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9.

Polymer—clay nanocomposites - The importance of particle dimensions
Stellingen

De hoge stijtheid en lage permeabiliteit van polymeer-klei nanocomposieten moeten wor-
den toegeschreven aan de hoge aspectverhouding van de kleiplaatjes en niet aan hun ex-
treem kleine afmetingen.

Dit proefschrift: Hoofdstukken 9 en 10.

Velen zien de Halpin-Tsai vergelijkingen als empirisch. Ze kunnen echter worden gerela-
teerd aan ‘mean-field’ en zelfconsistente modellen waardoor ze een brede toepasbaarheid
hebben. Hierdoor zijn ze niet alleen geschikt voor de mechanische eigenschappen, maar
ook voor de berekening van de diélektrische- en transporteigenschappen van composieten.
Dit proefschrift: Appendix C.

De donkere lijnen in een TEM opname van een polymeer-klei nanocomposiet ontstaan
niet door absorptie van elektronen, maar door interferentie van elektronengolven die ver-
strooid worden door de kleiplaatjes. Ze mogen daarom niet worden geinterpreteerd als de
doorsnedes van kleiplaatjes.

Dit proefschrift: Appendix D.

Het permeabiliteitsmodel van Fredrickson en Bicerano is niet correct, omdat voor lage
concentraties aan vulstof, de permeabiliteit geen unieke functie is van het product van vo-
lumefractie en aspectverhouding.

G. H. Frederickson en J. Bicerano, J. Chem. Phys. 110(4), 1999, p 2181-2188.

Dit proefschrift: Hoofdstuk 10.

De mate van exfoliatie van kleiplaatjes in een polymeer-klei nanocomposiet kan worden
bepaald uit de stijfheid of uit de thermische uitzetting van het composiet, door modelleren.
Een dergelijke bepaling is betrouwbaarder en eenvoudiger uit te voeren dan een TEM of
rontgenanalyse.

Dit proefschrift: Hoofdstuk 3

In een unidirectioneel composiet versterken vezels beter dan plaatjes, omdat bij eenzelfde
volumefractie en aspectverhouding de afstand tussen vezels kleiner is dan de afstand tus-
sen plaatjes.

Elk composietmodel dat is gebaseerd op een twee-dimensionele voorstelling van een
composiet, impliceert dat de vulstof oneindig lang is in de derde dimensie. De meeste on-
derzoekers onderkennen dit niet, wat leidt tot foute voorspellingen van bijvoorbeeld de

mechanische en barriére eigenschappen van composieten.

J.E. Ashton, J.C. Halpin, P.H. Petit, Primer on composite materials: Analysis, Techn. Publ. Co., 1969
T. Matsuoka, Toyota Chuo Kenyusho R&D Rebyu 29(1), 1994, p 49-57.

D.M. Eitzman, R.R. Melkote and E.L. Cussler, AICRE Journal 42(1), 1996, p 2-9.

Als kleiplaatjes 10 tot 100 keer zo groot waren dan ze in werkelijkheid zijn, dan zouden
nanocomposieten met veel klei nog altijd transparant zijn maar stijver en makkelijker
verwerkbaar.

De meeste artikelen over ‘shear thinning’ gaan eigenlijk over ‘shear rate thinning’.

10. Infraroodspectroscopie is uitermate geschikt voor een snelle en nauwkeurige bepaling van

de oriéntatie, de kristallijne structuur en de moleculaire spanningen in polymeren.
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Stellingen

11. Govindaraj e.a. introduceren een nieuwe functie om relaxatieverschijnselen te analyseren,
door de tijdsconstante £ te modificeren tot z* = #47®¥_ Daar 0<g<1, heeft z* niet langer
de dimensie van tijd, waardoor de noodzakelijke dimensieloze schaling met de tijd ¢ en de
hoekfrequentie @ verloren gaat. Bovendien wordt de respons in het tijdsdomein complex,

omdat 7* complex is. De nieuwe relaxatiefunctie mist daardoor elke betekenis.
G. Govindaraj en R. Murugaraj, Mat. Sci. Eng. B77,2000, p 60-66

12. De energie die met een windturbine kan worden opgewekt, wordt primair bepaald door de
lengte van de rotorbladen en niet door hun aantal.

13. De eenvoudige wereldwijde communicatie via het internet, zal leiden tot een toename van
het vliegverkeer, net zo als de introductie van de computer leidde tot een toename van de
papierconsumptie.

14. Als de dalende interesse voor techniek in het westen aanhoudt zal, in navolging van de in-
dustrie, ook het zwaartepunt van de exacte wetenschap naar Azi€ verhuizen.

15. Bestaande associaties in het brein van een volwassene helpen hem in het aanleren verwer-
ven van nicuwe vaardigheden, maar hinderen hem in de perfecte beheersing ervan. Een
kind met minder associaties in haar/zijn brein leert aanvankelijk langzamer, maar beheerst
de nieuwe vaardigheden uiteindelijk tot een hogere graad van perfectie.

16. Terrorismebestrijding mag niet blijven steken in symptoombestrijding.

17. Ook vee moet het recht krijgen om ziek te worden.

Martin van Es

12 november 2001
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Polymer—clay nanocomposites - The importance of particle dimensions

Propositions

. The high stiffness and low permeability of polymer-clay nanocomposites should be attrib-

uted to the high aspect ratio of the clay platelets and not to their extremely small size.
This thesis: Chapters 9 and 10.

Many regard the Halpin-Tsai equations as being empirical. They can however be related
to mean-field and self-consistent models and therefore have a broad applicability. There-
fore they are not restricted to the mechanical properties, but also allow calculation of the
dielectric and transport properties of composites.

This thesis: Appendix C.

The dark lines in a TEM image of a polymer-clay nanocomposite are not the result of ab-
sorption of electrons, but rather of interference of electron waves that are diffracted by the
clay platelets. They should therefore not be interpreted as the cross sections of clay plate-
lets.

This thesis: Appendix D.

The permeability model of Fredrickson and Bicerano is incorrect, since at low filler con-
centrations, the permeability is not a unique function of the product of volume fraction
and aspect ratio.

G. H. Frederickson and J. Bicerano, J. Chem. Phys. 110(4), 1999, p 2181-2188

This thesis: Chapter 10.

The extent of exfoliation of clay platelets in a polymer-clay nanocomposite can be quanti-
fied from the stiffness or from the thermal expansion coefficient of the composite by
composite modelling. Such an assessment is sounder and simpler to perform, than a TEM
or X-ray analysis.

This thesis: Chapter 3

In a unidirectional composite fibres reinforce better than platelets do, since at the same
volume fraction and aspect ratio, the interfibre distance is lower than the interplatelet dis-
tance.

Any composite model based on a two-dimensional representation of a composite, implies
that the filler is infinitely long in the third dimension. Most researchers fail to recognise
this, which leads to wrong predictions of e.g. the mechanical and transport properties of
composites.

J.E. Ashton, J.C. Halpin, P.H. Petit, Primer on composite materials: Analysis, Techn. Publ. Co., 1969

T. Matsuoka, Toyota Chuo Kenyusho R&D Rebyu 29(1), 1994, p 49-57.

D.M. Eitzman, R.R. Melkote and E.L. Cussler, AIChE Journal 42(1), 1996, p 2-9.

. If clay platelets were 10 to 100 times larger than they actually are, nanocomposites with a

lot of clay would still keep their transparency, but would be stiffer and easier processable.

. Most articles about ‘shear thinning’ actuaily deal with ‘shear rate thinning’.

Infrared spectroscopy is suited eminently for a quick and accurate determination of the
orientation, the crystalline structure and the molecular stresses in polymers.
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11. Govindaraj et al. propose a new function to analyse relaxation processes, by modifying
the time constant rto t* = z'/i""’, with I=~/—_l . Since 0<g<1, 7* no longer has the dimen-
sion of time, so that the necessary dimensionless scaling with time # and angular fre-
quency & is lost. Furthermore, the response in the time-domain becomes complex, be-

cause z* is complex. The new relaxation function therefore does not make any sense.
G. Govindaraj and R. Murugaraj, Mat. Sci. Eng. B77, 2000, p 60-66

12. The energy generated by a wind turbine is determined primarily by the length of the rotor
blades, and not by their number.

13. The worldwide easy communication by the Internet, will lead to an increase in air traffic,
just like the introduction of the computer led to an increase in paper consumption.

14. If the low interest for technology in the West continues, the centre point of science will
follow that of the industry and shift towards Asia.

15. Existing associations in the brain of an adult will speed up the learning of new skills, but
will hinder him in a perfect mastering of these skills. A child with fewer associations in its
brain learns slower, but eventually masters the new skills to a higher level of perfection.

16. Fighting terrorism should not be limited to fighting symptoms.

17. Cattle too should get the right to become ill.

Martin van Es

12 November 2001
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Summary

What is a polymer-clay nanocomposite?

A polymer-clay nanocomposite is a polymer that contains nanometer sized clay particles.
Such a nanocompositc can have favourable properties, like high stiffness and barrier
resistance. The best properties are obtained if the clay is fully exfoliated into single clay
layers with a thickness of about one nanometer and a diameter of 20-500 nanometers.

During exfoliation, the clay particles do not only become much smaller but
simultaneously their shape changes from cubical blocks to flat platelets. The shape of a clay
platelets is usually expressed in its aspect ratio. This is the ratio between the diameter and the
thickness of a platclet.

As a result of their small dimensions, the clay platelets have a large specific surface
area of about 700 m*/g. Their small size also results in small inter platelet distances in a
polymer-clay nanocomposite. At a loading of 1 weight percent of clay thesc distances are
about 250 nanometers while they are merely 10 nanometers at a loading of 20 weight percent.

Why do nanocomposites have good properties?

In the scientific literature the favourable properties of polymer-clay nanocomposites are often
assigned to the extreme small dimensions of the clay platelets. It is argued that in a
nanocomposite most of the polymer molecules are in direct contact with clay platelets. This
changes the behaviour of the polymer molecules in such a way that the resultant
nanocomposite material obtains favourable properties. According to this argument the aspect
ratio of the clay platelets is of minor importance,

Doubt about this hypothesis gave rise to start the research described in this thesis. This
doubt was instigated by the knowledge that the properties of conventional (micro)composites,
with fibres or platelets of a few micrometers or larger, mainly originate from the high aspect
ratio of the fibres or platelets and not from their absolute size. Furthermore, it is known that
an adsorbed polymer layer on the surface of a filler usually has a thickness of 1 to 5
nanometers. Thus, in conventional nanocomposites with distances between clay platelets in
the order of 100 nanometers it could be assumed that this adsorbed phase would be of minor
importance.

In this thesis we will discuss which properties of polymer-clay nanocomposites
originate from the small dimensions (high specific surface area) of the clay platelets and
which from their high aspect ratio.

The effect of particle shape and particle size can be distinguished by comparing the
properties of nanocomposites with those of microcomposites or with the results of
micromechanical composite calculations. Mica platelets strongly resemble clay platelets in
their shape and crystal structure. However, their absolute size is about 1000 times larger.
Hence, the reason for the use of mica based microcomposites as reference throughout this
thesis.

Since the aspect ratios of the reference mica platelets always deviate somewhat from
that of the clay platelets, a direct comparison of properties is difficult. A scientifically correct
comparison of the properties of nanocomposites and microcomposites can be performed, by
using mathematical composite models. With composite models the properties of composites
can be calculated.

xi



xii Summary

Objectives of the research described in this thesis

e Determine which properties of polymer-clay nanocomposites originate from the small
dimensions of the clay platelets and which from their high aspect ratio.

e Develop and validate composite models for the calculation of the elastic and barrier
properties of platelet-reinforced composites.

e Determine how clay platelets influence the properties of polymer-clay
nanocomposites, like stiffness, thermal expansion, crystallisation, gas diffusion,
rheology and dielectric relaxation.

e Gain insight in the differences between nanocomposites and microcomposites by
direct comparison of their properties and by using composite models.

Development and validation of a mechanical composite model for platelet reinforcement
For the calculation of the stiffness and thermal expansion of platelet-reinforced polymers the
Mori-Tanaka model was chosen. In principle this analytical micromechanical model is only
suited for composites with perfectly oriented platelets. By using an orientation distribution
function also a random orientation can be accounted for.

Since the practical use of the Mori-Tanaka model and of the orientation distribution
function is rather cumbersome, some simplified theories are introduced. These tools enable us
to perform composite calculations quickly and accurately.

To test the validity of the Mori-Tanaka model the results of this model are compared
with experimental results of microcomposites. The Mori-Tanaka results are also compared to
the results of finite element calculations. Both the experimental data and finite element results
indicate that the Mori-Tanaka model gives reliable predictions of stiffness and thermal
expansion of platelet filled composites.

Morphology of nanocomposites and mobility of the polymer phase

Two series of nanocomposites were made by extruding either polyamide-6 or polyethylene
together with clay. The clay was pretreated so as to aid dispersion in the polymers. In the test
series with polyamide-6 the amount of clay platelets was varied and in the series with
polyethylene their aspect ratio was varied.

The shape and dispersion of clay platelets in the polymers was made visible by
transmission electron microscopy (TEM). Scrutiny of the dark lines in TEM pictures of
polymer-clay nanocompositcs reveal that they are not a direct image of the clay platelets, but
instead are the result of the interference of electron waves. Care has to be taken with the
interpretation of TEM pictures from polymer-clay nanocomposites.

The mobility of the polymer phase in nanocomposites is studied with proton solid-
state nuclear magnetic resonance experiments (NMR). 4 part of the polymer phase in
polyamide-6-clay nanocomposites appears to be as mobile as a low molecular liquid. By
increasing the weight percentage of clay the amount of polymer with high mobility rises. At
20 weight percent of clay about 10 percent of the polyamide-6 phase is as mobile as a liquid.

Thermal behaviour of nanocomposites

The crystallisation and melting behaviour of polyamide-6 and polyethylene nanocomposites
was analysed with differential scanning calorimetry (DSC) and with infrared spectroscopy
(IR). DSC was used to determine the melting temperatures and IR to define the types of
crystals.
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The polyamide-6 nanocomposites appear to have three distinct melting points near
212 °C, 225°C and 240°C. Usually polyamide-6 contains solely a-crystalline material that
melts near 225 °C. By addition of clay two new phases emerge with melting points below and
above that of the a-crystalline phase. The melting point of the low-melting phase lies at
212°C and that of the high-melting phase at 240 °C.

The low melting phase is already mentioned in the literature and is assigned to y-
crystalline material. The high melting phase has not been mentioned before. Infrared
spectroscopy reveals that this phase also consists of y-crystalline material.

The high melting point probably emerges because part of the y-crystalline phase is
confined between the clay platelets and consequently experiences a restricted mobility.
Therefore, a higher temperature is required to melt this part of the y-crystalline phase (Tm =
AH/AS, AS decreases so Tm increases).

Dielectric behaviour of nanocomposites

The mobility and relaxation mechanisms of the polymer phase in polyamide-6-clay
nanocomposites were determined with dielectric relaxation spectroscopy (DRS). For this
purpose measurements were performed at frequencies between 0.11 and 960 kHz and
temperatures between —130 and 200 °C.

The most important difference with unfilled polyamide-6 is that nanocomposites show
a second ‘glass’transition at about 40 °C below the usual glass transition. The strength of this
transition increases as the amount of clay increases. Dynamic mechanical analysis (DMA)
confirms the existence of this transition.

By studying the activation energy it can be concluded that confinement is a relative
notion and is determined by the temperature and frequency of the measurement. At low
temperatures and high frequencies the polymer does not show any confinement, because
movement then occurs at a length scale that is smaller than the distance between clay
platelets. Confinement only shows up at high temperatures and low frequencies, when
molecular motions require a length scale larger than the distance between clay platelets.

Stiffness and thermal expansion of nanocomposites

The stiffness of polyamide-6-clay nanocomposites and polyethylene-clay nanocomposites
was determined by dynamic mechanical analysis (DMA) and by tensile testing. Both types of
nanocomposites become stiffer with further addition of clay.

At low clay content (<5 weight percent), the stiffness of nanocomposites derived
experimentally, corresponds to the stiffness of polymer-mica microcomposites and is
correctly predicted by composite models. The measurements and calculations show that the
high stiffness of nanocomposites mainly originates from the high aspect ratio of the clay
platelets and not from their small size (high specific surface area).

The stiffness of nanocomposites with more than 10 weight percent of clay is lower
than that of corresponding polymer-mica microcomposites. At these loadings, composite
models overestimate the stiffness of polymer-clay nanocomposites. The low effectiveness of
clay at high loadings is attributed to the smaller distance between clay platelets at these
loadings, as is observed by transmission electron microscopy. For instance, above 10 weight
percent the distance between the clay platelets is smaller than 20 nm. As a result, the effective
aspect ratio of the clay platelets decreases, while at the same time a highly mobile polymer
phase appears in the confined space between clay platelets. Confinement also leads to lower
crystallinity and crystal perfection of the crystalline polymer phase. All these effects can only
result in a lower stiffness of the polymer-clay nanocomposite.
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Contrary to statements in the scientific literature, the small dimensions of the clay
platelets result in a lower stiffness of the nanocomposite.

Theoretical considerations show that the thermal expansion coefficient and stiffness of
a composite are closely related. The stiffer the composite, the lower the thermal expansion
will be, while the composite will expand most in the direction of lowest stiffness. It is found
that the theory accurately predicts the relationship between the thermal expansion and
stiffness of polyamide-6-clay nanocomposites.

Barrier properties of nanocomposites

Clay platelets in nanocomposites are known to retard the diffusion of gases or liquids. In
order to determine which mechanisms are responsible for the retardation of diffusion, the
water uptake of a series of polyamide-6-clay nanocomposites has been monitored. The
diffusion coefficient of water in the PA6-nanocomposites was determined by assuming simple
Fickian diffusion.

The permeability of polymer-clay nanocomposites was compared with the predictions
of composite models. To this end several analytical models, found in the literature, were
analysed that relate permeability to the morphology of multi-phase materials. Since none of
the models could predict the permeability of platelet filled composites at high volume
fractions, a new model was developed. This model is a combination of Brydges model, which
is suitable for ribbons at high volume fractions and Hatta’s model suitable for platelets at low
volume fractions. The results of this new theory agree with the results of finite element
calculations.

By the modification of Nielsen’s transport equation, an expression is generated to
estimate the effect of misalignment of platelets on diffusivity. This expression reveals that
random alignment of clay platelets can seriously decrease the barrier resistance (diffusivity)
of nanocomposites.

The good agreement between experiment and Hatta’s model suggests that mainly the
aspect ratio and the amount of clay platelets determine the barriere resistance of
nanocomposites. Changes in polymer properties, due to the high specific surface area of the
clay platelets, do not significantly change the barrier resistance of PA6-clay nanocomposites.

Rheology of nanocomposites

The effects of the size and aspect ratio of clay platelets on the rheological behaviour of
nanocomposites were investigated. For this purpose, polyamide-6 and polyethylene were
filled with spheres and platelets with dimensions between 10 and 10 m. The rheology of
these materials is determined under shear deformation and tensile deformation.

The visco-elastic behaviour of polymer nanocomposites in the molten state proves to
be very different from that in the solid state. Contrary to the behaviour in the solid phase it is
found that in the molten state, the effect of particle size on visco-elasticity is strong, whereas
the effect of clay aspect ratio is small.

Unlike microcomposites, nanocomposites have a high melt strength and high melt
viscosity, which do not collapse at large shear deformation. Two mechanisms are suggested to
explain these effects: tethering of polymer chains on the clay platelets and the existence of an
electrical double layer on the clay platelets.
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General introduction

1.1 The quest for better polymer properties

In polymer research, there is a continuous search towards cheap, readily processable materials
that are stiffer, stronger, tougher and lighter. In the early days of polymer research, the main
route to achieve improved properties was by polymerisation of new monomers. Later, co-
polymerisation of different monomers or blending of polymers further improved these
properties. Although a wide variety of properties can be achieved this way, the ultimate
properties of pure, non-oriented polymers are limited. High strength and stiffness can only be
achieved by orientation of polymer chains, as is done in aramide, carbon and polyethylene
fibres. These fibres have mechanical properties that are about 100 times better than their non-
oriented counterparts. If properly oriented, polymer fibres are stronger than steel at a much
lower weight.

The properties of non-oriented polymers are often improved by adding stiff particles
or stiff and strong fibres. They are then referred to as compounds or composites. Compounds
and composites are analogous to concrete, which is reinforced by gravel or steel bars.

By incorporating long, high strength fibres into a thermosetting polymer matrix, high-
performing composites can be made with a strength and stiffness comparable to those of
metals. The low weight and high strength of polymer composites makes them ideal for use in
space- or aircraft, and in sports utilities like skis, tennis rackets and golf-clubs. So in general
high performance composites are used in applications that combine optimum strength with
low weight and where price is of minor importance. The use of high performance composites
is still limited, because of their high price and labour-intensive production.

Easy processable composites can be made by incorporating short fibres into a
thermoplastic matrix like a polyamide or polyester. Strength and stiffness of these relatively
cheap and easily processable ‘thermoplastic composites’ are inferior to those of high
performance composites because, during processing, fibres seriously break down and fibre
orientation is difficult to control.

Thermoplastic composites are being used extensively in automotive and E&E
(electronic & electrical) applications like door handles, air intake manifolds, connectors and
power tools. All these applications require high strength, high processing throughput and
freedom of design at a moderate price.

Polymers are also being filled with cheap, low performing inorganic materials like
chalk, clay or talc. These so called ‘polymer compounds’ generally show a moderate increase
in stiffness compared to that of the neat polymer, while keeping the low price and ease of
processing. Polymer compounds are being used even more extensively than thermoplastic
composites because of their very low price and attractive properties. Applications of polymer
compounds are found in many products like car bumpers, garden furniture and PVC pipes.

Polymer-clay nanocomposites are a relatively new class of reinforced polymers with
particles that are about 1000 times smaller than in conventional composites and compounds.
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Polymer-clay nanocomposites possess a unique combination of properties. They have
relatively high strength and stiffness, combine high barrier resistance and good flame
retardancy and can be processed easily. Nanocomposites also offer the possibility to obtain
composite properties without drastically affecting optical transparency. At present, a few
commercial applications exist like films for food packaging, high barrier bottles, body panels
of cars and engine covers.

1.2 Polymer-clay nanocomposites

Nanocomposites can be defined as materials filled with particles that are smaller than 100 nm
in at least one dimension. They can be obtained by dispersing small particles in a material or
by creation of filler particles during processing. In general, nano-sized particles can reinforce
a material, nucleate crystallisation or increase viscosity. Nano-sized particles are also known
to increase the resistance against transport of liquids or gases and the resistance against fire.
In electrical applications nanoparticles can make a material (semi) conductive or add special
magnetic properties to a material [1].

Nanocomposites are not restricted to polymers. This can be illustrated by the versatile
list of materials that is found by using the word ‘nanocomposite’ as the keyword in a literature
search. Some of the hits are listed below:

Nano-sized ceramic particles in metals
Materials with a designed molecular architecture
Materials with nano-sized crystals
Carbon nano-tubes in polymers
Nano-structured semiconductors
Well dispersed clay platelets in polymers

The list of materials carrying the name ‘nanocomposites’ is rather extensive. Hence, it
is necessary to specify to which kind of nanocomposite one is referring. In this thesis, only
polymer-clay nanocomposites are considered. Throughout this thesis, often simply
‘nanocomposites’ is used to refer to ‘polymer-clay nanocomposites’. Polymer-clay
nanocomposites have a polymer matrix filled with fully separated layers of clay.

Layered silicates, like smectic clays, talc and mica have since long been used as
inexpensive fillers for polymers. In conventional filled polymers these fillers are only partly
broken up during mixing, resulting in a phase with dimensions ranging from 0.5 pm to 100
pm. The properties of these polymer compounds are marginally better than those of unfilled
polymers. In polymer-clay nanocomposites the silicate is dispersed much more finely,
resulting in a polymer filled with silicate platelets with dimensions in the order of 1x100x100
nanometer and a surface area of about 700 square meters per gram. The silicate platelets in
polymer-clay nanocomposites are not only much smaller than in polymer compounds, also
their aspect ratio (width/thickness) is much larger.

In 1987, Okada et al. [2] reported about making a PA6-clay nanocomposite. They first
made the clay compatible with the PA6 by modifying it with an organic ammonium salt.
Subsequently caprolactam was polymerised in the presence of the modified clay. Since this
first publication, research groups all over the world, have synthesised many other
nanocomposites. Giannelis [3] and Lagaly [4] wrote extensive overview articles on the
preparation and properties of nanocomposites. A general overview on polymer-clay
nanocomposites is also given in a recent book edited by Pinnavaia and Beall [5].

In Table 1.1, some examples of polymer-clay nanocomposites are listed. The table
also mentions the procedures used to make the nanocomposites; the polymerisation route, the
melt-compounding route or the solution blend route. In the polymerisation route,
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nanocomposites are made by polymerising monomers in the presence of organically modified
clay. Nanocomposites can also be made by melt compounding or solution mediated routes. In
the melt-compounding route, organically modified clay is mixed with a polymer in an
extruder. The solution-blending route consists of dissolving a polymer and organically
modified clay in a mutual solvent and subsequently removing the solvent.

Type of polymer in polymer-|Route to make{References
clay nanocomposite nanocomposite
Polyamide-6 Polymerisation 2,6
Epoxy Polymerisation 7,8
Poly (methyl methacrylate) Polymerisation 9,10
Poly (e-caprolactone) Polymerisation 11
Polyurethane Polymerisation 12
Polyimide Polymerisation 13, 14
Polyamide 12 Polymerisation 15
Polyester Polymerisation 16, 17
Polyamide-6 Melt compounding |18, 19
Polypropylene Melt compounding |20, 21
Polyethylene Melt compounding 122
Polyamide-66 Melt compounding |23
Polypropylene Solution blending 24
Polyethylene Solution blending 25
Poly (vinyl-pyrrolidon) Solution blending 26
Poly (vinyl alcohol) Solution blending 27
Poly (ethylene oxide) Solution blending 28

Table 1.1 Selection of polymer nanocomposites made since the first publication on PA6-clay
nanocomposites in 1987.

Nanocomposites show an improvement of properties at much lower filler contents
than in conventional polymer compounds. At a filler content of 3-4 weight%, a PA6-clay
nanocomposite shows mechanical stiffness, dimension stability and barrier properties
normally found in a conventional 20 weight% PA6-clay compound [28,29]. Nanocomposites
also offer extra benefits like low density, good melt flow, better surface properties, improved
dimension stability, flame-retardant properties and recyclability.

1.3 Platelet reinforced composites

Between 1965 and 1985 a lot of research was undertaken on composites reinforced with
platelets [30-36]. The general idea was that platelets with high aspect ratio could reinforce in
two directions while fibres can only reinforce in one direction. Therefore, reinforcement by
platelets would give better isotropic properties than fibres. The barrier properties of platelet
reinforced composites also got attention in those days. Most research was performed on mica-
reinforced plastics. In addition, glass platelets, aluminium diboride, steel discs, aluminium
platelets and silicon carbide platelets received some attention. In general, platelet-reinforced
composites were found to increase stiffness, dimensional stability and barrier properties.

The early enthusiasm was damped because impact strengths of platelet-reinforced
composites were low. Also serious decrease of aspect ratio and incomplete wetting of the
platelets occurred during extrusion and injection moulding, which led to poor properties.
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However, impressive properties were obtained, by avoiding the decrease of aspect ratio, using
elaborate compression moulding techniques [30, 31]. By filling a styrene-acrylonitrile
copolymer with 50 vol% of mica, using compression moulding, a flexural modulus of 53.1
GPa and a flexural strength of 207 MPa was obtained. These excellent properties illustrate the
potential of platelet reinforcement.

1.4 Why do nanocomposites have good properties?

Since the discovery of nanocomposites numerous publications on nanocomposites have
appeared. Most authors only show the results of synthesis and characterisation of
nanocomposites. It is remarkable that only a few authors try to explain the properties of
nanocomposites.

Giannelis [3] points at the large aspect ratio and orientation of the filler particles and
stresses the importance of the interface. Kojima [28] suggests that the properties may depend
on ion-bonding strength and orientation of the polymer and the clay. He proposes an
empirical mixing law that relates stiffness to the fraction of constrained polymer material. Hui
et al. [37] also stresses the importance of the interface. He uses composite modelling to
calculate the stiffness of nanocomposites. Yano et al. [13] uses a quantitative model to explain
the effect of aspect ratio on the diffusional properties of nanocomposites. Kuchta et al. [38]
suggests that thermal stability, tensile modulus and barrier properties are intimately related to
the crystal structure and to the permanent attachment of polymer chains to the surface of the
clay platelets. Shelley [39] concludes that the high stiffness, strength and barrier properties of
nanocompositesd are a consequence of the presence of a constrained fraction of polymer with
high stiffness.

The research described in this thesis was started because I doubted that the properties
of nanocomposites mainly depend on the presence of a constrained polymer phase. This doubt
was instigated by the knowledge that the properties of conventional (micro)composites, with
fibres or platelets of a few micrometers or larger in size, mainly originate from the high aspect
ratio of the fibres or platelets.

Furthermore it is known that the thickness of an absorbed polymer layer on polymer-
filler interface usually has a thickness of 1 to 5 nanometers [35]. In conventional
nanocomposites, with distances between clay platelets in the order of 100 nanometers or
more, the amount of absorbed polymer will therefore be small, only a few percent. It was
therefore anticipated that the absorbed (confined) phase would have a minor influence on the
properties of nanocomposites, like stiffhess and barrier resistance.

Generally, the properties of nanocomposites can be affected by two morphological
parameters: the size and the aspect ratio of the clay layers. The size is important because small
particles have a higher specific surface area and thus create more polymer interphase than
large particles. The aspect ratio is of importance because clay layers with large aspect ratios
are more effective in reinforcing a polymer than layers with small aspect ratio.

Much can be learned by comparing the properties of nanocomposites with those of
conventional platelet reinforced composites. The surface area of platelets in conventional
composites is about 1000 times smaller than in nanocomposites. Therefore, the amount of
interphase in conventional platelet reinforced composites can be neglected. This offers a
possibility to study which properties of nanocomposites are caused by the small size of the
platelets and which are not.

In this thesis we will discuss which properties of polymer-clay nanocomposites
originate from the small dimensions (high specific surface area) of the clay platelets and
which from their aspect ratio.
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1.5 Composite modelling

It is well known that the mechanical properties of fibre filled composites can be calculated
mathematically by composite modelling. In particular, the stiffness of fibre filled composites
can be predicted accurately. For this calculation, knowledge is required about the orientation
and the aspect ratio of the fibres. In addition, the properties of the fibres and polymer matrix
must be known.

Not much is known about the micromechanical modelling of platelet-reinforced
composites. Only a few models that account for platelet reinforcement can be found in the
literature [36-37, 40-44]. Most models for platelet reinforcement are not validated by
comparison with experimental results. Therefore the reliability of these models is
questionable. So, before performing composite modelling on nanocomposites, a reliable
compositc model must be found for platelet reinforcement. This model should also include the
effect of platclet orientation and prove its reliability by comparison with experiments.

1.6 Objectives of research described in this thesis

e Determine which properties of polymer-clay nanocomposites originate from the small
dimensions of the clay platclets and which from their high aspect ratio.

e Develop and validate composite models for the calculation of the elastic and barrier
properties of platelet-reinforced composites.

e Determine how clay platelets influence the properties of polymer-clay
nanocomposites, like stiffness, thermal expansion, crystallisation, gas diffusion,
rheology and dielectric relaxation.

e Gain insight into the differences between nanocomposites and microcomposites by
direct comparison of their properties and by using composite models.

1.7 Scope of thesis

This thesis essentially consists of three parts. In the first part some theoretical composite
models are introduced. The second part discusses the morphology and molecular mobility of
nanocomposites while in the last part the knowledge of all preceding chapters about
composite modelling, morphology and molecular mobility is applied to explain thc
mechanical, diffusional and rheological properties of nanocomposites.

Chapter 2 explains how polymer-clay nanocomposites are made. We describe what
nanocomposites are and which problems are encountered in making nanocomposites. To
understand the formation of nanocomposites, some indispensable knowledge about the
chemical and crystalline structure of layered silicates is given. Several strategies to separate
clay layers are explained.

The necessary mathematical tools to calculate the elastic properties of platelet-
reinforced composites are developed in Chapter 3. A general introduction in confinuum
mechanics is presented. Continuum mechanics is used to derive a theoretical model that uscs
spheroidal particles to calculate the elastic properties of unidirectional composites. By
adapting the aspect ratio of the spheroids, the model can be made suitable for fibre, sphere
and platelet filled composites. It is shown that, by a proper choice of parameters, the empirical
Halpin-Tsai model coincides with the more elaborate tensor based theoretical model. An
orientation distribution function is introduced to account for the effect of platelet orientation.
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The procedure of orientation averaging is greatly simplified by introduction of a simple model
that calculates the effect of random orientation on stiffness. An exact tensor model is
introduced to determine the expansion coefficient of a two-phase composite.

In Chapter 4 the models introduced in Chapter 3 are validated. Two methods are used
for validation of the theoretical models. In the first method, the experimental stiffness of
conventional platelet filled composites is compared to the stiffness predicted by composite
modelling. The second method relies on finite element calculations to check the validity of
the analytical models introduced in Chapter 3.

In Chapter 5 the preparation PA6 and PE nanocomposites is described that are used
throughout this thesis. A detailed description is given of the types of polymers and clays used
and of the compounding details used to make the nanocomposites.

The central theme of Chapter 6 is the morphology of the clay platelets and the
mobility of the polymer phase in the nanocomposites. The morphology of nanocomposites is
studied by Transmission Electron Microscopy (TEM). TEM images visualise the separation
of clay platelets, their length and their orientation. A critical evaluation is given on how to
extract quantitative information from TEM images of nanocomposites. An extended
evaluation on this subject is given in Appendix D. The mobility of the polymer phase in
polyamide-6 nanocomposites was studied with solid state NMR spectroscopy.

Another morphological feature of nanocomposites is the crystallinity of the polymer
phase. In Chapter 7 the effect of nano-dispersed clay platelets on the crystalline structure of
the polymer matrix is discussed. DSC and FTIR-techniques are used to determine the effect of
polymer confinement on melting and crystallisation. A theory is given that qualitatively
explains the remarkable experimental results.

The mobility of polymer chains that are confined between clay platelets is studied by
dielectric relaxation spectroscopy in Chapter 8. A short introduction on the effect of
frequency and temperature on dielectric transitions is given. Calculation of the activation
energy fine structure enables a detailed study of the cooperative motion of polymer chains
near the glass-transition. The effect of confinement on the extent of cooperative motion is
studied. A qualitative explanation is given to explain the observed results.

In Chapter 9 the elastic properties of some polymer-clay nanocomposites are discussed
and compared with theoretical calculations. The effects of clay loading and clay-orientation
on the elastic properties are studied by DMA measurements and tensile tests. Parameters like
the aspect ratio of the clay platelets and polymer crystallinity are used to quantitatively
explain the observed stiffness and expansion coefficient of nanocomposites.

Clay platelets form a barrier against transport of gases or liquids through
nanocomposites. In Chapter 10 the effect of clay morphology on the barrier resistance of
nanocomposites is studied by comparing diffusion measurements with theoretical results.
First, it is explained how diffusion measurements are performed and evaluated. Next, several
theoretical models that predict diffusion are introduced and discussed. A new model to predict
diffusion through a composite filled with platelets is introduced. The validity of this model is
checked by comparing its results with the results of finite element modelling. A theory is
introduced to evaluate the effects of polydispersity and misalignment on diffusion. The
diffusion of water in PA6 nanocomposites is determined and compared to theoretical
predictions. Results found in literature about water transmission through polyimide
nanocomposites are also discussed.

Chapter 11 deals with the melt rheology of nanocomposites. This is done by measuring
the rheology of polyethylene and polyamide-6 that are filled with spheres and platelets of
varying sizes and aspect ratios. Rheological properties of nano-composites with nanometer
sized spheres and platelets are compared to micro-composites with micrometer-sized
particles. Aspect ratios varied between | and 200 and particle sizes between 1 nm and 10 um.
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The special features of nanocomposite rheology become evident by comparing the rheological
properties of nanocomposites with those of microcomposites.
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2

Making polymer-clay nanocomposites

2.1 What is a nanocomposite?

To make polymer-clay nanocomposites, all the clay particles must be fully separated into
individual layers of clay. This so-called ‘exfoliation” process is depicted in Fig. 2.1.

Exfoliating clay in a polymer is not simple. To understand the extent of this problem,
think of clay particles as a thick book. Each page in the book represents an individual silicate
layer with a thickness of 1 nanometer. The pages of the book are glued together. The problem
to make polymer-clay nanocomposites is comparable to individually disperse all the pages of
the book in a pool of viscous liquid.

To solve this problem first the glue between the pages must be dissolved and
subsequently the book must be put in the pool and stirred vigorously to separate the pages.
Polymer-clay nanocomposites are made like wise. First the bonds between individual clay
layers are broken (intercalation) and subsequently all clay layers are dispersed in a polymer
(exfoliation).

In 1987 researchers at Toyota succeeded in exfoliating the stacked layers of a
montmorillonite clay into a PA6 matrix [1]. It was found that the well-dispersed layers had a
high aspect ratio and strongly reinforced the nylon. To understand how to weaken the bond
between clay layers and how to completely disperse individual clay platelets in a polymer,
some knowledge of the crystalline structure of layered silicates is essential.

Stacked clay layers in Nanocomposite of exfoliated clay
a polymer matrix layers in a polymer matrix

Figure 2.1 Exfoliation of primary clay layers in a polymer matrix
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2.2 Whatis clay?

Layered silicates as talc, mica, and smectic clays are built up of regularly stacked layers, each
having a thickness dj of about 1 nanometer and a length of about 50-1000 nanometers. All
these layered silicates have the same crystalline structure. Each layer is build up of three
sheets, two sheets on the outside of the layer and one sheet in the middle of the layer.
Therefore this group of materials is referred to as 2:1 layered silicates. The sheets on the
outside are made of interconnected SiO, tetrahedrals, while the inner sheet has an octahedral
configuration and contains metal cations like AI'* or Mg?* and hydroxyl groups. Fig. 2.2
shows a schematic drawing of a 2:1 layered silicate.

Figure 2.2 Crystalline structure of a 2:1 layered silicate

In talc all sites in the inner sheet are occupied by Mg [2] and all sites in the outer
sheets by Si“"’. By substitution of Mg?" in a talcum crystal by Al**, Fe?, or Fe’*, a mica or a
smectic clay crystal is obtained. Hence the different types of 2:1 layered silicates only differ
in the amount and kind of metal cations incorporated in the crystal. In talc, with all sites in the
inner sheet occupied by Mg**, the crystal is electrostatically neutral. Owing to the absence of
ionic attraction in a talcum crystal, the talcum layers are relatively easy to separate by
mechanical action. Therefore, talcum is one of the softest silicates known.

In smectic clays and mica not all octahedral sites are occupied by cations. This results
in negatively charged silicate layers. Between the silicate layers of mica and smectic clays,
cations as Na®, Ca’ or K" act as counter charges in the inter-gallery space and provide a
strong ionic bond between adjacent layers. More information about clays can be found in [2].
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2.3 Separating the clay layers

Already in 1974, Maine [3] thought about single clay layers as a potential reinforcing material
for polymers. He rejected the idea because he thought that clay clusters could not be broken
into separate layers. Indeed dispersing forces in an extruder usually are not high enough to
break the ionic bonds between clay-layers. Therefore, it is impossible to make polymer-clay
nanocomposites by simple mechanical action.

Fortunately some of the 2:1 clays, like hectorite, montmorillonite and saphonite can be
swollen in water. Their ionic charge is just high enough to let water enter the inter-gallery
space and swell the clay. During this swelling procedure the distance between the clay
platelets is increased and the strength of the ionic bond is decreased. Talc cannot be swollen
in water because it has no inter-gallery-cations. This renders the talc crystal hydrophobic,
making it impossible for water to enter the inter-gallery space. Mica has a too high
concentration of interlayerr cations. This makes the bond strength between the clay layers too
large for water to enter the inter-gallery space.

The simplest way to make nanocomposites is to swell the clay in water in the presence
of a polymer. Based on this principle Korbee [4] managed to make PA6-clay nanocomposites
by addition of water to a PA6-clay compound while being extruded.

In most cases the clay must first be made compatible with the polymer to make a
nanocomposite. To do this, first the clay is swollen in water. Next organic molecules are
inserted between the clay layers, by exchanging the original inter-layer cations by organic
cations or by addition of organic molecules with chemical groups that form complexes with
the cations [5]. This process is called intercalation and leads to swollen clays with a relatively
small (1-40 A) distance between the layers. The amount of cations that can be exchanged is
expressed in the cation exchange capacity. The cation exchange capacity of a typical sodium
montmorillonite is in the order of 80 to 140 milli-equivalents per 100 grams of clay.

After removing the water, the clay layers stay separated to some extent because of the
presence of the organic molecules. This lowers the ionic interaction between the clay platelets
and provides an environment that is compatible with polymers. By insertion of polymers (or
monomers) into the swollen inter-layer space, completely exfoliated layers can be obtained
and a nanocomposite is made. For a general overview of the synthesis, characterisation and
properties of polymer-clay nanocomposites one is refered to the book of Pinnavaia and Beal

[6].
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Abstract

In this chapter the necessary tools will be presented to calculate the mechanical stiffness and
thermal expansion of platelet filled composites. First a general introduction is given into
continuum mechanics, introducing all the terms used for modelling the elastic properties of a
nanocomposite. Next some models for unidirectional platelet reinforced composites are
introduced. In nanocomposites, perfect alignment is seldom found. It will be shown that this
can be accounted for by introducing an orientation distribution function. Since in most cases
the mathematics behind compositc models and randomisation of the orientation are
complicated, simple to use approximations are given to calculate the stiffness of composites
with uni-axial as well as randomly oriented inclusions.

3.1 General theory for the elastic properties of anisotropic materials

In order to explain the terminology used throughout this thesis, a short introduction is given in
continuum mechanics. A more extensive explanation is given by Ward [1] and Hearmon [2].

As is shown in Fig. 3.1, three stresses Py, P, and P; can be distinguished that are acting
on an infinitesimal small cube. Each stress can be resolved into 3 components:

Py = Oux+ Oyt Ox;
Py = G+ Oy + Oy
P.=0x+ 0yt o

Figure 3.1 Stresses acting on an
infinitesimal cube

Part of this chapter is published in:

M. van Es, F. Xigiao, J. van Turnhout and E. van der Giessen, Comparing Polymer-Clay Nanocomposites with
Conventional Composites using Composite Modelling in Specialty Polymer Additives, ed. by S.Al-Malaika, A.
Golovoy, C.A. Wilkie, Blackwell Science, Oxford, 2001, Ch 21, p 391-413
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Here the first subscript refers to the plane on which the stress acts and the second
subscript to the direction of the stress. A plane is defined by the direction of the normal to that
plane. For example o, acts on the plane perpendicular to the x direction while the force on
this plane is directed in the y-direction. In an elastic body, stresses and strains are related by
Hooke’s law:

O = Croxbx + Coy&y + Coxzr + Crayryz + Craybiy + Croonzir + Craebix + Crooyry + Crxyxbyx
Gy = Copuclie + Cypy + Cypezis + Cpyeye + By + Copaic + Cppxix + iy + Crype i

O = Cyoxox + Crgyy + Cprrzs + Cuyeie + Craypy + Corrie + G + Gy + G

Or in tensor notation:
0= Ciyu &u 3.1)

where oj and &y are the stress and strain components and Cj the elastic stiffnesses. In the
summation convention used in tensor notation, a product like Cy & represents the sum of all
possible combinations of repeated indices. The indices can take the values 1, 2 and 3
representing the x, y, and z directions respectively. In the notation used above 81 elastic
stiffness-components Cji; can be distinguished.

The inverse relation is given by:

&x = SxoxxOx + Smyo;y + Sxxzzo'zz Forernenee etc.
or in tensor notation:
& = Siju oy 3.2)

where S are the elastic compliance’s. The relationship between Cyy and Sy can be written
as:

Siing Cogrt = (B S + 81 §)/2 (G = 1if i=k; & = 0 if i) 3.3)

The total torque on the body in Fig. 1 must be zero to prevent the body from spinning,
therefore: 0y, = Ojx ; 0x; = 0% and 65, = oy, leaving 6 independent stresses acting on the cube.
This reduces the 81 compliances and stiffnesses to 36. By using the strain energy function, it
can be shown that both Sj; and Cyy must be symmetric:

C,:,'k[ =( klij and S,'jk[ =5, klij 3.4)

leaving 21 independent constants for a general elastic solid.
Since only 6 independent stresses and strains exist, often an abbreviated nomenclature
is used with only 6 stress and strain components. In this nomenclature the subscripts ij are

replaced by a single subscript:

xxorll=1,ypor22=2,zzor33=3,yzor23=4 ,xzor13=5 andxyor 12=6 3.5)
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A large advantage of this condensed engineering notation is that all elastic
relationships between stress and strain can now be represented as a 6x6 matrix instead as a
tensor with 81 components. Using condensed subscripts the generalised Hooke’s law can be
written as:

% =Cpeq 3.6)

or equivalently:
& =S8p0y 3.7)

Instead of tensor strain components &, now engineering strains e, are used. Using tensor
notation, strain is defined as:

. du;
gi'=i(ﬂ+ ul

- 3.8
"2 0 x o”x,.) )

where #;is the displacement in the i-direction. When using engineering components of strain,
shear strain is defined as the angle y of deformation shown in Fig. 3.2. Due to this definition,
engineering components of shear strain are twice as large as the components of shear strain
used in tensor notation. The following relation exists between tensor strain and engineering
strain:

gi=e; ifi=) and g=% e;ifi#j 3.9)

where e;; is the engineering strain.

4y

EnT Y2 €yx =Exyr Ex =26y

N S

Figure 3.2 Definition of shear deformation using engineering components of strain

In the literature often a mixed notation for engineering strain is used, i.e. e4 is written as ey,
etc. In doing calculations, one should be therefore careful to check if tensor or engineering
strains are used.

In a general anisotropic material, 21 independent elastic constants can be
distinguished. If the anisotropic material contains planes or axis of symmetry, the amount of
independent elastic constants is much reduced. If the x, y and z directions are parallel to the
symmetry directions, the material has an orthorhombic symmetry (3 orthogonal planes of
symmetry) and the engineering stiffness relation can be written as:
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o, (C, C, C; 0 0 0 (e

9, C, C Cy 0 0 0 €,

9| _ c, C,, C,; 0 0 0 _|e 3.10)
o, 0 0 0o C, 0 0 e,

o 0 o0 o0 0 C, 0 e

o, ) 0 0 0 0 0 C,) \e)

And the engineering compliance relation as:

(e, (S, S, S, 0 0 0 a,)

€, S, S, Sy 0 0 0 o,

e |_ S, 8§, S, 0 0 0 _|o: 311)
e, o o0 o0 S, 0 0 o,

e o 0 o0 0 S, 0 o

e/ L0 0 0 0 0 S,) \o,)

It can be shown that for an orthorhombic material the compliance engineering constants Sj;
can be written as:

S =1Ey Si2=-viyEn Si3=-vis/Eq 3.12)
S21=-vaEx;=8S12  S22=VEp; 823 =-Voy/Ex;

S31=-v3/E33=813  S32= -V3/E335=823 S33=1/E3;3

S“ = I/G)g S55 = 1/G13 S“ = I/Glz

Vi = Y Ey/Ei)

An orthorhombic material thus has nine independent elastic constants i.e.: Ej;, E2,
E3;, G123, Gi3, G1, Vi3, Vi3, vi2. Where Ejy, Ez;and E3; are the Young’s moduli in the x, y and
z directions, G2;, Gr3 and G, are the shear moduli in the yz, xz and xp planes and v»3, v;3 and
vi2 are the Poisson’s ratios. The Poisson’s ratio is a measure of the strain in the direction
perpendicular to the applied strain. If a strain is applied in the m-direction the strain in the n-
direction becomes: e, =—v, e, ; n,m =1,2,3.

The relationships between C; and E, G and v are more complicated. They can easily
be calculated though, by using Sy = C,-,«" .

If the material possesses transverse symmetry around the z-axis, as is shown in Fig.
3.3 then the properties in the x and y directions are equal. This is a special type of symmetry
with Eu= Ezz,‘ 613 = G)j,' Viz = Vi3 and Gu= E11/2(1+V1)) = Z(Sn - SIZ)- This reduces the
amount of independent constants to five i.e.: Eyy, E33, Gi3, i3 and vy,

In an isotropic material the properties in all directions are equal so: E;= E;; = Ez; =
E; viz=vi3= v;3=vand G2 = G23 = G13= G = E/(2+2v). Now the amount of independent
elastic constants is reduced to two: E and v.
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Extensional modulus
and Poisson’s ratio
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Figure 3.2 The elastic constants of a material with transverse symmetry

3.2 Composite models for the elastic properties of platelet filled materials

In a composite often three phases can be distinguished; a matrix, a filler and a matrix-filler
interface. The mechanical and morphological properties of these phases determine the
mechanical properties of the composite. According to present-day composite theory the
elastic properties of a polymer composite are determined by the shape, volume fraction and
mechanical properties of polymer, filler and polymer-filler interface. Particle size doesn’t
enter the equations for calculation of the elastic properties [3].

Most composite models assume isotropic properties of the constituent phases. If the
mechanical and morphological properties of the constituents are known, properties like
stiffness and thermal expansion can be predicted.

An excellent review about composite models is given by Hull [4]. More recently
Aboudi [5] reviewed the theoretical background of frequently used composite models. Beside
mechanical properties and thermal expansion, composite models can also be used to estimate
mass diffusion, thermal conductivity, electrical conductivity, magnetic permeability and
optical properties of polymers [6-8].

For fibres and spheres, approximate equations have been derived which have proven
to accurately predict stiffness and thermal expansion [4,5,9,10]. Also for platelets a number of
equations is available [9, 11-19]. Probably because of its simplicity, Padaver and Beecher’s
theory [12] is the most used theory for platelet reinforcement.

3.2.1 Stiffness of a material filled with unidirectional inclusions

In this section, three models will be introduced to calculate the stiffness a composite: the
Halpin-Tsai model, the Mori-Tanaka model and the Takanayagi model. The Halpin-Tsai
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model is an empirical model that is often used to calculate the stiffness of fibre-reinforced
materials. The Mori-Tanaka model is a theoretical, micromechanical model that enables
calculation of the stiffness of fibre, sphere and plate reinforced composites.

By using the results of the Mori-Tanaka model, the Halpin-Tsai model will be adapted
for calculation of the stiffness of platelet-reinforced composites.

The Takanayagi model is a theoretical model that greatly oversimplifies the true stress
fields in a composite. Here it is extended to 3 dimensions and mainly used to gain
understanding about the factors that determine the reinforcement of a composite.

3.2.1.1 Halpin-Tsai model for unidirectional fibre reinforced composites

In Fig. 3.4 a material with unidirectional short fibres is depicted. This material possesses fibre
symmetry around the 3-axis. As explained before, the amount of independent elastic constants
then is five. Most models in the literature either only give a limited number of elastic
constants, or are mathematically rather complicated to use. The most used and very simple set
of equations to calculate the elastic constants of a unidirectional short fibre composite is given
by Halpin and Tsai. The advantage of the Halpin-Tsai’s theory over other short-fibre theories
is that it is the only simple theory that gives predictions of all elastic constants over a broad
range of volume fractions, making it possible to do 3 dimensional (3D) calculations.

All the five elastic constants of a unidirectional short fibre composite can be estimated
by using Halpin-Tsai’s equations [9]:

M, (1-75¢,) '
(3==1)
where 7]=M"‘— 3.14)
(M—""C)

m

in which M, is the composite Young’s or shear modulus Ej;, Ez3, Gy or Gz M, is the
corresponding filler modulus E, or G, and M,, the corresponding matrix modulus E,, or G,.

figure 3.4 Schematic drawing of a
unidirectional short- fibre filled composite

¢, is the volume fration of filler. £ is a factor that depends on the shape of the filler
particle and on the type of modulus to be calculated. The shape factor { can be fitted to
experimental results. Ashton et al. [9] fitted the shape factor to theoretical equations for
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ribbon reinforcement and found that the equations can also be used to predict fibre
reinforcement. They advised the following shape factors to be used for fibre reinforcement.

To calculate: E;; use ¢= 2 l/d (I = length of fibre, d is thickness).3.15)
E”, or Ez) use ¢=2
G use &= 1/(3-4v,,)
G]3 or ng use ;21

Note that ¢ depends on which modulus is calculated. The Poisson ratios can be calculated
with the equations below:

V= v & ¢ vt (l-c) vy 3.16)
Vi2= v = (E1/2Gp))-1
Vis=Va; = vy E;/E;;

3.2.1.2 Mori-Tanaka method for unidirectional composites

As mentioned before many theories have been proposed to calculate the elastic properties of
composites. In the simplest approach, particle-particle interactions are neglected. This is valid
for diluted systems. By increasing the volume fraction or aspect ratio of the inclusions the
distance between the inclusions is decreased. This leads to overlapping stress fields of
neighbouring inclusions and accordingly leads to stronger particle-particle interactions. Since
the primary clay platelets in nanocomposites have very high aspect ratios, the composite
model used must account for particle-particle interactions.

A very useful model to calculate the reinforcement of isotropic particles in an isotropic
matrix is given by Tandon and Weng [17]. On a purely theoretical basis, Tandon et al. derived
closed form analytical equations to calculate the stiffness of a material filled with aligned
spheroidal particles. The theory is a combination of Eshelby’s equivalent inclusion method
[18] and of Mori-Tanaka’s average stress theory [20]. By using either prolate or oblate
spheroids, Tandon’s theory can predict the reinforcing effect of fibres, spheres and platelets.

a) fibre b) plate

Figure 3.5 Spheroids representing a fibre or a plate

Figs. 3.5a and 3.5b show spheroids shaped like a fibre and like a plate respectively.
The theory presumes that there is no direct contact between filler particles. It is a large



20 Theory

improvement compared to an earlier theory for ellipsoid reinforcement derived by Chow [6]
that is limited to dilute systems. Much theoretical background on this subject was reviewed
and completed by Mura [21]. He also suggested a more general scheme that will be presented
below. It was introduced by Norris [22] and completed by Chen [23] and is based upon the
same assumptions as used by Tandon and Weng but without the restriction of isotropic
phases.

