adverse" pressure gradient (.—— <^ 0) or blowing 
/ -^2 \ 

(v ")> 0) tend to make! —=• J ^ 0 and hence are destabilising factors. 

y ° dU 
A "favourable" pressure gradient (-7— / 0) or suction (v <' 0) tend 

•* dx o ^ 
to make I —=• 1 ^ 0 and hence are stabilising factors. This point will 

•̂  o 

be discussed further in section 9.3. 

9.2.4. The amplification factor. 

It was shown in section 9.2.3. that the amplification or damping of 

disturbances in the boundary layer is determined by the magnitude of P.. 

In what follows an equation will be derived which governs the growth 

of the amplitude of the disturbances. This equation follows from the 

expression (9.4) for the stream function. Of course, only the real 

part of the stream function y^' is physically significant. 

From (9.4), together with cp = 9 + i cp.,it follows that 
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P.t 
p COS(Q;X - P t) - cp. sin(ax - p t) 
r r 1 r 

r 
or denoting — by tg T 

P t cp 

For the velocity components u' and v' of the disturbance similar 

expressions are found. Because cp and hence y depend only on y the 

amplitudes a and a + da for a fixed value of y at times t and t + dt 

are related by 

d(-tn a) = p. dt (9.12) 

Hence if the amplitude for the neutral oscillation at time t is denoted 
o 

by a , the amplitude at a later time t follows from 

t 

'En — = I p. dt (9.13) 
a J 1 

t 

ƒ .̂ 
t 
o 

In what follows o will be called the "amplification factor". 
a 

For parallel flows the parameter P. in (9.14) is constant but it may 

vary with x for non-parallel flow. 

Since the integration variable t in (9.14) is a little obscure for 

instability calculations in boundary layers a change will be made to 

the variable x by using 

g=c^ (9.15) 

This means that a disturbance is followed on its way downstream. Using 

(9.15) equation (9.14) for a may be written as 
a 

° t 
o 

a 
— = e where a = [ P., dt (9.14) 

a = I — dx 
a I c 

-' r 
X 
o 
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or after introducing convenient non-dimensional quantities 

"-P --6 
X 

a = —;- . 10 " ƒ T.U dx (9.16) 
a y J 

X 
o 

In equation (9.16) T denotes 

^ . as*.10̂  
T = -V-j ^-2— (9.17) 

U^ ^ ^ 

and X = — where c is a constant reference length. The quantity T may be 

° - P V 
calculated as a function of x for a given value of -^— if the shape of 

US* " 

the velocity profile and -^j— are known as functions of x. Moreover 

stability diagrams have to be known for the velocity profiles 

encountered. 

The lower integration limit x in (9.16) denotes the value of x at which 
°P,S» 

for the frequency considered -j-— = 0 for the first time. 

Some available stability diagrams. 

As the stability calculations are rather laborious not many stability 

diagrams have been calculated. A review of these results may be found 

inL7J, chapter 16 and [29J, section IX; a selection of these results 

will be given below. 

For the flat plate boundary layer without suction critical Reynoldsnumbers 

from different sources have been collected in table 9.1, stability diagrams 

are shown in fig. 9.3. It is seen that the results of various calculations 

show considerable differences. This is caused on the one hand by the 

different procedures followed for the stability calculations. On the 

other hand the Blasius profile has been approximated by different 

analytical expressions; in many cases the velocity profile for the flat 

plate boundary layer from some Pohlhausen type method has been used. 

Since these velocity profiles and especially their curvature may be 

different, the stability diagrams are not necessarily identical. 

Some available stability diagrams for the plane stagnation point flow 
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without suction have been compared in fig. 9.4; again considerable 

differences are shown. 

Calculations for a whole series of Hartree profiles (see section 3.1.2) 

have been made by Pretsch [96, 97, 98]. Stability diagrams are shown in 

fig. 9.5; the critical Reynoldsnumber is given in fig. 9.6 as a function 

of p. Figures 9.5 and 9.6 clearly show the stabilising influence of a 

favourable pressure gradient (P ̂  0). Also amplification calculations 

have been made by Pretsch; these results will be discussed in more 

detail in section 9.5. 

The neutral stability curves for some cases with suction and blowing have 

been calculated by Ulrich [99]. The flows considered are 

1. the flat plate with constant suction velocity 

2. the flat plate with v >^^ x~^ 
o 

3. the plane stagnation point with constant suction velocity. 
\ -V \/ Ux 

The cirtical Reynoldsnumber is shown as a function of A „ = —rpU -r;-

in fig. 9.7 which clearly shows the strong stabilising influence of 

suction. From the examples discussed in chapter 8 it is known that for 

the boundary layer flows considered by Ulrich the velocity profile tends 

to the asymptotic suction profile if the suction velocity -v becomes 

infinitely large (A o~^''^ ). According to Ulrich's calculations the 
US* critical Reynoldsnumber -y— becomes as high as 70000 for this case; 

a recalculation by Freeman i_100ĵ  gave 78000. Fig. 9.8 shows some 

stability diagrams selected from Ulrich's results for different boundary 
US* layer flows. This figure shows that if (-ij-) .^ is equal for two 

different boundary layers also the remainder of the neutral stability 

curve is roughly the same, irrespective of the pressure gradient or 

suction velocity. 

Comparison of this result with figs 9.3 and 9.4 reveals that the 

stability diagrams calculated by different authors for the same flow 

show as much variation as the stability diagrams obtained by the same 

author for different velocity profiles with the same value of the 

critical Reynoldsnumber. 

In the remainder of the present work the amplification factor for 

boundary layers with arbitrary pressure- and suction distributions will 

be calculated. For this calculation stability diagrams including 

information about the amplification rate at p^ ]> 0 have to be known. 
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To the best of the author's knowledge these results are only provided 

by Pretsch's stability diagrams and it will be attempted to apply these 

diagrams to arbitrary boundary layers. 

In view of the comparisons of different stability diagrams made above, 

the following procedure seems to be justified for assigning a stability 

diagram to a certain velocity profile. From an approximate formula due 

to Lin (section 9.4) the critical Reynoldsnumber is found. Then the 

stability diagram from Pretsch's series with the same critical Reynolds 

number is assumed to be valid for the velocity profile under 

investigation. This implies that all possible stability diagrams are 

considered to form a one-parameter family with the critical Reynoldsnumber 

as parameter. 

If only the critical Reynoldsnumber is needed a quick estimate may be 

made using a formula of Wieghardt l_10l]. 

(H^) = H (?5) = H e^'-' - «« (9.18) 
crit crit 

8* 
where H = 3—. Fig. 9.9 shows that indeed equation (9.18) gives a 

reasonably good approximation to the critical Reynoldsnumber for a 

variety of boundary layers. For relatively strong suction however 

Wieghardts relation seems to become invalid (Head, [.63]); and it is 

safer to use Lin's formula for all cases. 

Since in boundary layer calculations using the momentum equation the 

momentum loss thickness 9 is the proper thickness parameter it is 

advantageous in many cases to use a critical Reynoldsnumber based on 0. 

From fig. 9.9 it follows that for the boundary layers, which have been 

considered in the present section, equal values of H mean equal values 

of (-;p-) and hence also of (—̂ ) • Therefore the comparisons of 
crit crit 

the stability diagrams made in the present section can also be made 

in terms of 09 and —r-, instead of aS* and —;-, without altering the 

conclusions. 

Lin's formulae for the critical Reynoldsnumber. 

A simple approximate formula for the calculation of the critical 

Reynoldsnumber has been given by Lin[_90], and reads 



- 121 -

H^l 
crit u 

c 

In this equation d may be any length which is used to make the wall 

distance y non-dimensional. 

u is the value of u for which the following equation is satisfied 

u 

Of 0 u \ 
Sy/dj ( 

For the momentum method discussed in chapter 5 it is appropriate to 

take d = a leading to ^ = TI . Then equations (9.19) and (9.20) lead to 

2 5 ! ^ ^ 
(H^) = ' ^ ^ / ^ (9.21) 

crit u 
c 

and _A!_=_£:li (9.22) 

For the multimoment method given in chapter 7 it is useful to make d 

equal to S as defined by equation (7.20). In that case (9.19) and (9.20) 

reduce to 

(9.23) V •* .^ - 4 
c r i t u c 

- a s 
-u 

Dïï 1.16 

9 \ / Ux 
X V V 

S Y S n\/a 

The equations (9.22) and (9.24) can easily be solved by iteration for a 

given velocity- or S-profile. It is even possible to include Lin's 

formulae in a computer program for the boundary layer calculation. 
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A comparison of results obtained with Lin's formulae and those from 

other calculations may be found in section IX of I 29]. Some results for 

the flat plate boundary layer without suction have been collected in 

table 9.2. For the asymptotic suction profile the formula leads to 
at 

(—) = 40000 or - ^ = 80000 as compared to 70000 according 
crit crit 

to Ulrich and 78000 obtained by Freeman. It follows from these 

comparisons that the accuracy of Lin's formula is quite satisfactory. 

Reduction of Pretsch's results to a form suitable for use on a digital 

computer. 

Detailed stability calculations for some of the Hartree profiles have 

been made by Pretsch [96-98_[. The stability diagrams are shown in fig. 

9.5, while some characteristic parameters of the profiles have been 

collected in table 9.3. Stability diagrams for some other values of P 

have been obtained by Smith and Gamberoni [ 1 J from interpolation in 

Pretsch's diagrams. In what follows these diagrams will be used to 

calculate the amplification factor a . It follows from equation (9.16) 
a 

that the only Information needed from the diagrams is the quantity T 
PrV as defined by (9.17). Values of T for a range of values of —*— and 

U8* " 
—J— have been obtained from Pretsch's work for P = 1, 0.6, 0, -0.10, 
-0.198 and for p = 0.2, 0.1, -0.05 from 1̂ 1 Q. 

In fig. 9.10 for example the results are shown for the flat plate 

(P = 0) plotted as function of log --7-. It is seen from the figure 

that the curves for constant values of —^ may be approximated by 
U 

parabola s of the form 

T = T^ - K^ (̂ ° log ^ - K2)^ (9.25) 

where the coefficients T , K, and K_ depend on P and —=-. Values for 
o 1 2 ^2 

these coefficients have been obtained for all values of P and a range 

of values for —Q—• The results for p = 0 are shown in figure 9.11 as 

10" ^r^ 
function of log —5-. The approximation given by (9.25) to the actual 

U 
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values is shown in fig. 9.10. Finally cross plots have been made to find 

T , K, and K„ as functions of P for constant values of —=•. Since a unique 
o 1 2 2 

ue 
relation exists between P and (—7-) (see fig. 9.6) it is possible to 

crit ^Q yg 
consider T , K and K as functions of log (—) 

crit 
Since it may be expected that Pretsch's results will not be very accurate, 
linear interpolation in log (—) seems to be Justified to find the 

'''•̂ ^ 10 U9 
coefficients of (9.25) for arbitrary values of log (̂n-) . Table 9.4 

P V crit 
1* 

gives T , K and K for different values of — ^ at equidistant values of 
o 1 2 ^2 

log (—) . The numbers quoted in the table have been chosen in such 

'^r" la U9 
a way that by linear interpolation in "^og (—) the values obtained 

, crit 
from Pretsch s diagrams will be regained. 
For convenience the reduced frequencies — ^ have been denoted by a number 

U P V 
r 

f in table 9.4; results for intermediate values of —=• can be obtained by 
U 

linear interpolation in the parameter f. 

In view of the remarks made at the end of section 9.3 it will be assumed 

that table 9.4 can be applied to boundary layer flows with arbitrary 

suction- and pressure distributions. 

Some existing methods for the calculation of the transition point. 

In preceding sections it has been shown that it is possible to determine 

theoretically whether a particular boundary layer flow is stable or 

unstable. For instance for the flat plate the boundary layer becomes 

unstable as soon as ^^^— exceeds a critical value of about 575 

corresponding to -y = 0.11 x 10 . From experiments it is known however 
Ux „ 6 

(see section 9.1) that actual transition starts at -p- = 2.8 x 10 only. 

This means that a considerable distance will exist between the point of 

instability and the transition point. 

From fig. 3.3 it follows that the instability has no direct effect on 

the friction drag; only when transition occurs the friction drag 

increases. It follows that for the calculation of the characteristics 

of airfoil sections it is important to possess a method for predicting 
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the possible occurrence of transition. Since the transition process is 

not yet sufficiently understood these methods will necessarily be semi-

empirical in nature. Some of these methods are mentioned below. 

In some methods the results of different transition measurements are 

plotted in such a way that all points fall on a single curve. For a new 

case transition may be "predicted" by assuming that the new case will 

also fall on this universal curve. An important example of these methods 

is due to Michel | 106 I. In his method —5- at the transition point is plotted 

versus the corresponding value of Ĥ i; indeed results of different 

experiments fall reasonably well on a single curve. The method is based 

on experiments without suction and can not easily be generalised to 

suction problems. 

A different method has been given by Granville [107]. Here a universal 

curve is obtained by plotting (-p-) - (-rj) versus the mean value J\. 
tr i 

of the Pohlhausen parameter •A- defined by 

X 

_ ,tr 

^ 1 = ^ ^ / ^ 1 dx (9.26) 
x_̂  - X. -
tr I X . 

1 

The subscripts "tr" and "i" denote transition and instability respectively. 

Another suggested method is to assume that transition occurs at a constant 
US* value of ^^^- This results in a very rough estimate of the transition 

point only. 

To improve upon the above methods the determination of the transition 

point should not be based on local quantities only but the history of 

the boundary layer should be taken into account, since this determines 

the amplification of unstable disturbances. Such a method has been 

designed by the present author; it will be presented in the next section. 

9.7. A new method for the semi-empirical determination of the transition region. 

9.7.1. General. 

It was shown by the present author in [3-5j and at the same time 

independently by Smith and Gamberoni [l,2j that different experiments 
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on transition without suction can be correlated on the basis of the 

amplification factor a . It was shown that the maximum value of 0 which 
a a 

was reached at the transition position was roughly equal for all cases 

investigated. Hence in new cases an accurate estimate of the transition 

position may be found using the assumption that transition occurs as soon 
as the calculated value of (CT ) reaches this critical value. In the 

a 
max 

references cited above the method was shown to be valid for the no-suction 

case. It will be presented here in a modified form; furthermore it will 

be shown that the method is also applicable to cases with suction. 

The amplification factor for the flat plate without suction. 

Teh amplification factor o is defined by equation (9.16) 

6 U-^ '̂  
a = 10 / T.Ü dx (9.27) 
a V 

I T.U 

X 

o 
If for the flat plate the reference velocity Uc-o and the reference length 

c are chosen as U and ~ respectively, equation (9.27) reduces to 

Ux 

J -̂ O a = 1(5̂  / T d(^) (9.28) 

Ux 
o 

V 
U9 Ux 

For the flat plate the relation between -^ and -p- is known and it is 
P v 

possible to calculate a for different frequencies —^ using table 9.4 
* U 

and the formulae given in section 9.5. For this calculation a value of 
UO 
(-̂ ) has to be assumed; as some uncertainty exists here (see table 

crit 
9.1) a range of values for the critical Reynoldsnumber has been used. 

ue 
For (—) = 260, which is the value obtained by Pretsch for p = 0, 

crit 
some results are shown in figs 9.12 and 9.13. Values of T are shown 
in fig. 9.12; the amplification factor a is shown in fig. 9.13 where 

also the envelope giving the maximum amplification factor (a ) has 
max 

been drawn. 
ue 

Similar calculations have been performed for other values of i-r;-) V 
crit 
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from table 9.1; the results for (a ) have been collected in fig. 
a max 

9.14. Of course the calculation of the amplification factor can be 

extended to arbitrary high Reynoldsnumbers. However, it is known from 

experiments (see section 9.1) that transition sets in at —7- = 2.8 x 10 

and that the boundary layer is completely turbulent for -^ >3.9 x 10 . 

These limits have been inserted in fig. 9.14; it follows that to these 
Ux 

values of -rr certain values of (a ) correspond which are shown as 
ue ^ '"̂'' 

function of i-rj-) in fig. 9.15 and table 9.5. 

crit 

If Pretsch's value is used it is found that beginning and end of the 
experimentally determined transition region correspond to (a ) =7.6 

max 
and 9.7 respectively. In the earlier version of the method [ 3-5] the 

values 7.8 and 10 were obtained. The slight differences with the present 

values are easily explained by the fact that at that time only small 

scale versions of Pretsch's charts were available to the author which 

could not be read very accurately. 

In most of the further calculations the momentum method of chapter 5 

will be used in combination with Lin's formulae for the critical 
Reynoldsnumber. Table 9.5 shows that this leads to (a ) =9.2 and 

•' a max 

11.2 at the beginning and end of the transition region 

respectively. In what follows it will be shown that nearly the same 

values are obtained for other boundary layers. It should be noted that 

the linear stability theory has been used to calculate a up till 

transition. Of course not too much significance should be attached 

to the details of these calculations. The maximum amplification factor 

has to be considered only as a convenient parameter correlating 

different factors which influence the transition. 

9.7.3. The amplification factor for the EC 1440 airfoil section without suction. 

For airfoil sections the boundary layer is not similar and hence for 

different values of x different stability diagrams have to be used. If 

ue — 
(—̂ ) is known as a function of x, for instance from Lin's formulae, 

fcrit 
it is easily possible to calculate a also for these cases using table 
9.4. 
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In [3-5] results of transition measurements and calculations of the 

amplification factor for the EC 1440 airfoil section have been presented. 

In this work Pohlhausen's method was used for the boundary layer 

calculations; critical Reynoldsnumbers for the velocity profiles were 

found by relating Pohlhausen's A to Hartree's p. This relation was 

P 
2-6 

obtained by calculating the Hartree boundary layers for U = u x 

with Pohlhausen's method. The examples discussed in [3-5] will be 

recalculated here using the momentum method of chapter 5 in combination 

with Lin's formulae. Fig. 9.16 shows U as a function of s and the 

results of the boundary layer calculations for different values of the 
o 

angle of attack <X. Results of the amplification calculation for CC = 0 

are shown in figs 9.17 and 9.18. Similar calculations have been 

performed for other values of CC; the results have been used to construct 

fig. 9.19 where also the experimentally determined transition region 

is shown. The curve (a ) = 0 in fig. 9.19 denotes the instability 
a max 

point; it follows that both the instability point and transition move 

forward with increasing angle of attack. 

However, the distance between the instability point and transition can 

be very large. If the beginning of transition is assumed to occur for 
(a ) = 9.2 it may be seen from fig. 9.19 that the beginning of 

max 
transition is predicted accurately within 5 /o of the chord length for 

a > -2°. 

For a <^ -2 transition is preceded by laminar separation; in this case 

the distance between the predicted and actual positions wtiere transition 

starts may grow to 10 /o of the chord length. 

Smith and Gamberoni [1.2] applied a similar analysis to a great number 

of experimental data including results of free flight measurements. 

They calculated the laminar boundary layer by means of a method which 

for the flat plate produces Hartree's velocity profile for p = 0. 

Hence, using Pretsch' value for the critical Reynoldsnumber, they should 

find (a ) = 7.6 and 9.7 at the beginning and end of the transition 
max 

region. The conclusion of their analysis was that (a ) = 9 would 
a 
max 

correlate the experimental data very well. Since no distinction was made 
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between beginning and end of the transition region the agreement with 

the values 7.6 and 9.7 is very good. A difference between the present 

method and the method of Smith and Gamberoni is that the last authors 

calculate the amplification at constant values of — ^ while for the 
P v> U<x̂  

present method constant values of —^ are used. Since U = U/U<^ 
U 

does not change very much in the regions of interest and moreover only 

the envelope of a for different frequencies is used this difference 

apparently has no effect on the results. 

It has been mentioned already that the method becomes less accurate 

if transition occurs close to or even downstream of the calculated 

separation point. Some possible explanations for these discrepancies 

are listed below. 

1. Near separation the transition mechanism assumed in stability theory 

may not be the relevant one so that a method which is based on this 

theory may become less accurate. 

2. Especially close to separation the shape of the calculated boundary 

layer velocity profiles may be in error so that a wrong value for 

(T^) IS found. 
crit 

3. In cases where the critical Reynoldsnumber is low - which occurs close 

to separation - really nothing is known about the accuracy of Lin's 

formulae or Pretsch' stability diagrams. 

4. There is no clear reason why the critical values of (a ) at 
max 

transition should be constants. An exact correspondence between 

experiment and theory for the results shown in fig. 9.19 might have 

been obtained for instance by assuming that the critical values are 

suitable functions of the critical Reynoldsnumber at transition. 

However, in further experiments no systematic variation of (a ) with 
lift m&x 
(-J7-) at transition was found and hence in what follows constant 

crit 
critical values for (a ) have been used. a max 

9.7.4. The amplification factor for boundary layers with suction through a 

porous surface. 

Anticipating the results of an experimental investigation on the effects 
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of suction through a porous surface - to be described in chapter 11 -

it is stated here that the method is also applicable in the case of 

suction. 

9.8. Some results for the flat plate with different suction laws. 

9.8.1. The flat plate with constant suction velocity. 

In section 8.11 the boundary layer on a flat plate with constant suction 

velocity has been discussed. It was found that the non-dimensional 

parameter JV = — ^ and the shape of the velocity profile only depend 

on the variable x defined by 

2 

^ = 0 ^ (9-29) 

Since the critical Reynoldsnumber depends on the shape of the velocity 

profile only it also depends only on x. 
U9 -

Values of — may be found as function of x for different values of the 
-V 

suction coefficient c = —rp- from 
q U 

J9 
y 

-V 
V 

- V 

o 

(9.30) 

Results of some calculations using the momentum method in combination 

with Lin's formulae for the critical Reynoldsnumber, are shown in fig. 
-V 4 

9.20. It follows that for -rp > 0.980 x 10 nowhere along the length 
ue ^ue^ 

of the plate —r- will exceed (̂3~) and hence the boundary layer is 
crit -V 

— o -4 
stable at all values of x. For values of —=— less than 0.980 x 10 

the boundary layer becomes unstable in a certain Interval. 

