

Delft University of Technology

Discovering Community Patterns in Open-Source: A Systematic Approach and Its
Evaluation

Tamburri, Damian A.; Palomba, Fabio; Serebrenik, Alexander; Zaidman, Andy

DOI
10.1007/s10664-018-9659-9
Publication date
2019
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Tamburri, D. A., Palomba, F., Serebrenik, A., & Zaidman, A. (2019). Discovering Community Patterns in
Open-Source: A Systematic Approach and Its Evaluation. Empirical Software Engineering, 24(3), 1369-
1417. https://doi.org/10.1007/s10664-018-9659-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1007/s10664-018-9659-9

Empirical Software Engineering
https://doi.org/10.1007/s10664-018-9659-9

Discovering community patterns in open-source:
a systematic approach and its evaluation

Damian A. Tamburri1 · Fabio Palomba2 ·Alexander Serebrenik3 ·Andy Zaidman4

© The Author(s) 2018

Abstract
“There can be no vulnerability without risk; there can be no community without
vulnerability; there can be no peace, and ultimately no life, without community.” -
[M. Scott Peck]

The open-source phenomenon has reached the point in which it is virtually impossible
to find large applications that do not rely on it. Such grand adoption may turn into a risk if
the community regulatory aspects behind open-source work (e.g., contribution guidelines or
release schemas) are left implicit and their effect untracked. We advocate the explicit study
and automated support of such aspects and propose YOSHI (Yielding Open-Source Health
Information), a tool able to map open-source communities onto community patterns, sets
of known organisational and social structure types and characteristics with measurable core
attributes. This mapping is beneficial since it allows, for example, (a) further investigation
of community health measuring established characteristics from organisations research, (b)
reuse of pattern-specific best-practices from the same literature, and (c) diagnosis of organ-
isational anti-patterns specific to open-source, if any. We evaluate the tool in a quantitative
empirical study involving 25 open-source communities from GitHub, finding that the tool
offers a valuable basis to monitor key community traits behind open-source development
and may form an effective combination with web-portals such as OpenHub or Bitergia. We
made the proposed tool open source and publicly available.

Keywords Community patterns · Community types · Open source systems and community
analysis · Empirical software engineering

1 Introduction

Modern software engineering heavily relies on open-source software (Raju 2007; Crowston
et al. 2012). Paraphrasing Crowston et al. (2012): “Over the past ten years, [open-source

Communicated by: Jeffrey C. Carver

� Damian A. Tamburri
d.a.tamburri@tue.nl

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9659-9&domain=pdf
http://orcid.org/0000-0003-1230-8961
mailto: d.a.tamburri@tue.nl

Empirical Software Engineering

software] has moved from an academic curiosity to a mainstream focus [...] there are now
[hundreds of] thousands of active communities, spanning a wide range of applications”.
Despite their high popularity, open-source communities themselves do not commonly
rely on governance insights from organisations research and/or tracking their organisa-
tional status using social networks analysis (SNA), e.g., to evaluate the current social and
organisational characteristics describing their community structure.

On one side, open-source communities mostly emerge and organise organically (Sad-
owski et al. 2008), following often fairly implicit governance structures (Capra et al. 2008;
Tullio and Staples 2014), and with little or no socio-technical tracking and monitoring. On
the other side, for those communities which are big enough to care for their own emerging
organisational and socio-technical processes and structure, there is very limited support. For
example, for these big communities, there is limited support to find out the degree to which
the community is capable of engaging more actively with newcomers or sponsoring organ-
isations, e.g., so that external parties may engage in shepherding (Tamburri et al. 2016) the
community with explicit and informed organisational decision-making.

Currently, online applications such as OpenHub1 or Bitergia2 do allow to grasp sev-
eral organisational and social aspects (Gamalielsson and Lundell 2013; Schweik 2013)
behind open-source organisational structures (e.g., amount of member activity), however
their approach would benefit from considering theories, models, types, characteristics, and
best practices from organisations and social-networks research (Tamburri et al. 2013a),
since these theories and insights may prove vital to avoid abandonware or failure of entire
open-source forges (e.g., there are several conjectured effects known for the failure of
SourceForge3 but not their root-cause). Moreover, recent studies in open-source organisa-
tions show the need to explore sustainable open-source communities (Hata et al. 2015),
that is, software communities with clear, explicit, and measurable governance structures
and characteristics. Similarly, the literature concerning open-source community failure
(Tsirakidis et al. 2009; Capiluppi et al. 2003), suggests a latent but increasing need for
(semi-)automated support of social, organisational, and socio-technical characteristics of
these communities.

With the aim of providing community shepherds and practitioners with such a
community-oriented dashboard, in this paper we built upon previous research made in an
industrial environment (Tamburri et al. 2013b) by proposing a novel automated tool, called
YOSHI (Yielding Open-Source Health Information). YOSHI is designed to support two
scenarios. First, it is able to measure the organisational status of an open-source commu-
nity using six key open-source community characteristics previously proposed in literature
(Tamburri et al. 2013a), i.e., community structure, geodispersion, longevity, engagement,
formality, and cohesion. Second, based on the previous measurements, YOSHI associates a
community pattern of organisational structure types (Tamburri et al. 2012, 2013a) matching
the characteristics of the community.

On the one hand, a community pattern is associated with multiple types since differ-
ent sub-communities of the target community work in a different way. On the other hand,
knowing the pattern and the parameters behind it, leads to diagnosing and resolving type-
specific problems using mitigation strategies from organisations research (Millen et al.
2002; Wenger 1998; Ala-Mutka 2009). For example, assume the Apache Spark community

1http://openhub.net/
2https://bitergia.com/
3https://www.quora.com/Is-SourceForge-dying-Why-or-why-not

http://openhub.net/
https://bitergia.com/
https://www.quora.com/Is-SourceForge-dying-Why-or-why-not

Empirical Software Engineering

features a pattern of three types, associated to three sub-communities—if there are types in
the pattern with opposite characteristics (e.g., an informal community type, versus a formal
community type), then there may exist organisational conflicts that need resolution. The
proposed tool YOSHI would allow to diagnose such conditions and act upon them using
measurable quantities. We made the proposed tool publicly available and open source on
GitHub.4

1.1 Research Questions

To assess the validity of the tool and the extent to which open-source practitioners may
benefit from its usage, we validate YOSHI by conducting an empirical investigation of 25
open-source software communities aiming at providing insights with respect to two main
objectives, i.e., accuracy and usefulness of the tool. On the one hand, we aim at understand-
ing the extent to which the tool can provide developers with meaningful metrics; on the
other hand, we aim at verifying whether the patterns extracted by the tool actually provide
a factual view of the community structure of a software system. Specifically, we answer the
following research questions:

– RQ1. Does YOSHI correctly measure the community aspects characterising different
software communities?

– RQ2.Does YOSHI provide a correct indication of the community structure of a software
system?

These research questions analyse the extent to which the output of YOSHI is reliable,
evaluating the validity of (i) the metrics computed to measure the community aspects char-
acterising a software community and (ii) the indication about the community structure of a
software system.

Evaluation results show that (i) the measures computed by YOSHI correctly characterise a
software community associating a pattern which reflects the community sub-structures and
their way of working and (ii) YOSHI is highly reliable when employed for understanding
the structure of a community. Moreover, in the context of our analyses we also discover how
different community design patterns correspond to different project quality parameters such
as number of stars and number of forks.

We conclude that: (1) YOSHI reliably predicts community patterns, thus allowing fur-
ther studies as well as the reuse of theories and measurable quantities from organisations
and social-networks research; (2) YOSHI effectively eases finding correlations between
community types and community-related metrics of an open-source community.

Summarising, this paper offers three major contributions beyond the state of the art:

1. YOSHI, a novel automated tool for open-source community design pattern detec-
tion, which we built based on previously known community types – we made the
tool publicly available and open source. The tool is designed to work jointly with
web-portals such as OpenHub and Bitergia, and reuses insights and theories from
organisations and social-networks research.

4The entire source code and running instructions are available online: https://github.com/maelstromdat/
YOSHI

https://github.com/maelstromdat/YOSHI
https://github.com/maelstromdat/YOSHI

Empirical Software Engineering

2. Results achieved on a large-scale empirical study on 25 open source communities,
where we empirically evaluated the actual validity of the proposed tool as a decision
support system for open source communities able to characterise their social aspects.

3. A comprehensive replication package, that is publicly available and contains all the
data used to evaluate the tool (Tamburri et al. 2017).

1.2 Motivations

Measuring and tracking the organisational structure type and characteristics of an observ-
able community is critical to achieve such quality for at least two reasons. First, the state of
the art in organisations research, social networks analysis, management information systems
and related disciplines provide many type-specific organisational problems that often recur
in software engineering. For example, an extraordinary number of recurrent issues reported
for overly formal organisational structures such as Formal Networks and Formal Groups
(Fredrickson 1986), these issues vary from lack of motivation or trust across employees at
all levels (Miles et al. 2015) to institutional isomorphism (Lai et al. 2006; DiMaggio and
Powell 1983), to name a few. As a matter of fact, these factors are still reported as causes for
several major software failures, e.g., in the context of global software development (Jiménez
and Piattini 2008). Similarly, the lack of centralised management or leadership in Infor-
mal Networks leads to organisational stagnation (Jeppesen et al. 2011; Kim 2007)—this is
suspected by many to be a cause behind open-source developer turnover (Homscheid and
Schaarschmidt 2016; Li et al. 2012). Moreover, several other studies have addressed the
relation between organisational structure types and characteristics with measurable software
quality outcomes focusing on factors such as organisational fit (Nielsen 1995) or organi-
sational culture difference (Siakas and Georgiadou 2002). We argue that the influence of
the above organisational circumstances has seen little or no automated support in software
engineering organisations as much as open-source forges - our research conjecture in the
scope of this article is that automated, transparent means to measure and quantify these
circumstances leads to avoiding some of the connected software friction (Avgeriou et al.
2016).

Second, software engineering research still lacks reference quality models for quantifi-
able organisational structures. Assuming that, as the state of the art in software engineering
research has already shown (Nagappan et al. 2008; Bird et al. 2009; Nguyen et al. 2008;
Pinzger et al. 2008), all software organisations and their qualities are inextricably and heav-
ily related to software qualities, we advocate the use of organisational structure types and
their measurable characteristics as means to research community quality models, that is,
sets of metrics and stability thresholds to track software engineering organisational health.
To the best of our knowledge, these instruments are still rudimentary (Jansen 2014), if not
completely lacking. In pursuit of such quality models, our previous work also defined and
partially evaluated a potential community quality model (Magnoni et al. 2017), systemati-
cally surveying software engineering literature as well as experienced practitioners. In the
scope of this article we investigate if and how the state of the art in organisations research,
as represented by known organisational structure types implemented in YOSHI can play a
role in defining and predicting software community quality.

1.3 Structure of The Article

The remainder of this paper is organised as follows. Section 2 provides an overview of the
background and theoretical foundations upon which YOSHI was built, as well as the research

Empirical Software Engineering

objectives behind this article. Section 3 provides a detailed technical overview of YOSHI and
the metrics it computes, while Section 4 reports the design and results of the empirical study
conducted to evaluate its effectiveness. Section 5 discusses the main findings of our study
and proposes new insights on the usefulness of YOSHI. Section 6 discusses the limitation of
the tool as well as the threats that might have influenced the empirical study. In Section 7
we outline the related literature, before concluding the paper in Section 8.

2 Background and Research Statement

This section outlines the background in organisational structures, providing a general
overview and definitions. Subsequently, the section discusses the background and general
objectives of organisational structure quality research and how it relates to software engi-
neering in general and our tool in particular. Given that the background section is dense
with concepts and definitions not strictly part of software engineering research but interdis-
ciplinary in nature, in the following we offer a nutshell summary—the interested reader can
find full details in the remainder of the section.

A software development community is a specific type of social network upon which cer-
tain properties constantly hold (e.g., informal communication across electronic channels of
open-source projects) (Tamburri et al. 2013a; Magnoni et al. 2017) across community mem-
bers, that is, the set of people who interact in any way, shape, or form with the practice
reflected by the community (e.g., a software product).

Across such development social networks and their many possible properties (e.g., infor-
mality, goals, membership selection, intercommunication protocols, etc.), communities can
develop sub-optimal conditions which we previously defined as community smells (Tam-
burri et al. 2015; Palomba et al. 2018) in analogy to code smells—the analogy signifies that,
on one hand, community smells identify unlikable circumstances (e.g., the lack of com-
munication across different modules of a software system) but, on the other hand, these
conditions do not necessarily stop or void the organisational behaviour across the commu-
nity, rather, they prove detrimental and cause additional project cost in several possible ways
(e.g., recurrent delays in communication, wrongful knowledge sharing).

Finally, with the term project, we identify the goal or shared practice that the community
maintains as its central endeavour, e.g., the Apache Spark community holds the delivery of
the Apache Spark product as its key project.

Background and Goals Digest. A community type is a social network where cer-

tain characteristics are constantly true, for example, an informal community is a social

network where all interactions are always informal. Disciplines such as organisations

research and social-networks analysis study community structures and types to mea-

sure and manage their salient characteristics to socially healthy and organisationally

performant levels. YOSHI is a tool that applies that intelligence and knowledge to detect

structural design patterns across open-source software engineering communities, and

is able to identify nine types using their unique identifying characteristics. Our ultimate

objective is using YOSHI and community patterns as instruments to assess open-source

organisational quality.