Consider a representative volume element (RVE) as shown in Fig. 3.6 in which a
homogeneous elastic matrix is filled with unidirectionally oriented spheroid shaped
inclusions. The 3-axis coincides with the axis of symmetry of the spheroids. Fig. 3.5 shows
that the spheroids are shaped as either a fibre or a platelet. In both cases the RVE possesses
transverse symmetry around the 3-axis and thus has five independent elastic constants. The
volume average stresses and strains in the matrix and the inclusions are related by Hooke’s
law:

a,=C,¢, 3.17)
and

& =Cz 3.18)

where the index m denotes the matrix and r denotes the reinforcing phase. G, & and o;, &
are the stress and strain in the matrix and in the reinforcing phase respectively. C,, represents

the stiffness tensor of the matrix and C,that of the reinforcing phase. The elastic stiffness
tensor C, of the composite is defined by:

7,=Cz, 3.19)

where &, and £, are the average stress and average strain in the composite.

Reinforcement
C

Figure 3.6 Composite reinforced with unidirectionally aligned spheroids

The average stress and average strain in the composite are equal to the volume average of the
stresses and strains in the phases of the composite. For a two-phase composite this becomes:

o,=c,0, +c,0, and £ =c,¢E, +c¢,E 3.20)

< r“r

)
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where ¢, = I - ¢, and ¢, are the volume fractions of matrix and reinforcing phase respectively.
The Mori-Tanaka approach assumes that the average strain in the interacting inclusions g, ,
can be approximated by that of a single inclusion embedded in an infinite matrix subjected to
the uniform average matrix strain&,, .

It is a mean field approach, which assumes that the effect of all local stress
concentrations on the deformation of the composite can be replaced by a single average stress.
This assumption is reasonable as long as particles do not touch each other. According to
Eshelby’s theory [18, 21] the average strain in an inclusion £, is related to the uniform strain
&, in the matrix by:

g, = Ag, 3.21)
The tensor A is called the “strain concentration tensor’ and can be written as [5, 24]:
A=[P,C,(C ~C,)+1]" 3.22)

where Py, is the well-known Eshelby’s tensor and 1 is the identity tensor. P, only depends on
the elastic properties of the matrix and the shape of the inclusion. The components of the
Eshelby’s tensor for aligned spheroids are given in Appendix A. Appendix A also explains
Eshelby’s approach and shows how Eqn. 3.22 can be derived. For other inclusion shapes,
explicit expressions of the components of P, in terms of the moduli C, and the inclusion
shape are given by Mura [21]. If all the inclusions have the same shape and orientation the
strain concentration tensor A is equal for each inclusion and does not need to be averaged
over all directions. By combining 3.17), 3.18) and 3.21) the stress inside the inclusions can be
written as:

G,=CAs,=C,A(C, )" 7,=B7, 3.23)

where B=C,A(C,, )"is referred to as the ‘stress concentration tensor’. Combination of
3.17), 3.19), 3.20), 3.21) and 3.23) gives:

&=c,5,+c,B&, =(c,I+c,B)C,z,=Cz =C,(c,I+cAJ, 3.24)

where I is the unit tensor. From 3.24) it follows:

C.=(c,C,+¢,BC, )(c,I+c,A)" =(c,C, +c,C,A)(c, I+c,A)" 3.25)

And

S.=C."=(,S, +¢,S.B)c,I+c,B)" 3.26)

where S, is the compliance tensor of the composite and S,=(Cn)” and S,=(C,)” are the
compliance tensors of the matrix and inclusions respectively.
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Eqns. 3.25) and 3.26) relate the elastic properties of the composite to those of the
matrix and the inclusions. They are generally valid for composites containing aligned
anisotropic inclusions in an anisotropic matrix.

Tandon and Weng [17] used the same assumptions as above but they use a different
calculation scheme to calculate the stiffness tensor of a composite with aligned isotropic
spheroids. Instead of simply using the stress concentration tensor as done in this thesis, they
go back to Eshelby’s approach and use the ‘eigenstrain’ and ‘eigenstress’ concepts to arrive at
explicit equations for the five independent components of the composite’s stiffness tensor.
Since they use Mori-Tanaka’s average stress theory together with Eshelby’s result like is done
in this thesis, their results is equal to ours.

It was numerically confirmed that, for isotropic spheroids in an isotropic matrix, Eqns.
3.25) and 3.26) indeed give the same results as the closed form equations given by Tandon
and Weng. However Eqns. 3.25) and 3.26) are more generally applicable, because with these
equations it is not only possible to calculate the reinforcement of isotropic particles in an
isotropic matrix but also that of anisotropic particles in an anisotropic matrix. Furthermore,
the equations are not restricted to spheroid shaped particles.

According to Mura [21] when an anisotropic inclusion is contained in an isotropic
matrix, the Eshelby’s tensor P doesn’t differ from that of an isotropic inclusion. This means
that the Eshelby’s tensor P can be used for both isotropic and anisotropic spheroids. In the
first part of Appendix A closed form expression are given for Eshelby’s tensor P of an
isotropic matrix. If the matrix is anisotropic, P has a more complicated form. Mura [21] gave
integral expressions for the different components of P of an anisotropic matrix. These are
given in the second part of Appendix A.

The stiffness of a unidirectional PA6-clay nanocomposite is calculated at different
weight fractions of clay. For the PA6 matrix, elastic properties in dry condition and at room
temperature are used (En= 3.0 GPa; v, = 0.35). Since the stiffness of a clay platelet in a
nanocomposite cannot be measured, it is assumed that the stiffness equals that of a perfect
mica crystal (E, = 172 GPa; v = 0.2 [25]). This is justified because the crystal structures of
mica and montmorillonite are very similar, as was explained in Chapter 2.

25
En= 3.0GPa;y,=0.35 ——1vol%
20 E, =172GPa; v,=0.20 ——2vol%
) —a—5vol%
—a— 10 vol%
— 15 1
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Figure 3.7 Young’s modulus E; of a composite with uniaxially oriented spheroids.
Mori-Tanaka’s estimates are represented by solid lines. The optimum possible
reinforcement, calculated by the rule of mixtures, is given by the dotted lines.
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Figure 3.8 Young's modulus E;; of a composite with uniaxially oriented spheroids.
Mori-Tanaka'’s estimates are represented by solid lines. The optimum possible
reinforcement, calculated by the rule of mixtures, is given by the dotted lines.

Figs. 3.7 and 3.8 show the modulus in the 11 and 33 direction of a composite with
isotropic uniaxially oriented spheroids, calculated using Eqn. 3.25. As expected, the
reinforcement is mainly found in the ‘long’ direction of the spheroid. With platelets (aspect
ratio <1) these are the 1 and 2 directions, while with fibres it is the 3 direction. By comparing
the reinforcement of extremely thin platelets (aspect ratio < 0.0001) with that of extremely
long fibres (aspect ratio > 1/1000) it can be seen that both inclusion shapes have the same
ultimate reinforcement that coincides with the rule of mixtures. The rule of mixtures is given
by the dotted lines.

While fibres with an aspect ratio of 100 already approach optimum reinforcement,
platelets need an aspect ratio of 1/1000. This implies that in the unidirectional case, fibres are
more effective than platelets. Owing to the two dimensional reinforcement of platelets it is
often said that platelets are more effective than fibres. As shown here this is not true for
unidirectional composites. Platelets are indeed more effective than fibres in the case of
randomly oriented composites, as will be shown later in Fig. 3.17.

3.2.1.3 Takanayagi’s model extended to 3 dimensions

In the Takanayagi theory [1] it is assumed that the stiffness of a composite can be represented
by a unit cell that contains a single inclusion. Using Takanayagi’s theory two models are
possible, the series/mixed-parallel and the parallel/mixed-series models, which are
schematically depicted in Fig. 3.9. If there is efficient stress transfer normal to the direction of
stress, the series/mixed-parallel model should be used. In case of weak stress transfer, the
parallel/mixed-series model is more adequate. Nanocomposites have inclusions with high
aspect ratios that adhere well to the polymer matrix. Therefore, the series/mixed-parallel
model is most suited for nanocomposites.

Traditionally the Takanayagi model is used as a 2-dimensional model, which implies
that all the phases in figure 3.9 are thought to extend infinitely in the direction perpendicular
to the plane of the page. In a 2-dimensional presentation, it is therefore impossible to
discriminate between fibre or platelet reinforcement. By neglecting the third dimension it is
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implicitly assumed that the filler has the shape of an infinite long ribbon. Accordingly, the 2-
dimensional theory will not give correct answers for fibres or platelets.

I \
L
3 I, |

Series/mixed-parallel

o

Parallel/mixed-series

Figure 3.9 Two possible combinations of the two components in the Takanayagi model.
The stress is applied in the vertical direction.

We have therefore extended the Takanayagi model to 3-dimensions. In doing so it
becomes possible to distinguish between fibre and platelet reinforcement. Fig. 3.10 shows an
inclusion with dimensions I3 X I; X {; in a unit cell with dimensions L3 x L; x L;. If I3 > I;, the
inclusion has the shape of a fibre, while if /; </; the inclusion has the shape of a platelet. If
I;=1; the inclusion is cubical shaped. The parallel direction of a fibre shaped inclusion is the
3-direction, while for a platelet shaped inclusion it is the 1-(or 2-)direction. The Young’s
moduli of the unit cell can be calculated with the series/mixed parallel model:

2 2
1 15,145, E,,=E L +E (1-2L) 327)
E33 Ea33 L3 ‘Em L3 1 L’
vy, E,=£ 3l p g bl 3.28)
EII Enll L' Em LI L.’LI LJLI

Figure 3.10 3-D Takanayagi unit cell containing an inclusion that has a varying
distance from the borders of the unit cell. By assuming g;=gs=g the Takanayagi
unit cell can be scaled with respect to the inclusion, giving a unique solution for
any volume fraction between 0 and 1.

Here Ej3; and E;; are the Young’s moduli of the composite in the 3-direction and in the
1-direction respectively. E,, is the Young’s modulus of the matrix and E, is the Young’s
modulus of the inclusion. Eqns. 3.27) and 3.28) indicate that the composite stiffness depends
on the dimensions of the inclusion (I}, I5) and of the unit cell (L; , L;).
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If the inclusion in Fig. 3.10 has a high aspect ratio and the unit cell is cubical shaped,
the inclusion might become longer than the unit cell. To prevent the inclusion from sticking
out of the unit cell, the long side of the inclusion ly must always be smaller than the long side
of the unit cell L,. This can be achieved by scaling the shape of the unit cell to the shape of
the inclusions as will be shown below.

In a true composite, inclusions will tend to maintain at a certain distance from adjacent
inclusions. This suggests that the distances between the sides of adjacent inclusions will be
about equal to the distances between the ends of adjacent inclusions. This gives a clue on how
to scale the unit cell.
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Figure 3.11 A composite build up of a number of Takanayagi unit cells

Figure 3.11 shows a composite that is build up from Takanayagi unit cells. The figure
shows that the distances between the ends of the inclusions are equal to g5 and the distances
between the sides of the inclusions are equal to g, According to the argument given above the
scaling should be performed in such a manner that g; = g; = g. This enables us to calculate the
stiffness of the composite for any volume fraction.

The volume fraction of the inclusion in Fig. 3.10 equals ¢, =1,,° / L,L,z , and the
aspect ratio @ =1, /1, . One of the dimensions can be chosen arbitrarily, say I, = 1. Note that
a=1; if I,=1. For fibre-like inclusions e>1, while for platelet-like inclusions @<I. The
volume fraction of the inclusion can now be written as:

_ L1’ _ a B a
(1, +g;)(1, +g:)2 (a+g,)(1+g,)’ a+2ag, +ag12 +8:+28,8, +gjglz

r

By assuming that g; = g; = g it is easy to derive that g is the maximum real root of the third
order polynomial:

g3+(a+2)g2+(2a+l)g+a(l—% )=0
L=1; h=a ; Li=l+g; L;=atg

3.29)

Now all dimensions can be expressed in & and ¢, which makes it possible to calculate
the stiffness of the composite by using Eqns. 3.27 and 3.28 for all volume fractions up to 1.

If the inclusions are ordered as in Fig. 3.11, a maximum parallel stiffness will be found
if 1, = L/, because then the inclusions become continuous. Setting I, > L, is meaningless since
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than the inclusion sticks through the walls of the unit cell. As L, /1, increases, the distance
between the ends increases and stress transfer between inclusions becomes less effective. This
leads to a decreasing stiffness as is illustrated in Fig. 3.12. In Fig. 3.12 the effect of the shape
of the unit cell on the Young’s modulus is depicted. The inclusion is assumed to have an
aspect ratio of either 100 (fibre) or 1/100 (platelet). Young’s moduli (E,, E) are plotted as a
function of the normalised length of the unit cell L, /I, . The shape is varied while keeping
the volume of the unit cell constant. This is done by increasing the parallel dimension of the
unit cell, while simultaneously decreasing the perpendicular dimension accordingly. In case
ofafibre L,/l, =L, /I, , while in case of a platelet L, /I, =L, /I, .

E,=3

E, =172

13/1,= 100 (fibre)
Iy/l;= 0.01 (plate)

— Ly Ny=L N, fibre
/KL T IO c =01

Ly ﬂ/;=L .L/l I ,plate

2
g
£
2 E, fibre, plate
“ 10

5 E, fibre y 1

E, plate ;
0 ; T T :
1,0 1,2 14 1,6 1,8 2,0

Lylly

Figure 3.12 Effect of the shape of the 3D-Takanayagi unit cell on the parallel and
perpendicular Young's moduli of a composite. The calculated composite stiffness
depends of the choice of Lylly. Note that the parallel stiffness of the composite
decreases as the length of the unit cell increases with respect to the length of the
inclusion.

In order to obtain a unique solution for the composite stiffness at the
chosen volume fraction, also the results of a scaled unit cell are also indicated, viz.
by symbols. Using a scaled unit cell it is found that fibres approach each other
much more closely than platelets. As a result the parallel stiffness of fibre-
reinforced composites is higher than that of platelet reinforced composites.

The stiffness of the composite in case g; = g; = g is also marked by symbols in Fig.
3.12. In case the inclusion is a fibre it is found that g is much smaller than if the inclusion is a
platelet. This implies that in a composite fibres approach each other much more closely than
platelets. As a result the parallel stiffness of fibre-reinforced composites is higher than that of
comparable platelet reinforced composites. This result agrees well with the predictions of the
Mori-Tanaka theory of the last section as is shown in Fig. 3.13.

In Fig. 3.13 the results of the 3-dimensional Takanayagi model with a scaled unit cell
are compared to the results of the Mori-Tanaka’s theory. In case the aspect ratio is close to
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unity, the Takanayagi model overestimates the stiffness of the composite because the
series/mixed-parallel model is not adequate in that case. At high aspect ratios, the 3D-
Takanayagi model with a scaled unit cell (g,=gs;=g) gives Young’s moduli that are similar to
those predicted by the Mori-Tanaka model. Both models predict that at a given aspect ratio,
fibres give a higher parallel stiffness than platelets.

25
En= 3.0GPa; v,=0.35
E, =172GPa; v,=0.20
= -
c~= 0.1
15 ¢
g
S
w
10 |
@#» B S
plates < —p fibres
0 t —t +

0,0001 0,001 0,01 0,1 1 10 100 1000 10000

aspect ratio

Figure 3.13 Young's modulus of a unidirectional composite filled platelets or fibres.
(Fibres: aspect ratio > 1; Plates aspect ratio <1). Takanayagi’s composite theory is
compared with Mori-Tanaka's theory. For Takanayagi’s theory the shape of the unit cell
is chosen such that the distance from the inclusion to the surface of the unit cell is
constant.

It can be concluded that the conventional two-dimensional Takanayagi model
implicitly assumes ribbon reinforcement. Only by extending the model to 3 dimensions it
becomes possible to distinguish between fibres and platelets.

The result of the conventional non-scaled Takanayagi model (either in 2 or 3
dimensions) strongly depends on the shape of the unit cell or equivalently on the arrangement
of the inclusions. However, by scaling the unit cell, the Takanayagi model gives a unique
relationship between aspect ratio and parallel Young’s modulus, which resembles that of the
Mori-Tanaka theory.

The predictions of the Takanayagi model are not thought to be as accurate as those of
the Mori-Tanaka model. However, the simplicity of the model has the benefit of being very
understandable. From the results it can be deducted why fibres in unidirectional composites
need a lower aspect ratio than platelets to give the same reinforcement. The reason is that that
at a given aspect ratio and filler content, the edges of adjacent platelets are much further apart
than the edges of fibres. This lowers the effectiveness to transfer stress to adjacent inclusions,
which results in a lower Young’s modulus.

3.2.2 Stiffness of a material with non-aligned inclusions
In this section the elastic properties of a composite are calculated with filler particles that are

not fully aligned. To this end often the orientation average of either the compliance tensor §
or the stiffness tensor C is calculated. In doing so, implicitly the assumption is made that the
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composite experiences either a plane stress (Reuss or series assumption) or a plane strain
(Voigt or parallel assumption). The Voigt or Reuss approximations usually give very different
results. The Reuss approximation normally overestimates the contribution of the softer phase
to the composite modulus while the Voigt approximation overestimates the contribution of the
harder phase. The Voigt and Reuss approximations can be considered as upper and lower
bounds on the elastic constants of composite materials. Since these bounds can lie an order of
magnitude apart, they often are not of much practical use.

Arridge [26, p 142-154] gives a detailed procedure on how to actually perform the
averaging procedure. He also gives closed form expressions for the average compliance tensor
<8> and stiffness tensor <C>.

To prevent the problems of working with two bounds, the Mori-Tanaka scheme
mentioned earlier will be introduced. It will be shown that, by using the Mori-Tanaka
approach for non-aligned inclusions, it is possible to find a self-consistent expression for <C>
and <$> such that <C> = <>, Arridge [26, p 154-157] also uses a similar self-consistent
approach to calculate the elastic constants of a composite with non-aligned inclusions. The
expressions found by Arridge are more complicated than the ones derived below.

3.2.2.1 Coordinate transformations

As is shown in Fig. 3.14 an inclusion is chosen with a global co-ordinate system
e=(0—x,x,x,) and a local coordinate system ¢’=<(o — x,x,x;). In general, three angles are
required to describe the relative orientation of two orthogonal coordinate systems. To
transform global coordinates into local coordinates a coordinate transformation must be
performed.

This transformation consists of three successive rotations that are depicted in Fig.
3.14. To determine these three angles, first rotate the global coordinate system e by an angle

¢ around the x3-axis such that the new ¢; axis is perpendicular to the X3-x3 plane:
g=I[R;(¢)]e 3.30)
where R;(¢#) denotes the rotation matrix belonging to rotation of an angle ¢ around the 3-axis.

Now perform a second rotation by an angle 8 around the {;-axis such that the new &; axis is
parallel to the x’; axis:

S=IR,(6)]¢ 331
here R;(6) denotes the rotation matrix belonging to rotation of an angle 8 around the 3-axis.

Finally rotate around the &-axis, which now coincides with the 3’-axis, by an angle y to
obtain the co-ordinate system ¢’

e'=[R,w) 3.32)

Now three successive rotation have been performed:
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Ay, @, @
e'=[RWIR OIR,Ple=|@, @, o,le=[2]e
@y @y @y

3.33)

Figure 3.14 The relationship between local and global
coordinates in a composite with randomly oriented ellipsoids

A rotation around the 1-axis is represented by:

1 0 0
R(y)=|0 cosy siny 3.34)
0 —siny cosy

and a rotation around the 3-axis by:

cosy siny 0
R,(y)=|—-siny cosy 0 3.35)
0 0 1

The matrix multiplication in Eqn. 3.33) yields the complete transformation matrix:

e, cosycosg—cos@singsiny  cosysing+cosfcosgsiny  sinysin @ || e,
e', |=|—sinycosg—cos@sindcosy —sinysind+cosfcosgcosy cosysin @ || e, | 3.36)
e', sin@sing —sin@cos ¢ cosé e,

To change from local to global coordinates the coordinate transformation matrix must
be inverted. It can be shown that this can be done by interchanging the rows and columns of

[€2:

e=0"e'=NR"¢' 3.37)
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This specific set of rotations, assigns three angles to the relative orientation of two orthogonal
systems. Of course, it is possible to perform another set of rotations for the coordinate
transformation, which will yield different expressions for £2 The transformation matrix in
1.36 is the one that is generally used in physics.

As shown above a vector v needs only a single multiplication with £2 to perform the
coordinate transformation. Therefore, a vector is said to be a tensor of rank 1. In condensed
tensor notation, using the Einstein summation convention of summation at repeated indices,
this looks like:

v, =@,V 3.38)
or in expanded notation:
3
v, =) 00, 3.39)
i=1

Stress and strain are tensors of rank 2 and are related as:

8y =W, 8= Zs: Y o0, a0d 0; =0,0,0,, ZZ(D @0,  340)

i'=1 j'=1 i=1 j'=1

The compliance tensor § and the stiffness tensor C are tensors of rank 4, so:

Mu

3 3 3
Cin = @30 304.0,.Criir =2, Zw PN o 3.41)
=1

i'=1 j'=1k"

[
-

If the orientation function @8 ¢, y) of the inclusions is known it is possible to estimate
the overall elastic moduli by correct averaging. The probability of finding an inclusion within

the solid angle (6+df ¢+dg w+dy) is given by Q@ ywsinf dAdgdy. The orientation
function &6, ¢ y) has to satisfy the normalisation condition:

[ [ [ 20.4.)sin 6d0dgdy =1 3.42)

For random orientation this condition is satisfied if @(8,¢,y)= l/ 87 . The orientation
average of a quantity Q(8 ¢, y) with an orientation function &(6,@ ) is given by:

<Q>= j:’ j:‘ |7 06.6.9)00.4,v)sin 0d6dgdy 3.43)

As mentioned before simple averaging of C(6,¢ ) or S(6,@ y) is not correct since this
will only give bounds on the elastic moduli with <C> # <§>". Therefore a self-consistent
approach will be used to make sure that <C> = <§>7. Again, it is assumed that all the
inclusions in the two-phase composite have the same spheroidal shape. Since the x, axis is
parallel to the axis of rotational symmetry of the spheroid, rotation around this axis doesn’t
change the orientation of the spheroid. Therefore, y can be chosen at will. Choosing =0 in
3.36) gives:
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e, cos¢ sin¢g 0 e
e', |=|cosfsing cosfcosg sinf| |e, 3.44)

e' sin@sin —sinfcosgd cosl | |e
3 3

and:
e, cosg cosfsing sinfsing | |e',
e, |=| sing cos@cos¢ —sinfcosg| |e', 3.45)
e, 0 sin@ cos@ e’y

In this case the simpler orientation function &(6,¢) can be used with normalisation condition:
2x % .
jﬂ jﬂ D(0,4)sin0dOd¢ =1 3.46)

For random orientation &(6 ¢) = 1/4x. The orientation average of a quantity Q(6,¢) that only
depends on #an ¢ can be calculated as:

<Q>= jo" [706.9)0(6.4)sin 04649 3.47)

If fibre symmetry is assumed, the orientation function @ only depends 8. Arridge [26]
used an expansion in terms of Legendre polynomials for dx6):

®(6)=>a,P, 3.48)

n=0

In which P, is a function of cos@only: P, = P,(cos6). P, are orthogonal functions. The factors
a, depend on P, as:

_2n+1 2n+1

a, =
2

[@©B)P, (cos)sing d6 = < P,(cos®) > 3.49)
0

It can be shown that for mechanical properties, no terms higher than a4 are required. In case of
fibre symmetry, only the even Legendre polynomials are needed. Therefore, we only require:

1 5 9
4= —,a;= —<P>and ay= —<Pg>, 3.50
0= 5 @2= S <b o= 5 <P )
P; and Py are given by:

P, =—3—cosz0—l;
§5 215 3 331)
P,=""cos*@——cos*§+=

8 8



32 Theory

Using these equations, it is easy to show that for:

Random orientation: ap=1/2,a,=0, as=0.

Full alignment (8= 0) ap=1/2, ay=5/2, ay=9/2.

8=30° ap=1/2, ax=25/16, a,= 27/256 3.52)
6= 60° ap=1/2, a;=-5/16, a;= -333/256.

Random orientation in plane (8= 90°) ap=1/2, a;=-5/4, ay4=27/16.

The moments a, of the distribution function can also be determined from Eqn. 3.49). If the
moments a, of the orientation distribution function are known @@ can be constructed with
Eqns. 3.48) and 3.51).

If the inclusions are normally distributed around an average value of sin@, with a
standard deviation of +sind then d¥sin@) can be written as:

D(sinf) = ‘:(m:‘"_?i) 3.53)

1
——e
siné~N2x

Here sin@ is used rather than @ to assure that @ is a periodic function with a period equal
to 2n. The orientation average can then be calculated with Eqn. 3.47). Which should be
modified however, because Eqn. 3.53.) is not normalised to 1. The same applies to
<Pn(cos6)>.

In Appendix B it will be explained how the orientation average is calculated in
practise. Instead of using the tensor equation 3.47), matrix equations will be used.

Using infrared dichroism, <P,> can be determined. Raman spectroscopy, N.M.R., and
birefringence can find both <P,> and <Pg>. By using X-ray even higher order terms like <Ps>
etc. can be determined.

3.2.2.2 Mori-Tanaka scheme for non-aligned composites

Now consider a RVE with many differently oriented inclusions and their orientations
characterised by & 6,d). According to the Mori-Tanaka scheme it is assumed that all particles
experience the same average matrix stress O and average matrix strain &, Contrary to the
aligned case, the inclusions now are all differently oriented. Therefore all inclusions respond
differently to the average matrix stress o and average matrix strain &,. The orientation of a
spheroid can be characterised by two angles #and ¢ as was indicated in Fig. 3.14.

According to Eqns. 3.21) and 3.23), strain and stress inside the inclusion can be
written as:

£, (0)¢)=A(09¢)8. 354)
,(0,8)=B(0,4)0, =C,A(0,4)Colo, 3.55)

The average strain and stress in the inclusions can now be written as:

(&)= [L"o [ .00.9)40. $)sin 0d0d¢:‘s,_ =(4(0.9))s,, 3.56)
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(0,)= [ j:o [7,06.4)B(6.4)sin 0d0d¢]em =(B(6,¢))0, 3.57)

where the angle brackets denote the orientation average. 4 and B are 4th-ordered tensors, like
the stiffness and compliance tensors C, and S,. So their angular dependence becomes:

Ay (0,0)=0,@ ;@4 0y Ay jyy » By (6,8)= @@ ;@ 4 Dy By oy 3.58)

Similarly to Eqns. 3.25) and 3.26), the effective moduli of the composite can now be
written as:

C.=(c,C,+c,(B)C, )c, I+c (A))" =(c,C,+c, (C,A))(c,I+c (A))" |359)

and

S, =C"=(,S, +c,(S,B)c,I+c,(B))" 3.60)

So, in order to calculate the effective moduli C or § the volume averages (A)and (B)

need to be known. The strain concentration tensor 4 and the stress concentration tensor B are
known in local coordinates. Their orientational dependence can be calculated using Eqn.
3.58). Their average can then be calculated by performing the double integration in Eqns.
3.56) and 3.57). As long as tensor quantities are used exclusively, all equations hold without
any restrictions. In practise though it is convenient to express stresses and strains in
engineering units and use the condensed matrix notation. How this is done in praxis is
explained in Appendix B.

Although the Mori-Tanaka averaging scheme uses the mean field approach, it does not
mean that it is flawless. As Lielens points out [27], the Mori-Tanaka scheme can lead to non-
physical behaviour because it can give results that lie outside the Voigt or Reuss averages.
Therefore Lielens suggests using Voigt (or additive) averaging instead of Mori-Tanaka
averaging. Lielens also gives a critical contemplation on the validity of averaging
unidirectional results to obtain the elastic properties of a randomly oriented composite. As
was already mentioned before, Arridge also gives self-consistent expressions for the
orientation average of composites. It is not clear yet if the averaging scheme suggested by
Arridge has the same disadvantages as the Mori-Tanaka scheme. This will become clear after
implementation of Arridge’s theory in computer code, which is left for future work.

3.2.3 Approximation for composites with randomly oriented fibres or platelets

The methods to determine the orientation-averaged stiffness of a composite are rather
cumbersome to use in praxis. Therefore in this section extremely simple estimates will be
introduced to estimate the Young’s modulus of 3D-randomly oriented composites.

Laminate theory [4,28] gives an extremely simple approximation to calculate the
stiffness of a sheet with fibres that are randomly oriented in the plane of the sheet (2D-
random). It will be shown that a pseudo 3D-random stiffness can be obtained by repeatedly
using the 2D randomising procedure. Laminate theory shows that the in-plane Young’s
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modulus of a sheet with fibres that are randomly oriented in the plane of the sheet can be
approximated by:

E =0.375E,+0.625E | 3.61)

random2 D

The index 2D in Eqn. 3.61 is added to specify the two dimensional random orientation of the
fibres. This equation is obtained by appropriate summation of the Young’s moduli of
unidirectional composite plates that are stacked into a laminate as shown in Fig. 3.15. E/ is
the highest (parallel) modulus and E; the lowest (perpendicular) modulus of the
unidirectional plates. Both E, and E can be calculated by using the theory of the preceding
sections.

To simulate a 2D-randomly oriented laminate, the orientations of the plates in the
stack are evenly distributed between 0° and 90° as indicated in Fig. 3.15. As a result of this
stacking procedure a material is obtained with a pseudo random in-plane stiffness equal to
E;; = Ez; = Erandom 2p, which can be calculated with Eqn. 3.61). By the rotating procedure
the stiffness in the direction perpendicular to the 1-2 plane, Es;, is not changed and remains
equal to E,. After the rotation the highest modulus is found in the 1 and in the 2-directions
and the lowest modulus in the 3-direction.

2 =Ey E22 = Erandom 2D

P_;;‘= E. »
N

En=E,

Ej1 =Enndom2p

Figure 3.15 Stacking of unidirectional plates into a pseudo 2D random plate

By stacking so much plates that the thickness of the stack is equal to the width of the plates a
cube is obtained as is depicted in Fig. 3.16:

?
22" = Erandom

E11’ = Erandom 20

Figure 3.16 Cube of stacked plates after the first randomising step around the 3-axis and
start of a second randomising step around the 2 axis.
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To obtain the 3D-stiffness, the structure is repeatedly randomised around another axis. The
second randomisation step is obtained by randomising around the 2-axis as is indicated in Fig.
3.16. Slices are cut out of the cube and the same randomisation procedure is repeated as
before, but now around the 2-axis. Each slice has a high and a low stiffness. For a correct
calculation it is essential that E; in Eqn. 3.61) is always taken to be the highest Young’s
modulus of the sheet. The procedure is repeated several times around another axis. After
scveral steps, a pseudo 3D-random stiffness is obtained. To illustrate the calculation, a few
steps of the procedure are given:

1st step, rotate around 3-axis: Exigr =E /5 Eto=E
Ey’=E;
E;’'=E»’=0375E,+0.625E,

2nd step, rotate around 2-axis : Epigh =E 1’y Etpw=E3s’
EZZ” = EZZ’ =0.375 E//+ 0.625 E_L
En”=Es"=0.375 E;’+0.625 E;’= 0.141 E/ + 0.859 E;

3-rd step, rotate around 1-axis: Euign = E22"%, Ejpw=E33"’
E;”’=E;;”’ =0141E,+0859E,
EZZ”’ = E33’”= 0.375 EZZ” + 0-625 E_-}j” = 0.174 E//+ 0.826 El

4-th step, rotate around 3-axis: Epin =E32""", Eton=E 1"’
E;3”?=E3;;”"=0.174 E,+ 0.826 E,
E””=E»"’= 0375E;"" +0.625 E;;>’=0.194 E,, + 0.806 E ;

5-th step, rotate around 2-axis: Epigh =E11”""’, Etow=E33”’”
E)=E;""=0.194E,+ 0.806 E
E;’?"=E;;3"" = 0.375E;;° +0.625 E33>>’=0.186 E, + 0.814 E

etc.
It can be seen that after 5 steps the stiffnesses in all 3 directions are almost equal. After a few

more randomisation steps around different axis the stiffnesses converge to the simple but
quite accurate approximation:

Eandom 3p fitre =0.184 E;+0.816 E 3.62)

To calculate the stiffness of a composite with 3D-random oriented platelets the same
procedure is applied. A sheet filled with in-plane oriented platelets is already randomly
isotropic in the plane of the sheet. The sheet now has two stiff directions instead of one.
Therefore we start with: E;; =E,, E;;=Ej and E;;=E

Ist step, rotate around 2-axis: Enigh =E;, Ejpw=E
E:»’=E,
E;’=Ez;3’=0375E,+0.625E,

2-nd step: rotate around 1-axis, Enign =E22%, Etow=Es3’
Ein”=E;;’ =0375E,+0.625E,
E3” =E33”=0.375 Ez2’+ 0.625 E53* = 0.609 E/+ 0.391 E



36 Theory

3-rd step: rotate around 3-axis, Epign =E 22", Etow=E11”’
E;3’’=E;33’=0.609E,+ 0391 E,
E;’=E»"’=0375E2"+0.625E;,’=0463 E,+0.537E

etc.

As before, this quickly converges simply to :

Erandmn 3D platelet é"0-49E'// +0.51 E_L 363)

In Fig. 3.17 this simple averaging procedure is compared to the more elaborate
averaging procedure introduced in the preceding section 3.2.2. As can be seen, the exiremely
simple Eqns. 3.62) and 3.63) give results that almost coincide with the results that are
obtained by the elaborate calculations needed to obtain <A> and <B> by the Mori-Tanaka
averaging scheme. In this example the difference between the simple averaging scheme and
the elaborate Mori-Tanaka averaging scheme is always smaller than 7%.

Fig. 3.17 also demonstrates that slender platelets are more effective than slender fibres
in reinforcing a composite with randomly oriented particles.

15

Em= 3.0GPa; yn=0.35 ——1%
E, =172GPa; v, = 0.20 —e—2%

plates < p fibres
0,0001 0,001 0,01 0.1 1 10 100 1000 10000

aspect ratio

Figure 3.17 Young's modulus of a composite with 3D-randomly oriented spheroids. The
solid lines are calculated by using the simple approximations 3.62 and 3.63 of this section
while the dotted lines are calculated by using the elaborate Mori-Tanaka averaging scheme.

3.2.4 Correcting Halpin-Tsai equations for platelet reinforcement

As Ashton et al. [9] showed, the Halpin-Tsai equations can be used to estimate the modulus of
materials that are reinforced with fibres. For a crude estimate Ashton used a shape factor
{=2w/t to calculate the Young’s modulus of a composite with in-plane oriented platelets.
Xanthos [29] rejected the Halpin-Tsai theory because he found that the stiffness of epoxy-
mica composites predicted by the theory was much higher than the measured stiffness.

In this section it will be shown theoretically that the overestimation is a consequence
of using =2 w/ for platelet reinforcement. It is better to use a different shape factor. By
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comparing Halpin-Tsai’s equations with Mori-Tanaka’s theory, the correct {-factor for
platelet reinforcement will be found.

Figure 3.18 Schematic drawing of a sheet filled with in plane oriented platelets.

If a material is reinforced with unidirectionally aligned platelets as in Fig. 3.18 the
material possesses transverse symmetry around the 3-axis. To calculate the Young’s and shear
moduli of this material the Halpin-Tsai equation 3.13) should be used with the following
shape factors:

To calculate: Ej3; use §=2
Ejp, orEy use §=2/3wh 3.64)
G2 use §=3/4wh
Gz or Gy use 4= t'w

The Poisson’s ratios can be calculated by the following equations:

Vi3 =V & C Vit CnVm 3.65)
viz= va; = (E1/2G13)-1
=V =vi3 Esy/Eqg

where ¢, = volume fraction of the reinforcement and ¢,, = volume fraction of the matrix.

In Fig. 3.19 the longitudinal Young’s modulus of a polymer filled with 2 vol%
unidirectionally aligned platelets (oblate spheroids) is compared to that of 2 vol% fibres
(prolate spheroids). The lines represent Halpin-Tsai’s estimates and the symbols represent
relults of Mori-Tanaka’s calculations, A filler modulus of 172 GPa is used as is typical for
mica [25] and a polymer Young’s modulus of 3 GPa as is typical for an amorphous polymer
at a temperature below the glass transition.

Fig. 3.19 shows that at a given aspect ratio, fibre reinforcement gives higher
unidirectional stiffness than platelet reinforcement. At high aspect ratio both reinforcements
approach the limit given by the rule of mixtures. For fibres, this limit is reached at an aspect
ratio of about 100, while for platelet this limit is reached at an aspect ratio of about 1000. As
can be seen, Halpin-Tsai’s equation can be fitted to coincide with Mori-Tanaka’s equation by
using an appropriate definition for the shape factor £ By using {'= 2/3 w/f a very good fit for
the stiff direction of a unidirectional platelet reinforced composite is found. To calculate Gz
or Gy; for unidirectional platelet reinforcement, a very good fit is found by using {'= 3/4 w/t
and £ = ¢/w respectively. See Appendix C for more details. Note that the fit is satisfactory
independent of the values of the volume fractions or elastic constants of the phases.

It was found that by using these shape factors the differences between both theories
are smaller than 5% as long as w/4>5 and E/E,>10. A reasonable fit for E3; (=E_) can be
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found by using §'= 2. The fit for E; is not as good though as for E, Gz; or G2, In Appendix
C it is shown that theoretically the shape factor for G, should lie between 0.73 w/t and 0.85
w/t which coincides with 3/4 w/t that was determined by fitting.

2,2 :
""" L s

1,8 4t . S T -
Mori-fiber
'é 1,6 1 R~y
T ¢=1(0.5 I1d)"™
Mori flake En=3 GPa
14 1 < w——————E, = 172 GPal|
vm = 0.35
=2/3 wit
1,2 4 w =02
¢, =0.02
11 3 !
1 10 100 1000 10000
aspect ratio

Figure 3.19 Calculated Young's-modulus of a unidirectional composite reinforced with
platelets. Comparison between Halpin-Tsai’s and Mori-Tanaka’s theory. By using {=
2/3 wh for platelets or a shape factor {= (0.5 Vd)"® for fibres, Halpin-Tai’s theory and
Mori-Tanaka'’s theory agree very well. The shape factor {= 2 w/t used so far, gives
results in-between those of Mori-Tanaka’s results for fibres and platelets.
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Figure 3.20 Comparison between the modified Halpin-
Tsai equation and other composite models for platelet
reinforcement.
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At low aspect ratio the predicted Young’s-modulus for platelets in Fig. 3.19 is lower
than for fibres. In the limiting case of w/t—a both predictions for fibres and platelets are
equal and coincide with the rule of mixtures. For fibres, this limiting value is reached at a
lower aspect ratio than for platelets. In most literature a shape factor = 2 w/t is used as was
suggested by Ashton et al. [9]. From Fig. 3.19 it can be seen that this overestimates the
stiffness of platelet reinforcement.

In Fig. 3.20 the modified Halpin-Tsai equation is compared to other theories for
platelet reinforcement derived by Padaver [12] and Riley [13]. As can be seen, the corrected
Halpin-Tsai’s theory with {= 2/3 w/t gives results which come close to the results of both
Padaver’s and Riley’s theories. Using {= 2 w/t clearly leads to an overestimation of E,.

3.2.5 Composite models to describe visco-elastic behaviour

All above equations were derived, presuming that the constituents are purely elastic.
According to the correspondence principle [30, 31, 32] these equations can also be written in
a complex manner by replacing every elastic constant by its complex counterpart (E becomes
E’ +iE”, abecomes a’ Ha” etc). In this way the equations can also be used to calculate the
loss modulus E” of a composite and thus describe the visco-elastic behaviour of composites.
In Appendix E it is further explained how the time response of a composite can be calculated.

3.3 Thermal expansion of two-phase composites

If the temperature of a two-phase composite is increased, both phases will try to expand. The
phase with the higher expansion coefficient will want to expand more than the phase with the
lower expansion coefficient. As a result, the phase with the higher expansion coefficient
experiences a compressional stress, while the phase with the lower expansion coefficient
experiences an extensional stress.

For the very simple two-phase composite, with matrix m and reinforcement r depicted
in Fig. 3.21, the total expansion of the composite can be calculated rather easily.

Figure 3.21 Simple two-phase composite.
In the perpendicular direction, both phases can expand freely so the expansion coefficient
becomes:

a, =ca” +c,a™ 3.66)

The expansion in the parallel direction can be obtained as follows. Assume that the total
thermal expansion of the composite in the parallel direction can be written as:

£, =a,A4T 3.67)
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where AT is the change in temperature. This generates stresses in the parallel direction equal
to:

o) = E” (a,AT -a”'AT)

3.68)
o™ = E™ (a,AT -a'™AT)
The total stress on the composite remains zero:
o,=c,6V+c o™ =0 3.69)
" " .
By substituting 3.68) in 3.69) one gets:
¢,E”(a,AT-a""AT)+c,E™ (a,AT -~ AT)=0 3.70)
and a, becomes:
() (1) (m) -, (m) (r) () (m)  (m)
¢, E%a" +c Ea™ ¢ EVa" +c E"a 3.71)

a, = =
" ¢,E” +c E™ E,

Using cm = I-c, and E;= ¢, E” +cp E™, Eqn. 3.71) can also be written as:

1 1 Y (1 1
— (D (m) _ - (w)
a,= (a - ) (E") E‘"") (E,, E“"’)+a 3.72)

So for the simple two-phase composite in Fig. 3.21 the parallel expansion coefficient
is a function of the parallel stiffness of the composite, of the thermal expansion coefficient of
the phases and of their stiffnesses. The volume fraction of the reinforcement does not enter
this equation because it is incorporated in the composite stiffness E,

For a general two-phase composite the thermal expansion can be written as [5,8]:

kimn mnij

a; (a},” a,“,”")(S,“,',,’,,, S("") (S,,,,,u S"’")+a"" 3.73)

where ais the thermal expansion tensor and § is the compliance tensor. Eqns. 3.72) and 3.73)
have the same appearance. The difference between the two equations is that Eqn. 3.72) only
contains scalar quantities and is valid only for the composite in Fig. 3.21, while Eqn. 3.73)
contains tensor quantities and is generally valid.

For a macroscopically isotropic composite 3.73) can be rewritten as:

a, —-a 1 1
=a, W[K_K—..] 3.74)

For transverse isotropic two-phase composites with their axes of symmetry coinciding with
the 3-axis, Eqn. 3.73) becomes:

3.75)

a;=a

a,-a, |3(1-2v,) 1
. I/K ~-I/K, E, K
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and

Q=

a,-a, [ 3 _3v3,(1-—2vj,)_ij| 3.76)

a, +
I/Km_I/Kr 2k12 E33 K

m

where vis the Poisson’s ratio, K is the bulk modulus and k3 is the plane strain bulk modulus
defined as:

2
2 g v, 1 37
kIZ EII E33 GIZ

Egn. 3.73) was used to calculate the coefficient of linear thermal expansion (CLTE) of a
composite filled with 2 vol% of platelets. Both matrix and filler were assumed to have
isotropic properties. As in the previous examples the matrix and filler have elastic properties
equal to dry polyamide-6 and mica respectively. To use Eqn. 3.73) first the compliance § of
the composite needs to be calculated. This is done with the Mori-Tanaka theory that was
explained in Sections 3.2.1 and 3.2.2. The Halpin-Tsai approximation of section 3.2.4. proved
to be not accurate enough for this calculation. This is mainly due to the low accuracy in the
determination of E. Figs. 3.22 a) and b) show the calculated CLTE of a composite with
aligned spheroids, while Fig. 3.22 ¢) shows that of a 3D-randomly oriented composite.

Before discussing the figures an attempt is made to intuitively understand the thermal
expansion of an aligned composite. For the sake of clarity it is assumed that the matrix is
incompressible (K, = o) and the filler is stiff and does not expand upon increasing the
temperature. Also perfect adhesion between matrix and filler is assumed. If the composite is
heated, the matrix will try to expand, while the filler will try to resist the expansion. The
resistance of the filler against expansion will be largest in the direction of highest composite
stiffness. Therefore, the CLTE will be lowest in the direction of highest stiffness. Since the
matrix is incompressible, the total volumetric expansion of the matrix is not changed by the
presence of the filler. Consequently the thermal expansion of the composite will be decreased
in the stiffest direction while it will be increased in the softest direction.

An aligned composite with platelets has two stiff directions, while a composite with
aligned fibres has only one stiff direction. Since the total volumetric expansion is constant, the
expansion in the soft direction will be larger with aligned platelets than with aligned fibres. In
a 3D randomly oriented composite with an incompressible matrix, the thermal expansion will
not change upon increasing the aspect ratio of the filler. In a true composite, the matrix is not
incompressible and consequently the expansion coefficient is lowered even in case of
randomly oriented fillers.

As expected, Figs. 3.22a) and b) show that the CLTE of an aligned composite is
lowest in the direction of highest stiffness. In addition, the CLTE in the softest direction is
larger than the CLTE of the matrix. The perpendicular expansion of the composites filled with
platelets (o33 Fig. 3.22b) is larger than that of the composite filled with fibres (o1 Fig. 3,22a).
This is in agreement with the intuitive discussion given earlier. The stiffnesses of these
composites is plotted in Figs. 3.7 and 3.8.

In case of 3D-random in Fig. 3.22 ¢) the expansion is decreased upon addition of
slender particles (either very high or very low aspect ratio). This is a consequence of the
compressibility of the matrix (v = 0.35). The CLTE is not as low though as in the stiff
directions of the aligned composite.

From the discussion above it is obvious that the CLTE is very sensitive for the bulk modulus
or Poisson’s ratio of the matrix. Lowering the bulk modulus or the Poisson’s ratio of the
matrix would therefore be an effective way of lowering the CLTE of a composite.
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Figure 3.22 Theoretical predictions of the thermal expansion coefficient of a composite
filled with spheroids.
a) Thermal expansion coefficient in the 11-direction of a unidirectional oriented composite.
b) Thermal expansion coefficient in the 33-direction of a unidirectional oriented composite.
¢) Thermal expansion coefficient of a 3D randomly oriented composite.
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Validation of composite models

Abstract

In polymer-clay nanocomposites the exfoliated clay particles have the shape of platelets. As
will be shown in later chapters the stiffness of nanocomposites levels off at high volume
fractions. This levelling off is not predicted by composite modelling or observed
experimentally in comparable mica filled composites. To find out the reason for this deviation
a composite model is required that gives reliable estimates of Young’s modulus and thermal
expansion of platelet reinforced composites. Any difference between model prediction and
experimental results of nanocomposites can then be assigned to the special behaviour of
nanocomposites. This way it can be distinguished to which degree the increase in stiffness of
nanocomposites should be attributed to a change in properties of the polymer matrix or to the
high aspect ratio of the clay platelets.

To this end the analytical the micromechanical composite models that were introduced
in Chapter 3 are validated by comparing them with experiments on microcomposites and with
finite element modelling. In most cases the modified Halpin-Tsai model is used as an
analytical model. Since this model was modified such that it accurately fits with the Mori
Tanaka model, validation of this model automatically implies validation of the Mori-Tanaka
model. The comparison is performed at a wide range of volume fractions and aspect ratios of
the platelets.

The differences between Mori-Tanaka predictions of Young’s moduli and the
experimentally determined Young’s moduli of polymers filled with platelets are small.
Young’s moduli of platelet-reinforced composites are predicted with a typical error of 10%
and a maximum error of 25 %.

Mori-Tanaka’s estimates also compare well with finite element calculations. Mori-
Tanaka predictions of thermal expansion almost coincide over the whole range of volume
fractions and aspect ratios considered. At low aspect ratios or low volume fractions, Mork
Tanaka’s estimates of the Young’s modulus agree very well with the estimates of finite
element modelling. In this range the typical difference between both models is smaller than 5
%. The Mori-Tanaka model tends to underestimate the Young’s modulus somewhat, if both
volume fraction and aspect ratio are large.

Part of this Chapter was presented as:
M. van Es, F. Xigiao, J. van Turnhout and E. van der Giessen, ‘4 comparison of polymer-clay nanocomposites
with conventional composites, on the conference Nanocomposites 2000 on Nov. 6-7 2000 in Brussels. 45
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4.1 Introduction

In Chapter 3 a theoretical model was introduced to calculate the elastic properties of platelet
filled composites. The model is based on Eshelby’s equivalent inclusion method and on Mori-
Tanaka’s average stress theory. The parameters in the composite model are the matrix
stiffness tensor Cy, the filler stiffness tensor C,, the volume fraction ¢,, the filler aspect ratio &
and the orientation distribution function &8¢ y). The model assumes perfect adhesion
between matrix and dispersed phase and assumes that the material is homogeneous. This
implies that that the dispersed phase is well distributed through the polymer and that the
dimensions of the tested sample is always much larger than the largest dimension of the filler
particles. Implicitly, the model also assumes that the stiffness of the polymer is not changed
by the presence of the clay.

In this chapter, the model will be tested by comparing its results with experimental
results and with results from finite element modelling. For rigorous testing of the model, one
would like to vary all theoretical parameters experimentally and check whether the composite
model predicts the correct results. Although particle size is no parameter in the composite
model, it would be preferable to also test the effect of particle size on composite stiffness.

All experimental results needed to test the model are obtained from the literature. Most
work has been done on mica-reinforced composites. This is a fortunate coincidence, since
clay platelets in nanocomposites have the same molecular and crystal structure as mica
platelets have. Most articles on mica reinforcement fail to give information on particle aspect
ratio and orientation. Only those publications that do supply morphological information are
used.

Instead of using Mori-Tanaka’s theory to predict the stiffness of the mica filled
composites the modified Halpin-Tsai equations were used in some cases. As was shown in
Chapter 3, the modified Halpin-Tsai equation gives results that coincide with Mori-Tanaka’s
model. Using the Halpin-Tsai equations has the obvious advantage of being simple. Very
often, authors who publish experimental results do not specify the Poisson’s ratios of the
phases. The theory of Halpin and Tsai does not require the input of Poisson’s ratios to
calculate the stiffness of a composite.

Although comparison with experimental results gives information on the usefulness of
the composite model, it does not prove its theoretical correctness. The theoretical correctness
of the Mori-Tanaka theory is proven by comparing the results of (analytical) composite
modelling with the results of 3D-finite element modelling. To this end, a recently developed
finite element software package, Palmyra [1] is used. Not only the stiffness is calculated with
the finite element model but also the expansion coefficient. This also enables us to test the
equations for the expansion coefficient given in Chapter 3.

4.2 Validation of composite models by comparison with experimental results

Lusis et al. [2] and Xanthos [3] reported on the effect of aspect ratio on the flexural properties
of reinforced plastics. By grinding two naturally occurring micas, phlogopite and muscovite,
mica platelets were made with aspect ratios ranging from 10 to 267. The thickness of the
platelets was in the order of 2 pm. The muscovite micas were dispersed in water containing a
styrene/acrylic acid copolymer latex. After removal of the water, a composite with
unidirectional well-dispersed mica particles was obtained. The phlogopite mica was dispersed
in a polyester resin (Reichert Polylite 31-000). Both polystyrene-copolymer and polyester
resins had a flexural modulus of 3.5 GPa. The tensile modulus of the mica platelets used by
Lusis is obtained from an epoxy-mica laminate with 60 vol% of perfectly oriented continuous
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mica sheets. This laminate had a Young’s modulus of 90 GPa. Using the rule of mixtures
results in an effective Young's modulus for mica of 150 GPa. This is a little lower than the
172 GPa reported for a perfect mica crystal [4].

Fig. 4.1 shows the flexural modulus of the unidirectional mica composites as a
function of mica volume fraction at different aspect ratios. The solid lines represent the
(modified) Halpin-Tsai predictions and the symbols represent the experimental values. As can
be seen from Fig. 4.1, the stiffness of all samples is predicted rather well by the Halpin-Tsai
equation with a shape factor = 2/3 w/t as proposed in Chapter 3 of this thesis.

120 1
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If, instead of {= 2/3 w/t a shape factor {= 2 w/t is used, as was suggested by Ashton et
al. [5], the deviation between the predicted and measured modulus is much larger. In fact,
Lusis rejected the Halpin-Tsai equations because using {& 2 w/t resulted in a large
discrepancy between theory and experiment.
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Figure 4.2 Ratio of theoretical and experimental Young’s modulus of mica-composites.
a) Using shape factor {= 2/3 w/t as suggested in Chapter 3 of this thesis.
b) Using shape factor {= 2 w/t as suggested by Ashton et al. [5].
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This is illustrated in Figs. 4.2a and 4.2b. Using {= 2/3 w/, the maximum difference between
theory and experiment is about 30%, while it is 75% by using = 2 wA. This illustrates that
the suggested theory gives a much better prediction of stiffness than the theories used up to
date. In several articles the Halpin-Tsai equation is found to predict much higher Young’s
moduli of platelet reinforced plastics than was actually measured [2,5]. It is thought that this
is due to using the wrong shape factor.
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Figure 4.3 Young's modulus of PS-
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of unidirectional mica flakes as a function
of flake aspect ratio. Symbols represent
experimental values and solid lines
represent theoretical predictions. The
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Fig. 4.3 shows the stiffness as a function of aspect ratio of mica composites with 50%
of mica. Halpin-Tsai predictions for {= 2/3 w/t and {= 2 w/t are also shown. The graph clearly
illustrates the good prediction of the Young’s modulus by using a shape factor of {= 2/3 w/A.
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The work of Lusis et al. [2] is the only example found in the literature, were the aspect
ratio was determined from direct microscopic examination of the composite. To ensure
reliable results, the aspect ratios were calculated as the number average of about 100 platelets.
The aspect ratio distribution was narrow because the mica platelets were fractionated.
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Therefore, the number averaged aspect ratio does not differ very much from the weight-
averaged aspect ratio. For not fractionated samples, Lusis used the weight average aspect ratio
because the weight-average aspect ratio correlated better with the observed flexural
properties.

Padaver and Beecher [6] presented data of unidirectionally oriented epoxy-SiC and
epoxy-AlB, composites filled at high volume fractions of 0,4-0,65 respectively and aspect
ratios between 40 and 500. In Fig. 4.4 these data are compared with Halpin-Tsai calculations
again using = 2/3 w/t. As can be seen the Halpin-Tsai prediction is very good except for one
measurement.