A similar calculation has been made by Ulrich [99] using Iglisch' exact 

solution for -^ and the results for (^) shown in figure 9.7. He 
crit 

found that the suction coefficient c should exceed the value 
-4 "^ 

1.18 X 10 to ensure a stable boundary layer for all values of x. The 

difference between the values 1.18 and 0.980 is easily explained by the 

different procedures used to determine the critical Reynoldsnumber. 
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Fig. 9.21a and b show the drag of a flat plate with the constant 
-4 

suction velocity -v = 1.18 x 10 U. Appendix 1 should be consulted for 

an explanation of the terms "wake drag", "suction drag" and "total drag" 

which are mentioned in figure 9.21. Included in the figure is the drag 

for the flat plate without suction for both laminar and turbulent flow 

(section 3.1.3). It is seen that the total drag with suction is higher 

than for the Blasius boundary layer. However, it remains much smaller 

than the drag of the flat plate with turbulent boundary layer which would 
Ux 

occur at high values of —;- without suction. 

The percentage reduction in total drag which would result from keeping 

the boundary layer laminar is shown in figure 9.22. It follows that drag 

reductions of85 /o will be possible at the value 25 x 10 for the 
Ux 

Reynoldsnumber -p- which is representative for the wing of a modern jet 

airliner in cruising flight. 

The drag reduction shown in fig. 9.22 has been calculated on the 

assumption of a constant suction velocity with such a magnitude that the 

boundary layer remains stable along the full length of the plate. It may 

be expected that less suction will be required if the boundary layer is 

allowed to become unstable to such a degree that the maximum amplification 

factor remains slightly below 9.2. This will be pursued further in the 

remainder of the present section. A further reduction of the suction 

quantity may be obtained by allowing the suction velocity to vary along 

the length of the plate. This will be discussed further in section 

9.8.2. 

For the case of a constant suction velocity the amplification factor can 

easily be calculated as follows. 

If the definition (9.29) for x is used it is implied that the reference 

length c has been defined as 

^ ^ (9.31) 
(-v)^ 

o 

If the reference speed Uco is made equal to the constant free stream 
U^c 

speed U then the Reynoldsnumber R = ——— becomes 
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2 .2 
c (9.32) 

and equation (9.16) reduces to 

X 

v^i a = 10"^ c " ( T dx (9.33) 
a 

x 
o 

Results of amplification calculations for different values of c have 
q _ 

been collected in fig. 9.23 where (a ) is shown as function of x. 
max 

The peak value of the amplification factor is plotted in fig. 9.24 as 
function of c . If it is assumed that transition starts as soon as 

q 
(a ) reaches the critical value 9.2, then it may be concluded from 

max 
fig. 9.24 that transition will not occur unless c falls below the value 

-4 o, 'I 

0.485 X 10 . This value is only 50 /o of the suction coefficient 

required to keep the boundary layer stable. Then it may be concluded 

that the suction coefficient can be much smaller than was assumed for 

the calculation of the drag reduction shown in fig. 9.22. This implies 

that the possible drag reduction may be much larger than shown in fig. 

9.22. 

Furthermore it should be noted that using a constant value of -v 

results in a suction intensity which is too high at most stations on the 

plate. Only in the critical region this suction velocity is really 

necessary to prevent transition. To obtain a minimum suction quantity 

the suction velocity should be adjusted to the local needs of the 

boundary layer. This will be discussed further in section 9.8.2. 

9.8.2. The flat plate with varying suction velocity. 

Using the momentum method in combination with Lin's formulae for the 

critical Reynoldsnumber, it is easy to calculate the suction distribution 

which will maintain a neutrally stable boundary layer characterized by 

^ = ( H ^ ) (9.34) 
crit 
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U9 \ / Ux 
Since the momentum method and Lin's formulae lead to —r- = 0.661 U — 

U9 
and k-~) = 221 for the boundary layer on a flat plate without suction, 

crit 

it follows that instability arises downstream of the position where 

-rr = 0.11 X 10 . If suction is started at this point and the requirement 

(9.34) is fulfilled, further downstream the suction distribution shown 

in fig. 9.25 results. It may be seen from this figure that only locally 
Ux 

a high suction intensity is needed. For ^p-—*''^ the suction velocity 

takes the constant veilue 0.125 x 10 U.This value easily follows from the 
Ux 

observation that for --j * co the asymptotic suction profile is found 
-V e UO 

for which —"— = 0.50 and i-rr) = 40000 so that to satisfy equation 
crit 

(9.34) the suction velocity should be given by 

= 0.125 X 10"'* 

The total suction quantity obtained in this case is much less than for 

the case of constant suction velocity. A further reduction will be 

obtained if the amplification factor (a ) is allowed to reach the 
max 

critical value 9.2. However, this will not be pursued further in the 

present work. 

- V 

o 
U 

-V e 
o 
V 

ue 
y 

0 . 5 

4 X lo"* 
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Experimental investigation of the laminar boundary layer on an impervious 

28 /o thick airfoil section. 

Introductory remarks. 

In section 8.13 the experiments of Schubauer on the laminar boundary layer 

of an elliptic cylinder have been discussed. It was mentioned that some 

controversy exists about these measurements since it was definitely shown 

in the experimental investigation that separation of the laminar boundary 

layer occurred while some boundary layer calculation methods fail to 

predict separation using the measured pressure distribution. 

It was shown by Hartree that a slight modification of the measured pressure 

distribution is sufficient to obtain separation. However, it is not known 

for certain whether or not the change assumed by Hartree remains within 

experimental error. 

Due to the uncertainty about the exact pressure distribution to be used, 

this experiment failed to definitely answer the question whether boundary 

layer theory is capable of predicting laminar separation using the 

measured pressure distribution. 

Therefore it was thought worth while to undertake an independent 

investigation to provide additional - and possibly still more accurate -

material to be used for a comparison between boundary layer theory and 

experiment. 

A disadvantage of Schubauer's investigation is the small size of the 

model (11.78 inch chord) and the low speed (11.5 ft/sec) at which the 

measurements were performed, resulting in the low value of 72000 for the 

Reynoldsnumber R based on chord. Due to this low Reynolds number a fully 

separated laminar boundary layer occurred without subsequent turbulent 

reattachment. 

Since the Reynoldsnumbers in aeronautical practice are much higher than 

72000 it was thought worth while to perform the new investigation at a 

much larger value of R . The measurements were made on the upper surface 

of a 28 /o thick symmetrical airfoil section with a chord length of 1 

meter. All measurements were made at zero angle of attack and a wind 

speed of 28 m/sec corresponding to R = 1.37 x 10 . This value of R 

was selected to ensure that a separated laminar boundary layer occurred 
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with subsequent turbulent reattachment. 

Details of the test set-up and the apparatus used are mentioned in 

section 10.2; the test methods are described in section 10.3. Results 

of the measurements and a comparison with boundary layer theory are 

given in sections 10.4 and 10.5 respectively. 

10.2. Description of the experimental apparatus. 

10.2.1. The wind tunnel. 

The experiments were performed in the low speed wind tunnel of the 

Department for Aeronautical Engineering at Delft Technological 

University. The test section of the wind tunnel has an octagonal cross 

section, 1.80 m wide and 1.25 m high; the maximum windspeed is 120 m/sec. 

At the speed employed for the present investigation (28 m/sec) the degree 

of turbulence is about 0.04 /o. Further details of this wind tunnel may 

be found in [los] and \j.09] . 

10.2.2. The model. 

The wing model was not built for the present investigation but happened 

to be available. It had earlier been used by the N.L.L. at Amsterdam 

for some drag measurements. 

The model is built up from two wooden spars and a number of wooden ribs 

spaced 140 mm apart. Furthermore the 2mm thick multiplex skin is, 

at 135 mm intervals, supported by spanwise stringers. 

The airfoil section used is NACAX)28-64; the dimensions of which are 

given in table 10.1. 

The model was placed vertically between the floor and ceiling of the 

test section; the geometric span obtained in this way being 1.25 m. A 

sketch, showing the test set-up is given as fig. 10.1. 

Two rows of pressure orifices were provided in the upper surface of the 

model extending for some distance around the leading-edge to the lower 

surface. Positions of the orifices are given in table 10.2; those 

numbered 1-34 have been present during the whole series of measurements; 

the numbers 35 to 41 were added later during the investigation. 
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5.2.3. Hot-wire equipment. 

Mean velocity profiles of the laminar boundary layer were measured with 

hot-wires at different positions in chord number III (fig. 10.1). 

Platinum wires, 0.003 mm 0 and about 2.5 mm long were used together 

with some transistorized equipment operating in the constant temperature 

mode. This equipment has been described in detail in[_110_]. 

The probe holding the hot-wire could be traversed across the boundary 

layer by means of a screw spindle (pitch 1 mm) running through a stream

lined tube and extending through a hole in the sidewall of the wind 

tunnel. A dial at the end of the spindle enabled the displacement of the 

hot-wire, from an arbitrary reference position outside the boundary 

layer, to be read within 0.01 mm. The distance between this reference 

position and the model surface was determined by a special technique to 

be described in section 10.3.3. 

3.2.4. Other apparatus. 

The free stream speed U<o in the test section was measured by means of 

a pitot-static tube mounted some distance above the floor of the test 

section (fig. 10.1). 

For all pressure measurements inclined tube manometers were used, 

frequently calibrated against a Betz-type manometer. 

Besides the orifices in the model surface a small static tube - which 

could be taped to the surface - was used for the pressure distribution 

measurements. Total pressures inside the boundary layer at a fixed 

small distance from the wall were measured with a small flattened total 

head tube which could also be taped to the surface. Both tubes were 

soldered to a common base plate to form one instrument as shown in fig. 

10.2. 

3.3. Test methods and reduction of data. 

3.3.1. Pressure distribution measurements. 

At a free stream speed Ui^ = 28 m/sec the pressure distribution around 

the model was measured relative to the free stream total head p . Since 
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for subsequent boundary layer calculations the velocity U at the edge of 

the boundary layer is needed, the measured surface pressures p were 

converted to U. Using the assumption that the difference in static 

pressure between the wall and the edge of the boundary layer can be 

neglected, U follows from 

ipV = p^ - p^ (10.1) 

The values of U obtained in this way were made non-dimensional with the 

free stream velocity Û ^ • 

It was found that inserting the hot-wire probe and the streamlined tube 

had some influence on the pressure distribution. Therefore some 

measurements were repeated with the hot-wire placed at two different 

chordwise positions in the lower chord with orifices. 

Since the size of the model is rather large compared with the dimensions 

of the test section there must be an appreciable tunnel wall effect on 

the pressure distribution. Moreover the speed at the position of the 

pitot-static tube can not be regarded as true free stream speed since 

it will be influenced by the presence of the model and the walls. These 

effects present no real problem since it is the only object of the 

present investigation to compare boundary layer theory and experiment 

for the same - but otherwise arbitrary - pressure distribution. The 

"free-stream speed" U ^ is only used as a reference speed to obtain 

non dimensional quantities. 

It is clear however, that the present investigation will not predict 

the free-flight characteristics of the airfoil section. 

Hot-wire measurements. 

All hot-wire measurements were made in the mid-span chord. During these 

measurements frequent calibrations were obtained using the following 

procedure. The hot-wire was placed in the midspan position well outside 

the boundary layer at the same chordwise position as orifice number 23. 

Assuming two-dimensional flow and constant static pressure across the 

boundary layer the speed U at the position of the hot-wire follows from 
2 

JpU = P. - Pnr>< where p is the static pressure at the position of 
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orifice number 23 and p is the free stream total head. By varying the 
2 

tunnel speed and recording both ^pU and the output of the hot-wire 

apparatus a calibration curve is easily obtained. 

Once the calibration is known a velocity profile can be measured by 

moving the hot-wire in small steps from well outside the boundary layer 

to about 0.10 mm from the model surface. There is no point in measuring 

closer to the wall since the corrections to be applied to hot-wire 

readings obtained near a wall are uncertain. Fortunately it is not 

necessary to perform measurements near the wall since the velocity 

profile in this region can easily be calculated as soon as the pressure 

distribution is known (see section 10.3.3.). 

Although the displacement of the hot-wire can accurately be measured 

with reference to an arbitrary starting position, its absolute distance 

from the wall can not so easily be determined directly. It was found 

however that the compatibility conditions of the boundary layer equations 

provide an easy method to find this distance. This procedure will be 

described in the next sub-section. 

Determination of the position of the hot-wire relative to the wall. 

From the hot-wire measurements and the subsequent data reduction the 

non-dimensional velocity u = u/U in the boundary layer is found as 

function of the distance y measured from an arbitrary reference position 

outside the boundary layer (fig. 10.3). A problem remaining to be 

solved is to determine the distance between this reference position 

and the wall. This was done as follows using the compatibility 

conditions (2.10) and (2.11). 

2̂ 

o 

(10.3) 

'y 

>.2 
Equations (10.2) and (10.3) show that/—^| and(—^) can be 

dU , f ^ u m. o o 
calculated when v , U -;— and ( ̂ r—I are known. This implies that in the 

o dx ' ̂  -• ' 
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Taylor series expansion of the velocity near the wall 

u = f^) ^ W ^ ) y ! + f ^ ] y!+ (X0.4) 
^̂ '̂'o 1 '. ^V^ 2'. ^ V'' 3'. 

•̂  o •'o 

2 3 
the coefficients of y and y are known if - apart from the pressure- and 

suction distribution - the coefficient IT:—) is given. 
^ ^ y J o 

The procedure adopted now is to calculate the velocity profile near the 

wall from equation (10.4) for some assumed values of (-̂r—| . These 
y^y)^ 

velocity profiles are then plotted on a sheet of transparant paper 

which is placed on the measured curve in such a way that one of the 

calculated profiles coincides with the measured profile over some 

distance near the wall. Using this procedure not only the position of 

the wall is found but also a value for the wall shear stress is obtained. 

It may be noted from equation 10.2 and 10.3 that for the present case of 

impervious walls (v = 0) the derivatives/ — ^ j and ( r—^ I follow 

directly from o o 

U 2 i V dx 

^ \ (10.6) 

10.3.4. Measurements with the surface tubes. 

From the difference in pressure indicated by the flattened total head 
1 2 

tube and the static tube, shown in fig. 10.2, the value of ^pu at a 

small distance from the wall is found. This device may then be used to 

obtain a rough estimate of the wall shear stress and the position of 

separation. It is not possible to get accurate values in this way due 

to the fact that the distance between the wall and the effective center 

of the total-head tube is not known. 

10.3.5. Plow visualization experiments. 

It was attempted to determine the separation point of the laminar 
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boundary layer by means of the oil film technique and using smoke. No 

sharp indication of separation could be obtained in this way. The 

position of reattachment of the turbulent boundary layer, however, was 

clearly indicated by the oil film. 

0.4. Results of the experiments. 

0.4.1. The pressure distribution. 

Detailed results of the pressure measurements have been collected in 

table 10.3. Fig. 10.4 shows U as function of x for the lower chord with 

orifices without the boundary layer traversing gear present. Values of 

U obtained with the static tube are consistently about 0.5 /o lower than 

those determined from the orifices. Therefore the results of the static 

tube have been used only as an aid to draw a proper curve through the 

points resulting from the orifices. The full curves drawn in fig. 10.4 
- dÏÏ -

give the relations between U, — and x which finally have been adopted 
dx 

for the boundary layer calculations (See also table 10.4). Near the 

leading-edge (-0.04 <. x <i. +0.04) the measurements may be approximated 

by 

Ü = 21.987 X - 2218.8 x^ + 221907 x^ (10.7) 

In the interval 0.12 < x < 0.18 an irregularity in U(x) occurs; this 

region is shown to a larger scale in fig. 10.5. It is possible that the 

oscillation in — is caused by inaccurate manufacturing of the model 
dx 

but it may equally well originate from the procedure by which the 

airfoil sections are designed. It is usual to compute the coordinates 

of a limited number of points of a section which in general is not 

sufficient to fix the shape in every detail. Especially in the region 

near the leading-edge, where rapid changes in curvature occur, the 

pressure distribution may be very sensitive to small deviations from 

the desired contour. Support to this idea is given by the fact that for 

the suction model, to be described in chapter 11, a similar irregularity 

occurred. 

There is a sharp discontinuity in the pressure distribution near 

X = 0.71; this is caused by transition of the separated laminar 
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turbulent reattachment. 
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fig. 10.6. 

This figure reveals a second discontinuity in the slope of the curve 

near x = 0.635. It will be shown in section 10.4.2. that this 

irregularity corresponds to the separation point of the laminar boundary 

layer. 

Results for the upper row of orifices are very nearly the same as those 

for the lower row (see table 10.3); therefore in what follows it will be 

assumed that the pressure distribution is two-dimensional. 

Inserting the boundary layer traversing gear in the wind tunnel lowers 

the values of U upstream of the hot-wire by about 0.5 /o. The shape of 

U(x) however remains essentially the same. The values of U, with the 

traversing gear present, can be made equal to those without it by 

decreasing Ho-} by about 0.5 /o; this implies adopting a 0.5 /o lower 

value of the Reynoldsnumber R . Remembering that the boundary layer 

parameters 8 , Ö, H and the non-dimensional wall shear stress -t only 

depend on the function U(x), and not on the value of R , it is clear 

that changing R will have no influence on the position of separation. 
c 

The boundary layer thickness is inversely proportional to (R ) and 

hence the boundary layer thickness will increase 0.25 /o due to the 

presence of the boundary layer traversing gear. It can not be expected 

that this difference will be noticed in the experiments. 

Therefore in all subsequent analyses of the experimental results and 

boundary layer calculations the pressure distribution as determined 

for the lower chord, without the traversing gear present, has been 

used (table 10.4). 

The values of U quoted in table 10.4 have been obtained from large scale 

versions of fig. 10.4 to 10.6; the derivatives — have been found by 
dx 

numerical differentiation. It is emphasized at thl̂ s point that slight 
dU 

changes in U(x) may produce large variations in — . There is scope for 
dx 

a different fairing of the experimental results, especially near the 
irregularity at x = 0.15 and near separation. This may have an 

appreciable effect on the boundary layer calculations. 
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Results of the boundary layer measurements. 

The measured velocity profiles are shown in fig. 10.7; the values of u 

as determined from equation 10.4 have been included to show how this 

equation fits the measurements. Some points measured very near the wall 

should be disregarded since these results may have been influenced by 

some disturbing factors. In the first place the calibration of the hot

wire is not valid when measuring very near a wall. In the second place 

the prongs holding the wire may have been in contact with the wall 

leading to an extra heat loss of the wire. Moreover - and this is probably 

the most important factor - the prongs may bend, leading to an erroneous 

value for y. Included in fig. 10.7 are the velocity profiles determined 

from the boundary layer calculations to be discussed in section 10.5. 

Fig. 10.8 shows a comparison between the experimentally determined and 

calculated values of 8 , 9 and H. The wall shear stress, obtained from 

the procedure outlined in section 10.3.3, is shown in fig. 10.9 where 

the results of boundary layer calculations are also given. The 

measurements seem to indicate that zero skin friction, and hence 

separation, will occur near x = 0.64. 

Included in fig. 10.9 are the results of measurements with the combined 

total head- and static tubes. For comparison the values of u at constant 

distances from the wall, as obtained from a cross plot of fig. 10.7, have 

also been given. The results indicate that the effective distance of 

the total head tube from the wall is nearly constant at a value between 

0.25 and 0.30 mm for x < 0.44. For x >0.45 the effective distance in 

general increases in the downstream direction especially when separation 

is approached. The velocity indicated by the tube tends to zero for 

X—*• 0.665 implying that the tube enters the region with backflow for 

X > 0.655. 

It has been shown by Goldstein [84] (see also section 8.9) that near a 
_ _ 1 _ 

separation point T should behave like (x - x )^ where x denotes the 
o s s 2 -

separation point. Therefore it is appropriate to plot T versus x 
o 

near separation. This has been done in fig. 10.10; it is found indeed 

that a straight line can be drawn through the measured points. 

Extrapolating to zero shear stress indicates separation at x = 0.637; 
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this is so close to the value x = 0.635 where a discontinuity in — 
dx 

occurs, that it may be assumed that the irregularity in U(x) is due to 

the presence of the separation bubble. 
- 2' -

Also shown in fig. 10.10 is u ; where u is the value indicated by the 
P P _ 2 

total head- and static tube combination. It follows that u becomes 
_ _ P 

zero at X = 0.655; remains negative until x = 0.716; rises very fast 

downstream of x = 0.716 and levels off again at about x = 0.80. It is 
- 2 

noted that u is not to be interpreted as the square of a velocity 

when negative; since the total head tube will not indicate total head 

but nearly static pressure when placed in a reversed flow. 

Combining the information obtained from all the measurements described 

above suggests the following description of the flow near separation 

(see also fig. 10.11). Separation of the laminar boundary layer occurs 

at X = 0.635 - 0.637 causing a small kink in the U(x) curve. At 

X = 0.655 the effective center of the total head tube passess through 

the upper boundary of the region with reversed flow. Near x = 0.71 

transition of the separated layer occurs resulting in a sudden decrease 

of the displacement thickness and consequently in a large discontinuity 

in the curve for U(x). Near x = 0.716 reattachment of the turbulent 

layer sets in while at x = 0.80 a fully attached turbulent boundary 

layer occurs. 

.4.3. Results of the flow visualisation experiments. 

Oil film technique. Due to the low speed at which the experiments were 

performed the aerodynamic forces on the oil were very small especially 

near separation. On the other hand, since the model surface was vertical, 

there was a strong influence of gravity forces on the direction of the 

oil flow. Therefore no reliable indication of separation could be 

obtained; from various trials it was conjectured however that separation 

occurs at X = 0.65 + 0.01. Turbulent reattachment was shown very clearly 

to start at x = 0.71 while a fully reattached turbulent boundary layer 

flow appeared to occur downstream of x = 0.74. 
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Smoke injection. As the results of the oil film experiments were not 

conclusive it was tried to find the separation point by introducing smoke 

into the downstream end of the separation bubble. A very thin layer with 

reversed flow became clearly visible due to forward movement of the smoke 

in the bubble. Due to its small thickness the forward edge of the bubble 

was difficult to estimate; it was certainly upstream of x = 0.66 however. 