Empirical Software Engineering

2.1 Organisational Structures Explained

The literature in organisational structure research resides mostly in the following fields:

– Organisations research—in this field organisational structure types and characteristics
represent more or less effective consequences of organisational design, i.e., the man-
agement activity of planning a strategic organisational agenda around a pre-specified
organisational structure (Chatha 2003);

– Social-Network Analysis—in this field organisational structure types and characteris-
tics represent measurable quantities that can augment social-networks from any context
or domain (networks of people, communities of partners, networks of organisations,
etc.) (Kilduff and Tsai 2003; Otte and Rousseau 2002);

– Cognitive Ergonomics—in this field organisational structure types represent models
that allow reasoning on transactive-memory processes (Nevo and Wand 2005) (i.e., who
knows what, where, etc.), information representation, as well as information exchange
policies;

The following sections offer more precise definitions of organisational structures, their
types and characteristics as well as outline their role in the context of this study.

2.1.1 Organisational Types and Their Characteristics

Several seminal works address organisational types in the state of the art of software engi-
neering. For example, Mockus et al. (2002) investigate Mozilla and Apache, characterising
quantitatively and qualitatively their organisational structure, but without explicitly associ-
ating a type (i.e. a set of social and organisational characteristics) from the state of the art.
Conversely, for the benefit of software engineering research and practice, in our own pre-
vious work (Tamburri et al. 2013a) we strived to summarise the insights on organisational
structures from the fields above as well as others, into common themes or types of structures.
In layman terms, a structure type is a set of measurable or otherwise evident organisational
characteristics (e.g., the presence of informal communication channels across an organ-
isation). Based on how organisational characteristics influence the structure, the way of
working in the structure can change radically. For example, the way of working in a Commu-
nity of Practice (collocated, tightly knit, practice-focused) is different than that of a Formal
Network (formal, distributed, protocol-based). Also, if characteristic X has its highest man-
ifestation in a certain type, X can be used as an identifying indicator for that type, that is,
the primary characteristic which is a necessary condition for its identification (Tamburri
et al. 2013a). For example, Formality is a primary indicator for organisational structures
with well-defined rules and regulations, typically dictated by corporate governance. More
precisely:

Organisational Structure Type:

ω = [δ(C1)+, ..., +δ(Cn)];
where ω represents the organisational structure type as a “sum”, i.e., the combined effect
of organisational and social characteristics (C1,..., Cn). On the one hand, the characteristics
themselves are heterogeneous, for example, some refer to the community’s location (e.g.,
virtual, situated) and some refer to the closeness of community interactions (e.g., cohe-
sion, informality). On the other hand, all these characteristics can be quantified by means
of observability functions (δ), i.e., sensing functions which assign a Likert-scale value

Empirical Software Engineering

based on the level of influence that each characteristic bears on the structure according to
its members/participants. For example, an Informal Network type is strongly indicative of
informal communications and might lead to engaged members (Tamburri et al. 2013a). Only
informality is necessary for the identification of Informal Networks, and hence, a unique
indicator for such types. If indeed in addition to informal communication a high degree of
engagement has been observed, then we consider this highly-engaged version of Informal
Networks as a distributed version of Informal Community. Fluctuation of engagement lev-
els in this instance, during the evolution of the organisational structure, can reflect changes
from Informal Community type to Informal Network or vice versa.

YOSHI Analysis Lens. YOSHI focuses on detecting community design patterns

using the characteristics and types evident across an observable community, hence

determining the pattern of types that the community exhibits across its organisational

structure.

As an example of the equation above for IC see the following:

Organisational Structure Type IC:

IC = [Informality(High) + Engagement(High)...];
Figure 1 visualises the point above, using the example pattern:

IN,WG = [Informality(High) + Cohesion(High)]; (1)

in the example, a likely scenario reflects a set of globally dispersed software practition-
ers working over the same open-source product (e.g., a video-game) constitute an Informal
Network which can show high cohesion (adding in the primary characteristic of Working

Time

Cohesion
Perception

Fuzzy Curve

Informality
Perception

Fuzzy Curve

...

...

Informality = Highest
 ==> IN Detected!

Cohesion = Highest
 ==> WG Detected!

Low

High

"Comicon" Event corresponds
 to multiple types

Fig. 1 An overview of the nature of organisational and social characteristics behind communities - our tool
predicts community design patterns by evaluating the trend of the perception curves for primary community
type indicators. The figure also reports (right-hand side) the “Comicon” event in correspondence to two
identified types, from our example

Empirical Software Engineering

Groups) when practitioners meet face-to-face (e.g., at comic conventions, “Comicons”, or
gaming tournaments). YOSHI would identify a single pattern including both types blended
together for the “Comicon” community snapshot. Nevertheless, these two types may diverge
into other types later on in the community lifetime, e.g., into a formal type during release.
YOSHI currently returns types whose identifiers remain the highest and over a certain thresh-
old for the entire duration of the observed 3-month snapshot. Consequently, considering
Fig. 1 YOSHI would return a pattern constituted by both types only in correspondence of
the point in time when both Informality and Cohesion are highest, and Informal Networks
otherwise.

In summary, a single organisation can exhibit the traits of multiple types at once and
even very different or conflicting types, over time—meaning that multiple, sometimes even
conflicting characteristics, often blend into the same organisational structure. Addressing
organisational conflict is a key objective of organisations and social-networks research
(Jeppesen et al. 2011; Fredrickson 1986), and, thus, is a fundamental part of our motivation
to support automated detection of community design patterns in open-source.

2.1.2 A Methodology to Discover Organisational Patterns in Software Engineering

In the recent past, a number of studies were aimed at understanding community types and
their role in software engineering as well as at finding ways to use community types as
reference patterns during software processes. Literature review reveals a total of more than
70 organisational and social structure characteristics (Tamburri et al. 2013a) to be mea-
sured for fully describing community structure types. Out of these characteristics a total of
13 characteristics were distilled, each individually reflecting a single type. In the scope of
this paper, we focus on detecting community design patterns which feature the six char-
acteristics that we were able to operationalise for open-source communities, namely, (1)
community structure,5 (2) formality, (3) engagement, (4) cohesion, (5) longevity and (6)
geodispersion. These aforementioned characteristics were operationalised in YOSHI as an
original contribution of this paper (see Section 3.3).

In fact, contrarily to literature in organisations research (Prandy 2000; Mislove et al.
2007; Ryynnen 2012) where organisational types and characteristics are studied qualita-
tively, as an original contribution of this paper, we measure the quantitative manifestations
of community characteristics, namely, we use quantitative, automatically measurable
indicators of the perception functions introduced previously. For example, to measure
engagement, we evaluate together the amount, frequency, and kinds of contributions of an
open-source community member with respect to its peers.

In our early exploratory experiments with community types and patterns while design-
ing YOSHI automations, we observed that (1) different levels of the same characteristics
correspond to different types and (2) measuring open-source communities reveals at least
two co-existing types. From this early experimentation, we made two observations. First,
YOSHI must be designed to detect design patterns composed of recurrent community char-
acteristics and their corrresponding types. Second, it is not sufficient to only measure the
six characteristics above. Automated detection of organisational design patterns demands a
way to identify the level of their highest manifestations above all remaining characteristics
such that the most prominent community types can be revealed and distilled into a pattern.

5The first characteristic, structure, is a necessary pre-condition to all of them; in fact, all communities
are social-networks (SNs) that exhibit a community structure across which certain characteristics remain
constant.

Empirical Software Engineering

Consequently, we engaged in and contributed to a highly active open-source commu-
nity along a 15-month ethnographical study of its organisational structure (di Nitto et al.
2013), for the purpose of determining empirical thresholds to all our primary community
indicators.

Table 1 provides an overview of the above results, briefly describing community types,
their indicators, as well as highlighting the empirical thresholds elicited as part of our ethno-
graphical research (di Nitto et al. 2013). The thresholds allow determining high or low
values for community indicators, thus allowing identification.6

In what remains of this subsection, we provide an overview of the thresholds that we
mention in Table 1. In particular, in previous work (di Nitto et al. 2013), we were inter-
ested in ways to measurably increase the awareness of open-source developers over known
organisational and socio-technical characteristics of communities from organisations and
social-networks research (see Table 1). For this reason, one of the co-authors of this study
along with two master students started contributing to Apache Allura, an open source com-
munity building the infrastructure behind SourceForge, a widely known open-source forge.
In this process of contribution, the following data was gathered for the first interaction by
the three observers: (a) guidelines of contribution; (b) code of conduct across the com-
munity; (c) expected contribution. Moreover, for the rest of our 15-month involvement,
every other interaction with the community was documented as follows: (a) type of inter-
action (direct/indirect); (b) involved actors (presence of communication intermediaries); (c)
means of communication (e.g., formal/informal means); (d) perception of “tone” of com-
munication (formal/informal); (e) location of the involved participants and organisations;
(f) explicit/implicit guidelines for contribution in question; (g) previous members’ relation
with observers or amongst themselves; (h) delay in response. Finally, the following data
was elaborated in a conclusive summary of the community: (a) skills profile of community
members; (b) roles and responsibilities; (c) organisational structure sociogram (Kilduff and
Tsai 2003).

Subsequently, we sought to associate a ground-truth set of community types and charac-
teristics corresponding to the data thus obtained. Hence, at the end of the 15-month study, we
asked 7 top-level contributors to Allura their perceived values over the characteristics from
Table 1 and their perceived open-source community type(s), if any. Through this process,
Allura was determined to be a Formal Network type blended with a Network of Practice—
this empirically defines two thresholds for the two primary characteristics that manifest for
those types: (1) Formality - the highest primary characteristics reflecting formality in Allura
would define our Formality threshold; (2) Geodispersion - the average geographical and
cultural distance between Allura members would define our Geodispersion threshold.

Concerning the remaining characteristics, we analysed our data on developer inter-
actions. First, we observed Informality manifesting itself among the four core Allura
maintainers. Focusing on the interactions among the four developers in question, we iso-
lated their commonalities (e.g., they all shared previous relations on other projects, they all
shared at least three background skills, etc.) and evaluated thresholds for resulting factors.

Similarly, we observed that Engagement and Cohesion of Allura developers were very
high when the community was closing in on a release of its platform. Consequently, we
measured Cohesion (represented by the well known social-network analysis metric (Kilduff

6The interested reader can find detailed information and full characterisation of each type in our previous
work (Tamburri et al. 2013a,b, 2016)

Empirical Software Engineering

Table 1 Organisational structure types, an overview from previous work

Name Description Indicator Empirical
Threshold

Communities
of practice
(CoP)

A CoP consists of collocated groups of people who
share a concern, a set of problems, or a passion about a
practice. Interactions are frequent, face-to-face, collab-
orative (to help each other) and constructive (to increase
mutual knowledge). This set of social processes and
conditions is called situatedness (Gallagher 2006). An
example is the SRII communitya which gathers multiple
CoPs (corporate and academic) into a single one, meet-
ing physically to informally exchange best practices in
services science.

Situatedness Global
Distance
< 4926
Kilometers

Informal
Networks
(IN)

INs are loose networks of ties between individuals
that happen to come informally in contact in the
same context. Primary indicator is the high strength
of informal member ties. Finally, IN do not use gov-
ernance practices (Cross et al. 2005). An example
in academia, is the informal and loosely coupled set
of research communities around a single topic (e.g.,
computer science) is a world-wide informal network.

Informality Formality
Levels <

0.1; Global
Distance >>

4926

Formal
Networks
(FN)

FNs rigorously select and prescribe memberships,
which are created and acknowledged by FN manage-
ment. Direction is carried out according to corporate
strategy and its mission is to follow this strategy
(Tamburri et al. 2013a). An example in software engi-
neering is the OMG (Object Management Group):
it is a formal network, since the interaction dynam-
ics and status of the members (i.e. the organizations
which are part of OMG) are formal; also, the meeting
participants (i.e. the people that corporations send as
representatives) are acknowledged formally by their
corporate sponsors.

Formality Formality
Levels >

20; Global
Distance >>

4926

Informal
Com-
munities
(IC)

ICs reflect sets of people part of highly-dispersed
organisation, with a common interest, often closely
dependent on their practice. They interact informally
across unbound distances, frequently over a com-
mon history or culture (e.g. shared ideas, experience
etc). The main difference they have with all com-
munities (with the exception of NoPs) is that their
localisation is necessarily dispersed (e.g., contrarily
to INs where networked interactions can also be in the
same timezone or physical location) so that the com-
munity can reach a wider audience (Tamburri et al.
2013a). Loosely-affiliated political movements (such
as green-peace) are examples of ICs: their members
disseminate their vision (based on a common idea,
which is the goal of the IC).

Engagement Engagement
Levels > 3.5

Networks
of Practice
(NoP)

A NoP is a networked system of communication and
collaboration that connects CoPs (which are localised).
In principle anyone can join it without selection of
candidates (e.g. Open-Source forges are an instance of
NoP). NoPs have the highest geodispersion. An unspoken
requirement is expected IT literacy (Ruikar et al. 2009).
For example, previous literature (Bird et al. 2009) dis-
cusses Socio-technical Networks in software engineering
using the exact terms with which NoPs are defined in
literature.