Iisaka [7,8] reported on the effect of the orientation of muscovite mica flakes on the
stiffness of an epoxy-mica composite. It is regrettable that he did not pay much attention on
accurate determination of the aspect ratio. The aspect ratio was determined from the flake
diameter and flake thickness before the mica was added to the polymer. So any breakdown of
flake diameter during production of the composites was not accounted for. In his first article
[7] Lisika mentions a flake diameter of 470 pm and a flake thickness of 1 um and thus uses an
aspect ratio of 470 for his calculations. In a later article [8], that reports about the same
composites, he mentions a flake diameter of 41 um and a flake thickness of 1 pm. The correct
aspect ratio of the mica flakes is thus unclear.

Fig. 4.5 shows the storage modulus in the glassy state of the epoxy-mica composites
with uniaxially and random oriented flakes. The figure also includes the theoretical estimates
calculated by using the modified Halpin-Tsai equation. The stiffness of the unidirectionally
oriented composite is calculated using ¢= 2/3 w/t. The stiffness of the randomly oriented
composite is calculated with the simplified equation for random orientation of flakes: E,ondom
3D plaeter = 0.49E, +0.51E ;. (Chapter 3). E, and E, are calculated with the Halpin-Tsai
equation by using = 2/3 w/t and {=2 respectively.

60 :
e random ! Figure 4.5 the 1 Hz
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Fig. 4.5 shows that the stiffness of both unidirectional and randomly oriented
composites is fitted well by using an aspect ratio of 100. Using an aspect ratio of 470 leads to
over-estimation of the Young’s moduli, while an aspect ratio of 41 (not shown) leads to under
estimation. Due to inaccurate determination of the aspect ratio, the effect of aspect ratio on the
stiffness is unclear from these experiments. The effect of orientation on stiffness is correctly
predicted by the simplified equation for random orientation of platelets.
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In another publication, Roy and Phani [9] made mica-filled polyester composites by
adding dry ground mica powder, with an aspect ratio of 25, to an isophthalic polyesters resin.
No special care was taken to orient the flakes. Therefore, it is assumed that the flakes are
randomly oriented. As can be seen in Fig. 4.6, again a very good agreement between
measurement and calculation is found.

4.3 Validation of Mori-Tanaka model by comparison with finite element
model

In order to test the validity of the Mori-Tanaka model, the results of the model are compared
with the results of a finite element computer program called Palmyra.

4.3.1 Finite element computer program Palmyra

Palmyra is a computer program used to design composite materials and to calculate their
physical properties. The programme essentially fills a periodic continued base cell with a
number of inclusions. The orientation of the inclusions, their shape and their properties can be
specified. Palmyra builds a three-dimensional mesh of hundreds of thousands of non-
overlapping tetrahedron elements that fully cover the volume of the periodic cell. The sizes of
the mesh tetrahedrons vary with the local morphology in order to get a higher resolution at the
interfaces and where inclusion objects are very close.

An energy minimisation approach is used to calculate physical properties like Young’s
modulus and thermal expansion. Newer versions of the program are also able to calculate
other properties like thermal conductivity, dielectric properties, electric conductivity,
refraction index and transport properties (permeability and diffusivity). The Palmyra model
can handle different inclusion shapes. For calculation of nanocomposite reinforcement flat
platelets were used instead of oblate spheroids that are used in the Mori-Tanaka model. Gusev
et al. [1] wrote an article about the use of Palmyra to visualise the fibre packing of fibre filled
composites and calculate their elastic properties.
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4.3.2 Platelets in a matrix: analytical versus finite element calculations

In a joint programme between DSM and the ETH-Ziirich, some Finite element (FE)
calculations were performed on PP filled with oriented talcum particles. Palmyra is a flexible
and accurate FE programme but requires a lot of computing time (typically 15 minutes to 12
hours on an up to date year 2001 SUN computer, depending on the complexity of the
calculation). The amount of computer time required by Palmyra depends on the amount of
nodes in a base cell. If a base cell only contains a few particles, the amount of nodes is limited
and the calculations are relatively fast. Unfortunately, calculations on small base cells are not
representative for the composite under study.

In order to obtain representative results, two strategies can be employed. One is to
make the base cell large enough to be representative for the whole composite. Another is to
make several non-representative base cells with only a few particles and average their results.
The latter strategy is faster than the former and is therefore employed in the calculations that
are presented in this section. An example of a single periodic base cell is given in Fig. 4.7.
Every base cell contains 20 aligned platelets that are positioned in space by a Monte Carlo
simulation. The results of 7 Monte Carlo snapshots are averaged to obtain the final result.

FE modelling of platelets with a very high aspect ratio has some limitations. One of
them is caused by the small radius of curvature at the ends of inclusions with high aspect ratio
that can result in high stress concentrations. High mesh densities are required to calculate
these stress-concentrations accurately. This increases the amount of computing time. To
prevent extremely long computing time the aspect ratio of the particles is limited to 50.

The following matrix and inclusion properties were used in the calculations that are
listed in Table 4.1 and plotted in Figs. 4.8 and 4.9:

Matrix: Polypropylene; E,=1GPa; v,=0.35; =100 10 1/°C
Inclusions:  Talc; E=100 GPa; v=0.25; a=>510°1/°C

Figure 4.7 Example of a small periodic base cell with 20 aligned flat plates as
was used in the finite element model. The position of the plates in space is
determined by shaking the box in a Monte Carlo simulation. The results of 7
Monte Carlo snapshots were averaged to obtain the final resulls.
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Figure 4.8 Young's moduli E;; and Es; of PP with talc, calculated with
Mori-Tanaka theory and with Palmyra finite element software.
Dotted lines represent Mori-Tanaka calculations.
Symbols represent Palmyra calculations.
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Figure 4.9 Thermal expansion coefficients ay and as; of PP with talc,
calculated with Mori-Tanaka theory and with Palmyra finite element software.
Dotted lines represent Mori-Tanaka calculations.

Symbols represent Palmyra calculations.

At low volume fractions and aspect ratios Mori-Tanaka estimates of Young’s modulus
agree rather well with Palmyra results. Differences are within a few percent. Only at higher
volume fraction and higher aspect ratios the Mori-Tanaka calculations of the parallel stiffness
are systematically lower than Palmyra's. Despite this systematic difference the agreement is
very good. Deviations are always less than 20%. The trends are always in agreement. In the
perpendicular direction the stiffness is not much increased. This is predicted by Palmyra and
by Mori-Tanaka’s calculations.
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The Mori-Tanaka estimates for Young’s moduli and thermal expansions almost
coincide with the Palmyra estimates. The use of oblate spheroids in the Mori-Tanaka model
gives good estimates for the reinforcement of flat platelets as are used in the Palmyra model.

Mori-Tanaka’s estimates of the expansion coefficients of the composites agree very

well with Palmyra’s predictions. This is not surprising since the Young’s moduli agree very
well too.

"Mori-Tanaka Palmyra ori-Tanaka |Palmyra

vol% |wit "En Es; Ep Es3 [ 11 BE) Oy (33
Pa |GPa |GPa |GPa [{I/°C (1/°C |1/°C |1/°C
x10° [x10° [x10°
93 93 93
113 |78 113
125 |67 125
132 |60 133
137 |55 139
140 |51 143

1 L1 |11 112
1/10 1,39 1,13 [1,41
1720 Wi.67 [1,19 [1,68
130 J1,.92 (1,23 [1,92
1/40 2,15 1,26 [2,05
1/50 1,29 [2,16

Wy

Table 4.1 Mori-Tanaka and Palmyra calculations of PP with talc.

4.4 Conclusions

The analytical Mori-Tanaka model gives estimates for the Young’s modulus and the thermal
expansion that agree very well with experimental results and with results from numerical
finite element modelling.

By comparing the experimental results of Lusis et al. with analytical calculations, it is
proven that the suggested composite model for platelet reinforcement works well. The
stiffness of unidirectional mica composites with aspect ratios between 10 and 267 were
predicted with a typical error of 10% and a maximum error of 30 %. This is a very good result
if it is considered that no fitting parameters are used. Also the stiffness of unidirectionally
epoxy-SiC an epoxy-AlB, composites are predicted well. The effect of random orientation of
platelets was correctly predicted for epoxy-mica and epoxy-polyester composites.

The analytical Mori-Tanaka model gives results that almost coincide with results from
finite element modelling. Only at high volume fractions or high aspect ratios the Mori-Tanaka
model under estimates the true stiffness. This small underestimation is probably caused by the
neglect of stress concentrations in the Mori-Tanaka model.
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Preparation of materials

Abstract

In this chapter the preparation is described of PA6/clay and HDPE/clay nanocomposites used
throughout this thesis. All samples were made either by melt-extrusion or by melt-kneading of
the clay together with the polymer. First a master batch was made which was subsequently
diluted to the desired concentration. To refer to a sample throughout this thesis, always the
amount of silicate in the sample is mentioned, not the total amount of organic modified clay
added.

5.1 Preparation of PA6/clay nanocomposites
5.1.1 Materials

In order to study the effect of polymer crystallinity on the properties of nanocomposites, two
series of nanocomposites were made, one with a PA6 matrix of normal crystallinity and one
with a less crystalline matrix. Both nanocomposites are based on PA6 as the polymer matrix
material. In the first series, pure PA6 is used; representing the high crystalline matrix. In the
second series 25% 6T/61, a terephthalic acid / isophthalic acid copolymer (Grivory® G21),
was added to PAG6 to represent a matrix with a low crystallinity. 6T/61 copolymers are known
to decrease the crystallinity of PA6 [1]. Since in both cases the matrices mainly contain PA6
it is assumed that the chemical differences in polymer-clay interactions between both polymer
matrices are small.

The PA6 used is an Akulon® K123 supplied by DSM with a number average
molecular weight Mn = 13000 g/mol, a weight average molecular weight Mw = 24000 g/mol,
and a relative viscosity in formic acid of 2.3.

Grivory® G21 is an amorphous aromatic nylon supplied by EMS-Chemie
(Switzerland) and is a copolymer of terephthalic acid, isophthalic acid and 1,6-hexane-
diamine. It is completely miscible with PA6, has a melt index of about 75 ml/10min
(275°C/5kg) and a glass transition temperature of 125 °C [1].

The organo-clay used (Cloisite® 20A) is produced by Southern Clay Products (USA).
Cloisite® 20A is based on a water swellable sodium-montmorillonite with an exchange
capacity of 95 meq. The sodium in the inter-gallery layers is completely exchanged with di-
methyl-di-hydrogenated-tallow-amonium ions (2M2HT quad). Tallow is a natural occurring
alkylic compound with a length of 14 to 18 CH, groups. By incinerating the clay at 450°C for
16 h it was determined that Cloisite® 20A contains 61.9w% of inorganic silicate and 38.1w%
organic material. Based on the exchange capacity of 95 meq (= 95 millimol /100g silicate)
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and the molar mass of the 2M2HT quad (=~ C3;H7;N ~ 494 g/mole) all the charge on the clay
would be just compensated for with 32 wt% of 2M2HT quads. So the organically treated clay
(organo-clay) contains more organic treatment than is necessary to cover the whole surface.
The addition of extra surfactant is done to obtain better and faster exfoliation in polymers.

Material PAG6- PA6- |PAG6- PA6- [PA6- PAG6- PA6- PAG6-
0.2% 1% 2.5% 5% 1.5% 10% 15% 20%
% % % % % % % %

Master batch 1,00 5,00 12,50 25,00 137,50 50,00 75,00 100,00

Silicate in  |0,20 1,00 [2,50 500 17,50 10,00 15,00 20,00
MB
Quad in MB [0,13 0,67 1,68 3,35 15,03 6,70 10,05 13,40
PA6 in MB |0,67 3,33 8,33 16,65 24,98 33,30 149,95 66,60

PA6 added (99,00 95,00 (87,50 75,00 162,50 50,00 25,00 10,00

Total 100,00 |100,00 {100,00 (100,00 [100,00 {100,00 {100,00 [100,00
Table 5.1 Composition of PA6/Clay nanocomposites

Material 6TI- 6T1- 6TI- 6TI- 6TI- 6TI- 6T1-
0.2% 1% 2.5% 5% 7.5% 10% 15%
% % % % % % %

Master batch 11,00 5,00 12,50 25,00  [37,50 50,00 75,00

Silicate in MB  [0,20 1,00 2,50 5,00 7,50 10,00 15,00
QuadinMB 0,13 0,67 1,68 3,35 5,03 6,70 10,05
PA6 in MB 0,67 3,33 8,33 16,65  [24,98 33,30 49,95

PA6 added 74,08 70,42 163,54 52,09  |40,63 29,18 6,26
6T/61 added 24,92 24,58  |23,96 2291 21,87 20,83 18,74

Total 100,00  [100,00 [100,00 100,00 100,00 100,00 100,00
Table 5.2 Composition of PA6/6T6l/clay nanocomposites

5.1.2 Extruding the master batch

Before making the final PA6-nanocomposite first a master batch was made. P6-clay
nanocomposite master batch containing 20 weight% of silicate was made by feeding a dry
blended mixture of cryogenically milled PA6 and 32.3 weight% Cloisite® 20A to the hopper
of a W&P ZSK 30 42D co-rotating twin screw extruder. The extruder was operated at 400
pm.

The materials were made as described by Korbee [2]. Due to good exfoliation, the
master batch had a very high melt viscosity. To prevent the extruder from shutting down on
torque overload, the output rate was limited to 3 kg/hour.
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5.1.3 Diluting the master batch

The master batch of the preceding section was diluted on the same extruder as was
used to make the master batch. All samples were made using the same PA6/Cloisite 20A
master batch. Samples with 0.2, 1, 2.5, 5, 7.5, 10, 15 and 20 wt% silicate were made. All
samples are coded by their silicate content and not by their total content of organic modified
clay. So, as can be seen in Table 5.1, sample PA6-20% contains 20% silicate, and 13.4%
2M2HT quarternair ammonium.

All samples in Table 5.2 have a PA6/6T6I ratio of 3/1. This was achieved by diluting
the PA6/Cloisite® 20A master batch with a calculated mixture of PA6 and 6T/61 copolymer.

5.2 Preparation of HDPE-clay nanocomposites

HDPE nanocomposites with different types of clay are prepared in two runs. In the first run
samples are made on a 5 cm’ DSM mini-extruder for rheology testing and in the second run
samples were made on a Haake batch 60 cc kneader for DMA, DSC and TEM testing.

5.2.1 Materials

In both runs the same type of materials are used to prepare the nanocomposites:
Polymers:
e PEMZA, a melt grafted HDPE with 2 wt% of maleic anhydride (to exfoliate the clay).
e HDPE Stamylan® 8621 (DSM), a linear polyethylene with a density of 958 kg/m3, an
melt flow rate at 190°C and 2,16 kg of 0.16 dg/min , at 5 kg of 0.89 dg/min and at
21.6 kg of 23 dg/min.

* SAN, a synthetic smectite from CO-OP Chemical Co. (Japan) with an aspect ratio of
about 20 and containing 38 wt% of 2M2HT organic modification.
o Cloisite® 20A, a montmorillonite from Southern Clay Products (USA) with an aspect
ratio of about 100 and containing 39 wt% of 2M2HT organic modification.
¢ MAE, A synthetic mica from CO-OP Chemical Co. (Japan) with an aspect ratio of
about 200 and containing 41 wt% of 2M2HT organic modification.
The selected clays are all modified with nearly 40 weight% of the same 2-methyl 2-
hydrogenated tallow ammonium ions [(CH3)2((CHa)14.15)2]. This way, any difference found in
the samples can be attributed to the type of silicate used and not to the type or the amount of
organic treatment.

5.2.2 Preparation of HDPE nanocomposites on a mini-extruder

For testing of rheology, three types of HDPE-clay nanocomposites were made by melt
extrusion at 200 °C and, 250 rpm during 5 min, using clay of different aspect ratios. The
extruder used is a 5 cm® DSM mini-extruder. This is a small batch twin-screw extruder
suitable to make very small amounts of material. First concentrates were made by with 10
wit% of silicate by melt extrusion of organic modified clay in PE-g-ma. The concentrates were
subsequently diluted in HDPE to a concentration of 2.5 wt% silicate. Table 5.3 lists the exact
composition of the nanocomposites.
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Material PE 10% | PE 10%]]|PE 2.5% | PE 2.5% | PE 2.5%
20A MAE |ISAN 20A MAE
wi% wt% wt% wit% wt%

PE-g-MA 83.4 83.4 23.96 ]23.96 23.96

HDPE 8621 71.89 71.89 71.89

Synthetic smectite 4.15

(2.5

Montmorillonite 16.6 4.15
(10) (2.5)

Synthetic mica 16.6 4.15

(10) (2.5)

Table 5.3 Composition of HDPE nanocomposites for rheology testing.
Numbers between brackets denote the weight percentage of silicate added.

5.2.3 Preparation of HDPE nanocomposites on a kneader

HDPE nanocomposites for DMA, DSC and TEM testing are made by melt compounding on a
60 cc Haake kneader during 10 minutes at 120 rpm and at a temperature of 180 °C.
Table 5.4 lists the compositions of the HDPE nanocomposites made. After preparation on the
Haake kneader all samples are compression moulded at 180 °C on a Fontijne table press. The
size of the mould was 150 x 80 x 0.5 mm. The following pressing program was used:

1. Heating for 5 minutes without any force exerted to melt the sample and fill the mould.

2. For 3 minutes a force of 10 kN is exerted on the material.

3. For 3 minutes a force of 50 kN is exerted on the material.

4. Cooling down to room temperature while a force of 180 kN is exerted on the material.

Material PE PE |PE |PE |PE PE |PE
5% 25% 5% |10% |15% 5% |20%
SAN Clois | Clois [ Clois { Clois MAE | MAE
wi% wit% |wt% | wi% | wt% wt% | wt%
HDPE-g-MA 91.7 95.8 191.7 1833 |75 91.7 |66.7
Synthetic 83
smectite (5)
Montmorillonite 42 (83 (167 (25
25165 100 1d5)
Synthetic mica 83 333
(5 10

Table 5.4 Composition of HDPE nanocomposites for DMA and DSC testing.
Numbers between brackets denote the amount of silicate added.

5.3 References

[11 EMS Grivory G21 datasheet, Produkt Einleitung Grivory G21, Domat/EMS August 1992
[2] R. Korbee, Process for the preparation of polyamide nanocomposite composition, Patent
Appl. WO 99/29767 DSM
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Clay morphology and polymer mobility

Abstract

TEM and 'H-NMR experiments were performed on PA6 and PE-clay nanocomposites in
order to learn how the clay and the polymer phases contribute to the properties of these
nanocomposites. Clay morphology was investigated by TEM analysis and polymer mobility
by 'H-NMR. Clay morphology must be known in order to perform composite modelling,
while knowledge of the molecular mobility is necessary for a correct interpretation of the
properties of nanocomposites. Clay morphology is characterised by the extent of exfoliation
of the clay platelets, their aspect ratio and their orientation. These data are crucial for correct
composite modelling. '"H-NMR gives data on the mobility of polymer chains that are confined
in the narrow spaces between clay platelets. The exfoliation of clay in the nanocomposites
proves to be excellent at loadings below 2.5 weight percent of clay. At higher loadings small
tactoids of 2-3 platelets are observed that eventually organise into groups of about 50 platelets
above 10 weight percent of clay. Above 5 weight percent of clay, 'H-NMR-T2-relaxation
shows the existence of a phase in PA6 nanocomposites with liquid-like mobility.
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6.1 TEM analysis of nanocomposites

In nanocomposite research TEM is almost exclusively used to check for intercalation or
exfoliation of clay platelets. In this thesis it also is attempted to extract parameters from TEM
pictures like the aspect ratio, inter-particle distance and the state of orientation of the clay
platelets.

6.1.1 Sample preparation

Samples for TEM analysis are prepared from compression moulded sheets that were used for
DMA testing. This way it is ensured that the samples for mechanical measurement and for
TEM have the same clay orientation and clay aspect ratio. The compression-moulded sheets
were first embedded in an epoxy resin. Subsequently films with a thickness of about 70
nanometers were microtomed using liquid nitrogen for cooling. TEM pictures were taken on
unstained samples with a Phillips CM200 TEM at an acceleration voltage of 120 kV.

6.1.2 Quantitative data from TEM analysis

To obtain morphological data from TEM pictures one must be very careful, because a lot of
errors can be made. Preferably a TEM coupe should be much thinner than the dimensions of
the smallest particle in the sample, to prevent overlapping of particles at different depths of
the sample. For nanocomposites these demands cannot be met, because it is impossible to cut
coupes of 1 nanometer or smaller. This makes it very difficult to determine the amount of clay
or the distance between platelets.

Weight fraction | True volume | Calculated particle | Estimated volume |Measured particle
of silicate fraction of distance D_, fraction of silicate | distance D,y,,

silicate nm from TEM nm

0.002 0.0008 1250 - 1350

0.01 0.004 250 0.004 256

0.025 0.01 100 0.01 71

0.05 0.02 50 0.04 25

0.075 0.03 33 0.07 13

0.10 0.05 20 0.06 15

0.15 0.07 14 0.13 7

0.20 0.10 10 0.19 4

Table 6.1 Estimated volume fraction and particle distance obtained
by using the ‘fractional length’ method.

As can be seen from the TEM pictures in Figs. 6.1-6.7, all nano platelets are depicted
as lines. This seems to be convenient because in this way it is easy to distinguish the different
clay particles and determine their length. It is not directly obvious though why clay platelets
are depicted as lines. On the contrary, one might expect that the nano-platelets are shown as
vague light grey areas.

In Appendix D it is explained why clay platelets are depicted as sharp lines. It also
explains how a TEM image of a nanocomposites can show more lines than there are clay
platelets present in sample. Using the ‘fractional length method’ as explained in Appendix D,
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the volume fractions of clay and the average distance between platelets of the PA6-
nanocomposites are calculated and listed in Table 6.1. It can be concluded from Table 6.1 that
up to 2.5 wt% the estimated volume fraction from TEM images is equal to the true volume
fraction. Above 2.5 wt% the volume fraction of platelets, calculated by the ‘fractional length’
method, is larger than the true volume fraction. This illustrates the earlier statement that the
amount of lines seen on a TEM image can appear to be higher than the amount of platelets in
the sample. The fact that the amount of particles counted per unit of surface in a TEM picture
is larger than the true amount of particles per unit surface also illustrates the good exfoliation
of the clay particles.

The complications mentioned above make it difficult to perform a quantitative
analysis on TEM images of nanocomposites. Therefore TEM images are not suited to
quantify the volume fraction or the distance between clay platelets. However, TEM is a
valuable tool to estimate the length of the clay platelets and to check the extent of exfoliation
and orientation of clay platelets in a nanocomposite.

6.1.3 TEM images of PA6-nanocomposites

Figs. 6.1 to 6.7 show TEM images of PA6-nanocomposites with 1, 2.5, 5, 10, 15 and 20 wt%
of clay. The sample with 20 wt% of clay is also given at a high magnification in order to be
able to study the morphology more closely. TEM images at lower and higher magnification
were also taken but are not shown to limit the amount of photographs in this thesis. The in-
plane orientation of the compression-moulded sheets is always given by the direction of an
arrow in the images. The TEM images show the exfoliation, the length and orientation of the
clay layers in PA6-nanocomposites. The length of the clay layers is about 100 nm. Since the
thickness of a clay platelet is about 1 nm, the aspect ratio is 100.

At 1% clay, exfoliation is nearly complete. Only a few tactoids of 2 platelets are
found. These tactoids might be difficult to distinguish on the images shown, but they are
better visible at larger magnification. Platelets are mainly oriented along the plane of the
sheet, but orientation is not perfect.

At 2.5 wit% the amount of tactoids is somewhat increased with respect to the sample
with 1% clay. About half of the particles are completely exfoliated, while the rest is found in
tactoids of 2-3 platelets. The orientation is better than at 1 wt%

At 5 wt% of clay the majority of platelets are found in tactoids of two or three
platelets. A minority of platelets is completely exfoliated. The tactoids themselves are very
well dispersed in the sample. The orientation is nearly perfect.

At 10 wt% again roughly the same amount of particles is found in tactoids as at 5
wt%. The tactoids are well dispersed in the sample. The tactoids are randomly oriented.

At 15 and 20 wt% of clay, again most particles are found in tactoids of about 2
platelets. But now the tactoids orient themselves along adjacent tactoids and form highly
oriented groups. These groups contain in the order of 50 clay platelets. The size of the groups
typically is about 200 nm. The platelets inside a group are highly oriented. The groups
themselves are randomly oriented. It seems that the overlap of platelets between these groups
is low.
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Figure 6.1 TEM image of a PA6-nanocomposite containing 1 wt% of montmorillonite clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figure 6.2 TEM image of a PA6-nanocomposite containing 2.5 wt% of montmorillonite clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figure 6.3 T EM irhage of a PA6-nanocomposite containing 5 wt% of montmorillonite cla
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figure 6.4 TEM image of a PA6-nanocomposite containing 10 wit% of montmorillonite clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figm;: 6.5 TEM image of a PA6-nanocomposite containing 15 wt% omontmoriIIonite clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figure 6.6 TEM image of a PAG6-nanocomposite containing 20 wt% ofmontmorillonie clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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tgure 6.7 TEM tmagé of a PA6-nanocomposite containing 20 wt% of montmorillonite clay
The arrow indicates the in-plane direction of the compression-moulded sheet.
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Figure 6.8 TEM image of HDPE nanocomposite containing 10 wt% of si)nthetic smectite
clay.
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Figure 6.9 TEM image of HDPE nanocomposite containing 10 wt% of montmorillonite clay
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Figure 6.10 T, E"M image of HDPE nanocomposite containing 10 wt% of synthetic mica.




72 Clay morphology and polymer mobility

So at small volume fractions (1wt%) the clay platelets completely exfoliate and are
found as single well-oriented platelets in the polymer. Upon increasing the concentration (2.5-
Swt%), the clay tends to organise in well-oriented tactoids of 2-3 plates. At 10 wt% the
tactoids are hindered so much by neighbouring tactoids that no macroscopic orientation is
found. At 15 and 20 wi% of clay, the tactoids can no longer assume a free orientation and
start to align into groups of about 50 platelets. Judging from the TEM pictures it seems that
these groups of platelets move as a whole through the molten polymer. At these high
concentrations, the clay platelets show a similar tendency to local ordering as liquid
crystalline polymers do.

6.1.4 TEM images of HDPE nanocomposites

TEM images of HDPE with clays of different aspect ratio are shown in Figs. 6.8-6.11. From
the images is can be concluded that all nanocomposites are well exfoliated. Details about
tactoids are difficult to detect in these images because the resolution of the images is not high.

In can be concluded from Figs. 6.8-6.10 that the platelets in the nanocomposites are
well exfoliated and randomly oriented. Most importantly, the aspect ratio from the synthetic
smectite clay in Fig. 6.8 is clearly lower than that of the montmorillonite and the synthetic
mica. The montmorillonite has clay platelets that have an aspect ratio in between that of the
synthetic smectite and the synthetic mica.

Judging from the TEM images the average length of the synthetic smectite platelets is
about 30 nm, the montmorillonite platelets are about 100 nm in length and the synthetic mica
platelets about 150 nm. If it is assumed that all platelets are completely exfoliated, the aspect
ratios of clays would be 30, 100 and 150 respectively. These estimates are rather inaccurate
because the TEM pictures do not have a high enough resolution.

Figs. 6.11a-c show the dispersion of 5, 10 and 20 wt% montmorillonite clay in HDPE
nanocomposites. From Fig. 6.11a it can be concluded that at 5 wt% the montmorillonite
platelets are dispersed individually, while at 10 and 20 wt% the platelets tend to group
together as was also observed in the PA6-nanocomposites.

Figure 6.11 a-c HDPE-nanocomposite containing 5, 10 and 20 wt% montmorillonite
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6.2 Polymer mobility of nanocomposites measured by solid state NMR

Completely exfoliated clay has a surface area of about 700 m?/g. This implies that if 99 wt%
of polymer would evenly be spread out over 1 wt% of clay, the thickness of the polymer layer
would only be 140 nm. In nanocomposite literature it is therefore often suggested that all
polymer in a nanocomposite is part of the clay-polymer interface. The special properties of
nanocomposites are therefore often assigned to the changed properties of this interphase. This
interphase has a thickness of typically 1-5 nm [1,2]. Only a few research groups used solid
state NMR to determine how polymer properties are affected by the presence of nano
dispersed clay. Mathias et al. [3] used >N solid-state NMR to observe the formation of y-
crystalline structure in PA6-nanocomposites.

Wong et al. [4] used proton NMR to determine the local dynamics as a function of
temperature of poly-ethylene-oxide (PEO) that was confined in 0.8 nm narrow gaps between
silicate layers. Line-shape measurements and spin-lattice relaxation measurements indicated
the existence of both a highly mobile and a strongly inhibited phase. Below the melting point
of PEO, a phase was found with a very high mobility, while above the melting point a phase
remained with very low mobility. High mobility below the melting point was attributed to the
absence of chain entanglements and the presence of excess free volume associated with the
packing constraints of intercalated chains. Direct contact between the PEO and the silicate
surface was thought to lead to the formation of a phase with low mobility that remains rigid at
temperatures far above the melting point of bulk-PEO.

With solid-state proton NMR Manias et al. [5-6] found that the mobility of polystyrene
(PS) molecules in the confined space between clay layers differs greatly from the mobility of
unconfined polystyrene. PS in the centres of clay galleries proved to be more mobile than the
bulk PS at comparable temperatures, while mobility of PS in direct contact with the clay’s
surface was inhibited. In another study [7] Manias used X-ray techniques to observe the
swelling of clay during intercalation of PS. He observed that the diffusion coefficient of PS
inside the clay galleries is larger than the self-diffusion coefficient of bulk PS. This again
indicated that PS is more mobile inside the clay galleries than in the bulk.

All studies cited above were performed on polymer-clay nanocomposites with very
high contents of clay (>50 wt%) and very small dimensions of confinement (typically 0.5-2
nm). The studies indicate that under these severe confinements two polymer phases are
created; one phase with high mobility in the centre of the clay galleries and another phase
with low mobility in contact with the surface of the clay. Although the mobility of severely
confined (<2nm) polymer chains is strongly affected, it is by no means obvious that this also
accounts for the mobility of less severely confined polymer chains (5-100nm) as are present
in practical nanocomposites. Therefore it seems premature to assign the properties of practical
nanocomposites to the changed mobility of the polymer phase.

No NMR studies were found in literature on nanocomposites with low amounts (0-20
wt%) of clay. Such a study could yield information on the amount of mobilised and
immobilised polymer molecules in nano-composites with practical amounts of clay. In this
thesis, the polymer mobility in PA6-clay nanocomposites with 1-20 wt% of clay is
investigated with proton NMR relaxation. These nanocomposites contain less clay than the
nanocomposites studied in the literature and consequently have a larger inter-layer distance
(typically 5-100 nm).
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6.2.1 Short introduction into 'H-NMR T, relaxation spectroscopy

In order to better understand the NMR experiments that were conducted on the
nanocomposites, some background knowledge about NMR spectroscopy seems appropriate.
Here only a brief introduction is given. For a more detailed description we refer to the book
on NMR spectroscopy by Sanders and Hunter [8].

A nucleus with and odd atom number has a magnetic moment. The magnetic moment
of a nucleus is represented by its spin. A proton has a spin, I=%, which in a magnetic field,
align themselves either parallel (low energy orientation) or antiparallel (high energy
orientation) to a magnetic field. Two energy levels are thus created by the so-called Zeeman
splitting. The distance between these energy levels AE is proportional to the applied magnetic
field.

AE =hyB, /2% 6.1)

where y is the gyromagnetic ratio, A is Planck’s constant and B, is the applied magnetic

field. The amount of nuclei in the low energy level, labelled as the a-level, usually is higher
than in the high energy level, which is labelled as the B-level. The ratio of populations in
upper and lower levels is given by the Boltzmann equation:

N, /N, =exp(-AE /kT) 6.2)

where N, is the population density of the low energy level and Nj is the population density of
the high energy level. Transitions from the high energy level to the low energy level generate
radiation of a frequency:

o=7yB, 6.3)

In a NMR experiment a sample is placed in a static magnetic field. In this magnetic
field a part of the nuclei occupy the high energy level according to equation 6.2. This gives
the sample a net magnetisation in the direction of the static magnetic field. The static
magnetic field is subsequently perturbed by a pulsed radio wave whose magnetic field is
perpendicular to the static magnetic field. The frequency of the radio wave is matched to the
resonance frequency of the nucleus of interest:@, =w, =yB,. Due to the matching

frequencies, the spinning nuclei will absorb energy and the population density of the high
energy level is increased. After the pulse is stopped, the population of the high energy level
will decay by relaxation mechanisms present in the sample until the static situation is
restored. It is this decay that is measured. In a typical pulsed NMR experiment, the spin
system is perturbed and the free induction decay is collected in the time after the pulse.

In practice the NMR apparatus consists of a super conductive coil that generates a
strong magnetic field in the z-direction. Another coil is wound around the x direction (x-coil).
A magnetic pulse in the x-direction is generated by sending a high frequency current through
the x-coil for a fixed time. Then the current is stopped and the response is measured by either
the same x-coil or another coil in the x-y plane.

Most often the sample is excited by sending a sequence of pulses in the x-direction
and or y-direction. The duration of the pulse(s) is designed such that dispersion of the signal
during the pulse is minimised. The magnetisation of a sample in an NMR experiment is
depicted in Fig. 6.12. In equilibrium the magnetisation of the sample is parallel to the
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direction of the strong static magnetic field By. After perturbation by a pulse in the x-direction
the magnetisation vector precesses around the z-direction with a frequency «y. The precessing
vector has a component in the xy plane. A receiver-coil in the xy plane produces a pulse every
time the xy component of the magnetisation vector passes the coil. In absence of any
relaxation mechanisms the system would maintain like this forever and a signal with constant
amplitude would be generated.

Bo 4 By b)

Figure 6.12 Bulk magnetisation of a sample in a NMR-experiment.
a) At equilibrium and b) after perturbation by a pulse in the x-y-plane

As a result of interaction between the spins and the surroundings or ‘lattice’ the
magnetisation will eventually return to the equilibrium position, leading to a loss of the excess
energy. This relaxation mechanism is referred to as T; or spin-lattice relaxation. The rate at
which the system returns to equilibrium is expressed in the relaxation time constant T;. Due to
T1-relaxation the signal in the xy-coil will decrease with time.

The signal generated by the coil in the xy-plane can also decrease by a second
mechanism. The bulk magnetisation is the sum of all nuclear magnetisations. Tmmediately
after an x-pulse, the xy component of the magnetisation ideally is directed exactly in the x-
direction. As a result of additional processes the xy magnetisation will fan out or dephase,
producing a net magnetisation in the xy-plane of zero. These additional mechanisms, which
are referred to as T, or spin-spin relaxations, do not necessarily require any change in energy.

To obtain a NMR spectrum with high resolution, the duration of the pulse must be as
short as possible. On the other hand the energy in the pulse must be as high as possible for a
maximum response. Therefore often equipment is used that delivers a high-energy pulse in as
short time as possible. By using a sequence of pulses with carefully designed duration it is
possible to artificially increase the energy intensity of the radio pulse.

6.2.2 Experimental

PA6-clay nanocomposites were used with 0, 5, 7.5, 10, 15 and 20 wt% of montmorillonite
clay as described in Chapter 5. Prior to NMR measurements, all PA6-nanocomposites were
dried overnight at 125 °C under a nitrogen atmosphere. Proton T, relaxation experiments were
performed between 25 and 160 °C, on a Bruker Minispec PC-120 spectrometer at a proton
resonance frequency of 20 MHz. The temperature was controlled by a home-built temperature
unit. Dry nitrogen was used for heating and cooling the samples. Temperature accuracy and
stability was about 1°C.

To obtain accurate T, relaxation times, two different pulse sequences were employed.
For determination of the low mobile fraction of the sample (with fast relaxation) a solid-echo
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pulse sequence, SEPS, (90°% — t - 90°, — t-acq.) was used with t = 0.009 ms. Recording of data
was started at time = 0 as the echo-decay reached its maximum. T, relaxation times shorter
than 100 ms were recorded using this pulse sequence. For accurate measurement of long
relaxation times it is necessary to account for inhomogeneity of the magnetic field B0 in the
sample that leads to dephasing and accordingly to shorter T»-relaxation times. Therefore a
Hahn-echo pulse sequence, HEPS (90°, —t” - 180° — t’-acq.) is used for measurement of long
Tp-relaxation times. By proper use of the HEPS it is possible to compensate for
inhomogeneity of the magnetic field allowing accurate measurement of the long T-relaxation
time of the mobile phase.

The intensity of the magnetisation was recorded as a function of time. A schematic
example of such a recording is depicted in Fig. 6.13.

1

— Total
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- Long

0,8 -

Normalised intensity |
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Figure 6.13 Schematic example of the relative intensity I/I(0) of a
magnetisation signal that contains three decaying exponentials.

The recorded intensity is interpreted as the sum of three decaying exponentials, with a short,
intermediate and long T,-relaxation time. The functions W in front of each exponential are
added to account for finite line width of the T,-relaxations. The line width can optionally be
represented as a linear combination of Gaussian, Lorentz or Weibull functions.

-t -t -t

I=WJ,, e~ +W,I,, . e~ +W,I,, e" 6.4)

Long
The normalised intensities of the T»-relaxations (T»-intensities) and T,-relaxation times of the
samples were determined by fitting equation 6.4 through the normalised intensity. As a result

of the normalisation procedure the T»-intensity of a phase is equal the fraction of hydrogen in
that phase.
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6.2.3 NMR results

To interpret the 'H-NMR resuits shown below it must be realised that the intensity of the 'H-
magnetisation is proportional to the amount of hydrogen atoms while the T,-relaxation time is
a measure of the mobility of the phase. The silicate-phase contains a neglectable amount of
hydrogen and thus is invisible for 'H-NMR. Therefore the normalised intensity directly
reflects the fraction of hydrogen in the total organic phase. The organic phase on the clay
(NC3eH76) contains about 14.6 wt% of hydrogen, while the PA6 (NCg¢H;,0), contains about
12.4 wt% of hydrogen. Thus, in a nanocomposite with 20 wt% of silicate, 13.3 wt% of
organic modification and 66.7 wt% of PA6, about 19 % of all organic hydrogen atoms
originate from the organic modification of the clay.
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Figure 6.14 Fractions of rigid phase, amorphous phase and highly mobile
phase in PA6 as a function of temperature:
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Figure 6.15 T relaxation times of PA6 as a function of temperature.
T = short time ->rigid phase

T;" = intermediate time -> amorphous phase
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Figs. 6.14 and 6.15 show the T,-intensities and the T,-relaxation times of unfilled
PA6. Below the glass-transition ( 50 °C), pure PA6 only shows a single relaxation with a T»-
relaxation time of 11-12 ps, which is indicative for the rigid phase. The relaxation time of the
rigid phase is relatively constant between 30°C and 160 °C and stays well below 20 ps.
Above 50 °C a second relaxation emerges with a T,-relaxation time between 30 and 75 ps.
This relaxation is indicative for the amorphous phase of the PA6, which softens near 50 °C. A
third relaxation emerges above 100 °C. The intensity of this relaxation with a relaxation time
near 200 ps is relatively low. It is probably a product of the fitting procedure that allows three
exponentials to be fitted. It is therefore questionable if this third relaxation really represents a
distinct third phase. At 160 °C the total amount of rigid phase is about 53%. At 160 °C the
only rigid organic phase is the crystalline PA6 phase. So the fraction of rigid phase could be
interpreted as the crystallinity. Indeed a crystallinity of 53% is a very normal value for PA6.
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Figure 6.16 T2-relaxation time of organically modified montmorillonite clay

Fig. 6.16 shows the T,- relaxation time of the organically modified clay that was used
in the PA6-clay nanocomposites (Cloisite 20A). It contains 62% silicate and 38% organics.
Since silicate contains almost no hydrogen, all proton relaxation is assigned to the hydrogen
in the organic modification on the clay. It is found that the organic modification only has a
single T»-relaxation time that increases from about 12 ps to 120 ps as the temperature is
raised from 30°C to 160°C. Judging from the T,-relaxation times it can be concluded that the
organic phase on the clay is a little more mobile than the amorphous phase of pure PA6 while
its temperature dependence is similar.

Figs. 6.17 and 6.18 show the fractions of the phases and the T-relaxation times as a
function of temperature of a PA6-clay nanocomposite with 20wt% of silicate and 13.3 wt% of
organic modification. Measurements on pure PA6 are plotted as dotted lines for comparison.
In contrast to pure PA6, the nanocomposite contains about 10% highly mobile phase. The
amount of highly mobile phase does not change by increasing the temperature. The extremely
long T,-relaxation time of about 7 ms indicates liquid like mobility of this phase. The
evidence for the existence of a high mobile phase is very strong because at the end of the
relaxation measurement (Fig. 6.13) it is the only phase left that still has a magnetisation.

Also the intermediate phase, which is thought to represent the amorphous PA6 phase,
has a higher mobility than the amorphous phase of pure PA6. The amount of amorphous
phase gradually increases as the temperature is raised. No distinct glass transition is present in
the nanocomposite. At 160 °C about 53% of the hydrogen is present in the rigid phase that
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contains the crystalline PA6 phase and possibly some polymer that is adsorbed to the surface
of the clay. If the rigid phase would solely exist of crystalline PA6 then the crystallinity of the
PA6 would be 53/(100-19) = 65.4% (19% of all organic hydrogen atoms is present in the
organic modification). A crystallinity of 65% seems to be rather much and is not substantiated

by DSC measurements given in Chapter 7.
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Figure 6.17 Fractions of rigid phase, amorphous phase and highly mobile phase in
PAG6-clay nanocomposite with 20 wt% of silicate and 13.4 wt% of organic

modifications a function of temperature:
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Figure 6.18 T, relaxation times as a function of temperature of a PA6-clay
nanocomposite with 20 wt% of silicate and 13.3 wt% of organic modification.
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Therefore it is likely that the rigid phase also contains some immobilized polymer
present near the surface of the clay. Judging from the amount of crystalline phase in the
unfilled polymer (53%) at least 12% (65%-53%) of the organic phase is immobilized.
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Figure 6.19 T>-relaxation time at 30 °C of the highly mobile phase as a function of the
amount of silicate in PA6-clay nanocomposites.

10 v T T T + T T
8 -
- o 6 .
~
X
4 4
24 _
v‘>’~—"'
0 o= ; . ; . ; - .
0 5 10 15 20
clay, wt.%

Figure 6.20 Fraction of highly mobile phase as a function of the amount of silicate in
PA6-clay nanocomposites at 30 °C.

Figs. 6.19 and 6.20 show the T,-relaxation time and the amount of highly mobile
phase at 30 °C as a function of silicate content. The T,-relaxation time of the highly mobile
phase in Fig. 6.19 increases from 3 ms to 7 ms by raising the amount of silicate from 5 to 20
wt%. The mobility of this phase is always much higher than that of the amorphous PA6 phase
which has a T,-relaxation time near 0.1 ms. Fig. 6.20 shows that at a loading of 5 wt% silicate
the amount of highly mobile phase is only 1% while it gradually increases to about 8 % at 20
wt% of clay.
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6.2.4 Evaluation of NMR results

The proton NMR measurements show that PA6-clay nanocomposites contain a highly mobile
phase with liquid like mobility. Below 5 wt% of clay, the amount of mobile phase is below 1
wt% while it gradually increases up to nearly 8 wt% at 20 wt% of clay at 30 °C. The amount
of mobile phase thus seems to be related to the amount of clay. Both the amount of organic
modification and the amount of PA6 near a clay surface, increase proportionally with the
amount of clay.

This poses the question if the highly mobile phase is situated in the organic
modification or in the PA6 phase. Pure organic clay shows no highly mobile phase. This
proves that the organic modification has no high mobility if it is severely confined between
clay layers. The lack of a highly mobile phase in pure organic modified clay does not prove
that the highly mobile phase is present in the PA6-phase. It could still be that the highly
mobile phase is present in the organic modification.

To find an answer to this question magic angle spinning *C NMR was performed on
the nanocomposite with 20 wt% of clay. By adjusting the waiting time after the magnetisation
pulse it is possible to enhance either the slow relaxing phase (soft phase) or fast relaxing
phase (rigid phase).

Enhancement of the soft phase increased the intensity of the peak that represents long
CH;-sequences. Other peaks were not as much enhanced as this peak. If the soft phase would
be PAG, all the peaks in the spectrum should be equally enhanced. Since this is not the case,
this measurement indicates that the highly mobile phase is present in the organic
modification.

The >C NMR measurement cannot be considered as an absolute prove that the highly
mobile phase is present in the organic phase. The spectra were not conclusive enough to
justify such a statement. More certainty could be obtained by making a nanocomposite with
clay that contains no organic modification. If a highly mobile phase would then also be found
it would prove that it is present in the PA6 phase. Up to now all attempts to do such an
experiment failed because of difficulties in making a completely exfoliated nanocomposite of
unmodified clay with a high concentration.

6.3 Conclusions

TEM on PA6/clay nanocomposites:

o The length of the clay layers is about 100 nm. Since the thickness of a clay platelet is
about 1 nm, the aspect ratio is 100.

¢ At small volume fractions (1wt%) the clay platelets completely exfoliate and are found as
single well-oriented platelets in the polymer.

o Upon increasing the concentration (2.5-5wt%), the clay tends to organise in well-oriented
tactoids of 2-3 plates. The tactoids themselves are well dispersed.

o At 10 wt% tactoids consisting of 2-3 platelets are still well separated but they are hindered
so much by neighbouring tactoids that no macroscopic or microscopic orientation is
found.

o At 15 and 20 wt% of clay, the tactoids can no longer assume a free orientation and start to
align into groups of about 50 tactoids. At these high concentrations, the clay platelets
show a similar tendency to local ordering as liquid crystalline polymers do.
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TEM on HDPE/clay nanocomposites

e TEM images show that all HDPE nanocomposites are well exfoliated and randomly
oriented. Synthetic smectite, montmorillonite and synthetic mica have clay platelets with
estimated aspect ratios of about 30 nm, 100 nm and 150 nm respectively. Due to low
resolution of the TEM pictures these estimates are not accurate.

e At silicate contents above 10 wt%, clay platelets tend to group together as was also
observed in PA6-nanocomposites.

NMR-spectroscopy

¢ In PA6-clay nanocomposites with 5wt% or more silicate layers, a phase is present with
liquid like mobility. It is thought that the existence of this phase is a consequence of
confinement of polymer chains between silicate layers.

e The high amount of rigid phase in PA6 nanocomposites also indicates the existence of a
non-crystalline immobilised phase. The amount of non-crystalline immobilised phase is at
least 12% in the PA6-clay nanocomposite with 20 wt% of clay.

e At practical concentrations, below 5wt% of silicate the amount of highly mobile phase is
smaller than 1%. It is very unlikely that such a small amount of material is responsible for
the high stiffness and low thermal expansion of nanocomposites. If the highly mobile
phase has an influence at all, then it would lower the stiffness of a nanocomposite.
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Melting and crystallisation of
nanocomposites

Abstract

The crystallisation and melting of polymer-montmorillonite nanocomposites was studied as a
function of clay loading and clay aspect ratio. The polymer matrices used are Polyamide-6
(PA6), a blend of 75% PA6 and 25% aromatic polyamide (PA6/6T6I), and a HDPE grafted
with maleic anhydride (HDPE). DSC measurements are used to measure the heat of melting
and of crystallisation. An infrared technique, based on the derivative of the absorbance, is
introduced to study the melting and crystallisation of the o and y phases in PAG6
nanocomposites.

DSC measurements show the emergence of a second melting transition in PA6-
nanocomposites at 241 °C, well above the normal melting point of PA6. Infrared
spectroscopy confirms the existence of the new melting transition. Both the normal and the
new melting transition shift to lower temperatures upon addition of clay. A thermodynamical
theory is introduced that qualitatively explains the observed results. The theory is based on
confinement of polymer chains between clay platelets.

DSC measurements on HDPE-nanocomposites with clays of varying aspect ratio
reveal that crystallisation is not sensitive to the aspect ratio of the clay. Upon addition of
clay, HDPE nanocomposites show the same suppression of melting temperature as the
polyamide nanocomposites. HDPE nanocomposites do not show a high temperature melting
transition like the PA6 nanocomposites do.

83
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7.1 Introduction

The mechanical properties of nanocomposites depend on the properties of the polymer and
mineral phases in the nanocomposite. In conventional composites it is usually assumed that
the properties of the polymer matrix are not essentially changed by the presence of the
reinforcing phase. Therefore the properties of a conventional composite are thought to be a
mixture of properties of the unfilled polymer and of the reinforcement. In nanocomposites the
contact area between polymer and reinforcement is extremely large (= 700 m%/g). It can
therefore be expected that properties of the polymer inside the nanocomposite are different
from those of the unfilled polymer. In this chapter we will discuss how the crystalline
structure of the polymer phase in polymer-clay nanocomposites is changed by the presence of
exfoliated clay platelets.

PAG6 is a semi-crystalline polymer with a relatively high melting temperature. The high
melting temperature of PA6 is caused by the hydrogen bonds that provide strong attractive
forces between adjacent chains. PA6 crystallises in the a-, B- or y-structure, depending on
environmental conditions. Under slow cooling PA6 crystallises in the a-structure and under
fast cooling in the B-structure. The y-structure is formed under extensional stress during fibre
spinning or by addition of chemicals that change the nature of the hydrogen bonds [1]. In the
early work of Toyota [2] it was discovered that the y-structure is also present in PA6-clay
nanocomposites. Recently Mathias et al. [3] suggested that the y-structure in PA6
nanocomposites is a consequence of the bond between amine end groups and the clay surface.
This inhibits the a-structure and forms the y-structure by default.

In a polymer-clay nanocomposite, the distance between clay platelets is extremely
small. At 20 wt% of clay the distance is about 10 nm while at 1 wt% it is about 200 nm. It can
be expected that not only the crystalline structure but also crystallisation and melting kinetics
are severely changed by the presence of the clay platelets. Not much is known about
crystallisation and melting of nanocomposites. Kuchta et al. [4] found that lamellar thickening
is suppressed in PA11-clay nanocomposites due to the external constraints of the clay layers
in the host polymer. In another article, Kuchta et al. [5] reported that crystallisation was
retarded in PE-clay nanocomposites, while no change in crystalline structure was observed
due to the presence of clay platelets. Also Maurer et al. [6] noticed a reduction in crystallinity
in highly filled PE-kaolin compounds with a high interfacial area. Nano dispersed clay was
found to accelerate crystallisation in poly(ethylene terephthalate) [7], in PA6 [8] and in
poly(e-caprolactone) [9]. Kojima [10] et al. showed that the clay layers determine the
orientation of PA6 chains in PA6-clay nanocomposites.

Although some literature exists on the crystalline structure of nanocomposites, no
literature is found that focuses on the melting transition of nanocomposites. In this chapter the
melting and crystallisation of PA6 nanocomposites is studied by DSC and FTIR. It will be
shown that in PA6-clay nanocomposites a phase exists that melts above the normal melting
temperature of PA6. Also the effect of clay aspect ratio on the crystallisation of HDPE-
nanocomposites is studied.

7.2 PA and PA6/6T6I nanocomposites

In this section the melting and crystallisation behaviour of PA6 and PA6/6T6l
nanocomposites, studied by DSC and by FTIR techniques, will be described.
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7.2.1 Materials and experimental techniques

PA6-clay nanocomposites and PA6/6T6l-clay nanocomposites with 0-20 wt% of clay are
prepared by melt intercalation on an extruder. The PA6/6T6I contained 75 wt% of PA6 and
25 wt% of 6T/6l (terephthalic/isophthalic copolymer). The 6T/61 was added to reduce the
crystallinity of the matrix polymer. The clay used is a montmorillonite that is organically
modified by 38 wt% 2-methyl-2-hydrogenated-tallow-ammonium. The preparation of the
nanocomposites and their composition is extensively discussed in Chapter 5.

DSC measurements are performed with a Perkin Elmer DSC 7 at a heating/cooling
rate of 10°C/min on granules as obtained after melt extrusion.

To perform FTIR measurements, the remainder of the compression moulded DMA
films that are described in Chapter 9, were again compression moulded to very thin (= 5um)
films at a pressure of 18 tons between two 2 cm thick metal plates that were preheated to 300
°C. The samples were very thin in order to prevent over-absorption of the infrared spectrum at
high concentrations of clay. After compression moulding the samples were naturally cooled
down to room temperature in about 5 minutes.

The FTIR measurements were performed on a Perkin Elmer system 2000 FTIR
spectrometer using a MCT detector for fast scanning. Each spectrum was obtained by
averaging 20 scans. Spectra were measured as a function of temperature between 70 °C and
270 °C using a Beckman cell. Since the heating rate of this cell could not be adjusted at will,
the heating element of the cell was used at full capacity. This resulted in a varying heating
rate. Below 200 °C the heating rate was about 10 °C/min and above 200 °C about 4 °C/min.
Below 200 °C measurements were performed every 10 °C, between 200 °C and 210 °C every
5 °C, between 210 °C and 240 °C every 3 °C, between 240 °C and 250 °C every 5 °C and
above 250 °C every 10 °C.

7.2.2 DSC results

From the DSC heating curves in Figs. 7.1 and 7.2 it can be seen that both types of nano-
composites show a similar dependence of melting temperature on clay content. Without clay,
the melting peak of PA6 lies at 222 °C and the melting peak of the 75/25 PA6/6T6I blend lies
at 219.7 °C. These melting temperatures are typical for PA6 with a a-crystalline structure. At
higher clay content, the melting temperature is shifted towards lower temperatures while at
the same time a second peak emerges at temperatures well above the normal melting
temperature of PA6. In the PA6 nanocomposites this high temperature-melting peak is more
pronounced than in the PA6/6T6] nanocomposites.

All melting and crystallisation peak-temperatures and enthalpies are listed in Tables
7.1 and 7.2. To account for the presence of the amorphous 6T/61 polyamide and for the
organically modified clay also the enthalpies per gram PA6 are listed. The enthalpies are
determined by integration of the DSC curve. The integrated enthalpy is sensitive to the
position of the baseline. Since the position of the baseline is uncertain, an error is introduced
in the determination of the enthalpies. Especially at low enthalpies the relative error is large.
Since the crystallisation peaks are much narrower (Figs. 7.7 and 7.8) than the melting peaks,
positioning the base line can be done with more accuracy. This makes the error in
crystallisation enthalpies smaller than the error in melt enthalpies. Therefore the
crystallisation enthalpies are used as a measure for crystallinity.

