
Type validation of Type4Py using Mypy

Merlijn Mac Gillavry
Supervisor(s): Amir M. Mir, Sebastian Proksch

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology, 
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
22-6-2022



Abstract

Researchers at the Delft University of Technology
have developed Type4Py: a tool that uses Machine
Learning to predict types for Python code. These
predictions can be applied by developers to their
python code to increase readability and can later be
tested by a type-checker for possible type-errors. If
a prediction does not return a type-error that pre-
diction is called type-correct. Type4Py has been
evaluated by matching its predictions with earlier
annotations, also called ground-truth, and has got-
ten an MRR of 71.7%. However, Type4Py’s pre-
dictions have not been evaluated on their type-
correctness. Therefore, I sought out to answer
the following research question: How well does
Type4Py perform when validated by the static type-
checker Mypy? I answered this research question
by answering two sub-questions: How many of
Type4Py’s predictions are type-correct? And how
many of Type4Py’s predictions are type-correct and
match ground-truth? I tested a cleaned subset
of the ManyTypes4Py dataset with Mypy by run-
ning a greedy strategy where I would always pick
Type4Py’s prediction with the highest confidence
on three different confidence thresholds: 0.25, 0.5
and 0.75 and reached accuracies in terms of type-
correctness of 88%, 91% and 95% for those, re-
spectively. For the case where Type4Py’s pre-
dictions matched ground-truth, the predictions on
those same thresholds reached accuracies in terms
of type-correctness of 95%, 97% and 98%. Com-
paring this with a similar Type predictor namely,
Typilus . Type4Py’s predictions are more type-
correct with a confidence level of at most 50%.

1 Introduction
Programming Languages can be divided into two main
categories. Namely, Dynamically-typed Programming
Languages (DPL’s) and Statically-typed Programming Lan-
guages (SPL’s). SPL’s check the code’s typing for mistakes
at compile time and return errors to the developer(s) before
running the program, which prevents these errors from
occurring while running the program and makes them less
error prone [1]. They do, however, require more overhead
in the form of added syntax that defines types of arguments/
variables and functions. DPL’s can be faster for developing
because of less overhead and are useful in prototyping by
not being rigid in terms of typing. DPL’s are, however, more
prone to having typing-related bugs at runtime, which in the
long-run can have negative effects on (developing) a program.

Researchers at the Delft University of Technology have
developed Type4Py: a tool that uses Machine Learning to
predict types for Python code [2]. Type4Py’s type prediction
could help in writing better readable, less error-prone and
better maintainable Python code. For evaluation Type4Py
used mean reciprocal rank (MRR) to reflect the quality

perceived by users for its type predictions and achieves an
impressive MRR of 71.1% [2].

While a MRR of 71.1% is a good evaluation method
for the usefulness for development, it does not constitute a
proof of Type4Py giving type-correct predictions. Therefore,
in this paper I have tried to answer the following research
question:

How well does Type4Py perform when validated by the
static type-checker Mypy?

This question can then be divided into two sub-questions:

1. How many of Type4Py’s predictions are type-correct
(giving no errors when checked by Mypy)? (RQ1)

2. How many of Type4Py’s predictions match ground-truth
(matching earlier type annotations of developers) and
are type-correct? (RQ2)

By answering this research question and its sub-questions,
new insights can be drawn about not only the validity
of Type4Py but also the future of tools like Type4Py in
programming and software engineering.

To answer these questions, the following methodology
was used. I used Type4Py’s pre-trained model to infer type
predictions on the ManyTypes4Py dataset. ManyTypes4Py
dataset is a massive python dataset containing source files
used for machine learning [3]. Then I compared these
predictions with earlier annotations and checked these
predictions with Mypy. This methodological approach has
given me a reproducible answer to the research questions. By
having done this in a reproducible manner, the experiments
and methodology in this paper can be used to also validate
future/improved versions of Type4Py.

The next section places this work in the context of ex-
isting research. After that, the methodology section gives a
more detailed description of the problem and the method that
was applied. Then, a Responsible Research section reflects
on the ethical aspects of the research and discusses repro-
ducibility. Evaluation Setup explains how I implemented the
methodology in practice by making a pipeline. Followed
by that, is an Evaluation and Results section that explains
the results that were acquired after running the experiments.
After that, a Discussion section reflects on potential faults
with the methodology. Finally, in the section Conclusion
and Future work, the research questions are answered and
recommendations for further research are made.