Boundary layer calculations using the measured pressure distribution. 

The momentum method. 

The pressure distribution used for the boundary layer calculations has 

been defined by equation (10.7) for 0 ^ x.^0.04 and by table 10.4 for 

0.04 ̂  X ^0.70. From x = 0 to 0.04 equation (5.40) was employed with 

X = 0 , a = 0.415 and b = 4.84; a step by step solution starting from 

X = 0.01 gave essentially the same results at x = 0.04. At x = 0.04 a 

step by step calculation was started using steps of 0.01; from x = 0.12 

to 0.18 and 0.46 to 0.51 also calculations have been made using half the 

original step length without changing the results. 

Comparisons of the theory with the experimental results have been given 

in figs 10.7 to 10.10. A good correspondence is shown in the interval 

0.28 < X <^0.47. The differences between theory and experiment in the 

interval 0.15 < x <̂  0.25 may be due to different reasons. In the first 

place it is possible that the momentum method overestimates the effects 

of an oscillation in — since - for cases without suction - it is 
dx 

essentially a one-parameter method. In the second place it is very 
dÏÏ 

difficult to obtain accurate values for — in this region; the values 
dx 

given in table 10.4 and fig. 10,4 for 0.15 <. x < 0.25 may be appreciably 

in error. 

Between x = 0.46 and 0.58 the momentum method produces values for S 

and H which are too high while the wall shear stress is too low. From 

X = 0.58 to 0.635 the values for 8 and H are predicted too low and 

the wall shear stress is overestimated. Consequently the theory does 

not show separation. However, if the calculation is extended downstream 

of X = 0.635 suddenly separation is obtained; this can easily be seen 
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as follows. 

A =ë^ '^^ In the momentum method separation occurs at-'*- = 9 —• = -0.0871 for 
dx _ 

the no-suction case (see table 5.3). Directly upstream of x = 0.635 the 

calculation gives ë = 0.45 and-A- = -0.0525 with — = -0.26. Since in 
dx 

the theory 9 is assumed to be continuous, even when discontinuities in 

the boundary conditions occur, 6 = 0.45 also directly downstream of 

X = 0.635. At this position table 10.4 indicates that —- - -0.7255 and 
dx 

hence-A. = -0.147; which is already far beyond the separation value of 

-0.0871. 

It is interesting to investigate whether a small change to U(x) may be 

made upstream of x = 0.635 which remains within experimental error -and 

for which the momentum method predicts separation at x = 0.635. 

If only a very local modification is made it is easy to indicate a 

function U(x) which produces the desired result; this may be seen as 

follows. 

First it is noted that due to a small change in U(x) the value of 0 at 
- dÏÏ 
X = 0.635 will not change in first approximation while — and hence 
- i- = 0 — may change considerably. Therefore it may be assumed 

dx 
that e at X = 0.635 keeps the value 0.45 so that to obtain separation 

at this position — should assume such a value that J\- = 9 — = -0.0871. 

dÏÏ ^^ '^^ 

This leads to — = -0.43. Since for the pressure distribution given in 
dx ^-

table 10.4 and fig. 10.4 the derivative — changes discontinuously from 
dx 

-0.26 to -0.7255 at x = 0.635 it is not difficult to imagine a function 

U(x) which produces the desired result. It is sufficient to round off 

the kink in U(x) at x = 0.635 (see fig. 10.13). Such a modification is 

certainly within experimental error. 

Since a local modification of U(x) does not improve the agreement between 

theory and experiment further upstream it is interesting to solve the 

more general problem of finding the function U(x) for which the momentum 

method reproduces the experimentally determined wall shear stress 

throughout a certain interval. Such a function will be indicated in the 

remainder of the present section. 
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T e 

Fig. 10.13 shows the values of 't = —r;— which have been determined from 

the experimental results. In what follows the function U(x) will be 

derived for which the momentum method exactly reproduces these experimental 

values. Since in the momentum method for the no-suction case there is 

only one free parameter (see table 5.3) the known function 't(x) directly 

determines A and M as function of x. Then the definition of-A. and 

the momentum equation (5.18) lead to the following differential equations 

for 9 and ÏÏ 

^ = ^ ^ 
dx -2 

^ = ^ (10.9) 
dx U(x) 

These equations have been solved with initial values for U and 9 at 

X = 0.46 determined from the earlier calculation with the momentum method. 

The resulting function U(x) is shown in fig. 10.13. It may be seen that 

the difference with the original curve is certainly larger than 

experimental error. 

However, if a similar calculation is made starting at x = 0.59 the 

momentum method may be made to accurately predict the measured wall shear 

stress with a resulting change in U(x) which might be less than 

experimental error. 

0.5.2. The multimoment method. 

Near the stagnation point (0 •<C x < 0.04) equation (10.7) supplies a good 

approximation of the measured pressure distribution. Hence the pressure 

gradient parameter A may be approximated in O ̂  x .^0.04 by 

A = 1 - 201.83 X + 20003 x + 4055600 x^ + 207380000 x^ + (10.10) 

Using (10.10) the series method has been used to calculate the boundary 

layer for 0 ^ x 40.03; the step by step method was employed for 

X .^0.03. To be able to perform the calculations with variable step length 

the values of A from table 10.4 were approximated by analytic 
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expressions of the form (8.49). The coefficients e are collected in 
n 

table 10.5. 

Results for N = 5,6 and 7 are included in figs 10.7 - 10.12; in general 

a good agreement between theory and experiment is shown. It follows 

that the multimoment method is slightly superior to the momentum method. 

For instance it may be noted that a better prediction of the wall shear 

stress is obtained for 0.48< x <0.58. However, the deviation from the 

experimental values downstream of x = 0.58 is very similar to the 

behaviour shown by the momentum method. Again no separation is Indicated 

upstream of x = 0.635. If however the calculation is extended beyond 

X = 0.635 suddenly separation occurs. 

Again small changes in U(x) upstream of x = 0.635 are sufficient to let 

the theory "predict" the wall shear stress with good accuracy in the 

interval shortly upstream of x = 0.635. 

.6. Concluding remarks on the experiments without suction. 

From the comparisons between theory and experiment for the boundary layer 

without suction the following conclusions may be drawn. 

1. Both the momentum method and the multimoment provide results which are 

in good agreement with the experiments except close to separation. 

The multimoment method is slightly superior to the momentum method. 

2. Both methods fail to predict separation if the pressure distribution 

from fig. 10.4 and table 10.4 is used. Both theories may be forced 

to approach separation with the right shear stress distribution by 

changing U(x) with a small amount. Although this change might be 

within experimental error no firm conclusion has been reached on this 

point. 

3. To provide a definite answer to the question whether boundary layer 

theory is valid near separation the experiments should be performed 

with greater accuracy than has been achieved in the present 

investigation. 
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Experimental investigation of a 15 /o thick laminar flow airfoil section 

with distributed suction. 

Introductory remarks. 

In the present chapter some experimental work will be described which was 

performed on a NACA 64 -A-215 airfoil section with boundary layer suction 

through a porous surface. The chord length of the model is 1.35 m; both 

the upper and the lower surface are porous between the 30 /o and 90 /o 

chord positions. 

The model was tested in the low speed wind tunnel of the Department for 

Aeronautical Engineering at Delft. Measurements have been performed for 

angles of attack from -6 to +6 degrees and at Reynoldsnumbers R up till 

8 X 10 . The characteristics of the model without suction were determined 

by sealing the porous surface with a thin sheet of self-adhesive plastic. 

The aims of the investigations were as follows: 

a) To collect data on transition of two-dimensional boundary layers with 

suction. The results are to be used to check whether the method for 

predicting the transition point - proposed in chapter 9 - is 

applicable also for boundary layers with suction. 

b) To obtain experimental data on the velocity distribution in a two-

dimensional laminar boundary layer with suction including a separation 

point. These data are to be used for a comparison of boundary layer 

theory with experiment in the case of suction. 

c) To collect some data on the amount of drag reduction obtained from 

laminarisation by means of suction. 

Section 11.2 describes the experimental apparatus; the test methods and 

data reduction procedures are given in section 11.3 while results of the 

investigations are presented in sections 11.4 to 11.8. 

In 11.4 the results of pressure distribution measurements are given. 

Section 11.5 describes the results of detailed boundary layer surveys 

on the upper surface of the model at a = 0 and R = 2.75 x 10 . The 

results are presented both for the no-suction case and for one case with 

suction. The suction distribution for this case was chosen in such a way 

that laminar separation occurred in the suction region. Results of the 
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measurements are compared with boundary layer calculations using the 

momentum method and the multimoment method. 

In section 11.6 some data on transition position and drag of the 

unsucked model are presented. Included are results of boundary layer 

calculations obtained from the momentum method together with calculated 

values of the amplification factor a . Similar results for some cases 

with suction are discussed in section 11.7. 

Finally, section 11.8 summarizes the results for the wake drag, suction 

drag and total drag for the configurations tested. 

Since the experimental work has been very extensive no attempt will be 

made to describe it here in every detail. Only the main results will be 

quoted and especially those which are of significance for a comparison 

with laminar boundary layer theory and for the verification of the 

proposed method to compute the transition point. 

Description of the experimental apparatus. 

General. 

The experiments were performed in the wind tunnel mentioned in section 

10.2.1. The hot-wire equipment, described in section 10.2.3, was used 

again for the present investigation. In what follows some additional 

equipment will be described. 

The model. 

The airfoil section of the model is NACA 64 -A-215 with a chord length 

of 1.35 m; coordinates of the airfoil section follow from table 11.1. 

The model was placed vertically between turntables in the ceiling and 

floor of the test section; the span obtained in this way being 1.25 m 

(see fig. 11.1). 

The model is built up from two heavy steel spars connected by means 

of 10 ribs, in the suction region about 115 mm apart in the spanwise 

direction. 

Suction is provided both for the upper and the lower surface between 

the 30 /o and 90 /o chord positions; the spanwise extent of the porous 
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surface is 0.805 m. Pressure orifices are present in one chord 344mm 

above the floor of the testsection (fig. 11.1); the positions of the 

orifices in chordwise direction follow from table 11.2. Two additional 

orifices (number 26 for the upper surface and number 25 for the lower 

surface) are placed in the midspan chord close to the trailing edge 

(see also table 11.2). 

The inside of the model is divided into 40 different suction compartments, 

each with its own suction line, flow-regulating valve and -measuring 

device. A cross-section of the model is shown in fig. 11.2; the positions 

of the compartments in streamwise direction - measured along the contour 

of the model - have been given in table 11.3. In fig. 11.3 an 

enlargement of a part of fig. 11.2 is presented to show more clearly 

the construction of the porous surface. It consists of two layers of 

filtering paper supported by a metal screen which in turn rests on the 

ribs and between the ribs on wide-mesh paper honeycomb. Both the screen 

and the honeycomb have such a large open area that they provide a 

negligible resistance to the airflow and only act as support for the 

filtering paper. 

Since at the position of the ribs the metal screen is supported directly 

on the ribs some obstruction to the suction flow is present here. However 

due to the fact that some leakage occurred between the two layers of 

filtering paper the inflow velocity at the position of the ribs was not 

so low as to cause important spanwise variations of the boundary layer 

characteristics. In typical cases transition to turbulent flow occurred 

on the ribs about 3 /o of the chordlength earlier than in sections 

midway between two ribs. 

Some photographs of the model in various stages of construction are 

shown in figs 11.4-11.6. A schematic drawing of the suction compartments 

with the related suction equipment is shown in fig. 11.7. 

The top surface of the compartments consists of 7 brass plates each 

containing 8 small metering holes (diameters ranging from 0.5 to 1 mm 

for different compartments). The 56 holes in each compartment have 

been drilled very accurately to the same diameter in order to obtain 

a constant inflow velocity over the span. The constancy is slightly 

impaired by local variations in porosity of the filtering paper 
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amounting to about 10 /o. Since two layers of filtering paper have been 

used and since the major part of the resistance is provided by the metering 

holes, the actual variations in inflow velocity will have been far less 

than 10 °/o. 

Figure 11.7 shows that the suction flow is measured at different stages. 

First of all the pressure drop is measured over the 8 metering holes in 

the plate covering the middle /7th part of the span of a compartment. 

Then, from a calibration curve the suction flow into this middle section 

is known. The total flow into the compartment is measured by means of 

an orifice plate P. and finally the flow into all 20 compartments in the 

upper or lower surface of the model is measured by means of a large 
orifice plate P or P (fig. 11.7). All these orifice plates have been 

U L 

calibrated individually before the tests. 

Since the height of the compartments 19 and 20 in both the upper and 

lower surface is rather small it was not possible to provide them with 

plates containing metering holes. 

The suction flow into individual compartments can be varied by means of 

the regulating valves V. (fig. 11.7); the total flow from the model may 

be changed by means of a central valve V in the suction line to the 

pump. 

For the experiments without suction the two layers of filtering paper 

were replaced by a large sheet of self-adhesive plastic. 

From preliminary measurements of the pressure distribution on this model 

it was found that near the leading-edge an irregularity in the pressure 

distribution occurred which was related to an oscillation in the 

curvature of the model (fig. 11.8). Before starting the tests, described 

in the present work, the irregularity was removed to a great extent by 

smoothing the curvature of the model. This was accomplished by adding 

a thin plastic bump to the contour of the model. The largest thickness 

of this bump was 0.4 mm and occurred at s/c = 0.05 (see fig. 11.8). 

11.2.3. Boundary layer traversing apparatus. 

For the measurement of boundary layer velocity profiles the traversing 

gear, mentioned in section 10.2.3. was used. For some measurements 
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the hot-wire probe was replaced by a total head tube with a flattened 

opening (0.4 mm high). 

L.2.4. Instruments for transition detection. 

For transition detection two different devices have been employed. For 

measurements on the sealed model a small total head tube was used which 

could be moved in chordwise direction along the surface of the model 

by means of a small carriage. Transition from laminar to turbulent flow 

is indicated by this device through a sudden rise in total head. 

For transition detection on the model with suction a "stethoscope" was 

used consisting of a total head tube connected to a microphone. 

Pressure fluctuations in the turbulent boundary layer could be made 

audible in this way. The device was mounted on a thin long pole which 

was handled by the observer to put the tube in contact with the model 

surface at different positions. In this way a quick estimate of the 

transition position could be obtained. 

1.2.5. Other equipment. 

For the measurement of wake drag a wake survey rake was used in combination 

with an "integrating manometer" (see for instance Pankhurst and Holder 

[ill]). 
For the pressure distribution measurements Betz-type manometers and 

inclined tubes have been used. The large number of pressures determining 

the suction distribution was measured on multiple type manometer banks. 

These pressures were recorded by photographing the manometers. 

1.3. Test methods and reduction of data. 

1.3.1. General. 

Test methods and data reduction procedures have been - for so far 

possible - equal to those described in section 10.3. Some other methods 

will be described in the remainder of the present section. 
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11.3.2. The pressure distribution and "free stream speed". 

The surface pressure distribution was measured in the same way as 

described in section 10.3.1. for the impervious model. The pressures 

were reduced to the velocity U at the edge of the boundary layer using 

equation (10.1). U was made non-dimensional with the "free stream speed" 

Ut^ defined by 

ipuj = Pt - Pm ^̂ -̂̂ ^ 

with p indicating the total pressure of the pitot-static tube in the 

test-section (fig. 11.1). The free stream static pressure p is defined 
m 

by 
Pw + Pw 

p = - ^ (11.2) 
m 2 

where p and p are the static pressures, measured at two positions 
w w 
+ 

in the side walls of the testsection opposite the model, (fig. 11.1). 

It should be noted that this definition of the free stream static pressure 

differs from the one used in chapter 10. 

The model is rather large compared with the dimensions of the testsection 

and therefore the remarks about tunnel wall influence on pressure 

distribution and free stream speed, made in section 10.3.1, apply also 

to the present case. 

11.3.3. Determination of the suction distribution and suction drag coefficient. 

The suction distribution. All orifice plates have been calibrated before 

the tests; the calibration curves were approximated by analytical 

expressions in order to simplify the subsequent data reduction procedure. 

The airflow into each compartment i was reduced to the suction flow 

coefficient c defined by 
'ïi 

Q. 
c = „ I (11.3) 
q. Uj^b c 
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3 
where Q. = the total flow into compartment number i (m /sec) 

U^ = free stream speed (m/sec) 

b = span of porous surface (0.805 m) 

c = airfoil chord (1.35 m ) . 

Furthermore the total suction flow coefficients c and c for the 

"u % 
upper and the lower surfaces were found either from 

20 
Q 
^i 20 

- V A Q 
o 1 

Ui^y U^b(As). 
i ^ 

c c 
'^i 

(As). 
1 

c or c = = 2_ c (11.4) 
*̂ u '̂-t Usr,b c 1 "̂i 

or from a direct measurement with orifice plate P or Pn in figure 11.7. 

The mean suction velocity into each compartment follows from 

(11.5) 

in which (As). denotes the width of the suction compartment given in 

table 11.3. 

A typical suction distribution is shown in fig. 11.9; the measured 

points indicated in the figure are the mean suction velocities defined 

by equation (11.5). Within each compartment a slight variation of v 

may occur due the chordwise gradient of the surface pressure which gives 

rise to a chordwise variation of the pressure difference across the 

filtering paper. The resulting suction distribution is shown as a broken 

line in fig. 11.9. The actual inflow distribution will have been smoothed 

out due to leakage between the layers of filtering paper and between 

the paper and the metal screen. Hence for subsequent boundary layer 

calculations a continuous curve through the measured mean values 

was used as an approximation to the actual suction distribution. 

The suction drag coefficient. In appendix 1 it is shown that the power 

required to induce the suction flow and to expell the air at free stream 

total head can be expressed in terms of a "suction drag coefficient" 

c , defined by 
d ^ 
s 

c , = c c (11.6) 
d^ P q 
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In (11.6) c is given by 
P 

^ P (11.7) 
P 1 2 

where A p is the pressure rise, to be provided by the suction pump. 

In practical applications A p will be the sum of the following pressure 

losses: 

a. the loss in total head of the air in the boundary layer 

b. the pressure drop through the porous surface 

c. the pressure losses in the suction ducts inside the aircraft. 

In what follows an ideal suction drag coefficient will be used including 

only the pressure drop mentioned under a. It will be assumed that the 

boundary layer air will have lost all its dynamic head before entering 

the porous surface. 

For practical applications it certainly will be necessary to include 

the pressure drops b and c which will increase the suction drag. On the 

other hand the simple expression (11.6) will have to be replaced by a 

more accurate expression taking into account the difference in efficiency 

of the suction pump and the prime propulsion system of the aircraft 

(see appendix 1). This may lead to an appreciable reduction in suction 

drag and it may therefore be assumed that the ideal suction drag 

coefficient (11.6) gives a reasonable approximation of the suction 

drag to be expected in practice. 

In analyzing the measurements a suction drag coefficient c for each 
s 

compartment was determined from i 

A P. 
'̂d = %. \ . = — ^ ^q. (̂ -̂«̂  

s. 1 1 SPUto 1 

In (11.8) iS. p. is the difference between the free stream total head 
^ th 

p^ and the surface static pressure p. at the position of the i 
t 1 
compartment. Hence 

Pt " Pi - 2 
c = -^ ^ = U.^ (11.9) 
Pi èpUco^ 
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where U. is the maximum value of U occurring at the outer surface of 

compartment number i. 

The suction drag coefficient for the whole upper or lower surface of the 

model follows from a summation of c , for the 20 compartments related 
d 
s 

to that surface and hence i 

20 
c^ or c^ = 2 1 c^ (11.10) 

S S n 1= 1 S . . 

U 't 1 

A mean pressure loss coefficient for each surface follows from 

20 
> c c 

• — p. q. 

c or c = ^=\o ^ (11.11) 

Pu p^ y- c 
1=1 1 

Determination of the wake drag. 

From wake traverses. The drag of an airfoil without suction may be 

determined from the momentum loss in the wake; see for instance 

Pankhurst and Holder [111]> Pfenniger £112] and Schlichting ([7], 

chapter 24). In appendix 1 the principle of this method is illustrated 

for a flat plate. It is also shown that the drag coefficient in the case 

of suction can not be found from the momentum loss in the wake only 

but that a "suction drag coefficient" has to be added. 

The part of the drag determined from the momentum loss in the wake is 

called "wake drag". The wake drag is determined from the distribution 

of total head and static pressure through the wake which is measured 

by means of the wake survey rake. The results of the measurements have 

been converted to the wake drag coefficient using Pfennigers method 

[112] 

Determination of the wake drag from the boundary layer velocity profile 

at the trailing-edge. Equation (A.5) in appendix 1 shows that the wake 

drag coefficient of one side of a flat plate at zero angle of attack 

follows from 
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2 e 
c, = ^ ^ (11.12) 
w 

where 9 denotes the momentum loss thickness of the boundary layer at 

the trailing and c is the length of the plate. Of course the drag 

coefficient for both surfaces is found from (11.12) by adding the 

momentum loss thicknesses at the trailing-edge for both surfaces. 

Equation (11.12) also holds for an airfoil section if 0 is replaced 

by e,^ which is the momentum loss thickness of the wake at an infinite 

distance downstream of the trailing-edge. Due to the streamwise pressure 

gradient in the wake Q^-i differs from 9 . A relation between ê o and 

9 was derived by Squire and Young I 113] using the momentum equation 

(2.15) and an empirical correlation between U and H in the wake. This 

leads to the following expression for the wake drag coefficient 
H^ +5 
t.e. 

t e - 2 
c = 2 -^^^ (U^ ) (11.13) 
d c t.e. 
w 

which reduces to (11.12) for the flat plate at zero angle of attack 

(U = 1). The derivation of (11.13) may be found for instance in 

Schlichting ([7], chapter 24). 