Fig. 7.3 shows the peak temperatures of the low, Tme(1), and high, Tpa(2), melt
transitions as a function of clay content. Tmei(1) of both PA6 and PA6/6T6I nanocomposites
show a similar response to the presence of nano-dispersed clay. Both show a steep drop of
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about 8°C at 1 wt% clay. Between 1 and 10 wt%, Tner(1) is independent of clay content and
lies near 214°C, which is typical for y-crystalline PA6. At concentrations above 10 wt%
Tuen(1) decreases to about 208 °C. A similar decrease in melting temperature was also
observed by Kuchta et al. for PA11-clay nanocomposites [4].
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Figure 7.1 DSC heating curves of PA6 Figure 7.2 DSC heating curves of (75/25)
nanocomposites with 0, 2.5, 5, 10, 15 and ~ PA6/6T61 nanocomposites with 0, 2.5, 5, 10
20wt% montmorillonite. Note the and 15wt% montmorillonite. Again a second
emergence of a second melting peak at melting peak emerges at high weight
high loadings. concentrations.

Initially Tmer(2) is about 6°C higher for the PA6 nanocomposites than for the
PA6/6T6] nanocomposites. Below 7.5 w% of clay Ten(2) lies near 241 °C for the PA6 and
near 235°C for the PA6/6T6I nanocomposites. Between 7.5 w% and 15 w% both Tmer(1) and
Tmet(2) drop about 12 °C.

From Fig. 7.5 it can be seen that the melt-enthalpy of the high temperature melting
process, AHp(2), increases strongly upon addition of clay. The increase of AHme(2) in the
PA6/6T61 nanocomposites levels off at about 7.5 wt% of clay, while in the PA6
nanocomposites AHmen(2) increases exponentially up to 20 wt% of clay. The data in Table 7.1
reveal that at 20 wt% of clay almost half the amount of PA6 in the PA6 nanocomposite, melts
at the high temperature transition.




Chapter 7 87

COdC Ofg Sll Tlllt‘lll AHmcll1 AHmclll Tmel‘z AHmelt2 AHmell2 AHc!ysl AHcryﬂ TC".\‘*‘

Clay perg perg perg

PA6 PA6 PA6
wit% | wt% | °C J/g Jig °C Jg Jig J/g Jig °C
PAGO | 0 0 2220 | 826 82.6 5 0 0 82.8 828 189.4
PA6-0.2 | 0.33 0.2 221.8 71.7 71.9 - 0 0 -71.1 -71.3 190.6
PAG-1.0 | 1.66 1.0 214.5 75.3 76.6 240 0.9 0.9 -68.4 -69.6 189.5
PAG-2.5 | 417 | 25 2139 | 576 60.1 2393 | 2.1 22 -65 67.8 190.7
PA6-50 | 833 |50 | 2154 | 563 ol.4 2417 |36 3.9 -63.7 69.5 139.8
PA6-7.5 | 125 | 15 2157 | 4638 53.5 2416 | 45 5.1 -60.9 -69.6 1873
PA6-10 | 167 | 10 2151 | 628 75.4 2334 | 67 8.0 -59.2 -71.0 180.1
PA6-1S | 250 | 15 2110 | 469 62.4 2293 | 118 157 -52.8 -70.4 179.8
PA620 | 333 | 20 207.5_| 274 41.1 2262 | 212 31.8 438 -65.7 174.8

Table 7.1 DSC data of PA6-nanocomposites

Code Org' Sil. Tmelll AHmehl AHmel\‘ Tl“k‘llz AHmcll2 AHH\L‘I(2 AHcrysl AHcryst TCWS‘

clay perg perg per g

PA6 PA6 PA6
wi% | wt% | °C g Jg °C g g Jig Jg °C
Griv0 |0 0 219.7 | 564 75.2 - 0 0.0 517 -68.9 174.6
Griv-0.2 | 0.33 0.2 220.0 58.9 78.8 - 0 0.0 -33.6 -71.7 178.4
Griv-10 | 1.66 | 1.0 2131 | 56.7 76.9 - 1.0 1.4 -47.4 -64.3 178.3
Griv-2.5 | 417 |25 2135 523 72.8 235 2.1 2.9 -45.6 -63.5 178.2
Griv-50 | 833 | 5.0 2134 | 502 73.0 236 4.0 5.8 -44.2 -64.3 177.3
Griv-7.5 [ 125 |73 2127 | 407 62.0 234 4.7 7.2 -40.2 -61.2 175.1
Griv-10 | 16.7 10 213.2 36.2 579 233 4.7 7.5 -38.9 -62.3 172.5
Griv-15 [ 25 15 208.0 33.8 60.1 223 5.0 8.9 -34.3 -60.9 166.1

Table 7.2 DSC data of PA/6T6I-nanocomposites

In Fig. 7.6 the heat of crystallisation shows a sharp drop at only 0.2 wt% of clay. PA6-
clay nanocomposites crystallise in the y-form. The heat of crystallisation of the y-crystalline
phase is 213 J/g and 243 J/g for the a- crystalline phase. So the steep drop in heat of
crystallisation could be due to the lower heat of crystallisation of the y-crystalline phase and is
not necessarily due to a lower crystallinity.

7.2.3 FTIR-results

To distinguish between a- and y-crystalline materials and to confirm the DSC results of the
previous section, Fourier Transform Infrared spectroscopy (FTIR) was performed on the PA6
nanocomposites as a function of temperature.

Fig. 7.9 shows a series of spectra near 1420 cm™ and 1310 cm’, at intervals of 10°C.
The intensities of these bands are a measure of the amount of crystalline phase. To determine
the amount of a-crystalline phase the band at 1420 cm™ was used, while the amount of y-
crystalline phase was determined by the 1310 cm™' band. Band assignments are given by
Dechant [11].
The intensities of the 1420 cm™ and 1310 cm™ bands are determined by integration using
Labspec 2.08 software. All intensities were weighted against the intensity of the 1370 cm™
band, which was used as a thickness reference. Integration was performed between the
following wavenumbers:

The o-band at 1310 cm™ between 1294 cm™ and 1329 cm’™'.
The y-band at 1420 cm-1 between 1410 cm™ and 1428 cm™.
The reference band at 1370 cm™' between 1335 ¢m™ and 1395 cm™.
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Figure 7.8 DSC crystallisation peaks of PA6/6T61 nanocomposites with 0, 2.5, 5,
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The intensity of a band is defined as the area between the baseline and the spectrum.
The baseline is defined as a straight line through the integration limits. The - and y-band
intensities are normalised by setting the band intensities at 270 °C to zero. In practise this was
done by subtracting the band intensity at 270°C from the band intensity at a given temperature

To correct for differences in thickness between samples, the normalised intensities of
the a-band and y-band were divided by the intensity of the reference band. The so obtained
normalised and thickness corrected intensity of the a- and y- bands, Leryst, is @ measure of the
amount of crystalline phase.

In Fig. 7.10 the intensities of both a- and y-bands at 70 °C are plotted as a function of
clay content. The amount of y-crystalline phase increases by addition of clay. At 0% clay
only a-bands are found, indicating a purely o-crystalline phase. Upon addition of clay the

intensity of the y-band increases while the a-band decreases.
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Figure 7.10 Effect of clay content on the intensity of the a- and y
crystalline bands in PA6-clay nanocomposites.

At 1 wt% of clay the nanocomposite still is mainly a-crystalline while at 2.5 wt% both
phases are present at nearly equal concentrations. Even at 10 wt% of clay the PA6
nanocomposite still contains a considerable amount of o-crystalline material. At 15 wt% and
20 wt% the amount of a-crystalline matenal is very low.

The intensity of the o and y bands (Lerye) of the nanocomposite with 15 wt% of clay is
plotted in Fig. 7.11 as a function of temperature. The intensity of the y-band is much higher
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than the intensity of the a-band, indicating that this nanocomposite mainly contains y-
crystalline material. The intensity of the y-band continuously drops between 70 and 200 °C.
This can be explained in two ways, either the crystallinity strongly decreases in this region,
which is unlikely, or the intensity of the infrared band decreases with temperature even at
constant crystallinity. Above 200°C, the intensity suddenly shows a much steeper decrease.
This is caused by melting of the crystalline phase. Above 260°C all crystalline material is
melted.

The steep decrease above 200 °C prompted us to calculate the derivative of the
intensity. The lower part of Fig. 7.11 shows the derivative -dlcrys/dT. This is a measure for
the amount of crystalline phase melted per °C. The amount of heat needed to melt the sample
(4H) is proportional to the amount of crystalline phase in the sample and thus is also
proportional to the intensity of a crystalline peak (/) in the IR-spectrum.
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Figure 7.11 PA6-clay nanocomposite with 15 wt% of clay.

Left axis:  Thickness corrected intensity I,y of the a- and ycrystalline bands.

Right axis: The temperature derivative of the peak intensity ~dl ,ys/dT.

Note that the disappearance of the yphase is accompanied by the emergence of the a-phase.
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Figure 7.12  Melting of PA6 nanocomposite with 15 wt% of clay.
Upper part: dH/AT measured by DSC
Lower part: -dlycpys/dT measured by FTIR
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In the DSC graphs of Figs. 7.1 and 7.2 the specific heat ¢, is plotted on the y-axis.
This is the amount of energy needed to increase the temperature of the sample by 1°C. In the
melting zone nearly all energy is needed to melt the sample. So in the melting zone ¢, is
proportional to -dl.,/dT. The minus sign is needed, because during melting the amount of
heat increases while the amount of crystalline phase decreases. The samples with 15 and with
20 wt% of clay are almost entirely y-crystalline. So by plotting the derivative of the y-band
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intensity -dly.cryv«/dT, as a function of temperature, a curve should be obtained that resembles
the DSC plot near the melting zone.

In Fig. 7.12 the DSC curve and -dly.cryst/dT are plotted as a function of temperature.
The y-band clearly shows the same transitions as the DSC-curve does. The peak temperatures
near 230 °C and 245 °C are about 15 °C higher than found in the DSC measurement.
Probably the relatively fast heating of the Beckmann cell causes the sample temperature to lag
behind the measured temperature. The reason for this is that the temperature measurement of
the Beckman cell is not optimised for fast heating. Normally it is operated at a constant
temperature.

The a-phase in Fig. 7.11 shows a behaviour that is opposite from the y-phase. In the
melt transition, while the y-phase is disappearing, some oa-phase material is created. This
indicates that some of the molten y-crystalline material is immediately transformed into o-
crystalline material. This y to o transition was found in all the samples tested. This can be
verified by comparing Figs. 7.15 and 7.16.

Band intensity of the PA6 nanocomposites Leyse and the derivative -dley/dT are
plotted in Figs. 7.13 to 7.16. It is difficult to obtain detailed information about the melt
transitions by only observing Icrys in Figs. 7.13 and 7.14. A much better insight is obtained by
observing -dl.y/dT in Figs. 7.15 and 7.16. Like the DSC curve in Fig. 7.1, the y-phase in the
nanocomposite with 20 wt% of clay clearly shows two melting transitions. The graphs thus
confirm the existence of a phase that melts above the normal melting point. Since the
transition is only visible with the y—band this phase has a y-crystalline structure

7.2.4 Explanation for the decrease in melting temperature upon addition of clay

The decrease in melting temperature upon addition of clay can probably be attributed to a
decrease in lamellar thickness of the polymer crystals. At increasing concentration the
distance between clay platelets becomes so small that the growth of crystals is seriously
hindered. As a result of this, crystals of smaller dimensions and lower perfection are formed
with a correspondingly lower melting temperature. In lamellar crystals this leads to a decrease
of the maximum size of crystal lamellae. Such a decrease in lamellar thickness has been
experimentally verified for PA-11 nanocomposites by Kuchta et al. [4]. A strong dependence

exists of the observed melting temperature T, of a polymer crystal upon lamellar thickness, /
[12]:

0
T, =10 - 2eln 7.1)
IAH,

where T is the melting temperature at infinite crystal thickness, AH | is the enthalpy of
fusion per unit volume of the crystals and y,1is the top and bottom surface energy of the
lamellar crystals.

7.2.5 Explanation for the existence of a high temperature melting transition

An explanation for the existence of the high temperature melting transition might be found in
the confinement of polyamide chains near the clay surface. According to thermodynamics the
free energy per unit volume AG, can be expressed as:
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AG, = AH, - TAS, 7.2)

where AH  and AS, are the enthalpies and entropies of fusion per unit volume respectively.

An idealised perfect crystal of infinite dimensions melts at T=T7.. At T, there is no
change in free energy since melting and crystallisation are equally probable and so AG,=0.
From Eqn. 7.2 it then follows that for a perfect crystal:

T = AH, 7.3)
AS

v

If the crystals are present in a confined environment, the amount of possible arrangements of
the polymer chains is seriously limited. Consequently the entropy change AS, upon melting is

decreased, causing an increase in polymer melting temperature.

7.2.6 Crystallisation behaviour

Figs. 7.7 and 7.8 show the DSC cooling curves of some selected PA6 and PA6/6T6I
nanocomposites. Unlike the melting peaks, the crystallisation peaks are very narrow and show
no details. Fig. 7.4 shows that the crystallisation temperature drops considerably by addition
of more than 5 wt% of clay. As a result of the presence of 25 wt% aromatic 6T6I polyamide
in the PA6/6T6I nanocomposites their crystallisation temperature is about 10 °C lower than
that of the PA6 nanocomposites. The PA6/6T6I nanocomposites show a 4 °C increase in
crystallisation temperature at 0.2 wt% of clay. This suggests that clay in the PA6/6T6l
nanocomposites acts as a nucleating agent.

In Fig. 7.6 the crystallisation enthalpy is plotted against the clay content. The enthalpy
is corrected for the presence of non-crystallising material, by calculating the enthalpy per
gram PA6. Both PA6 and PA6/6T6I nanocomposites show a sharp drop in crystallisation
enthalpy at only 0.2 % clay. FTIR results show that between 0 and 1 % of clay the PA6
nanocomposites mainly contain a-crystalline material. So the drop in crystallisation enthalpy
should point at a decrease in crystallinity of the sample. This contradicts the finding in Fig.
7.10 that shows an increase in the amount of a—phase at 1% of clay.

7.2.7 Evaluation of the melting and crystallisation behaviour

Apparently two melt transitions are present in the nanocomposites. One with a high and one
with a low melting point. It is anticipated that the phase with the low melting point is present
at some distance from the clay layers, while the phase with the high melting point is very
close to the clay layers and is confined.

At low clay content, the distance between the clay layers is large enough to allow the
PA6 crystals to obtain their undisturbed lamellar thickness. Consequently the melting
temperature of the PA6 is not changed at low clay content. At increasing clay content, the
amount of confined polymer is increased and a second melting peak emerges above the
unconfined melting point.

At high clay content the clay layers approach each other so close that the crystalline
lamellae can no longer obtain their undisturbed thickness. This leads to a decrease of lamellar
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thickness and consequently to a lower melting point. Lamellae of PA-6 crystals typically have
an undisturbed thickness in the order of 10 nm. At clay loadings below 5 wt% the distances
between the clay platelets are larger than 50 nm (Table 6.1). At these loadings the PA6-
lamellae are expected to grow relatively undisturbed. Above 10 wt%, as the distance beteen
clay platelets becomes smaller than 20 nm, the PA6-lamellae start to feel the presence of the
clay platelets. This implies that the melting temperature will stay constant up to about 10 wt%
of clay, while above 10 wt%, the crystals become disturbed and the melting point will drop.
These theoretical predictions correspond well with the experimental data plotted in Fig. 7.3.

The 6°C higher Tpe(2) of the PA6 nanocomposites compared to the PA6/6T6l
nanocomposites in Fig. 7.3 suggest a stronger interaction between the clay and the PA6 in the
PA6 nanocomposites. Upon addition of clay, AH,.(2) of the PA6/6T6I nanocomposites stops
to increase at 7.5 wt% of clay while it continues to increases for the PA6 nanocomposites.
This suggests that, above 7.5 wt% of clay, more polymer is confined in the PA6
nanocomposites than in the PA6/6T6l nanocomposites. So the PA6 in the PA6
nanocomposites interacts stronger and in larger quantities with the clay layers, than the PA6
in the PA6/6T6I nanocomposites.

7.3 PE nanocomposites

In this section the crystallinity and perfection of polymer crystals in HDPE-clay
nanocomposites is studied by DSC experiments. The amount of clay and the aspect ratio of
the clay are varied. The objective of the study is to obtain information on the crystalline
morphology of the polymer matrix. These morphological data will be used in Chapter 9 to
explain the mechanical stiffness of HDPE-clay nanocomposites.

7.3.1 Materials and experimental techniques

HDPE with 2 wt% of grafied maleic anhydride is used as the matrix polymer throughout this
study. HDPE-nanocomposites with 0-20 wt% of clay are made on a Haake kneader. Three
types of clays are used that differ only in the aspect ratio of the clay. The type and amount of
organic modification of these clays are identical. The preparation of the nanocomposites is
discussed in Chapter 5.

DSC experiments are performed on a Perkin Elmer DSC 7, between 30°C and 180°C
at a heating rate of 10°C/min. Only the first heating curve is used. To assure equal thermal
history for the DMA and the DSC samples, all DSC samples are taken from the same
compression moulded samples as was used for DMA measurement.

7.3.2 DSC results

DSC curves of the PE-nanocomposites are plotted in Figs. 7.17 to 7.19. The melt enthalpy is
determined by integration of the DSC curves between 80 and 140°C. Melt enthalpy and peak
temperatures are listed in Table 7.3.

The DSC curves in Figs. 7.17-7.19 show that the melting behaviour is strongly
influenced by the amount of clay added. The melting peaks shift to lower temperatures upon
addition of clay. The effect of aspect ratio on the melting behaviour is small.

These findings can be better appreciated by plotting the crystallinity of the PE-phase
as a function of clay content, as is done in Fig. 7.20. The crystallinity is determined by
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correcting the total enthalpy for the true amount of PE in the sample and by using a melt
enthalpy of 286.6 J/g for a 100% PE crystal [13].

At small loadings the clay seems to act as a nucleating agent and increases the
crystallinity a few percent. At high clay contents the crystallinity is strongly suppressed. All
types of clays seem to suppress the melting enthalpy by roughly the same amount. At 20 wt%
of clay the synthetic mica suppresses the crystallinity a little less than the other clays.

The peak melting temperatures of the HDPE nanocomposites in Fig. 7.21 drop
continuously as the amount of clay is increased. Again the differences between the clays are
small. Synthetic smectite and Montmorillonite show exactly the same behaviour. At 20 wt%
synthetic mica, the suppression of the melting point is a little smaller than for the other
nanocomposites.

Sample Mass | Onset Peak AH AH /g PE | crystallinity
[mg] | [°C] [°C] [Ve] [Vg]

HDPE-g-MA 4.1 124.5 130.4 186.2 186.2 0.650

1% montmorillonite 5.4 124.2 129.9 184.6 187.7 0.655

2.5% montmorillonite 5.7 1243 129.7 181.3 189.2 0.660

5% montmorillonite 5.5 122.9 129.4 172.1 187.7 0.655

10% montmorillonite 4.3 122.3 128.8 153.5 184.2 0.643

15% montmorillonite 5.2 119.3 127.7 132.8 177.0 0.618

20% montmorillonite 5.3 118.7 126.6 115.2 172.7 0.603

1% synthetic mica 44 124.3 129.5 186.4 189.6 0.661
5% synthetic mica 5.4 123.8 128.8 171.5 187.1 0.653
20% synthetic mica 5.7 119.2 127.9 119.1 178.6 0.623

1% synthetic smectite 5.1 125.0 129.9 186.1 189.2 0.660

5% synthetic smectite 5.3 123.6 129.3 173.0 188.7 0.658

20% synthetic smectite | 5.7 117.9 126.9 1134 170.1 0.593

Table 7.3 DSC data of HDPE-nanocomposites

Overall it can be concluded that nanoclay suppresses the melting point of PE. At small
loadings, nanoclay acts as an ineffective nucleating agent and increases the crystallinity a
little bit. At higher loadings nanoclay lowers the crystallinity. Upon addition of clay the
crystallisation peak shifts to lower temperatures. The aspect ratio does not have much effect
on the crystallinity or melting point of PE-clay nanocomposites.

The lower melting point is probably caused by the confinement of the lamellar
thickness like in the PA6-nanocomposites. A second melting transition as was found in PA6-
nanocomposites is not observed in HDPE nanocomposites.
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Figure 7.17 DSC heating curves of HDPE-nanocomposites with 0, 1, 5 and 20
wt% of synthetic smectite clay (w/t =30)
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Figure 7.18 DSC heating curves of HDPE-nanocomposites with 0, 1, 2.5, 5, 10,
15 and 20 wt% of montmorillonite clay (w/t ~ 100)
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Figure 7.19 DSC heating curves of HDPE-nanocomposites with 0, 1, 5 and 20
wt% of synthetic mica clay (w/t =150)
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Figure 7.20 Crystallinity of the HDPE phase in the nanocomposites
as a function of clay content.
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Figure 7.21 Peak temperature of the melting transition of
HDPE nanocomposites as a function of clay content.

7.4 Conclusions

e Owing to a combination of DSC and temperature derivative FTIR measurements, the
existence is proven of a second melting transition in PA6- nanocomposites above the
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normal melting point of PA6. FTIR measurements confirm the existence of the high
temperature melting transition and indicate that it consists of y-crystalline material.

e Both the high and low temperature melting transitions shift to lower temperatures
upon addition of clay.

e Both the existence of a second melting peak in PA6 nanocomposites, as the shift of the
melting peaks to lower temperatures, is attributed to confinement of the polymer
chains between the clay layers. A thermodynamical theory is given that qualitatively
explains these findings.

¢ PAG6-clay nanocomposites are not purely y-crystalline. Depending on the amount of
clay they may also contain a considerable amount of a-crystalline material. The
amount of y-phase increases upon addition of clay. Above 15 wt% of clay the PA6-
nanocomposite is almost entirely y-crystalline.

e Like PA6-nanocomposites, PE-nanocomposites show suppression of the melting
temperature and crystallinity upon addition of clay.

e No significant effect is found of clay aspect ratio on the crystallinity or melting
temperature of HDPE-clay nanocomposites.
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Dielectric properties of nanocomposites

Abstract

Dielectric measurements were performed to study the relaxation mecchanisms of PA6-
nanocomposites with 0-20 wt% of clay. The measurements were made between —130 and 200
°C in a frequency range between 0.11 and 960 kHz. Four transitions can be distinguished in
PA6 nanocomposites. Below 0°C, a weak secondary (f) transition is found in the
nanocomposites as well as in the neat PA6. Upon addition of clay a new (a») glass transition
emerges near 10 °C, well below the normal () glass transition. Above the glass transition,
an electrode polarisation (EP) transition is found. The peak temperatures of these transitions
are determined and plotted in an Arrhenius plot. Below 2.5 wt% of clay, the effect of clay on
the position of the transitions is very small. The most striking effect is the emergence of the
() glass transition. The strength of this transition increases strongly as the amount of clay is
increased.

The effect of confinement of the polymer chains by the clay platelets is revealed by
analysis of the activation energy fine structure. This analysis shows that confinement is a
relative notion and depends on the frequency used to probe the sample. At high frequencies,
the polymer does not experience any confinement because most motion occurs at a length-
scale that is much smaller than the distance between the clay platelets. Confinement is only
experienced at low frequencies as the length scale of cooperative motion exceeds the distance
between the clay platelets.

101
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8.1 Introduction

The central theme of this thesis is to use composite modelling to explain the properties of
nanocomposites. Composite modelling usually assumes that the properties of the constituents
are unchanged. In polymer-clay nanocomposites the surface of the clay is so large that it is
likely that the properties of the polymer will change to some extent. In this chapter the
changes in polymer properties will be studied by dielectric relaxation spectroscopy (DRS).
DRS is a technique that is pre-eminently suitable to study relaxation mechanisms in polymer
materials. It can be used to study how the relaxation mechanisms of the polymer matrix are
changed by the presence of the clay.

The amount of literature on dielectric spectroscopy of nanocomposites is very limited.
Only one research group around Anastasiadis [1-4] has published articles about this subject.
In their articles, they investigated the segmental dynamics of polymer films that were
confined in 1.5-2 nm wide galleries between clay platelets. A relaxation mode was found that
is much faster than the bulk polymer a-relaxation and exhibits much weaker temperature
dependence. This is attributed to the small interlayer spacing that restricts the co-operative
volume of the a-transition. The existence of more mobile inter-phase regions as predicted by
molecular dynamics and experimentally confirmed by solid state NMR, was also considered
as a possible explanation. The data qualitatively support the cooperativity arguments without,
however, being able to exclude the mobile inter-phase idea.

Where Anastasiadis used DRS on samples that contained mainly clay and only a little
polymer, we have explored the use of DRS on practical nanocomposites that contain mainly
polymer and only a little clay. It is clear that the confinement of polymer chains in practical
nanocomposites is much smaller than in the nanocomposites studied by Anastasiadis. It is the
objective of this study to find out how much the relaxation mechanisms of practical polymer-
clay nanocomposites are changed by the presence of the clay.

8.2 Theory

8.2.1 The dielectric constant

If a material is submitted to an electric field, all charges in the material will experience a force
that is directed parallel to the direction of this field. The charges respond by moving from
their equilibrium positions and create an internal electric field that partly neutralises the
applied electrical field. The ability of a material to neutralise an applied electrical field is
expressed in its dielectric constant.

The dielectric constant is often determined by placing the material between two flat
plates of a capacitor. The capacity C is a measure of the amount of charge @ that can be
stored on the plates at a certain voltage U: @ = CU. If a material is placed between the plates
of the capacitor, the induced electrical field inside the material will try to lower the applied
electrical field. To keep the voltage over the capacitor intact, extra charge is transported to the
plates of the capacitor. Therefore, by inserting a material, the capacity C of the capacitor is
increased. The capacity of a capacitor is equal to:

A
C=¢,6, — 8.1
0rd )

where g,¢€, is the permittivity of the material and ¢, is the vacuum permittivity (8.85 pF/m).

g, is the relative dielectric constant of the material. In vacuum &, equals unity, while in a
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material g, always is larger than unity. The word ‘relative’ and the index r are often omitted.
In general, the dielectric constant is a complex quantity:

eX=¢'-ig" 8.2)

where £’is the real part of the dielectric constant and is often simply referred to as the
dielectric constant. &’ is a measure of the polarisability of the material. £” is the imaginary
part, also known as the loss index and is a measure of the dielectric losses in the material.

8.2.2 Relaxation mechanisms

If a polymer is mechanically stressed, it can only relieve its stress by internal rearrangements
of molecules. At very low temperatures, all molecules are frozen in and no rearrangements arc
possible. At this stage, the polymer will react purely elastic to any outside stress. As the
temperature is increased, small parts of the polymer chains become mobile, enabling the
polymer to relax a small part of the stress. If relaxation of stresses is possible, the material
does no longer react purely elastic and becomes visco-elastic. Near the glass transition, the
large parts of the polymer molecule become mobile and the stress on the polymer will relax
more strongly. It is obvious that relaxation mechanisms are therefore of major importance for
the mechanical behaviour of the polymer.

Dielectric relaxation spectroscopy is a technique that probes the intensity and
frequency of the relaxation mechanisms as a function of temperature. This is usually done by
performing frequency sweeps in a wide temperature range. The intensity and the frequency of
the relaxations can give valuable information about the underlying molecular mechanisms.
DRS is closely related to dynamic mechanical analysis (DMA). The major difference is that
in DRS the forces on the molecules originate from an electrical field while in DMA they
originate from a mechanical field. Therefore information on relaxation mechanisms that are
found by diclectric spectroscopy can be used to explain the relaxations that are found by
DMA. A big advantage of DRS over DMA is the very wide frequency range of about 9
decades that can be applied. The wide frequency range makes it possible to study relaxation
mechanisms in more detail. In addition, the high accuracy of the technique and the relative
simplicity of doing experiments are advantageous.

At very high frequencies or at very low temperatures only the clouds of electrons
around the atoms of the material are mobile enough to follow the alternating electric field
without delay. The electric field elongates the electron clouds and separates the centres of
gravity of the negatively charged electron clouds and the positively charged atomic cores.
This creates induced dipoles in the material. These dipoles create an electric field that is
directed opposite to the applied field. This effectively increases the dielectric constant of the
material and is the origin of the high frequency dielectric constant &, .

Polar groups in a material have an associated permanent dipole moment. At low
frequencies, these dipoles are mobile enough to rotate in the direction of the applied electric
field, and thus increase the dielectric constant. At high frequencies, the dipoles are unable to
follow the alternating electric field. Although the forces on the dipoles are relatively high in
this stage, the displacements of the dipoles are extremely small and the net energy absorption
(energy = force x displacement) can be neglected. At very low frequencies, the dipoles will
rotate more in the direction of the applied field. Now the displacement of the dipoles is
relatively large but the frictional forces between the dipole and its neighbouring atoms is low
because of the low rotation velocity of the dipoles. Again, the net energy absorption is very
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small. Energy is only absorbed at intermediate frequencies where the dipoles experience
frictional forces that cannot be neglected and will be displaced over some distance. The
energy absorption is at a maximum at the typical relaxation frequency @, or equivalently, at

the typical relaxation time 7, . A much-used empirical equation to describe the frequency
dependence of a relaxation mechanism is the Havriliak-Negami equation:

Ag

- 8.3
* (1+(iwt, )* )? )

e¥(o)=¢,

where @ is the radial frequency and Ag is the relaxation strength. @ and Bare shape
parameters, & mainly determines the width of the transition and Sthe asymmetry. The shape
parameters aand £ usually are constrained to 0< a@,f< 1, however Smight exceed 1,
provided a.f< 1.

In general, the frictional forces will be higher at a low temperature than at a high
temperature. Accordingly, the relaxation time will increase at lower temperatures. The
temperature dependence of local relaxation mechanisms can be described by the well-known
Arrhenius equation:

o(T )=t e 8.4)

where T is the temperature, k is Boltzmann’s constant, 7(7T) the relaxation time of the
transition and 7, the shortest possible relaxation time (at T —¢0), which for local motions is
in the order of 10 s, The Arrhenius equation also defines the thermal activation energy of
dipole rotation E4. In general, the Arrhenius equation gives an accurate description of the
dynamics of relaxation mechanisms that originate from local motions of the polymer chain. A
single, temperature independent, activation energy is usually enough to characterise such
transitions. By plotting the logarithm of the relaxation frequency of the £” maximum as a
function of I/T, a straight line is obtained. E4 can be determined from the slope of this line.

Near the glass transition (a-transition) large parts of the polymer chain become mobile
and the movement of the polymer-chain is no longer restricted to a local scale. The mobility is
now determined by the amount of free volume in the polymer. Consequently, the relaxation
time can no longer be described by the Arrhenius equation. The relaxation time is instead
given by the Vogel-Fulcher-Tammann (VFT) equation:

o(T)=r1e"*T™ 8.5)

where E, is the VFT activation energy and T, the VFT temperature. The VFT equation will
yield a curved line in an Arrhenius plot.

In general, the relaxation time of a transition is determined by the surroundings of a
polymer chain. In a nanocomposite, not all polymer chains have the same surrounding. This
creates a distribution of relaxation times that will widen the transition, or even add a separate
maximum to the £”-@ curve. Widening of the relaxation distribution makes the determination
of a characteristic relaxation time more uncertain, Detailed information on the mobility of the
polymer chain can be obtained by an activation energy fine-structure analysis by means of
differential sampling that was introduced by van Turnhout et al. [5-7]. This analysis assigns
an activation energy to every point in the temperature-frequency plane, instead of only to the
maximum of the £”-@ curve:
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, ogvorT
E T )==kT- —— 8.6
(@ 1) e dlnw )

E ,(o,T ) represents the apparent activation energy of the most dominant relaxation process
at radial frequency @ and temperature T. This analysis enables accurate determination of the
fine structure of a distributed relaxation process.

The fine structure of the glass transition can also be analysed by this procedure. As
was mentioned before, the relaxation time of the glass transition does not behave Arrhenius-
like. An Arrhenius plot of the relaxation frequency versus the glass transition temperature
yields a curved line. Therefore, it is impossible to assign a single (Arrhenius) activation
energy to the glass transition. Instead, £, gives a maximum in a plot of E, versus T at
constant @. The location of this maximum corresponds with the glass transition temperature
T,. The value of E  (max) is proportional to slope of the VFT curve in an Arrhenius plot.
The slope of this line is expressed in the steepness index or the fragility parameter m, that can
be determined from Eqn. 8.5 by taking the differential at 7=T:

1 din(r) Ev T,
_1 _Ev i 8.7)
T dyT  k (T,—Tv)

The local activation energy E4(a, T) introduced by van Turnhout et al. [7] is also related to the
amount of fractional free volume fla, T):

E (@0,T)=kT"—2L 8.8)
f(o,T)

where ayis the expansion coefficient of the material.

8.3 Experiments
8.3.1 Sample preparation

Experiments are performed on melt extruded PA6-nanocomposites containing between 0%
and 20 wt% of organically modified clay. The melt extrusion of the nanocomposites is
extensively described in Chapter 5 of this thesis. Prior to DRS measurements, the granules
were compression moulded at 250 °C in plates of about 50 x 40 x 0.1 mm on a Fontijne
laboratory press. Compression was performed in steps: 2 minutes at 0 kN and 250°C, 2 min at
10 kN and 250°C and 15 minutes at 180 kN while cooling down with an initial cooling rate of
about 40°C/min. To assure good electrical contact the plates were coated with a & 35 mm
layer of gold by using vapour deposition.

8.3.2 Dielectric measurements

Measurements of the dielectric consiant & and the dielectric loss index &” are performed with
a Novocontrol sample capacitor. For analysis of low frequency signals (0.1-1 kHz), a
Schlumberger 1260 frequency response analyser (FRA) is used. The FRA applies an 1 Vy
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sinusoidal voltage to the upper plate of the sample capacitor. The response voltage of the
lower plate is first amplified by a TNO build electrometer before it is analysed by the FRA.
(TNO: Dutch Organisation for Applied Scientific Research). For analysis of high frequency
signals (1 kHz-1 MHz) a Hewlett-Packard 4284A precision LCR-meter is used. This analyser
applies a voltage of 1 Vex to the upper plate of the sample cell and analyses the response
voltage of the lower plate by an auto-balancing bridge method. The sample is heated with a
flow of nitrogen gas, by a Novocontrol made cryostat.

Measurements are performed between —130 and 200 °C in steps of 5 °C. At every
temperature, a frequency scan is performed at frequencies between 0.11 and 960000 Hz in
steps of a factor 2 in frequency.

8.4 Results and discussion

Dielectric measurements of PA6 nanocomposites with 0, 5 and 20 wt% clay are plotted in
Figs. 8.1 to 8.3. &’ is plotted on the left side (1a, 2a, 3a) and &” on the right side (1b, 2b, 3b).

To get an overall view of the effects of nanoclay on polymer mobility, the behaviour
of &’ and &” is observed at low (0.11 Hz) and high frequencies (240 kHz). At 200 °C and 0.11
Hz, &’ is very high and is close to 10*. Here, the total polarisation of the samples in mainly
caused by ionic polarisation. At 200 °C and 240 kHz, the dielectric constant is much lower
and lies near 20. At low frequencies and high temperature, the ionic polarisation completely
overshadows all other polarisation effects, while at high frequencies other polarisation
mechanisms can still be distinguished.

8.4.1 Relaxation mechanisms

By going from high to low temperature, the first transition is found near 100°C at 0.11 Hz.
The peak temperature of this transition strongly shifts to higher temperature as the frequency
is increased, which is indicative of a low activation energy. At 240 kHz the peak lies well
above 200 °C. The high strength of this transition and the fact that it is situated above the
glass-transition indicate that this transition is due to electrode polarisation. This transition will
be further referred to as the EP-transition. The position of this peak gives information about
the mobility of ions in the polymer. This ionic mobility is related to the mobility of the
polymer chains that surround the ions. Therefore, the EP-transition indirectly gives
information on the mobility of the polymer chains.

In the neat polymer, the glass-transition is visible near 100 °C at 240 kHz. This
transition will be referred to as the aj-transition. The glass transition shifts to lower
temperatures as the frequency is decreased. The shift of the @;-transition is much smaller than
the shift of the EP-peak. The a;-transition thus has a high activation energy. At 0.11 Hz it is
very hard to distinguish the glass transition from the strong electrode polarisation.

In the nanocomposites with 5 and 20 wt% of clay (Figs. 8.2 and 8.3), the glass-
transition is not as well defined as in the neat polymer. At 20 wt% and 240 kHz, no clear step
is visible in &’ and no well-defined peak in £”. The glass-transition seems to be widened by
the presence of nano-clay. Upon addition of clay, a new transition emerges near 10 °C. The
temperature of this transition lies well below the glass transition temperature of the neat
polymer. This peak will be referred to as the ap-transition. Below 0 °C, a secondary S
transition can be found that is too weak to be visible. It becomes very well visible though, by
magnification of the graphs.
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Figure 8.3 Dielectric constant &’ (3a) and loss index £ (3b) of PA6 with 20 % clay

An impression of the onset of the glass transition is obtained by observing at which
temperature the dielectric constant is increased by 50% relative to the value at -130°C. The
onset depends on frequency as can be seen in Figs. 8.1-8.3. At 0.88 Hz and 240 kHz, the onset
of the glass transition of the unfilled sample is found at 50 °C and 75°C respectively. At 5 wt
% the onset is found at 45°C and 75°C and at 20 wt% the onset lies at 30 °C and 85°C
respectively. It can thus be concluded that, upon addition of clay, the onset shifts to lower
temperatures at low frequency while it shifts to higher temperatures at high frequency. This is
an indication for broadening of the glass transition. At 240 kHz, the dielectric loss index
shows that the glass transition is much more pronounced in the unfilled sample than in the
sample with 20 wt% of clay. At 20 wt% the glass transition is much more flattened. The loss
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index also shows that at 5 and 20 wt% of clay a new transition emerges near 10 °C. It appears
as if the glass transition is split in two separate transitions. To better distinguish the different
relaxation mechanisms, de”/dT was calculated. de”/dT is closely related to &” [7]:

o¢'(w,T) ~ 2E,

oF e (@T) 8.9)

The virtue of dg’/dT above £” is that the contributions of conductivity are not included
in &’. Peaks that are obscured by a strong conductivity are better visible this way. An other
advantage of dg’dT is that it magnifies relaxations with a high activation energy, like the
glass transition. In Fig. 8.4, de”/dT of all nanocomposites is plotted at 0.11 Hz and at 240
kHz. The @; and a; and EP peaks are clearly better separated than in the &” plot. The figure
shows that the relaxation strength of the a,-transition systematically increases as the amount
of clay is increased. At 0.11 Hz, the a; and a; relaxations can be distinguished separately,
while at high frequencies only a single wide transition remains. The EP-transition is also well
separated in Fig. 8.4.

The most striking effect in Fig. 8.4 is that a new a,-transition emerges near 10 °C
when the concentration of clay is increased, while simultaneously the strength of the a;-
transition decreases. As will be shown in Chapter 9 this low temperature glass transition is
also found by dynamic mechanical analyses.
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Figure 8.4 d&’/dT of PA6 nanocomposites with 0-20 wt% of clay as a function of
temperature. The glass-transition is better visible in de’/dT than in &”. The base line is
drawn as a dotted line. The peak position is determined by the point of contact with the
shifted base line, as is indicated in the graph. Note the emergence of a new a; glass
transition near 10 °C.

It is attempted to determine the strengths and peak-temperatures of the @; and a;
transitions by multiple regression of €”(@T). The frequency dependence was modelled by the
Havriliak-Negami Eqn. 8.3) and the temperature dependence by the VFT-Eqn. 8.5).
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Regrettably, the weak separation of the a; and a; peaks in an £”-T or £™-@ plot made an
accurate determination of the position of the relaxation maxima impossible.

Therefore the position of the a;,, @; and EP maxima are determined graphically from
the plot of de’/dT versus temperature. This was done by drawing a straight base line and
subsequently shifting this baseline as indicated by the dotted lines in Fig. 8.4. The point of
contact of the shifted baseline with the curve determines the position of the relaxation peak.
The advantage of this procedure is that a peak position can be determined, even if the peak is
only visible as a shoulder without a rcal maximum. A disadvantage of the procedure is that a
systematic error is made this way and no information on the strength of the relaxation (4é) is
obtained. The true maximum of the peak is a little higher than the maximum determined
graphically.
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Figure 8.5 Arrhenius plot of the EP, a;, a2 and f3 transitions in PA6 nanocomposites.

In Fig. 8.5 the B, ai, a; and EP transitions of the nanocomposites with 0, 5 and 20%
of clay are plotted in an Arrhenius graph. From this graph, it can be seen that the effect of the
clay on the position of the transition peaks is limited. It is remarkable that the EP-transition is
not seriously shifted, because it was expected that the mobility of ions would be seriously
hindered by the presence of the clay platelets.

Fig. 8.6 shows a magnification of the a; and @; transitions of a selected number of
PA6-nanocomposites. The points represent the measured peak positions while the lines denote
a VFT-fit through the measured points. The VFT parameters of the @;-transition that were
determined by the fit are listed in Table 8.1.

Although the a;-curves in the Arrhenius plot, do not differ very much, the calculated
VFT constants scatter much. No systematic change in the VFT-constants is noticed. Clearly,
the error in the determination of the @;-peak positions is too large to obtain reliable VFT
constants. The VFT-fits in Figs. 8.5 and 8.6 should therefore be considered as a guide to the
eye.
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% clay 0(a) [25() [5@) [10(a) [15@) [20(a) |20 (o)
Ev/k, K 1190  [808 574 932 320 3573 756

T, °C 6.2 19.5 27 12.3 37 -49.9 -37.8
Ty, SEC 12102 [1.110M {7210 (2.4 10" [9.8107° [2.6107% [9.2 107
Tg(dg’/dT 0.88Hz) [45.5 48.5 49 44 - 33 7,5
Tg(Ea-0.88Hz) 44 45 455 [465 51-59* [57.5 10

Table 8.1 Calculated VFT-constants of the glass transition of PA6-nanocomposites.
*Two maxima at 51 and 59 °C.

Fig. 8.6 shows that the position of maximum de&’/dT shifts to lower temperatures as the
amount of clay is increased. The neat polymer only shows a single glass transition that is well
described by a single set of VFT-constants. The nanocomposites all show a second glass
transition that is separated from the ‘normal’ glass transition. At 20 wt% of clay it is
impossible to separate the two transitions. By probing at a high frequency, the ‘normal’ a;-
transition is found, at a temperature close to that of the neat polymer.

Probing at low frequencies does not give the normal a;-transition but instead gives a
new ap-transition at a temperature far below the a;-transition. The presence of two separate
glass-transitions indicates that the nanocomposites contain two separate polymer phases, one
bulk polymer phase, and one confined polymer phase. In the nanocomposite with 20 wt % of
clay the separation of these two phases is less obvious.

1E+07
1E+06 - * 0%
0 2.5%

1E+05 + © 5%
_ 2 10%
T 1Ev04 ¢ ° 15%
> i +20%
€ 1E+03 +
o E
=1 E
o
® 1E+02 4
&

1E+01 {

1E+00 -

1E-01

2,5 4

1000/T [1/K]
Figure 8.6 Arrhenius plot of the a; and a; transitions in PA6
nanocomposites.
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Figure 8.7 Activation energy fine-structure of PA6 nanocomposites as a
function of temperature. Calculated at a frequency of 55.6 kH:z.
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Figure 8.8 Activation energy fine-structure of PA6 nanocomposites as a
function of temperature. Calculated at a frequency of 225 Hz.
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Figure 8.9 Activation energy fine-structure of PA6 nanocomposites as a
function of temperature. Calculated at a frequency of 0.88 Hz.
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8.4.2 Activation energy fine structure

Another way of studying relaxation mechanisms with dielectric spectroscopy is the activation
energy fine structure analysis, based on differential sampling. From Eqn. 8.6 it is clear that
this analysis relies on determination of d&’/dT and de&”/dInw. This requires accurate
determination of &’(aT) at a low noise level. Figs. 8.7, 8.8 and 8.9 show the activation
energy fine-structure of the PA6-nanocomposites at 55.6 kHz, 225 Hz and at 0.88 Hz. The
local activation energy is calculated with Eqn. 8.6.

The curve maxima gradually decrease with increasing clay content. It is further
evident that at low frequency the effect of clay on E4 is much more pronounced than at high
frequency. By comparing the curves at 20 wt% of clay in the figures, it can be further
concluded that at high clay content E 4 is independent of frequency. Only at low frequencies, a
second peak emerges near 10 °C. This peak is only found in samples with 2.5 wt% of clay or
more. The temperature of maximum activation energy is indicative of the glass transition
temperature and is listed in Table 8.1 (determined at 0.88 Hz). The fact that the this peak only
occurs at low frequencies indicates that it concerns a slow process.

Let us first try to explain E4 at high frequencies. At high frequencies (Fig. 8.7) E4 is
smaller than at low frequencies (Fig. 8.9), and the effect of clay on E4 is small. The
cooperativity argument given by Anastasiadis [4] can explain these results. At high
frequencies the characteristic length scale of cooperatively rearranging regions (&) is supposed
to be smaller than at low frequencies. If the distance between the clay platelets (d) is larger
than & then the cooperative motion is relatively unhindered and the effect of clay is small.
Furthermore, the activation energy of the cooperative motion is likely to be smaller for small
groups of molecules than for large groups. This last argument explains why E4 is small at
high frequencies.

The same arguments can be used to explain the results found at low frequencies. At
low frequencies, E4 is strongly decreased by the addition of clay because the cooperative
length in the nanocomposites is smaller than in the bulk polymer. To explain this, it is again
supposed that the cooperative length of the bulk polymer (&.x) is smaller at high frequencies
than at low frequencies. In a nanocomposite, the chains are confined and the cooperative
length cannot exceed d: &.onfinea < d. If the frequency is sufficiently low, & becomes larger
than &onpines. The smaller cooperative length in nanocomposites then lowers the activation
energy.

At high clay contents the distance between the platelets is so small that &onpined < Spunk
for all frequencies used. This would explain why, at 20 wt% E 4 is insensitive to frequency.

By increasing the content of clay, a relaxation peak emerges near 10°C at low
frequency (Fig. 8.9). At high frequencies (Fig. 8.7) or low amounts of clay, this peak is not
present. The emergence of this peak corresponds with the low temperature a;-transition
transition that was discussed before. Several explanations can be devised for the nature of this
new transition. Possibly, a polymer phase is created near the surface of the clay that is
confined in two dimensions. Only a limited number of polymer chains can be fitted in such a
confined space. If the last polymer chain has entered the confined space, there might still be a
lot of space left. This space is too small to allow another chain to enter the confined space, yet
big enough to give the remaining chains a strongly increased free volume. This increased free
volume would decrease the glass transition temperature.

Another explanation for the low-temperature relaxation peak is related to the
plastication of the bulk polymer by the surfactant molecules on the surface of the clay. It is
well known that mixing of polymers with low molecular molecules lowers the glass transition
temperature T,. The surfactant molecules are connected firmly to the clay surface and cannot
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dissolve freely in the PA6 phase. Near the surface of the clay, an inter-phase will be formed
with the ends of surfactant molecules being dissolved in PA6. This inter-phase will have a
constant concentration of surfactant molecules that only depends on the surface density of
surfactant molecules on the clay. It does not depend on the amount of organic modified clay
added. The T, of a mixture of a polymer and a surfactant can be estimated by the Fox
equation:

L _»w 1w 8.10)
T, T '

g( surfactant) Tg(P”’y'""")

where w is the weight fraction of surfactant. The T, of the surfactant molecules is about —60
°C [8].

From Fig. 8.9 it follows that at 0.88Hz the T, of the unfilled PAG6 is about 44 °C. By
using the Fox equation it can be calculated that the concentration of surfactant molecules in
this new inter-phase must be about 25 wt% to obtain a mixture T, at 10 °C. This is a
reasonable concentration.

8.5 Conclusions

o I turns out that the glass transition is broadens by addition of clay.

Arrhenius plots of the relaxation mechanisms of PA6-nanocomposites reveal that in PA6-
nanocomposites a new glass transition is found well below the glass transition of neat
PA6. The strength of this new transition increases as the amount of clay in the
nanocomposite increases. The new transition is only found at low frequencies below 100
Hz indicating that it is a slow process. Evidence for this new transition was also found
with dynamic mechanical measurements.

e It is suggested that at low contents of clay two separate phases are present in the
nanocomposites, one bulk phase and one confined phase. The bulk phase behaves much
like the neat polymer, while the confined phase causes the emergence of the second glass
transition.

e Two mechanisms are suggested to explain the emergence of the low temperature glass
transition:

o Increase in free volume due to packing constraints in the confined space between clay
layers.
¢ Mixing between the surfactant molecules and the PA6 molecules near the clay surface.
¢ Confinement is a relative notion. At high frequencies near 100 kHz, the polymer does not
experience any confinement because most motion occurs at a scale much smaller than the
distance between the clay platelets. Confinement is only experienced at low frequencies if
the characteristic length scale of cooperatively rearranging regions exceeds the distance
between the platelets. At this point, the activation energy of the nanocomposite becomes
lower than the activation energy of the bulk polymer.
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Mechanical properties of
nanocomposites

Abstract

This chapter discusses the stiffness and thermal expansion of PA6-clay and PE-clay
nanocomposites. These properties are compared with the properties of polymermica micro
composites and with the properties that are predicted by the composite models introduced in
Chapter 3. The stiffness of both PA6-clay and PE-clay nanocomposites is measured by
dynamic mechanical thermal analysis (DMA) and by tensile testing.

Both types of nanocomposites become more rigid by increasing the amount of clay or
the aspect ratio of the clay. At low contents of clay (< 5 wt% silicate), the experimental
stiffness of nanocomposites corresponds to the stiffness of polymer-mica micro-composites
and to the stiffness predicted by composite models. The stiffness of nanocomposites with
more than 10 weight percent of clay is lower than that of corresponding polymermica micro-
composites. At these loadings, composite models overestimate the stiffness of polymerclay
nanocomposites.

The measurements and calculations show that the high stiffness of nano composites
mainly originates from the high aspect ratio and not from the small size of the clay platelets.

At high loadings of clay, the polymer chains become severely confined between the
clay layers. In contrast with general expectations, this confinement increases the mobility of
the polymer chains. This increased mobility of the polymer chains is thought to be an
important reason for the relatively low reinforcement at high clay loading. Low crystal
perfection of the polymer matrix and imperfect exfoliation of clay platelets also contribute to
the low stiffness at high clay loadings.

By inverse use of composite modelling the effective aspect ratio and the effective
stiffness of the PA6-matrix inside a PA6-clay nanocomposite is calculated. It is shown that at
high loadings the effective aspect ratio becomes decreases while simultaneously the glass
transition of the PA6 matrix inside the PA6-clay nanocomposites broadens.

Part of this chapter is published in:

M. van Es, F. Xiqiao, J. van Turnhout and E. van der Giessen, Comparing Polymer-Clay Nanocomposites with
Conventional Composites using Composite Modelling in Specialty Polymer Additives, ed. by S.Al-Malaika, A.
Golovoy, C.A. Wilkie, Blackwell Science, 2001, Ch 21, p 391 11
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9.1 Viscoelastic properties of compression moulded PA6 nanocomposites

9.1.1 Preparation of samples and experimental technique

The preparation of melt extruded PA6-nanocomposites was discussed extensively in Chapter
5. Before DMA measurements the extruded nanocomposite pellets were compression
moulded into sheets of about 50 x 40 x 0,1 mm at 250°C on a Fontijne laboratory press.
Compression was performed in steps: 2 minutes at 0 kN and 250°C, 2 min at 10 kN and
250°C and 15 min at 180 kN while cooling down with an initial cooling rate of about
40°C/min. Prior to testing, strips of 50 X 2 x 0.1 mm were punched out of the compression
moulded sheets. The thickness of the strips was measured with an accuracy of 1 um using a
Heidenhahn MT30B film thickness apparatus. The width of the film was determined with an
accuracy of about 5 um by using a Mitutoyo toolmakers microscope TM-101.

The clamped length of the sample was about 22 mm and was measured with an
accuracy of about 0.5 mm by using a simple ruler. The storage modulus E’ and the loss
modulus E” are determined in a temperature range between -120 °C and 250 °C using a
Rheometrics Solid Analyser (RSA) at a frequency of 1 Hz, a static strain of 0.3% and a strain
amplitude of 0.2%.

9.1.2 DMA results

Figs. 9.1 and 9.2 show DMA measurements on PA6-nanocomposites containing between 0
and 20 wt% silicate. Data at —100, 23 and 125°C are listed in Table 9.1 and plotted in Figs.
9.3 and 9.4. From Fig. 9.1 it can be seen that at 0.2 wt% of silicate the stiffness is clearly
increased compared to the stiffness of the unfilled PA6. Above the glass transition the
increased stiffness is more apparent than below. Between 0.2 and 10 wt% of clay the stiffness
increases continuously. Above 10 wt% the increase becomes smaller than below 10 wt%.

125 °C
E-theory
unidir | random
GPa GPa
—— |
0.41 0.41
0.63 0.63
0.74 0.68
0.97 0.78
1.35 0.94
2.19 1.28
3.11 1.62
413 1.98

Table 9.1 Measured and theoretical stiffness of compression moulded PAG6/clay
nanocomposites as a function of clay content at—100°C, 23°C and 125°C.

Above 10 weight % of clay, the glass transition peak of the loss modulus E” in Fig.
9.2 starts to shift to higher temperatures. Table 9.1 lists the position of the glass transition
temperature Tg. At 20 wi% clay the glass transition temperature is shifted by about 20°C
compared to the unfilled PAG6.
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Near 150 °C a relaxation mechanism is emerging at high clay content. This relaxation
mechanism might be caused by hindered PA6-chains close to the clay platelets. Also near 10
°C, a new transition emerges. The position of this transition coincides with the o-transition
found with dielectric spectroscopy in Chapter 8. It is assigned to the highly mobile phase in
the inter-galleries of clay at some distance from the clay’s surface.
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Figure 9.1 1 Hz storage Young's modulus of PA6-clay nanocomposites
containing between (0 and 20 weight% of silicate.
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Figure 9.2 | Hz loss Young's modulus of PA6-clay nanocomposites
containing between 0 and 20-weight% of silicate. Note the emergence
of two new transitions near 10 °C and 150 °C.
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Figure 9.3 In plane stiffness of compression moulded PA6/clay nanocomposites as a
function of clay content at —100°C, 23°C and 125°C. Symbols represent experimental values
and lines represent composite calculations for unidirectional (—) and random (---)
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Figure 9.4 As figure 9.3 but plotted up to higher clay contents.