2 Related works
In this section MyType4Py is placed in the context and
background of existing research and contributions by the
scientific community. This section centers specifically
around Python’s relation with types but it’s important to
recognize that, in addition to these related works, there has
been a done a lot of research on other DPL’s such as Javascipt.



Python and types: In late 2014 PEP 484 was intro-
duced. PEP 484 (Type hints) was the proposal of introducing
optional type-annotations to python [4]. This proposal was
accepted and a year later python version 3.5 was released
which included optional type annotations and Mypy as an
optional static type-checker. Multiple algorithms for type
inference have been proposed such as Typette, A static
Inference for Python and Starkiller [5] [6] [7]. Static type
inference methods are, because of Python’s dynamic nature,
often unfeasible in practice. [8]

Machine learning for type inference: Another approach
for type inference in Python is with machine learning instead
of static type inference. For example, Typewriter which
infers type annotations for python by using a deep neural
network model that provides a rank list of k prediction
for missing type annotations in python source code [9]. A
problem with this approach is that it uses only a fixed number
of types which puts a huge constraint on the amount of types
the model can accurately predict. Moreover, user-defined
and rare types become very hard (sometimes impossible)
to predict with this approach. To mitigate this hinderance
Typilus was introduced which uses a graph neural network
(GNN)-based model for prediction and can discriminate
between similar and not similar symbols in terms of typing
[10]. Continuing in this approach researchers at Delft
University of Technology introduced Type4Py: A deep
similarity learning-based hierarchical neural network model
that uses two recurrent neural networks to discriminate
between similar and different types in a high-dimensional
space [2]. Unlike previous work Type4Py is trained on a
type-checked dataset namely, ManyTypes4Py [3] and was
evaluated with an MRR to show the useability perceived by
developers.

Static type checking for evaluating Type4Py: User-perceived
usability is, however, not a guarantee for type-correct code.
A developer can think their annotation is type-correct where
it is not. Therefore, in this research I have evaluated Type4Py
with a static type-checker, namely Mypy.

3 Methodology
This section details the methodology used to answer the re-
search questions. It starts with a listing of definitions and is
followed by a description of the overall methodology. After
that, specific details of the methodology used to answer each
sub-question is discussed.

3.1 Definitions
To answer the main research question and it’s sub-questions
it is first needed to set clear definitions:

• Type-correctness: A prediction is type-correct if Mypy
does not return an error on that prediction.

• Ground-truth: A prediction matches ground-truth if it is
an exact match of an already existing type annotation for
the predicted variable.

• Accuracy: Given a set of predictions the accuracy of that
set is calculated by dividing the amount of type-correct

predictions by the amount of total predictions. That is,
the Set P with Pc type-correct predictions and Pt total
predictions has an accuracy Pa described by equation 1:

Pa = Pc/Pt (1)

• Prediction Element: 3 different elements in python
source code can have type-annotations: Variables, Func-
tion return types and Function parameters, I will call
these from now on Prediction Elements.

• Confidence: A prediction made by Type4Py has a confi-
dence attached to it between 0 and 1, where a confidence
of 1 represents a maximum confidence of Type4Py in its
prediction.[2]

• prediction-slots: Type4Py can give more than 1 pre-
diction with varying confidences attached to those
predictions.[2] The full list of possible predictions per
prediction element are referred to as prediction-slots. [2]

• Prediction Strategy: Because Type4Py returns a set of
prediction-slots, I had to choose one specific prediction
of the prediction-slots to be tested. The strategy used to
choose from these prediction-slots will be subsequently
referred to as the prediction strategy.

• Threshold: A threshold of a prediction strategy would
be the minimum confidence needed for a prediction to
be chosen.

• Match Case: To make this research comparable with
previous research on Typilus [10] I grouped the predic-
tions for the prediction elements in three cases with re-
gards to existing type-annotations.

1. Empty: There was no previous type-annotation in
the source file for the prediction.

2. Match: The previous type-annotation in the source
file is exactly the same as the prediction.

3. Mismatch: The previous type-annotation in the
source file is not exactly the same as the prediction.

3.2 General Methodology
The methodology used to answer both research sub-questions
is largely the same.

Dataset: First, I selected a subset of type-checked
Python source code, namely a type-checked version of
the ManyTypes4Py Dataset [3]. The reason behind choosing
type-correct source-files was because it made it easier to
find errors produced by the predictions tested. If I had used
code that would already have a lot of errors when checked by
Mypy it could impact the results negatively, because it could
skew the results to lower accuracy due to existing type-errors

Type4Py: Then, I used Type4Py’s model to generate
predictions for these files. For each predictable element I got
a list of prediction-slots. [2].