Geodispersion Global Dis-
tance >>

4926

Empirical Software Engineering

Table 1 (continued)

Name Description Indicator Empirical
Threshold

Workgroups
(WG)

WG are made of technical experts whose goals span
a specific business area. WGs are always accom-
panied by a number of organisational sponsors and
are expected to generate tangible assets and benefits
(i.e., Return-On-Investment). Fundamental attributes
of WGs are collocation and the highest cohesion
of their members (e.g., long-time collaborators). For
example, in software engineering, the IFIP WG 2.10
on software architectureb is obviously a WG, since
its effort is planned and steady, with highly cohesive
action of its members, as well as focused on pursuing
the benefits of certain organisational sponsors (e.g.
UNESCO for IFIP).

Cohesion Cohesion
Levels > 11;
Global Dis-
tance < 4926
Kilometers

Project-
Teams
(PT)

PTs are fixed-term, problem-specific aggregations of
people with complementary skills who work together
to achieve a common purpose for which they are
accountable. They are enforced by their organisa-
tion and follow specific strategies or organisational
guidelines (e.g. time-to-market, effectiveness, low-
cost, etc.). Their final goal is delivery of a product or
service (Tamburri et al. 2013a).

Time-Boxed
Longevity

Longevity <

93 Full-time
Equivalent
Man-days;
Global Dis-
tance < 4926
Kilometers

Formal
Groups
(FG)

FGs are comprised of people which are explicitly
grouped by corporations to act on (or by means of)
them (e.g. governing employees or ease their job or
practice by grouping them in areas of interest). Each
group has a single organisational goal, called mission
(governing boards are groups of executives whose
mission is to devise and apply governance practices
successfully). In comparison to Formal Networks,
they seldom rely on networking technologies, on the
contrary, they are local in nature and are less for-
mal since there are no explicit governance protocols
employed other than the grouping mechanism and the
common goal. Examples of formal groups in soft-
ware engineering are software taskforces, e.g. IEEE
Open-Source Software Task Forcec.

Explicit
Governance
Structure

Formality
Levels > 0.1
and <20;
Global Dis-
tance < 4926
Kilometers

Social
Net-
works
(SN)

SNs represent the emergent network of social ties
spontaneously arising between individuals who share,
either willingly or not, a practice or common inter-
est. Conversely, an unstructured network is (often
by-design) not constrained by any design or structural
tie (e.g., a common social practice) (Zich et al. 2008).
SNs act as a gateway to communicating communities
(Cross et al. 2005).

Community
Structure

Structured
Network =
True

The four types not identified by YOSHI are omitted for the sake of space
awww.theSrii.org
bhttp://www.softwarearchitectureportal.org/
chttp://ewh.ieee.org/cmte/psace/CAMS taskforce/index.htm

www.theSrii.org
http://www.softwarearchitectureportal.org/
http://ewh.ieee.org/cmte/psace/CAMS_taskforce/index.htm

Empirical Software Engineering

and Tsai 2003)) and Engagement levels (represented by summing all possible contributions
that members would make to the release of Allura and computing an average).

In the same study, to strengthen the validity of our thresholds, we measured and empir-
ically evaluated the metrics and thresholds for an additional four communities hosted on
SourceForge, seeking and successfully evaluating the agreement of those communities’
members with our type predictions.

In the scope of this article, we sought to operationalise the metrics defined and evaluated
in our previous work (di Nitto et al. 2013) offering three tool-specific contributions beyond
previous work:

1. a tool designed for large-scale use: in our previous study the measurements and empir-
ical analysis was conducted by hand, using crude statistical analysis and focused on
distilling the type of four communities only, while in this article we focus on offer-
ing an automated tool designed for large scale use and using GitHub data. Moreover,
the empirical evaluation in the scope of this article encompasses 25 randomly-sampled
open-source communities.

2. a tool designed for precision: in order to be actionable, a type prediction needs to be
accurate; in our previous study we used a single quantitative metric per every primary
characteristic, while with YOSHI we provide between 1 and 3 non-overlapping metrics
in the detection pattern of characteristics for which our prediction in previous work
was imprecise. Moreover, we offer an evaluation of YOSHI precision using null-model
analysis.

3. a tool intended for further replication and open-source release; our study of commu-
nity design patterns in open-source reflects the fundamental research of open-source
organisational structures and we want to encourage others to pursue the research path
we are currently exploring. In this study we offer a completely free and open-source
replication package to call for, and encourage verifiability.

As a result, the study reported in this article offers a more precise, scalable, replicable,
and verifiable tool along with its empirical evaluation results.

2.2 Organisational Structure Quality

Despite the fact that previous work on open- and closed-source software communities does
in fact offer relevant insights into the characteristics of the different organisational structure
types, it is important to note that: (i) there is still a lack of tools that provide automatic
identification of community characteristics and type; (ii) previous work has been mainly
oriented toward industrial environments, thus missing a detailed analysis in the context of
open-source teams, which are becoming ever more important for the development of both
academic and industrial software (Raju 2007; Crowston et al. 2012).

Such an analysis is of paramount importance to highlight commonalities and differ-
ences among the different organisational structures in different development contexts, and
to understand to what extent the management and evolution of open-source systems may
benefit from the usage of community-related information. Moreover, some organisational
types may work better than others for the purpose of software engineering and evolution;
this line of inquiry reflects organisational structure quality and can be assisted by the use of
tools such as YOSHI which map open-source communities onto known organisational types
and characteristics and their quality.

The quality of an organisational structure generally refers to the organisational structure’s
fitness for purpose, i.e., the measurable degree to which the structure is fitting with its

Empirical Software Engineering

objective (Espejo 1993; Afsar and Badir 2015; Oreja-Rodriguez and Yanes-Estevez 2006).
In our domain of software engineering, a quality organisational structure refers to better
software, which is of more sustainable and measurable technical qualities (Nielsen 1995).
For example, the Jet-Propulsion Laboratory at NASA can be said to have a high-quality
organisational structure since it produces and maintains software which is virtually error-
free7 through a combination of organisational as much as technical tools and approaches.

3 YOSHI: An Automatic Tool for Discovering Community Types

This section reports the implementation details behind YOSHI, as well as the details on
the architecture and the functionalities currently implemented in the tool. As previously
introduced in Section 2, all operationalisations and detection patterns follow the Goal-
Question-Metric approach (Basili et al. 1994) and use empirically-defined thresholds from
previous work (di Nitto et al. 2013).

3.1 The YOSHI Approach to Open-Source Community Design Patterns Detection:
General Overview

YOSHI is a social-networks analysis tool specifically designed for detecting open-source
community types. The tool focuses on determining the levels of the previously-mentioned
identifying characteristics, and combines specific version-control and committer activ-
ity data implemented in an information retrieval component (see bottom of Fig. 5). For
example, to determine how formal a community is, YOSHI looks at how many levels of con-
trol are assigned across repository contributors. Similarly, to evaluate engagement YOSHI

looks both at the technical (e.g., commits, pull requests) and social or organisational (e.g.,
comments, new watchers) activities.

Once all characteristics are determined, YOSHI runs Algorithm 1 to determine the com-
munity type a given repository refers to. It is important to remark again that the tool allows
to identify the existence of community types by looking at the existence of key community
characteristics as well as their combination. For this reason, YOSHI identifies a commu-
nity design pattern featuring multiple types within a certain repository; several possible
scenarios may exemplify this, e.g., multiple sub-teams working as different community
types or the community works with different types at different phases in its organisational
activity.

To precisely distinguish the types existing in the observed organisation, YOSHI iteratively
uses an algorithmic representation (see Section 3.2) of the decision-tree we previously eval-
uated in industry (Tamburri et al. 2013b). The decision-tree in question (reported in Fig. 2)
encodes the set of relations (e.g., implication or mutual-exclusion) across primary indicators
for community types from Table 1. This set of relations forms, by definition, a partial-order

7https://www.fastcompany.com/28121/they-write-right-stuff

https://www.fastcompany.com/28121/they-write-right-stuff

Empirical Software Engineering

Structure

Situatedness

Dispersion

Informality

Formality

Engagement

Cohesion

DurationGovernance

ROI-Tracking

Problem-Focus

Culture-Tracking

Visibility-Tracking

HighLow

!
Low

HighLow

HighLow

Low
Low

High

High

Low

Low

CoP

Highest

IN

Highest

FN

Highest

IC

Highest

NoP

Low

WG

Highest

SC

Low

PT

Lowest

FG

Highest

PSC

Low

KC

Highest

SN

Low

Fig. 2 A decision-tree for organisational structures - dotted nodes identify types not currently implemented
in YOSHI

function, i.e., a function that associates an ordering or sequencing to the elements of a set.
The decision-tree (see Fig. 2) is a representation of this partial-order function and is to be
visited top-to-bottom (most generic to most specific type) and right-to-left (most collocated
to most dispersed type).8 YOSHI iterates on the decision-tree until no new community types
are discovered over available data.

To exemplify the workings of the decision-tree, consider the tree-visit reflecting the
identification of FNs in Fig. 3.

Finally, YOSHI is able to visualise the software development network and its statistics
over a world map, reporting statistics in *.csv format—this feature is implemented in YOSHI

’s own visualisation component.
YOSHI does not offer any insights over the technical qualities of the artefacts worked

on by open-source communities under observation (e.g., software architecture, code, etc.),
since these aspects are covered by several other state-of-the-art tools, e.g., SonarQube,
CAST Software, or Titan (Xiao et al. 2014).

The above approach, can be easily replicated, generalised or further specialised at will.
For example, the key organisational and socio-technical characteristics from the state-of-
the-art (Tamburri et al. 2013a) may be observed through other, possibly more precise means
(e.g., Natural-Language Processing (Manning and Schütze 1999), Neuro-Linguistic Pro-
gramming (Molzberger 1986)). Similarly, specific tools (or YOSHI forks) can be designed to
address a more precise identification of one or two specific community types, e.g., focusing
on Communities and Networks of Practice.

8All relations and decision-tree functional demonstration by construction can be found online at http://tinyurl.
com/mzojyp2

http://tinyurl.com/mzojyp2
http://tinyurl.com/mzojyp2

Empirical Software Engineering

Fig. 3 A decision-tree for
organisational structures - YOSHI

’s visit to identify FNs

3.2 YOSHI : Algorithmic Representation

Algorithm 1 shows YOSHI’s measurement function measure() as applied to observable
open-source communities. To extract community types from observable data, Algorithm 1
is executed as follows.

– YOSHI establishes that there is in fact a high degree of community structure:
measure(structure) == high;

– YOSHI measures the indicators for the remaining five community characteristics:
m[] ← measure(GEO,LON,ENG,For, COH);

– YOSHI ascertains that characteristics are not null:
Assume(m! = ∅);

– YOSHI applies empirical thresholds (di Nitto et al. 2013) and returns a certain commu-
nity type if and only if its identifier has been found as “Highest”:
Tx ← True ⇐⇒ Value(mx) = Highest ∧ Attribute(mx) = Tidentif ier ;

The 5 characteristics (besides community structure) computed by YOSHI (GEO, LON,
ENG, For, COH in Algorithm 1) are, intuitively: (GEO) geodispersion; (LON) longevity;
(ENG) engagement; (For) formality; (COH) cohesion. The characteristics are opera-
tionalised in the tool as detailed in the following subsections.

Empirical Software Engineering

3.2.1 Community Structure

As operationalised within YOSHI, this characteristic represents the ability to distinguish a
non-trivial organisational and social structure within the observed set of people working
on a project. Establishing this characteristic is paramount to identify any community type,
since, by definition, organisational structures are sets of constant properties acting across
social networks exhibiting community structure (Tamburri et al. 2013a; Newman and Gir-
van 2004; Newman 2003). The success of open-source projects crucially depends on the
voluntary contributions of a sufficiently large community of users. Apart from the size of
the community, Structure can be identified by looking at the evolution of structural fea-
tures (e.g., connection density) of collaborations between community members. To analyse
the social structure of communities, we collected data regarding user collaborations using
API requests to each analysed repository. A definition of “community” in the context of
social networks analysis is a subnetwork whose intra-community edges are denser than the
inter-community edges (Kilduff and Tsai 2003). YOSHI computes a network of nodes repre-
senting community members and edges representing any particular social or organisational
interaction between any two members.

3.2.2 Community Geodispersion

As operationalised within YOSHI, this characteristic represents the cultural and geograph-
ical dispersion between community members. Establishing this characteristic is key to
identifying either a Network of Practice (high geodispersion) or a Community of Prac-
tice (geodispersion low or none). For geographical dispersion (GeoDispersion class)
YOSHI retrieves community members’ specified location form their own profile and uses it
to compute the median and standard deviation of the distance between them and to create a
geographical distribution map (Li et al. 2010) and, for cultural dispersion, YOSHI computes
(CulturalDispersion class) Hofstede cultural distance metrics (Hofstede et al. 2010)
and their standard deviation.

Empirical Software Engineering

3.2.3 Community Longevity

As operationalised within YOSHI, this characteristic represents the committer’s longevity as
a member of the observed community. Establishing this characteristic is essential to iden-
tifying Project Teams and Problem-Solving Communities (low or time-bound longevity) or
Workgroups (high longevity). Committer longevity is a measure of how long one author
remains part of the community.