For a better comparison of results, the data on PA6-nanocomposites are re-plotted as
E’ versus clay content in Figs. 9.3 and 9.4. In both figures also the Halpin-Tsai predictions for
platelet reinforcement (4= 2/3 w/f) are plotted using a clay Young’s modulus of 172 GPa and
an aspect ratio of 100, as was estimated from TEM pictures in Figs. 6.1 and 6.2.
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To account for the changes in matrix properties due to nucleation of the crystalline
structure, calculations were performed using the stiffness of the nanocomposite with 0.2wt%
clay as the stiffness of the matrix (En). Composite calculations for unidirectional orientation,
accurately predict the experimental results at 1 and 2.5 wt% clay at all temperatures, as can be
seen in Fig. 9.3. At these concentrations the efficiency of the clay to stiffen the PA6 is 0.9
GPa per volume percent of silicate added. This compares well with the 1.3 GPa/vol.% of
polymer-mica micro-composites that were shown in Chapter 4, Fig. 4.1.

Above 2.5 wt% the unidirectional composite model predicts higher values than found
experimentally, while the random composite model gives better predictions. At 15 and
20wt%, experimental values are even lower than predicted by the random composite model.
Clearly the stiffness of the PA6 nanocomposites cannot be explained over the whole range of
loadings tested, by assuming that the platelets are perfectly oriented and have an invariable
Young’s modulus and aspect ratio.

Several features might be responsible for the low effectiveness of nanoclay at high
loadings. As can be concluded from TEM analysis in Figs. 6.1-6.7, the morphology at high
loadings is different from the morphology at low loading. Clearly visible is the lower
macroscopic orientation at high loading that will lead to lower stiffness as was discussed in
Chapter 3.

Another morphological feature that might contribute to the lower stiffness is the
grouping of platelets on a local microscopic scale as can be observed from TEM pictures.
This grouping resembles the nematic ordering of polymer chains in a liquid crystalline
polymer. On a local scale the platelets are highly ordered, but on a macroscopic scale the
ordering is low or absent. It is difficult to transmit stresses from one localised group to
another because the amount of overlapping platelets between localised groups is low. It is
anticipated that the grouping of particles and the lack of overlap lead to a lower stiffness of
the nanocomposite.

Further the high mobility of the confined polymer chains inside the clay galleries, as
was found with NMR and DRS, will also decrease the stiffness of the PA6-clay
nanocomposites.

9.1.2.1 Composite modelling of the DMA curve of PA6 nanocomposites

To find the reason for the low reinforcing effect of the clay at high loading, it is attempted to
use composite modelling to fit the whole DMA curve. The model used is the Halpin-Tsai
model modified for platelets ({=2/3 w/f) as was introduced in Chapter 3. In order to calculate
the loss modulus, the Halpin-Tsai equation was written as a complex equation by replacing
every (real) modulus by its complex counterpart (E becomes E’+iE”). In doing so not only E’
can be predicted but also E”.

To account for the orientation of the platelets either perfect unidirectional or random
orientation was assumed. To calculate the random stiffness, the simplified equation (<E>3;p =
0.49E, + 0.51 E ;) for random orientation is used, as is explained in Chapter 3 of this thesis.
This equation requires knowledge of the parallel (E,) and perpendicular (E;) moduli of the
perfect oriented composite, which can be calculated with the modified Halpin-Tsai equations.
TEM pictures in Figs. 6.1-6.7 show that at low clay loadings the compression moulded
nanocomposites are mainly uniaxially oriented (1-5 wt% of clay). No preferred orientation is
found at a clay loading of 10 wt% and above. For this reason the samples at 1 to 5 wt% of
clay are fitted by assuming perfect uni-axial orientation, while samples with a clay loading of
10 wt% and above are fitted by assuming random orientation.
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Figure 9.5 Example of a complex Halpin-Tsai fit to the DMA measurement of a PAG-
nanocomposite with 10 wt% of clay. Modelling (dotted grey line) gives rather good
predictions below the glass transition. Above the glass transition modelling only gives a
crude estimate of E’, while the estimate for E” is much too low. The reconstructed effective
matrix storage and loss moduli inside the nanocomposite are given by a dotted black line.
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Figure 9.6 Relative Young's modulus E/E,, of PA6 nanocomposites as a function of
temperature. The Halpin-Tsai equations are fitted to the measurements below the
glass transition by adjusting the aspect ratio of the platelets. Modelling fails to
predict the large jump near the glass transition.




Chapter 9 121

Fig. 9.5 shows an example of such a fit of E’ and E” for a PA6 nanocomposite with 10
wt% of clay. Below the glass-transition temperature the storage modulus E’ and the loss
modulus E” are fitted accurately. Above 50 °C the Halpin-Tsai model gives a crude estimate
of the storage modulus, but fails to predict the loss modulus. The measurements show that the
transition near 150 °C cannot be predicted. This transition is introduced in the polymer by the
clay platelets.

In Fig. 9.6 the ratio of Young’s moduli of the nano-composites and the polymer matrix
E./E,’ are plotted as a function of temperature. In this graph, the differences between the
nanocomposites and the polymer matrix are magnified. It is attempted to fit the Halpin-Tsai
equation to the measurements by adapting the aspect ratio of the clay platelets, while keeping
the stiffness of the clay platelets constant at 172 GPa. The stiffness of the clay platelets is
assumed to be the same as the stiffness of a pure mica crystal [1]. The aspect ratio is adapted
such that the fit is perfect at low temperature. The parameters used to fit the measurements are
given in Table 9.2.

It is remarkable that the apparent aspect ratio of the clay platelets decreases
continuously as the amount of clay increases. A lower apparent aspect ratio does not
necessarily mean that the platelets themselves have a lower aspect ratio. As two platelets form
a tactoid, the aspect ratio of the tactoid is smaller than that of the individual the platelets.
Mechanically, it is the aspect ratio of the tactoid that counts. So poor exfoliation of platelets
will result in a lower effective aspect ratio. Apparently, tactoids with a few platelets are
formed at high clay loading, which lowers the effective aspect ratio of the clay. This is
qualitatively confirmed by TEM measurements in Chapter 6, which show tactoids of 2-3
platelets at high clay concentrations.

clay wt% |[vol% |wi/t fitted |orientation
1.0 0.428 |150 unidirectional
2.5 1.08 |100 unidirectional
5 2.19 |40 unidirectional
10 4.52 |70 Random

15 6.99 |70 Random

20 9.62 |43 Random

Table 9.2 Parameters used to fit the DMA curves of PA6-nanocomposites

As can be seen in Fig. 9.6 the fit is good up to 75 °C, at a clay loading of 1 wt% and
2.5 wt%. The jump in E.7E,’ at 50 °C is predicted correctly for these samples. At loadings
above 2.5 wt % clay, the magnitude of the jump near 50 °C is not predicted correctly. Above
10 % of clay the fit is poor over the whole range of temperatures. At 15 wt% and 20 wt% the
measurements show a minimum in the E.”/E,’ curve just before the glass transition. This
minimum is not predicted by the composite model. It is probably a consequence of the shift in
the glass transition at high clay loading as was indicated in table 9.1.

Apparently, some features in the DMA curve cannot be explained by the simple
reinforcing effect of the clay platelets. For some reason, the stiffness of the polymer matrix is
changed by the presence of the clay platelets. The largest changes in polymer properties are
found at high loadings of clay.

Composite models make use of the properties of the unchanged phases to predict the
properties of the ensemble. Therefore, the failure to predict the composite stiffness at high
loading is due to a change in the properties of the matrix polymer. It is interesting to find out
what effect the clay platelets have on the properties of the polymer matrix. It is possible to
reconstruct these properties by using the measured stiffness of the nanocomposite. The
properties of the polymer matrix inside the nanocomposite are reconstructed by following the
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same fit procedure as described above. Additionally, the properties of the matrix are adjusted
at every temperature, such that the fit is perfect over the whole temperature range. This
procedure is elucidated in Fig. 9.7a. The so obtained matrix stiffness is a good estimate of the
stiffness of the polymer matrix inside the nanocomposite. The reconstructed storage moduli
and loss moduli of the PA6 matrix inside the PA6 nanocomposites are plotted in Fig. 9.7b.
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Figure 9.7a By using ‘inverse’ modelling it is possible to calculate the effective aspect ratio
Gy and the effective matrix modulus E,, oy inside a (highly loaded) nanocomposite.
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Figure 9.7b Reconstructed effective storage and loss moduli of the PA6 matrix
polymer inside the PA6-nanocomposites

Fig. 9.7b shows that the glass transition of the polymer matrix broadens as the amount
of clay increases. The broadening can be observed at the low temperature side as well as at
the high temperature side of the glass transition. Broadening at the low temperature side
implies that some polymer chains experience an increased mobility while at the high
temperature side it implies that polymer chains experience a decreased mobility. These
findings agree with the findings of solid state NMR in Chapter 6 and of dielectric
spectroscopy in Chapter 8. As a result of this, the stiffness of the PA6 matrix in the
nanocomposites is different from the stiffness of unfilled PA6. Below the glass transition, this
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stiffness is decreased and above the glass transition, it is increased. At 20 wt% of clay, the
loss modulus starts to deviate from the unfilled matrix already near —100 °C. The increase in
loss modulus is accompanied by a small decrease in storage modulus.

A possible explanation for the mechanical behaviour of the polymer matrix inside the
nanocomposites can be found by considering the mechanisms that cause the glass transition.
The glass transition is caused by large-scale cooperative motion of large parts of polymer
chains as was concluded from dielectric spectroscopy in Chapter 8. The cooperative motion is
activated by the presence of frec volume between the polymer chains. The polymer chains
will experience the glass transition if the amount of free volume is large enough to allow large
scale cooperative motion.

In nanocomposites, polymer chains are confined on a molecular scale between hard
clay platelets. This fixes the free volume of polymer chains between the platelets. Usually the
free volume increases as the temperature increascs. Due to the fixation of the free volume,
such increase is no longer possible. The hypothesis is that below the glass transition the fixed
free volume of the confined chains is higher than that of polymer chains in an unfilled
polymer, while above the glass transition it is smaller. This leads to a decreased stiffness
below the glass transition and an increased stiffness above the glass transition.

This hypothesis is in perfect agreement with the findings of Krishnamoorti et al. [2].
Using NMR and molecular dynamics, Krishnamoorti observed a slow and a fast mode in
PEO-clay nanocomposites. The fast mode corresponds to polymer segments far away from
the clay surface while the slow mode (whose slowing down depends on the strength of the
surface interaction) corresponds to the polymer segments close to the clay surface. The
hypothesis is also in good agreement with the solid state NMR results of Chapter 6 that
proved the existence of a highly mobile phase in the nanocomposites below the glass
transition temperature. Dielectric measurements in Chapter 8 confirm broadening of the glass
transition and are also in agreement with the DMA data.

Due to the extra transition near 150 °C the stiffness of the PA6 matrix in the
nanocomposites drops below the stiffness of the unfilled PA6. It is thought that the transition
at 150 °C is a consequence of the imperfect crystalline structure of the nanocomposites. The
imperfect crystalline structure of the PA6 in the nanocomposites was experimentally proven
in Chapter 7 of this thesis, where this subject is studied in more detail.

9.2 Mechanical properties of injection moulded PA6-nanocomposites

PA6 nanocomposites with 0-7.5 wt% montmorillonite were injection moulded on a & 30mm
Engel 80A injection moulding machine at 100 rpm. The melt temperature was 283 °C and the
mould-temperature 85°C. The raw materials were dried overnight at 110 °C in vacuum prior
to injection moulding.

To test the flexural modulus, thermal expansion and mould shrinkage, plates of 80 x
80 x 3.2 mm were injection moulded. For the tensile test, dog bone shaped samples were
injection moulded. The prismatic part of the tensile samples had dimensions: 60 X 10 x 4.2
mm. In order to test for anisotropy, samples of 80 x 10 x 3.2 mm were cut out of the 80 x 80
X 3.2 mm plates, in directions parallel and perpendicular to the injection moulding direction.
The samples are tested for thermal expansion and flexural modulus under dry and under water
saturated conditions. To saturate the samples, they were stored at 70 °C and 68% relative
humidity for at least 1000 hours. More details on water absorption in the PA6-
nanocomposites can be found in Chapter 10.

The expansion coefficient is determined between —30 °C and +30 °C according to
ASTM D692 T2. The flexural modulus is determined at 23 °C according to ISO 178 A. The
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tensile modulus is determined between 0.05 and 0.25% strain according to DIN-53457 at 23
°C and 5 mm/min. Toughness was determined by IZOD tests at room temperature on
injection moulded notched bars of 8 mm in width and 4 mm in thickness.

Table 9.3 shows the results of the measurements. The difference in parallel and
perpendicular Young’s modulus is small for all clay loadings tested. It can thus be concluded
that the anisotropy of the injection-moulded plates is small. The anisotropy increases a little at
increasing content of clay. Although the differences are small, the parallel stiffness is
consistently higher than the perpendicular stiffness. Consequently in the parallel direction the
expansion coefficient and the mould shrinkage are a little smaller than in the perpendicular
direction. For modelling purposes the samples are considered to be isotropic in the plane of
the plate. The fact that the properties are nearly isotropic in the plane of the plate does not
mean that they are isotropic in 3 dimensions. It is likely that the platelets are oriented in the
plane of the plate.

9.2.1 Flexural and tensile modulus of injection moulded PA6 nanocomposites.

Table 9.3 lists the tensile and flexural properties of dry and wet, injection moulded PA6
nanocomposites. As a comparison also the stiffnesses measured by DMA at 23 °C are listed.

Test Norm Units |weight% clay

02 |1 25 |5 7.5
Dry as moulded
Tensile modulus (23°C) ISO 527/1A1GPa_|13.29 |3.41 |3.72 |4.22 |5.04 |5.41
Yield Stress (23°C) ISO 527/1A |GPa |{80.2 [81.4 |86.4 |88.6 |- -
Yield strain ISO 527/1A % .54 3.55 {3.48 |3.19

Flexural modulus / (23°C) |ISO 178 A _|GPa 19 13.25 |3.43 |4.01 {4.78 |5.50
Flexural modulus 1 (23°C) [ISO 178 A |GPa |[3.20 [3.24 [3.41 [3.84 ]4.50 [5.38

E’ DMA GPa .63 [2.86 |3.21 |3.71 |3.93 {4.01
Thermal expansion // ASTM 10°K|[7.01 |69 [6.55[6.11 [5.95 [5.45
-30-+30°C D696 T2

Thermal expansion L ASTM 10°K|7.44 |[7.28 [7.38 [6.23 [6.2 [5.46
-30-+30°C D696 T2

Mould shrinkage // ISO 2577 % 1.60 |1.50 |1.37 [1.28 ]1.12 [1.06
Mould shrinkage L IS0 2577 |% 1.88 |1.85 |1.83 |1.71 |1.48 [1.35
Izod notched ISO-180 ki/m” |3.23  [3.33 [3.52 [3.52 [4.05 |4.08
Conditioned

Tensile modulus (23°C) ISO 527/1A |GPa 990 [1.04 ]1.26 |1.61 |2.1 ]2.56

Flexural modulus // (23°C) |[SO 178 A |GPa 935 10.999 |1.17 [1.48 |1.95 |2.38

Flexural modulus L (23°C) [ISO 178 A |GPa 909 [0.947 {1.08 |1.32 |1.75 |2.31

Thermal expansion // ASTM 10°K|.31 [9.6 [8.58 (7.8 [7.12[6.03
-30-+30°C D696 T2

1zod notched ISO-180 k)/m® |50 [3.51 [2.99[1.89]1.62 [1.63
H,O saturation concentration % 3.6 35 |34 135 [3.6 [3.5

Table 9.3 Stiffness, thermal expansion coefficient and mould-shrinkage of injection moulded
PA6 nanocomposites
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Fig. 9.8 shows the Young’s moduli as a function of clay loading. As expected, the dry
samples are stiffer than the wet samples. In most cases the tensile modulus is a little higher
than the flexural modulus. Probably the tensile samples are oriented more perfectly.

Surprisingly the Young’s moduli of the injection-moulded samples do not level off
above 5% loading as the DMA samples do. A possible explanation for this discrepancy might
be found in the preparation of the samples. During compression moulding the DMA samples
undergo a long melt step during which no mechanical mixing takes place. So, during
compression moulding the clay might demix. In contrast, during injection moulding the
samples stay in the melt phase for a much shorter time and are vigorously sheared. Therefore
it is probable that during injection moulding the clay cannot demix, because the melt is
sheared continuously and the time for demixing is short.

H. Fischer [3] showed that exfoliated clay can indeed demix and become intercalated
again. X- ray analysis on exfoliated PE and IPP nanocomposites during melting showed the
appearance of a d001 peak, which is typical for intercalated clay platelets. He argued that
nanocomposites, that are cxfoliated by melt extrusion, do not necessarily are in
thermodynamic equilibrium. Mechanical shearing can be enough to separate the clay layers,
even if this is not the thermodynamically favoured state. Given enough time the clay will
demix if the melt is left without shear.

The quaternary ammonium salt used to modify the clay of the PA6 nanocomposites
has paraffinic chains with low polarity. During the cause of this research it was recognised
that this kind of modified clay needs more shear to exfoliate in PA6 than clay that is modified
with more polar groups. So it is very well possible that the clay used indeed tends to demix
during compression moulding.
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Figure 9.8 Young’s modulus of dry and wet PA6 nanocomposites measured by
different techniques and made by different preparation techniques.

9.2.2 Yield stress and toughness of PA6-nanocomposites

Although properties like yield stress and toughness do not fall within the scope of this thesis,
their values are given in table 9.3. Figure 9.9 shows the stress strain tests on the dry and wet
(= 3.5% water) PA6 nanocomposites. The figure clearly shows the low stiffness of
conditioned PA6 samples. Considering the low stiffness of the conditioned samples their low
strain at break of the conditioned samples is unexpected. Obviously no necking occurred in
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these samples during the stress strain test. Their strain at break is so low that they do not yield
in the stress strain test. This explains why no yield stresses are listed in table 9.1 for the
conditioned samples.

The yield stress of the dry nanocomposites systematically increases upon addition of
clay. Simultaneously the strain at yield decreases, as is indicated by the arrow. Up to 2.5% of
clay the strain at break is relatively large (= 30 %) and is comparable to that of the unfilled
PA6. At concentrations of 5% and 7.5% the samples do not show a yield-point and break
below 3% strain.

All samples failed brittle in the IZOD test and consequently showed low impact
energy. Adding more clay to the nanocomposites increased the impact energy of the dry
samples somewhat, while it decreased that of the wet samples.

100 dryas
90 1 moulded
80 -
w 70 —_—
S 60 i
@ 501 N —75%
@ 40 | , conditioned 5
a 30 - ~3.5% water 5%
1%
20 —02% |
10 7 0% clay |
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Figure 9.9 Stress strain tests of dry and wet PA6 nanocomposites at 23 °C

9.3 Thermal expansion of PA6-nanocomposites

9.3.1 Procedure to determine the thermal expansion coefficient

As explained in Chapter 3, the thermal expansion coefficient of a composite material
is closely related to the 3-dimensional stiffness of the composite. Most often, only one ore
two elastic constants of the composite are known. This is not enough to calculate the thermal
expansion coefficient because for that, the complete stiffness tensor of the composite must be
known.

In order to construct the stiffness tensor, all independent elastic constants like the
shear moduli, Poisson’s ratios, bulk moduli etc. should be measured. This is a very tedious
job as can be concluded from the work of Ward [4], who performed these types of
measurements on oriented polyethylene. An easier way to construct the stiffness tensor is to
use composite modelling and use the constructed stiffness tensor to calculate the thermal
expansion coefficient.

To construct the stiffness tensor the orientation distribution of the filler must be
known. Very often not enough information is available to construct the orientation
distribution function. Therefore the weak point in the construction of the stiffness tensor is
mainly the uncertainty of the orientation distribution function. It was attempted to measure the
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orientation distribution of the clay platelets by FTIR dichroism. This attempt failed because
the absorbency of clay in the infrared spectrum is too high, making it impossible to obtain
accurate absorption peaks.

Since no information is available on the orientation distribution of the injection
moulded specimens either perfect unidirectional or perfect random orientation is assumed for
calculation of the expansion coefficient.

The Mori-Tanaka model that was introduced in Chapter 3, was used to determine the
stiffness tensor of a unidirectional oriented composite. For calculation of the expansion
coefficient it is not good enough to use the Halpin-Tsai approximation. Using Halpin-Tsai,
the approximation of the out of plane Young’s modulus is not accurate enough to predict the
subtle relationship between stiffness and expansion coefficient. The effect of random
orientation is accounted for by setting the Legendre coefficients a0 = 1, a2 = 0 and a4 = 0 as
was explained in Chapter 3. Of course any other orientation distribution function can be
accounted for by using another set of Legendre coefficients. The use of Legendre polynomials
to characterise the orientation function is described in Chapter 3. The calculated stiffness
tensor is then used to calculate the tensor of the thermal expansion coefficient. By using this
procedure, estimations can be obtained for the thermal expansion in all three orthogonal
directions. In Appendix B a listing is given of a MATLAB computer program that calculates
the stiffness tensor and the tensor of the expansion coefficient. The program requires
knowledge of the Legendre coefficients to characterise the orientation distribution function. It
also needs input of the stiffnesses and expansion coefficients of the phases.

9.3.2 Modelling the thermal expansion of PA6-nanocomposites.

Equation 3.73 predicts that the expansion coefficient is a function of the stiffness of the
composite. The equation is valid for composites that obey continuum mechanical rules. The
thermal expansion coefficient of the PA6 nanocomposites is studied in order to find out if,
also in this respect, nanocomposites behave like conventional composites.

In Fig. 9.10 the in-plane thermal expansion coefficient Gmpane of the PA6
nanocomposites is plotted as a function of the in-plane Young’s modulus Einpiane. The in-plane
Young’s modulus is calculated as: Einpane = (Ey frexurartE 1ftexura/2, and the in-plane thermal
expansion coefficient as: Gimpune = (@y + a@y/2. The points in the graph denote the
measurements while the lines denote theoretical predictions. The theoretical predictions are
calculated using equation 3.73. Either perfect or random-3D orientation is assumed. The
MATLAB computer program to calculate the theoretical curves is listed in Appendix B.

As predicted by equation 3.73 the in-plane thermal expansion coefficient decreases as

the in-plane stiffness increases. The measurements lie between predictions of perfect
orientation and random 3D orientation. It is concluded that equation 3.73 gives a good
prediction of the thermal expansion coefficient of nanocomposites. This equation is based on
continuum mechanics and does not require knowledge of the size of the filler particles. Beside
properties of the two phases only the stiffness tensor of the composite needs to be known.
As was shown in paragraph 3.2.1.2. and Appendix A, the stiffness tensor of the
nanocomposite composite mainly depends on the aspect ratio of the platelets. Like in
conventional composites the expansion coefficient of PA6-nanocomposites can be predicted
by equation 3.73.

It is interesting to observe the theoretical estimates of the in plane and out of plane
expansion coefficients. These are plotted as a function of the amount of silicate in Fig. 9.11.
An aspect ratio of 100 is assumed and an isotropic filler stiffness of 172 GPa. The
calculations show that in a unidirectional oriented composite the expansion in the out of plane
direction e is higher than the expansion of the unfilled polymer while the expansion in the in
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plane direction @ is much smaller. This is a direct result of the high resistance of the polymer
against change in volume (high bulk modulus). To keep the change in volume as small as
possible, the out of plane direction must expand more strongly to compensate for the small in-
plane expansion.
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Figure 9.10 Thermal expansion coefficient of PA6 nanocomposite as a
function of the parallel stiffness of the nanocomposite. Included are
measured and theoretical data. Parameters used for composite modelling:
Dry nanocomposite: Om=7.23 1 0° /°C; En= 3.2GPa
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Wet nanocomposite: @m=9.31 107 /°C; Em= 0.94 GPa
a= 1510°/C; E,=172GPa; wit =100
12
11
10 - .
L | 9 1
O 8
0
S 7 B
3 6-
= —
P 5 A <Q>Uniaxial
41 <a>3p
3 1E,=172GPa  E,=3.0Gpa
2 ay
1 _v,= 0.2
0 =1.510"°°c’! =723 10° ¢’ [
0 0,05 0,1 0,15 0,2

volume fraction of silicate

Figure 9.11 The theoretical expansion coefficient as a function of the silicate loading
of composite filled with plates:
Out of plane expansion of an oriented composite(a,)
In plane expansion of an oriented composite(ay)
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Average (=volume) expansion of a 3D- randomly oriented composite (<a>3p)
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The volume expansion of the unidirectional composite <@> pniaxiar i slightly smaller
than that of the unfilled polymer. This indicates that the total volume of the unidirectional
composite expands almost as much as the unfilled polymer. The expansion of the randomly
oriented composite <a> 3p is smaller than the volume expansion of the unidirectional
COmPOSite <A>miaxiar- SO, 1o obtain a small in-plane expansion coefficient it is best to orient
the platelets, while for a small volume expansion coefficient it is best to have random
orientation.

9.4 Visco-elastic properties of compression moulded PE-clay nanocomposites

Composite models predict a strong effect of the aspect ratio of the clay particles on the
stiffness of nanocomposites. In this section the effect of clay aspect ratio on the visco-elastic
properties of PE-nanocomposites is studied. The objective is to understand how
nanocomposites are reinforced and to show that clay with a low aspect ratio is less effective in
reinforcing a polymer than clay with a high aspect ratio. To this end, composite modelling is
used to quantify the effectiveness of the clay by calculating an effective aspect ratio.

9.4.1 Materials

Three types of clays are exfoliated in PE, a synthetic smectite with an estimated aspect ratio
of about 20 (SAN from Unicoop), a montmorillonite with an aspect ratio of about 100
(Cloisite 20A from Southern Clay Products) and synthetic mica with an aspect ratio of about
200 (MAE from Unicoop). Preparation of PE-nanocomposites from these clays is described in
Chapter 5. Exfoliation of the clays in PE is very good as can be concluded from the TEM
pictures given in Chapter 6.

9.4.2 DMA measurements

The PE-nanocomposite pellets were compression moulded into sheets of about 80 mm x 50
mm X 0,5 mm at 250°C on a Fontijne laboratory press. Compression was performed in steps:
2 minutes at 0 kN and 200°C, 2 min at 10 kN and 200°C and 15 min at 180 kN while cooling
down with an initial cooling rate of about 40°C/min. The samples for DMA testing were
punched out of the compression-moulded sheets into samples of 50 X 2 x 0.5 mm.

DMA measurements were performed on a Perkin Elmer DMA 7E using compression
moulded sheets. The apparatus used was operated at a frequency of | Hz and at a dynamic
strain of 0.05%. To prevent buckling of the samples the static strain is automatically adjusted
to 110% of the dynamic strain at each temperature. The temperature was varied between —150
°C and 115 °C, at a heating rate of 3 °C/min. The actual dimensions of the samples inside the
DMA apparatus were about 14 X 2 X 0.5 mm.

9.4.3 DMA results

The DMA measurements on the PE nanocomposites are plotted in Figs. 9.12 a-c. The figures
show both E’ and E” as a function of temperature.

In Fig. 9.12a, the storage moduli of PE-nanocomposites with synthetic smectite clay are much
lower than that of the PE nanocomposites with montmorillonite in Fig. 9.12b or with synthetic
mica in Fig. 9.12¢.
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Figure 9.12a Storage and loss Young's modulus of PE-clay nanocomposites
containing between 0 and 20 wt% 2M2HT treated synthetic smectite clay (w/t = 10).

1E+10

=1 E+09 -

E’, E" [Pa

1E+08 -

20% clay

5% clay

—— 1% clay

0% clay

1E+07
-150

-100

-50 0 50 100 150
Temperature [°C}

Figure 9.12b Storage and lossYoung's modulus of PE-clay nanocomposites
containing between 0 and 20 wt% 2M2HT treated montmorillonite clay (w/t =~ 100)
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Figure 9.12¢ Storage Young's modulus of PE-clay nanocomposites containing
between 0 and 20 weight% 2M2HT treated synthetic mica (w/t ~200).
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Judging from these results the synthetic smectite has the lowest and the synthetic mica
has the highest reinforcing effect while the effectiveness of the montmorillonite clay lies in
between these two.

The eftect of the type of clay on the Young’s modulus is better illustrated in Figs. 9.13
a) and b) at 23°C and —140 °C. Points denote measurements, while solid lines are drawn
through the points to guide the eye. Both figures show that clay with large aspect ratio
(synthetic mica) increases the stiffness much more than clay with low aspect ratio (synthetic
smectite). At 23 °C the effect of clay on the relative modulus is larger than at -140°C. This is
a consequence of the lower matrix stiffness at 23 °C.

a) b)
25 - 2,5
T=23°C T=-140°C
2,25 4 2,25
A Synth. mica
2 21 a Montmorillonite
© Synth. Smectite
g 1,75 4
15 A Synth. mica
o 0 Montmorilionite
© Synth. Smectite
1,25 4
1 T T T ‘

5 10 15 20 25 (0] 5 10 15 20 25

w% silicate w% silicate

Figure 9.13 a-b Relative Young's modulus of PE-nanocomposites with 3 different
types of clay versus wt% clay a) 23 °C and b) —140 °C.

To quantify the reinforcing effectiveness of the three types of clays, composite
modelling is used. I is attempted to quantify the effectiveness of the clay by assigning an
effective aspect ratio to it. The procedure used to fit the results is analogous to the one used
for the PA-nanocomposites in the preceding section. The aspect ratio in the complex Halpin-
Tsai equation is adjusted such that the fit is perfect at low temperature (-145°C).

For the fit it is assumed that the samples are randomly oriented. This assumption is
justified by observing the orientation in the TEM pictures in Figs. 6.8-6.10. An example of
such a fit on the PE-nanocomposites filled with synthetic mica is given in Figs. 9.14a-9.14c.
The stiffness of the unfilled PE (E,,’ and E,,”) is used as the stiffness of the matrix. As before
the stiffness of the nanoclay is assumed to be 172 GPa. This is the same stiffness as that of a
perfect mica crystal.

Fig. 9.14a shows that, between —145 and 0 °C, the composite model gives a good
prediction of the storage modulus E.’ of the nanocomposites. Table 9.4 lists the effective
aspect ratio of the clay platelets in the PE nanocomposites. The effective aspect ratio of the
clay decreases as the amount of clay increases. This is probably a consequence of incomplete
exfoliation, local ordering and grouping of particles as was discussed carlier. This finding is
in line with the findings for the PA6-nanocomposites of the preceding section. In Fig. 9.14c
the differences between the filled and unfilled samples are enhanced by plotting the relative
storage modulus E.7E,,’. The figure shows that above 0°C the fit starts to deviate strongly
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Figure 9.14a Storage modulus of PE-clay nanocomposites containing 2M2HT
treated synthetic mica. Grey lines are measured values; dotted lines are fitted
using the complex version of the Halpin-Tsai model.
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Figure 9.14b Loss modulus of PE-clay nanocomposites containing 2M2HT
treated synthetic mica clay. Grey lines are measured values; dotted lines are
fitted using the complex version of the Halpin-Tsai model.
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Figure 9.14c Relative storage modulus of PE-clay nanocomposites containing
2MZ2HT treated synthetic mica. Grey lines are measured values; dotted lines are
fitted using the complex version of the Halpin-Tsai model.
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from the measured results. This is similar to what was found for the PA6-nanocomposites in
the preceding chapters.

DSC measurements on the PE-nanocomposites that are presented in Chapter 7 reveal
that the heat of crystallisation of the PE phase in the nanocomposites decrcases systematically
as the amount of clay is increased. The low storage modulus above 0°C is therefore attributed
to a low crystallinity and low crystal perfection of the PE phase in the nanocomposites.

Prediction of the loss modulus E.” in Fig. 9.13b is poor; the measured loss modulus is
systematically higher than predicted by the composite model. Evidently, the nanoclay
increases the visco-elastic cnergy loss.

Clay wt% wi/t fitted | Orientation
Synt. Smectite

1.0 10 Random
5 10 Random
20 2 Random
Montmorillonite

1.0 150 Random
5 70 Random
20 25 Random
Synthetic Mica

1 250 Random
5 200 Random
20 60 Random

Table 9.4 Effective aspect ratio and orientation used to fit the DMA curves
of PE-nanocomposites

9.5 Discussion

As was discussed in the introduction of this thesis several authors fail to recognise the
importance of the aspect ratio for the stiffness of polymer-clay nanocomposites. As an
example we will discuss recent work of Shelley [4] on the properties of nanocomposites. Her
explanation given for the high stiffness of nanocomposites is exemplary for the explanations
given by other authors like Giannelis [5] and Kojima [6]. Shelley explicitly rejected
composite modelling because the composite model she used (from Hui et al. [7]) predicted
too high values of the stiffness of polymer-clay nanocomposites. She recognised that this
composite model is not accurate for platelet reinforcement. Instead of looking for an accurate
model she assumed that the high stiffness of polymer-clay nanocomposites is caused by the
high stiffness of the constrained polymer. She even assumed that the clay platelets themselves
do not contribute to the stiffness of the polymer nanocomposite.

The results from this chapter prove the opposite. First of all the stiffness of polymer-
clay nanocomposites is the result of the high stiffness and aspect ratio of the clay platelets.

Secondly, because of the emergence of a high mobile phase and because of hindrance
of crystal growth, the clay platelets tend to reduce the stiffness of the polymer matrix instead
of increasing it. Further it can be shown that the model suggested in this thesis can very well
explain both Shelley’s and Kojima’s [4] experimental results.

The wrong conclusions drawn by the authors cited above illustrate the importance of
using a correct composite model for polymer-clay nanocomposites. It also justifies the
elaborate effort conducted in this thesis to find and validate such a model.
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9.6 Conclusions

¢ At low clay loadings of clay, the Young’s moduli of PA6 and PE nanocomposites are
similar to that of conventional composites with high aspect ratio mica platelets. These
Young’s moduli can be predicted accurately by composite modelling.

e The theoretical relationship between thermal expansion and composite stiffness holds for
nanocomposites. Once the stiffness of the nanocomposite is known, the thermal expansion
can be calculated.

e The stiffness of nanocomposites increases as the aspect ratio of clay is increased. This is
correctly predicted by composite modelling.

¢ By inverse composite modelling the effective aspect ratio and effective matrix Young’s
modulus inside a nanocomposite can be calculated.

® At loadings above 5-10 wt% of clay the true stiffness of PA6 and PE nanocomposites is
smaller than that of comparable mica composites. This is assigned to a lower effective
aspect ratio and lower effective matrix stiffness.

s At high loadings of clay, the platelets can only fit in the polymer matrix by aligning
themselves along each other. The alignment leads to imperfect exfoliation of clay platelets
and consequently to a lower effective aspect ratio and a lower stiffness.

¢ In contrast to statements in literature, at high loadings the clay platelets do not increase the
stiffness of the polymer matrix but instead decrease it. The decreased stiffness of the
polymer matrix is thought to be the result of the extremely small distance between clay
platelets in nanocomposites, especially at high clay loadings.

e The small distance between clay platelets results in severe confinement of polymer chains,
which, according to NMR results in Chapter 6 and DRS results in Chapter 8, results in the
appearance of a high mobile phase in PA6-clay nanocomposites.

¢ As was shown by DSC in Chapter 7, the small distance between the platelets also hinders
crystallisation and results in a decreased crystallinity and decreased crystal perfection.
Both these effects lead to a relatively low stiffness.
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Permeability of nanocomposites

Abstract

Clay platelets in nanocomposites are known to retard the diffusion of gases or liquids. In
order to find out what mechanisms are responsible for the retardation of diffusion, the water
uptake of a scries of PA6-clay nanocomposites has been monitored. Simple Fickian diffusion
proved to give an accurate description of the water uptake in PA6-clay nanocomposites. The
diffusion coefficient of water in the PA6-clay nanocomposites is determined by fitting the
water uptake to Fickian diffusion models.

The permeability of polymer-clay nanocomposites is compared with the predictions of
compositc models. To this end several analytical models, found in the literature, are
introduced that relate permeability to the morphology of multi-phase materials.

At small loadings, when the product of volume fraction and aspect ratio is smaller
than unity (c,a<l), Hatta’s diffusion model [1], originally derived for thermal diffusion, is
thought to be the best analytical model available to predict mass diffusion through platelet-
reinforced composites. Of all models found in the literature, it relies on the smallest amount
of simplifications and assumptions. Hatta’s diffusion model is derived by using the equivalent
inclusion method as was also used in Eshelby’s mechanical model that was introduced in
Chapter 3. Like Eshelby’s model, Hatta’s mode! uses spheroid shaped filler particles.
Surprisingly the predictions of Hatta’s model almost coincide with Nielsen’s diffusion model
[2], which has a much weaker theoretical basis. It is found that at low loadings of clay,
Hatta’s model accurately predicts diffusion of gases through PA6-clay nanocomposites. At
higher loadings, if (c,a>1), Hatta’s model is no longer valid.

Brydges model is more appropriate then. The two-dimensional approach in deriving
Brydges model makes the model suitable only for ribbons and not for platelets. By adjusting
Brydges model such that it coincides with Hatta’s model at low volume fractions, a new
model is created that is thought to be suited for the diffusivity of platelet filled composites
over the whole range of volume fractions.

By adjusting Nielsen’s diffusion equation, a theory is derived to estimate the effect of
misalignment of platelets on diffusivity. It is found that, compared to perfect alignment,
random alignment of clay platelets can seriously increase diffusivity.

A good agreement between experiments and Hatta’s model is found, which indicates
that mainly the aspect ratio and the amount of clay platelets determine the diffusivity of
nanocomposites. Changes in polymer properties, due to the high surface area of the clay
platelets, do not significantly change the diffusivity of PA6-clay nanocomposites.
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10.1 Introduction

Improved resistance of polymers against transport of gases or liquids is of importance for
packaging purposes. To prevent spoiling of food for example, food packaging must have a
large barrier resistance against oxygen and water. Beverage bottles must keep the carbon
dioxide inside the bottle. For safety, environmental and economical reasons, fuel should not
diffuse through the walls of fuel containers. Increased resistance against transport of oxygen
also improves the oxidation stability of polymers.

In most applications the requirements on barrier resistance are met by selecting a
polymer with high intrinsic barrier properties or by increasing the thickness of the polymer.
Often this thickness is larger than strictly necessary for mechanical properties. This increases
the amount of polymer needed for the application, and thus increases the costs of
manufacturing and of transportation. So, for economical reasons it would be beneficial to
increase the barrier resistance of polymers.

Diffusion of gases and liquids through polymers mainly occurs in the amorphous
phase. In general the crystalline phase is supposed to be impenetrable. Diffusion through the
amorphous phase consists of activated jumps, in the order of 5-10 A, between pre-existing
voids in the polymer matrix. By using this so called free-volume concept, the gas diffusion in
low barrier amorphous polymers can be predicted accurately [3].

A semi-crystalline polymer contains both amorphous and crystalline phases. The
presence of the crystalline phase makes the diffusion mechanism more complex than in pure
amorphous polymers. The molecules that diffuse through the amorphous phase are now
forced to travel around the impenetrable crystalline phase. This effectively increases the
tortuous path length of the diffusing molecules. Liitzow et al. [4] studied the diffusion of
toluene and n-heptane in HDPE, LDPE and LLDPE. The high crystalline HDPE was found to
have a much lower permeability than LDPE or LLDPE. This was not only attributed to a
higher tortuosity but also to a decreased amount of free volume in the amorphous phase of
HDPE. Hemnandez et al. [5] studied the sorption and transport of water in PA6 films. The
diffusivity of water in PA6 decreased strongly by lowering the temperature, while the
solubility was almost not affected. Both Liitzow and Hernandez use free-volume concepts to
explain the observed sorption and transport phenomena.

Polymer composites filled with micrometer sized impenetrable ribbons [6-8] or
platelets [8-10] are known to have an improved barrier resistance against the transport of
liquids and gases. Since micrometer sized filler particles are relative large compared to
molecular size, the matrix properties of these composites are not expected to change much by
the presence of the fillers. In these kinds of composites all changes in barrier properties can
therefore be attributed to the obstacle effect of the platelets.

Polymer-clay nanocomposites also show improved barrier resistance. The Toyota
group has done a lot of work in this field. They reported improved barrier properties in
rubber-clay [11], polyimide-clay [12,13] and PA6-clay [14] nanocomposites. They
successfully used Nielsen’s tortuosity model [2] to estimate the effect of aspect ratio and
volume fraction on permeability. Improved barrier resistance was also found by Matayabas et
al. [15] for polyester clay nanocomposites. Messersmith et al. [16] reported on the
permeability of polycaprolactone-clay nanocomposites. In two data sheets [17,18] Unitika
mentions that the rate of water uptake of PA6 is strongly reduced by addition of nano-
dispersed clay.

As Kojima [19] showed the clay platelets in PA6-clay nanocomposites change the
crystalline structure of PA6 from o to y-crystalline and impose a preferred orientation to the
crystals. It can thus be expected that this change in crystalline structure changes the
diffusivity of water in a PA6 nanocomposite. So two mechanisms are active in PA6
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nanocomposites that could change the permeability: the high aspect ratio of the clay platelets
and the altered polymer crystallinity. As was discussed before with mechanical properties in
Chapter 9, the question arises wether nanocomposites have improved barrier resistance only
because of the high aspect ratio of the platelets, or also because the clay platelets significantly
change the diffusivity of the polymer matrix. Again it is attempted to answer this question by
comparing the results of diffusion measurements with the results of composite modelling. If
composite modelling can quantitatively explain the experiments there is no reason to assume
that the improved barrier-resistance of nanocomposites are caused by a change in matrix
properties. On the other hand, if composite modelling cannot give a quantitative explanation,
the unexplained part of the barrier resistance it most likely caused by a change in polymer
properties.

In Section 10.2 a general introduction on diffusion theory is given. Here some basic
equations are introduced that explain the effect of sample thickness and time on diffusion.
Section 10.3 introduces some theories to estimatc the barrier resistance of polymers filled
with platelets. The effect of misalignment on diffusivity is estimated and discussed in Section
10.4. Section 10.5 compares the diffusivity of nanocomposites to the predictions of the
theoretical models introduced earlier. All results are evaluated and conclusions are drawn in
Section 10.6.

10.2 Elementary diffusion theory

Diffusion is a statistical process that occurs if particles start travelling through a phase as a
result of their thermal motion. Suppose that a group of labelled particles is concentrated in a
small volume of a substance. All particles are moving because of their thermal motion. By
chance some labelled particles will move outside the small volume. This causes the group of
particles to spread out. A net flux of labelled particles can thus be observed moving from a
high to a low concentration.

10.2.1Fick’s first and second law of diffusion

A method to measure the transport of liquids or gases through a polymer is to make a film,
apply a concentration difference over it, and measure the amount of liquid or gas that is
transported through the film per unit of time. The rate of transport N (mol/s) through the film
is proportional to the concentration difference AC (mol/m®) and to the surface area A (m’) of
the film while it is inversely proportional to the thickness A (m):

N__D,¢ 10.1)
Ak

where D (m?%s) is the proportionality constant known as the diffusivity or the diffusion
coefficient. The minus sign indicates that the direction of mass flow is from regions of high
concentration to regions of low concentration. In a differential form Eqn. 10.1) is written as
Fick’s first law:

J=-D"— 10.2)
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where J is the flux density (mol/m’s) of molecules diffusing across a unit area in unit time.
Fick’s first law can only be used for steady state situations where the flux does not vary with
time.

The earliest methods to measure the permeability of water through a polymer film
were performed by test dishes containing desiccants that were covered by the barrier film. The
dish was placed in an environment with known relative humidity and the water permeability
was determined by the increase in weight of the desiccant. In newer methods (Fig. 10.1),
water is placed in a dish covered by the barrier film. The vapour transmission rate is
determined by measurement of the relative humidity on the dry side, by a humidity sensor or
by an infrared sensor.

Gas permeability is generally measured by exposing the high-pressure side of the film
to gas by constant flushing. The transmission rate is then usually determined by one of the
two following two methods. In one method a vacuum is applied on the low-pressure side of
the film and the rate of increase in pressure is recorded by a pressure gauge.

More modern methods use gas-chromatography techniques to measure the increase in
gas concentration on the low-pressure side (Fig. 10.2).

A drawback of all these methods and any other method that directly measures
permeability through a thin film is their sensitivity to leakage. The amount of material
transported through the film is extremely small. So any small pinhole or leak significantly
contributes to the error in the measurement.

Dry air Test gas
T T
— T B oo |

test sample test sample

water
Reference gas  To gas chromatograph
Figure 10.1 Apparatus for Figure 10.2 Apparatus for
measurement of water transmission measurement of gas transmission

Another method to determine the transport kinetics of a gas or a liquid in a polymer is
to measure the rate of sorption or desorption of the gas in a test sample. To use this method
the solvability of the test gas in the sample must be high enough to be measured accurately.
Water absorption in PA6 nanocomposites can be determined by measuring the weight
increase of an originally dry sample in a controlled humid atmosphere. By measuring the
increase in weight of the sample as a function of time, it is possible to determine the
diffusivity as well as the solubility of water in the PA6 nanocomposites. Small holes have no
influence on the outcome of this measurement.

Absorption is a non-equilibrium process. During absorption the diffusing phase
accumulates in the polymer. Fick’s first law does not account for accumulation since it can
only be used for equilibrium transport of the diffusing phase. Fick’s second law does account
for accumulation (and depletion):
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If a gas or liquid is absorbed in a homogeneous, infinitely long sheet, the sheet increases in
mass (AM') as a function of time ¢ until saturation is reached (AM_ ). Using Fick’s second

law, an expression can be derived for the time dependent absorption of a gas or liquid into a
sheet [S]:

max
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where is the relative change in mass, fis the time and 4 is the thickness of the sheet.
This series converges very rapidly, for Dt/h2>0.01, 3 terms suffice.

At short times (D¢h’ < 0.06, or equivalently AM/AM,..< 0.55) this expression can be
approximated as a linear relationship between the relative mass gain and the square root of

time:

AM .4 Dt 10.5)
AM,, Nz \h

By fitting experimental absorption data to Eqns. 10.4) or 10.5) the diffusivity D and the
solubility § = AM,,./M can be determined. Here M is the initial mass of the sheet.

If the sample is not a perfect sheet, but a thick plate, absorption not only occurs from
the top and bottom of the plate but also from the sides. To account for absorption from the
sides of the plate Eqn. 10.5) must be adapted:

A, +A .
AM At Auow 4 ﬂ: 10.6)
A Mmax Auplmv J; h

Here Az is the area of the sides and Ay is the area of the upper and lower surfaces.

10.3 Modelling of diffusion in a material filled with impenetrable platelets
This subsection will start with some general relationships between transport properties of

composites and their morphology. Then several models are introduced to calculate the
transport properties of composites filled with platelets.

10.3.1Relationship between permeability and diffusivity
Diffusivity (D) is a measure of the velocity at which molecules travel through a substance,
while permeability (P) is a measure of the amount of molecules transported per unit of time.

By definition the relationship between permeability and diffusivity is given by:

P=SD 10.7)
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where § is the solvability of the molecules in the substance. The permeability of a composite
material P, can thus be written as:

P.=S.D, 10.8)

where S, is the solvability and D, the diffusivity of the molecules in the composite. The same
relation ship holds for the permeability of the matrix P,,:

P,=S,D, 10.9)

where S, is the solvability and D, the diffusivity of the molecules in the matrix. In a
composite filled with impenetrable particles the molecules can only dissolve in the matrix of
the composite. The solvability of molecules in the whole composite is thus proportional to the
volume fraction of matrix material 1-¢,:

S.=(1-c,)S, 10.10)

By combination of Eqns. 10.8), 10.9) and 10.10) the relative permeability of the composite
P/P,, can be related to the relative diffusivity Dy/Dpy:

P
£ =(]1-
p —(1-¢)

D. 10.11)

D
Some measurements or analytical models give P/P, while others give D/D,,. In these cases

Eqn. 10.11) is useful to calculate the permeability of a composite if the diffusivity is known or
vice versa.

10.3.2Similarities between diffusion models for platelet filled composites

Before introducing models for the permeability of composites filled with platelets, let us first
look at how the diffusion of a substance is influenced by the presence of an impenetrable plate
with large aspect ratio. To this end, consider the plates in Fig. 10.3 that are subjected to a flow
in vertical direction, as indicated by the arrow.

w
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Figure 10.3 Resistance against flow of (a) a single plate with thicknesst and of (b) a plate
with thickness nt.

In Figs. 10.3a and 10.3b the thickness of the plate is much smaller than the width of the plate:
w/t >> 1. If the thickness of the plate in Fig. 10.3a is increased n times while its width
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remains constant (Fig. 10.3b) it is intuitively clear that the resistance of the plate against the
flow is hardly changed. Now the volume of the plate has increased n times, while it’s aspect
ratio o = w/t is decreased n times. During this operation the product of aspect ratio and
volume fraction: ¢,a , remains constant (¢,= volume fraction).

So as long as the volume fraction is low (¢,<<1) and the aspect ratio is large (a>> 1),
any model for the diffusivity of a composite filled with impenetrable platelcts will be a unique
function of the parameter ¢,&. This relationship will prove to be a useful check for the
validity of diffusion models.

10.3.3 Analytical models for transport properties of platelet filled composites

Several analytical models have been developed to calculate the diffusivity of heterogeneous
materials. An early attempt was made by Barrer et al. [20] who modelled the diffusion
through a composite filled with regularly spaced parallelepipeds. Since Barrer did not account
for overlap of filler particles his theory is less useful for nanocomposites. Nielsen’s model [2],
which will be treated below, relates the permeability to the tortuosity of a composite filled
with ribbons. Both Brydges [7] and Cussler [21] give theories for ribbon-reinforced
composites. They derive their theories by calculation of the resistance against flow in the
channels between platelets. Frederickson [22] used a multiple scattering formalism to derive
equations for the transport properties in the dilute and semi dilute regime of composites filled
with randomly placed oriented platelets.

The mathematical analogy between equations of elasticity and transport properties
inspired Mehta et al. [6] to use Halpin-Tsai’s equations to estimate the diffusivity of ribbon
reinforced composites. By using a shape factor § = femw/0)"**I’, the Halpin-Tsai equations
(see Chapter 3) could be accurately fitted to permeability data of oxygen and nitrogen through
cellulose acetate films filled with glass ribbons.

Batchelor [23] gave a good overview on equations for transport properties of two-
phase materials. His solution for the thermal diffusivity of a composite with a dilute
concentration of non-interacting ellipsoids is directly applicable for diffusion of mass and will
be discussed below. Hatta [1] extended Baichelor’s result to composites with non-touching
ellipsoids by using Eshelby’s equivalent inclusion method.

The mathematical modelling of mass diffusion does not differ from the modelling of
other transport properties like thermal conductivity, electrical conductivity, magnetic
permeability or dielectric constants [24]. So expressions for mass diffusion can be obtained by
using models that are derived for other transport properties.

10.3.3.1 Length of the tortuous path; Nielsen’s model

For a material filled with impenetrable platelets, oriented perfectly perpendicular to the
diffusion direction, Nielsen [2] derived a simple equation that relates the diffusivity of a
composite (D) to the diffusivity of the matrix (D), the volume fraction ¢, and the aspect

- W .
ratiog = 4 of the platelets:
D,
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In an unfilled material the shortest path length is L, while in a composite the shortest path
length is L, as is shown in Fig. 10.4. If a permeating molecule moves in vertical direction and
hits a platelet, it is forced to travel along the platelet in horizontal direction until it reaches the
end of the platelet. The assumption made by Nielsen is that on average a molecule travels half
the length of the platelet along its surface before it can continue to the next platelet:

L _,,a@ 10.13)

Nielsen’s model fulfils the requirement in that it is a unique function of ¢, as is required by
the reasoning in paragraph 10.3.2.
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Figure 10.4 Tortuous path of a molecule diffusing
through a material filled with ribbons.

In deriving Nielsen’s equation several assumptions are made:

o The diffusivity of the matrix is not changed by the presence of the platelets.

o The platelets are perfectly oriented.

o All platelets have the same size.

e The platelets are supposed to overlap perfectly as in Fig. 10.4. Here the centres of each
platelet are placed just above the gap between two platelets in adjacent rows.
All platelets are separated; they do not touch each other.
No preferred transport occurs along the interfaces of the platelets and the polymer matrix.

The simplicity of the model has the big advantage that it gives insight in the mechanisms that
retard the transport of a substance in a composite filled with platelets. A disadvantage is that it
neglects several features that occur in real composites:

e Essentially it is a two dimensional theory. This implies that the filler particles in Fig. 10.4
are thought to be infinitely long in the direction perpendicular to the drawing and
therefore represent ribbons rather than platelets. This leads to a too low estimate of
diffusivity.

e Misalignment of platelets can seriously decrease the length of the tortuous path. This is
not accounted for in Nielsen’s theory. By using randomising techniques the effect of
misalignment can be estimated, as will be shown later.

e In real composites the size of platelets is not uniform but polydisperse. As can be
estimated from Nielsen’s model, long platelets have a much stronger effect on the length
of the tortuous path than small platelets.

e The platelets are supposed to overlap perfectly as in Fig. 10.4. Random overlapping of
platelets will give a lower length of the tortuous path and consequently a higher
diffusivity.
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* Transport of the diffusing substance at the interface can often not be neglected. This is
especially true if the adhesion between matrix and polymer is low [9].

* At high loadings the effect of touching platelets cannot be neglected. If the sides of two
platelets touch each other, the tortuous path is increased and the diffusivity is decreased.
This is not accounted for in Nielsen’s theory.

e The effective area that is available for transport decreases because of the thin channcls
between the platelets. This will decrease the diffusivity further than only tortuosity does.

In Nielsen’s equations only the length of the tortuous path is taken into account. The same

permeability would be obtained by using a plate that is a factor L,/L, thicker than the

original unfilled plate. So in fact Nielsen calculates the change in flow through a plate when
the plate is increased in thickness by a factor L,/L, without changing the area normal to the
flow.