P1 strategy: When I had to choose a prediction strategy for
picking predictions from the available prediction-slots. I



implemented a greedy prediction strategy I named P1 Strat-
egy. Because the prediction-slots from Type4Py are ordered
in descending confidence. I used the first prediction in the
prediction-slots on the hypothesis that higher confidence
would be generally more type-correct. The P1 Strategy also
has the added benefit that when comparing the evaluations
of Type4Py’s predictions with different thresholds, the set
of predictions with a lower threshold is a super set of the
predictions with higher thresholds. If we take for example
the following 3 predictions:

x: [(str, 0.8), (int, 0.6), (list, 0.4)]
y: [(int, 0.6), (str, 0.4)]
z: [(list, 0.4)]

and we run the P1 strategy with a threshold of 0.7, 0.5 and
0.3. The following predictions are chosen:

threshold: 0.7 0.5 0.3
x: (str, 0.8) (str, 0.8) (str, 0.8)
y: - (int, 0.6) (int, 0.6)
z: - - (list, 0.4)

If we would take two runs on different thresholds and denote
the set with a higher threshold as set A and the set with a
lower threshold as set B. It is clear that every prediction in
set A, with a confidence higher than set B, is in set B. In
this research, I applied the P1 Strategy with the following
thresholds: 0.25, 0.5, 0.75

Type application and Checking: Finally, the predictions
were applied to the source files and typechecked by Mypy.
The output was combined with other data, subsequently
referred to as meta-data about the predictions which includes
their confidence, Match case, what kind of Prediction
element they were and line-number in the source code.

3.3 Methodology used to answer RQ1
For research question 1 I wanted to know how accurate
Type4Py’s predictions were on the thresholds 0.25, 0.5, 0.75.
Because of me keeping meta-data of the predictions, I could
evaluate the results of different Prediction elements and see
if there were differences between those in terms of accuracy
and proportion. I was mainly interested in the Empty and
Mismatch cases because those are instances where Type4Py
might make better predictions than a developer or can help
developers make good type annotations. As a whole, the data
could help theorize about any correlation between a mini-
mum confidence (measured by using a threshold) and accu-
racy. Because I have used the P1 Strategy, I could also get
more exact results on accuracy in ranges of the following con-
fidence percentages: 25-50%, 50-75%. Which in turn could
give more information about accuracy regarding specific con-
fidence levels of Type4Py.

3.4 Methodology used to answer RQ2
For answering research question 2 I specifically focused on
the accuracy and proportion of the Match case. This gives in-
formation about how type-correct Type4Py is when it is also
matching ground-truth. After several preliminary runs of the

pipeline, it became clear that some predictions would be la-
beled as a mismatch that were fundamentally the same. For
example, the type [builtins.str] is the same the type [str] in
terms of type-correctness. These would however, be flagged
as a mismatch and could have caused a skewing of the data.
Therefore, I sanitized these obvious false mismatches to get a
more accurate answer on RQ2, with built-in functionaliaty of
LibSA4Py [11].

4 Responsible Research

Responsible research describes the ethical aspects of the
research done and the reproducibility of my methods. In
terms of ethical aspects, there are no major concerns I have
to reflect on. One thing that is however, important to note
is that I have an individual gain by doing research that can
improve development for Python. Either academically or
reputation wise, it would be a benefit for me if my research
had nice results.

Therefore, the most important thing I wanted to focus
on in doing this research is making it reproducible. That is
partly why I used the Open-source LibSA4Py [11] library to
have transparency in the tools I used. Additionally, I made
sure to make the pipeline modular to be able to be used for
evaluating other type-prediction tools or implementing other
type-evaluation functionalities. I made sure to document how
the tool I made can be used by others by adding instructions
int he LibSA4Py .README file.

5 Evaluation Setup:

For implementing the methodology I made a pipeline in
LibSA4Py [11]. Instead of making a repository myself I
wanted to add to an already existing Open-source project
that had overlap with my research. It was also practically
a good choice because a lot of the functionality I was
going to need was already in there. A diagram of the
Pipeline is shown in figure 1 which is implemented at:
github.com/saltudelft/libsa4py/tree/MyType4Py.



Figure 1: Pipeline Diagram

For reproducibility and transparency’s sake I implemented
the pipeline in steps with distinct input and output which
could also make it useful for future research if researchers
only need certain steps from the pipeline.