The advantage of using (11.13) over the wake traverse method is that it 

may be applied to the upper and lower surface of the model separately 

so that changes in wake drag may easily be correlated with changes in 

transition position or suction intensity for either surface. 

For the experiments without suction the boundary layer at the trailing 

edge was sufficiently thick to measure accurately the velocity profiles 

with a small rake of total head and static tubes fixed to the trailing-

edge. For the experiments with suction the boundary layer thickness 

at the trailing-edge is greatly reduced (see fig. 11.17 for instance) 

and hence measurements with a rake are not sufficiently accurate. 

Therefore in all experiments with suction the velocity profiles at the 

trailing-edge have been measured with the flattened total head tube in 

combination with the traversing gear, described in section 11.2.3. No 

corrections for displacement effect of the tube have been applied. From 
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the measured velocity profiles 8 , 9 and H were determined and 

substituted in (11.13) to find the wake drag coefficient. 

The velocity profiles were not measured exactly at the trailing-edge but 

at the position of the most rearward pressure orifice. Since this 

orifice is placed at 98.5 /o of the chord the wake drag coefficient 

found from equation (11.13) may be slightly too small. 

A comparison of the wake drag found from equation (11.13) and from the 

wake survey method is shown in fig. 11.10 for some typical cases. In 

general a good correspondence is obtained. 

11.4. Results of the pressure distribution measurements. 

Results of the pressure distribution measurements for the no-suction 

case expressed in terms of U have been given in fig. 11.11 for different 

values of the angle of attack and a Reynoldsnumber based on chord of 

5.5 x 10 . Similar results have been obtained at other values of R 
6 6 - '^ 

ranging from 1 x 10 to 8.7 x 10 . No systematic changes of U with R 

have been noted except for R ^ 1.5 x 10 . This change may be due to 

an appreciable thickening of the boundary layer at low speeds. Since 

in the subsequent experiments the main interest lies at the higher 

Reynoldsnumbers it will be assumed that the pressure distributions 

shown in fig. 11.11 can be used for boundary layer calculations at all 

values of the Reynoldsnumber R . 

Some experiments with different amounts of suction were performed at 

a, = 0 .No systematic influence of suction on the pressure distribution 

was found except near the trailing edge. 

It may be noted that the suction velocities required to keep the 
-4 

boundary layer laminar are of the order of 10 Uto so that a direct 

influence of suction on the pressure distribution is difficult to 

imagine. An indirect effect of suction may have arisen as follows. 

It was shown in chapter 10 that a discontinuity in the pressure 

gradient may occur where laminar separation is followed by turbulent 

reattachment. Since due to suction the positions of separation and 

transition may change, also the corresponding irregularities in the 

pressure distribution may change their positions. Since it was difficult 
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to install a large number of pressure orifices in the porous surface, 

the pressure distribution could not be determined very accurately and 

possible irregularities in the pressure distribution, referred to 

above, were not noticed. It has therefore been assumed that for all 

boundary layer calculations with and without suction the pressure 

distributions, shown in fig. 11.11, may be used. 

5. Results of boundary layer surveys on the upper surface with and without 

suction. 

Detailed surveys of the boundary layer in the midspan chord on the upper 

surface of the model were made at a = 0 and R = 2.75 x 10 . For 
c 

measurements in the laminar boundary layer with and without suction hot

wires have been used. Velocity profiles in the turbulent boundary 

layer, existing over the rear part of the surface in the no-suction 

case, have been measured with the flattened total head tube. 

The results of the experiments will be discussed in the present section 

together with results of calculations using the momentum method of 

chapter 5 and the multimoment method of chapter 7. 

Details of the pressure- and suction distributions used for the boundary 

layer calculations are shown in fig. 11.12 and table 11.4. For the 

calculations with the multimoment method A , and A „ were approximated 

by polynomial expressions of the form 

A^ or A 2 = /_ ê  '̂^ (11.14) 

The coefficients e have been listed in table 11.5. Results of the 
n 

measurements and calculations are shown in figs 11.13 to 11.19. 

Velocity profiles at some stations are shown in fig. 11.13; it follows 

that the laminar profiles with and without suction are reproduced 

reasonably well by the momentum method and the multimoment method. For 

the momentum method the correspondence is better than for the 

measurements discussed in chapter 10. It may be assumed that the better 
dÏÏ 

results in the present case stem from the fact that changes in — are 
dx 

more gradual than for the impervious model. 
The velocity profiles in the turbulent boundary layer without suction 
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are included in fig. 11.13. However, due to the large boundary layer 

thickness they could not be shown completely. Therefore, fig. 11.14 

presents the velocity profiles in this region to a smaller scale. It 

is noticed that, as expected, a considerable reduction in boundary 

layer thickness and skin friction results from the application of 

suction. 

Values of 6 and e are shown in fig. 11.15 for the laminar boundary 

layers; a good correspondence between theory and experiment is shown. 

The experimentally determined values of the wall shear stress and 

the shape factor H for the laminar boundary layers with and without 

suction, are compared with the theoretical predictions in fig. 11.16. 

Again a good agreement is shown. It has to be remembered that the 

measured values of the wall shear stress were not obtained directly 

but resulted from the data reduction procedure, outlined in section 

10.3.3. 

According to the experiments laminar separation occurs at x = 0.56 

for the no-suction case and at s = 0.89 in the case of suction. It may 

be seen that the momentum method predicts separation a bit early at 

s = 0.55 and 0.88 respectively. As in earlier examples the multimoment 

method gives no clear indication of separation in the no-suction case. 

However, a short extrapolation of the calculated shear stress upstream 

of s = 0.50 indicates separation at s = 0.55 . For the boundary layer 

with suction iXr, 4 0) it follows from equation (7.63) that a 4 0 
da ^ 

and hence equation (7.61) shows that may assume a non-zero value 
dx 

near separation. This is confirmed by fig. 11.17 from which it may be 

seen that the multimoment method predicts separation at s = 0.88 . 

It is remarkable that in both cases with and without suction no 

difficulties were encountered in predicting the separation point. 

This situation is quite different from that for the boundary layer 

on the impervious model discussed in chapter 10. Possible explanations 

for this phenomenon are the following. 

In the first place the better results may be due to the less accurate 

determination of the pressure distribution for the present case. This 

can best be explained by returning to fig.10.6 which shows the pressure 
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distribution in the separation region for the impervious model. If it 

should have been tried to determine this pressure distribution with a 

small number of orifices, then it is very likely that a mean curve 

would have been selected showing a more adverse pressure gradient 

upstream of separation than the actual curve. This may help the 

calculation method to predict separation. 

Since in both cases with and without suction laminar separation was 

followed by transition further downstream it may be expected that the 

actual pressure distribution will appear like the one shown in fig. 10.5 

With the available orifices this could not be observed however. 

A second explanation, only applicable to the case with suction, is the 

following. The development of boundary layers with suction is not only 

determined by the pressure gradient but also by the suction velocity. 

Since the suction velocity is measured directly it can be determined 

much more accurately than the pressure gradient. Therefore it can be 

expected that the calculation of boundary layers with suction will 

be less sensitive to experimental error than boundary layers without 

suction. 

In fig. 11.18 the results for S and 6 are replotted on a smaller 

scale to accomodate the experimental results for the turbulent 

boundary layer without suction. In this presentation S and 9 were 

not made non-dimensional to give an impression of the actual 

thicknesses involved. It is shown that a considerable reduction of 

the momentum loss thickness at the trailing-edge is obtained due to 

suction. According to equation (11.13) this implies a similar 

reduction in the wake drag coefficient. A further discussion of 

the drag reduction due to suction will be given in section 11.8. 
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In chapter 5 the characteristics of the momentum method have been 

discussed by means of the diagram in fig. 5.7. It was shown that known 

exact solutions, for which the momentum method supplies good results, 

are represented by the curves P„P,P,, P,P„ and P„P, in the diagram. It 
•' 3 1 4 1 2 2 4 " 

was therefore expected that the momentum method will give reasonably 

accurate solutions for those cases, which are represented in fig. 5.7 

by a curve in the vicinity of P„P,P., P,P„ and/or P„P.. This is 
•' • ' 3 1 4 1 2 2 4 

confirmed by the examples discussed in chapter 8 and 10 provided the 

cases with large discontinuities in pressure gradient or suction 

velocity are excluded. 

Another curve can now be indicated in the vicinity of which the momentum 

method can be used with some confidence. It is the path traced out in 

the diagram by the boundary layer with suction discussed in the present 

section. This path is shown in fig. 11.19; numbers on the curve denote 

corresponding stations on the airfoil contour. 

In view of the preceding remarks it seems Justified to use the momentum 

method in those cases for which the corresponding curves in the M-A-, 

plane are above or only a small distance below the curve in fig. 11.19. 

Since it was found that this requirement is fulfilled by most of the 

boundary layer flows encountered in the further analysis of the 

experiments with suction, it was decided only to use the momentum 

method for this analysis. 

Transition and drag of the unsucked airfoil. 

General. 

The results of drag measurements with the wake survey rake are shown 

in fig. 11.20 for different values of the angle of attack as function 

of the Reynoldsnumber R . 

A cross plot of fig. 11.20 is given in fig. 11.21; it shows the drag 

coefficient as function of Q for different values of R . It can be seen 
c 

that a "low-drag bucket" appears in the curves at low values of CC and 

R . The drag rise at high values of | Cï| is caused by the fact that a 

pressure peak develops near the leading-edge which tends to move the 

transition forward. This is illustrated in fig. 11.22 where the results 
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of transition measurements for different values of R are shown. 
c 

In sections 11.6.2 and 11.6.3 some more detailed results will be given 

for the upper surface of the model at 0! = 0 and 3 degrees. 

Transition and drag for the upper surface at a = 0 without suction. 

The transition position and wake drag coefficient for the upper surface 

of the model at o: = 0 are shown as function of the Reynoldsnumber R 

in fig. 11.23. It is seen that transition moves forward rather slowly 

with increasing values of R . 

Calculations of the boundary layer characteristics including the 

amplification of unstable disturbances were made in the same way as 

described in section 9.8. Results are included in fig. 11.23 where 

curves are shown for constant values of the amplification factor 

(a ) together with the calculated position of laminar separation 
max 

(which is independent of the Reynoldsnumber). If, as in chapter 9, it 

is assumed that transition occurs for (a ) = 9.2 - 11.2 it follows 
a 
max 

that the method predicts the beginning of transition too early by an 

amount of about 6 /o of the chord length at low values of R . This 

could be expected from the results shown for the EC 1440 airfoil in 

section 9.8. 

It will be found in more examples that cases where transition occurs 

downstream or a short distance upstream from separation are predicted 

with less accuracy than those where transition occurs far upstream of 

separation. Possible explanations for this feature have been given 

already in section 9.8. 

For the present case at higher values of R transition moves forward of 

the separation point (and of course separation is prevented then). At 

the highest value of R for which calculations have been made the 

distance between the calculated and the measured position of the 

beginning of transition is 2.5 /o of the chord length. 

Transition and drag for the upper surface at CX = 3 without suction. 

In the present section detailed results will be presented for the upper 

surface at Ct = 3 . They will clearly illustrate the influence of changes 
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in the Reynoldsnumber R on transition position. 

Fig. 11.24 shows results of boundary layer calculations using the 

momentum method; included is the critical Reynoldsnumber, according to 

Lin's formulae, which is independent of the Reynoldsnumber R . The values 
U9 

of — depend on R according to the equation 

^ = ÏÏ.ê.(R^)* (11.15) 

obtained from the definitions of U, 0 and R . In equation (11.15) both 
c 

U and 9 are independent of R . 

The results, shown in fig. 11.24, reveal an unstable region near the 

leading-edge caused by the adverse pressure gradient downstream of the 

peak in ÏÏ at ¥ = 0.04 (see fig. 11.11). At R = 1.94 x 10 for instance, 

the boundary layer becomes first unstable at s = 0.047, then becomes 

stable again at s = 0.129 and definitely unstable at s = 0.189. Whether 

or not the unstable region may provoke transition near the leading-edge 

will depend on the value of the Reynoldsnumber R . It can be expected 

that only at high values of R the amplification rate will be high enough 

for this. This is confirmed by the results of further calculations 

described below. 

The values of the amplification factor a are shown in fig. 11.25a and b 

for several frequencies at two different values of R . The envelope of 

the curves for different frequencies gives the maximum amplification 
factor (a ) . Similar calculations have been made for other values 

a 
max 

of R , the resulting envelopes have been collected in fig. 11.26. It 

can be seen from this figure that for high values of R the amplification 

factor reaches the critical value 9.2 very close to the leading-edge and 

hence transition can be expected to occur very early. This is confirmed 

by the experimental results shown in fig. 11.27. Included in the figure 

are the calculated positions of separation and curves for constant 

values of (a ) . Again it is shown that, when transition is preceded 
max 

by laminar separation, the distance between the measured and predicted 

position of transition is of the order of 10 /o of the chord. For 

increasing R however, transition moves forward of the calculated 

laminar separation point and the predicted separation position becomes 
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more accurate. Even the rather sudden shift forward at R •̂  6 x 10 
c -' 

is predicted with reasonable accuracy. 

o 
11.7. Transition and drag with suction at Ct = 0 . 

11.7.1. General. 

In the present section (11.7) some data will be presented on transition 

position, wake drag, ideal suction drag and total drag for 7 series of 

measurements at o; = 0 with suction. Results of boundary layer 

calculations will be presented and the measured transition positions 

will be compared with results of amplification calculations. Seme 

specific details of the 7 series have been given in table 11.6. 

For series 1, to be described in section 11.7.2, the flow regulating 

valves V. (see fig. 11.7) have been set in such a way that the resulting 

suction distribution - according to a very rough calculation - would be 

sufficient to prevent transition. Then the setting of the central valve 

(V in fig. 11.7) was changed to collect data at different values of c 
c q 

for the same type of suction distribution. 

In series 2 (section 11.7.3) all valves V. were left open and hence the 

suction distribution was determined by the built-in resistances of 

orifice plates and suction ducts. Again the total amount of flow was 

changed by means of the central valve V . 

For series 3 (section 11.7.4) the valves have been set in such a way 

that the pressure underneath the filtering paper was the same for all 

compartments in the upper surface. Hence a continuous suction 

distribution was obtained. The constant pressure was given such a 

value that transition occurred at the end of the porous surface. 

In the experiments, mentioned above, it was found to be impossible to 

keep the boundary layer laminar at values of R above 3.5 x 10 . At 

higher speeds the inherent surface roughness of the filtering paper 

became supercritical causing transition due to roughness. Therefore, 

in some further experiments, the filtering paper was covered by a sheet 
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of tightly stretched fine mesh nylon (see fig. 11.6). In this way it 

became possible to keep the boundary layer laminar up till R = 6.5 x 10 . 

Some measurements on the upper surface, with the nylon present, have been 

described as series 4,5,6 and 7 in section 11.7.5. For these series the 

valves V. were set by trial and error in such a way that transition 

occurred at the end of the porous surface with the smallest possible 

amount of suction. Once this was achieved the total amount of flow 

was changed by means of the central valve. 

Finally in section 11.7.6 a comparison will be given between the 

calculated and measured transition positions for series 1-7. 

7.2. Transition and drag with suction; series 1. 

Values of the wake drag, ideal suction drag and total drag for the upper 

and lower surfaces combined are shown in fig. 11.28. The wake drag 

decreases and the suction drag increases with increasing values of c . 
-4 

The total drag shows a minimum value at c = 7.5 x 10 ; this corresponds 

to the situation when transition occurs close to the trailing-edge. This 

is shown clearly in figs 11.29 and 11.30, where the drag has been given 

for the upper and lower surface separately and a comparison is made 

with the measured transition position. 

The suction velocity distribution for the upper surface is shown in 

fig. 11.31 for some values of c . Included as a dotted line is the 
q 

suction distribution required at this value of R to keep the boundary 

layer neutrally stable downstream of the beginning of the porous region 

(s = 0.32). This suction distribution is easily found from the momentum 

method and Lin's formulae (section 9.4) if the requirement is made 
.̂^ .̂  ue , ,U9, 
that — and (—) are equal. 

crit 
Fig. 11.31 shows that in the beginning the suction velocity at all values 

of c is much higher than required for stabilisation. Further downstream 

the suction intensity is less than required for stabilisation. 

Results of boundary layer calculations using the experimentally 

determined suction distributions for different values of c are plotted 
in the M-JV plane shown in fig. 11.32. It is seen that in all cases 
the path traced out in the diagram ends up on the left-hand-side 
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boundary. This implies that eventually the laminar boundary layer 

separates from the surface unless transition occurs earlier. Indicated 

in the figure are the values of M and J»- corresponding to the measured 

transition positions. It follows that only for c = 0 and for very 
u 

high values of c separation is actually reached. For intermediate 
u 

suction quantities laminar separation is prevented by transition. 

Values of log -— and log (-y-) are shown in fig. 11.33 for 
crit 

different values of c .It can be seen that for c = 0 the boundary 
q q 
u u 

layer becomes unstable at s = 0.33 coinciding almost with the beginning 

of the porous surface. For the non-zero values of c the suction in 
the first part of the porous region is so intense that a strong 

stabilising influence occurs. ( log (xj-) ^^ log -a-) • However, 
crit 

downstream of the pressure minimum at s = 0.42 (see fig. 11.31) the 

adverse pressure gradient rapidly compensates the effect of suction 

and the boundary layer becomes unstable. Only at very high values of 

c would the boundary layer remain stable as far as the trailing-edge. 
u 

An interesting feature follows from a comparison of fig. 11.31 and 

11.33. It is noticed that the boundary layer becomes unstable very close 

to the position where |v I falls below the value needed to obtain a 

neutrally stable boundary layer over the full length of the porous 

surface. This implies that boundary layer stability - at least 

according to the momentum method - has a very poor memory for its 

upstream history. This may be explained by observing that the influence 

of suction on stability lies principally in the change of the critical 

Reynoldsnumber while the changes in -^ are much less. (fig. 11.33). 
UO 

Since —j- depends on the history of the boundary layer but the shape of 
U9 

the velocity profile - and hence (,-j-) - is primarily determined by 
crit 

the local pressure gradient and suction velocity, it is clear that the 

upstream history is of secondary importance only. Therefore it is clearly 

not economic to apply suction to early; the most economic suction 

distribution will be obtained by carefully tailoring the suction velocity 

distribution to the local needs of the boundary layer. 
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UO U9 
Using —J- and (-rj-) from fig. 11.33 for different values of c 

crit ^u 
amplification calculations have been made for different frequencies. The 

resulting envelopes, denoting the maximum amplification factor, are shown 
_4 

in fig. 11.34. It follows that only for c <^ 3.39 x 10 the critical 
u 

value 9.2 is reached in the porous region. This implies that transition 
_4 

can only be expected to occur in the suction region for c <^ 3.39 x 10 
u 

In figure 11.35 the measured transition region is compared with the 

calculated positions for which (a ) =9.2 and 11.2. Although the 
max 

calculated positions are a little further downstream than the measured 

transition position, a satisfactory prediction of the transition region 
_4 

will be obtained for c «cT 3.5 x 10 if it is assumed that transition 
'lu 

occurs as soon as (a„) 
max 

of c transition is caused by a preceding separation in which case the 
u 

proposed method for the prediction of transition can not be expected to 
provide accurate results. This is confirmed by the results shown in fig. 

11.35. 

1.7.3. Transition and drag with suction; series 2. 

For this series the same measurements and calculations have been performed 

as for series 1; results are presented in figs 11.36 - 11.39. 

1.7.4. Transition and drag with suction; series 3. 

This case is included since it shows one of the examples for which the 

distance between the measured and calculated transition positions is 

rather large. Final results are shown in fig. 11.40; it follows that 

transition is preceded by laminar separation for all values of c 
u 

explaining the unsatisfactory agreement between theory and experiment. 

0 

1.7.5. Transition and drag with suction: series 4-7: a = 0 upper surface only; 

filtering paper covered with nylon. 

For series 4-7 the filtering paper was covered with a sheet of fine mesh 

nylon. In the present section some results of measurements and 

calculations for the upper surface will be presented. For series 4-7 
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the valve settings were found by trial and error. It was attempted to 

obtain, with the minimum amount of suction,a boundary layer for which 

transition occurred at the end of the porous surface. 

The suction distributions obtained in this way for different values of 

R are shown in fig. 11.41. Also shown for two values of R is the v -
C " C O 

distribution required to keep the boundary layer neutrally stable 

throughout the suction region. It can be seen that in all cases too 

much suction has been applied in the forward part of the porous region. 

This may be explained as follows. If the suction velocities are chosen 

very low it is possible that - inadvertently - local outflow occurs 

giving rise to premature transition. Apparently the suction velocities 

used in the experiments were chosen on the safe side. 

Near the trailing-edge the suction intensity is in general less than 

that needed for stabilisation. 

Boundary layer calculations, using the momentum method, have been made 

for the experimentally determined suction distributions shown in fig. 

11.41. Results of the calculations have been plotted in the M-A 

diagram (fig. 11.42) where also the measured transition position is 

indicated. It follows that in all cases transition near the end of the 

porous surface is caused by laminar separation. It is interesting to 

note that for R = 3.37 x 10 the boundary layer nearly separates at 

s = 0.68 but downstream of this point the suction intensity is increased 

which postpones separation to a position further downstream. 

Measurements at other values of c have been made for all values of R 

^u 
by changing the setting of the central valve V (see fig. 11.7). At 
the lower values of c transition may be preceded by laminar separation. 

u 
This is shown in figs 11.43 - 11.46 where results of transition 

measurements have been compared with calculated positions. It can be 

seen that transition is predicted within 5 or 10 /o chord accurately 

except when transition is preceded by separation. Especially at 

R = 3.37 X 10 large discrepancies between theory and experiment occur 

Cfig. 11.43). However, fig. 11.42 shows that in this case for the suction 

distribution obtained by trial and error the boundary layer is on the 

verge of separation over a long distance and hence an inaccurate result 

may be expected. 
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c 
A similar remark applies for other values of c at R = 3.37 x 10 . 

q c 
u 

Finally figures 11.47 - 11.50 show the drag coefficients and transition 

positions as function of c for series 4 to 7. There is a good 
u 

correlation between drag and transition position. This is shown more 

clearly in fig. 11.51 where the total drag coefficient for the upper 

surface is plotted as a function of the position where transition 

starts. It is noticed that the minimum value of the total drag 

coefficient is obtained when transition occurs near the end of the 

porous region. 