10.3.3.2 Resistance against transport by channels between platelets: Brydges’ model

In reality flow is restricted to channels that are formed by the platelets, as is shown in Fig.
10.5. Not only the length of the tortuous path is increased, but simultaneously the surface area
normal to the flow is decreased. Based on this concept Brydges et al. [7] developed a different
and easy to understand model for diffusion in a ribbon-filled composite. Instead of calculating
the length of the tortuous path they calculated the resistance against transport of the thin
channels in a ribbon-filled composite as is shown in Fig. 10.5.
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Figure 10.5 Diffusion through channels in a ribbon-filled composite

The geometrical parameters of the ribbon-filled composite are shown in Fig. 10.6. The
plate in Fig. 10.6a contains » layers of ribbons, so that T=n(d+t). Similarly the plate with B is
considered as m multiples of the distance (w+g), where w is the ribbon width and g the gap
between the ribbons in each layer. Using the unit cell in Fig. 10.6b Brydges arrived at the
following expression for the permeation coefficient for flow through a composite plate:
P, 1

¢

P,,,—w+g[t+d w J

10.14)

+ ¥ 1=
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where yis the overlap factor, see Fig. 10.6. In a composite usually the width and thickness of
the platelets are be known. This leaves 3 unknown variables in Eqn. 10.14, d, g and % It is
easy to show from Fig. 10.6b that the ribbon volume fraction ¢, is given by:
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Figure 10.6 (a) Ribbon-filled plate. (b) parameters describing the geometry.

By using Eqn. 10.15) d can be expressed as a function of ¢,, ¢, g and w. By inserting this in
10.14), P,/ P, can be expressed as a function of the volume fraction c,, the plate width w,
the plate thickness ¢, the gap g and the overlap factor 3. Compared to Nielsen’s equation, two
extra parameters must be known, the gap g and the overlap factor y. These parameters hold
information on the relative position of the platelets in the composite. Perfect overlap is
achieved if ¥ =0.5, while y =0 in the absence of overlap. Random overlap gives an average
overlap factor of ¥ = 0.25. The factor y(7— y) that accounts for the overlap in Eqn. 10.14)
changes from 0.25 to 0.19 by changing ¥ from 0.5 to 0.25. So the result of the calculation is
not sensitive for the precise value of . Therefore the only important unknown parameter in
Eqn. 10.14) is the gap distance. Brydges assumed that ga¢ and a>>1. Under these conditions
Eqn. 10.14 takes the form:

P I—¢,

——% . gatand @>>1 10.16)
P, (ca)y(l-y)

n

It must be reminded that Eqn. 10.14) holds for perfectly straight ribbons that are positioned in .
perfect layers as is shown in Fig. 10.6. Brydges used his model to calculate the permeability
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of gas pipes that were made by winding glass ribbons around a tube. In these kinds of
composites the configuration of ribbons is realistically represented by Fig. 10.6. Eqn. 10.16)
should give a reasonable estimate of the permeability of such a composite. In composites
filled with platelets the existence of a well-defined gap between platelets is questionable since
in reality platelets are not aligned in layers. In contrast it can be expected that the centres of
gravity of the platelets are randomly positioned as isdepicted in Fig. 10.7. Definition of a gap
distance g becomes difficult under these circumstances.

As can be seen in Fig. 10.7 only a few particles have edges that come close to the
edges of other particles. Furthermore narrow gaps can only exist if the platelets have perfectly
straight sides, while in reality the platelets will be irregularly shaped and certainly will not be
perfectly straight. So for platelet-reinforced composites the gap will never be extremely small.
The condition introduced by Brydges that g=t is therefore much too strict for composites
reinforced with platelets.

A more realistic assumption is that g=d as was already assumed in the 3D-Takanayagi
model introduced in Chapter 3. Figure 10.7 shows that this is a reasonable assumption. If
additionally it is assumed that the platelets have a high aspect ratio (w>>f) equation 10.14 can
be written as:

L 1=¢, 10.17)
P, (ca+l-c)(car(l-y)+1)
Figure 10.7 A possible diffusion path through a realistic
configuration of platelets in a composite.
In the diluted region if ¢, <<1 Eqn. 10.17) reduces to:
LA 1-¢ 10.18)

P, " l+ca(l+y(1-y))

which has much resemblance with Nielsen’s model. At intermediate to large volume fractions
as ¢,a >>1 Eqn. 10.17) reduces to equation 10.16). Equation 10.17) is therefore thought to
have a wider range of applicability than equation 10.16). Especially in the diluted region if
c,a<<1 equation 10.17) is better suited.
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10.3.3.3 Resistance against transport by channels between platelets: Cussler’s model

Cussler [21] derived expressions for the permeability of membranes filled with ribbons of
variable width and variable gap distance as is shown in Fig. 10.8 :

Figure 10.8 Membrane with randomly spaced slits.

—
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By using a statistical approach he calculated the probability of a diffusing molecule to hit a
ribbon. He assumes that once the molecule hits a ribbon, it travels a distance of zw along the
ribbon before traveling to the next layer of ribbons, w being the width of the ribbon. By
combining statistical calculations with calculations of the flow resistance in the channels and
slits he arrived at the following expression for the diffusivity:

b __ 1 _ 10.19)
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Cussler shows that g is 0.25 if the platelets are regularly placed as shown in Fig. 10.5. As
such, g fulfils exactly the same role as the factor #7—y) in Brydges model which also is equal
to 0.25 for the same configuration of platelets. The models of Brydges and Cussler coincide if
ca>1 .

10.3.3.4 Barrier properties of oriented disk composites, dilute and semi-dilute
concentrations: Frederickson

Recently Frederickson and Bicerana [22] used a multiple scattering formalism to derive
equations for the transport properties of composites filled with randomly placed oriented
platelets in the dilute and semi dilute regime. They assumed that the aspect ratio of the disks
is always much greater than unity: @ >>1. In the dilute regime it is assumed that ¢, << 1,
while in the semi-dilute regime ¢,<<1 and ¢,a >> 1. Frederickson concludes that in the dilute
regime an adapted version of Nielsen’s model should be used, while in the semi-dilute regime
an adapted version of Cussler’s model is more appropriate.

D, 1

In the dilute regime: £ 10.20)
D, l+xkca
. . r 1
where for oriented disks: K=——o 10.21)
2in(ia)
. . zr 1
and for randomly oriented disks: K 10.22)

"6 In(ta)
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In the semi-dilute regime: D. = —1—2 10.23)
D, u(ca)
K,Z
where = 10.24
“=76 )

Frederickson also constructed an equation that reduces to Eqn. 10.20) if xc,@ < 3 and to Eqn.

10.22) if xc,a> 12:
D. 1 1 1 Y
.1 . 10.25)
l1+axca 1+a,xca

where a, =(2—v'3)/4z 0.146447 and a, =(2+\/5)/4 ~(.853553.

10.3.3.5 Transport properties of a composite with a dilute suspension of non-interacting
ellipsoids: Batchelor’s model

Models for the transport properties of a composite filled with non-interacting unidirectionally
oriented ellipsoids were given by Batchelor [23]. He used mean field theory to calculate the
thermal conductivity of a composite. Since the mathematics of thermal diffusion and mass
diffusion are exactly the same, his equation can also be used to calculate mass diffusion. If all
ellipsoidal particles have semi-diameters a;, a», a3 and have the same orientation, the principal
axes of the permeability tensor are parallel to the principal axes of the ellipsoids. The three
principal diagonal elements are then found to be:

P -
o e (B=Ve |53 10.26)
P, 1+8,(8-1)
where S, = 22,4, Jm dp 10.27)
2 0

2 2 2 2 Y2
(a, +.o){(a{+/o)(a2 +p)(a, +p)}

B is the ratio between the permeability of the reinforcement and the matrix: f=P,/Py For
impenetrable platelets = 0. This expression is equivalent to an expression for the dielectric
constant of composites, derived in 1937 by Sillars [25].

To find an expression for composites filled with impenetrable platelets Eqn. 10.27) is
solved for oblate spheroids with a;< a; and a;=a;:

2

2—
s,=s2=a—(cos-'(%)—““ ']; S, =1-25, 10.28)

2a’ -1)" a’

where the aspect ratio @ =a, /a,. This shape factor § is also used in the description of

dielectric and mechanical properties. In Appendix A the same shapefactor is used for the
description of the Eshelby tensor. In Appendix E more attention is given to the resemblance
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of models for barrier, dielectric and mechanical properties. By assuming that @>>1 Eqn.
10.28) can be approximated as:

s, =8, 5 =172 10.29)
a a
And Eqn. 10.26) then becomes:
P
P 10.30)
P, z/2

So for large aspect ratios the permeability is a function of the product of aspect ratio and
volume fraction. The requirement that the ellipsoids are non-interacting implies that c,& << 1.
At dilute concentrations if ¢,a <<1 Nielsen’s equation can be approximated as:

LAY 4 10.31)
P 2

Eqn. 10.30) has much resemblance to Nielsen’s equation. At dilute concentrations the only
difference between both theories is a factor of #/2 = 1.6 instead of a factor 2.

10.3.3.6 Eshelby’s equivalent inclusion method: Hatta’s model

Hatta et al. [1] derived a theoretical model to calculate the thermal conductivity of an aligned
platelet reinforced composite, by using Eshelby’s equivalent inclusion model. Based on the
mathematical analogy between thermal conductivity and mass transport this model can be
used without adaptation for gas permeability. They arrived at the following equation:

i={1+ (B-1), } i=1,2,3 10.32)
P 1+S,(1-¢, )(B—1)

where S; is defined as in Eqn. 10.28. By using a mean field approach van Beek [26] found the
same expression for the dielectric constant. If the platelets are impenetrable P,=0 and by using
Eqn. 10.29), Eqn. 10.32) can be simplified to:

£E+ 10.33)
Pn ]+—c’a_
n(l-c,)

Except for the factor I-¢, in the denominator Eqn. 10.32) is equal to Eqn. 10.26). Therefore
the models of Hatta and Batchelor coincide at small volume fractions. Hatta’s model has the
advantage that it is valid up to larger volume fractions.
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10.3.3.7 Assessment of diffusivity models

In Fig. 10.9 the relative diffusivity Do/D,, at a volume fraction of 1 wt% is calculated with the
models discussed above and plotted as a function of aspect ratio. The models of Batchelor and
Cussler are not plotted because within their range of applicability they overlap with the
models of Hatta and Brydges respectively. The models of Hatta and Nielsen give comparable
results. The model proposed by Brydges clearly gives wrong results at low aspect ratios since
this model is only applicable at high c,a.

The adjusted Brydges model performs much better at low aspect ratios and coincides
with the original Brydges model at high aspect ratios as was indicated in subsection 10.3.3.2.
The predictions of the adjusted Brydges model lie below Hatta and Nielsen’s predictions,
while the predictions of the model of Frederickson lie above. It is clear that the range of
diffusivities predicted by the models is rather wide. At an aspect ratio of 100 and a volume
fraction of 1% the adjusted model of Brydges predicts D/D,= 0.39 while the model of
Frederickson predicts Dy/Dp, = 0.71.

1
09 —&— Nielsen
08 1 —&— Brydges
0’7 ) —a— Brydges adjusted
' —e— Frederickson
e 067 —&— Hatta
g 0,5 -
0,4
0,3
0,2 -
017 V=001
0 v=0. . .
10 100 1000 10000

Aspect ratio o
Figure 10.9 Relative diffusivity as a function of aspect ratio of several
models introduced in this Chapter at 1 vol% of filler.
Nielsen: Egn. 10.12); Brydges: Eqn. 10.16); Brydges adjusted : Eqn. 10.17)
Frederickson Eqn. 10.25); Hatta: Eqn. 10.32)

As was discussed, Nielsen’s model gives a very simplified representation of the
diffusion process in a ribbon-reinforced composite. Since it is a two-dimensional theory, it is
valid for ribbons rather then for platelets. Further it only includes the tortuosity of the
diffusing path and neglects the effect of reduced channel area. It is therefore expected that
Nielsen’s model only gives a qualitative prediction of the diffusivity of platelet filled
composites.

Brydges and Cussler use flow resistance to calculate the diffusivity of a platelet filled
composite. It is shown that their models are only meaningful to predict the diffusivity at
intermediate to high volume fractions as c¢,a >>1. At small volume fractions as ¢,@ <<1 a
Nielsen’s like model is more appropriate.

The adjusted Brydges model is more appropriate at low volume fractions than the
original Brydges model. It is appropriate for ribbons and therefore underestimates the
permeability of platelets reinforced composites.
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The models of Bachelor and Hatta have a sound theoretical basis and are exactly valid
within the boundary conditions given. Also they are valid for platelets instead of ribbons.
Batchelor’s model is only valid at very dilute concentrations if the flow around the particles is
not disturbed by the presence of other particles. This is true only if ca << 1. In
nanocomposites this can only be achieved at very small volume fractions (<0,1%). Hatta’s
model has a wider range of applicability. At small concentrations it reduces to Batchelor’s
model. The essential assumption in both models is that every particle experiences a flow field
that is parallel to the flow field applied to the whole composite. Usually this flow field is
directed perpendicularly to the plane of the platelets. In Hatta’s model the interaction between
particles is accounted for by changing the magnitude of the flow field. It is supposed that the
direction of the flow field is not changed by the presence of other particles. Fig. 10.5 shows
that at large volume fractions, as c,a >1, the flow field that is experienced by the particles is
no longer parallel but mainly perpendicular to the to the applied flow field (vertical flow lines
instead of horizontal flow lines). So Hatta’s equation is not valid if c,@>1.

Based on plausible arguments it was concluded earlier that at large aspect ratios and
small volume fractions, the permeability should be a unique function of ¢,a. The models of
Nielsen, Bachelor, Hatta, Brydges, and Cussler indeed fulfil this requirement. Frederickson
finds that the permeability is a unique function of ¢,a@/In(a). The factor of In(a) does not
vanish at high aspect ratio. Therefore it is thought that the model introduced by Frederickson
cannot hold.

After examining all available models found in the literature, it is concluded that
Hatta’s model should give good predictions at small to intermediate volume fractions (if ¢, <
1). At higher volume fractions, when the direction of the flow around the platelets is changed
by the presence of the other platelets (if c,a > 1), Hatta’s model is expected to predict too
high values for the diffusivity of a composite. At these concentrations the adjusted model of
Brydges, suited for ribbons, is thought to be more appropriate.
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Figure 10.10 Suggested model for diffusivity through a composite filled with
platelets. Hatta: Eqn. 10.32) suitable for low volumes fractions and New
model based on Brydges approach Eqn. 10.33)

—&— Brydges adjusied +
corrected for platelets
Hatta

—A—
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It can be shown that the adjusted model of Brydges in Eqn. 10.17) can be made to
coincide with Hatta’s model in Eqn. 10.32) at small volume fractions (if ¢,&@ <<1). Both
models coincide a low volume fraction and perfect overlap (¥ = 0.5) by replacing « in
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equation 10.17) by S =§8—% = —;——';v— This correction is necessary to account for platelets
F 4
instead of ribbons. The final equation for diffusion through a composite filled with oriented

impenetrable platelets now becomes:

P l1-¢
£ : 10.34
P, (cB+1-c){(c,Br(1-y)+1) )

where f = %% ~ %% This model is suited for small volume fractions (if ¢, < 1) as well
T

as for intermediate and high volume fractions (if ¢, >> 1). As is shown in Fig.10.10, it
coincides with Hatta’s model at low volume fractions.

In Fig 10.11 equation 10.34 is compared with finite element calculations, which were
recently published by Gusev et al. [27]. The model uses complete 3 dimensional finite
element modelling. In this respect these results are more reliable than earlier publications
found on FE modelling of diffusion through composites like that of Matsuoka [28] who used
2 dimensional finite element modelling. Like stated before by using 2D modelling one
implicitely assumes ribbons instead of platelets.

Fig 10.11 shows that the values calculated with equation 10.34) closely follow the
finite element predictions given by Gusev. A perfect fit is found by using #= 0.4 w/t instead
of the theoretical value for 8.
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Figure 10.11. Comparison of the proposed equation for permeability of platelet
filled composites 10.34) with results of finite element calculations [27].

10.3.4 Random walk simulation of transport through platelet filled composites

Eitzman et al. [29] modelled the diffusion through composites filled with ribbons, by
simulating the molecular trajectories through this medium. Each molecule is supposed to
move randomly with steps equal to the length of the mean free path 4. By calculating the
average root mean square distance through the composite of many random walks, Eitzman
calculated the effective diffusivity of a composite filled with impenetrable ribbons.
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Eitzman studied the transport through composites at intermediate to high volume
fractions, where the flow is mostly parallel to the plane of the platelets. In that case not only
the length of the tortuous path is increased, but simultaneously the cross sectional area
through which diffusion can occur is decreased. The combination of these two effects means
that the alteration of the diffusion is proportional to the square of the volume fraction of the
platelets. It was concluded that, Cussler’s analytical model adequately describes the diffusion
through such a composite.

Eitzman also conducted a thorough study to the diffusion of CO, through mica filled
block copolymers of silicone and polycarbonate at concentrations between 5 and 17 vol% and

at aspect ratios between 20 and 110. In general 3< ¢,a < 10, well outside the range were the
2
equation of Hatta is valid. She found a linear dependence between —I;—"’——I and lc' , and
—c,

<

D o
between F’"—I and o as is predicted by the model of Cussler. Although qualitatively the
agreement between model and experiments was excellent, the model systematically
overestimated the effect of volume fraction and aspect ratio on diffusion. It is thought that this
is mainly due to the fact that Eitzman uses a 2 dimensional model just like Cussler and
Brydges. So essentially she modelled the diffusion through aligned ribbons instead of aligned
platelets.

Eitzman showed that the calculation of the diffusivity becomes insensitive for the

distance between the platelets (d) if the Knudsen number (V,, = '%) is less than 0.1. The

minimum distance between platelets for undisturbed diffusion through the matrix phase can
now be estimated by assuming that A is equal to the jump length of 5-10 A found in
polymers. The minimum distance then is 100 A. For nanocomposites this is the case at
volume fractions below 10 vol%.

10.3.5 Effect of polydispersity of platelet diameters

If Nielsen’s model is used to predict the diffusivity of platelet filled composites,
polydispersity of the aspect ratio be accounted for by averaging the patch lengths around
particles with high and low aspect ratio’s. According to Nielsen’s assumption a particle with a
width w; increases the path length by % w;. If a diffusing molecule has passed n layers of
platelets, the total path length is equal to:

L =L +%Yw, 10.35)
i=]
which can be written as
D, L - - 1
L =—t=1+Y%ca where a=—) ca, 10.36
Dc LU % r c' Z i i )

where ¢; is the volume fraction of platelets with aspect ratio ;. a could be called the ‘mass
average aspect ratio’ analogous to the ‘mass average molecular weight’ in polymer chemistry.
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10.4 Effect of misalignment of platelets on diffusivity

By using Nielsen’s equation it is possible to estimate the effect of misalignment of the
platelets on diffusivity. Consider the case in which all platelets are aligned under an angle 0
with the plane of the film as shown in Fig. 10.12. If a molecule travels from point A to point
B it will cover a distance equal to/ ,,:

ly=x+Y%w 10.37)
The vertical distance travelled is equal to:

lyp ,=x+Y,wsin8 10.38)

To completely diffuse through the film the molecule must travel a total vertical distance L.
The amount of platelets encountered during this travel is equal to:
L0 L0

n= = —. 10.39)
ly , x+lwsing

From geometrical considerations it can be seen in Fig. 10.12 that:

x= e 10.40)
cos@

The total distance travelled through the film now becomes:

L (1+ Acos8)
L(0)=nl,= f)=—>"— =L s AcosOsind)’
(0)=nly=n(x+}1) x+}gwsin0(x+%W) * (1+ Acos@sind)

10.41)
where A=V c,a .

By using Eqn. 10.41, the diffusivity as a function of misalignment angle is calculated
and plotted in Fig. 10.13. As expected the platelets with a large aspect ratio give a lower
diffusivity than platelets with a smaller aspect ratio. At small misalignment the large aspect
ratio platelets also show a steeper increase in diffusivity than the small aspect ratio platelets
do. This indicates that at high aspect ratio the diffusivity is more sensitive for misalignment.
The sensitivity for small misalignment can be estimated by calculating the relative change in
path length due to small misalignment:

. . 2 — b 2
lim oL, /L, _ 1 lim— (1+ AcosOsin@)(Asin8)+ (1+ AcosB)A(cosO° —sin8°* ) —-41042)
60 99 I+ A6 (1+ AcosOsin8)*

Since A=% c,a, the sensitivity for misalignment increases when either the volume fraction or
the aspect ratio increases. If the orientation of the platelets fluctuate within an angle +6°
around the parallel direction, the effect on diffusivity can be estimated by calculating the
average of L.(€) between +@ and -8, Since L(@) is symmetric around 6=0, it is sufficient to
integrate between 0 and &
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Figure 10.12 Tortuous path in a polymer film filled with platelets making an angle
Owith the plane of the film.

In Fig. 10.13 this ‘moving average’ is plotted as a broken line. An estimate for the
effect of random orientation can be obtained by calculating the average path length of
platelets oriented between 0° and 90°. Fig. 10.13 shows that the barrier properties in
nanocomposites with serious misalignment are expected to be much lower than in perfectly
aligned nanocomposites. At random orientation (broken line at 8 =90°) the diffusivity of the
nanocomposite with high aspect ratio platelets (w/ = 500) is almost 4 times higher than that
for perfect orientation (broken line at 6 = 0°). This illustrates the dramatic effect that
misalignment can have on diffusivity. So in practise great care should be taken to get good
orientation of the platelets.
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Figure 10.13 Effect of misalignment angle on the diffusivity of a material filled with
impenetrable platelets. Solid line shows diffusivity if all platelets have the same
misalignment angle, while the broken line shows the diffusivity if the orientation angle i:
randomly distributed between + 0.

10.5 Diffusion of water in PA6 nanocomposites

In this section some experimental results are presented on the diffusion of water in PA6
nanocomposites. The experimental results are compared to theoretical predictions.

10.5.1 Absorption measurement and determination of diffusivity

To measure the effect of clay platelets on the rate of diffusion, dry injection moulded PA6
nanocomposite bars (4 X 10 X 75 mm), were stored at 70 °C and 68% relative humidity
(%RH) for up to 1000 hours. The increase in weight was monitored until saturation was
obtained. The nanocomposites contained between 0 and 7.5 weight % of silicate. The high
storage temperature of 70 °C is chosen to accelerate the diffusion process. At room
temperature diffusion of water in PA6 is very slow. It takes a few months or longer for a 4
mm sample to reach equilibrium. By increasing the temperature, the rate of water uptake can
be accelerated substantially. The weight increase is monitored at selected time intervals and is
listed in Table 1 (AM%). The samples used, do not have a sheet like shape as is assumed in
Eqn. 104.

To calculate the diffusivity, Eqn. 10.6 was used to account for water absorption from
the sides of the sample. The diffusivity was estimated by taking into account only the water
uptake during the first 6 hours of absorption. Fig. 10.14 shows the weight increase of the PA6
nanocomposites as a function of time. Points denote measurements while lines are calculated
by fitting Eqn. 10.4 through the experimental points. The lines are meant to guide the eye, not
to calculate the diffusivity.

In order to get a good impression of what happens at short time, the data are plotted

against /¢ in Fig. 10.15. As predicted by Eqn. 10.6 at short time the water uptake increases
linearly with the square root of time.
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Figure 10.14 Absorption of water in PA6 nanocomposites at 70 °C and 62% relative
humidity. Different symbols represent measurements on nanocomposites with different
clay content. Lines to guide the eye are fitted to the experiments using Eqn. 10.4.

Weight% silicate

0 |02 1 2.5 5 7.5
Time [hr] lamM%  |aM%  [AM%  [AM%  [AM%  [AM%
fo 0 0 0 0 0 0
2 060 J059 J0,53 0,46 [040  [0,34
4 08 08 [077 Jo68 [0,57 ]o,51
le 1,00 [1,00 Jo93 Jog4 073  [0,65
24 1,74 1,76 [164 48 [133  [1,17
48 234 1235 [217 196 [1,74  ]1,53
72 274 [276 256 227 211 1,84
96 305 [305 283 257 233  [2,07
168 350 [347 333 [3,08 [2,87 (2,55
192 358 1354 338 3,23 [3,01 [2,68
216 359 1355 341 328 3,11  [2,81
384 1367 362 [350 [3,53 [359 [3,33
504 357 [349 340 347 1360 [344
696 353 1345 [335 345 3,65 13,52
840 352 [343 332 343 3,62 13,56
1008 3,54
D [m?/s] 7.6 107[7.8 10™%6.9 10™[5.4 10™[3.7 10 [3.0 10~

Table 10.1 Relative increase in weight of PA6 nanocomposites, during water uptake at
70°C and 68 % relative humidity. The diffusion coefficient is listed in the last row.
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Figure 10.15 Absorption of water in PA6 nanocomposites during the first 6 hours at 70 °C
and 62 % relative humidity, plotted versus the square root of time. Different symbols
represent measurements on nanocomposites with different clay content. Lines are fitted to the
experiment using Eqn. 10.6.

10.6 Evaluation and conclusions

10.6.1 Evaluation

The linear relationship at short times in Fig. 10.15 proves that the nanocomposites show
simple Fickian diffusion of water. In Fig. 10.16 the experimental and theoretical diffusion
coefficients of the injection moulded PA6 nanocomposites are plotted against the volume
fraction of silicate. Theoretical results are calculated with Eqn. 10.12, using an aspect ratio

‘% =100, as was found from TEM pictures.

Fig. 10.16 shows that Nielsen’s model (solid line) predicts the experimental results
very well. According to Eqn. 10.42 the diffusivity is very sensitive to misalignment of the
platelets. The good fit with Nielsen’s equation indicates that the orientation of the clay
platelets in the injection-moulded plates is high.

Results of Katz et al. [8] confirm the high orientation of platelets in injection-moulded
specimens. They showed that the orientation of mica platelets in an injection moulded
polypropylene-mica composite is good, except for a thin region in the centre.

X-ray measurements of Kojima et al. [19] on 3mm thick injection moulded PA6-clay
nanocomposites also give evidence for high orientation of clay platelets in an injection-
moulded specimen. They found that in the skin (0-0.5 mm) the clay platelets are oriented
perfectly parallel to the surface of the specimen. In the intermediate layers (0.5-1.2 mm) the
clay platelets are mainly parallel to the specimen’s surface with a fluctuation of + 15°. In the
centre of the sample (1.2-1.8 mm) the platelets are oriented perpendicular to the surface of the
sample. Figure 10.17 shows the orientation of clay platelets in an injection moulded plate.
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Figure 10.16 Comparison between experimental and theoretical diffusivity of injection
moulded PA6 clay nanocomposites. Experimental results are shown as symbols while
theoretical predictions are shown as lines. The theoretical diffusivity is calculated using

an aspect ratio of ‘% =100 and a matrix diffusivity of Dy = 7.6 10° 12 m?/s. Solid lines

were calculated assuming perfect alignment and broken lines by assuming the same
misalignment as was found by Kojima [19] in an injection moulded bar.
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Figure 10.17 Orientation of clay platelets in 3 mm an injection moulded PA6-
clay nanocomposite plate according to Kojima [19]

Although Kojima et al. find a relatively high orientation of the clay platelets, the
orientation they find is not perfect throughout the specimen. It is therefore useful to calculate
how serious diffusivity is influenced by the misalignment given by Kojima. If it is assumed
that our samples have the same orientation distribution as the samples of Kojima, the effect of
misalignment can be calculated. To calculate the effect of this ‘laminated’ misalignment, the
tortuous path lengths of the skin, the intermediate layer and the middle layer are calculated
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separately. Next these lengths are summed, to obtain the total tortuous path length of the
’laminated’ nanocomposite:

L
Dc = D,,, La D,,, 0 _tot
L 2L +2L

¢ _tot ¢ _skin ¢ _int ermediate + L c_middle

10.44)

where the tortuous path length of each layer can be calculated by using Eqn. 10.43). A
numerical example is given below for a composite with 2 YOl% of platelets having an aspect
ratio w/t = 100 and a matrix diffusivity of D, = 7.6 10" m?/s:

3

D =7.6x107"
2x0.5%2+2%0.7x1.78+ 0.6

=4.48%x107"

This correction for misalignment was calculated and plotted in Fig. 10.16. As can be seen in
Fig. 10.16 the effect of the small misalignment on diffusivity is not large.

Yano et al. [12, 13] determined the permeability of polyimide nanocomposite films
containing 2 wt% of clay. They used clays with different aspect ratios: hectorite (w/t = 46),
saphonite (w/t = 165), montmorillonite (w/# = 218) and synthetic mica (w/# = 1230). TEM
pictures showed that the platelets were oriented parallel to the film surface. The
montmorillonite and mica nanocomposites were well exfoliated while the hectorite and
saphonite nanocomposites contained aggregates of clay particles. Fig. 10.18 shows the effect
of aspect ratio on the diffusivity of the polyimide nanocomposites. Symbols represent the
measurements while the solid line represents Nielsen’s equation (Eqn. 10.12). The diffusivity
is strongly decreased by adding synthetic mica with a very large aspect ratio. This is also
predicted by Nielsen’s equation, which gives a reasonable fit with the experimental results.
The poor fit at small aspect ratios (hectorite and saphonite) was attributed to poor exfoliation
of the nanocomposites.
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Figure 10.18 The effect of clay aspect ratio on the diffusivity of water in polyimide
nanocomposites. From [12, 13].
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10.7 Conclusions

e A new model for diffusion through platelet filled composites is introduced. Contrary
to existing models it is suited for platelets instead of ribbons and allows calculation of
diffusivity at low (c,@<1) and high volume fractions of clay (c,@>1). The model
closely follows the predictions of finite element calculations.

e A numerical model was derived that shows that misalignment of platelets can strongly
increase the diffusivity a composite filled with platelets.

¢ It is theoretically derived that the diffusivity of a platelet filled composite depends on
the ‘mass average’ aspect ratio.

o The diffusion of water in injection moulded PA6-nanocomposites can be described
very well by simple Fickian diffusion.

e The experimental diffusivity of water through PA6 and polyimide nanocomposites
agrees well with the predictions of Nielsen’s model.

e The good agreement between experiment and theory indicates that the aspect ratio of
the clay platelets determine the permeability of nanocomposites Changes in polymer
properties, caused by the large surface area of the clay platelets, do not significantly
change the diffusivity of PA6-clay or polyimide-clay-nanocomposites.
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Rheology of nanocomposites

Abstract

Some remarkable features of the melt rheology of nanocomposites are highlighted by
comparing the melt rheology of nanocomposites with that of microcomposites. The effect of
particle size and aspect ratio were investigated by filling PE and PA6 with nanometer and
micrometer sized particles of high and low aspect ratio. Shear rheology at small and large
shear deformation was performed and melt strength and melt extensibility were determined.

The visco-elastic behaviour of polymer nanocomposites in the molten state proves to be
very different from that in the solid state. In the molten state, the effect of particle size on
visco-elasticity is huge, whereas the effect of clay aspect ratio is small. In contrast, the solid-
state visco-elasticity is hardly affected by particle size while the aspect ratio has a strong
influence. Unlike microcomposites, nanocomposites have a high melt strength and a high
viscosity that does not collapse at large shear deformation.

Several mechanisms are considered to explain the strong visco-elastic response, the
lasting viscosity at large shear deformation and the high melt-strength of nanocomposites. By
a process of exclusion only two mechanisms remain that can qualitatively explain the
observed results: tethering of polymer chains on the clay platelets and the existence of an
electrical double layer on the clay platelets.

Part of this chapter is presented as an invited lecture and published in:
M. van Es, P. Steeman and J. van Turnhout, Rheology of nanocomposites, Conf. Proc. Nanocomposites 2001,
Baltimore, June 4-6, 2001
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11.1 Introduction

In previous chapters, it was shown that the solid-state stiffness of nanocomposites is
insensitive to the size of the clay platelets. Consequently, the visco-elastic behaviour of
nanocomposites in the solid state is similar to that of conventional composites. Also the
viscosity and elasticity of conventional filled molten polymers is insensitive to particle size,
as long as the particles are relatively large (>10 pm) and particle-particle interactions can be
neglected.

By contrast, the viscosity and elasticity of a molten polymer increases strongly by
filling it with small nano-sized clay platelets or by sub-micron particles in general [1]. Several
mechanisms are proposed in the literature to explain the dramatic increase in polymer
viscosity and elasticity upon addition of small particles. The elasticity might be a consequence
of the formation of a network of touching particles [2].

The surface energy of the interface between particle and polymer is also mentioned to
contribute to viscosity and elasticity [3]. Formation of an electrical double layer can increase
the interaction between particles and contribute to the elasticity [4]. Rotation of particles due
to Brownian motion [5] or shear flow also increases viscosity and elasticity.

The objective of this chapter is to find out what mechanism is causing the elastic
behaviour of nanocomposites, by comparing the rheology of nanocomposites with that of
conventional composites.

Three different series of samples were made to investigate the effect of particle size
and particle shape on rheology. In the first series the effect of particle size was studied by
filling HDPE with inert BaSO, particles of low aspect ratio. In a second series the effect of
particle shape was studied using HDPE-clay nanocomposites containing clays with different
aspect ratio. Also a series of PAé-silicate microcomposites and nanocomposites were studied
with sphere shaped (glass spheres and aerosils) and plate shaped fillers (mica, nanoclay).

11.1.1 Conventional particulate filled polymers

Malkin [1] gave a review of the effects that fillers can have on the rheology of polymers.
According to Malkin, the most important rheological characteristic of filled polymers is the
existence of a yield stress. Below the yield stress, the polymer will not flow. The yield stress
is a consequence of a network that is formed by chains of filler particles. Quite surprisingly,
the magnitude of the yield stress is independent of polymer viscosity. This is illustrated in an
experiment on carbon black in poly(isobutylene). By increasing the temperature, the polymer
viscosity decreased one hundred times, while the yield stress remained unchanged. So yield
stress is determined by the strength of the network and not by the viscosity of the polymer.

Kamphuis et al. [2] proposed a mathematical model were the network is formed by
chains of connecting particles. In this model, chains break because of thermal motion or
external stresses. The equilibrium between breaking and formation of chains determines the
stiffness of the network. Although this model closely approaches the true morphology of a
dispersion of small particles, its practical use is limited because of the complexity of the
model and the difficulty in determining parameters like chain stiffness, chain density and
interaction forces. The model gives good insight though, in the parameters that determine the
stiffness of a network of filler particles.

The probability of particles to connect and form chains depends on inter-particle
distance. The smaller the distance is between two particles the higher the probability that the
particles connect. The strength of the connection, and consequently the strength of the whole
chain, is determined by the attractive forces between the particles. The stiffness and strength
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of the network will thus increase by lowering the inter-particle distance or by increasing the
attractive forces between particles.

The inter-particle distance can be lowered by increasing the concentration, by
lowering the particle size or by increasing the aspect ratio of the filler particles. In practise, it
is indeed found that these three parameters strongly increase the viscosity of a filled polymer.

The attractive forces between particles are sensitive to the properties of the filler
particles and the properties of the polymer interface between the particles. Particles with a
high polarity will have higher attractive forces than particles with a low polarity. If a polymer
interface exists between particles, the properties of this interface will also strongly influence
the magnitude of the attractive forces between the particles. By adding a binding agent that
connects the particles to the polymer, a layer of absorbed polymer is formed on the surface of
the particles. This increases the apparent volume of solid particles, but it inhibits direct
contact between the filler surfaces. So interfacial treatment can increase or decrease the
strength of the network, depending on the nature of the filler and the interface.

Also the surface energy of the interface between polymer and filler can contribute to
the elastic behaviour of a compound. If the surface area between polymer and filler is
increased, because of detachment or otherwise, the total surface energy of the compound is
increased. This will lead to an elastic rheological response. Therefore, fillers with a large
surface area will have a larger rheological response than fillers with a small surface area.

Rucker and Bike [3] investigated the effect of interfacial adhesion on the rheological
behaviour of silica-filled polymers. Dynamic experiments showed that the resistance to flow
of the filled polymers was inversely related to the work of adhesion between polymer and
filler. Stronger adhesion thus resulted in lower viscosity. This trend was found to be true
within the linear visco-elastic range for all filler volume fractions over all frequencies tested.
Furthermore they found that the mechanisms of energy storage and dissipation only change
slightly with filler volume fraction when there is strong adhesion between the two
components.

This is not the case when there is poor adhesion. Large (3 orders of magnitude)
changes in the dynamic moduli result from changes in the filler volume between 3 and 33%,
indicating that the mechanism of energy storage changes, especially at low frequencies. From
the findings of Rucker and Bike it can be concluded that without adhesion the polymer
contains a lot of deformable surface area at the interface between polymer and filler. The
energy needed to deform these surfaces strongly contributes to the viscosity and elasticity of
filled polymers. The inverse relation between work of adhesion and resistance to flow also
suggests that a high work of adhesion prevents the formation of a network of touching
particles and thus lowers the elasticity and viscosity.

A network does not necessarily exist of particles that physically touch each other. The
most important thing is that the particles feel each other’s presence and are able to transfer
stresses. Clay particles in suspension owe their stability to mutual repulsion when the
electrical double layers on their surfaces interact on approach [4]. As was mentioned in
Chapter 2, clay platelets are negatively charged. A layer of positively charged counter ions
surrounds each platelet, forming an electrical double layer. If two clay particles approach,
their positively charged outside layers will provide a repulsive force. Therefore, even if clay
platelets do not touch each other, they are able to transfer stress. If two clay platelets approach
at very close distance (<10A) the structure of the double layers can change. Instead of two
separate layers of counter ions between approaching surfaces, one central layer might be
formed and electrostatic attraction is created. In this case, particles tend to aggregate and form
a network of touching particles. Polymer molecules and surfactants are able to stabilise a clay
suspension and prevent aggregation to some extent. Luckham et al. [4] wrote a review article
on this subject.
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11.1.2 Nanocomposites

In a nanocomposite, the particles are very small, they have a large aspect ratio, a good
interaction with the surrounding polymer and they have an electrical double layer. Thus in a
nanocomposite all parameters are combined to create a strong network. Therefore, it can be
expected that a molten nanocomposite will have a high elasticity, a high viscosity and a high
yield stress.

B. Krishnamoorti et al. [6,7] investigated the rheology of poly(g-caprolactone) (PCL),
poly(dimethylsiloxane) (PDMS) and nylon-6 (PA6) nanocomposites. They found that by
addition of only 5-wt% of layered silicate, the low frequency dynamic modulus of molten
PCL and PA6 increases about two decades in a Dynamic Mechanical Spectrometry (DMS)
measurement. At high frequencies (@ > 100 radian/s) the dynamic modulus approaches the
dynamic modulus of the unfilled polymer. At very low frequencies (o < 1 radian/s) the
dynamic modulus of the PCL and PA6 nanocomposites shows a plateau, as evidence fore
elastic behaviour, while the PDMS nanocomposite shows Newtonian behaviour. It was
suggested that the reason for elastic behaviour of the PCL and PA6 nanocomposites was
tethering of polymer chains to the clay particles while the PDMS nanocomposites showed
Newtonian behaviour because of the absence of tethered chains.

Lee et al. [8] found that the rheological behaviour of polymer/layered silicate
nanocomposites not only strongly depends upon their microstructure but also upon their
interfacial characteristics. A simple intercalated polymer (polystyrene), with a low interaction
with the clay, only shows a small enhancement of viscosity at low frequency. A polymer with
an intercalated structure but a strong interaction with the clay surface like (Polystyrene-co-
maleic anhydride) shows distinct plateau behaviour at low frequencies. Polyethylene-g-maleic
anhydride/clay nanocomposite, having both good exfoliation and strong interaction, exhibits
plateau like behaviour at low frequency and enhanced dynamic modulus at high frequency.
Lee also mentioned the formation of a percolating structure of clay particles as a possible
reason for plateau like behaviour of nanocomposites.

Hoffmann et al. [9] studied the rheology of in situ polymerised PAl2-clay
nanocomposites. They studied the effect of temperature, polymer molar mass and tethering of
polymer chains on the rheology of PA12-clay nanocomposites. Their research was strongly
complicated because the molar mass of the tethered chains decreased at increasing clay
concentration. It was concluded that the time-temperature superposition principle holds for
PA-12 nanocomposites, enabling the creation of master curves. With tethered chains, the
slopes of G” and G” in the terminal region are considerably lower than for the neat polymer,
indicating formation of a superstructure. If the polymer chains are not tethered, the slopes of
G’ and G” are similar to that of the neat polymer. This indicates that by absence of tethering,
the rheology of PA-12 nanocomposites is polymer dominated.

11.1.3 Scope

In the literature on nanocomposites [6-9] the plateau-like behaviour at low frequencies is
attributed to strong interaction or tethering of polymer chains to the clay layers. In contrast,
literature on filled polymers [3] indicates that the elasticity of a filled polymer decreases if the
interfacial energy increases. Other publications [1,2] emphasises the role of network
formation on elasticity.

It is very difficult to distinguish which mechanism is responsible for the elasticity of a
filled polymer. Most often good interaction between polymer and filler is necessary to obtain
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a good dispersion. Good dispersion in its turn promotes the formation of a network. So it is
tempting to conclude that the good interaction between polymer and filler is causing the
elastic behaviour, while in reality it might be the formation of a network that is causing it.

In the nanocomposites studied in the literature, this is just the case. All
nanocomposites with a plateau like behaviour not only have good interaction with the clay,
but also contain very small particles that make the formation of a network probable.

In Section 11.2, it is investigated if good interaction between polymer and filler is a
prerequisite for plateau like behaviour. This is done by filling HDPE with inert particles with
particle sizes ranging between 100 nm and 10 pm.

Section 11.3 discusses the effect of aspect ratio of nano-dispersed clay on rheology.
To this end, a series of HDPE nanocomposites is made using clays with equal surface
treatment but with different aspect ratios.

In Section 11.4, the effect of particle size and aspect ratio on the shear and extensional
rheology of filled polymers is studied. This is done by filling PA6 with silicate particles of
different sizes and aspect ratios. Both micrometer-sized silicates like glass-spheres and mica

platelets and nanometer sized silicates like aerosils and nano-dispersed clay are used as model
fillers for PA6.

11.2 HDPE with nano- and micrometer particles of low aspect ratio

In this section, the effect of particle size on rheological properties is discussed. To this end the
rheology was measured of HDPE filled with inert cubical shaped BaSO; particles of varying
size and level of dispersion.

11.2.1Preparation

Untreated BaSO4 was used as inert model filler for HDPE. Four types of BaSO, (K4, HN, HP
and HU from Sachtleben) were added to HDPE (DSM Stamylan® 9089 F) at a concentration

of 20 vol% (53.3 wt%). The BaSO, fillers differed in primary particle size as listed in Table
11.1.

Type |Average primary |Average ApeT Dy =6/App1p

particle diameter |agglomerate Surface area Calculated
diameter from BET

[um] [um] [m*/g] [pm]

K4 10* 10 0.4 11.6

HN [1* 1 2.7 0.52

HP ]0.15* 10 9.1 0.15

HU [0.1* 10 12.2 0.11

*According to the producer (d50 from sedimentation measurcments after 30 min ultrasonic vibration)

Table 11.1 Types of BaSOq used as inert filler in HDPE

SEM photographs of these fillers are shown in Figs. 11.1 to 11.3. The particles have an aspect
ratio of about 1 and have cubical shape. The filler K4 (Fig. 11.1) contains no agglomerates
and is easy to disperse. Type HN (Fig. 11.2) contains agglomerates of loosely connected
particles. Type HU (Fig. 11.3) contains primary particles that are strongly connected into
large agglomerates. The HP type BaSO, is not shown to limit the number of photographs.

Like the HU type BaSO,, the HP-type consists of sphere shaped agglomerates of small
primary particles.
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Figure 11.1 SEM photograph of BaSQq type K4. Primary particle size ~ 10 um. No
agglomerates. '

The surface area of the particles is determined by the BET technique. This technique
measures the amount of gas (nitrogen) needed to form a monolayer of gas molecules on the
filler’s surface. The BET surfaces are determined after vacuum pumping of the powders at
300 °C. The equivalent particle diameter (D,,) is determined from the BET-surface area using
the equation: D, =6/ Ay, p, where Ay, is the surface area and p is the density of the

particles. D, is the diameter of an equivalent spherical particle with the same density and
surface/weight ratio as the particles tested.

Table 1 shows BET surface area and the equivalent diameters of the samples. As can

be seen the diameters calculated from BET measurements correspond rather well with the
diameters determined from sedimentation measurements.
Due to the strong attraction between filler particles, the HU and HP-fillers could not be
dispersed at 170°C on a two-roll mill. After 1 hour of milling, the viscosity of these
compounds still increased, indicating ongoing dispersion. Therefore, an ultrasound dispersion
technique was used, to completely disperse the primary particles.

Before dispersing the BaSO,4 in HDPE, the agglomerates were broken by ultrasonic
vibration. To prevent BaSO4 particles from re-agglomeration, they were coated with a thin
layer of HDPE immediately after ultrasonic treatment. Decaline was used as dispersing
medium because this is a good solvent for HDPE. 64 grams of BaSO, was ultrasonically
dispersed in 600 ml of decaline by means of an ultrasonic vibrator operating at a frequency of
25 kHz and a capacity of 1000 Watt. To obtain samples with different degrees of dispersion
the BaSO,4 was vibrated for 0, 8, 16, 32 and 64 minutes respectively.

The dispersed BaSO, was coated with HDPE by adding it to a solution of 7 gram
HDPE in 700 ml of decaline at 135 °C. After cooling to below 30°C, and crystallisation of the
HDPE on the BaSO; surface, the decaline was largely removed by filtration.
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Figure 11.2 SEM photograph of BaSOy type HN. Primary particle size ~ | um.
Agglomerates have a loose structure

Figure 11.3 SEM photograph of BaSOq type HU. Primary particle size ~0.1 um.
Agglomerate size ~ 10 pm.
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The decaline in the filtrate was further removed by rinsing with 1000 ml of acetone
and drying in vacuum at 120 °C during 3 days. The rinsing and drying was performed twice.

From TGA measurements it was concluded that about 10 wt% of the coated powders
existed of HDPE. The amount of HDPE to add to the BaSQj, to obtain 20 vol% of BaSQ,,
was calculated by using a density of 4400 kg/m® for BaSOy and 963 kg/m® for HDPE. HDPE
and the BaSO, are mixed on a Schwabenthan two-roll mill at 170 °C during 15 minutes and
pressed into plates of 150x150x2 mm at 190 °C.

11.2.2 Morphology

In order to obtain a quantitative measure of morphology, SEM images were made of the
BaSO, composites. To this end, the samples were cut by a microtome in liquid nitrogen and
the surface left after cutting was analysed. Due to the large difference between the size of the
HU and HP-agglomerates (10 um) and the primary particles (0.1-0.15um) it was impossible
to see both the small primary particles and the large agglomerates in one picture.

It was also found that the surface of the samples was smeared because of the large
difference in deformability of the BaSO, particles and the HDPE matrix. Due to smearing,
particles smaller than 1 pm could not be detected. Therefore, only particles larger than 1 um
are counted to determine the number and size of the particles.

Sample (< prim) Dispers |c¢ Mprim Acontact Go/Gm
Time (1 rad/s)
[min] }{-] [1 [[mcm’] [[]
K4(10pm) |0 0222 |0.53 |0.16 191
K4 8 0.236 10.53 |0.16 1.91
K4 16 0.192 [0.53 |0.16 1.91
K4 32 0.194 {0.53 |0.16 1.91
K4 64 0.186 [0.53 |0.16 1.91
HN(L pm) 0 0.166 0.53 |1.44 136
HN 8 0.135 10.53 |1.44 91
HN 16 0.168 10.53 144 127
HN 32 0.194 10.53 [1.44 136
HN 64 0.187 [0.53 |1.44 159
HP(0.15um) |0 0203 {029 ]2.60 150
HP 8 0.194 10.30 [2.75 264
HP 16 0.191 10.31 [2.80 364
HP 32 0.134 10.39 |3.59 555
HP 64 0.049 10.49 [4.46 655
HU®.1 pm) |0 0.292 [0.07 ]0.85 64
HU 8 0.205 10.28 |3.44 218
HU 16 0.202 10.29 {3.51 527
HU 32 0.109 1043 [5.2 636
HU 64 0.076 |0.46 [5.66 655

Table 2 Morphological data and relative dynamic modulus of HDPE
filled with 20 vol% BaSO, particles varying in size and dispersion
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The volume fraction of particles larger than 1 pm was calculated from the area fraction A; of
BaSO, in a SEM image: ¢ = ZA, / A, where A is the total surface of the SEM image. The

primary particles of types K4 (10 pm) and HN (1 um) are not agglomerated and are therefore
assumed to be fully dispersed. The fact that ¢ in Table 2 is close to 0.2 confirms this
assumption.

Close inspection of the SEM images revealed that the HU and HP types BaSQ, were
present either in large agglomerates or as fully dispersed primary particles. Therefore the
amount of fully dispersed BaSO, in these types was determined by counting the amount of
particles larger than 1 pm. All particles smaller than 1 pm were assumed to be fully dispersed.
Agglomerates in BaSO, types HN and HP have a limited packing density and therefore have a
lower density than well-dispersed particles.

Assuming a random closed packing density of 0.64, the true volume fraction of BaSO,
present in agglomerates is equal to 0.64c. The volume fraction of well dispersed primary
particles then becomes: cprim=0.2-0.64c. From which the mass fraction of primary particles
Myp.im can be calculated using a density of 4400 kg/m’ for BaSO, and 963 kg/m’ for HDPE. As
a measure of morphology, the surface of the filler that is in contact with the HDPE (A pmiace) iS
estimated: Aconwcr = ApeTMprim. Here, the small contribution of large agglomerates to the total
contact area is neglected. The morphological parameters of all samples are listed in Table
11.2.

11.2.3Rheology

Dynamic mechanical spectroscopy (DMS) was performed on a RMS 605 Rheometrics
Mechanical Spectrometer at a temperature of 170°C. The test frequency was varied between
0.1 and 100 rad/s in steps of 0.2 decades. Flat plates were used with a diameter of 50 mm and
a distance of 2 mm. The rheology was sensitive to strain. Therefore, the strain amplitude was
limited to 6%.

Fig. 11.4a shows that the rheological properties do not change much upon adding 20
vol% of large (K4, 10 um) BaSOy particles. The dynamic shear modulus G} is increased by a
factor 1.91, which is a little more than the factor 1.64 predicted by the earlier introduced
Mori-Tanaka model [10] or the factor 1.74 predicted by the van der Poel model [11].

Fig. 11.4b shows that the phase angle is not changed by addition of the large K4
particles. This indicates that the rheology is only determined by the properties of the polymer
and no network has been formed.

Fig. 11.4c shows that Gy strongly increases upon addition of 20 vol% | pm sized
particles (HN). Ultrasonic treatment only slightly increases G,. This indicates that the HN
particles are relatively easy to disperse. The strong decrease of the phase angle in Fig. 11.4d is
evidence for a strong elastic contribution to the rheological response. It indicates that the
rheology of these compounds is dominated by particle-particle interactions.

By adding BaSO4 with 0.1 pm sized primary particles (HU) G, is even further
enhanced as can be seen in Fig. 11.4e. Gy is strongly increased by ultrasonic treatment.
Without ultrasonic treatment (HU/0) the dynamic modulus is lower than the dynamic modulus
of the well-dispersed 1 pum sized particles in Fig. 11.4c. 15 minutes roll-milling without
ultrasonic treatment clearly is not enough to fully disperse the HU type filler into its primary
particles. After 16 minutes of ultrasonic treatment, the primary particles are fully dispersed
and G, reaches a plateau value that is not further increased by longer ultrasonic treatment. At
full dispersion, the shear modulus becomes almost independent of frequency and the phase
angle in Fig. 4f reaches a very low value between 20° and 7°. These are both proofs for a
nearly perfect elastic response and strong particle-particle interaction.
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Figure 11.4 Rheological properties of HDPE filled with 20 vol% BaSOy particles that
were ultrasonically vibrated for 0, 8, 16, 32 and 64 minutes. Graphs on the left show
the dynamic modulus Gy and graphs on the right show the phase angle. The primary
particle size is 10 ym (K4), 1 ym (HN), and 0.1 pmm (HU).
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If the dynamic moduli in Figs. 11.4a, 11.4c and 11.4e are plotted in a single graph, the lines
do overlap each other. This is a strong indication that a single mechanism is responsible for
the increase of the dynamic modulus. This mechanism might be the formation of a network of
touching particles. An attempt is made to relate the rheology of the sample to their
morphology. To this end the dynamic shear modulus G, at low frequency (o = 1 rad/s) is
plotted against the contact area Agoner in Fig. 11.5. This graph shows that the dynamic shear
modulus of the samples increases continuously as the contact area increases. This indicates
that the rheological response is directly related to the state of dispersion of the BaSO.,.

11.2.4 Conclusions on HDPE with low aspect ratio particles

The elasticity and viscosity of molten HDPE filled with inert BaSO, particles are strongly
increased by improving the dispersion of the filler. SEM pictures give a good impression of
the state of dispersion of the filler in the polymer. The state of dispersion could be quantified
from the SEM pictures by image analysis. The contact area between filler and polymer is used
as a measure of the state of dispersion. The dynamic shear modulus of molten HDPE filled
with inert BaSO, particles increases continuously as the contact area between the filler and
the polymer matrix increases.

This is attributed to the formation of a network of touching particles. The high
sensitivity to shear supports this idea, since a network of touching particles breaks under large
shear. At low frequencies the dynamic shear modulus reaches a plateau value and becomes
frequency independent. The existence of a plateau is also reported for nanocomposites [6-8].
In nanocomposites the plateau is attributed to tethering of polymer chains to the surface of the
clay particles. The rheological experiments on HDPE filled with inert BaSOy, particles prove
that a plateau can also develop in the absence of tethered chains.
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11.3 HDPE-nanocomposites with clay platelets of high and low aspect ratio

11.3.1 Materials

HDPE-clay nanocomposites were made with three types of clays with different aspect ratio.
The HDPE contained 2 wt% of grafted maleic anhydride for good dispersion of the clay. All
samples contained 10 wt% of clay (= 3 vol%). All the clays contained the same alkyl
ammonium modification (2-methyl 2-hydrogenated tallow ammonium, 2M2HT). The amount
of alkyl ammonium was determined by incineration and was about 40 wt% in all cases. In
Chapter 5, a detailed description of the preparation of these nanocomposites is given. TEM
photographs in Figs. 6.8-6.11 show that all the nanocomposites are very well exfoliated. Only
single clay layers and a few tactoids of 2-3 clay layers are visible in the nanocomposites.