Fig. 4 A geographical distribution map in YOSHI

Empirical Software Engineering

3.2.4 Community Engagement

As operationalised within YOSHI, this characteristic represents the participation levels
across the analysed community, intended as the amount of time the member is actively
participating with community-related actions. Establishing this characteristic is essential
to identifying Informal Communities or Informal Networks (high engagement). Also, eval-
uating this characteristic is essential for several community health reasons, for example,
the case study presented by Kujala et al. (2005) shows that developer engagement in their
software projects is key in successful project development and has positive effects on user
satisfaction.

As an illustrative example, we focus on the value which indicates how tightly project
members collaborate on repository artefacts, that is, the number of community members
that commit on common repository artefacts. YOSHI uses the ContentsService and
DataService GitHub API classes to retrieve the repository file structure and associ-
ated commits. YOSHI then uses the CommitService GitHub API class that provides
the pageCommits method for retrieving the history of commits for each file. In sum-
mary, YOSHI extracts authors for each commit and adds them to the set of file contributors.
The result of these preprocessing operations is a HashMap which stores the sets of con-
tributors for each repository artefact. This map allows us to determine the number of
community members that commit on common repository artefacts. Each entry from this col-
lection represents the set of connections that a repository user has established by common
collaboration on repository items.

3.2.5 Community Formality

As operationalised within YOSHI, this characteristic represents the level of control (access
privileges, milestones scheduling and regularity of contribution) exercised or self-imposed

Empirical Software Engineering

on the community. Establishing this characteristic is essential to identifying Formal Groups
or Formal Networks (high formality). Also, evaluating this is essential for several reasons.
For example, as reported by Crowston et al. (2012), open-source communities’ approach to
project milestones does not follow a common pattern. The results show that some projects
have quite informal release schedules, following the pattern of releasing early and releasing
often, whilst in other projects releases are more informal and come at an irregular rate
(Glance 2004). Depending on the formality type, different governance support schemes
might apply (e.g., formal community types as opposed to informal ones (Tamburri et al.
2013a)).

The division above is mathematically grounded as follows. Since GitHub only allows
contributor and collaborator as membership types, YOSHI associates a 1 to a contributor
membership type and a 0 to collaborator membership type. Hence, the average number
of contributors (i.e., the 1’s) divided by the amount of work they have been able to carry
out gives an indication of how well-structured their collaboration, co-location, co-operation
works and hence, an indication of the formality. Conversely, the more external collaborators
(i.e., the 0’s) there are, the less formal (i.e., closer to 0 formality) the structure will be.

For the sake of completeness, we only elaborate on how YOSHI detects member contri-
butions and evaluates membership type, as well as defining the contributor & collaborator
subset. First, for each community member, YOSHI retrieves the set of repositories to which
he/she has contributed. One of the following actions is considered a contribution: (a) a com-
mit to a project’s default branch or the gh-pages branch; (b) opening/closing an issue; (c)
proposing a pull request. Second, YOSHI defines the set of repository members as the union
of repository collaborators and repository contributors. The CollaboratorService
GitHub API class allows retrieving the sets of collaborator-users for each of the considered
repositories, whilst the RepositoryService GitHub API class that provides us with set
of contributor-users.

3.2.6 Community Cohesion

As operationalised within YOSHI, this characteristic represents the level to which there are
tight social or organisational or technical relations among members of the community. It is
worth noting that we inherit the term “community cohesion”, its definition, and rationale
from the state of the art in working-groups (Moody and White 2003; Hung and Gatica-Perez
2010; Giraldo and Passino 2016); the definition in question includes a strong connotation

Empirical Software Engineering

of community cohesion (Moody and White 2003; Hung and Gatica-Perez 2010) which is
associated to low cognitive distance among members and hence, high expertise overlap
(Nooteboom et al. 2006).

For the sake of completeness, we elaborate on how YOSHI detects common skills. In
general, GitHub user profile attributes do not include their technical skills. In substitu-
tion, YOSHI uses the RepositoryService API class to retrieve the repositories to
which a user has made contributions. Repository entities include the main programming
language attribute value which allows us to compute a set of programming languages
from the list of repositories. For each repository, we obtain a map Map<Contributor,
Set<String>> representing the mapping between repository members and a crude
list of their acquired technical skills. These values are used as a basis for determining
followers with common skills. Using this data for each repository member we com-
pute the list of projects to which they have contributed and determine the number of
projects to which members of the current project community have collaborated. Finally, the
WordFrequency class in YOSHI uses the content of messages exchanged between com-
munity members including the commit messages and pull requests messages to determine
the most frequently used words and categorise them into skills using a taxonomy of software
engineering skills of our own design (Tamburri and Casale 2017).

3.3 YOSHI—Architecture

Figure 5 shows a basic view of YOSHI’s software architecture using a basic input-output
control flow diagram (Bass et al. 1998). YOSHI has a modular architecture arranged in three
components.

First, an information retrieval component (bottom part of Fig. 5) is responsible for
retrieving data with which YOSHI can perform its functions. The component automates the
retrieval of data from public repositories of projects hosted on Github, using GET requests
from GitHub Archive to obtain publicly available data. The retrieval component extracts
data from two data sources: source code management systems and issue trackers. First,
GitHub Archive records the public GitHub timeline, archives it, and makes it easily accessi-
ble for further analysis; the archive dataset can be accessed via Google BigQuery. This data
is used to compute attributes’ values related to the software development process and study
targeted open-source software development communities.

Empirical Software Engineering

Attributes
Evaluation Module

Type-Decision
Module

Visualisation
Module

Reporting
Module

GitHub BIF
Google
Query
Module

GitHub
Client

RepositoryService

CommitService

ContentService

DataService

IssueService

PullReqService

UserService

VISUALIZATION
COMPONENT

PROCESSING
COMPONENT

RETRIEVAL
COMPONENT

Fig. 5 YOSHI high-level architecture

Second, the processing component is responsible for evaluating metrics using data avail-
able from the retrieval component and to enable community detection (see Algorithm
1). The component uses: (a) Gephi—a Java library which provides useful and efficient
network visualisation and exploration techniques; (b) Google Geocoding API—used for
converting the addresses of repositories members into geographic coordinates, which is
used to calculate distances; (c) a direct way to access services via an HTTP request; (d) an
implementation of Algorithm 1.

Third, the visualisation component uses data computed by the processing component
to create graphical representations of community members’ geographical distribution. This
component is able to export images and Comma-Separated Values (CSV) files for the pro-
duced representations. Finally, the current implementation of YOSHI also supports reporting
of computed characteristics, their composing metrics, their values and the resulting com-
munity design patterns. Furthermore, YOSHI was designed in a modular, service-based
architecture, so as to be easily extended with third-party tools (e.g., sentiment analysis
(Novielli et al. 2014; Jongeling et al. 2017), natural-language processing (Arnaoudova et al.
2015)).

4 Evaluation

4.1 Study Design

The goal of the study is to evaluate the ability of YOSHI to discriminate the different com-
munity types in open source, with the purpose of understanding to what extent the proposed
method can be adopted to analyse the social relationships occurring among the developers
of a software system. To achieve this goal, we explore two main research questions aimed
at (i) evaluating the accuracy of the measurements provided by YOSHI and (ii) evaluating
the potential usefulness of the tool in practice:

– RQ1. Does YOSHI correctly measure the community aspects characterising different
software communities?

Empirical Software Engineering

Table 2 Characteristics of the Software Projects Considered in the Study, as extracted from GitHub on April
2017 - Domain Taxonomy tailored from literature

Name # Rel. # Commits # Members # Language #KLOC Domain

Netty 164 8,123 258 JavaScript 438 Software Tools

Android 3 132 14 Java 382 Library

Arduino 74 6,516 210 C 192 Rapid prototyping

Bootstrap 55 2,067 389 JavaScript 378 Web libraries and fw.

Boto 86 7,111 495 Python 56 Web libraries and fw.

Bundler 251 8,464 549 Java 112 Web libraries and fw.

Cloud9 97 9,485 64 ShellScript 293 Application software

Composer 35 7,363 629 PHP 254 Software Tools

Cucumber 8 566 15 Java 382 Software Tools

Ember-JS 129 5,151 407 JavaScript 272 Web libraries and fw.

Gollum 76 1,921 143 Gollum 182 App. fw.

Hammer 25 1,193 84 C# 199 Web libraries and fw.

BoilerPlate 12 469 48 PHP 266 Web libraries and fw.

Heroku 52 353 10 Ruby 292 Software Tools

Modernizr 27 2,392 220 JavaScript 382 Web libraries and fw.

Mongoid 253 6,223 317 Ruby 187 App. fw.

Monodroid 2 1,462 61 C# 391 App. fw.

PDF-JS 43 9,663 228 JavaScript 398 Web libraries and fw.

Scrapy 78 6,315 242 Python 287 App. fw.

Refinery 162 9,886 385 JavaScript 188 Software Tools

Salt 146 81,143 1,781 Python 278 Software Tools

Scikit-Learn 2 4,456 17 Python 344 App. and fw.

SimpleCV 5 2,625 69 Python 389 App. and fw.

Hawkthorne 116 5,537 62 Lua 211 Software Tools

SocketRocket 10 494 67 Obj-C 198 App. fw.

– RQ2. Does YOSHI provide a correct indication of the community structure of a software
system?

The context of the study consists of 25 open source software communities coming from
the GitHub repository, sampled according to guidelines from the state of the art (Falessi
et al. 2017) and refining our results using best-practice sampling criteria (Kalliamvakou
et al. 2016). Table 2 reports the characteristics of the subject projects9 in terms of (i) their
size measured as number of public releases issued and number of commits performed over
their history, (ii) number of contributors who committed at least once to the repository, and
(iii) their application domain according to the taxonomy proposed by Borges et al. (2016).
To select this dataset, we first ranked the GitHub projects based on number of commits, to
control for project activity; in this respect, a fixed boundary of no less than 100 commits was
adopted. Then, projects were filtered based on number of members (at least 10) and number
of LOCs (at least 50k): in this way, we allowed the selection of non-trivial communities

9Characteristics extracted on April 2017

Empirical Software Engineering

that have to deal with large codebases. Moreover, we also based our selection on diversity:
in cases where two projects had the same scope, we randomly excluded one of them in
order to pick a population that was as different as possible (note that the domain might still
be the same, as it refers to the general objective of a certain project (Borges et al. 2016)).
Finally, we have manually inspected the selected projects and made sure that all of them are
real projects (rather than student projects, assignments, etc.), as suggested by recent work
(Munaiah et al. 2017). The specific query employed for the selection of the subject projects
was done on April 2017 and can be found in our on-line appendix (Tamburri et al. 2017).

To answer our first research question, we evaluated whether the metrics computed by our
approach actually represent valid community measurements: indeed, a necessary condition
to provide automated support for community steering and governance is that YOSHI delivers
reliable insights into key community characteristics and type. To this aim, it is necessary and
sufficient that the metrics coded within YOSHI satisfy the representation condition (Fenton
1991), given that the decision-tree algorithm within YOSHI only represents a partial-order
function among said community characteristics identified by the metrics. According to Fen-
ton (1991), the representation condition for a metric holds “if and only if a measurement
mapping maps the entities into numbers, and empirical relations into numerical relations
in such a way that the empirical relations are preserved by the numerical relations”. This
means that, for instance, paraphrasing from Fenton (1991): “if we have an intuitive under-
standing that A is taller than B, then also the measurement mapping M must give that M(A)
> M (B). The other way around, if M(A) > M (B) then it must be that A is intuitively
understood to be taller than B”. In our work, we ran YOSHI on the subject systems in our
dataset and then, for each metric computed by the approach, we evaluated the representation
condition using the guidelines provided by Fenton (1991).

In order to answer RQ2, we conducted a validation aimed at verifying the quality
of the community structure extracted by YOSHI. As explained in Section 3.2.1, this is
the main characteristic that leads to the identification of a community type, and its val-
idation provides insights into the meaningfulness of the operations performed by our
tool (di Nitto et al. 2013). To evaluate this aspect, we firstly extracted the information
about the actual community structure of the communities considered. As ground truth we
exploited the OpenHub community,10 which reports data about different aspects of software
communities, including a community structure modularity indicator comprised in the set
{LOW, MEDIUM, HIGH }. It is worth noting that such data is not computed automat-
ically but rather manually retrieved by the owners of OpenHub without the usage of proxy
metrics, as directly reported in the OpenHub blog (Sands 2018) as well as previous litera-
ture in the field (Chełkowski et al. 2016; Druskat 2016). While we cannot speculate on how
the owners of OpenHub manually classify communities based on their community struc-
ture, it is important to note that this data is constantly validated by the community around
the platform, thus allowing us to be confident about its actual validity.