For checking type-correctness with Mypy certain error
codes can be enabled/ disabled [12]. By disabling error
codes, Mypy will not return errors having those error codes.
Because I was more interested in the lower bound of accuracy
than the higher bound, I tried to minimize the amount of
error-codes I disabled. The assumption made was that more
error codes disabled would mean generally higher accuracy.
The following error codes were disabled when running
the pipeline: [abstract, has-type, import, no-redef, syntax,
var-annotated, return, attr-defined, call-overload]

6 Evaluation and Results
This section describes the evaluation and results of the
methodology and its implementation described in the previ-
ous sections.

6.1 Overall results and Evaluation
Results: In table 1, 2 and 3 the results for running the P1
Strategy with the thresholds 0.25, 0.5 and 0.75 are displayed.
The amount of predictions differs per threshold because of the
fact that every set of predictions with a lower threshold has all
predictions of a set with a higher threshold in addition to the
predictions that are only accepted at the lower threshold. For
all runs 138,066 files were analyzed. There is a difference
between the total amount of predictions per run because of

the fact that there are more prediction-slots that only have
lower confidence.

Threshold = 0.25 Proportion (%) Accuracy (%) Total predictions type-correct predictions
Empty 62 86 1,649,185 1,415,684
Match 15 95 393,856 373,985

Mismatch 23 91 602,465 546,296
Total 100 88 2,645,506 2,335,965

Table 1: Type checking accuracy of Type4Py’s predictions with the
P1 Strategy on the 0.25 threshold displaying different match cases

Threshold = 0.5 Proportion (%) Accuracy (%) Total predictions type-correct predictions
Empty 56 89 982,696 870,443
Match 22 97 383,297 370,506

Mismatch 22 94 392,896 368,350
Total 100 91 1,758,889 1,609,299

Table 2: Type checking accuracy of Type4Py’s predictions with the
P1 Strategy on the 0.5 threshold displaying different match cases

Threshold = 0.75 Proportion (%) Accuracy (%) Total predictions type-correct predictions
Empty 46 92 531,125 490,082
Match 31 98 355,706 350,235

Mismatch 23 97 266,337 257,430
Total 100 95 1,153,168 1,097,747

Table 3: Type checking accuracy of Type4Py’s predictions with the
P1 Strategy on the 0.75 threshold displaying different match cases

Evaluation: Looking at tables 1, 2 and 3 and figure 2 it be-
comes clear that higher threshold runs (containing predictions
with higher confidence) have higher accuracy. This is clear
for all match cases (Empty, Match and Mismatch) and if we
look at the proportions it seems that higher threshold also in-
dicates more predictions matching ground-truth which agrees
with the evaluations of Type4Py’s paper [2].

6.2 Confidence range results and evaluation

Results: A possible problem with interpreting the results is
that a run with threshold 0.25 also includes all the predic-
tions of runs with higher thresholds such as 0.5 and 0.75. To
take advantage of the added benefit of applying the P1 Strat-
egy, I subtracted the type-correct and total predictions of the
higher threshold runs from the lower threshold runs. With this
method I got results for accuracy in the confidence ranges
of 25-50% and 50-75%. I combined these ranges with the
threshold run of 75% (which is the same as the confidence
range 75-100% to get again three ranges of accuracy which
is shown in table 4 and figure 3. I also kept track of the pro-
portions of the different match cases which are displayed in
figures 4, 5 and 6.



Figure 2: Type checking accuracy of Type4Py’s predictions with the
P1 Strategy on the 0.25, 0.5 and 0.75 threshold

25-50% 50-75% 75-100%
Empty 81 84 92
Match 33 73 98

Mismatch 85 88 97
Total 82 84 95

Table 4: Type4Py’s accuracy in percentages with confidence ranges
of 25-50%, 50-75% and 75-100%

Figure 3: Type4Py’s accuracy in percentages in confidence ranges
of 25-50%, 50-75% and 75-100%

Figure 4: Proportions of match cases in confidence range 25-50%

Figure 5: Proportions of match cases in confidence range 50-75%

Figure 6: Proportions of match cases in confidence range 75-100%

Evaluation: The results in table 4 and figure 3 solidify the
result of 6.1 by again showing an increasing accuracy for
the increase of confidence in predictions. Now working with
ranges shows that even at the lowest confidence range of 25-
50% Type4Py’s predictions are still type-correct 82% of the
time and at the confidence range of 75-100% that accuracy in-
creases to 95%. Figures 4, 5 and 6 show also a steady increase
of the amount of matches when confidence in the predic-
tions increases, which confirms the evaluation of Type4Py’s
research. [2]

6.3 Match case specific results and evaluation

Evaluation: When I applied the P1 Strategy to a file I also
kept track of metadata about the predictions. The results were
also split up per prediction element category (either variable,
function parameter or function return value). Figures 7, 8
and 9 show the accuracy of the different prediction element
categories per match case on different thresholds. Table 5
shows the proportions of the prediction element categories.