11.3.2 The effect of clay aspect ratio on the rheology of HDPE nanocomposites

Small strain dynamic mechanical measurements are performed on a Rheometrics ARES LS
dynamic mechanical spectrometer, at 230 °C, using a parallel plate system with a diameter of
25 mm. The distance between the plates was 1.8 mm. The dynamic melt viscosity, the
dynamic shear modulus and the phase angle of the HDPE nanocomposites are plotted against
angular frequency in Figs. 11.6a, 11.6b and 11.6c¢.

The rheological behaviour of the different nanoclays resembles that of HDPE filled
with small BaSO4 particles. As was found for the BaSOj4 particles, the phase angle becomes
much smaller by the addition of the clays. This is indicative for strong elastic behaviour. At
small frequencies, the dynamic shear modulus tends to become constant and shows a plateau
like behaviour. The rheological effect is smaller as was found for the smallest 100 nm BaSO,
particles. This is not surprising since the amount of clay used is much smaller (3 vol% versus
20 vol%).

The reinforcing effect of the three types of clay is also estimated by the Mori-Tanaka
composite model that was discussed in Chapter 3. For simplicity, this model is approached by
the Halpin-Tsai model by using the appropriate shape factor. In Chapter 3 it is shown that the
Halpin-Tsai approach coincides with the more rigorous Mori-Tanaka approach within 5%, as
long as w/t>5 and E/E,, >10. These conditions are certainly satisfied for the systems under
study, since the smallest aspect ratio w/# = 10 and the modulus ratio G/G»>1000. Instead of a
shape factor of {=2/3 wA, a shape factor of {=3/4 w/t is used as is required for calculation of
the shear modulus. This is explained in Chapter 3.

In order to calculate the dynamic shear modulus Gy not only G’ but also G” is
calculated. To do this, the composite model is written in a complex manner by using the
correspondence principle as is explained in Chapter 3. A shear modulus of 72 GPa is used for
the clay platelets. This is calculated by assuming a Young’s modulus of 172 GPa and a
Poisson’s ratio of 0.2 for the clay. The calculations are not sensitive to the actual value of the
shear modulus of the clay. The reason for this is the extremely large difference in stiffness
between the clay and the polymer melt. One might as well use an infinite shear modulus for
the clay and obtain the same results.

In Fig. 11.6¢ the measured and the calculated dynamic shear modulus G, of the molten
nanocomposites is plotted versus angular frequency. It is remarkable that the aspect ratio of
the clay has no significant effect on the rheological response of the PE-nanocomposites. At
low frequencies the measured shear modulus is much larger than predicted by the composite
model. The reason for this is that a network causes the high viscosity. This mechanism of
reinforcement is not incorporated in the composite model. Judging from the dynamic shear
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modulus, the stiffness of the network is in the order of about 10° to 107 Pa. Although this is
much stiffer than the melt, it is still much softer than a solid polymer that has a shear modulus
of typically 10° Pa. So the network does stiffen a molten polymer but it does not significantly
stiffen a solid polymer

The shear modulus of a rubber with a low crosslink density is in the order of 10* to 10°
Pa, which is comparable to the shear modulus of a typical polymer melt. Therefore a network
of small particles should stiffen a rubber just like it stiffens a polymer melt. It is indeed well
known that small particles like carbon black and fumed silica can strongly reinforce rubbers.
This phenomenon is extensively used in the rubber industry.
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11.3.3 Conclusions on HDPE nanocomposites

HDPE-clay nanocomposites show the same high elasticity, high viscosity and plateau like
behaviour as HDPE BaSO4 compounds do. Surprisingly the shear modulus of molten HDPE
nanocomposites is not improved by increasing the aspect ratio of the clay. This is different
from the solid state shear modulus of HDPE nanocomposites, which is strongly increased by
increasing the aspect ratio.

11.4 PA6 with nano- and micrometer particles of high and low aspect ratio

PA6 is filled with micron- and nanometer-sized spherical and platelet shaped silicate
particles. Two types of spherical fillers are used, micron-sized glass spheres and nanometer-
sized aerosil. The micron-sized platelets were made of mica and the nanometer sized platelets
of montmorillonite clay. PA6 (DSM Akulon K123) was selected as a matrix material. The
PA6/clay nanocomposites were prepared as described in Chapter 4.

Material 1 (2 {3 [4 |5 |6 17 |8 |9 10 |1t 12 f13 |14

% |% |% (% |% %% |% (% (% (% |% (%

PA6 Akulon K123 100 (95 |80 [95 |80 [95(80 [50 [98.3 195.8 {91.7[87.5 [83.3 |95

Glass spheres 5 |20
25 pm

Aerosil TT600 5 {20
2 40 nm

Mica platelets 5 (20 |50
& 350 um w/t =50

Montmorillonite clay 1.7 |42 |83 [125]16.7
SCPX 1313 (%silicate) 1) 255 |(7.5]010)
& 100 nm w/t = 100

Montmorillonite clay 5
SCPX 1447 (%silicate) 5)

& 100 nm w/t = 100

Table 11.3 Composition in weight%, of PAG6 filled with spherical and platelet shaped
particles of micro and nanometer size.

Beside a series of nanocomposites with nano clay that was treated with 40% alkyl-ammonium
(Cloisite 20A,: 95 meq + 2-methyl 2-hydrogenated Tallow, 2M2HT) also a single
nanocomposite with 5wt% of untreated clay (SCPX 1447, from Southern Clay Products) was
tested. TEM photographs in Figs. 6.1-6.3 revealed that the untreated clay was very well
exfoliated and dispersed in the PA6 matrix. The untreated clay SCPX 1447 comes from the
same source as the clay used to make SCPX 1313. The other samples with spherical and
micrometer sized particles were prepared on a 60 cc Haake kneader at 240 °C and 80 rpm
during 10 min. The composition of the samples is listed in Table 11.3.

Both small strain and large strain shear rheology of the samples is determined.
Extensional rheology was also performed, by measuring melt-strength and melt-extensibility
during spinning.
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11.4.1 Small strain shear rheology

Small strain rheological experiments were performed on a RMS 800 mechanical
spectrometer, equipped with a 25 mm diameter parallel plate system. Dynamic mechanical
measurements were performed as a function of frequency under nitrogen atmosphere at 230
°C. To determine the visco-elastic range, strain sweeps were performed on all samples. The
reference material and the samples with a low content of filler show no effect of strain
amplitude up to 100%. The strain amplitude of the highly filled samples had to be limited to
0.1-1% in order to stay within the linear visco-elastic range. The thermal stability of the
samples was checked by performing frequency scans after 5, 10 and 15 minutes. It was found
that the viscosity of most samples was increased by about 20% after 15 minutes. Therefore,
only experiments after 5 minutes are used in this work.
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Figure 11.7 Small strain shear rheology of PA6 K123 with glass spheres, aerosil and mica
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Figure 11.8 Small strain shear rheology of PA6 with nano-clay
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Small strain shear experiments are shown in Figs. 11.7 and 11.8. Both the dynamic modulus
Gg and the phase angle 8 are plotted as a function of angular frequency. All samples have a
higher dynamic shear modulus than the unfilled reference. At low frequency the sample with
20 wt% aerosil shows plateau like behaviour. In Figs. 11.7a and 11.7b all curves are identical
in shape, except for the curves of the samples with S0 wt% mica and 20 wt% aerosil.

This indicates that only the samples 50 wt% mica or with 20 wt% aerosil have a visco-
elastic behaviour that is significantly different from that of the reference. It is thought that the
rheology of these samples is dominated by particle-particle interactions. The phase angle of
the other samples is not different from that of the unfilled polymer. This indicates that their
rheological behaviour is dominated by the polymer matrix.

Fig. 11.8 shows the dynamic mechanical behaviour of the PA6 nanocomposites. In
contrast with the former experiments, the phase angle is already reduced at 1 wt% of clay,
which indicates elastic behaviour. Increasing the clay content further increases the amount of
elasticity. At 5 and 7.5 wt% the rheological behaviour is mainly elastic and G, shows a
plateau at low frequencies.

11.4.2 Large strain shear rheology

Rheological shear behaviour at large strains and high shear rates was performed at 230°C on a
Gottfert Rheograph 2002 equipped with a 30/1 mm/mm round die. The measured volume
flow versus pressure curves were converted to wall shear stress using the Rabinowitch
method. Flow curves of reference sample K123 and of samples with spherical fillers are
plotted in Fig. 11.9b. The viscosity is only slightly increased by addition of the spherical
particles. The curves in Fig. 11.9b have the same shape as the reference curve, indicating that
the large strain rheological behaviour is polymer dominated.

As a comparison, the dynamic viscosity measured at small strains is plotted in Fig.
11.9a. In contrast to the small strain results, the large strain viscosity in Fig. 11.9a of the
sample with 20 wt% aerosil is strongly decreased. This indicates that during small strain
measurements the network formed by the sub-micron aerosil particles stays intact, while the
network is broken up during large strain measurements.

During the capillary measurements on the samples with mica, large pressure
fluctuations were observed, making it impossible to perform reliable measurements. These
fluctuations are probably caused by the relatively large size of the mica particles compared to
the diameter of the die. The measurement indicated a large increase in viscosity but is left out
because of inaccuracy.

In Fig. 11.10b, the flow curves of the nanocomposites are shown. A comparison can
be made with the small strain dynamic viscosity in Fig. 11.10a. The flow curves of the
nanocomposites in Fig. 11.10b show a strong increase in large strain viscosity, especially at
small shear rates. At high shear rates the flow curves converge indicating shear(rate) thinning
behaviour of PA6 nanocomposites.

11.4.3Comparing small strain and large strain shear viscosities

Table 11.4 shows the small strain and large strain shear viscosity of the samples. Data are
given at low and at high frequency and at low and high shear rate. Theoretical calculations are
given too, using the Mori-Tanaka theory that was explained in Chapter 3 of this thesis. Both
small strain and large strain viscosities can be compared by using the Cox-Merz rule.
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According to the Cox-Merz relationship n(w) = n( }'/) ifo= y Of course, this relationship
only holds if the material is not changed by the measurement. If a network of particles breaks
due to large strain, the Cox-Merz rule evidently cannot hold. Therefore, breakdown of a
network can be monitored by comparing the small strain viscosity at say @ = 100 rad/s with

the large strain viscosity at = 100 s”. The Cox-Merz rule holds for the samples with glass
beads and with 5 wt% of aerosil. The increase in relative viscosity of these samples is small
and is mainly attributed to hydrodynamic effects (excluded volume). Apparently, no network
has been formed in these samples.

The small strain viscosity at @ = 100 rad/s of the sample with 20 wt% aerosil is much

higher than the large strain viscosity at = 100 s™". This indicates that a network of particles is
broken due to the large strains in the capillary experiment.

The Mori-Tanaka theory was used for parallel and random orientation of particles by using
G* as measured by DMS as the stiffness of the matrix and assuming a matrix Poisson’s ratio
of 0.49. In the calculations the filler particles were assumed to be much stiffer than the
polymer matrix. If the filler particles have the shape of a sphere, the reinforcement is
independent of orientation and the viscosities at parallel and random orientation of particles
are equal. This is the case for the samples filled with glass beads or aerosils.

In case of parallel orientation of platelets, two different shear viscosities can be
distinguished, the out of plane shear modulus a3 and the in plane shear viscosity Neaz). As
becomes clear from Fig. 3.18, the in plane shear viscosity is much larger than the out of plane
shear viscosity. Nea3) is probed if the platelets lie parallel to the plates of the Rheometrics or
parallel to the walls of the Rheograph. The shear viscosity at random orientation always lies
between Neas) and Neay.

Small strain Large strain Mori-Tanaka theory
Filler Content | Me/Mm | NeMm | NMm | NeMm | Nea3yNm [Neazy/Nm [ Ne/Mm
o o= o= y= y = theory | theory | theory
Weight% | 1 rad/s | 100 rad/s 1005 | 8.10° ¢! parallel | parallel | random
lass sphere 5 1.1 1.1 1.2 1.2 1.05 1.05 1.05
glass sphere 20 1.4 1.3 1.4 1.4 1.25 1.25 1.25
Aerosil 5 1.4 1.3 1.3 1.2 1.05 1.05 1.05
Aerosil 20 33 4.2 1.6 1.4 1.25 1.25 1.25
Mica 5 1.5 1.3 - - 1.02 1.85 1.44
Mica 20 2.8 2.4 - - 1.10 5.06 3.08
Mica 50 15 4.2 - - 1.39 17.2 9.31
nano-clay 1 1.7 1.4 1.9 1.2 1.00 1.32 1.16
nano-clay 2.5 44 2.5 29 1.3 1.01 1.82 1.415
nano-clay 5 32 6.4 5.1 22 1.02 2.68 1.85
nano-clay 7.5 187 10.7 7.1 2.6 1.03 3.59 231
nano-clay 5 64 6.4 - - 1.02 2.68 1.85
ure

Table 11.4 Small strain and large strain relative viscosities of PA6 nanocomposites and
micro-composites. The columns with headings ‘small strain’ and ‘large strain’ show
experiments, the last 3 columns show theoretical calculations using the Mori-Tanaka theory.
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Figure 11.10 Small strain shear viscosity versus frequency and large strain

shear viscosity versus shear rate of PA6 nanocomposites

With nanosized fillers like aerosils

or nanoclay the Mori-Tanaka theory

underestimates the viscosity of the filled HDPE. The difference between theory and
measurement becomes larger as the particles become smaller and the amount of particles
increases. The reason for this is that the Mori-Tanaka theory does not account for particle-
particle interactions. At large volume fractions and small particle sizes, as particle-particle
interactions become more important the difference between experiment and the Mori-Tanaka
theory becomes very large.
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This indicates that the viscosity of these samples is mainly caused by interactions
between the particles and not by the viscosity of the polymer.All the nanocomposites show an
increased viscosity. Surprisingly the Cox-Merz rule holds reasonably for the nanocomposites
in spite of the strong elastic behaviour in the small strain experiments. It can thus be
concluded that the mechanism that is responsible for the high elasticity and viscosity of
nanocomposites is insensitive to large strain deformation.

The small strain rheological behaviour of the nanocomposite with 5 wt% pure clay is
very similar to that of the nanocomposite with 5 wt% (silicate content) modified clay. Only at
low frequencies, the pure clay is a little more effective in increasing the viscosity.

11.4.4 Extensional rheology

To investigate the effect of extensional strain, the melt-strength and the melt-extensibility of
the samples are tested. Experiments are performed on a Gétifert Rheotens melt-spin
instrument fitted to a Rheograph 2000 capillary rheometer. The spin force was measured as a
function of melt extension. Melt-extension was determined as the ratio of the filament speed
at the winding spool over the filament speed at the die exit. The maximum spin force (MSF)
and maximum melt-extensibility (MME) are used to characterise the extensional rheology of
the samples.

The reference polyamide has a very low melt-strength since its MSF was too low to be
detected (<0.2 cN). The samples with glass spheres and with aerosols also had a MSF below
the detection limit. The melt-strength of the samples with mica also were very low since they
broke under their own weight.

Even the sample with 20% aerosils, that showed strong elastic response at small strain
experiments, had a very low melt-strength. Only the nanocomposites had measurable melt-
strengths that are listed in Table 11.5. The melt-strength is clearly increased by increasing the
silicate content. The increase in melt strength is accompanied by a simultaneous decrease in
melt extensibility.

Silicate content [MSF MME
wi%] cN [-]

0 <0.2 -

2.5 02101 |20+10
5 1.8+0.1 {1510
7.5 48+0.1 |51

10 7.7+£0.1 |25+10

Table 11.5 Maximum spin-force (MSF)
and maximum melt extensibility (MME)
of PA6 nanocomposites

11.4.5Discussion

To explain the remarkable rheological behaviour of nanocomposites, let us look at some
mechanisms that cannot explain the observed results. Clearly, the high elasticity of the
nanocomposites is not a consequence of a network of touching particles. Such a network
would certainly break down, or at least lose much of its strength, if it is deformed up to large
shear.

An example of such a shear sensitive network is the PA6 sample filled with 20
weight% aerosil. Apparently, the high viscosity of the nanocomposites is formed by a
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mechanism that does not rely on direct contact between clay platelets. The mechanism that is
looked for must thus prevent the formation of a network of touching particles, since such a
network would increase the small strain viscosity and would break down under large shear
strain.

Suppose that polymer chains, which are tethered to more than one clay platelet,
interconnect the clay particles chemically. In that case nanocomposites would have a perfect
elastic behaviour, much like a rubber and could not withstand steady state shear deformation
as in the capillary experiments. So chemical connection of clay plates by tethered polymer
chains can not explain the observed results.

The most obvious candidate is tethering of single end groups to the clay platelets. As
Krishnamoorti [6] suggested, brush-like molecules would be formed in that case. This
mechanism would explain at least some features that are found in the rheology of PA6
nanocomposites.

First of all, tethering increases the viscosity of the polymer since the molar mass of a
brush-like molecule is much larger than that of a single molecule. Secondly, the many
tethered chains prevent formation of a network because they form a shield that prevents the
clay platelets from approaching each other. Thirdly, tethered chains would behave much like a
branched polymer or star-shaped molecules, which are known to show shear-thinning and
extensional hardening.

Three physical mechanisms were mentioned in the introduction that also might be
good candidates, the double layer around the clay platelets, Brownian motion and spinning of
the platelets in a polymer flow. These mechanisms all increase viscosity without relying on a
direct connection between particles. The double layer mechanism relies on electrostatic
repulsion, Brownian motion is a thermodynamical concept while particle spinning is caused
by flow of the polymer. The double layer mechanism has the appealing feature that it prevents
particles from actually touching each other.

But also Brownian motion of small clay layers might be so fast and exert so much
mechanical force that any connection between particles is instantaneously broken, making it
impossible to form a network of touching particles. If Brownian motion were the mechanism
that is looked for, it would be very hard to orient platelets in a polymer flow, since Brownian
spinning would swiftly erase any orientation. Since it is known that clay platelets in PA6-
nanocomposites are strongly oriented by polymer flow [12], Brownian motion is an unlikely
candidate. A method to estimate the effect of Brownian motion on viscosity is given by
Brenner [5].

In a polymer flow, the hydrodynamic forces tend to orient the major axis of a platelet
with the flow, while Brownian motion tends to randomise the orientation. The relative
importance of these mechanisms is expressed in the rotary Peclet number. The Peclet number
is the ratio of the time scale for Brownian rotation (1/D, ) to that of convective motion 1/y :

Pe="1_ 11.2)
For circular disks the rotary Brownian diffusion coefficient is:

kT

D = 3
8xn w

r

11.3)

Brenner showed that for a dilute suspension of oblate spheroids, the viscosity is dominated by
Brownian motion if Pe<10. The polymer matrix in the PA6 nanocomposites has a viscosity 77
of about 300 Pa.s. The diameter w of the platelets is about 100 nm and the temperature T is
close to 500 K. The rotary diffusion coefficient then becomes D, =~ 0.001 s”. So according to
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this calculation the Brownian motion would dominates if ¥ <0.01. This indicates that at the
large shear rates in the capillary experiment (  >10), orientation due to shear dominates over

rotation due to Brownian motion. This is true for dilute concentrations where particle-particle
interactions can be neglected. In the nanocomposites under study the concentrations cannot be
considered to be dilute as will be discussed below.

As the concentration increases, particles start to enter the neighbourhood of
surrounding particles. This disturbs the flow around the particles and consequently increases
viscosity. At low concentrations, bi-particle interactions are most probable, while at high
concentration more than two particles can interact simultaneously. If particle-particle
interactions occur, the viscosity can increase dramatically. The concentration at which strong
viscosity effects become noticeable depends on the morphology of the dispersed phase and on
the different kinds of forces that are active between particles. The aspect ratio is an important
morphological parameter. Particles with high aspect ratios will feel each other’s presence at
much lower concentrations than spheres.

Mewis and Macosko [13] discussed the most important inter-particle forces like van
der Waals forces, electrostatic forces and polymeric (steric) forces. Long ranging forces like
electrostatic forces will increase viscosity at a much lower concentration than short ranging
forces like van der Waals forces. Two neighbouring particles can experience a repulsive force
if polymer layers, which are attached to the surface of the particles, overlap.

Clay particles in nanocomposites have an electrostatic double layer, they have a high
aspect ratio and they have polymer chains that are attached to their surface. So all conditions
are fulfilled for strong inter-particle interactions.

The double layer mechanism is mentioned in the literature as an important mechanism
in stabilising clay-suspensions in water [5]. Unlike the PA6-nanocomposites, these
suspensions are known to collapse under shear deformation. By connecting polymer
molecules to the clay surface, the suspension is stabilised largely. Luckham et al. [5]
speculate that this is caused by stabilisation of the diffuse double layer around the clay
platelets. The stabilisation of the double layer by absorbed or tethered polymer molecules
might be the reason for the stability of PAé-nanocomposite under high shear deformation.

With the knowledge up to date, the double layer mechanism can not be ruled out as a
possible candidate. Calculation suggests that Brownian spinning is not important for the shear
rates considered. It is likely that the viscosity of polymer-clay nanocomposites is a combined
result of the double layer mechanism, the tethered polymer molecules and the high aspect
ratio of the clay platelets. Systematic research of the effect of these parameters on the
viscosity of nanocomposites could reveal the relative importance of these parameters. It might
also result in tools to tailor the rheology of nanocomposites.

11.5 Conclusions

¢ The viscosity and elasticity of polymer-clay nanocomposites are strongly increased
with respect to the unfilled polymer. The nanoclay increases the viscosity more
effectively than other submicron fillers do. The increase is much stronger than
estimated by continuum mechanical models.

¢ Even at large strains, nanocomposites retain their high melt viscosity and high melt
strength. This is in contrast with the behaviour of polymers containing common sub
micron particles, which lose their high viscosity at large shear strain.

¢ In polymers with common sub-micron particles it is thought that a network of directly
connected particles is formed. At high shear the connections are broken and the
viscosity drops strongly.
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¢ Since in nanocomposites the viscosity does not drop at high shear, it is concluded that
the network is not broken. Therefore, the clay platelets experience each other’s
presence by another mechanism than direct connectivity.

e After considering several possibilities, two mechanisms remain that can explain the
high shear stiffness of nanocomposites. In one mechanism that was already suggested
in literature, the viscosity is increased by polymer chains that are tethered to the clay.

e The other mechanism relies on the repulsive forces that clay particles experience
because of the charged double layer on the surface of the clay.

e Although theoretical considerations predict differently, experiments show that the
rheology is not significantly affected by the aspect ratio of the clay platelets. This
remarkable result is not yet understood and is an interesting subject for further study.
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Appendix A

Eshelby’s equivalent inclusion method

A.1 The elastic field in an inclusion with an eigenstrain

To simulate the stress field caused by the presence of an inhomogeneity, consider a matrix D
containing a domain Q as depicted in Fig. A.1. Following Mura [1], it is referred to Q as an
inhomogeneity if the elastic properties of the material in Q differ from those of the matrix. If

the elastic properties of the material in Q are equal to those of the matrix  is called an
inclusion.

First suppose that Q contains an inclusion with the same stiffness C,, as the matrix.
Then take the inclusion out of the matrix and give it an eigenstraing”® (i.e. a thermal strain by
heating it). This eigenstrain causes no stress and is therefore also named stress-free strain.

Now force the inclusion back into the cavity and weld the surface of the cavity to the surface
of the inclusion.

Shape of original inclusion

Shape after free expansion

Shape of expanded inclusion
with matrix constraints

Ee
Figure A.1 Ellipsoidal inclusion in a Figure A.2 Constrained strain & of an
matrix ellipsoid with eigenstrain &*.

If the inclusion would be completely free to expand it would be without stress and
attain a strain equal to the eigenstrain &*. As a result of the constraints of the matrix the
natural expansion of the ellipsoid is hindered. The actual strain & will therefore be different

from the eigenstrain £*. Eshelby [2] has shown that the actual strain in the inclusion is related
to the eigenstrain of the inclusion as:

£ =P Al
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where P is known as Eshelby’s tensor. In general the Eshelby tensor is a function of the shape
of the inclusion and of the stiffness tensor C,, of the matrix. The Eshelby tensor expresses the
confinement that the matrix imposes on an inclusion with an eigenstrain that has the same
elastic properties as the matrix.

The difference between the actual strain & and the eigenstrain &* causes an elastic
stress in the inclusion (Fig. 2). The resulting elastic stress in the inclusion is related to the
actual strain and the eigenstrain by Hooke’s law:

Cpa =C, (=€) A2)
Now apply a surface traction on the boundary of D to give a uniform matrix stress o, and

matrix strain &,. Since matrix and inclusion are made of the same material, the stress inside
the inclusion now becomes:

o.hu‘l = Cm (gm +8C —6'.) A3)

A.2 The elastic field in an inhomogeneity

Remove the inclusion and fill the domain QQ with a inhomogeneity, without an eigenstrain and
with stiffness C,. The stiffness of this hypothetical material is chosen such that the stresses and
strains in this new situation are equivalent with those of the previous one. To do this, the new
material must have the same actual strain (&; =& +&°) and the same stress as the removed
inclusion:

C.(¢,+6)=C(¢c,+£“-¢") A4)

Now an expression is derived for the strain concentration tensor A that is defined by:

g, = Ag,, AS)
The strain in the inclusion is given by
& =5, +c" =¢, +Ps’ A.6)
From A.3) and A.5) it follows that:
C,.(¢,)=C,(¢,—-¢") A7)

or by writing &" = P (¢, — &,, ) by using A.6):
(C,-C, )¢,)=—C & =—C, P (¢, -¢,) A8)
Le.:

(C.,-C,+C,P' )¢, )=C,P(¢,) A9)

By multiplication with PC_’ and rearrangement one gets:



_Appendix A 187

& =(PC](C,-C,)+1)"s, = A¢, A.10)
in which A4 is the strain concentration tensor. Eqn. A.10) shows that the strain concentration
tensor is a function of Eshelby’s tensor P. In case of spheroidal inclusions it is possible to
obtain an analytical expression for P. In the following two sections, expressions for P are
given in case the matrix has isotropic or transverse symmetry.

A.3 Eshelby’s Tensor

A.3.1 Spheroid with axes a,, a;, a;; a;=a,, a=as/a, in an isotropic matrix

If the ellipsoid is an isotropic or anisotropic spheroid in an isotropic matrix, the components
of Eshelby’s tensor Pjx only depend on the aspect ratio a of the spheroid and on the
Poisson’s ratio v, of the isotropic matrix. If the principle axis of the spheroid is parallel to the
3-axis the tensor components Py of Eshelby’s tensor are [1-3]:

3 a’ 1 9
Py =Py = + [1 -2v, "_—]g

8(1-v,)a’-1 4(1-v,) 4a’-1)

2 2
Py =- I 1-2v, + 3a2 —1 -l 1-2v, + 3a g
2(1-v,) a’ -1 a’-1

P, =P, = LA PP S
1122 2211 «(1-v,) 2Aa’-1) m 4(a2_1)g

1 a’ 1 3a’
P,.,=P,, = - 1-2v —
1133 2233 2(1—v,,,)a2 —~1 4(I—Vm)[ Vm a’ _]]g

1 1 1 3
P, =P,  =——F " |I1-2v + + 1-2v, +
31 3322 Z(I—V,,,)[ " a? _1] 2(]_ym)|: " 2a? —I)]g

1 a’ +1 1 3(a2+1
Pz = Py, =—{I—2V,, - [1 2v, ——___)jlg}

4«(1-v,) a -1 2 a’-1

1 a’ 3
Py, = I-2v, ——3
1212 4(1—V,,){2(a2—1)+[ ' " ke -1)]g}

For a fibre-like (prolate) spheroidal inclusion g is given by:

1)3/2 - eta’ - 1) —cosh™ o} if (@)
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and for a platelet-like (oblate) spheroidal inclusion by:

g {cos"a—a(l—a')’”} if (a<l)

= (1-a’)"?

For a fibre-like inclusion the aspect ratio a is given as //d where [ is the length of fibre and d
the diameter. For a disk-shaped inclusion @ is defined as tAv, where ¢ is the length of the
minor and w the length of the major axis.

A.3.2 Spheroid with axes a,, a,, a3’ a;=a,, p=a;/a;in an anisotropic matrix

For the more general case of anisotropic spheroids in an anisotropic matrix, Mura [1] gave
expressions in case the matrix has a stiffness tensor with hexagonal or transverse isotropic
symmetry. In a transverse isotropic matrix with the 3-axis as the axis of symmetry, 5
independent stiffnesses can be distinguished:

C=d
(C-C)/2=e
Ca=f
Ci-Ci=g
Ch=h

In a general anisotropic matrix the Eshelby tensor Py, becomes [3 p117]:
Py, = (1/8% )C o (Guig + G iig )
In the case of a hexagonal matrix the nonzero components of Giu are given below:

A =[e(1-x7 )+ fp*x* J{{d(1- X2 )+ fp* X2 J[ f(1- X )+ hp*x* |- g p*x* (1- X* )}
Gui=Gmn =%J:A(1—x2 HIF(=X )+hp'x? JJ(3e+d )(1-x? ) +4f p’x* ] —g* p*x*(1-x7 Jjdx

Gun =4n[ Ap*x’[d(1- x*) + fp*x*Tle(l- x*) + fp’x* M
G2 =Gxn =§ J:A(l—xz W (=X )+hp’x* J[(e+3d )(1-x7 ) +4f p’x’ | -3g° px*(1-x* )Jdx
G =Gnn =ZII;Apzxz{[f(l—x2)+hp2x2][(e +d )(1-x7)+2f p’x*] - g p*x*(1-x?)Jdx

G =G =2nI(:A(1—x2 HA(1=x2 )+ f pox2]le(1=x2 )+ f p*x*]dx
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Gue =2 [ A(1-%" V(g P ~(d=e)I[ F(1-x )+ hp'x’ Jdx

Gus = Gus =27 Agp’x* (1= x* ) e(1= x* )+ £ p*x* Jdx

A3.3 Expressing the Eshelby tensor as a 6X6 matrix

If stresses and strains are expressed as 6X6 engineering matrices instead of 3x3x3x3 tensors,
one must account for the factor 2 difference in the definition of tensor and engineering shear
strain. The non-zero components in engineering matrix notation are:

Pu=Pyny  Pi=Pun Pi3=Pi33  Py=2 P
Py =Py Pu=Pyp  Pi=Puny  Pss=2Pp;g;
P3;=Ps33y; P3pa=Pizp  Pyy=Piy; Peg=2Prn

Note that Eshelby’s tensor, or matrix generally is not symmetric i.e. P;; # P3; and P, # P;,.

A.4 Matlab subroutines to calculate Eshelby’s tensor

A.4.1 Isotropic matrix

function S = Eshtensor(alf,nu0);
%Calculation of the components Eshelby’s tensor in case of an isotropic matrix.
%

Y%input: alf (O<alf<=inf},the aspect ratio of the spherodic shaped filler

% if alf < 1 then spheroid is platelet like

% if alf < 1 then spheroid is fibre like

%o nu0  The Poisson's ratio of the matrix polymer:

%Output: S The 4th ordered Eshelby's tensor represented as a 6X6
matrix

%The 3-axis is supposed to be the rotation axis of the spheroid

if alf > 1

g = alf/(alf*2-1)*.5%(alf*(alf*2-1)0.5-acosh(alf));
else

g = alf/(1-alf*2)*.5*(acos(alf)-alf*(1-alf*2)*0.5);
end

% Calculate the elements of Eshelby's tensor

$3333= 1/(2*(1-nu0))*(1-2*nu0+(3*alfr2-1)/(alf*2-1)-g*(1-2*nu0+3*alfr2/(alf*2-1)));
S$1111=3/(8*(1-nu0))*aif*2/(alf*2-1)+g/(4*(1-nu0))*(1-2*nu0-9/(4*(alf*2-1)));

$1122= 1/(4*(1-nu0))*(alfr2/(2*(alf*2-1))-g*(1-2*nu0+3/(4*(alf*2-1))));

S$1133= -1/(2*(1-nu0))*alf*2/(alf*2-1)+g/(4*(1-nu0))*(3*alf*2/(alf*2-1)-(1-2*nu0));
S$3311=-1/(2*(1-nu0))*(1-2*nul+1/(alf*2-1))+g/(2*(1-nu0))*(1-2*nu0+3/(2*(alf*2-1)));
S$1212= 1/(4*(1-nu0))*(alf*2/(2*(alf"2-1))+g*(1-2*nu0-3/(4*(alf*2-1))));

$1313= 1/(4*(1-nu0))*(1-2*nu0-(alf*2+1)/(alfr2-1)-g/2*(1-2*nu0-3*(alf*2+1)/(alf*2-1)));

§2222=81111;
§2211=81122;
$2233=51133;
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$3322=S3311;
$§2323=81313;

% Transform the tensor components in matrix components
S = zeros(6,6);

$(1,1:3)=[S1111 S1122 S1133];

$(2,1:3)=[S2211 S2222 S2233];

S(3,1:3)=[S3311 S3322 S3333];

S(4,4)=2*S2323; % factor of two!

S(5,5)=2*S1313;

S(6,6)=2*S1212;

A.4.2 Anisotropic matrix

% Program to calculate the Eshelby tensor of a transvers isotropic spheroid
% According to: Toshio Mura, 'Mechanics of elastic and inelastic solids 3',
% Martinus Nijhoff Publishers, The Hague, ISBN 247 2560 7, 1982 Mura p 119

function M = Muratens(alf,C);
%
%Input: alf (O<alf<=inf), the aspect ratio of the spherodic shaped filler.

% if alf < 1 then spheroid is a platelet.
% if alf < 1 then spheroid is a fibre.
% C The 6X6 stiffness matrix of the tranvers symmetric filler.

%Output: M The Eshelby's Tensor according to Mura represented as a6X6 matrix.
%The 3 direction is supposed to be the symmetry axis of the spheroid

d=C(1,1);
e=(C(1,1)-C(1,2))/2;
f=C(4,4);
g=C(1,3)+C(4,4);
h=C(3,3);

ro=1/alf;

=zeros(3,3,3,3);
G=zeros(3,3,3,3);

% Integrate between 0 and 1 to obtain the G values
G(1.1,1,1)= (quad('G1111int',0,1,[1,0.r0.d.e.f.g.h));
G(2,2,2,2)=G(1,1,1,1);

G(3,3,3,3)= (quad('G3333int',0,1,[1.[],ro,d,e,f,g.h));
G(1,1,2,2)= (quad('G1122int',0,1,[}.0},r0.d,e.f,g,h));
G(2,2,1,1)= G(1,1,2,2);

G(1,1,3,3)= (quad('G1133int',0,1,[1.[l.ro.d.e.f.g,h));
G(2,2,3,3)= G(1,1,3,3);

G(3,3,1,1)= (quad('G3311int',0,1,[].[.ro0.d.e.f.g.h));
G(3.3.2,2)= G(3,3,1,1);

G(1,2,1,2)= (quad('G1212int',0,1,[],01.ro.d.e.f.g,h));
G(1,2,2,1)=G(1,2,1,2);

G(2,1,1,2)=G(1,2,1,2);

G(2,1,2,1)=G(1,2,1,2),

G(1,3,1,3)= (quad('G1212int',0,1,[,[],r0,d,e,f,g,h));
G(1,3,3,1)= G(1,3,1,3);

G(3,1,1,3)= G(1,3,1,3);

G(3,1,3,1)= G(1,3,1,3);

G(2,3,2,3)= G(1,3,1,3);

G(2,3,3,2)= G(1,3,1,3);

G(3,2,2,3)= G(1,3,1,3);

G(3,2,3,2)= G(1,3,1,3);
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% Calculate the elements of Eshelby’s tensor
S$(1,1,1,1)=C(1,1,1,1)*G(1,1,1,1)+C(2,2,1,1)*G(1.2,1,2)+C(3,3,1,1)*G(1,3,1,3),
S(1,1,2,2)=C(1,1,2,2)*G(1,1,1,1)+C(2,2,2,2)*G(1,2,1,2)+C(3,3,2,2)*G(1,3,1,3);
$(1,1,3,3)=C(1,1,3,3)*G(1,1,1,1)+C(2,2,3,3)*G(1,2,1,2)+C(3,3,3,3)*G(1,3,1,3);
$(2,2,1,1)=C(1,1,1,1)*G(2,1,2,1)+C(2,2,1,1)*G(2,2,2,2)+C(3,3,1,1)*G(2,3,2,3);
$(2,2,2,2)=C(1,1,2,2)*G(2,1,2,1)+C(2,2,2,2)*G(2,2,2,2)+C(3,3,2,2)*G(2,3,2,3);
$(2,2,3,3)=C(1,1,3,3)*G(2,1,2,1)+C(2,2,3,3)*G(2,2,2,2)+C(3,3,3,3)*G(2,3,2,3);
$(3,3,1,1)=C(1,1,1,1)*G(3,1,3,1)+C(2,2,1,1)*G(3,2,3,2)+C(3,3,1,1)*G(3,3,3,3);
$(3,3,2,2)=C(1,1,2,2)*G(3,1,3,1)+C(2,2,2,2)*G(3,2,3,2)+C(3,3,2,2)*G(3.3,3,3);
$(3,3.3,3)=C(1,1,3,3)*G(3,1,3,1)*C(2,2,3,3)"G(3,2,3,2)+C(3,3,3,3)"G(3,3,3,3);
$(1,2,1,2)=C(1,2,1,2)*G(1,1,2,2);

5(1,3,1,3)=C(1,3,1,3)*G(1,1,3,3);

$(2,3,2,3)=C(2,3,2,3)*G(2,2,3,3);

% Transform Eshelby’s tensor components into matrix components
M=tensmat(S);

function Y = G1111int(X,ro,d,e,f.g.h)

dimension = size(X);

length_X = dimension(2);

Y=X;

Y(1:length_X)=0;

for a = 1:length_X;
x=X(a);
delta=1/((e*(1-x"2)+f*ror2*x 2)* ((d*(1-x 2)+f*ror2*x 2)*(f*(1-
xA2)+h*rofr2*xA2)-gr2*rof2*x 2*(1-x*2)));
Y(a)=0.5*pi*delta*(1-xA2)*((f*(1-x"2)+h*ror2*x 2)*((3*e+d)*(1-
XA2)+4*f*ror2*x"2)-g*2*ror2*x"2* (1-x"2)),

end

function Y = G1122int(X,ro,d.e.f.g,h)

dimension = size(X);

length_X= dimension(2);

y(1:length_X)=0;

for a = 1:length_X;
x=X(a),
delta=1/({e*(1-x"2)+ror2*x 2)*((d*(1-x"2)+f*ror2*x2)*(f*(1-x"2)+h*ror2*x*2)-
g2 rof2*xA2*(1-x"2)));
y=0.5*pi*delta*(1-xA2)*((f*(1-x"2)+h*ror2*xA2)* ((e+3*d)*(1-x*2)+4*f* ror2*x 2)-
3*g"2*ror2*xA2*(1-xA2));
Y(a)=y;

end

function Y = G1133int(X,ro,d,e,f,g,h)

dimension = size(X);

length_X= dimension(2);

y(1:length_X)=0;

for a = 1:length_X;
x=X(a);
delta=1/((e*(1-x"2)+f*ro*2*x A 2)*((d*(1-x"2)+f*ror2*xA2)*(f*(1-x*2)+h*ro*2*x"2)-
g*2*ror2*x*2*(1-x2)));
y=2*pi*delta*ro*2*xA2*(((d+e)*(1-x"2)+2*f*ror2*x 2)*(f*(1-x*2)+h*ro*2*x*2)-
gh2*ror2*xA2*(1-x"2));
Y(@)=y:

end

function Y=G1212int(X,ro,d,e,f,g,h)
dimension = size(X);
length_X= dimension(2);
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y(1:length_X)=0;

for a = t:length_X;
x=X(a);
delta=1/((e*(1-x"2)+"ror2*x*2)*((d*(1-x2)+f*ror2*x2)*(f*(1-xA2)+h*ro”r2*xA2)-
gh2*ror2* xA2*(1-x12)));
y=0.5"pi*delta*(1-x"2)*2*(g"2*ro”2*x*2-(d-e)*(f*(1-x"2)+h*ro*2*x2));
Y(a)=y;

end

function Y=G1313int(X,ro0,d,e.f.g.,h)

dimension = size(X);

length_X= dimension(2);

y(1:length_X)=0;

for a = 1:length_X;
x=X(a);
delta=1/((e*(1-x"2)+f*ro*r2*x*2)*((d*(1-x2)+f*ro*r2*x*2)*(f*(1-x*2)+h*ro*2*x*2)-
gh2*ror2* x 2*(1-x*2)));
y=-2*pi*delta*g*rof2*xA2*(1-xA2)*(e*(1-x*2)+f*ro*2*x*2),
Y(a)=y;

end

function Y=G3311int(X,ro,d,e,f,g.h)

dimension = size(X);

length_X= dimension(2);

y(1:length_X)=0;

for a = 1:length_X;
x=X(a);
delta=1/((e*(1-xA2)+f"ror2*xA2)*((d*(1-x*2)+f*ror2*x"2)*(f*(1-x"2)+h*ror2*x*2)-
gh2*ror2*x 2*(1-x*2)));
y=2"pi*delta*(1-xA2)*(d*(1-xA2)+f*ror2*x 2)*(e*(1-x 2)+f*ror2*xA2);
Y(a)=y;

end

function Y = G3333int(X,ro,d,e,f,g,h)

dimension = size(X);

length_X= dimension(2);

y(1:length_X)=0;

for a = 1:length_X;
x=X(a);
delta=1/((e*(1-x*2)+f*ror2*x"2)* ((d*(1-x*2)+f*ror2*xA2)*(f*(1-xA2)+h*ror2*x*2)-
gh2*ror2*x"2*(1-x*2)));
y=4"pi*delta*rof2*x 2*(d*(1-x*2)+f*ror2*x*2)*(e*(1-x*2)+*ro”r2*xA2);
Y(@)=y;

end
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Appendix B

Numerical calculation of composite
stiffness

In this appendix, it will be explained how to perform actual calculation of the tensor equations
of Chapter 3. To perform numerical calculations it is very convenient to use the condensed
notation. First of all, this reduces the amount of components from 81 in a 4-ordered tensor, to
36 in an equivalent 6x6 matrix. Even more important is the presence of matrix algebra in most
scientific computer languages. This greatly simplifies programming and considerably
increases calculation speed. The use of matrices has its drawbacks. A lot of confusion might
occur by transforming tensor quantities into matrices. In matrix-notation, stress and strain
each have 6 components, while in tensor notation they have 9. This reduction of the amount
of components must be accounted for. The second possible source of confusion is the
difference of a factor two, between engineering shear strain and tensor shear strain.

In the first section of this appendix it will be explained how to transform tensor
elements into matrix elements. The second section shows how to rotate a 6X6 matrix. At the
end of this chapter some MATLAB computer programs are listed that are used to calculate
the stiffness of a material filled with spheroids.

B.1 Transforming tensors into matrices
One must be very careful in translating tensors into engineering matrices and vice versa. This
translation is prone to errors because one has to account for the change of 9 stress elements to

6 and for the factor of two difference between engineering shear strain and tensor shear
strain.

To illustrate this we try first to transform the compliance tensor Sy to a compliance
matrix [S]. In tensor notation it is written:

&;=S,0 B.1)

By using &, =¢; and 0 ; =0, Eqn. B.1 may also be written as a matrix equation:
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Numerical calculation of composite stiffness

r
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In engineering matrix notation this has the form:

e=[s] o

B.2)

B.3)

Here e is the engineering strain. If engineering strain is used, one must account for the factor
two difference between engineering strain and tensor strain. This can elegantly be done by
introduction of a new matrix [W}:

with

By using Eqn. B.4) and combining Eqns. B.2) and B.3) one gets:

[w]
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and [W]" =
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s3333

2 S2333
2 sljj]
2 SIZ]J

are equal to the elements of the stiffness tensor:

D OO DO~
D ODDI~ND

2 SI 123
2S2223
2S3323
4s2323
4s1323
4 S1223

SO S~
NN

ZSIIH
2s2213
2s3313
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B.4)

B.5)

B.6)

Following the same procedure one can show that all elements of the stiffness matrix
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-CIIII CIIZZ CII_U CIIZJ CIIIJ CIIIZ_
CZJII C2222 CZZJJ CZ.’ZJ CZZU C2212
[C]: [6] [W]_'= Coun Cun Cugy Coppyy Coypy Cyyyy B.7)
Con Cun Cuy Cupy Couy Cup
Cl}ll Cl.‘UZ Cl333 Cl,\‘Zj C}JI} Clll)
_CIZII CIZZJ C1233 CIIZJ CIZIJ C1212 J
For the strain concentration tensor we can write:
gij’ = A,.j“g“"' B.8)
Eqn. B.8) can also be written as a matrix:
LT —Auu Auzz A1133 2A1133 ZA,,” ZAmz- 6‘””
&) Azzu Ay Azm 2 Ay 2 Aps 24y, || e 22
& = _|€n Ay Az Ay 2455, 24, 24y, €33 B.9)
- &y Ay Ayy Ayy 245, 245, 24,,||e 23
&3 Aml Amz A1333 2 Amj 2 Atm 2 Amz €3
L €12 _Alzu Ay Ay 241 24, 2 AIZIZ_ L2
In engineering matrix notation it has the form:
e =[4] e” B.10)
By using the e= [W] & and combining Eqgns. B.09) and B.10) one gets:
[ Allll A1122 Alll'S AIIZS AIIH AlllZ 1
Azzu AZZZZ A2233 AZZZ3 A1213 AZIIZ
'~ A A A A A A
[ A]=[W] L“] [W]—l = 3311 3322 3333 3323 3313 3312 B.1 1)
24y, 24y, 24, 24, 24y, 24,
2I4|3ll 2Al322 2A1333 2A!323 2Al3|3 2Al312
_2Allll 2A1222 2A1233 2A1273 2A1113 2"41212_
The stress concentration tensor is defined as:
o = Bijk,a“'" B.12)

y

which can also be written as a matrix equation:
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r m
O Buu Buzz 81133 2 Bzm 281113 ZBmz [T}
r m
T5 B,y By By 2By, 2B, 2By, || o 22
r m
o —[E] o™ = Oy |_ By By, By 2By, 2By, 2By, | | o 33 B.13)
= = r m °
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Since tensor stress equals engineering stress, it follows that [B] = [E]

B.2 Rotating a matrix

In general, the components of a fourth ordered tensor could be rotated by Eqn. 3.41).
Therefore, every fourth ordered tensor is rotation transformed the same way. In condensed
matrix notation, each type of matrix has its own specific method of transformation. The type
of transformation depends on the type of the matrix. The stiffness matrix [C] changes stresses
into strains, while the compliance matrix [S] changes strains into stresses. Therefore, the
transformation of [C] differs from the transformation of [S]. Likewise, the transformation of
the strain concentration matrix [4], which changes strains into strains, differs from the stress
concentration matrix [B], which changes stresses into stresses.

To find the correct transformation rules for each type of matrix, we will first look at
the transformation of stresses and strains in tensor and in engineering matrix notation. From
Eqn. 3.40) it follows:

3 3 3 3
Epp = B0 6= Z Za),,a)”s and 0, = @,0,,0,= 2 Za),,a)”a
i=1 j=1 il jul

In matrix notation, stresses and strains are written as ‘1x6 vectors’. Eqn. 3.40) then gets the
form:

=[7] & and o'=[T] o B.14)

where £ and ¢ are the strain ‘vectors’ in global and local coordinates respectively, while &
and o’ are the corresponding stresses. Note that here £ only contains elements of tensor strain,
the factor of two between tensor shear strain and engineering shear strain is not incorporated
yet. [T ] is a 6x6 orientation transformation matrix. The elements of [T ] can be found by
carefully comparing all tensor elements of Eqn. 3.64) with the corresponding matrix elements
of Eqn. 3.65). [T] is given by Whitney and McCullough [1]:
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Rotation transformation Matrix

2 2 2
wI 1 w] 2 wl 3 Zwl Za) 13 Zml I ml 3 Za)l lwl 2
2 2 2 2 2 2
@y @, @3 D;2053 @,/@3 @,/0;,
2 2 2 2 2 2
[T] =| @u @3, @33 D3,0;5 @;/@;3 WD B.15)
mZIa’3I w)lel m23m33 w22m33 + w23a)32 w21w33 + w23a)31 w21m32 + w22a’31
wlla’.il mllm.ﬂ mljw_?j' mllm.?.? + wl.fw.ﬂ a)”w33 + w13a)31 mllw32 + mfﬂ.?l
_a)l Ia)2l w] 2w22 ml 30) 23 w] ZmZJ + wI Ja)ZZ wI 1023 + a)l le 7 wl lw22 + w}lmll N
Now suppose that a matrix [T *] exists to rotate the components of engineering strain:
e=[T*]e B.16)

Then, by using e= [W] & and combining Eqns. B.14) and B.16) it is easy to show that:

[r+] =[w]r] W] and [r]=[w]"[r+] [¥] B.17)
It can also be shown that:
[t} =[r+] B.18)
and similarly:
[T+ =[r] B.19)

With the transformation matrices [T *] and [T ] it is also possible to perform a coordinate
transformation of a 6x6 matrix in contracted engineering notation. The type of transformation
depends on the type of matrix. First the transformation of the stiffness matrix [C ] and the

compliance matﬁx[S] will be observed. In local coordinates, Hooke’s law has the

formo = [C ] e while in global coordinates it has the formo’'= [C '] ¢’ . Using Eqns. B.14) and
B.16) it follows that:

a'=[c) ¢=[1] a=[r][c] e=[r] [c] [7*]"e'=
or: [c]=[r][c][r=]" =[r] [c] (7] B.20)

Similarly: [s']=[T*] [s] [T]" =[T*] [s] [T *] B.21)

[C] and [S] change stresses into strains and vice versa, while the strain concentration matrix
[A] changes strains into strains and the stress concentration matrix [B] changes stresses into
stresses. Therefore, [4] and [B] each require a different type of coordinate transformation.
The transformation rules for the strain concentration matrix [4] are derived first:

e'=[a] =[] & =[r*] [4] " =[r*] [4] [T+]"e "'
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[4)=[1*] [4] [T *]" =[7*] [4] [7] B.22)

Similarly, transformation of the stress concentration matrix becomes:

[B')=[7][B] [7]" =[r] [B] [+ B.23)

B.3 MATLAB computer programs

With the Matlab programs below the stiffness matrix and the thermal expansion of a
composite are calculated. The program needs input of the elastic properties of the phases like
the Young’s modulus, the Poisson’s ratio and the coefficient of linear thermal expansion
(CLTE). Additionally it requires information on the morphology of the composite like the
aspect ratio and the orientation distribution of the inclusions. It is assumed that the inclusions
are spheroid-like shaped and are oriented transversely symmetric around the 3-axis of the
composite. The program has a convenient user interface, which is too long to be listed in this
thesis. In Fig. B.1 an impression is given of the input window.

On the right, the input window allows input of elastic properties of the matrix and of
the filler. An index m, indicates the matrix and index 1 indicates the filler. E denotes the
Young’s modulus, Nu the Poisson’s ratio and Alfa the thermal expansion coefficient. The
fields Massfraction_1_min and Massfraction_1_max allow input of the minimum and
maximum amount of filler. The fields Aspect_1_min and Aspect_1_max expect input of the
minimum and maximum aspect ratio. After calculation, a pop-up menu appears that allows
free choice of elastic or morphological variables, to plot along x-axis or y-axis. In the upper
left of the input window, the type of composite model can be chosen to perform the
calculations. In the lower right, the type of orientation can be specified. As it is now, the input
window program is suited for a single isotropic filler in an isotropic matrix. The calculation
routines are more versatile. In principle they allow multiple fillers, with orthorhombic

symmetry.
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Figure B.1 Input window for analytical composite modelling

B.3.1 The Mori-Tanaka function

The Mori-Tanaka function calculates the stiffness of a composite filled with transversely
isotropic oriented ellipsoids. Tt requires input of the elastic properties and of morphological
parameters. It uses the Mori-Tanaka equations in Chapter 3 to calculate the stiffness and
expansion coefficient of the composite. The averaging techniques from Chapter 3 are used to
account for the orientation distribution and calculate the averaged stiffness matrix and the
averaged thermal expansion.

function [E11_av,E33_av,Nu31_av,G12_av,G13_av,alfa_av11,alfa_av33] = Mori_Tanaka(EO,...
nu0,ro0,alfa0,E1,nu1,ro1,alfa1l,m1,Aspect1,a0,a2,a4);

% Function to calculate the stiffness of a transversely isotropic oriented composite

% Polymer&Filler properties

% input EO, E1 Young's modulus of matrix and filler

% nu0, nul  Poisson's ratio

% alfa0, alfal Thermal expansion coefficient

% roQ, ro1 Density

% m1 Mass fraction of filler. This is a vector!

% Aspect1 Aspect ratio of filler. This is a vector!