In the second place, we compared the social interactions detected by YOSHI with the ones
identified by a null-model (Cohen 1988), i.e., a network which matches the original network
in some of its topological features, but which does not display community structure. Using
this strategy, we were able to verify whether the graph built by YOSHI actually displays a
community structure or whether it is no better than a randomly created graph. More specif-
ically, in our context we compared our approach with the null-model proposed by Newman

10https://www.openhub.net/

https://www.openhub.net/

Empirical Software Engineering

and Girvan (2004), i.e., a randomized version of the original graph, where edges are rewired
at random, under the constraint that the expected degree of each vertex matches the degree
of the vertex in the original graph. The comparison was made in terms of modularity coef-
ficients (Newman 2006), i.e., an indicator that measures how well a network can be divided
into clearly defined subsets of nodes. The higher the value of the metric the higher the com-
munity structure is supposed to be. Similarly, the lower the value, the lower the estimated
community structure.

It is important to note that to adequately compare the modularity structure output by
both YOSHI and the null model with the actual community structure of a certain com-
munity, we needed to transform the numeric indexes in a nominal scale comprised in
the set {LOW,MEDIUM, HIGH }. To this aim, we followed the guidelines by New-
man (2006): the community structure is low when modularity < 0.30, medium when
0.30 ≤ modularity < 0.41, and high when modularity ≥ 0.41. Thus, if the modular-
ity coefficient estimated by one (or both) of the experimented approaches is in accordance
with the actual community structure modularity, then the approach correctly provides the
indication.

To statistically verify the results, we applied the paired Mann-Whitney test (Conover
1998) comparing the distribution of the modularity coefficients computed by our approach
with the ones computed by a randomly created one over the 25 considered systems. This
is a non-parametric test used to evaluate the null hypothesis stating that it is equally likely
that a randomly selected value from one sample will be less than or greater than a randomly
selected value from a second sample. The results are intended as statistically significant
at α = 0.05. Note that in this case we relied on the numeric modularity values because
we were interested in evaluating whether the indexed outputs by YOSHI were statistically
different from those extracted by the random model.

While the analysis of how YOSHI performs when compared with a null model might
provide insightful hints on the value of the information extracted by the proposed approach,
it is also important to note that such information should effectively assist the members of
a certain community. In other words, the fact that YOSHI provides better information than
a random model does not directly imply that it is actually useful for community members.
Thus, we needed an additional validation that was designed to gather opinions on the quality
of the information provided by YOSHI from the members of the considered communities.

To this aim, we contacted the developers of the 25 open source communities considered:
we limited our analyses to those developers having the highest number of commits (i.e., the
most active ones), as they might have a more comprehensive knowledge of the development
activities within the community and, therefore, a better overview of the underlying commu-
nity structure that allow us to gather authoritative responses. On the contrary, we filtered out
developers having a low number of commits and that are likely not so much involved in the
community. Therefore, we contacted via e-mail the developers having a number of commits
higher than the third quartile of all commits performed on each of the considered systems,
i.e., those contributing the most to each repository, and we asked them to comment about the
community structure that was in place in the specific time period analyzed in our paper: to
ease the task, we provided them with a spreadsheet containing three tabs: (i) the first report-
ing detailed information on the commits performed on the repository; (ii) the second with
the developers taking part in the development process in the considered time window, and
(iii) the list of all communications between developers during the time period. In this way,
the developers could better remember the project status in the period, and provide us with
more careful observations of the community structure taking place in that period. To further

Empirical Software Engineering

ease the task, we allowed developers to give us open answers, i.e., we did not provide them
with fixed check-boxes reporting the possible community structures. We decided to go for
this solution as developers might be not aware of the formal definition of the underlying
community structure of their project.

When analyzing the developers’ answers, we proceeded with a manual match of their
opinions to the automatic community structure assigned by YOSHI to the community a
certain developer corresponded to. To avoid any kind of confirmation bias, we recruited
two independent external developers having more than 5 years of programming experience
(from now on, we refer to them as the inspectors) and asked them to independently per-
form such a mapping. Specifically, we provided the two inspectors with the developers’
answers and a list composed of the community types extractable using YOSHI. The task
was to analyze each answer and tag it with one or more community types. For instance, if a
developer replied by saying that “in the considered time period, all communications passed
from the mediation of one member, who had the role of disseminating it to other develop-
ers”, the inspectors mapped this answer to the definition of formal community. This process
required approximately 1.5 hours. At the end, we first computed the inter-rater agreement
between the two inspectors using the Krippendorff’s alpha Krα (Krippendorff 2004). Agree-
ment measures to 0.90, considerably higher than the 0.80 standard reference score for Krα
(Antoine et al. 2014) . In cases of disagreement, the inspectors opened a discussion in order
to find a joint solution. In the second place, we verified how many times YOSHI was able
to properly identify the community structure perceived by the developers of the considered
project.

It is worth remarking that all the data and scripts used to evaluate YOSHI are publicly
available in the form of a replication package in our on-line appendix (Tamburri et al. 2017).

4.2 Study Results

Before discussing the results for the two research questions formulated in the previous
section, Table 3 reports for each system in the dataset the associated community types as
inferred by YOSHI. All the projects exhibit characteristics attributable to more than one
community type. Interestingly, about 60% of the communities have been typified as for-
mal groups (FG) or formal networks (FN). This contrasts our expectation that open source
projects are generally considered poorly formal, because of the contributions originating
from volunteers. Yet, this evidence suggests to confirm theories reporting that a formal
organisation is often needed to coordinate the activities among developers of a projects
(Kraut and Streeter 1995; Elkins and Keller 2003). This finding is also confirmed by anec-
dotal evidence we found around several of the communities in our sample. For instance, the
Netty project provides a formal guide11 newcomers have to follow to be considered part
of the community, thus establishing a formal structure and specific rules that community
members must adhere to. More in line with the typical notion associated with open-source
communities is the evident presence of Networks of Practice (around 40% of our sample)
followed by working-groups, which, by their tightly-knit nature, are associated with collo-
cated communities such as Modernizr (a tight community project with devoted maintainers:
https://modernizr.com/).

11https://netty.io/community.html

https://modernizr.com/
https://netty.io/community.html

Empirical Software Engineering

Table 3 Community types
inferred by YOSHI for the
considered software projects

Project Community Type(s)

Netty IC, FN, FG

Android IC, FN, FG

Arduino IC, FN, FG

Bootstrap IN, NOP

Boto IC, IN

Bundler NOP, FG

Cloud9 IC, FN, FG

Composer IC, FN, FG

Cucumber IN, IC, NOP

Ember-JS FN, FG, WG

Gollum IC, FN, FG

Hammer IN, NOP

BoilerPlate IN,NOP

Heroku NOP, IN, FG

Modernizr IN, NOP, WG

Mongoid FN, FG, WG

Monodroid IC, IN, FG

PDF-JS IN, NOP

Scrapy FN, FG, WG

RefineryCMS FG, WG

Salt FN, FG, WG

Scikit-Learn NOP, IN, FG

SimpleCV IC, NOP, IN, FG

Hawkthorne IC, IN, FG

SocketRocket NOP, IN, FG
As explained in Section 3, more
community types can be
associated to a single project

4.2.1 Does YOSHI correctly measure the community aspects characterising different
software communities?

The first step in establishing if a metric provides a correct value is the satisfaction of its rep-
resentation condition (Fenton 1991). Essentially, the representation condition states that a
valid metric must prove that the observed empirical relation between the measured attributes
is preserved by their associated numerical relations. To provide an objective validation for
YOSHI metrics we analysed them individually, evaluating whether their representation con-
dition hold by means of our own visual inspection. In particular, for each metric considered
by YOSHI we performed the following steps:

1. We compute the values of the metric m for two communities Ci and Cj in our dataset;
2. If m(Ci) > m(Cj), then we verified that the metric value computed on the community

Ci was actually higher than the metric value computed on Cj .

In this paper, we focus on showing the evaluation of the representation condition of the
Geodispersion, Engagement and Formality metrics. The proofs for remaining metrics refer
to literature, that is, Longevity and Cohesion are well-established social-networks analysis
metrics (Egghe and Rousseau 2003; Tikhonov 2016; Kozdoba and Mannor 2015).

Empirical Software Engineering

Fig. 6 A geodistribution map for Twitter Bootstrap, the representation condition holds

Geodispersion Let us consider that the members of the community C1 are more dispersed
(e.g., according to manual visual inspection) than the members of the community C2 if
the average geo-dispersion across all the members of C1 is higher than the geo-dispersion
across the members of C2. Considering the function average distance AD which maps
average distances between community members, we can say that C1 is more dispersed than
C2 if and only if:

AD(C1) > AD(C2) (2)
where the average distance AD is computed as follows:

Let A be a member of the community, and let Ma be the average for geographical and
cultural distances between A and the rest of the community members. The distance between
two members is defined by the spherical distance between the geographical coordinates
of the two users, determined using the same measuring unit, i.e., kilometers. Similarly,
the cultural distance can be obtained following the Hofstede metrics (Hofstede et al.
2010). This operation is then applied for each member of the community, obtaining a set
M = {Ma,Mb, ...,Mi, ...,Mn} composed of the average geographical and cultural dis-
tances between each member i and the rest of the community. Thus, the average distance
AD between community members is given by the average of the Mi ∈ M .

For sake of clarity, let’s consider a practical case where the geo-dispersion of Twitter
bootstrap12 and dotcloud13 are compared. As reported on-line on the websites of projects,
we know that (a) Twitter bootstrap has contributors from all over the world; (b) dotcloud
has contributors that are mostly grouped around the company offices in California (USA).
Figures 6 and 7 present the actual geographical distribution of members collaborating on
the Twitter bootstrap and dotcloud projects, respectively, as evaluated by YOSHI. The red
circles represent the location of community members.14

From a visual inspection, it is clear that the representation condition of the metric holds.
From a numerical one, the geo-dispersion among the Twitter bootstrap community mem-
bers computed by YOSHI is 6,221, while the one of dotcloud community members is 380.

12https://github.com/twbs/bootstrap
13https://github.com/dotcloud/gitosis-on-dotcloud
14edges representing connections between users are not included in this figure, but a connection graph is
available as part of the structural analysis

https://github.com/twbs/bootstrap
https://github.com/dotcloud/gitosis-on-dotcloud

Empirical Software Engineering

Fig. 7 A geodistribution map for Dotcloud

Based on the data computed by the application we visually confirmed that AD(bootstrap)

>> AD(dotcloud), which means that members of the Twitter bootstrap community are
more dispersed than the members of the dotcloud project. Thus, we conclude that the
representation condition for the Geodispersion metric is proven.

Engagement For the ENG property, consider, for the sake of simplicity, that community
C1 displays a higher degree of member engagement than community C2 if the number of
project subscriptions (i.e., item 5 from the enumeration in 3.2.4, but any other item may
have been used just as well) made by the members of C1 is higher than the number of
project subscriptions within community C2. Considering the function number of project
subscriptions (PS), we can say that C1 has a higher degree of member engagement if PS(C1)
> PS(C2).

To evaluate the representation condition for engagement, it is sufficient to prove that the
mechanism which YOSHI uses to determine PS is consistent, meaning that it determines a
higher PS if the actual PS is effectively higher. YOSHI determines the list of projects-watch
subscriptions using the specific GitHub API made for it and uses it to compute the number
of project subscriptions. As an example, consider Arduino and Hammer-js projects.

Inspecting visually the project-watch number for both, the numbers for the Hammer-js
project is 5438 while the number for Arduino is 2071. An analysis provided by YOSHI uses
the same numbers and therefore would yield the same result. Note that the remaining points
1 to 7 in the enumeration at Sec. 3.2.4 are added in means, which mathematically does not
alter in any way the representation condition for the metric in question.

Formality Formality is determined as the mean membership type in GitHub (+1 for con-
tributors and +2 for collaborators) divided by the milestones per project-lifetime ratio. More
formally, ā

ML
, where ā is the mean membership type in GitHub and ML is the milestones

per project-lifetime ratio (i.e., the amounts of dates of the total project lifetime which are
considered as milestone delivery dates or releases). This quantity increases at the increase
of both metric quantities involved (which are both always positive and always different than
0, or the project would have no reason to exist). For the sake of simplicity we focus on
showing that, by increasing ā for a certain project C1 which is higher than another project

Empirical Software Engineering

C2, the quantity reflected by the equation above is proportionally higher. For example, con-
sider that interactions between the members of community Android are more formal than
the interactions between the members of community Cloud9 (we know this because of the
strict collaboration and participation guidelines behind Android); this means that their rela-
tive value ā must reflect as follows: C1 > C2. According to YOSHI measurements, Android
community members collaborate at 0.65 formality and the equivalent value for the Cloud9
project members is 0.43.

Applying a similar analysis to the rest of our dataset, we observed that more formal
projects include core developers (i.e., collaborators) in projects that are hosted by the orga-
nization in which they are actively involved, meaning that they dedicate to that project no
less than 20% of their working-hours. For example, core developers that contribute to the
Pdf-js project (and that are in fact Mozilla employees) — this further reinforces the more
formal nature of such communities.

Summary Stemming from the above demonstrations, we can answer our research question
in a positive manner since the community characteristic measurement coded in YOSHI are
correctly measured by the proposed approach.