..7.6. Summary of the comparisons between the measured and calculated transition 

positions. 

Fig. 11.52 has been prepared to summarize all results obtained in the 

preceding comparisons of the measured and predicted transition positions. 

The figure shows the position where (a ) reaches the critical value 
max 

9.2 as function of the beginning of the experimentally determined 

transition region. Where transition is preceded by laminar separation a 

full symbol has been used. Data are shown for all values of c for which 

in the preceding figures a measured transition region has been indicated 

by the symbol I \ . Experiments in which transition occurred 

downstream of the porous region have been omitted. 

It may be concluded from the figure that the beginning of transition is 
o 

predicted within + 10 /o of the chord length when transition is not 

preceded by laminar separation. Where separation is the cause of 

transition the distance between the predicted and actual beginning of 

transition may become larger. 

It should be remembered that in most of the experiments with suction 

transition moves downstream very rapidly with increasing c . For these 

cases a satisfactory agreement between theory and experiment may have 

been obtained although fig. 11.52 shows a large distance between the 

measured and predicted transition positions. Of course a better 

correlation will be shown for these cases if a comparison is made between 

the theoretically and the experimentally determined value of c which 

is required to bring transition back to a certain position. 
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Summary of the drag coefficients obtained with and without suction. 

In the preceding section some results of drag measurements at O; = 0 with 

suction have been presented. It was found that the minimum total drag is 

obtained when transition occurs near the end of the porous surface. In 

the present section results will be presented for an extended series of 

measurements including values of OC 4 0. The presentation will be confined 

to those values of c for which transition occurred at the end of the 
q 

porous surface. It may be assumed that these situations correspond to the 

condition with minimum total drag at the given value of O; and R . 

Fig. 11.53a and b show the results for the upper surface covered with 

nylon (series 4-7) both in the familiar logarithmic presentation and to 
a linear scale. A comparison is made with the drag of a flat plate with 

"^o -4 

constant suction velocity —r^= 1.18 x 10 discussed in section 9.8.1. 

It may be seen that the drag of the airfoil decreases with increasing R 

in the same way as for the flat plate. An appreciable drag reduction due 

to suction is obtained; the amount of the reduction is plotted vs R in 
c 

fig. 11.54. At the highest value of R for which measurements have been 
^ c 

made (6.16 x 10 ) the reduction in total drag is 63 /o. 

Although a comparison with the flat plate results is not entirely 

Justified due to the difference in pressure distribution, it may be 

seen that the drag reduction with increasing R shows the same trend 

for the airfoil as for the flat plate. Extrapolating the results of the 

experiments to full scale values of R (B=25 x 10 ) shows that the drag 

reduction obtained may be of the order of 75 /o. This agrees with results 

obtained in different experiments mentioned in chapter 1. 

Results for the upper and lower surface combined, for the experiments 

without the nylon covering, are shown in fig. 11.55 for different 

values of R 4r 3.37 x 10 . Included in the figure is the drag of the 

model with the sealed porous surface. It may be seen that drag reductions 

of the order of 50 /o are obtained at these low values of R . 
c 

Concluding remarks on the experiments with suction. 

From the results discussed in the present chapter it follows that both 

the momentum method and the multimoment method provide a good agreement 
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with the experiments. The multimoment method is slightly superior to thé 

momentum method. It is remarkable that separation is predicted rather 

accurately but - strange enough - this may be due to inaccuracies in the 

determination of the pressure distribution. 

The proposed method for the prediction of transition is reasonably 

accurate also in cases with suction. 

The drag reduction due to suction obtained in the experiments is of the 

order expected from calculations for the flat plate with constant suction 

velocity or from earlier investigations by different authors. At full 

scale values of the Reynoldsnumber based on chord (R ^ 25 x 10 ) 

reductions in total drag of about 75 /o may be expected. 
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12. Conclusions 

From the investigations described in this thesis the following general 

conclusions may be drawn. For more detailed concluding remarks the final 

sections of different chapters may be consulted. 

Two methods for the calculation of laminar boundary layers with and 

without suction have been presented in chapters 5 and 7 respectively. 

It is shown in chapters 10 and 11 by comparison with experiments that 

both methods provide a good prediction of the actual boundary layer 

characteristics. Near separation difficulties may arise however, since 

in this region the boundary layer calculation is very sensitive to 

changes in the pressure gradient which is difficult to determine with 

sufficient precision. The results of the experiments discussed in 

chapter 11 suggest that no difficulties may arise when the pressure 

distribution is measured with less accuracy. It is likely that in this 

case a mean value for the adverse pressure gradient is assumed, which 

is on the high side upstream of separation so that separation is found 

earlier than for the accurate pressure distribution. 

A remaining problem is to answer the question whether the boundary 

layer equations will predict separation at the right position if the 

pressure gradient is determined with the utmost precision. This problem 

has arisen already in connection with Schubauer's experiments on the 

boundary layer flow around an elliptic cylinder. Also the present 

experiments do not provide an answer to this question. It appears that 

the measurements have to be performed with still more accuracy than has 

been achieved in the present work. 

A method has been designed which enables the calculation of the transition 

position for two dimensional laminar boundary layers with and without 

suction. In typical cases the beginning of transition is predicted within 

+ 10 /o of the chord length if transition is not preceded by laminar 

separation. Some improvement of the method will be welcome however. To 

achieve this it will be necessary to calculate more accurate stability 

diagrams for an extended range of velocity profiles. 
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Using the proposed method it becomes possible to design economic suction 

distributions for arbitrary airfoil sections. Also the design of 

suitable airfoils with and without suction may be improved by using 

this method. 

. 
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4. Overzicht (summary in Dutch): Theoretische en experimentele onderzoekingen 

van onsamendrukbare laminaire grenslagen met en zonder afzuiging. 

In dit proefschrift worden de resultaten beschreven van enige theoretische 

en experimentele onderzoekingen van tweedimensionale laminaire grenslagen 

met en zonder afzuiging. Het onderzoek werd beperkt tot onsamendrukbare 

stromingen en was opgezet met het doel meer inzicht te verkrijgen in de 

problemen welke verband houden met het laminair houden van de grenslaag 

door middel van afzuiging. Verschillende van de verkregen resultaten 

hebben echter evenzeer betrekking op grenslagen zonder afzuiging. 

In een algemene inleiding (hoofdstuk 1) wordt gewezen op de mogelijke 

verbetering van de vliegtuigprestaties door het toepassen van afzuiging 

voor het laminair houden van de grenslaag. 

In de hoofdstukken 2 tot en met 4 worden bekende resultaten uit de grens

laagtheorie samengevat welke hebben gediend als uitgangspunt voor het 

werk beschreven in latere hoofdstukken. 

Een eerste theoretisch onderzoek (hoofdstuk 5) heeft betrekking op de 

berekening van laminaire grenslagen door middel van benaderingsmethoden 

zoals die door Pohlhausen werden geïntroduceerd. Een nieuwe methode 

werd ontwikkeld welke nauwkeurige resultaten levert in gevallen waarin 

de afzuigintensiteit niet al te groot is. 

Het tweede theoretische onderzoek is beschreven in hoofdstuk 6 en handelt 

over een "fasevlak beschrijving" van de laminaire grenslaagstroming tussen 

niet-evenwijdige vlakke wanden. In dit geval wordt het stromingsprobleem 

beschouwd in een vlak waarin de schuifspanning T wordt uitgezet tegen de 

snelheidscomponent u evenwijdig aan de wand. Deze procedure is bekend 

uit de theorie der niet-lineaire trillingen van autonome systemen met 

één graad van vrijheid. Voor deze systemen wordt in het "fasevlak" de 

snelheid uitgezet tegen de verplaatsing waardoor een duidelijk beeld van 

het gedrag van het systeem wordt verkregen. Singuliere punten in het 

fasevlak corresponderen met evenwichtstoestanden van het systeem. In dit 

proefschrift wordt aangetoond dat voor de stroming tussen niet-evenwijdige 

vlakke wanden de singuliere punten in het fasevlak (T-U vlak) correspon

deren met de buitenkant van een grenslaag. Oplossingen van de bewegings

vergelijkingen kunnen slechts een grenslaagkarakter vertonen indien de 

corresponderende singulariteit in het fasevlak van een bepaald type is. 
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Het type van de singulariteit - en daarmee de mogelijkheid tot het op

treden van grenslaagoplossingen - is afhankelijk van eventuele afzuiging 

of aanblazing aan de wanden. 

Het blijkt dat voor de stroming tussen niet-evenwijdige vlakke wanden 
2 

zonder afzuiging x wordt voorgesteld door een derdegraadspolynoom in u. 

Dit resultaat leidde tot de ontwikkeling van een tweede benaderings

methode voor de berekening van laminaire grenslagen (hoofdstuk 7). In 
2 

deze methode wordt T benaderd door een polynoom in u van de graad N. 

De coëfficiënten van dit polynoom zijn functies van de coördinaat x in 

stromingsrichting en worden bepaald door de benaderingswijze van Pohlhausen 

toe te passen op een enigszins gewijzigde vorm van Crocco's grenslaag

vergelijking. De methode is zodanig opgezet dat de graad N van het 

polynoom eenvoudig kan worden verhoogd zonder dat toepassing van de 

methode daardoor in principe moeilijker wordt. Een aantal voorbeelden, 

gegeven in hoofdstuk 8, toont aan dat met toenemende N de resultaten 

van de benaderingsmethode convergeren naar de exacte oplossing van de 

grenslaagvergelijkingen. 

Het experimentele gedeelte van het onderzoek omvat metingen aan twee 

vleugelmodellen in de lage snelheidswindtunnel van de onderafdeling 

Vliegtuigbouwkunde van de Technische Hogeschool te Delft. 

Het eerste model heeft een 28 /o dik "laminair" profiel met een niet-

poreus oppervlak; de koordelengte bedraagt 1 meter.Voor dit model werden 

drukverdelingen gemeten en snelheidsprofielen in de grenslaag bepaald 

met behulp van een gloeidraadanemometer. Speciale aandacht werd gegeven 

aan de bepaling van de ligging van het loslatingspunt van de laminaire 

grenslaag. In hoofdstuk 10 worden de resultaten van deze metingen 

beschreven en vergeleken met theoretische resultaten volgens beide 

nieuwe methoden. Bij deze berekeningen werd uitgegaan van de experi

menteel bepaalde drukverdeling om het profiel. 

Als belangrijk resultaat kan worden vermeld dat de theorie geen loslating 

van de grenslaag voorspelt terwijl bij de metingen duidelijk loslating 

werd geconstateerd. Dit verschijnsel is reeds eerder in de literatuur 

onderzocht in verband met het bekende onderzoek van Schubauer aan een 

elliptische cylinder. Zowel bij Schubauer's metingen als in het huidige 
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onderzoek is een kleine wijziging van de experimenteel bepaalde drukverde

ling voldoende om de theorie loslating te doen aangeven op de juiste 

plaats. Het is nog niet geheel duidelijk of deze wijziging toelaatbaar is 

op grond van mogelijke meetfouten. 

Blijkbaar moet de drukverdeling extreem nauwkeurig worden gemeten voor

dat de vraag kan worden beantwoord of de grenslaagvergelijkingen in staat 

zijn om uitgaande van een experimenteel bepaalde drukverdeling loslating 

van de laminaire grenslaag te voorspellen. 

Het tweede vleugelmodel dat werd onderzocht, heeft een laminair profiel 
o 

van 15 /o dikte bij een koordelengte van 1.35 m. Het oppervlak van dit 

profiel is aan beide zijden poreus van 30 /o tot 90 /o van de koorde. 

Het inwendige van het model is verdeeld in 40 verschillende compartimen

ten, elk voorzien van een eigen afzuigleiding en apparatuur voor de 

regeling en meting van de hoeveelheid afgezogen lucht. Door middel van 

de regelkranen kan de verdeling van de afzuigintensiteit over de vleugel-

koorde binnen wijde grenzen worden veranderd. De onderzoekingen aan dit 

poreuze model worden beschreven in hoofdstuk 11 van het proefschrift. 

De metingen omvatten o.m. de bepaling van de weerstand en de ligging van 

het omslagpunt van de grenslaag voor verschillende afzuigsnelheidsver-

delingen. Tevens werden gedetailleerde snelheidsverdelingen in de grens

laag bepaald met behulp van een gloeidraadanemometer. De resultaten 

van de grenslaagmetingen werden vergeleken met de theorie; de overeen

komst is in het algemeen goed. 

Door afzuiging werden weerstandsbesparingen tot 60 /o bereikt. Uit een 

extrapolatie van de meetresultaten naar de hoge getallen van Reynolds 

welke optreden in de kruisvlucht van moderne verkeersvliegtuigen blijkt 

dat in deze gevallen een weerstandsbesparing tot 75 /o kan worden ver

wacht . 

Voor de berekening van de eigenschappen van vleugelprofielen met en 

zonder afzuiging is het noodzakelijk te kunnen voorspellen waar omslag van 

de grenslaag zal optreden. Voor gevallen zonder afzuiging werd reeds 

eerder een dergelijke methode aangegeven door Smith en Gamberoni [l,2j 

en de schrijver van dit proefschrift [3,4,5]. Deze methode wordt beschre-
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ven in hoofdstuk 9 van het proefschrift. Uit een analyse van de metingen 

aan het poreuze vleugelmodel blijkt dat de methode ook met redelijke 

benadering geldt voor het geval van afzuiging door een poreus oppervlak. 

Gebruik makend van de gegeven methoden kan, nauwkeuriger dan voorheen, 

voor een gegeven vleugelprofiel de meest economische verdeling van de 

afzuigintensiteit over de koorde worden aangegeven. Evenzo kan de bere

kening van profielvormen met voorgeschreven aërodynamische eigenschappen 

nauwkeuriger worden uitgevoerd. 
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Appendix 1: The drag of a flat plate with suction. 

The drag of the flat plate with suction can easily be found from the 

momentum equation in the form (2.16) 

2 V Ö T O 

UO de ,,., ,„ e du o o ,, ,̂  
- y ^ ^ (2+H) _ - - _ = _ (A.l) 

For a flat plate U is constant and equal to the reference speed U^o so 

that (A.l) may be simplified to 

In what follows a flat plate with unit span will be considered. Then 

defining the drag coefficient c and the suction flow coefficient c by 

c 

/ T dx 
o 

c. = ° ^ (A.3) 
d 1 ,T 2 2PU<^c 

and 
c 

-V 
c 
q 
-I wi'^ó 

equation (A.2) may be integrated to give: 

c^ = 2 - + 2 c (A.5) 
d c q 

In (A.5) c is the length of the plate, c is the total drag coefficient 

experienced by the plate; 2 — is the "wake drag" coefficient c which 
w 

would be found from a wake survey method as described in section 11.3.4 

The term 2 c represents the so-called"sink drag" coefficient and 
'^ 3 

expresses the fact that an amount of air of c U,^c m /sec is brought to 

rest in the boundary layer causing a momentum loss which is experienced 

as drag. The sink drag can be disregarded if the air is expelled in 

downstream direction with the free stream speed, since in this case 

a thrust will be obtained which balances the sink drag. However, to 

overcome the pressure drops through the porous surface, suction ducts 



- 188 -

etc. a suction pump is required which consumes some power. If an amount 
•D 

of air of Q m /sec is sucked, which has to be given a pressure rise A p 

then assuming incompressible flow this requires a pumping power of 

Q A P 
(A.6) 

^ . \ 

where T\ is the efficiency of the pump. 

If the suction power would have been used for propulsion of the plate 

a drag component A D could have been overcome which is given by 

U<oAD 
P = (A.7) 
P \ 

In (A.7) ri is the efficiency of the propulsion system; ^^ D is called 

the "equivalent suction drag". 

Usually a pressure loss coefficient c and a suction drag coefficient 

(A.8) 

°d 
s 

a n d 

a r e d e f ined 

c = 
P 

"d 
s 

b y 

A p 

A D 

èpu<o^c 
(A.9) 

Equating the right hand sides of (A.6) and (A.7) and using (A.8) and 

(A.9) leads to the following expression for the suction drag 

coefficient 

\ c , = c c -^ (A.10) 
d^ P q Tip 

Assuming for convenience equal efficiencies T) and T\ gives 

c, = c c (A.11) 
d^ P q 

The total drag coefficient for the flat plate is now given by 

c = c + c c (A.12) 
'̂t ^w P ^ 
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•where c , = 2 —. 
d c 
w 

Equation (A. 12) may also be used to describe the total drag for an 

airfoil with suction if c represents the drag coefficient found from 
w 

the wake traverse method. 



Table 4.1: Characteristic features of some approximate methods, 

Author and ref. 

Timman, 52 

Schlichting. [[ss] 

Expression for the velocity profile 

2 r 2 
ji = l-e"l (b + dii +....) - J e"1 (a+CTi +...)d,, 

n 

F^Ci)) = l-e"l 

F^Cri) = F^C,,) - sin (| i)) f or 0 4 i, «. 3 

F^Cri) = F ^ ( T ) ) - 1 (or T) » 3 

Definition of ri 

Tl = ay 

a" Is related to 

the boundary 

layer thickness 

y . 
1 8^(x)' 

6 (x) Is related 

to the boundary 

layer thickness 

Compatibility 

conditions used 

first (eq. 2.10), 

second (eq. 2.11), 

and to some extent 

the third (eq. 2.12) 

first (eq. 2.10) 

Table 5,1: Some characteristic parameters for the flat plate 0=0) and the plane stagnation 

point 0=1) . 

Method 

Pohlhausen 

Schlichting 

Timman 

present 

exact 

fVf 
p=o 

1.750 

1.742 

1.715 

1.728 

1.721 

(fel 

0.641 

0.630 

0.636 

0.659 

0.648 

! Vï' 
p=o 

0.686 

0.655 

0.660 

0.661 

0.664 

P=l 
0.278 

0.266 

0.267 

0.293 

0.292 

^-f 
P=o 
2.55 

2.66 

2.60 

2.61 

2.59 

ffcl 

2.31 

2.37 

2.38 

2.25 

2.21 

T 9 
o 

p=o 

0.235 

0.215 

0.218 

0.219 

0.221 

P=l 
0.331 

0.310 

0.312 

0.364 

0.360 

Table 5.2: Results of the momentum method for the plane stagnation point with constant suction. 

*2 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

^1 

0.5835 

0.5359 

0.4893 

0.4437 

0.3991 

0.3554 

0.3127 

0.2707 

0.2290 

0.1873 

0.1448 

0.1004 

0.0527 

0.0000 

K 

-1.5835 

-1.5555 

-1.5195 

-1.4738 

-1.4165 

-1.3455 

-1.2582 

-1.1519 

-1.0238 

-0.8712 

-0.6922 

-0.4858 

-0.2536 

-0.0000 

L 

0.5835 

0.5843 

0.5821 

0.5761 

0.5652 

0.5482 

0.5239 

0.4904 

0.4460 

0.3887 

0.3166 

0.2281 

0.1224 

0.0000 

5 /a 

0.8617 

0.8563 

0.8505 

0.8441 

0.8373 

0.8301 

0.8223 

0.8142 

0.8058 

0.7972 

0.7888 

0.7810 

0.7743 

0.7692 

9/0 

0.3833 

0.3842 

0.3851 

0.3862 

0.3872 

0.3881 

0.3889 

0.3896 

0.3900 

0.3900 

0.3896 

0.3886 

0.3870 

0.3846 

H 

2.248 

2.229 

2.209 

2.186 

2.162 

2.139 

2.114 

2.090 

2.066 

2.044 

2.025 

2.010 

2.001 

2.000 

} ^ 

0.3642 

0.3729 

0.3824 

0.3928 

0 .4039 

0.4156 

0.4279 

0.4407 

0.4536 

0.4662 

0.4780 

0.4882 

0.4959 

0.5000 

A l 

0.08572 

0.07910 

0.07256 

0.06620 

0.05983 

0.05352 

0.04728 

0.04109 

0.03483 

0.02849 

0.02198 

0.O1516 

0.00789 

0.(X)OO0 

A. 
0.0000 

0.03842 

0.07702 

0.1159 

0.1549 

0.1941 

0.2333 

0.2727 

0.3120 

0.3510 

0.3896 

0.4275 

0.4644 

0.50OO 

^ 2 

0 

0.1366 

0.2859 

0.4504 

0.6333 

0.8392 

1.0731 

1.3453 

1.6711 

2.0794 

2.6271 

3.4728 

5.2297 

>̂Ta 



Table 5.3: Some characteristic parameters of the momentum method for the no-suction case 

(A^ = o). 

h 
-1.3 

-1.2 

-1.1 

-1.0 

-0.9 

-0.8 

-0.7 

.-0.6 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

+0.1 

+0.2 

+0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

O/o 

0.26510 

0.27556 

0.28556 

0.29508 

0.30413 

0.31272 

0.32083 

0.32848 

0.33566 

0.34236 

0.34860 

0.35436 

0.35966 

0.36449 

0.36885 

0.37274 

0.37616 

0.37911 

0.38159 

0.38360 

0.38514 

0.38621 

6*/o 

1.1544 

1.1389 

1.1233 

1.1078 

1.0922 

1.0767 

1.0612 

1.0456 

1.0301 

1.0145 

0.99900 

0.98346 

0.96792 

0.95238 

0.93684 

0.92130 

0.90576 

0.89022 

0.87468 

0.85914 

0.84360 

0.82806 

H 

4.3546 

4.1330 

3.9337 

3.7542 

3.5912 

3.4430 

3.3077 

3.1831 

3.0689 

2.9633 

2.8657 

2.7753 

2.6912 

2.6129 

2.5399 

2.4717 

2.4079 

2.3482 

2.2922 

2.2397 

2.1904 

2.1441 

T 9 
J" _ ° 

-0.047718 

-0.033067 

-0.017134 

0 

+0.018248 

0.037526 

0.057749 

0.078835 

0.10070 

0.12325 

0.14641 

0.17009 

0.19422 

0.21869 

0.24344 

0.26837 

0.29340 

0.31845 

0.34343 

0.36826 

0.39284 

0.41711 

y v i 

-0.091361 

-0.091120 

-0.089699 

-0.087072 

-0.083246 

-0.078235 

-0.072052 

-0.064739 

-0.056334 

-0.046883 

-0.036457 

-0.025114 

-0.012936 

0 

+0.013605 

+0.027787 

+0.042449 

0.057490 

0.072805 

0.088289 

0.10383 

0.11933 

M(Aj) 

1.0657 

1.0515 

1.0302 

1.0021 

0.96738 

0.92672 

0.88036 

0.82876 

0.77250 

0.71188 

0.64760 

0.58004 

0.50982 

0.43738 

0.36334 

0.28822 

0.21258 

0.13694 

0.061872 

-0.012118 

-0.084493 

-0.15481 

Table 6.1: Type of the singularity for equation (6.25) at (+1,0) 

A 

^ -2 V~2 

-2 \^~r < A <o 
0 

0 < X < 2 \ r v 
:>> 2 \/~~2 

type of singularity 

stable node 

stable spiral 

center 

unstable spiral 

unstable node 
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CD ro ĉi in co «) 
CD CM in O) 01 Ol 

CM M 00 co T-( 

CM m co ro 

X to CD 

X co .-( tD CM f̂  
co Ol co O) (O to 

CM 00 CM 

X X X 01 

CM co co in 
CM Ol 01 

m to in 

01 co m 

in CD CM 

-H CO in CM 

CM CM CD 01 
CM in in 

CM co CM 



Table 8.1: The coefficients a for the flat plate without suction; a, = a_ = 0, a = - /6 
n 1 "i J 

N 

4 

5 

6 

7 

8 

9 

a 
o 

0 .041666 

0 .100602 

0 .102937 

0 . 1 0 6 5 0 9 

0 .107822 

0 .108526 

^ 
+0 .125000 

-0 .169677 

+0.193777 

- 0 . 2 2 7 1 0 2 

+0 .250871 

- 0 . 2 6 3 2 5 0 

^ 5 

-
+ 0 . 2 3 5 7 4 2 

- 0 . 5 0 5 1 7 5 

+ 0 . 9 9 5 6 9 3 

- 1 . 6 3 7 5 3 4 

+2.395702 

\ 
-
-

+0.375128 

- 1 . 3 8 8 9 7 8 

+3 .871663 

- 8 . 1 4 9 4 4 5 

^ 
-
-
-

+0.680544 

- 3 . 8 6 3 4 4 7 

+13.338101 

="8 

-
-
-
-

+1.437293 

-10.471178 

^ 
-
-
-
-
-

+3.208202 

Table 8.2: Some characteristic parameters for the boundary layer on a flat plate without suction 

according to the multimoment method. 