% a0, a2, a4 Moments of the Legendre orientation distribution function

% Output E11_av, E33_av, Nu31_av, G12_av, G13_av Elastic constants of composite
% alfa_av11_alfa_av33 Thermal expansion of composite

CO= material(E0,nu0);% Fill 6X6 matrix with polymer properties
S0=inv(C0);
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C1=material(E1,nu1);% Fill 6X6 matrix with filler properties
S1=inv(C1);

vol1= (m1/ro1)./(m1/ro1+(1-m1)/ro0);% volume fraction of filler

m=0;
for c1=vol1; %volume fraction filler
m=m-+1;
¢0 = 1-¢1; % volume fraction polymer
n=0; %counter for aspect_ratio
for aspect_ratio=Aspect?;
n=n+1;
%Prevent aspect_ratio=1
if aspect_ratio==1;
aspect_ratio=1.001;
end

%initialisation of tensors and matrices

A_av=zeros(6,6);
B_av=zeros(6,6);
Cc_av=zeros(6,6);

P= Eshtensor(aspect_ratio,nu0); % Calculate Eshelby's Tensor assuming filler is isotropic ellipsoid
A = inv(eye(6)+P*S0*(C1-C0)); % A = Average strain concentration tensor
B = C1*A*S0; % B = Average stress concentration tensor

% Stiffness matrix of unidirectional ellipsoid filled polymer
Cc = (c0*CO+c1*B*C0)*inv(c0*eye(6)+c1*A),

Sc=inv(Cc);

alfa=alfa0+(alfa1-alfa0)*inv(S1-S0)*(Sc-S0);
alfai1(m,n)=alfa(1);

alfa33(m,n)=alfa(3);

E11(m,n)=1/Sc(1,1);

E33(m,n)=1/Sc(3,3);

% Randomisation
number_phi = 16; % Number of phi angles to perform Simpson’s integration
number_theta = 20; % Number of theta angles to perform Simpson’s integration

9% Calculate the average A_matrix and B_matrix using the orientation parameters
[A_av,B_av]=rand2ang(A,B,a0,a2,a4,number_phi,number_theta);

% Calculate the average composite stiffness matrix Cc_av and compliance matrix Sc_av.
Cc_av = (c0*CO+c1*B_av*C0)*inv(c0*eye(6)+c1*A_av);

Sc_av=inv(Cc_av);

% Calculate the average thermal expansion matrix alfa_av.
alfa_av=alfa0+(alfa1-alfa0)*inv(S1-S0)*(Sc_av-S0);

E33_av(m,n)=1/Sc_av(3,3);
E11_av(m,n)=1/Sc_av(1,1);
Nu31_av(m,n)=-Sc_av(3,1)*E33_av(m,n),
G12_av(m,n)=1/Sc_av(6,6);
G13_av(m,n)=1/Sc_av(4.4),
alfa_av11(m,n)=alfa_av(1);
alfa_av33(m,n)=alfa_av(3);
end
end
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B.3.2 The functions ‘material’ and ‘orthomat’

The function ‘material’ creates a 6x6 stiffness matrix of an isotropic material with Young’s
modulus E and Poisson’s ratio. The function ‘orthomat’ creates the stiffness matrix of a
material with orthorhombic symmetry and requires an input of nine elastic constants.

function [C]=material(E,nu);

% Input E Young's Modulus in GPa
Y% nu Paoisson's ratio

% Qutput  CO Stiffness matrix

G = E/(2*(1+nu)); % Shear modulus matrix

%Compliance matrix of polymer
S = zeros(6,6);
S$(1:3,1:3)=-nu/E;
S(1,1)=1/E;

S(2,2) = 1/E;

S$(3,3) = 1/E;

S(4,4) =1/G;

S(5,5) = 1/G;

$(6,6) = 1/G;

%stiffness matrix of polymer
C =inv(S);

function C = Orthomat(E11,E22,E33,G23,G13,G12,n12,n13,n23)
% Input 9 elastic constants E11,E22,E22 Young's Moduli in GPa

% (G23,G13,G12 Shear moduli

% n12,n13,n23  Poisson's ratios

%

% Output C Stiffness matrix of material with orthorhombic symmetry

S=zeros(6,6);

S(1,1) = 1/E11;
S(1,2) = -n12/E11;
S(1,3) = -n13/E11;
S(2,1) = S(1,2);
S(2,2) = 1/E22;
S(2,3) = -n23/E22;
S(3.1) = S(1,3);
S(3.2) = S(2,3);
S(3,3) = 1/E33;
S(4,4) = 1/G23;
S(5.5) = 1/G13;
S(6,6) = 1/G12;

C=inv(S);

B.3.3 Functions to calculate the Eshelby tensor

The function ‘Eshtensor’ is used to calculated the components of the Eshelby tensor, which is
discussed in Chapter 3 and in Appendix A. The function translates the Eshelby tensor to an
equivalent 6x6 matrix. It assumes that the matrix has isotropic properties. It requires the
aspect-ratio of the filler and the Poisson’s ratio of the matrix as input values. If the matrix is
anisotropic then the function ‘Muratens’ should be used instead. This function is not listed.
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function P = Eshtensor(aspect,nu0);
%Input: aspect aspect ratio of the spherodic shaped filler: aspect (O<aspect<=inf)

% if aspect < 1 then spheroid is flake like.

% if aspect > 1 then spheroid is fibre like.

% nu0 Poisson's ratio of the matrix polymer:

%Output: P Eshelby's Tensor represented as a 6X6 engineering matrix.

%
%The 3-axis is supposed to be the main symmetry axis of the spheroid

if aspect > 1

g = aspect/(aspect*2-1)*1.5*(aspect*(aspect*2-1)*0.5-acosh(aspect));
else

g = aspect/(1-aspect*2)*1.5*(acos(aspect)-aspect*(1-aspect*2)*0.5);
end

P3333= 1/(2*(1-nu0))*(1-2*nu0+(3*aspect*2-1)/(aspect?2-1)-g*(1-2*nu0+3*aspect*2/(aspect*2-1)));
P1111= 3/(8*(1-nu0))*aspect*2/(aspect*2-1)+g/(4*(1-nu0))*(1-2*nu0-9/(4*(aspect*2-1)));

P1122= 1/(4*(1-nu0))*(aspect*2/(2*(aspect*2-1))-g*(1-2*nu0+3/(4*(aspect*2-1)))),

P1133= -1/(2*(1-nuQ))*aspect*2/(aspect*2-1)+g/(4*(1-nu0))*(3*aspect*2/(aspect2-1)-(1-2*nu0)),
P3311= -1/(2*(1-nu0))*(1-2*nu0+1/(aspect*2-1))+g/(2*(1-nu0))*(1-2*nul0+3/(2* (aspect*2-1)));

P1212= 1/(4*(1-nu0))*(aspect*2/(2*(aspect*2-1))+g*(1-2"nu0-3/(4*(aspect*2-1))));

P1313= 1/(4*(1-nu0))*(1-2*nu0-(aspect*2+1)/(aspect’2-1)-g/2*(1-2*nu0-3*(aspect*2+1)/(aspect*2-1)));

P2222=P1111;
P2211=P1122;
P2233=P1133;
P3322=P3311,
P2323=P1313;

P = zeros(6,6);

P(1,1:3)=[P1111 P1122 P1133];

P(2,1:3)=[P2211 P2222 P2233];

P(3,1:3)=[P3311 P3322 P3333];

P(4,4)=2*P2323; %P(4,4);P(5,5) and P(6,6) are multiplied by two because of transformation rules.
P(5,5)=2*P1313;

P(6,6)=2*"P1212;

B.3.4 Function to average a matrix

The function ‘rand2ang’ is the heart of the program and is used to average the A and B
matrices according to an orientation distribution function as is explained in Chapter 3. It
needs two matrices, the moments of the distribution function and two numbers for the
integration steps as input values and gives the averaged matrices as output. As was indicated
in Chapter 3 using Mori-Tanaka theory to calculate average properties can lead to non
physical behaviour.

function [A_av,B_av]=rand2ang(A,B,a0,a2,a4,number_phi,number_theta);

% Use this function to transversely isotropic randomise two 6*6 matrices.

% It is assumed that the matrix is transversely isotropic around the 3' axis. Rotation around the 3' axis
% doesn't change the orientation. Therefore randomisation is only

% performed around two axes.

% Input AB: Two matrices to randomise. It is assumed that the matrix has 12 elements.

% A=strain concentration matrix

% B=stress concentration matrix
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% a0.a2.a4  The orientation function, as terms of Legendre polynomials

% a0=1, a2=5*<P2>; a4=9"<P4>

% P2=1.5*cos(theta))*2-.5;

% P4=(35*cos(theta(t))*4-30*cos(theta(t))*2+3)/8;

% number The number of summation steps in each integration loop; must be even!
% Simpson's rule is used.

% Output  A_av, B_av The transversely isotropic (around the global 3-axis) randomised A and B
% matrices.

Yo

% (R.C.G. Arridge, 'An introduction to polymer mechanics'. 1985, Taylor&Francis, London, p147)
% Complete random orientation ab=1 a2=0 a4=0,

% Full allignment a0=1 a2=5 a4=9
% Equitorial sheet (i.e. SMC)  a0=1 a2=-5/2 a4=27/8
% Maximum at theta = 30° a0=1a2=25/8 a4=27/128

% Initialize integration borders & steps
theta_max=pi/2; %Integrate between 0<=lheta<=pi/2
d_theta=theta_max/number_theta;

theta= [0:d_theta:theta_max];

phi_max=2*pi; %Integrate between 0<=phi<2pi
d_phi=phi_max/number_phi;

phi= [0:d_phi:phi_max];

Yo
% Calculate P2 and P4
dim_theta = size(theta);
length_theta= dim_theta(2);
dim_phi = size(phi);
length_phi= dim_phi(2);

P2(1:length_theta)=0; % Initialize P2 and P4
P4=P2;
sinus=P2; % Initialize ‘sinus’ for iater use in integration loop

P2=1.5%(cos(theta)).*2-.5;
P4=(35*(cos(theta)).#4-30*(cos(theta)).A2+3*ones(1,length_theta))/8;
sinus=sin(theta);

A_phi_theta=zeros(6,6,length_phi,length_theta); % big matrix with all rotated A_matrices
B_phi_theta=zeros(6,6,length_phi,length_theta); % big matrix with all rotated B_matrices

% W = matrix to facilitate transformation between matrix and tensor notation
W=zeros(6,6);
W(1,1)=1;
W(2,2)=1;
W(3,3)=1;
W(4,4)=2;
W(5,5)=2;
W(6,6)=2;
invW=zeros(6,6);
invW(1,1)=1;
invW(2,2)=1;
invW(3,3)=1;
invW(4,4)=.5;
invW(5,5)=.5;
invW(6,6)=.5;

A_to_int=zeros(6,6,length_phi,length_theta);
B_to_int=zeros(6,6,length_phi,length_theta);

for t=1:length_theta;
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theta_loop=theta(t);

for s=1:length_phi;
phi_loop= phi(s);
T = rotmatrix{phi_loop,theta_loop),
A_phi_theta(:,:,s,t)=(W*T*invW)*A*(transpose(T)), % Rotate A_matrix
B_phi_theta(:,;,s,t)=T*B*(transpose(W*T*invW)), % Rotate B_matrix
%A_to_int(:,;,s,t)=A_phi_theta(:,:,s,t)*(a0+a2*P2(t)+a4*P4(t)) sinus(t);
%B_to_int(:,;,s,t)=B_phi_theta(:,;,s,)*(a0+a2*P2(t)+ad4*P4(t)) sinus(t);
end

%faster way to multiply by the distribution function(depending only on theta) and by sinus(theta)

%for a fixed theta, every element of the sub-matrix is multiplicated by the same number.

A_to_int(:,:,;,t)=(reshape(A_phi_theta(:,:,:,t),6,6,length_phi)).*((a0+a2*P2(t)+a4*P4(t))"sinus(t));

B_to_int(:,:,:,t)=(reshape(B_phi_theta(:,:,;,t),6,6,length_phi)).*((a0+a2*P2(t)+a4"P4(t))*sinus(t));
end

% Perform double integration using function int_mat
A_av=int_mat(A_to_int,phi,theta)/(2*pi);
B_av=int_mat(B_to_int,phi,theta)/(2*pi); %

B.3.5 Rotation of the matrices

The function ‘rotmatrix’ calculate for every theta and phi the matrix T necessary to rotate the
A and B matrices over these phi and theta, according to the theory developed above. As input
it needs two angles, thet and phi over which the elements are be rotated.

function T = rotmatrix(phi,theta);

% Input phi, theta The angles over which to rotate
% Output T Matrix to rotate a stress vector, this is an engineering version of a second
% order rotation tensor

w=zeros(3,3); % w is a rotation matrix to rotate a 1st order vector

w(1,1)= cos(theta)*cos(phi);

w(1,2)= -sin(phi);

w(1,3)= sin(theta)*cos(phi);

w(2,1)= cos(theta)*sin{phi);

w(2,2)= cos(phi);

w(2,3)= sin(theta)*sin(phi);

w(3,1)= -sin(theta),

w(3,2)=0; ,
w(3,3)= cos(theta);

T=zeros(6,6);

T(1:3,1:3)=w.*w;
T(1:3,4)=2*w(1:3,2).*w(1:3,3);
T(1:3,5)=2*w(1:3,1).*w(1:3,3),
T(1:3,6)=2*w(1:3,1).*w(1:3,2);
T(4,1:3)=w(2,1:3).*w(3,1:3);
T(5,1:3)=w(1,1:3).*w(3,1:3);
T(6,1:3)=w(1,1:3).*w(2,1:3);
T(4,4)=w(2,2)"w(3,3)+w(2,3)*'w(3,2);
T(4,5)=w(2,1)*w(3,3)+W(2,3)"w(3,1);
T(4,6)=w(2,1)*'w(3,2)+w(2,2)*w(3,1);
T(5.4)=w(1,2)*w(3,3)+w(1,3)*w(3,2);



_Appendix B 205

T(5.5)=w(1,1)*w(3,3)+w(1,3)*w(3,1);
T(5,6)=w(1,1)*'w(3,2)+w(1,2)*w(3,1);
T(6,4)=w(1,2)*w(2,3)+w(1,3)*'w(2,2);
T(6,5)=w(1,1)*'w(2,3)+w(1,3)*'w(2,1);
T(6,6)=w(1,1)*'w(2,2)+w(1,2)*w(2,1);

B.3.6 Integration of the matrices

The functions ‘int_mat’ and ‘doubleintegral’ calculate only the independent terms (reduced
because of symmetry) of the matrix, and fill-in the rest of the matrix. As input it needs the big
matrix (the 6x6 matrix at every theta and phi) and the two angles over which to integrate.

function Mav=int_mat(M_to_int,phi,theta);

dim_theta = size(theta);
length_theta= dim_theta(2);
dim_phi = size(phi);
length_phi= dim_phi(2);

Mav=zeros(6,6);
Mav(1,1)=doubleintegral((reshape(M_to_int(1,1,:,:),length_phi,length_theta)),phi theta);
Mav(2,2)=Mav(1,1);
Mav(3,3)=doubleintegral((reshape(M_to_int(3,3,:,:),length_phi,length_theta)),phi,theta);
Mav(1,2)=doubleintegral((reshape(M_to_int(1,2,:,:),length_phi,length_theta)),phi,theta);
Mav(2,1)=Mav(1,2);
Mav(3,1)=doubleintegral((reshape(M_to_int(3,1,:,:),length_phi,length_theta)),phi,theta);
Mav(3,2)=Mav(3,1);
Mav(1,3)=doubleintegral((reshape(M_to_int(1,3,:,:),length_phi,length_theta)),phi,theta);
Mav(2,3)=Mav(1,3);
Mav(4,4)=doubleintegral((reshape(M_to_int(4,4,:,:).length_phi,iength_theta)),phi,theta);
Mav(5,5)=Mav(4,4);
Mav(6,6)=doubleintegral((reshape(M_to_int(6,6,:,:),length_phi,length_theta)),phi,theta);

function phi_theta_int_int = doubleintegral(function_phi_theta,phi,theta)
%Double integration of function(phi,theta) by Simpson's rule

% tnput function_phi_theta : A matrix representing a function of phi and theta

% phi,theta, © Vectors containing the variables over which the integration is to
% be performed. The elements in these vectors are equidistantly
%o spaced. Odd number of elements is required

% Output  Double integral of function_phi_theta over phi and theta

% Determine the amount of elements in 'phi’

dimension_phi = size(phi);

number_phi= dimension_phi(2); % number of variables in the vector phi
%Determine the low and high limits of integration over phi

lowlimit_phi =phi(1);

highlimit_phi=phi(number_phi);

%integration step size
d_phi=(highlimit_phi-lowlimit_phi)/(number_phi-1);

%Determine the amount of elements in 'theta’

dimension_theta = size(theta);

number_theta= dimension_theta(2);% number of variables in the vector theta
%Determine the low and high limits of integration over theta

lowlimit_theta =theta(1);

highlimit_theta=theta(number_theta);

%integration step size
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d_theta=(highlimit_theta-lowlimit_theta)/(number_theta-1);
theta_int=zeros(1,number_phi),

%Use Simpson's rule to calculate integral of integrand over theta
a=function_phi_theta*Simpsonmatrix(number_theta);

theta_int =(d_theta/3)*sum(transpose(a)); % sum is summing the elements in each column
%(So we have to transpose to sum on theta), and gives a row vector

% Use Simpson's rule to calculate integral of integrand over phi

b=theta_int*Simpsonmatrix(number_phi);
phi_theta_int_int =(d_phi/3)*sum(b);

B.4 References

[1] .M. Whitney and R.L. McCullough, Micromechanical Materials Modeling, Technomic,
Lancaster, USA, 1990.



Appendix C

Universal use of composite models

Different theories for mechanical, dielectrical and transport properties of composites have a
common theoretical origin since they all are based on the Laplace equation. Since they have
the same theoretical background they can be unified to one common expression. In doing so
the Halpin-Tsai equations are proven to be theoretically correct. The factor {=3/4 w/t
introduced in Chapter 3 to calculate the in-plane shear modulus of composites with aligned
platclets will be derived thcoretically.

C.1 Models for mechanical, dielectrical and transport properties
The Halpin-Tsai equations of Eqns 3.13 and 3.14 can also be written as:

M i C.1)

M, M, 1
M, -M, +(1+¢]““c)

where M is the composite modulus, ¢ is the concentration of filler and {'is the shape factor.
Indices m and r denote matrix and reinforcing phase respectively. Provided Ax = 1/1+4), this
equation is analogous to the Maxwell-Garnett equation [1-3] derived for the dielectric
constant of a two-phase composite filled with oriented spheroids:

£ 14 r ¢ C.2)
Em —m 44, (1-c)
E —&

r m

here &1is the dielectric constant and 4 is a shape factor.

Using Eshelby and Mori-Tanaka theories, Tandon and Weng [4] derived an analytical
expression for the shear modulus of a composite filled with aligned isotropic spheroids. If the
axis of symmetry of the spheroids is parallel to the 3-axis of the composite, the shear modulus
in the plane perpendicular to the 3-axis is given by:

%=1+ G ¢ C3)
" E__MG_"' 2P,.(-¢)

r "
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Py;;; is an element of the Eshelby tensor given in Appendix A. Equation C3) is equivalent to
the Halpin-Tsai equation if 2P;2;, = 1/(1+C). For platelets with tw<<l1, 2P;2;2 reduces to:

1 1
2P, sl | ——————— C4
1212 A(Z 16(1—0,,,)) )
. . s . . wl6 1-v
Halpin-Tsai and Tandon and Weng’s equations for platelets coincide if { = T—#
z 7-8v,

Using the fact that 0 <v,, <0.5 it can easily be shown that: 0.73%<§' < 0,85%. This is

closeto £ = %% which was found by fitting in Chapter 3.

Hatta’s equation for thermal conductivity [5] is also equivalent to the Halpin-Tsai
equation, providing S; =1/(1+¢):

% S — ¢ =123 C.5)
n R 48.(-0)
(K, -K,)

As was shown in Chapter 10 Hatta’s equation can also be used for mass transport by replacing
the thermal conductivity K by the mass permeability P.

C.2 Conclusions

Provided the correct shape factor is taken, Halpin-Tsai’s model is found to be equivalent to
Maxwell Garnett’s model for the dielectric constant, to Mori-Tanaka’s model for the shear
modulus and to Hatta’s model for the thermal conductivity and mass permeability.

By exploring this similarity, the shape factor = 0.75 found by fitting in Chapter 3 for
the in-plane shear modulus of aligned platelet reinforced composites, could be derived
theoretically.

C.3 References

[1] C.J.F. Béottcher and P. Bordewijk, Theory of Electric Polarization, vol. 2, Elsevier,
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[2] P.A.M. Steeman, Interfacial Phenomena in polymer systems, A dielectric approach, PhD
Thesis, Technical University of Delft, 1992

[3] A. Boersma, A Dielectric Study on the Microstructure in Polymers and Blends;
Orientation, Crystallization and Interfacial Phenomena in a Liquid Crystalline Polymer and
its Blends, PhD Thesis, Technical University of Delft, 1998

[4] G.P. Tandon and G.J. Weng, The Effect of Aspect Ratio of Inclusions on the Elastic
Properties of Unidirectionally Aligned Composites, Pol. Composites 5(4), 1984, p 327-333
[5] Hatta H., Taya M., Kulacki F.A., Harder J.F., Thermal diffusion of composites with
various types of filler, J. Comp. Mat. 26(5), 1992 , p 612-625




Appendix D

Errors 1in data analysis of
nanocomposite TEM images

D.1 Determining the volume fraction from TEM images

According to the theorems of Delesse (1847), Rosiwall (1898) and Glagoleff (1933) [1] the
volume fraction (@) of a component can be calculated from the corresponding area fraction
(@4) of this component in a plane that intersects the whole material. The area fraction, for its
turn, can be determined from the corresponding fractional length (@) of a line drawn in the
plane. That is:

P =0.,=0, D.I)

Since the thickness of a ultramicrotomed section (about 70 nm) has the same order of
magnitude as the size of a clay platelet (1-500 nm) a TEM image will always contain more
platelets than actually intersect the upper plane of the section. As can be concluded from

figure D.1, the amount of platelets in a TEM section is increased if the thickness of the
section increases.

¢ \\x/ )
o V\W -
AN

Figure D.1 The amount of clay particles in a TEM coupe is larger
than the amount of particles that intersect the upper plane.

The apparent volume fraction of platelets in the TEM images of the PA6
nanocomposites is estimated using the fractional length method described above. A line was
drawn perpendicular to the orientation direction of the section. The fractional length is
determined by counting the amount of intersects of a line drawn on the TEM image. The
fractional length of all the intersecting platelets is equal to:
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= L
P, == D.2
b 4 Lsing, )

where n is the number of intersecting platelets, L, is the thickness of the n-th intersecting
platelet, L is the total length of the line drawn on the TEM image and &, is the angle between

the n-th intersecting platelet and the line drawn on the TEM image. If the section is perfectly
oriented and &, = 90°, Eqn. D.2) reduces to,

nd
o= D.3)

where d is the thickness of a single clay platelet, which is 1nm for clay. In a not perfectly
oriented nanocomposite Eqn. D.3) underestimates the true fractional length. By drawing a line
perpendicular to the orientation direction of the platelets, Eqn. D.3) was used to calculate the
volume fraction of clay platelets in the PA6 nanocomposites. The apparent distance between
platelets was estimated by: -

D=(L-nd)y/n="—4 D.4)

L

The calculated volume fractions @, and the average apparent distance between platelets Dof
the PA6-nanocomposites are listed in table D.1

Weight fraction | True volume | Calculated particle | Estimated volume | Measured particle
of silicate fraction of distance D, fraction of silicate | distance D,

silicate nm from TEM nm

0.002 0.0008 1250 - 1350

0.01 0.004 250 0.004 256

0.025 0.01 100 0.01 71

0.05 0.02 50 0.04 25

0.075 0.03 33 0.07 13

0.10 0.05 20 0.06 15

0.15 0.07 14 0.13 7

0.20 0.10 10 0.19 4

Table D.1 Estimated volume fraction and interparticle distance
obtained by the ‘fractional length’ method

It can be concluded from Table D.1. that the volume fraction of platelets, calculated by
the ‘fractional length’ method, is equal or larger than the true volume fraction. This illustrates
the earlier statement that the amount of platelets seen on a TEM image is larger than the
amount of platelets intersecting the upper plane. Of course this is due to the finite thickness of
the section.
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D.2 Why are clay platelets depicted as single lines in a TEM image?

The contrast in TEM images is usually formed by the absorption of scattered electrons in the
object and in the objective lens aperture. This contrast is known as amplitude contrast because
it decreases the amplitude of the transmitted wave. Amplitude contrast of thick amorphous
objects such as microtomed sections is determined by the projected electrostatic potential
(electrons and nuclei). For specimen without too much hydrogen this is proportional to the
mass thickness (=density X thickness of the object). Since a clay platelet has a thickness of
only 1 nanometer, the local mass thickness of a TEM section with a thickness of about 70
nanometers, is only marginally increased if the clay platelet lies perpendicular to the electron
beam.

According to mass thickness, a clay platelet would only be represented as a single
sharp line, if it were perfectly flat and parallel to the electron beam. In not perfectly oriented
samples, one would expect that only a very small portion of the platelets line up perfectly
with the electron beam. So according to this reasoning only a low portion of the platelets
would be visible as sharp lines and most platelets would appear as vague light grey areas.

In the previous section only sharp lines were counted to determine the amount of platelets in a
coupe. Judging from Table D.1 the volume fraction of platelets that appear as sharp lines is
rather high. Since the samples are compression moulded, the clay platelets are not perfectly
oriented and they are not perfectly flat. Therefore one would expect a much lower amount of
sharp lines as are actually observed. So, in nanocomposites, another mechanism than
amplitude contrast must be responsible for the imaging of the platelets.

A possible mechanism is diffraction of electrons by the crystalline clay platelets in
well-defined directions (given by the angle, ). According to Bragg's law this angle depends
on the electron wavelength and the crystal lattice spacing:

2dsinf=mA D.4)

where m = an integer, 4= the electron wavelength, d = the crystal lattice spacing between
atomic planes and @ = the angle of incidence (angle with the plane, not with the normal)

e

1d

Figure D.2 Bragg'’s law

This relation gives the conditions for constructive interference of the scattered electron waves.
For example, with 120 kV electrons, (4= 0.0033 nm) and a d-spacing for a clay platelet of 1
nm, sin@ = 0.00165 and the Bragg’s angle 8 = 0.095°.

So only those parts of a clay platelet that are nearly parallel (8 = 0.095°) to the
incident beam will diffract the electron beam and show up dark in a TEM image. The
reflected beam makes an angle 26 (=0.2°) with the incident beam and it is filtered from the
image by a properly chosen objective aperture. The Bragg’s condition is somewhat relaxed by
the shape transform (spikes) of the platelets, so that it may readily be assumed that for
generally curved specimen there will always be at least one line of unit cells in the proper
Bragg orientation.
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On the surface of a wavy clay crystal more than one line of unit cells can exist, in the proper
Bragg orientation. This leads to multiple parallel lines on e TEM image that originate from a
single clay particle, as is shown in Fig. D.3.

wavy clay

platel§:~~ TEM

Image

Beam of electrons

7% Dark line on
TEM image

Figure D.3 A wavy clay particle with 4 places that are in the
Bragg orientation gives 4 parallel dark lines on a TEM image.

D.3 Conclusions

All complications mentioned above, makes it difficult to perform a quantitative analysis on
TEM images of nanocomposites. Therefore TEM images are not suited to quantify the
volume fraction or the distance between clay platelets. However, TEM is a valuable tool to
determine the length of the clay platelets and to qualitatively check the extent of exfoliation
and orientation of clay platelets in a nanocomposite.

[1] G. Kampf, Characterization of Plastics by Physical Methods,; Experimental Techniques
and Practical Application, Hanser, Munich, 1986




Appendix E
Time and frequency response of
composites

Composite mixture formulae are often derived to solve the static response of composites. The
question now arises how to calculate the viscoelastic response of composites. The answer to
this problem can be found in a combination of Laplace and Fourier analysis and in the elastic-
viscoelastic correspondence principle [1] as will be explained below.

E.1. Linear systems and Fourier or Laplace transformation

A linear viscoelastic material is a linear system. A fundamental property of a linear system is
that sine waves and, exponential growing or decaying signals do not change their waveform
when they pass through the system. They merely change their amplitude and phase. The
relationship between complex exponential and sinusoidal signals is expressed by Euler’s
identity:

e’™ =cosat + jsinax E.1)
which for complex s=r+j@ is written as:
e =e™ ™ =¢" (cosax + jsinaxt) E.2)

If a linear system with a transfer function H{s) receives an input signal a.e* it will produce an
output signal Hfs).a.e™. More generally any input signal that is a linear combination of

n n
complex exponentials f(f) = Zaie"’ will produce an output r(f) = Zbia,.e“‘ which is also
=l i=l
a linear combination of the same complex exponentials. This property of linear systems is the
basis of the Laplace transformation:

f()=-— j”’ F(s)e"ds, F(s)=[_ f(t)e™dt E.3)
2 jir-ie —o

where F(s) is the Laplace transform of the input signal f{#). A convenient way to use Laplace
transformation is to characterise the system under study by its response A(?) to a Dirac pulse &.
It can be shown that if we transform the signals f{#), h(¢) and r(#) into their Laplace transforms
F(s), H(s) and R(s), then
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214 Time and frequency response of composites

R(s) = H(s).F(s) E.4)

From which the time response r(#) can be calculated by inverse Laplace transformation of
R(s). Alternatively the reponse to a unit step C(#) can also be used to characterise the system:

H(s) =sC(s) E.5)

A special case of Laplace transformation, also known as Fourier transformation, can be used
if the input signal is periodic. In that case s can be written as s = j giving:

f(t )=lj° F(o)edo, a(w)=|" f(t)e"™dt E.6)
2 I —0

where F(a) is the Fourier transform of the input signal f{#). To use Fourier transformation the
input signal must in principle be periodical. The applicability of Fourier transformation is
broader though than purely periodical signals, since any non-periodic function of finite
duration can be represented by a periodic function.

So the response to an arbitrary input signal can be calculated either by Laplace
transformation or by Fourier transformation. To use Laplace transformation the response of
the system A(®) to a Dirac pulse or to a unit step C(?) should be known, while for Fourier
transformation knowledge of the complex frequency response R(a@) is required. Either h(2),
C(1) or R(@w) completely characterise the viscoelastic response of a material.

E.2. The correspondence principle

Given the solution for the static problem, it proves to be remarkably simple to calculate the
viscoelastic response of a composite. Christensen [1] showed that the transfer function H{s) of
the composite can be calculated by replacing all elastic moduli C; in the mixture formule by
sCy(s). The time response can then be calculated by taking the inverse Laplace transform of
equation E.4. If the input signal is a periodic function the solution is even simpler. Static
elastic solutions can be converted to viscoelastic solutions by simply replacing the static
moduli C in the mixture formulae by their complex counterpart C*=C*+iC” (E becomes E’ +
iE”, abecomes @’ + ia”, € becomes ¢ - ig ” etc).

E.3. Practical calculation of the time response of composites

The correspondence principle gives a direct solution to determine the frequency response of a
composite. This solution works in practice and does not need further explanation.
Determination of the time response of a composite proves to be not so simple in practice. For
example let us try to find to find the stress-response of a composite after a step in deformation
(stress-relaxation experiment). We are thus looking for the stress relaxation function C.(#) of
the composite. Let us suppose that either the frequency response Ci{@) or the stress relaxation
functions Ci(#) of the phases are determined by measurement.

In the route to find C.() two cases should be distinguished, the case that the analytical
expression for the mixture formula is simple and the case that no analytical expression is
known or too complicated.
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For simplicity let us use the mixture formula for a parallel connection of two phases:
C =cC +c,C,

Suppose we know the stress relaxation moduli of the phases Cu#) and Cy(®) and want to
calculate the stress relaxation modulus of the composite C.f). To perform Laplacc
transformation we first fit the stress relaxation moduli Ci(#) by a polynomial function:

Ci(t) = ajpta;t + a;2t2+ a,-3t” + a,«4t4+ vees

Since in most cases Cy(?) is a smooth slowly changing function, the polynomial fit can
be made rather accurately without using an excessive number of coefficients. Laplace
transformation of Cy#) gives:

a. a. a. a. a.
C(s)=—+—Lpn 243Dty
s s N N s

Replacing every C; in the mixture formula by sC(s) gives:

C.(s)=c,C,(s)+c,C,(s)=

rro

€80+ Cllmy | €8, +Cp8 ca,+c,a,, €8,y +Cplls

rrl2mm1_|,_2!rr23 +3!rr34 .....
s s A s

after inverse Laplace transformation this gives
C.(t)=(ca,+c,a,)+(ca, +ec,a, t+(ca,,+ca,,)t’ +(ca,,+c,a, )t +... =
c,C(t)+c,C, (1)

This example of an extremely simple composite illustrates the complications involved in
Laplace and inverse Laplace transformation of mixture formulae. It proves to be relatively
easy to obtain an expression in s for the Laplace transform of the composite. Finding the time
response by inverse Laplace transformation is more difficult. If the mixture formulae are not
too complicated, computer programs that perform symbolic algebra should be able to give an
analytical expression for C,(2) expressed as a polynomial in .

By fitting Ci(r) by a sum of exponentials the inverse Laplace transformation will
probably be easier to perform than with a polynomial fit.

If no analytical expression of the composite mixture formula is known or if the
analytical expression is too complicated the above mentioned route can not be used. In that
case it is better to switch to Fourier transformation.

E.4 References

[1]1 R-M. Christensen, Mechanics of composite materials, Wiley, New York 1979, p 17 and p
288.






2D
2M2HT
3D
6T6I
CLTE
DMA
DMS
DRS
DSC
EP

FE
FTIR
HDPE
IPP
LDPE
LLDPE
MEE
MSF
NMR
PA

PE
PE-g-MA
PVC
RVE
TEM
VFT
vol%
wt%

List of abbreviations

Two Dimensional.
di-Methyl-di-Halogenated-Tallow Ammonium.
Three Dimensional.
6-Terephthalic/6-Isophthalic acid.
Coefficient of Linear Thermal Expansion.
Dynamic Mechanical Analysis.

Dynamic Mcchanical Spectroscopy.
Dielectric Relaxation Spectroscopy.
Differential Scanning Calorimetry.
Electrode Polarisation.

Finite Element.

Fourier Transform Infrared.

High Density Polyethylene.

Isotactic Polypropylene.

Low Density Polyethylene.

Linear Low Density Polyethylene.
Maximum Melt Extensibility.

Maximum Spin Force (=melt strength).
Nuclear Magnetic Resonance.

Polyamide.

Polyethylene.

Polyethylene grafted with Maleic Anhydride.
Poly (Vinyl Chloride).

Representative Volume Element.
Transmission Electron Microscopy.
Vogel-Fulcher-Tammann.

Volume percent.

Weight percent.

217






Symbol

A
@ a; a4
Ager

Acnnmﬂ

B

Cm

Cr

Ciju

C. Cu C:

Em Er
E random 2D
Erandum 3D

g
G* Gy
G)

”

L9
3
Q

X

STl

;

P. P, P,
P2 P4
P, P
R.(®)
sabcd

Sc Sm S,
Sn

List of symbols

Description

Strain concentration tensor.

0" 2™ and 4™ coefficients of the Legendre polynomial.
BET-Surface area.

Surface area of filler in contact with the polymer.

Stress concentration tensor.

Volume fraction of polymer.

Volume fraction of filler.

Component of stiffness tensor.

Stiftness tensor of composite (c), polymer (m) or filler. (r).
Component of stiffness matrix.

Diameter of fibre.

Diffusivity.

Diffusivity of polymer (m) or filler (r).

Perpendicular or lowest Young’s modulus.

Parallel or highest Young’s modulus.

Storage Young’s modulus.

Loss Young’s modulus.

Dielectric activation energy.

Young’s modulus in x direction.

Young’s modulus of polymer (m) or filler (r).

Young’s modulus after randomisation in two directions.
Young’s modulus after randomisation in three directions.
Distance between the ends of inclusions.

Dynamic shear modulus = (G’+G”)"*.

Storage shear modulus.

Loss shear modulus.

Shear modulus in xy-plane.

Shear modulus of composite (c), polymer (m) or filler (r).
Change in Enthalpy.

Identity tensor.

Bolzmann’s constant.

Bulk modulus of polymer (m) or filler (r).

Length of fibre.

Long length of inclusion.

Long length of unit cell.

Length of diffusion path in absence of platelets.

Length of diffusion path.

Mass increase.

Maximum mass increase.

Permeability of composite (c), polymer (m) or filler (r).
2" and 4™ terms of Legendre polynomial.

Eshelby’s tensor.

Rotation matrix.

Component of compliance tensor.

Compliance tensor of composite (c), polymer (m) or filler (r).
Component of compliance matrix.

SI-Unit

[-]

-1,
[m/g]
[m2/g]
[-]

[-]

[-1
(N/m’]
[N/m~]
[N/m:]
[m;
[mj/s]
[m*/s]
[N/m’]
[(N/m’]
[N/m’]
[N/m?]
(9]
[N/mf]
[N/m’]
[N/m’]
[N/m?]
(m]
[N/m’]
[N/m’]
[N/m’]
[N/m?]
[N/m’]
[V/g]
[-]
[J/K]
[N/m’]
[m]
[m]
[m]
[m]
[m]
[kg]
[kg]
[kg/ms]
[-]

(-1

-1,
[m/N]
[m*/N]
[m*/N]
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T Temperature. K]

(1] Rotation transformation matrix. -]

t Thickness of platelet, time. [m], [s]
T, NMR relaxation times of spin-lattice relaxations. [s]

T; NMR relaxation times of spin-spin relaxations. [s]

T, Glass transition temperature. K]

T Melting temperature. Kj

T, Vogel-Fulcher-Tammann temperature. [K]

w Width of platelet. [m]
W] Matrix to transform tensor strain in engineering strain. [

e XXV Orientation function. [-]

a Aspect ratio of inclusion (V/d for fibres ; w/t or t/w for platelets). [-]

a; Thermal expansion coefficient in perpendicular direction. [1/K}
7 Thermal expansion coefficient in parallel direction. [1/K]
a; Thermal expansion coefficient in ij-direction. [1/K]
B Permeability ratio, shape factor. [-1, [-]
g Real part of complex dielectric constant. -]

&” Imaginary part of complex dielectric constant. -]

Eo High frequency dielectric constant. [-]

&* Complex dielectric constant. [-]

Eab Component of tensor strain. [-]

&n Component of engineering strain. [-]

& &m & Strain of composite (c), polymer (m) or filler (r). -1

4 Shear deformation. [-]

¥ Shear rate. [1/s]
o Dynamic shear viscosity. [Ns/m’]
v Poisson’s ratio. [-1

Ves Vi, Vi Poisson’s ratio of composite (c), polymer (m) or filler (r). [-]

P Density. [kg/m’]
c Normal stress or shear stress. [N/m?]
Oup Component of tensor stress. [N/m?]
On Component of engineering stress. [N/m?]
T Dielectric relaxation time. [s]

T Shortest possible dielectric relaxation time. [s]

@ Radial frequency. [1/5]
w5 Component of rotation matrix. -]

I Shape factor in Halpin-Tsai equation. [-]

0 Rotation matrix. [-]




Samenvatting

Wat is een polymeer-klei nanocomposiet?

Door een polymeer te vullen met klei kan een materiaal ontstaan met een hoge stijfheid en een
lage doorlaatbaarheid voor vloeistoffen en gassen. De beste eigenschappen ontstaan als de
klei volledig geexfolieerd is. In dat geval is de klei zodanig goed opgebroken dat er nog
slechts losse primaire kleiplaatjes aanwezig zijn van 1 nanometer dik en ongeveer 100
nanometer lang. In dat geval wordt er gesproken van polymeer-klei nanocomposieten. Tijdens
het verdelen van de klei in het polymeer worden de kleideeltje niet alleen veel kleiner, maar
verandert ook hun vorm van kubische blokjes naar slanke plaatjes. De kleiplaatjes hebben
door hun kleine afmetingen een groot specifiek oppervlak van ongeveer 700 m’/gram. Als
gevolg van de extreem kleine afmetingen van de kleiplaatjes zijn ook de afstanden tussen de
plaatjes in een nanocomposiet zeer klein. Deze afstanden bedragen ongeveer 250 nanometer
bij een vulling van 1 gewichtsprocent en slechts 10 nanometer bij een vulling van 20
gewichtsprocent.

Waarom hebben nanocomposieten goede eigenschappen?

In de wetenschappelijke literatuur worden de goede eigenschappen van polymeer-klei
nanocomposieten vaak toegeschreven aan de extreem kleine afmetingen van de kleiplaatjes.
De redenering is dat in een nanocomposiet een groot deel van de polymeermoleculen in direct
contact staat met de kleiplaatjes. Dit verandert het gedrag van de polymeer moleculen zodanig
dat het nanocomposiet de eerder vernoemde eigenschappen krijgt. Volgens deze redenering is
de slankheid van de kleiplaatjes van ondergeschikt belang.

Twijfel aan deze redenering vormde de aanzet tot het hier beschreven onderzoek. De
twijfel was ingegeven door de wetenschap dat de eigenschappen van gewone
(micro)composieten met vezels of plaatjes van enkele micrometers of groter, vooral een
gevolg zijn van de slanke vorm en niet van de absolute grootte van de vezels of plaatjes.
Verder was het bekend dat de geadsorbeerde polymere fase aan het oppervlak van een vulstof
gewoonlijk een dikte heeft van 1 tot 5 nanometer. In conventionele nanocomposieten met
afstanden tussen de kleiplaatjes van ongeveer 100 nanometer, zou men dus mogen
verwachten dat deze geadsorbeerde fase maar een bescheiden rol speelt.

In dit proefschrift wordt besproken welke eigenschappen van polymeer-klei
nanocomposieten het gevolg zijn van de kleine afimetingen (hoog specifiek opperviak) en
welke van de slanke vorm van de kleiplaatjes.

De invloed van deecltjesvorm en deeltjesgrootte op de eigenschappen van
nanocomposieten kan onderscheiden worden door de eigenschappen van nanocomposieten te
vergelijken met die van microcomposieten of met de uitkomsten van micromechanische
composiet berekeningen.

Micaplaatjes lijken qua vorm en kristalstructuur zeer veel op primaire klei-plaatjes.
Alleen hun absolute afmetingen zijn ongeveer een factor 1000 groter. Vandaar dat de
microcomposieten die als referentie gebruikt worden in dit proefschrift meestal micaplaatjes
bevatten. Aangezien de slankheid van de micaplaatjes altijd wel iets verschilt van die van de
kleiplaatjes, is een directe vergelijking van eigenschappen moeilijk.

Voor een wetenschappelijk juiste vergelijking van de eigenschappen van
nanocomposieten met die van microcomposieten worden daarom mathematische
composietmodellen gebruikt. Met composietmodellen kunnen de eigenschappen van een
composiet berekend worden.
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Doelstellingen van dit proefschrift

e Uitzoeken welke eigenschappen van polymeer-klei nanocomposieten het gevolg zijn van
de kleine afmetingen en welke van de slankheid van de klei-plaatjes.

¢ Ontwikkelen en toetsen van composietmodellen voor de berekening van de elastische en
barriére eigenschappen van met plaatjes gevulde composieten.

e In kaart brengen hoe kleiplaatjes de eigenschappen van polymeer-klei nanocomposieten
beinvloeden, zoals stijfheid, thermische uitzetting, kristallisatie, gasdiffusie, reologie en
diélektrische relaxatie.

e Inzicht krijgen in de verschillen tussen nanocomposieten en microcomposieten, door
directe vergelijking van hun eigenschappen en door toepassen van composietmodellen.

Ontwikkeling en toetsing van een mechanisch composietmodel voor plaatjes versterking
Voor berekening van de stijfheid en thermische uitzetting van met plaatjes versterkte
polymeren is gekozen voor het Mori-Tanaka model. In principe is dit analytische
micromechanische model alleen geschikt voor composieten met perfect georiénteerde
plaatjes. Met behulp van een oriéntatie-distributiefunctie kan ook rekening gehouden worden
met willekeurig geori€nteerde plaatjes.

Omdat het praktische gebruik van het Mori-Tanaka model en van de oriéntatie-
distributie functie nogal omslachtig is, worden er ook enkele vereenvoudigde theorieén
geintroduceerd. Hiermee is het mogelijk om snel en relatief nauwkeurig
composietberekeningen te doen.

Om de deugdelijkheid van het Mori-Tanaka model te toetsen zijn de uitkomsten van
dit model vergeleken met experimentele gegevens van microcomposieten. Ook zijn de
uitkomsten vergeleken met berekeningen van een op eindige elementen gebaseerd model. Het
blijkt uit beide gevallen dat met het Mori-Tanaka model goede voorspellingen gedaan kunnen
worden van de stijfheid en de thermische uitzetting van met plaatjes gevulde composieten.

Morfologie van nanocomposieten en mobiliteit van de polymere fase

Er zijn twee series nanocomposieten gemaakt door polyamide-6 of polyetheen samen met klei
te extruderen. De klei was van tevoren zodanig behandeld dat deze goed in de polymeren zou
verdelen. In de serie met polyamide-6 is de hoeveelheid klei gevarieerd en in de serie met
polyetheen de slankheid van de kleiplaatjes.

De vorm en verdeling van kleiplaatjes in de polymeren is zichtbaar gemaakt met
transmissie elektronen microscopie (TEM). Uit een kritische analyse blijkt dat de zwarte
streepjes in TEM foto’s van polymeer-klei nanocomposieten geen directe afbeelding van de
kleiplaatjes betreft, maar een elektronen diffractiepatroon. Voorzichtigheid is daarom geboden
bij de interpretatie van TEM foto’s van polymeer-klei nanocomposieten.

De mobiliteit van de polymere fase in nanocomposieten werd onderzocht met proton
vaste stof nuclecaire magnetische resonantie (NMR). Het blijkt dat een deel van de polymere
fase in polyamide-6-klei nanocomposieten net zo beweeglijk is als een laagmoleculaire
vioeistof. De hoeveelheid polymeer met hoge beweeglijkheid stijgt naarmate de hoeveelheid
klei toeneemt. Bij 20% klei is ongeveer 10% van de polyamide-6 in het nanocomposiet zo
beweeglijk als een vloeistof.

Thermisch gedrag van nanocomposieten

Het kristallisatie- en het smeltgedrag van PA6 en PE-nanocomposieten is onderzocht met
differentiéle scanning calorimetric (DSC) en met infrarood spectroscopie. Met DSC is
gemeten bij welke temperatuur de nanocomposieten smelten en met infrarood spectroscopie
werd de kristalvorm bepaald.
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De onderzochte polyamide-6 nanocomposieten blijken drie verschillende smeltpunten
te vertonen. Normaal gesproken bevat polyamide-6 uitsluitend o-kristallijn materiaal dat
smelt rond 225°C. Door toevoegen van klei ontstaan er twee nieuwe kristallijne fasen met
smeltpunten beneden en boven die van de o-kristallijne fase. Het smeltpunt van de
laagsmeltende fase ligt bij 212°C en dat van de hoog smeltende fase bij 240 °C. De
laagsmeltende fase is al vermeld in de wetenschappelijke literatuur en wordt tocgekend aan y-
kristallijn materiaal.

De hoog smeltende fase was nog niet eerder beschreven. Uit infrarood spectroscopie
blijkt dat deze fase ook bestaat uit y-kristallijn materiaal. Het hoge smeltpunt ontstaat
waarschijnlijk doordat een deel van de y-kristallijne fase opgesloten zit tussen de kleiplaatjes
en daardoor een beperkte bewegingsvrijheid ervaart. Hierdoor is er een hogere temperatuur
nodig om dit deel van de y-kristallijne fase te laten smelten. (Tm = AH/AS, AS daalt dus Tm
stijgt).

Diélektrisch gedrag van nanocomposieten

De mobiliteit en de relaxatiemechanismen van de polymere fase in polyamide-6
nanocomposieten is bepaald met diélektrische relaxatie spectroscopie (DRS). Hiertoc zijn
metingen gedaan met frequenties tussen 0,11 en 960 kHz. en temperaturen tussen —130 en
200°C.

Het belangrijkste verschil met ongevuld polyamide-6 is dat de nanocomposieten een
tweede glasovergang vertonen welke ongeveer 40°C beneden de normale glasovergang ligt.
De sterkte van deze overgang neemt toe naarmate de hoeveelheid klei toeneemt. Deze
overgang wordt ook waargenomen met dynamisch mechanische analyse (DMA).

Uit bestudering van de activeringsenergie kan worden geconcludeerd dat opsluiting
van polymeermoleculen een relatief begrip is en bepaald wordt door de frequentie en de
temperatuur van de meting. Bij hoge frequenties of lage temperaturen voelt het polymeer zich
niet opgesloten omdat de meeste beweging dan plaatsvindt over een lengte die kleiner is dan
de afstand tussen de kleiplaatjes. Opsluiting wordt pas waargenomen bij lage frequenties en
hoge temperaturen als de beweging plaatsvindt over een lengte die groter is dan de afstand
tussen de kleiplaatjes.

Stijfheid en thermische uitzetting van nanocomposieten
De stijfheid van polyamide-6-klei en polyetheen-klei nanocomposieten werd bepaald met
dynamisch mechanische thermische analyse (DMA) en door trekproeven. Beide types
nanocomposieten worden stijver door toevoeging van klei.

Bij lage hoeveelheden klei (<5 gewichtsprocent) komt de stijftheid overeen met die van
mica microcomposieten en met de eigenschappen die voorspeld worden door
composietmodellen. Uit de metingen en de composietberekeningen blijkt dat de hoge stijfheid
van nanocomposieten een gevolg is van de hoge slankheid en niet van de kleine afmetingen
van de kleiplaatjes.

De stijfheid van nanocomposieten met meer dan 10 gewichts procent (wt%) klei is
lager dan die van vergelijkbare mica-composieten en ook lager dan voorspeld wordt door
composietmodellen. Deze lage effectiviteit van de kleiplaatjes bij hoge vulfracties wordt
toegeschreven aan de kleinere afstand tussen kleiplaatjes zoals ook met transmissie electronen
microscopie wordt waargenomen. Bijvoorbeeld, boven 10 wt% klei is de afstand tussen de
kleiplaatjes kleiner dan 20 nanometer. Hierdoor neemt de effectieve slankheid van de
kleiplaatjes af, terwijl gelijkertijd een hoog mobiele fase verschijnt in de beperkte ruimte
tussen de kleiplaatjes. Opsluiting van het polymeer tussen de kleiplaatjes leidt ook tot een
lagere kristalliniteit en een lagere kristalperfectie. Al deze effecten kunnen alleen maar
resulteren in een lagere stijfheid van het nanocomposiet tot gevolg hebben. In tegenstelling tot
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beweringen in de wetenschappelijke literatuur laten de metingen zien dat de stijfheid van het
nanocomposiet daalt door opsluiting van het polymeer tussen de kleiplaatjes.

Uit theoretische beschouwingen blijkt dat de thermische uitzettingscoéfficient van een
composiet direct gerelateerd is aan de stijfheid van het composiet. Hoe stijver het composiet
is hoe minder het zal uitzetten, terwijl het composiet het meeste zal uitzetten in de richting
met de laagste stijfheid. Het blijkt dat de theorie een nauwkeurige voorspelling geeft van de
relatie tussen de stijfheid en de thermische uitzetting van polyamide-6-klei nanocomposieten.

Barriére eigenschappen van nanocomposieten

Het is bekend dat kleiplaatjes de doorlaatbaarheid van gassen en vloeistoffen door
nanocomposieten verlagen. Om uit te zoeken welke mechanismen hiervoor verantwoordelijk
zijn werd de wateropname van een serie polyamide-6-klei nanocomposieten gemeten. De
diffusiecoéfficient is bepaald aan de hand van eenvoudige Fickse diffussie.

De doorlaatbaarheid van polymeer-klei nanocomposieten is vergeleken met
voorspellingen van composietmodellen. Verschillende modellen zijn hiertoe beschouwd
welke de doorlaatbaarheid relateren aan de morfologie van meerfasige materialen. Omdat
geen enkel model in staat is om de doorlaatbaarheid van plaatjes gevulde composieten bij
hoge volume fracties te voorspellen werd er een nieuw model geintroduceerd. Dit model is
een combinatie van het model van Brydges, dat geschikt is voor composieten met linten, en
het model van Hatta, dat geschikt is voor plaatjes bij lage volume fracties. De resultaten van
dit nieuwe model komen overeen met de resultaten van eindige elementen berekeningen.

Door aanpassing van Nielsens transportmodel wordt een theorie afgeleid om het effect
van niet perfecte oriéntatiec van kleiplaatjes te verdisconteren. Het blijkt dat de
doorlaatbaarheid van polyamide-6-klei nanocomposieten goed overeenkomt met de
voorspellingen van de modellen van Nielsen en Hatta. De goede overeenkomst tussen model
en experiment geeft aan dat de doorlaatbaarheid voornamelijk bepaald wordt door de
slankheid van de kleiplaatjes, de deeltjesgrootte van de kleiplaatjes is van ondergeschikt
belang.

Reologie van nanocomposieten

Het effect van afmeting en slankheid van deeltjes op het reologische gedrag van
nanocomposieten en microcomposieten werd onderzocht. Hiertoe zijn polyamide-6 en
polyetheen gevuld met bolletjes en plaatjes met afmetingen tussen 10 en 10 m. De reologie
van deze materialen werd bepaald onder afschuif en rek-deformatie. Het visco-elastiche
gedrag van polymeer nanocomposieten in de gesmolten fase blijkt zeer sterk te verschillen
van dat in de vaste fase. Zo blijkt, in tegenstelling tot vaste nanocomposieten, dat de visco-
elasticiteit van gesmolten nanocomposieten sterk afhankelijk is van de deeltjesgrootte, terwijl
de slankheid van de kleiplaatjes geen invloed heeft.

In tegenstelling tot microcomposieten blijken polymeer-klei nanocomposieten een
hoge smeltsterkte te hebben en een hoge viscositeit die niet verdwijnt onder grote
afschuifdeformatie. Twee mechanismen worden voorgesteld die deze effecten kwalitatief
kunnen verklaren: hechting van polymeerketens aan de kleiplaatjes en de vorming van een
elektrische dubbellaag op de kleiplaatjes.
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tavourable combimaton of properties. They consist of polvimers filled with clay
platelets. These clay-platelets are extremely small. Therr diameter 1s about TO(
nanometers while their thickness is close to I nanometer. henee the namg
nanocomposites. Polvmer-clay nanocomposites combine high stiffness and high
barrier resistance with a smooth surface and good processabilhity.

In this thesis various properties of nanocomposites are discussed. The author reacty
against statements in the scientific literature. that attribute the properties of poly-
mer nanocomposites to the high surface arca and small size of the clay platelets. By
comparing polvmer-clay nanocomposites with microcomposites it is shown how-
ever, that the shape of the clay particles is much more important than their size n
determining the high stiffness and high barrier resistance of polvmer-clay
1anocomposites.

Throughout this thesis. composite modelling is used as a tool to calculate the prop-
erties of polymer-clay nanocomposites. It allows a sound scientitic compartson of
properties of nanocomposites with those of microcomposites. Considerable eftort
has been put into the development ot a rehable composite model for platelet remn-
forcement.

Only at high loadings, above 10 weight pereent of clay and well outstde the rangg
of normal processable polymers. the size of the clay platelets becomes important,
At such loadings polvmer-clay nanocomposites show remarkable properties.