4.2.2 Does YOSHI provide a meaningful view of the community structure of a software
system?

Table 4 reports for each project (i) the actual value for its community structure, and (ii)
the modularity coefficients achieved by YOSHI and by the randomly created null models
over the 25 considered systems. As it is possible to see, in 100% the cases the nominal
value associated to the coefficients computed by our approach are in accord to the actual
community structure: this means that YOSHI provided correct indications over all the 25
subject systems. On the other hand, the baseline adequately estimated the modularity of
the structure only in six cases, thus being often not able to provide meaningful results. As
a consequence, we can claim that our approach not only can potentially accurately assists
in understanding the structure of a community, but it is also able to perform better than
the baseline. This result is also supported by the statistical tests. Indeed, when comparing
the two distributions using the Mann-Whitney paired test, we found that the differences
are statistically significant (ρ < 0.001); moreover, the magnitude of such differences is
large (δ=0.74), according to the results achieved when running the Cliff’s δ effect size test
(Romano et al. 2006).

Interesting is the case of the Scrapy community, which has a high modularity as indicated
by the OpenHub data. YOSHI is able to provide a correct indication, since the coefficient
computed is equal to 0.45, while the baseline estimates the modularity of the community
structure as low. Looking more in depth into the characteristics of this project, we found
that this is the one in our dataset having the higher level of interaction among the members,
and this is clearly visible looking at the number of pull requests of the project (1,472, of
which 154 are still open), and the number of average comments per pull request (5.4). In
this case, the detection pattern used by YOSHI is quite effective in the identification of the

Empirical Software Engineering

Table 4 Modularity Coefficients achieved by the Experimented Approaches - indexes refer to April 2017

Project ACTUAL COMMUNITY STRUCTURE YOSHI NULL MODEL

Android LOW 0.27 (low) 0.44 (high)

Arduino LOW 0.25 (low) 0.33 (medium)

BoilerPlate MEDIUM 0.31 (medium) 0.13 (low)

Bootstrap LOW 0.23 (low) 0.28 (low)

Boto LOW 0.28 (low) 0.29 (low)

Bundler MEDIUM 0.34 (medium) 0.31 (medium)

Cloud9 MEDIUM 0.35 (medium) 0.23 (low)

Composer HIGH 0.42 (high) 0.25 (low)

Cucumber MEDIUM 0.37 (medium) 0.33 (medium)

Ember-JS MEDIUM 0.38 (medium) 0.15 (low)

Gollum HIGH 0.44 (high) 0.21 (low)

Hammer MEDIUM 0.37 (medium) 0.26 (low)

Heroku HIGH 0.49 (high) 0.37 (medium)

Modernizr HIGH 0.42 (high) 0.19 (low)

Mongoid MEDIUM 0.33 (medium) 0.24 (low)

Monodroid HIGH 0.45 (high) 0.22 (low)

Netty LOW 0.24 (low) 0.46 (high)

PDF-JS MEDIUM 0.31 (medium) 0.33 (medium)

RefineryCMS MEDIUM 0.39 (medium) 0.19 (low)

Salt HIGH 0.43 (high) 0.21 (low)

Scikit-Learn HIGH 0.44 (high) 0.18 (low)

Scrapy HIGH 0.45 (high) 0.15 (low)

SimpleCV MEDIUM 0.36 (medium) 0.31 (medium)

SocketRocket HIGH 0.48 (high) 0.21 (low)

Hawkthorne HIGH 0.42 (high) 0.25 (low)

structure, since it mainly relies on the information captured by pull requests. Conversely,
the randomly created baseline wrongly approximated the relationship between the members
of the community, thus providing an unreliable result.

The lower modularity coefficient (0.23) was assigned by YOSHI to the Bootstrap com-
munity. Manually investigating this case, we found evidence of the low structure behind
this project. For instance, of the 389 contributors involved in it only a small subset of them
heavily participate in the activities of the community. Indeed, there are only five core com-
mitters. Moreover, in most of the cases (i) pull requests are reviewed and commented by
these five developers and (ii) discussions about bugs and improvements on the issue tracker
only involve them. As a result, our approach correctly marked this community as having a
low structure, being able to provide an accurate indication.

The results for the other projects are consistent with the mentioned cases. As a conse-
quence, we can claim that the measures applied by our approach can be potentially effective
when employed to understand the underlying structure of the community. As explained
before, to further verify this claim we directly involved the most active members of the
considered communities, asking them to verify the information provided by our approach.
Overall, we obtained 36 answers (1.44 answers per project) out of the 95 invitations sent:

Empirical Software Engineering

therefore, the response rate was 38%, that is almost twice than what has been achieved by
previous papers (e.g., Palomba et al. (2015), Palomba et al. (2017), and Vasilescu et al.
(2015b)). The response rate was likely pretty satisfactory because of the methodology used
to contact developers (direct e-mails): indeed, as done in previous work (Silva et al. 2016),
this strategy is generally a good one to obtain quick and effective answers from developers.

Looking at the actual results, we found that 92% of the times there was a correspondence
between the YOSHI output and what reported by developers, meaning that 33 commu-
nity members fully agreed with the output community structure given by our approach.
We believe that this result further reinforces the quantitative findings: indeed, not only is
YOSHI able to mine developers’ communication and coordination information to discover
the corresponding community structure, but it also provides data that reflects the develop-
ers’ perception of the community. An interesting example regards the RefineryCMS project,
where a developer reported:

“We were dislocated across several countries and for a long while we had commu-
nication issues because of that. As a solution, we then decided to start being more
selective when accepting members in the community and all the communications
passed through our mailing list. This had some benefits, and indeed from that moment
we were able to do things in a more cohesive and natural manner.”

This answer clearly refers to the definitions of Formal Networks and Workgroups, as it
indicates the presence of both member selection strategies and formal communications—
which are typical of FN—but also some degree of cohesiveness between team members,
that highlights the presence of a workgroup. In the cases where the developers’ answers
were not in line with the output of YOSHI, we discovered that it was due to false positive
cases in which a Formal Network was interpreted as a Formal Group. Nevertheless, also
in those cases we can argue that our approach successfully identified the formality of the
communities, thus potentially providing good hints.

5 Discussion and Further Insights

The results of our research questions highlight some relevant findings, as they showed how
the proposed automated solution is able to properly identify and characterise community
design patterns in open source. Besides that, we also found that the members of the con-
sidered communities actually agree with the output of YOSHI: this is, likely, one of the
most important outcomes of our analyses. Indeed, it seems that developers can exploit our
approach to monitor and gather information about the status of the community, thus possi-
bly taking informed decisions on how to improve communications and/or coordinations as

Empirical Software Engineering

well as reasoning on how a certain community structure influences external qualities of the
developed project.

To reinforce our claims, in this section we discuss a key use case scenario, namely how
YOSHI can help practitioners when assessing the health status of a community. In particu-
lar, we computed four repository-related metrics for the 25 communities considered in the
study. They include (i) the mean number of commits per month, (ii) the mean number of
contributors per month, (iii) the number of stars, and (iv) the number and forks the reposi-
tory has on Github. It is important to note that these metrics were defined by Crowston and
Howison (2006) and Jansen (2014) as meaningful indicators of the health of open source
software ecosystems. For this reason, we were interested in understanding if the commu-
nity patterns proposed by YOSHI can somehow indicate a more or less healthy condition
of the repository, thus allowing community shepherds to monitor how healthy the underly-
ing community is and plan preventive actions, where needed. Of course, it is important to
note that all the observations made in this section may be a reflection of other factors, i.e.,
the health status of a community can be not only (or not at all) influenced by the presence
of a certain community pattern. Nevertheless, our goal is to simply outline some potential
scenarios where the use of YOSHI can assist practitioners when taking decisions on how to
evolve the community.

We graphically report these further analyses by means of violin plots (Hintze and Nel-
son 1998) depicting the health metrics distributions for each community pattern inferred
by YOSHI. Besides showing how the data is distributed, this graphical representation also
shows the probability density of the data at different values allowing a more detailed
overview of the differences among the different community types taken into account. In
addition to the analysis of the metrics computed on the exploited dataset, we also provide
practical examples aimed at explaining in which situations the usage of YOSHI can provide
benefits within a software community. As our tool identified more than one community
type for each considered project, an analysis of the community types in isolation would not
have provided insights due to the high overlap between the data points. For this reason, we
decided to analyse the behavior of the four most frequent patterns (i.e., co-occurring com-
munity types) coming from Table 3, i.e., {IC, FN,FG} (6 projects), {FN,FG,WG} (4
projects), {IN,NOP } (4 projects), and {NOP, IN, FG} (3 projects).

Figure 8 reports the results of these additional analyses. In the first place, we found rel-
evant differences in terms of both number of commits and contributors per month among
the frequently co-occurring community types. In particular, the results revealed that com-
munities having a strong level of formality (typified by YOSHI as both FN and FG) have
lower turnover (i.e., a constant number of contributors). This result somehow confirms the
mediatory governance role of formal participatory guidelines typical of that community
type (Antunes et al. 1995). An interesting case regards the Arduino project: it was typi-
fied by YOSHI as a mixture of formal network, formal group and informal communities.
Such characteristics allow the project to be more continuous in terms of both contributors
and commits, as reported in Fig. 8. However, looking deeply into such community through
the last-month statistics—reported by the Openhub repository15—we discovered that the
current situation reports that the number of commits is going to decrease while the num-
ber of team members is increasing: this might mean that the introduction of new members
within the community might change the nature of socio-technical relationships among the
team members, possibly leading to a new community type in the near future. Nevertheless,

15https://www.openhub.net/p/arduino

https://www.openhub.net/p/arduino

Empirical Software Engineering

0e+00 4e+04 8e+04

F
N

,F
G

,W
G

IC
,F

N
,F

G
IN

,N
O

P
N

O
P,

IN
,F

G

Commits/Month

0 200 400 600 800 1000

F
N

,F
G

,W
G

IC
,F

N
,F

G
IN

,N
O

P
N

O
P,

IN
,F

G

Contributors/Month

0e+00 4e+04 8e+04

F
N

,F
G

,W
G

IC
,F

N
,F

G
IN

,N
O

P
N

O
P,

IN
,F

G

Stars

0 10000 30000 50000

F
N

,F
G

,W
G

IC
,F

N
,F

G
IN

,N
O

P
N

O
P,

IN
,F

G

Forks

Fig. 8 Violin Plots reporting the repository health metrics for each community type inferred by YOSHI

such a change within a community is something that a community shepherd might desire or
not, even because different community design patterns might be associated with some neg-
ative manifestations or lead to different characteristics: for instance, as reported in Fig. 8 a
change towards an informal community might decrease the overall contributors continuity
and increasing the number of forks of the project. To account and manage such compro-
mises, a tool like the one proposed in this paper can be adopted by community shepherds
during their decision making process.

At the same time, the usage of YOSHI can be useful for community shepherds to take
decisions with respect to their own or their community’s organisational reference. For
example, consider a situation in which a certain community is undergoing organisational
distress (e.g., after adopting new tools for their own community work or changing process
model); in this scenario, community shepherds need to make decisions aimed at reorganiz-
ing the overall structure of the community. In the same scenario, YOSHI acts as a community
monitoring system and can be used in such a circumstance to understand what are the char-
acteristics of an external community that the community shepherd wants to replicate in its
own context. For instance, the Salt project16—typified by our tool as a mixture of formal

16http://www.saltproject.org

http://www.saltproject.org

Empirical Software Engineering

group, formal network, and working group—has a high contributor continuity and is well-
known to be successfully used by several other open- and closed-source organizations. Thus,
it might represent the example-to-follow for another community whose shepherd might
try to transplant community-related characteristics in her own context. In this case, YOSHI

might provide this community shepherd with useful information aimed at replicating some
external practices in her community.

When considering the remaining two repository health metrics, i.e., number of stars and
forks achieved by the repository, the violin plots in Fig. 8 revealed important, almost spec-
ular differences due to the different nature of the community types. On the one hand, the
relatively low number of stargazers and forkers of formal groups may be connected to their
rather closed and static organisational structure, an established negative pattern typical of
formal organisations (Zhu et al. 2012). Known mitigations for that pattern reflect simplified
organisations, with increased outreach activities (e.g., increased participation to mentoring
forums such as StackOverflow or YCombinator). Interestingly, on the other hand we also
found that the number of stars and forks scores are higher for informal and open, highly
diverse and geographically distributed types such as Informal Networks and Networks of
Practice. This empirically confirms the conjecture by Crowston and Howison (2006) that
informality is a key health target for open-source, since it is in fact informality which drives
the engagement and popularity of open-source communities to success and organisational
sustainability—this very same observation, however, is in contrast to the evident commu-
nity types discovered by YOSHI (see Table 3). This suggests that developers, forges, and
community platforms such as GitHub should be further supported in achieving and main-
taining healthy values of informality across their communities—YOSHI can serve as a basis
toolkit to diagnose this condition and aid in its resolution.

In conclusion, we argue that the usage of YOSHI can aid in understanding and shepherd-
ing the key characteristics of open source communities such as contributor-continuity and
popularity.

6 Tool Limitations and Threats to Validity

In this section we discuss the main limitations of the tool proposed, as well as the factors
that might have influenced the findings achieved in our case study.

6.1 Tool Limitations

Although a relevant contribution in its own accord, YOSHI shows many limitations that
inhibit its effectiveness and usability.