Figure 7: Accuracy for prediction element categories on the thresh-
olds 0.25, 0.5, 0.75 and match case Empty

Figure 8: Accuracy for prediction element categories on the thresh-
olds 0.25, 0.5, 0.75 and match case Match

Figure 9: Accuracy for prediction element categories on the thresh-
olds 0.25, 0.5, 0.75 and match case Mismatch

Threshold 0.25 0.5 0.75
Variables 64.9% 68.3% 72.9%

Parameters 10.8% 10.0% 9.5%
Return types 24.3% 21.7% 17.6%

Total 100% 100% 100%

Table 5: prediction element category proportions in percentages
with the thresholds of 0.25, 0.5 and 0.75

Results: Looking at figures 7, 8 and 9 shows that the accu-
racy for parameter prediction is the highest and return types
the lowest with variable predictions in the middle for each
match case. Figure 9 shows an interesting trend where a
higher threshold significantly decreases the accuracy. From
table 5 it shows that the proportion of return type predic-
tions is also decreasing with higher thresholds. Both of these
findings are in agreement with the performance evaluation of
Type4py’s paper [2], where return type predictions were also
the least accurate.

7 Discussion
By running the pipeline over a total of 138,066 files on
three different thresholds, I have found that Type4Py has a
good accuracy between 88% on a 0.25 threshold and 95%
on a 0.75 threshold. Furthermore, it has become clear that
higher confidence in predictions implies a higher chance of
type-correctness of those predictions. If we compare these
results against the ones in Typilus which had an overall
accuracy of 89% [10], Type4Py seems to be performing quite
well. For the predictions that match ground-truth an even
higher accuracy was measured on all 3 thresholds.

One problem I faced when evaluating the errors that
were generated by Mypy was linking them to the predictions
made by Type4Py. I linked each prediction to a line-number
and error to a line number and if there existed an error and
a prediction on that linenumber I would flag the prediction
as false. I would have rather also used column numbers
for extra precision but because of time-constraints for the
implementation and the fact that column numbers can
change when applying type annotations on the same line
I chose the line number only approach. This could give
some false negatives when it comes to parameters and return
types on the same line, but looking at figure 7, 8 and 9 it
seems that there were still plenty of cases where predictions
for parameters and return types had different accuracy scores.

This is, however, not a clear-cut case for the type-correctness
of Type4Py’s predictions. It is evident that with less disabled
error codes in the Mypy configuration more errors can be
found. The question is how many of these errors are actually
Type4Py’s ”fault” and how many are because of the coding
style/ practices of the developers who made the source files.
These results point to the fact that Type4Py is not only a good
potential tool for developers in the sense that it will make
predictions that adhere to the choices of the developers. It
will also produce results that are (when checked with Mypy)
mostly type-correct.

8 Conclusions and Future Work
8.1 Conclusion
To answer sub-research question 1: ”How many of Type4Py’s
predictions are type-correct”. Using the P1 Strategy:

• on a threshold of 0.25, Type4Py’s accuracy was 88%
• on a threshold of 0.5, Type4Py’s accuracy was 91%



• on a threshold of 0.75, Type4Py’s accuracy was 95%

To answer sub-research question 2: ”How many of Type4Py’s
predictions are type-correct and match ground-truth”. Using
the P1 Strategy:

• on a threshold of 0.25, Type4Py’s accuracy was 95%

• on a threshold of 0.5, Type4Py’s accuracy was 97%

• on a threshold of 0.75, Type4Py’s accuracy was 98%

To answer the main research question: ”How well does
Type4Py perform when validated by the static type-checker
Mypy?”. I analyzed 138,066 files and 2,645,506 predictions
for those files. I compared Type4Py with a similar tool for
predicting types that also uses Machine Learning, namely
Typilus [10]. Typilus has one measured accuracy of 89%
[10], whereas, I had three measured accuracy’s in total. At the
0.25 threshold Type4Py seems to be 1% less accurate in type-
correctness compared to Typilus. But for the thesholds 0.5
and 0.75 Type4Py’s measured accuracy’s where higher. Over-
all Type4Py’s predictions are for the most part type-correct
when checked by Mypy. An interesting finding was that when
the confidence of the predictions increased (higher threshold
run), the accuracy of specifically return type predictions de-
creased.