N 

4 

5 

6 

7 

8 

9 

7' 

exact, Siiiith|jl4l 

a 
o 

0 .041666 

0 .100602 

0 .102937 

0 .106509 

0 .107822 

0 .108526 

0 . 1 1 0 0 8 1 

0 .110262 

o , 
/ o 

3 7 . 8 

91 .2 

9 3 . 4 

96.B 

9 7 . 8 

98 .4 

9 9 . 8 

100 .0 

fW 
3 . 1 2 3 

1.918 

1.822 

1.779 

1.758 

1.748 

1.741 

1.721 

°/o 

181 .5 

111 .5 

105 .9 

103 .4 

102 .2 

101 .6 

1 0 1 . 1 

lOO.O 

X V vJ 

1 .3260 

0 .7882 

0 . 7 2 4 8 

0 . 7 0 0 1 

0 .6879 

0 . 6 8 1 7 

0 . 6 7 9 1 

0 . 6 6 4 1 

°/o 

1 9 9 . 7 

1 1 8 . 7 

1 0 9 . 1 

1 0 5 . 4 

1 0 3 . 6 

1 0 2 . 6 

1 0 2 . 3 

1 0 0 . 0 

2 .356 

2 . 4 3 3 

2 . 5 1 4 

2 . 5 4 1 

2 . 5 5 6 

2 . 5 6 5 

2 . 5 6 3 

2 . 5 9 1 

°/o 

9 0 . 9 

9 3 . 9 

9 7 . 0 

9 8 . 1 

9 8 . 7 

9 9 . 0 

9 8 . 9 

lOO.O 

T 0 
o 

0 .2707 

0 . 2 5 0 0 

0 .2325 

0 .2285 

0 . 2 2 5 9 

0 .2246 

0 .2253 

0 .2205 

(°/o) 

122 .7 

113 .4 

105 .4 

103 .6 

1 0 2 .4 

101 .8 

102 .2 

1 0 0 . 0 

Table 8.3: The coefficients a for the plane stagnation point without suction; a = -2, a = 0, a = -̂  /3. 

N 

4 

5 

6 

7 

8 

9 

a 
o 

1.416667 

1.498997 

1.510251 

1.514489 

1.516397 

1.517393 

% 
+0.250000 

- 0 . 1 6 1 6 5 3 

+0.296525 

- 0 . 2 0 4 4 1 1 

+0.328998 

- 0 . 2 3 0 7 5 3 

^ 
-

0 .329322 

- 0 . 6 5 4 5 6 0 

+1 .274888 

- 1 . 9 0 4 7 1 1 

+2 .833957 

a 
6 

-
-

+0.514450 

- 1 . 8 7 1 2 9 6 

+4.852614 

- 1 0 . 1 2 0 9 1 3 

^ 
-
-
-

+0.952997 

- 5 . 1 0 4 9 3 0 

+17.328192 

" 8 

-
-
-
-

+1.978298 

-14 .132244 

' ' 9 

-
-
-
-
-

+4.471035 
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ĉ  
N 

to 

n 

m 
to 
01 
CM 

o 

nn 

X 

ro 
m 

O 

Ol 

Ol 
Ol 

co 

co 
h-

in 

-̂  

i n 

^ o 

co 
i n 
to 
co 

O 

eg 

Ol 

0) 
f-i 

CM 

in 

o 

r-
CD 
CD 
CM 

O 

c^ 

H 

m 

i n 

O 

8 

i n 

r-

i n 

r H 

He 

O 

s 

co 
co 
co 
o 

X 

CM 

CM 

o 

>< 

pa 
01 
eg 

o 

o 

8 

Ol 

^ 
o 

o 
o 

X 

CM 

in 

-̂  
j = ' ^ 
+J rH 
• ^ ^ 

ü 

0) 

0 

0 ob 
H 1 T, 

II 
' v i 

0 

H: I 
(O la> 

II 
X 

o 

[fill 
J > 
o l x 

0 

0 

(̂̂  
tn 1 

0 
0 

^ 

Ol 

•q* 
<•) 

o 

i n 

c* 
i n 
Ol 

CM 

^ 

m 
TT 
01 

O 

• ^ 

r H 

—1 

in 
01 
r* 

CM 

CO 
r-

i n 
eg 

CM 

O 
O 

i n 

m 

01 
h-

O 

n 

(Tl 

co 

'"' 

O) 

O 

X 

r H 

CM 

ro 
i n 
Tr< 

in 
rM 

r^ 

8 
O 

to 

lY l 

X 
Ol 

n 
•V 

o 

X 

in 

co 

r f 

m 
n 

co 

m 

O 

CM 

^ O 

CO 
r-t 

CD 

CM 

X 

1^ 

O 

r-

o 
O 

t^ 

o 

H 

O 

o 

8 
'"' 
01 
o 
co 

O 

H 

X 

o 

O 

s 

CM 

O 
o 

o 
lO 

to 

O 
O 

J3^ 

•gö 
X 

*-> 
s 

u 
0 

c o 

2 

1 ><: 

X 

^ 

eg 

-

0
.
6
4
0
 

0.
62
1
 

0
.
6
4
8
 

0
.
4
6
2
 

0
.
4
4
6
 

0
.
4
6
5
 

0.
27
1
 

0
.
2
6
4
 

0
.
2
6
8
 

0.
12
0
 

0.
12
3
 

0.
12
1
 

e
x
a
c
t
 

m
o
m
e
n
t
u
m
 
m
e
t
h
o
d
 

m
u
l
t
i
m
o
m
e
n
t
 
m
e
t
h
o
d
,
N
=
7
 



Table 8.7: The pressure distribution used in the b 
cylinder. 

X 

0.16 

0.18 

0.20 

0.22 

0.24 

0.26 

0.28 

0.30 

0.32 

0.34 

0.36 

0.38 

0.40 

0.42 

0.44 

0.46 

0.48 

0.50 

0.52 

0.54 

0.56 

0.58 

0.60 

0.62 

0.64 

0.66 

0.68 

0.70 

0.72 

0.74 

0.76 

0.78 

0.80 

0.82 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

1.00 

1.02 

1.04 

1.06 

1.08 

1.10 

U 

— 
— 

+0.966 

+1 .002 

+1.031 

+1.057 

+1.080 

+ 1.100 

+1.118 

+1.133 

+1.147 

+1.160 

+1.171 

+1.180 

+1.190 

+1.198 

+1 .206 

+1.213 

+1.220 

+1.226 

+1.232 

+1.237 

+1.242 

+1.247 

+1.251 

+1.255 

+1.258 

+1.262 

+1.265 

+ 1.268 

+1.270 

+1.273 

+1.275 

+1.278 

+1.280 

+1.281 

+1.283 

+1.285 

+1.286 

+1.287 

+1.288 

+1.289 

+1.290 

+1.291 

+1.292 

+1.293 

+1.294 

+1.294 

dU 

dï 

— 
— 
+1.925 

+1.626 

+1.392 

+1.210 

+1.050 

+0.925 

+0.821 

+0.729 

+0.654 

+0.588 

+0.534 

+0 .486 

+0.444 

+0.406 

+0.372 

+0.344 

+0.318 

+0.295 

+0.275 

+0.256 

+0.240 

+0.223 

+0.207 

+0.192 

+0.178 

+0.165 

+0.152 

+0.141 

+0.130 

+0.119 

+0.110 

+0.100 

+0.092 

+0.084 

+0.077 

+0.070 

+0.064 

+0.057 

+0.051 

+0.046 

+0.040 

+0.036 

+0.032 

+0.029 

+0.026 

+0.023 

\ 
+0.5220 

+0.4835 

+0.4090 

+0.3565 

+0.3241 

+0.2977 

+0.2723 

+0.2522 

+0.2350 

+0.2188 

+0.2053 

+0.1926 

+0.1824 

+0.1730 

+0.1641 

+0.1559 

+0.1481 

+0.1418 

+0.1355 

+0.1299 

+0.1250 

+0.1200 

+0.1159 

+0.1109 

+0.1059 

+0.1010 

+0.0962 

+0.0915 

+0.0865 

+0.0823 

+0.0778 

+0.0729 

+0.0690 

+0.0642 

+0.0604 

+0.0564 

+0.0528 

+0.0490 

+0.0458 

+0.0416 

+0.0380 

+0.0350 

+0.0310 

+0.0284 

+0.0258 

+0.0238 

+0.0217 

+0.0196 

oundary layer calculations for Schubauer's elliptic 

X 

1.12 

1.14 

1.16 

1.18 

1.20 

1.22 

1.24 

1.26 

1.28 

1.30 

1.32 

1.34 

1.36 

1.38 

1.40 

1.42 

1.44 

1.46 

1.48 

1.50 

1.52 

1.54 

1.56 

1.58 

1.60 

1.62 

1.64 

1.66 

1.68 

1.70 

1.72 

1.74 

1.76 

1.78 

1.80 

1.82 

1.84 

1.86 

1.88 

1.90 

1.92 

1.94 

1.96 

1.98 

2.00 

2.02 

2.04 

2.06 

2.08 

U 

+1.294 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.295 

+1.294 

+1.293 

+1.292 

+1.291 

+1.290 

+1.289 

+1.288 

+1.287 

+1.285 

+1.283 

+1.282 

+1.280 

+1.278 

+1.276 

+1.274 

+1.272 

+1.270 

+1.268 

+1.265 

+1.262 

+1.260 

+1.258 

+1.254 

+1.253 

+1.251 

+1.249 

+1.246 

+1.244 

+1.242 

+1.240 

+1.238 

+1.236 

+1.234 

dU 

dx 

+0.020 

+0.018 

+0.016 

+0.014 

+0.012 

+0.009 

+0.006 

+O.0O3 

+0.000 

-0.003 

-0.006 

-0.009 

-0.013 

-0.017 

-0.021 

-0.026 

-0.031 

-0.036 

-0.042 

-0.047 

-0.053 

-0.058 

-0.064 

-0.070 

-0.076 

-0.082 

-0.087 

-0.093 

-0.098 

-0.102 

-0.106 

-0.110 

-0.113 

-0.115 

-0.117 

-0.118 

-0.119 

-0.119 

-0.118 

-0.118 

-0.117 

-0.115 

-0.113 

-0.110 

-0.107 

-0.104 

-0.100 

-0.095 

-0.090 

\ 
+0.0173 

+O.0158 

+0.0143 

+0.0128 

+0.0111 

+0.0085 

+0.0057 

+0.0029 

+0.0000 

-0.0030 

-0.0061 

-0.0O93 

-0.0136 

-0.0181 

-0.0227 

-0.0285 

-0.0345 

-0.0407 

-0.0481 

-0.0546 

-0.0624 

-0.0693 

-0.0775 

-0.0859 

-0.0946 

-0.1035 

-0.1113 

-0.120B 

-0.1288 

-0.1359 

-0.1431 

-0.1505 

-0.1566 

-0.1614 

-0.1665 

-0.1702 

-0.1738 

-0.1759 

-0.1769 

-0.1789 

-0.1796 

-0.1786 

-0.1777 

-0.1750 

-0.1723 

-0.1694 

-0.1648 

-0.1583 

-0.1517 



Table 8,7: Continued; Uodlfied pressure distribution. 

X 

1.80 

1.82 

1.84 

1.86 

1.88 

1.90 

1.92 

1.94 

1.96 

1.98 

2.00 

2.02 

2.04 

U 

+1.265 

+1.262 

+1.260 

+1.258 

+1.254 

+1.2525 

+1.250 

+1.248 

+1.245 

+1.242 

+1.239 

+1.237 

+1.235 

dU 

dx 

-0.117 

-0.119 

-0.122 

-0.126 

-0.130 

-0.133 

-0.136 

-0.138 

-0.140 

-0.142 

-0.143 

-0.145 

-0.146 

s 
-0.1665 

-0.1716 

-0.1782 

-0.1863 

-0.1949 

-0.2018 

-0.2089 

-0.2145 

-0.2204 

-0.2264 

-0.2308 

-0.2368 

-0.2412 

Table 8.8: Coefficients e in equation (8,49) for Schubauer's ellips. 

(0.35 + 2 denotes 0.35 x 10 ). 

n 

0 

1 

2 

3 

4 

5 

6 

0.10^ X < 0.50 

+0.2229526 + 0 

+0.1779934 + 2 

-0.2101468 + 3 

+0.1020643 + 4 

-0.2526967 + 4 

+0.3152842 + 4 

-0.1575414 + 4 

0.50 $ X < 0.90 

+0.878004 + 0 

-0.399223 + 1 

+0.891446 + 1 

-0.103245 + 2 

+0.583033 + 1 

-0.137626 + 1 

+0.107946 + 0 

0.90 4 X < 1.30 

-0.344650 + 0 

+0.543894 + 0 

+0.370504 + 1 

-0.102364 + 2 

+0.970133 + 1 

-0.382806 + 1 

+0.490446 + 0 

1.30 ̂  X < 1.70 

+0.118466 + 1 

-0.237210 + 1 

+0.714958 + 0 

+0.106592 + 1 

-0.335165 + 0 

-0.385864 + 0 

+0.152730 + 0 

1.70 ̂  X < 2.10 

-0.272018 + 0 

+0.131212 + 1 

-0.565421 + 0 

-0.513816 + 0 

+0.246656 + 0 

+0.191498 - 1 

-0.111240 - 1 

modified 

1.80 4. X < 2.10 

+0.482076 + 1 

-0.344721 + 1 

.0.273478 + 1 

+0.197142 + 1 

+0.997831 + 0 

-0.962272 + 0 

+0.184954 + 0 



Table 9.1: Critical Reynoldsnumber for the flat plate boundary layer. 

crit 

321 

420 

420 

480 

575 

645 

680 

crit 

124 

162 

162 

185 

222 

249 

260 

10, ,ue, 
log(p-) 

crit 

2.093 

2.210 

2.210 

2.268 

2.346 

2.396 

2.416 

references 

Timman et al [l04] 

Tollmien [105] 

Lin [102] 

Lin, equations 9.19 - 9.20 

Ulrich [99] 

Schlichting-Ulrich [llS^ 

Pretsch, P=0 f96] 

Table 9.2: Results of Lin's formulae for different approximation to the velocity 

profile on a flat plate. 

crit 

480 

577 

754 

493 

508 

519 

498 

0 
crit 

185 

221 

310 

196 

200 

203 

194 

10, ,U6, 
log (^) 

crit 

2.268 

2.345 

2.492 

2.292 

2.301 

2.307 

2.288 

Velocity profile 

exact 

momentum method 

multimoment method 

" 

" 

N = 5 

N = 6 

N = 7 

N = 8 

N = 9 

Table 9.3: Characteristic parameters of the Hartree velocity profiles including the 

critical Reynoldsnumber according to Pretsch. 

p 

1 

0.6 

0.2 

0.1 
0 
-0.05 

-0.10 

-0.198 

H 

2.22 

2.27 

2.41 

2.48 
2.59 
2.67 

2.80 

4.03 

'^•„.. 
12400 

8640 

2955 

1658 
680 
354 

126 

0 

crit 

5603 

3795 

1225 

669 
260 
133 

45 

0 

10, ,UÖ*, 
l o g ( ^ 

crit 

4.094 

3.936 

3.471 

3.219 
2.832 
2.549 

2.100 

-

10, ,ue, 
log(—) 

crit 1 

3.748 

3.579 

3.088 

2.825 
2.416 
2.123 

1.654 

-



Table 9.4: Coefficients of equation (9.25) obtained from Pretsch' diagrams. 

10, ,U9, 
log(—) 

crit 

1 

1.5 

2 

2.5 

3 

3.5 

4 

10, ,ue, 

crit 

1 

1.5 

2 

2.5 

3 

3.5 

4 

10, ,U9, 
log(—) 

crit 

1 

1.5 

2 

2.5 

3 

3.5 

4 

f = 1 

Pr̂  -6 

\ 

.04 6.00 4.270 

.75 0 4.200 

1.20 10.50 3.988 

.55 10.50 3.800 

.22 10.50 3.900 

.22 10.50 4.000 

.22 16.00 4.100 

f = 4 

P/ 6 
-ï-= 7.5 10-^ 
U 

^ h 

33.80 212 3.020 

19.70 180 3.140 

5.60 148.5 3.260 

1.55 54 3.270 

1.10 44 3.338 

-0.275 44 3.402 

-1.10 44 3.466 

f = 7 

-i- = 5.10 

u 
^ 

83.40 890 2.660 

50.50 685 2.660 

17.60 480 2.700 

3.30 345 2.750 

- 1.60 200 2.850 

- 6.50 60 2.950 

-11.40 0 3.050 

f = 2 

K" 6 
- ^ = 2.5 10-^ 
U 

ô 

13.05 116.CX) 3.750 

8.00 87.00 3.670 

2.95 58.00 3.590 

.81 21.50 3.578 

.40 21.50 3.640 

.23 30.00 3.731 

-C22 38.50 3.825 

1 = 5 

\ 

39.90 245 2,966 

23.10 213 3.068 

6.30 181 3.170 

2.15 76 3.200 

1.10 54 3.260 

-0.735 33 3.315 

-2.40 11 3.370 

f = 8 

^ ^ -5 
-i- = 7.5 10 
U 

^o 

104,00 1224 2.560 

63.10 921 2.560 

21.20 620 2.570 

1.40 511 2.640 

- 1.10 400 2.710 

- 3.60 300 2.780 

- 6.10 200 2.850 

f = 3 

lï-=5.10-« 
U 

^o 

25.60 169 3.115 

15.10 136 3.250 

4.60 105 3.385 

1.10 35 3.390 

.80 35 3 .450 

0 35 3.510 

-0.80 35 3.570 

1 = 6 

-|-= 2.5 10 
U 

^o 

62.70 401 2.790 

36.60 365.5 2.845 

10.50 331 2.900 

3.90 196 2.945 

-0.10 51.5 3.030 

-4.10 0 3.113 

-8.10 0 3.196 

f = 9 

^o 

125.80 1720 2.480 

74.00 1234 2.480 

22.20 760 2.490 

0 705 2.555 

- 1.10 650 2.625 

- 2.20 600 2.695 

- 3.30 550 2.765 



Table 9.4: (continued) 

10, ,ue, 
log(-p-) 

crit 

1 

1.5 

2 

2.5 

3 

3.5 

4 

10, ^ue, 
log(Tr' 

crit 

1 

1.5 

2 

2.5 

3 

3.5 

4 

f = 10 

K" -4 
-|-= 2.5 10 ' 
U 

•̂ 1 s 

182.00 3025 2.240 

100.50 1965 2.240 

19.00 880 2.240 

- 7.70 845 2.4CKD 

- 7.70 810 2.560 

- 7.70 770 2.720 

- 7.70 730 2.880 

f = 13 

\ 

202.80 5350 1.865 

95.40 3475 1.865 

- 12 1560 1.865 

- 12 0 1.865 

- 12 0 1.865 

- 12 0 1.865 

- 12 0 1.865 

f = 11 

Pr^ -4 
-i-= 5.10 

T K K„ 
o 1 2 

218.80 4215 2.040 

111.40 2670 2.040 

4.00 1800 2.040 

-103.40 1045 2.040 

-103.40 200 2.040 

-103.40 0 2.040 

-103.40 0 2.040 

f = 12 

Pr^ 
-i- = 7.5 10 
U 

T K K^ 
o 1 2 

213 4930 1.945 

104.5 3120 1.945 

- 4 1330 1.945 

- 4 0 1.945 

- 4 0 1.945 

- 4 0 1.945 

- 4 0 1.945 

Table 9.5: Amplification factors at transition for the flat plate without 

suction. 