For YOSHI’s ability to provide computer-assisted governance support to open-source
communities, our first concern is generalisability. In our analysis we presented an evalua-
tion of 25 projects consisting of popular open-source software projects hosted on Github.
Based on this limited scope, our results might not easily generalise to other domains (e.g.,
closed-source). Second, our analysis relies on the validity of metrics detection and thresh-
olds values identification provided in previous work (di Nitto et al. 2013), hence suffering
from potential construct validity (Wohlin et al. 2000). Third, finally, in its current version
YOSHI is limited to establishing the presence of 8 our of 13 possible community types from
organizations and social networks research literature (Tamburri et al. 2013a). Although these
types were found (di Nitto et al. 2013) to be the most compatible with open-source organ-
isational forms, this poses a limitation since YOSHI is not able to ascertain the presence of

Empirical Software Engineering

observed types while discriminating the presence of the remaining five types. This means
that YOSHI is only partially effective in types that intermix characteristics from unsupported
communities - we recognise this implementation problem as the major technical limitation
of the tool and are working to address the limitation for its next version.

For YOSHI’s ability to support researchers in finding correlations analysing open-source
communities, YOSHI currently relies solely on Github’s publicly available data sources,
including its own issue-tracking system. Some projects (especially closed-source ones) use
a different issue tracking system such as Jira or Bugzilla and we should add support for
collecting data from more sources of data. Finally, it might become necessary to extend the
framework such that it can be accessed by a web browser. This feature would allow: (1)
users to define their own sets of projects that they want to analyse further; (2) add support
for more complex visualisation features.

Moreover, as we mentioned, YOSHI is currently limited to supporting the detection of 9
out of 13 possible community types emerging in open-source. Although in previous work
(di Nitto et al. 2013) we showed that the community types implemented by YOSHI are the
most recurrent in open-source, but this does not mean that other features do not play a
role. For example, YOSHI does not allow measurement of artefacts and/or software archi-
tecture visibility (intended as the ability for people to quickly retrieve information about
community artefacts) in open-source. Conversely, the Apache Software Foundation fosters
the creation of strong and fully engaged communities wherefore the organisational visibil-
ity and tracking mechanisms need to be made clear and are controlled monthly by a specific
ASF authority and tracked via compiled and templated reports (Severance 2012). Similarly,
there is a wealth of organisational and socio-technical characteristics from the state of the
art in organisations research and social-networks analysis (e.g., community de-coupling,
reciprocity levels, etc.) that YOSHI cannot currently take into account and an equal num-
ber of interesting principles (the organisational self-similarity principle and the consequent
institutional isomorphism (Lai et al. 2006)) to be further explored. We are currently in the
process of operationalising these features for further empirical assessment in the scope of
software engineering, to determine their mediating role, if any.

In addition, YOSHI is also limited to reusing empirical thresholds evaluated in previous
ethnomethodological research. However, the thresholds in question may be biased too much
against the same community in which they were observed. Also, several studies indicate
that the very use of clear-cut thresholds may not be as straightforward as we assume, at least
for some of the dimensions we consider, e.g., geographical distance (Prikladnicki 2012).
While we are indeed considering replicating the 15-month study that led to the definition of
the thresholds, we found it impossible with our current means. Nevertheless, we are aware
of the limitations and threats to validity of that previous study and of reusing thresholds.
Consequently, we chose to: (a) design the tool to make the thresholds application and evalu-
ation very highly-modularised into the YOSHI architecture such that substituting thresholds
and detection patterns is a non-invasive improvement to YOSHI ’s capabilities; (b) release a
fully-fledged replication package to call for, and encourage replication of our work.

Finally, detection and identification of community types is itself still a matter of research
in organisations and social networks literature. On one hand, we researched, evaluated, and
replicated the evaluation of our detection Algorithm 1 multiple industrial organisations in
previous research (Tamburri et al. 2015, 2016). Our experimentation in the scope of this
article revealed also that there are types which are most common in open-source. For exam-
ple, we noticed that YOSHI did not reveal any presence of Project-Teams nor Communities
of Practice across our sample—this could either indicate an uncontrolled variable in our
random sampling strategy or a specific flavour of communities which are more common in

Empirical Software Engineering

open-source. In either case, more research is in order to further investigate this circumstance.
Furthermore, there are other community structure approaches that may be used for commu-
nity detection, e.g., those proposed by Lancichinetti et al. (2008) or Medus et al. (2005).
Other approaches are focused more on using graph- and motif-analysis over organisational
networks and we cannot be certain that our own community typing approach is “better” than
others. Further research is needed into the community analyses in YOSHI , possibly through
mixed-methods research (Di Penta and Tamburri 2017) triangulated with industrial studies.

6.2 Industry vs. Open-Source, insights from YOSHI

Reflecting on YOSHI design and features, as well as the decision-tree implemented in its
core, we also operated a comparison of previous research results with respect to YOSHI

’s findings in the scope of this article. More in particular, in our previous work (Tamburri
et al. 2013b) we conjectured that software teams exhibit latent social community types that
need uncovering to understand vital socio-technical community characteristics. In the same
work, we confirmed, using the decision-tree at the root of YOSHI detection algorithm, the
complex organisational and social structure nature by means of qualitative analysis in a
single, large industrial case-study of distributed software development. Our industrial data
analysis confirmed the presence of at least 3 types (FN,CoP,IN) blended together, two of
which were revealed to be in latent conflict (FN and IN) by our own analysis. Our conclu-
sions where that: (a) latent community types did play a role for better software and different
types reflected different activity latency in our case-study object, i.e., different development,
issue-solving, or task-allocation times; (b) organisational changes such as agile adoption
changes the type of communities.

In the scope of the present article, YOSHI allowed us to clearly observe quantitative
confirmation of finding (a) while also providing a basis for further confirming finding (b).

With respect to finding (a), YOSHI reveals several insights, such as that formal commu-
nity design patterns seem to show higher expectancy of life while retaining the advantage
of “trust”—these features could be a valuable asset especially for “liability of foreignness”
organisational barriers, i.e., the inability of a company to enter a localised and closed market
(Zimmermann 2008). Companies experiencing liability may enter or participate into trusted
open-source communities rather than directly entering those closed markets. This issue is
frequent and heavily impactful in software offshoring exercises such as the one we studied
in our previous industrial work (Tamburri et al. 2013b).

With respect to finding (b), YOSHI has not been applied in instances wherefore open-
source communities forcibly changed their structures, e.g., as part of community forking.
This not withstanding, YOSHI does in fact provide the means to study phenomena such as
community forks to further understand and characterise their complex organisational and
socio-technical nature—this line of inquiry is currently under planning and is part of our
future work.

6.3 Threats to Validity

The study conducted when evaluating YOSHI might have been influenced by a number of
factors.

Threats to Construct Validity As for factors threatening the relation between theory and
observation, in our context they are mainly concerned with the measurements we performed.
Above all, the metrics on which the proposed approach relies, i.e., community structure,

Empirical Software Engineering

geodispersion, longevity, engagement, formality, and cohesion, were validated with respect
to their representation conditions (RQ1). Moreover, we further evaluated the community
structure in terms of modularity coefficient (RQ2), comparing the results of YOSHI with
the ones of a baseline approach and supporting the findings with appropriate statistical
tests. Conversely, one of our operationalisations does indeed suffer heavily from this threat,
namely the way we measure levels of informality across communities. On one hand, in
organisations research informality is not the opposite of formality (Tamburri et al. 2013a).
On the other hand, for the sake of its operationalisation, YOSHI actually assumes this to be
the case and measures informality as {1 - formality}; although this operationalisation does
offer values which are indicative of informality levels, it cannot currently match the actual
definition from literature, which indicates more the degree of openness, reciprocity, and un-
mediated interaction across the community (Fuks et al. 2005). Furthermore, because YOSHI

focuses on the collaboration structure existing across developers and on typing its informal-
ity, the tool currently ignores comments, their structure, contents, and possible contribution
towards informality—this is currently a known limitation of the tool and must be further
understood and addressed in future work. Further research must be invested to refine these
measurements to achieve further precision. For example, further understanding the tone,
contents, and structure of comments exerted by software developers and operators during their
work might reveal ways in which formality can be identified and mediated more precisely.

Threats to Conclusion Validity A first threat in this category is related to the ground truth
exploited in the context of RQ2: in this case, it is important to note that the OpenHub
repository contains validated datasets. For this reason, we are confident about the validity
of the data exploited and used to validate the modularity coefficients achieved by YOSHI

and by the baseline approach. Nevertheless, we cannot exclude imprecisions; an in-depth
analysis on the quality of the data coming from OpenHub would be desirable and part of
our future research agenda.

Moreover, to further verify the conclusions we contacted developers of the analyzed
communities and asked them to comment about the community structure that was in place
in the specific time period analyzed in our paper. To gather authoritative responses, for each
project we only contacted developers having a number of commits higher than the third
quartile of the distribution of all the commits in the repository. To reach a higher response
rate, we kept the survey short; therefore, we did not ask any question to developers other than
those required to verify the community structure of the considered projects. For this reason,
we do not have data on the participants’ professional experience, role, etc. However, this
does not represent a threat to our results: indeed, our goal was to verify that the community
structure given by YOSHI was in line with the structure assigned by developers that actively
worked for the considered projects. As such, the only requirement needed to be part of our
study was the actual active participation to the project, independently from other factors
like, for instance, the overall programming experience of the participants. By nature, our
selection process guarantees the involvement of people that can be considered expert of the
projects analyzed and that can actually provide authoritative opinions on the community
structure of their projects. As part of the discussion, we computed well-known repository
health metrics previously studied in literature (Crowston and Howison 2006; Jansen 2014),
thus focusing only on measures actually able to provide an established overview of the status
of a given repository.

Threats to External Validity The main issue concerned with the generalization of the
results is the number of software communities analyzed in the study. While a set of 25

Empirical Software Engineering

systems is not a statistically significant sample of the most active projects present in Github,
it is important to remark that the main goal of our paper was to evaluate YOSHI and not that
of studying properties of open-source systems on an ultra-large scale. Furthermore, the size
of the dataset allowed us to study the involved projects closely, thus providing finer obser-
vations on the performance of our approach. For this reason, we believe that the dataset can
be considered large enough for answering our research questions. Nevertheless, to make our
findings as generalizable as possible we took into account a variety of communities hav-
ing different characteristics, scope, size, and coming from different application domains.
The set of key-attributes that are frequently associated with open-source communities and
the attributes measuring the project quality can be further extended and applied on a larger
number of projects for a better understanding of the relationship among software commu-
nities, their practices and the characteristics related to community types. We plan to extend
our investigation on a larger set of communities.

7 RelatedWork

There are several works related to YOSHI, mainly residing in the general areas of open-
source community governance studies and computer-aided open-source management. In
this section, we overview relevant previous papers in these fields.

7.1 Governance and Community Aspects in Open-Source

First and foremost, works that strive to understanding and steering the specific coordination
and governance models adopted in an open-source project are highly related to the pro-
posed one. This is critical both for developers to assess whether to contribute or not to the
project and for final users of the resulting application, since trust in the community can vary
strongly according to the governance mechanism underlying the development. Garzarelli
and Galoppini (2003) identified three main categories of projects:17

– Corporate projects, entirely developed within a single company and then released as
open-source.

– Voluntary projects, which are supported by volunteers only, offering their efforts and
resources without being remunerated.

– Hybrid projects, jointly developed by volunteers and employers working for the
company which runs the project itself.

An example of voluntary project is represented by Debian,18 a completely free operat-
ing system launched in 1993 by Ian Murdock. One of the most relevant characteristics of
the organization model adopted by the Debian community consists in the adoption of the
Debian Social Contract, a document listing the moral rules and the values at the basis of the
project itself. The coordination mechanisms in place within the project are defined within
another formal document, the Debian Constitution.19 The governance structure is hierarchical

17A similar categorisation has been proposed by Robles et al. (2009).
18http://www.debian.org
19http://www.debian.org/devel/constitution.en.html

http://www.debian.org
http://www.debian.org/devel/constitution. en.html

Empirical Software Engineering

and includes different roles, such as the Project Leader, annually elected by developers,
the Technical Committee, mainly responsible for technical issues or problems related to
overlapping responsibilities, and developers, managing the packages they are in charge of
Garzarelli and Galoppini (2003).

Code of conducts in open source have been also the object of the study by Tourani et al.
(2017), who investigated role, scope and influence of codes of conduct in practice. Key find-
ings of their work report that thousands of projects rely on code of conducts to manage the
behavior of project’s members and avoid unfriendly environments, and they use to stipulate
contracts targeting all collaboration spaces of the community, trying to fix strict rules for
collaborators.

Coelho and Valente (2017) investigated the causes behind the failure of modern software
systems. The described a set of nine reasons, and interestingly five of them were related to
team- or environment-related issues. For instance, a notable amount of them failed because
of conflicts between the contributors.

With respect to these papers, it is important to remark that YOSHI does not directly
identify governance models, specific coordination requirements, or code of conducts, but it
captures a snapshot of open-source communities’ current organisational and social layout
by analysing their key characteristics. Appropriate governance models should be selected
after (or evaluated with) the results achieved by YOSHI, and can be adopted to monitor how
the overall community is evolving and whether the specific pattern is follows might create
conflicts or coordination problems that potentially lead to more serious issues.