8.2 Future work
Type4Py has now been evaluated on two fronts: with an
MRR of 71.7% [2] it shows that its predictions are often the
ones developers would annotate themselves and in terms of
type-correctness with an accuracy between 88% and 95% it
show that its predictions are also mostly type-correct.

A future approach to evaluating the type-correctness of
Type4Py could also be to a apply a Combinatoral Strategy to
complete files with Type4Py’s predictions where researchers
can check if given all predictions for all type-slots, there
exists a possible combination of predictions where the whole
file is type-correct.

It would also be interesting to add a testing feature us-
ing Mypy to the VSCode extension of Type4Py to give
developers only type-correct predictions when developing in
Python.

Acknowledgements
I hereby want to thank Amir M. Mir and Sebastian Proksch
for their valuable feedback and guidance with this research

References
[1] B. Ray, D. Posnett, V. Filkov, and P. Devanbu,

“A large scale study of programming languages
and code quality in github,” in Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing
Machinery, 2014, pp. 155 – 165. [Online]. Available:
https://doi.org/10.1145/2635868.2635922

[2] A. M. Mir, E. Latoskinas, S. Proksch, and G. Gousios,
“Type4py: Deep similarity learning-based type infer-
ence for python,” CoRR, vol. abs/2101.04470, 2021.
[Online]. Available: https://arxiv.org/abs/2101.04470

[3] A. M. Mir, E. Latoskinas, and G. Gousios, “Many-
types4py: A benchmark python dataset for machine
learning-based type inference,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Reposito-
ries (MSR). IEEE, 2021, pp. 585–589. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9463150

[4] G. van Rossum, J. Lehtosalo, and Langa, “Pep 484
- type hints,” https://peps.python.org/pep-0484/, 2014,
(Accessed: June 1, 2022).

[5] M. Hassan, C. Urban, M. Eilers, and P. Müller,
“Maxsmt-based type inference for python 3,” in Com-
puter Aided Verification, H. Chockler and G. Weis-
senbacher, Eds. Cham: Springer International Pub-
lishing, 2018, pp. 12–19.

[6] E. Maia, N. Moreira, and R. Reis, “A static type infer-
ence for python,” 2012.

[7] M. Salib, “Faster than c: Static type inference with
starkiller,” in in PyCon Proceedings, Washington DC.
SpringerVerlag, 2004, pp. 2–26.

[8] Z. Pavlinovic, “Leveraging program analysis for type
inference,” Ph.D. dissertation, 2019.

[9] M. Pradel, G. Gousios, J. Liu, and S. Chandra,
TypeWriter: Neural Type Prediction with Search-Based
Validation. New York, NY, USA: Association for
Computing Machinery, 2020, p. 209–220. [Online].
Available: https://doi.org/10.1145/3368089.3409715

[10] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao,
“Typilus: neural type hints,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, jun
2020. [Online]. Available: https://doi.org/10.1145%
2F3385412.3385997

[11] A. M. Mir and G. Gousios, “Libsa4py: Light-weight
static analysis for extracting type hints and features.”
https://github.com/saltudelft/libsa4py, 2020.

[12] J. Lehtosalo and mypy contributors, “Mypy er-
ror codes,” https://mypy.readthedocs.io/en/stable/error
codes.html, 2016, (Accessed: June 1, 2022).

https://doi.org/10.1145/2635868.2635922
https://arxiv.org/abs/2101.04470
https://ieeexplore.ieee.org/document/9463150
https://peps.python.org/pep-0484/
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145%2F3385412.3385997
https://doi.org/10.1145%2F3385412.3385997
https://github.com/saltudelft/libsa4py
https://mypy.readthedocs.io/en/stable/error_codes.html
https://mypy.readthedocs.io/en/stable/error_codes.html

	Introduction
	Related works
	Methodology
	Definitions
	General Methodology
	Methodology used to answer RQ1
	Methodology used to answer RQ2

	Responsible Research
	Evaluation Setup:
	Evaluation and Results
	Overall results and Evaluation
	Confidence range results and evaluation
	Match case specific results and evaluation

	Discussion
	Conclusions and Future Work
	Conclusion
	Future work