Value assumed for 

10, ,ue. 
log(—) 

crit 

2.416 

2.345 

2.268 

2.093 

crit 

260 

222 

185 

124 

<°a' 
max 

at the experimentally determined 

transition region 

beginning 

7.6 

9.2 

11.0 

15.0 

end 

9.7 

11.2 

12.8 

16.8 



Table 10.1: Coordinates of impervious airfoil section. 

/o 
0 

0.5 

1 

2 

3 

4 

5 

7.5 

10 

15 

/o 
0 

2.58 

3.69 

5.03 

6.07 

6.89 

7.55 

8.90 

9.83 

11.21 

X , p/c 
/o 
20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

/o 
12.25 

12.98 

13.48 

13.82 

13.92 

13.80 

13.50 

13.00 

12.30 

11.41 

o>/= 
o 
70 

75 

80 

85 

90 

95 

100 

o>^= 
/o 
10.32 

9.10 

7.70 

6.09 

4.32 

2.41 

0.26 

Tabl 

no 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

e 10.2; Position of pressure o n 
Chord I 

"p/c 

»/ 
1.84 

0.46 

0.25 

0.16 

0.09 

0.03 

0 

0.03 

0.10 

0.26 

0.40 

0.53 

0.74 

1.31 

2.75 

4.75 

6.20 

10.67 

16.35 

21.18 

26.95 

^p/c 

'k 
-4.92 

-2.53 

-2.00 

-1.50 

-1.03 

-0.50 

0 

+0.50 

1.10 

1.68 

2.18 

2.59 

3.08 

4.03 

5.78 

7.44 

8.29 

10.06 

11.55 

12.45 

13.20 

s/c 

i' 
-5.42 

-2.68 

-2.20 

-1.58 

-1.09 

-0.48 

0 

+0.53 

1.11 

1.61 

2.21 

2.72 

3.24 

4.32 

6.52 

9.19 

10.88 

15.64 

21.67 

26.52 

32.41 

fices in the im 
Chord II 

s/o 

'/ 
-5.41 

-2.70 

--
--
-1.08 

-0.49 

0 

+0.49 

— 
--
--

2.72 

--
— 

6.49 

--
10.83 

--
21.63 

--
32.44 

pervious 

no 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

tr.edge 

model. 
Chord I 

"p/c 

"/. 
32.30 

35.55 

43.18 

48.58 

53.91 

59.25 

65.13 

69.85 

75.10 

80.25 

85.42 

90.35 

95.41 

— 
--
--
— 
--
--
--

100 

%/. 
% 

13.65 

13.82 

13.90 

13.63 

13.18 

12.44 

11.43 

10.37 

9.11 

7.63 

5.98 

4.23 

2.25 

— 
— 
--
--
--
--
--

0.26 

s/c 

yi 
37.85 

40.97 

48.61 

54.04 

59,42 

64.82 

70.83 

75.62 

81.04 

86.44 

91.79 

97.20 

102.63 

49.51 

53.47 

54.97 

58.77 

61.27 

65.36 

67.35 

107.90 

Chord II 
s/c 

% 
37.87 

--

54.02 

64.81 

--
75.62 

--
86.41 

--
97.22 

— 
— 
— 
— 
--
--
— 
— 

107.75 



Table 10.3. Results of pressure distribution measurements on the 

impervious model 

U from orifices 

no 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

chord 1 

-0.9713 
-0.5670 
-0.4718 
-0.3454 
-0.2411 
-0.1110 
+0.0575 
+0.1196 
+0.2416 
+0.3415 
0.4631 
0.5513 
0.6424 
0.8078 
1.0693 
1.2340 
1.2866 
1 .3224 
1.3432 
1.3467 
1.3576 
1.3631 
1.3649 
1.3735 
1.3553 
1.3350 
1.3187 
1.2881 
1.2221 
1.1855 
1.1371 
1.0751 
0.9950 
0.8983 
1.3722 
1.3579 
1.3512 
1.3392 
1.3318 
1.3156 
1.3085 

chord II 

-0.9665 
-0.5659 

-
-

-0.2416 
-0.1196 
+0.0648 
+0.1273 

-
-
-

+0.5582 

-
-

+1.0742 

-
1.2803 

-
-
-

1.3585 
1.3678 

-
-

1.3602 

-
1.3167 

-
1.2276 

-
1.1413 

-
0.9970 

-

-
-
-
-

U from 
(in the 

X 

0.78O 
0.757 
0.734 
0.729 

725 
718 
709 
699 
690 
679 
669 
659 
649 
644 

6395 
6335 
609 
618 
578 
538 
519 

4985 
487 
479 
468 
449 

surface tubes in chord I 
same order as measured) | 

U 

1.2101 
1.2222 
1.2367 
1.2407 
1.2456 
1.2534 
1.2806 
1.2963 
1.2979 
1.30O1 
1.3027 
1.J063 
1.3091 
1.3118 
1.3135 
1.3162 
1.3233 
1.3204 
1.3324 
1.3464 
1.3540 
1.3629 
1.3649 
1.3656 
1.3658 
1.3635 

X 

0.449 
427 
408 
387 
368 
328 
288 
266 
248 
328 
229 
209 
189 
189 
168 
149 
149 
139 
128 
128 
118 
107 
097 
063 
199 
178 
158 

U 

1.36281 
1.3607 
1.3576 
1.3543 
1.3524 
1.3490 
1.3447 
1.3417 
1.3405 
1.3487 
1.3379 
1.3311 
1.3258 
1.3232 
1.3170 
1.3146 
1.3154 
1.3163 
1 3154 
1.3102 
1.3039 
1.2778 
1.2504 
1.0490 
1.3276 
1.3197 
1.3158 



Table 10.4: Pressure distribution used in the boundary layer calculations for the impervious model. 

X 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.11 

0.12 

0.13 

0.14 

0.15 

0.16 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.23 

0.24 

0.25 

0.26 

0.27 

0.28 

0.29 

0.30 

0.31 

0.32 

0.33 

0.34 

U 

0.7610 

0.9070 

1.0194 

1.1046 

1.1720 

1.2251 

1.2653 

1.2939 

1.3120 

1.32235 

1.32465 

1.32270 

1.32235 

1.3239 

1.3269 

1.3308 

1.33495 

1.3388 

1.3418 

1.3441 

1.3459 

1.3474 

1.34875 

1.34995 

1.35115 

1.35225 

1.35325 

1.35425 

1.35525 

1.35625 

1.35725 

dU 

dx 

14.180 

11.770 

9.565 

7.541 

5.988 

4.643 

3.4224 

2.3027 

1.4777 

0.6082 

-0.1057 

-0.1421 

+0.0623 

0.2394 

0.3565 

0.4133 

0.4089 

0.3476 

0.2587 

0.2030 

0.1630 

0.1405 

0.1275 

0.1170 

0.1090 

0.1041 

0.1005 

0.0990 

0.0980 

0.0980 

0.0980 

_ X dU 

ÏÏ dx 

0.7453 

0.6488 

0.5630 

0.4779 

0.4087 

0.3411 

0.2705 

0.1958 

0.1356 

0.0598 

-0.0112 

-0.0161 

+O.0075 

0.0308 

0.0484 

0.0590 

0.0613 

0.0545 

0.0424 

0.0347 

0.0291 

0.0261 

0.0246 

0.0234 

0.0226 

0.0223 

0.0223 

0.0227 

0.0231 

0.0238 

0.0245 

X 

0.35 

0.36 

0.37 

0.38 

0.39 

0.40 

0.41 

0.42 

0.43 

0.44 

0.45 

0.46 

0.47 

0.48 

0.49 

0.50 

0.51 

0.52 

0.53 

0.54 

0.55 

0.56 

0.57 

0.58 

0.59 

0.60 

0.61 

0.62 

0.63 

0.635 

0.635 

U 

1.35825 

1.35925 

1.36025 

1.36135 

1.36255 

1.36375 

1.36510 

1.36655 

1.36815 

1.36975 

1.37135 

1.37285 

1.37395 

1.37425 

1.37325 

1.37075 

1.36730 

1.36340 

1.35930 

1.35520 

1.35125 

1.34765 

1.34430 

1.34115 

1.33819 

1.33534 

1.33260 

1.32991 

1.32730 

1.3260O 

1.32600 

dU 

dx 

0,0995 

0.1015 

0.1055 

0.1115 

0.1200 

0.1305 

0.1430 

0.1540 

0.1610 

0.1640 

0.1630 

0.1500 

0.0700 

-0.0192 

-0.1806 

-0.3152 

-0.3709 

-0.4050 

-0.4111 

-0.4059 

-0.3799 

-0.3452 

-0.3240 

-0.3048 

-0.2900 

-0.2793 

-0.2709 

-0.2646 

-0.2608 

-0.2600 

-0.7255 

_ X dU 

^ ÏÏ dx 

0.0256 

0.0269 

0.0287 

0.0311 

0.0343 

0.0383 

0.0429 

0.0473 

0.0506 

0.0527 

0.0535 

0.0503 

0.0239 

-0.0067 

-0.0644 

-0.1150 

-0.1383 

-0,1556 

-0.1603 

-0.1617 

-0.1546 

-0.1434 

-0.1374 

-0.1318 

-0.1279 

-0.1254 

-0.124 

-0.1234 

-0.1238 

-0.1245 

-0.34743 

Table 10.5: Coefficients in equation (8.49): K=^ e x for the impervious model (0.543 + 2 denotes 
n=0 " 0.543 X 10^ ) 

n 

0 
1 
2 
3 
4 
5 
6 

a for 

0.04* x<;0.14 

+0.4777781+0 
+ 0.4725992+2 
-0.1947334+4 
+0.3319732+5 
-0 2968925+6 
+ 0.1349858+7 
-0.2467063+7 

0.14*. X < 0.24 

+ 0.468318718+2 
-0.108946502+4 
+0.903993722+4 
-0.26730421O+5 
-0.319871038+5 
+0.332606988+6 
-0.498304819+6 

0.24 <. x< 0.456 

+ 0.283142524+2 
-0.521724645+3 
+0.396976398+4 
-0.159384857+5 
+0.355911081+5 
-0.418994924+5 
+0.203209638+5 

0.456* x<.0.54 

-0.441984929+3 
+0.275812516+4 
-0.492329408+4 
-0.458252779+3 
+0.667306127+4 
+0.604744491+3 
-0.544276543+4 

0.54* X <.0.635 

+0.62238306+2 
-0.343194183+2 
+ 0.62179067+3 
-0.46537777+3 
+0.60355487+3 
-0.12214455+4 
+ 0.79281632+3 



Table 11.1: Coordinates of suction model(NACA 64 -A-215) Table 11.2: Position of pressure orifices in 
impervious model. 

X 
p 

mm 

0 
10 
20 
50 
75 

100 
150 
200 
250 
30O 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 
1000 
1050 
1100 
1150 
1200 
1250 
1300 
1350 

''p 
upper 
mm 

0.13 
23.91 
29.57 
45.62 
55.50 
63.63 
77.01 
87.94 
96.65 
103.59 
109.13 
113.40 
116.40 
118.06 
118.24 
116.77 
113.97 
110.03 
105.13 
99.27 
92.68 
85.34 
77.36 
68.89 
60.02 
50.68 
40.80 
30.82 
20.75 
10.56 
0.43 

^P 
lower 
mm 

0 
16.80 
23.42 
36.06 
43.32 
49.28 
58.81 
66.16 
71.97 
76.48 
79.91 
82.38 
83.84 
84.28 
83.59 
81.44 
78.21 
74.12 
69.30 
63.928 

e
e
n
 

61
.9
 

0.
43
 

^ 11 II 
V a. Q. 

a
i
g
h
t
 

81
7.
5
 

an
d
 

13
50
;
 

^ 1 1 II 
+j a a 

0.43 

no 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
t r,edge 

uppe 

0 
0.49 
1.02 
1.42 
2.03 
2.30 
3.01 
4.04 
5.03 
6.36 
7.11 
7.52 
10.04 
15.02 
15.16 
20.01 
29.92 
39.95 
49.99 
60.02 
65.00 
70.01 
78.18 
80.02 
89.40 
90.03 
98.54 
100.00 

r surface! lower 
- o , - o , 
s /o X /o 

0 
1.45 
2.16 
2.69 
3.40 
3.94 
4.50 
5.63 
6.70 
8.10 
8.81 
9.33 
11.93 
17.06 
17.19 
22.14 
32.12 
42.16 
52.23 
62.31 
67.33 
72.39 
80.82 
82.70 
92.28 
92.92 

101.58 
103.07 

0 
0.50 
1.01 
1.16 
2.00 
2.47 
2.98 
4.00 
5.01 
5.22 
7.02 
7.50 
9.94 
13.20 
14.97 
19.99 
29.93 
39.97 
50.05 
60.06 
70.02 
73.28 
80.01 
86.64 
89.82 
98.55 

_ 
100.00 

surface 

i°/o 

0 
1.21 
1.89 
2.07 
3.03 
3.56 
4.09 
5.17 
6.22 
6.44 
8.30 
8.87 
11.33 
14.61 
16.39 
21.45 
31.39 
41.44 
51.56 
61.63 
71.68 
74,96 
81.72 
88.40 
91.59 
100.34 

101.81 

Table 11.3: Dimensions of suction compartments 

no 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

s 

beginning 

0.3210 

0.3513 

0.3811 

0.4109 

0.4405 

0.4705 

0.5003 

0.5297 

0.5598 

0.5893 

0.6195 

0.6490 

0.6798 

0.7094 

0.7399 

0.7692 

0.7998 

0.8283 

0.8643 

0.9030 

upper su 

s 

mean 

0.3362 

0.3662 

0.3960 

0.4257 

0.4555 

0.4854 

0.5150 

0.5448 

0.5746 

0.6044 

0.6343 

0.6644 

0.6946 

0.7247 

0.7546 

0.7845 

0.8141 

0.8463 

0.8837 

0.9217 

rf ace 

s 

end 

0.3513 

0.3811 

0.4109 

0.4405 

0.4705 

0.50O3 

0.5297 

0.5598 

0.5893 

0.6195 

0.6490 

0.6798 

0.7094 

0.7399 

0.7692 

0.7998 

0.8283 

0.8643 

0.9030 

0.9404 

As 

0.0303 

0.0298 

0.0298 

0.0296 

0.0300 

0.0298 

0.0294 

0.0301 

0.0295 

0.0302 

0.0295 

0.0308 

0.0296 

0.0305 

0.0293 

0.0306 

0.0285 

0.0360 

0.0387 

0.0374 

s 

beginning 

0.3151 

0.3446 

0.3748 

0.4041 

0.4336 

0.4624 

0.4925 

0.5222 

0.5523 

0.5818 

0.6122 

0.6417 

0.6723 

0.7018 

0.7321 

0.7613 

0.7915 

0.8190 

0.8550 

0.8924 

lower 

s 

mean 

0.3299 

0.3597 

0.3895 

0.4189 

0.4480 

0.4775 

0.5074 

0.5373 

0.5671 

0.5970 

0.6270 

0.6570 

0.6871 

0.7170 

0.7467 

0.7764 

0.8053 

0.8370 

0.8737 

0.9110 

surface 

s 

end 

0.3446 

0.3748 

0.4041 

0.4336 

0.4624 

0.4925 

0.5222 

0.5523 

0.5818 

0.6122 

0.6417 

0.6723 

0.7018 

0.7321 

0.7613 

0.7915 

0.8190 

0.8550 

0.8924 

0.9295 

A'^ 

0.0295 

0.0302 

0.0293 

0.0295 

0.0288 

0.0301 

0.0297 

0.0301 

0.0295 

0.0304 

0.0295 

0.0306 

0.0295 

0.0303 

0.0292 

0.0302 

0.0275 

0.0360 

0.0374 

0.0371 



Table 11.4: Details of the pressure- and suction distributions used in the boundary layer calculations 
of section 11.5. 

s 

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 
0.51 
0.52 

U 

0.110000 
0.61520 
0.82390 
0.93920 
0.99240 
1.02470 
1.04767 
1.06526 
1.07944 
1.09133 
1.10127 
1.11031 
1.11840 
1.12582 
1.13271 
1.13907 
1.14492 
1.15031 
1.15528 
1.15980 
1.16391 
1.16770 
1.17119 
1.17442 
1.17738 
1.18010 
1.18262 
1.18498 
1.18721 
1.18930 
1.19130 
1.19320 
1.19500 
1.19670 
1.19830 
1.19980 
1.20121 
1.20249 
1.20360 
1.20451 
1.20520 
1.20560 
1.20560 
1.20508 
1.20401 
1.20239 
1.20031 
1.19779 
1.19491 
1.19169 
1.18821 
1.18450 
1.18060 

dU 

dx 

66.48276 
34.20576 
14.54562 
7.53191 
4.06891 
2.57748 
1.93405 
1.56981 
1.28452 
1.07352 
0.93110 
0.83970 
0.77081 
0.71542 
0.66286 
0.60924 
0.56052 
0.51390 
0.47010 
0.42976 

0.39348 
0.36357 
0.33529 
0.30938 
0.28395 
0.26091 
0.24333 
0.22948 
0.21576 
0.20472 
0.19514 
0.18500 
0.17500 
0.16500 
0.15500 
0.14600 
0.13514 
0.12000 
0.10129 
0.08124 
0.05581 
0.02195 
-0.02391 
-0.07981 
-0.13481 
-0.18552 
-0.23052 
-0.27052 
-0.30552 
-0.33567 
-0.36024 
-0.38190 
-0.40230 

^ 1 

0.95480 
0.62836 
0.37600 
0.25104 
0.18935 
0.12903 
0.11316 
0.10507 
0.0967S 
0.08981 
0.08565 
0.08417 
0.08360 
0.08344 
0.08269 
0.08092 
0.07897 
0.07653 
0.07377 
0.07088 
0.06805 
0.06579 
0.06335 
0.06093 
0.05819 
0.05556 
0.05376 
0.05254 
0.05112 
0.05014 
0.04936 
0.04826 
0.04705 
0.04568 
0.04415 
0.04275 
0.04065 
0.03705 
0.03209 
0.02639 
0.01858 
0.00749 
-0.00835 
-0.02856 
-0.04941 
-0.06963 
-0.08859 
-0.10644 
-0.12306 
-0.13839 
-0.15198 
-0.16485 
-0.17764 

^ 2 

0.06405 
0.10513 
0.15061 
0.19567 
0.23643 
0.27409 
0.30983 
0.34398 
0.37838 
0.41275 
0.44713 
0.48157 
0.51554 
0.54914 
0.58259 
0.61466 
0.64820 
0.67978 
0.71509 
0.7«19 
0.78444 

0.745 
1.205 
1.702 
2.181 
2.600 
2.975 
3.320 
3.640 
3.955 
4.262 
4.562 
4.855 
5.135 
5.406 
5.668 
5.910 
6.160 
6.202 
6.640 
6.850 
7.120 



Table 11.4: Continued; Details of the pressure- and suction distributions used in the boundary layer 
calculations of section 11.5. 

s 

0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
0.60 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 
0.67 
0.68 
0.69 
0.70 
0.71 
0.72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.79 
0.80 
0.81 
0.82 
0.83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 
1.01 
1.02 
1.03 
1.04 

U 

1.17650 
1.17219 
1.16772 
1.16308 
1.15831 
1.15340 
1.14840 
1.14330 
1.13809 
1.13281 
1.12751 
1.12191 
1.11679 
1.11131 
1.10580 
1.10030 
1.09481 
1.08929 
1.08369 
1.07802 
1.07228 
1.06652 
1.06069 
1.05479 
1.04881 
1.04281 
1.03678 
1.03072 
1.02459 
1.01841 
1.01209 
1.00561 
0.99889 
0.99191 
0.98458 
0.97691 
0.96890 
0.96060 
0.95200 
0.94309 
0.93391 
0.92450 
0.91490 
0.90510 
0.89510 
0^88490 
0.87451 
0.86400 
0.85340 
0.84270 
0.83190 
0.8210O 

dU 

dx 
-0.42114 
-0.43986 
-0.45576 
-0.47076 
-0.48486 
-0.49614 
-0.50620 
-0.51529 
-0.52120 
-0.53010 
-0.53460 
-0.53930 
-0.54310 
-0.54640 
-0.54980 
-0.55330 
-0.55670 
-0.56050 
-0.56520 
-0.56990 
-0.57452 
-0.58010 
-0.58614 
-0.59080 
-0.59580 
-0.60030 
-0.60238 
-0.60924 
-0.61414 
-0.62371 
-0.63886 
-0.65886 
-0.68371 
-0.71414 
-0.75024 
-0.78438 
-0,81529 
-0.84486 
-0.87600 
-0.90514 
-0.92910 
-0,95100 
-0.97260 
-0.99230 
-1.01100 
-1.02750 
-1.04120 
-1.05600 
-1.06500 
-1.07500 
-1.08500 
-1.09500 

^1 

-0.19018 
-0.20312 
-0.21517 
-0.22719 
-0.23914 
-0.25005 
-0.26064 
-0.27100 
-0.27995 
-0.29074 
-0.29932 
-0.30827 
-0.31673 
-0.32514 
-0.33377 
-0.34260 
-0.35152 
-0.36086 
-0.37098 
-0.38132 
-0.39183 
-0.40321 
-0.41517 
-0.42641 
-0.43816 
-0.44976 
-0.45975 
-0.47363 
-0.48630 
-0.50299 
-0.52474 
-0.55121 
-0.58270 
-0.62011 
-0.66395 
-0.70761 
-0.74999 
-0.79270 
-0.83855 
-0.88423 
-0.92651 
-0.96828 
-1.01130 
-1.05391 
-1.09707 
-1.13945 
-1.18025 
-1.22381 
-1.26205 
-1.30284 
-1.34506 
-1.38882 

>̂  2 

0.81911 
0.85402 
0.88859 
0.92351 
0.95620 
0.98520 
1.00793 
1.02565 
1.03712 
1.04493 
1.05057 
1.05623 
1.06041 
1.06411 
1.06602 
1.06694 
1.06691 
1.06534 
1.06252 
1.05865 
1.05430 
1.05111 
1.04776 
1.04446 
1.04220 
1.03975 
1.03813 
1.03676 
1.03630 
1.03302 
1.03531 
1.03577 
1.03745 
1.03978 
1.04266 
1.04645 
1.05114 
1.05595 
1.06247 
1.06778 
1.07322 
1.07993 
1.08710 
1.09357 
1.10019 
1.10696 
1.11388 
1.12091 
1.12805 
1.13549 
1.14363 
1.15115 

7.357 
7.580 
7.800 
8.018 
8.212 
8.370 
8.472 
8.530 
8.535 
8.510 
8.468 
8,426 
8.375 
8.320 
8.252 
8.178 
8 .098 
8.008 
7.910 
7.805 
7.700 
7.605 
7.508 
7.415 
7.330 
7.245 
7.167 
7.092 
7.024 
6.938 
6.890 
6.830 
6.778 
6.730 
6.685 
6.645 
6.610 
6.575 
6.543 
6.516 
6.482 
6.455 
6.430 
6.400 
6.370 
6.340 
6.310 
6.280 
6.250 
6.221 
6.195 
6.165 



Table 11.5: Coefficients ê ^ in eq. (11.14) for the suction model (0.123 -t- 4 denotes 0.123 x 10 ) 

X = s + 0.0013 

n 

0 

1 

2 

3 

4 

5 

6 

% '°' ^ 1 

0.0413é X-do.3213 

+0.487766 + 0 

^.134523 + 2 

+ 0.181436 + 3 

-0.125194 + 4 

+0.463313 + 4 

-0.880172 + 4 

+ 0.676231 

0.3213^ X <0.6013 

+0.1662923 + 2 

-0.1986979 +3 

+0.9103331 + 3 

-0.1938422 + 4 

+0.1738382 + 4 

-0.1237675 + 3 

-0.4795547 + 3 

0.60134.x <0.8313 

-036908471 + 1 

+0.23718205 + 2 

-0.45759292 + 2 

-0.58434123 + 1 

+0.11366534 + 3 

-0.12648480 + 3 

+0.43524752 + 2 

0.8313./;x <1.0413 

+0.22592310 + 3 

-0.10055939 + 4 

+0.14528307 + 4 

-0.24580937 + 3 

-0.13063590 + 4 

+0.12080765 + 4 

-0.33028708 + 3 

n 

0 

1 

2 

3 

4 

5 

6 

e^ for A 

0.3213<.x<.0.6013 

+0.29218010 + 1 

-0.53116491 + 2 

+0.28212314 + 3 

-0.59331533 + 3 

+0.37822004 + 3 

+0.34827455 + 3 

-0.41868191 + 3 

2 

0.6013.^x <.0.8313 

-0.10669276 + 2 

+0.41452406 + 2 

-0.32546333 + 2 

-0.19311793 + 2 

+0.22741090 + 1 

+0.47776766 + 2 

-0.27946329 + 2 

0.8313<-x <1.0413 

-0.36265370 + 2 

+0.17009344 + 3 

-0.24884816 + 3 

+0.40613195 + 2 

+0.22746742 + 3 

-0.20825789 + 3 

+0056318055 + 2 

Table 11,6: Some specific details of 7 series of measurements with suction. 

series 

1 

2 

3 

4 

5 

6 

7 

a 

0 

0 

0 

0 

0 

0 

0 

R X 10"® 
c 

3.37 

3.37 

2.75 

3.37 

4.50 

5.50 

6.16 

porous surface 

filtering paper 

" 
" 

paper + nylon 

" 
" 

valve settings V. 

for roughly calculated stability 

open 

continuous V 

trial and error 

" 
" 
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FIG. 2.1; COORDINATE SYSTEEM FOR BOUNDARY LAYER THEORY. 
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FIG. 6.3: PHASE PLANE PORTRAIT FOR THE BOUNDARY LAYER FLOW FIG 6 4: VELOCITY PROFILES CORRESPONDING TO THE 

BETWEEN IMPERVIOUS NON-PARALLEL PLANE WALLS (X = 0) SADDLE POINT ( - 1 , 0 ) FOR X = 0 , 

I 



x = o X=-1 X - 2 \ = -2\fl X=-A 

x = o X = +1 X=+2 X = + 2 \ ^ \-U 

FIG. 6.5: PHASE PLANE PORTRAITS FOR THE BOUNDARY LAYER FLOW BETWEEN POROUS WALLS. 



- 1 o — f c - U 1 

FIG. 6.6 : VELOCITY PROFILES FOR INFLOW AND OUTFLOW AT DIFFERENT 
VALUES OF A , 

r 

FIG, 6.7: VELOCITY PROFILES FOR 

OUTFLOW CORRESPONDING 

TO A S T A B L E SPIRAL IN THE 

P H A S E PLANE 

FIG.6 .8 : VELOCITY PROFILES FOR 

OUTFLOW CORRESPONDING 

TO A STABLE NODE IN THE 

PHASE P L A N E . 

F IG.6 ,9 : CHARACTERISTICS 

OF A STABLE NODE . 



0.12 5 

0.0 7 5 

0 .050 

0.50 1.00 

F I G . 8 . 1 : S ( ü ) AND VELOCITY PROFILES FOR THE FLAT PLATE WITHOUT SUCTION 

AT D IFFERENT VALUES OF N. 



0.75 

0.50 

0.2 5 

\ 

S ( ü ) f o r N ; 4 \ 5A^ 

' 

^ 

x o c t 

\ 

\ 

r^ 

v e l o c i t y | 

f o r N = 4 

ï ^ 
X 

1 
/ 

rofile / / / 

V 

\W 

2.0 

1.5 

0,5 

02 5 

F I G . 8 . 2 : S ( ü ) A N D V E L O C I T Y P R O F I L E S FOR T H E P L A N E S T A G N A T I O N POINT 

W I T H O U T S U C T I O N AT D I F F E R E N T V A L U E S OF N . 



120 

blowing 

+ + 

suction 

- ^ 

exact 

N = 5 

/ 

/ 

/ 

/ 

1 
/ 

' 

i 1 

-05 0.5 1.0 1.5 2.0 2.5 3.0 

U ' " 
-Vi 

F IS .8 .3 : SOME RESULTS OF THE MULTIMOMENT FIG.8.4: Oo FOR THE FLAT PLATE WITH v, </> X 
METHOD FOR THE FLAT PL ATEg, STAGNATION POINT 
WITHOUT SUCTION, 

1, 6 

1. 2 

1. 0 

0.6 

0.4 

0.2 

X 
y y 

// 

/ 

CX 

/ 

/ 

act 

} 
/ 

; 

/ 

/ 

-N = 5 

- 0 2 0.2 0.4 06 08 

( 0 ) ""• 

ID 

0.12 

FIG.8.5: a . FOR HARTREE'S BOUNDARY LAYERS WITHOUT SUCTION. 



X I V 

N = 

f 

6 / / / 
5 A 

^// Wxact 

1 

1 
/ 

7 

0 50 0.75 1.00 

F I G . 8 . 6 : V E L O C I T Y PROFILES FOR THE HARTREE BOUNDARY LAY ER W I T H / ^ = - 0 . 1 6 



1.6 

S=F" 

0.4 

\ / 5 = 1 

\^^/3=0.6 

\ 

^ \ ^ = 0 . 4 

-—___^=0,2 

^ = 0 

-005 
_ _ ^ 0 J _ _ 

r:::::^^^--^^aÏ9i8 38 

^ \ 
s. \ 

^ 
04 0.6 0.8 

F IG .8 .7 : S (ü) PROFILES FOR THE HARTREE BOUNDARY LAYERS 

TO THE EXACT SOLUTION BY SMITH [ i u ] . 

1.0 
— ^ ^ ü 
ACCORDING 



1.4 

\ 
\ ^ = 1 

\ ^ = 0 . 6 

^ ^ ^ = 0.4 

_____^=0.2 

/<3 = 0 

- 0 05 

^ i ^ . 19883 8 

^'"'^ 

\ \ 

^ 

^ 

O 0.2 04 0.6 0,8 _ 1.0 
— ^ ^ u 

FIG 8.8: SHEAR STRESS PROFILES FOR THE HARTREE BOUNDARY LAYERS 

ACCORDING TO THE EXACT SOLUTION BY SMITH 614] 



^ - • " ^ ' ^ b 

^ 

owing 

X X 

/ 

suctior 

exact 

N= 5 

/ 

^ 

/ 

/ 

-1.0 - 0 5 05 1,0 1.5 

u V V 
F I G . S . 9 : a o FOR THE PLANE STAGNATION POINT 

W I T H CONSTANT SUCTION VELOCITY. 

0.11 

008 3.0 

0.04 2.8 

0 2.6 
0 a02 004 0.06 0.08 0.10 0.12 0.14 0.1S 

F IG. 8.10: RESULTS OF THE MOMENTUM METHOD FOR Ü = 1 - X . 



0.25 0.75 

F IS .8 .11 : VELOCITY P R O F I L E S FOR 0 = 1 - x AT x = 0.10 AND 0.12 ACCORD I N 8 TO THE 

MOMENTUM METHOD. 



o 
II 
o. 

1 

c 
o 

a. 3 

- 
s

e
ri

e
s 

s
o

lu
ti

o
n

 
d

if
fe

re
n

t 
o

rd
 

s
te

p 
b

y 
s

te
p

 

-

^ 

1 
1 
1 
1 

^ 

^ 
^ 

^ 

^ ^ 
y ^ 

^ 
,^ 

o 

/ 
/ 

A 
^ 

O) 00 

A ) m 
^ 

/ / / 

o. 

- 1 



0.11 

0 . 1 0 

0,09 

0.0 8 

0.0 7 

0.0 6 

00 5 

0.0 4 

0.03 

0.02 

I 

V 
\ k 

\ \ 

\ 

- — 

V \ 

V 
\ 

\ 

exact -^ 

\ 
^ . 

, 

\ 
^ 

___p=0 

\ 1 

^ 

0.3 6 

|p7 
32 

0.28 

0.2 4 

0.20 

0.16 

0.12 

0.0 8 

0.0 4 

s. 

\ V 
\ f ^ 

\ 

^ 
\ 

^ 

V 
^ ^ . 

\ 

V 
exact \ 

\ 

k̂  

p=0 

^ " ^ 1 

\ . 

^ x 
0 002 0.04 006 0.08 010 012 0.14 0.16 

FIG,8.14 : RESULTS OF G Ö R T L E R ' S SERIES METHOD FOR 0 = 1 - !< 

0 002 0.04 0.06 aOB 0.10 012 014 0.16 

F IG.8 .15: RESULTS OF GÖRTLER'S SERIES METHOD FOR i J = 1 - X 



( 3 
It 
O. 

/ 

/ 

/ 
/ 

/ 

^J 
^ 

^ 
^ 

- s ^ ^ ^ ^ 

by
 s

te
p

 
lu

ti
o

n
 

p
 =

 2
0

 

^ 

^ 

4, «1 7^ 
^ 

^ II 
o. 

5^ 

< < 



0.10 

0.08 

0.0 7 

0 . 0 6 

0.0 5 

0.0 4 

0.0 3 

0.0 2 

0.0 1 

> 

N = 5-
\ 

r ^ \ , 

\ 

. 

0 

^ 1 

\ 

^ V 
\ > 

series method 
including x ™ 

step by step 
exact ( Toni ) 

1 

V 
\l 

^ 
^ ^ 

/ 
/ 
/ 

/ 
/ 

N=5 — 

1 

F I S . 8 . 1 9 : BOUNDARY LAYER ON A CIRCULAR C Y L I N D E R . 

- 0 . 0 1 
O 0.04 0.08 012 0.16 0.20 0.24 0,28 03 2 

R G . 8.18 : "o FOR ÏÏ = 1 " X ^ ; MULTI MOMENT METHOD N = 5,6 AND 7 

l . b 
0 

1 4 

1 ? 

1 0 

n R 

n a 

0.4 

0 

— 0 ^ - ^ 

/ 

/ 

--a-^ 

/ 
/ 

5^. 

^ 

y 

/ 

^ 

/ 

K 
N 

^ 

K 
X ̂

\ 

^ 

1 
D = 0 

u 

^ 

\ \ 
\ \ 

\ \ 
\ 

\ 

V' ^ 

^ 

1 
\. step by step 

^ - ' 
OJB 

FIG, 8 . 2 0 : RESULTS OF DIFFERENT METHODS FOR U = s i n x , 
O O exact ( T e r r i l l ) 

mul t imoment method, N = 7 , se r ies s o l u t i o n of order p. 
* t step by step so lu t ion 

1.8 

m o m e n t u m m e t h o d 



r - - ^ :::;:---

^ 

1 

X ^ 

^ xX 
X 

• ^ ^ 

' v 

V 
\ 

exact ( 

^ 

k 

\ 

e r r i l l ) -

^ 

\ 

X 

\ 
PsO'^ 

\ \ 

XX 

\ 

\ 

\ 

"-^^\ 

1,0 

0.8 

0.6 

0.4 

0.2 

O 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

F I G , 8,21: a„ ACCORDING TO GÖRTLER'S SERIES METHOD FOR Ü = s i n 7 

F'-

" ~ ^ ^ : • — -

^ 

e x a c t 

^ 

\ 

^ 
v 

( T e r r i l 

^ 

^ 

^ > 

\ V 

\ 

p ^ ^ • 

\ 2 

^ ' > 

^ 

^ - ^ 

V 

s 

l\̂  

1.2 

1,0 

0,8 

0.6 

04 

0.2 

O 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

FIG. 8.22 : II a„ ACCORDING TO GÖRTLER'S SERIES MET H OD FOR Ü = s i n x 



- V o S * 

^o4 
iSj'"-2 

f 
1.0 

0.54-08 

0.2 

0.1 

0.8 

0.6 

1.4 

1,2 

= ^ = ^ 
.>v 

X 
\ 

\ 

\ 

^ [̂  
\ 

1 

0.8 

0.6 

0.4 

0.2 

O 01 02 0.3 0.4 05 06 07 

FIG. 8.23: RESULTS OF DIFFERENT M E T H DOS FOR IJ = X - X 

XXX exact ( Curie ) 

m u l t i m o m e n t method , step bij step solution 

II II i s e r i es s o l u t i o n . N = 7 , p = 1 0 
m o m e n t u m method 

0.4 06 0.4 

0.3 0.4 0.2 

02 O 

^ 

. \ 

/ 

v 
A 

/ 

^ ^ 

y 

^ 

y 

u y* \ 

^ 
•y^^^ 

.^^ 

^^^ 

-̂ — 
<r.' 

" ^ ^ 

rS 
^ ^ 

,^^^ 

^ 

"^^^ 

= : J = . ^ 

j : : ^ 

^ 

— • -

'r/^ 

^-^^::J. 

V 

^ 

- --— 

—--"2; 

H 

• — 

— 

. 

-2 

— • 

. .. 

0,2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.9 2.2 2.4 8 2.0,_^ 2.2 

F I G . 8 . 2 i : SOME RESULTS FOR THE FLAT PLATE WITH CONSTANT SUCTION VELOCITY 

exact. Iglisch 

Schlichting [SS] 

momentum method 



mult imoment method N=7:sertes solution of order p 

— step by step continuation 

asymptote fo r i / x - ^ c o ; 0 5 = { 4 J ) 

O O exact v a l u e s , I g l i s c h . 

U I V 

F I G . 8.25: SOME RESULTS OF THE MULTIMOMENT METHOD WITH N = 7 FOR THE 

FLAT PLATE WITH CONSTANT SUCTION VELOCITY. 



0.25 

1, 

I 

multimoment kj 
method . 

f 
y<^ momentum 

exact (Iglisch) 

= 

method 

o.s 

FIS, 8.26 : x / o j FOR THE FLAT PLATE WITH CONSTANT SUCTION VELOCITY 

2.0 2.5 

u » y 

/ / / / / • ' . -\-\-\-\-\-\-\—\-

( 0 ) 

T7'^7~7~7//~7~7'TY7 ' > / ' ^ V y / / / / x ' / •/////// 

(b) 

FIS,8,27: TWO EXAMPLES OF BOUNDARY LAYERS WITH DISCONTINUOUSLY VARYING SUCTION VELOCITY 

DISCUSSED BY RHEINBOLDT. 



2.7 

2.6 

L _ 

\ \ 
1 \ 

~ —— 

K~~ 

— — 

\ 

= 1.5 

._\: 

_ ^ 

> ^ 

:0.10 

;_o.2s 

= 0.50 
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FIG.11.20: WAKE DRAG COEFFICIENTS FOR THE SEALED MODEL DE TERMI NED FROM WAKE TRAVERSES 
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FIG.11.22: BEGINNING OF THE TRANSITION POSITION FOR THE SEALED MODEL 
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S T E L L I N G E N . 

1. Indien op een vleugelprofiel bij één waarde van de invalshoek de 

drukverdeling bekend is kan hieruit op eenvoudige wijze de conforme 

transformatie van het profiel naar een cirkel worden afgeleid. Daar

na kan ook de drukverdeling bij willekeurige invalshoeken eenvoudig 

worden bepaald. 

2. Door Raspet is een methode aangegeven waarmee bij benadering kan wor

den berekend hoe bij een turbulente grenslaag de afzuigintensiteit in 

koorderichting over een vleugelprofiel moet verlopen om loslating van 

de grenslaag te voorkomen. 

De toepassing van deze methode voor verschillende invalshoeken kan 

zeer veel worden vereenvoudigd door gebruik te maken van de in stel

ling 1 bedoelde methode. 

Cornish, J.J.: A simplified procedure for calculating boundary layer 

control systems for unflapped airfoils. Research Rept. 

15, Aerophysics Dept., Mississippi State College, 1958. 

3. Bij het ontwerpen van een vleugelprofiel met bepaalde gewenste aëro

dynamische eigenschappen biedt het voordelen de modulus van de con

forme transformatie die de cirkel op het profiel afbeeldt voor te 

schrijven op de cirkelomtrek. 

4. Bij vleugelprofielen ontworpen door Wortman komt een "instability-

range" voor waarin het verloop van de drukgradient zodanig is gekozen 

dat de laminaire grenslaag niet kan loslaten doch wel omslaat. Het 

ontwerp van deze "instabilltyrange" kan worden verbeterd door toepas

sing van de methode welke in hoofdstuk 9 van dit proefschrift wordt 

beschreven. 

Wortman, F.X.: Progress in the design of low drag aerofoils. Biz. 

748 - 770 in: Boundary layer and flow control, Vol.2, 

Pergamon Press, 1961. 

5. In hoofdstuk 6 van dit proefschrift is een "fasevlak beschrijving" 

gegeven van de stroming tussen niet-evenwijdige vlakke wanden. Bij 

deze beschrijving werd uitgegaan van de grenslaagvergelijkingen. 
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Een analoge beschrijving voor dit geval kan worden gegeven indien 

wordt uitgegaan van de vergelijkingen van Navier-Stokes. In de geval

len waarin deze vergelijkingen oplossingen van het grenslaagtype toe

laten kunnen de vergelijkingen van Navier-Stokes in de grenslaagver

gelijkingen worden getransformeerd; de randvoorwaarden blijven echter 

verschillend. Indien het getal van Reynolds R oneindig groot wordt, 

naderen ook de randvoorwaarden tot die voor het grenslaagprobleem. 

Op eenvoudige wijze blijkt dan dat voor dit geval reeds bij vrij klei

ne waarden van R de grenslaagoplossing dicht wordt benaderd. Dit re

sultaat werd door Reeves en Kippenhan langs numerieke weg verkregen. 

Reeves, B.L. en Kippenhan,C.J.: On a particular class of similar solut

ions of the equations of motion and 

energy of a viscous fluid. Journ. Aero

space Sc. Vol. 29, Jan. 1962., biz. 

38 - 47. 

Ingen, J.L. van: Phaseplane representation of the incompressible vis

cous flow between non-parallel plane walls. 

Rept. VTH-118, Onderafdeling der Vliegtuigbouwkunde, 

Delft, sept. 1964. 

De oplossingen van de Falkner-Skan vergelijking (zie vergelijking 

3.10 van dit proefschrift) vertonen verschillende eigenschappen die 

op eenvoudige wijze aannemelijk kunnen worden gemaakt door een be

schouwing in een driedimensionale faseruimte waar als coördinaten de 

dimensieloze stroomfunctie f, de snelheid f' en de schuifspanning f" 

worden gekozen. 

De fasevlakbeschouwing van Ku voor de Falkner-Skan vergelijking met 

P = 1 is onvolledig. 

Ku, Y.K.: Boundary layer problems solved by the method of non-linear 

mechanics. Proc. 9th. Intern. Congress Appl. Mech., Brussel, 

1956, biz. 132 - 144. 
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8. De methode van Pohlhausen is onbruikbaar voor laminaire grenslagen met 

afzuiging. 

9. Door Görtler wordt gesteld dat zijn reeksmethode voor de berekening 

van laminaire grenslagen nauwkeurige resultaten levert en even een

voudig is toe te passen als de "onbetrouwbare methoden van het Pohl

hausen type". Deze uitspraak wordt niet gesteund door de resultaten 

welke met zijn methode worden verkregen. 

Görtler, H.: A new series for the calculation of steady laminar 
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