Even considering similar communities, it is still possible to identify differences in the
governance practices they follow. Prattico (2012) has considered six communities sup-
ported by active open source foundations: Apache, Eclipse, GNOME, Plone, Python and
SPI. Using computer-aided text analysis of each foundation’s bylaws, Prattico noted that,
although each foundation adopted different terms, it was possible to identify three common
main power centers: the members of the community, the board of directors and the chair-
man of the community. For example, the chairman of the community can be named by the
board of directors, as in the Eclipse foundation, or elected by the members, as in the Debian
project. The board of directors is composed of people elected by the members. The board
takes decisions about the piece of software it is in charge of. Also, different communities
showed a different distribution of power. For example, in the Eclipse Software Foundation
power is mostly managed by the chairman, while in the Apache Software Foundation the
board of directors and the members exert the most power, with an inclination towards the
board of directors. Given the above works, it becomes critical for software engineering the-
ory and practice to learn as much as possible from open-source communities and their ways
of coping with GSD (Global Software Development).

Also in this case, YOSHI does not directly uncover best-practices concerning community
aspects in open-source but it does allow further reasoning such that best practices can be
developed with additional study.

Similar works have been done by Onoue et al. (2014, 2016), who studied the population
structures of open source systems: in particular, they first defined a method for predicting
the survival of open source community members within a software project, and then inves-
tigated the pyramidal roles present in such projects. With respect to these works, our paper
can be seen as complementary, as it proposes an approach to compute community-related
metrics and understand what is the underlying structure of community, so that practitioners
can take informed decisions on how to evolve it.

Empirical Software Engineering

7.2 Computer-Supported Cooperative Work in Open-Source

Usually, communication within a distributed team, either open-source or closed-source,
is supported by forges typically including mailing lists and Web-based tools like forums
and wikis. Contributions are shared by means of Concurrent Versions Systems (CVSs) or
Distributed Version Control Systems (DVCSs), like Subversion or Git, which provide ver-
sioning features, allowing to easily check or revert someone else’s contributions. Moreover,
tracking systems are used by the community itself and by external users to report bugs or
other problems and to ask for the development of new features.

Several studies have been dedicated to identifying social and technical barriers for new-
comers’ participation in Open Source (Steinmacher et al. 2015; Mendez et al. 2018; Ford
et al. 2016; Balali et al. 2018; Vasilescu et al. 2015a). Going beyond identification of the
barriers, some tools are explicitly aimed at tackling one or more technical barriers often
related to communication, e.g., by allowing practitioners to talk with remote colleagues in
an easy and informal way. For example, the Jazz project, sponsored by IBM, added instant
messaging features to the Eclipse Platform, together with other tools that show which files
are currently being edited by whom (Cheng et al. 2003). Also, a number of tools focus
on supporting activities such as distributed problem analysis, requirements elicitation and
activity planning. For example, the tool MasePlanner is an Eclipse plug-in with features for
simple agile planning in distributed contexts. Users can create story cards shown in a com-
mon virtual workspace. Cards can be organised and modified by project members to plan
their activities.

Other tools aim at improving awareness by extracting information from forges. For
example, tools proposed by the Libresoft group mine data extracted from code repositories,
malinglists, discussions and tracking systems (Robles et al. 2011). The SeCold portal adopts
mining techniques to build a shared knowledge base about several open-source projects,
including explicit facts like code content and statements, as well as implicit data, such as the
adopted license and the number of clones produced from a project (Keivanloo et al. 2012).
In similar studies, mining techniques are used to extract patterns to represent and improve
the decision process adopted in software development.

Finally, the ALERT20 project uses ontologies to increase awareness by gathering and
linking related information obtained from the different tools adopted by the community,
including structured and unstructured sources (Stojanovic et al. 2011). ALERT is intended
to use this information to build personalised, real-time and context-aware notifications, to
detect duplicate bug reports and assigning bugs reports to be solved.

To the best of our knowledge, there is no computer-assisted tool support for identify-
ing and measuring the community, social and organisational aspects behind open-source
communities. Yet, studying these aspects is essential for capturing organisational and social
best-practices from the widely discussed and studied open-source phenomenon.

8 Conclusions and FutureWork

This paper introduces YOSHI, a tool for the automated organisational structure pattern
detection across open-source communities. YOSHI gathers information about open-source

20http://www.alert-project.eu

http://www.alert-project.eu

Empirical Software Engineering

communities and projects and executes necessary preprocessing operations to obtain infor-
mation about community characteristics. Finally, YOSHI uses community characteristics
found to infer a pattern of open-source community structures. YOSHI stores and reports
results and offers a modular design, ready for further extension and analysis. The rest of this
section recaps conclusions and future work beyond the scope of this article.

8.1 Lessons Learned

While testing YOSHI on 25 projects from GitHub, we observed that:

1. YOSHI allows the reliable prediction of community structure patterns using soft-
ware engineering data. The experiment conducted to verify the accuracy of the tool
revealed that it offers a valid set of metrics which satisfy the basic representation
condition as defined in literature (Fenton 1991). Furthermore, YOSHI provides an accu-
rate information with respect to the community structure according to our null-model
analysis.

2. YOSHI can be used to monitor and manage social debt within open-source com-
munities. The design pattern output by the proposed tool can be used by practitioners
to control the quality status of social and organisational relationships among develop-
ers of a community: indeed, each community type has its own peculiarities and might
reflect the presence of specific social debt items (Tamburri et al. 2015; Magnoni et al.
2017) within the community.

3. YOSHI can be used to steer repository popularity by comparison. Our analyses
revealed that informal groups and networks tend to have a higher number of stargaz-
ers and forkers, thus having a higher likelihood to be reused by other projects. As a
consequence, the pattern detection facility provided by the tool can be exploited to
monitor the repository status and plan specific preventive actions aimed at increasing
its reuse-proneness.

From the above features we can conclude that YOSHI : (a) allows reuse of type-specific
community steering and adaptation best practices from literature; (b) yields deeper under-
standing of open-source communities’ organisational and socio-technical nature; (c) offers
a valuable basis for diagnosing open-source community structures and design patterns
thereof.

8.2 FutureWork and Outlook: Forming the Software Community Shepherd

Our prototyping and experimentation with YOSHI showed us that while sites like Bitergia
and OpenHub may provide vital insights into open-source communities they do little to
elicit and measure key community design pattern performances. Conversely, the community
shepherd is a persona whose goal aims at: (a) measurably understanding the organisa-
tional structure requirements behind software, to encourage sustainability; (b) applying
models, techniques, and approaches from organisations research to measurably improve the
open-source community structure, to encourage continuous improvement; (c) making the
organisational structure characteristics more transparent, open, and measurable to encourage
further research.

Further experimentation is needed along the above research path. In that respect,
YOSHI offers ample opportunity for improvement and further work. For example, YOSHI

can be extended to include techniques such as more elaborate data-mining or sentiment

Empirical Software Engineering

analysis (Novielli et al. 2014). This refines YOSHI even further in supporting governance
and management across open-source communities.

In addition, YOSHI may be combined with tools that detect the technical qualities of
open-source communities with the aim of eliciting and evaluating a full-fledged community
quality model complementing well-known software product quality models (Ferenc et al.
2014)—we started researching along this path (Magnoni et al. 2017) but we concluded that
we barely scratched the surface of a vast array of possibilities that require further research.

Moreover, further experimentation is needed to establish which patterns elicited by
YOSHI actually correspond to which community smells and in which technical conditions.
This analysis may reveal open-source organisational patterns which are best fitting with
specific domains, or products.

Finally, YOSHI should be extended to cope with closed-source organizations as well.
This extension entails an additional set of metrics to be devised to integrate remaining com-
munity patterns from Tamburri et al. (2013a, b). Also, this extension calls for an additional
round of validation in closed-source software projects. In the future we plan to address the
tool’s technical limitations, while providing more ample empirical evaluation, possibly over
multiple software forges other than GitHub.

Acknowledgments The authors would like to thank the students Alexandra Leta and Martin Anev that
helped with the realisation of YOSHI. Also, the authors would like to thank the many practitioners that
aided us in achieving YOSHI’s evaluation in practice. Palomba gratefully acknowledge the support of the
Swiss National Science Foundation through the SNF Project No. PP00P2 170529. Last but not least, the
authors would like to thank the anonymous reviewers for their invaluable comments and contributions to this
explorative and frontier research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Afsar B, Badir YF (2015) The impacts of person-organisation fit and perceived organisational support on
innovative work behaviour: the mediating effects of knowledge sharing behaviour. IJISCM 7(4):263–
285. http://dblp.uni-trier.de/db/journals/ijiscm/ijiscm7.html#AfsarB15

Ala-Mutka K (2009) Review of lifelong learning in online communities. http://is.jrc.ec.europaeu/pages/EAP/
documents/IPTSreportDraft230309 000.pdf

Antoine JY, Villaneau J, Lefeuvre A (2014) Weighted Krippendorff’s alpha is a more reliable metrics for
multi-coders ordinal annotations: experimental studies on emotion, opinion and coreference annotation.
In: Bouma G, Parmentier Y (eds) Proceedings of the 14th conference of the European chapter of the
association for computational linguistics. The Association for Computer Linguistics, EACL, pp 550–
559. http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14

Antunes P, Guimarães N, Segovia J, Cardeñosa J (1995) Beyond formal processes: augmenting work-
flow with group interaction techniques. In: Proceedings of the conference on organizational computing
systems, COOCS. ACM, Milpitas, pp 1–9. https://doi.org/10.1145/224019.224020

Arnaoudova V, Haiduc S, Marcus A, Antoniol G (2015) The use of text retrieval and natural language
processing in software engineering. In: Proceedings of the 37th international conference on software

http://creativecommons.org/licenses/by/4.0/
http://dblp.uni-trier.de/db/journals/ijiscm/ijiscm7.html#AfsarB15
http://is.jrc.ec.europa eu/pages/EAP/documents/IPTSreportDraft230309_000.pdf
http://is.jrc.ec.europa eu/pages/EAP/documents/IPTSreportDraft230309_000.pdf
http://dblp.uni-trier.de/db/conf/eacl/eacl2014.html#AntoineVL14
https://doi.org/10.1145/224019.224020

Empirical Software Engineering

engineering - vol 2, ICSE ’15. IEEE Press, Piscataway, pp 949–950. http://dl.acm.org/citation.cfm?
id=2819009.2819224

Avgeriou P, Kruchten P, Nord RL, Ozkaya I, Seaman CB (2016) Reducing friction in software
development. IEEE Soft 33(1):66–73. http://dblp.uni-trier.de/db/journals/software/software33.html#
AvgeriouKNOS16

Balali S, Steinmacher I, Annamalai U, Sarma A, Gerosa MA (2018) Newcomers’ barriers... is that all? an
analysis of mentors’ and newcomers’ barriers in OSS projects. Comp Support Coop W 27(3-6):679–714

Basili VR, Caldiera G, Rombach DH (1994) The goal question metric approach, vol I. Wiley, New York,
pp 213–223

Bass L, Clements P, Kazman R (1998) Software architecture in practice. Addison Wesley, Boston
Bird C, Nagappan N, Gall H, Murphy B, Devanbu P (2009) Putting it all together: Using socio-

technical networks to predict failures. In: Proceedings of the 2009 20th international sym-
posium on software reliability engineering. IEEE Computer Society, Washington, pp 109–119,
https://doi.org/10.1109/ISSRE.2009.17. ISSRE ’09

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact the popularity of github reposi-
tories. In: IEEE international conference on software maintenance and evolution. IEEE, pp 334–344

Capiluppi A, Lago P, Morisio M, e Informatica D (2003) Characteristics of open source projects. In: 2003
Proceedings seventh European conference on software maintenance and reengineering, vol 1, no 17,
pp 317–327

Capra E, Francalanci C, Merlo F (2008) An empirical study on the relationship between software design
quality, development effort and governance in open source projects. IEEE Trans Softw Eng 2(13):112–
142. https://doi.org/10.1109/TSE.2008.68, in press

Chatha KA (2003) Multi-process modelling approach to complex organisation design. PhD thesis, Lough-
borough University

Chełkowski T, Gloor P, Jemielniak D (2016) Inequalities in open source software development: analysis of
contributor?s commits in apache software foundation projects. PloS One 11(4):e0152,976

Cheng LT, Hupfer S, Ross S, Patterson J (2003) Jazzing up eclipse with collaborative tools. In: Proceedings
of the 2003 OOPSLA workshop on eclipse technology eXchange, eclipse ’03. ACM, New York, pp 5–49,
https://doi.org/10.1145/965660.965670

Coelho J, Valente MT (2017) Why modern open source projects fail. In: Proceedings of the 2017 11th joint
meeting on foundations of software engineering. ACM, New York, pp 186–196

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum
Associates, Mahwah

Conover WJ (1998) Practical nonparametric statistics, 3rd edn. Wiley, Hoboken, pp 07030–5774
Cross R, Liedtka J, Weiss L (2005) A practical guide to social networks. Harv Bus Rev 10(41):124–32
Crowston K, Howison J (2006) Assessing the health of open source communities. IEEE Comput 39(5):89–

91. http://dblp.uni-trier.de/db/journals/computer/computer39.html#CrowstonH06
Crowston K, Wei K, Howison J, Wiggins A (2012) Free/libre open-source software development: what we

know and what we do not know. ACM Comput Surv 44(2):7
Di Penta M, Tamburri DA (2017) Combining quantitative and qualitative studies in empirical software engi-

neering research. In: Uchitel S, Orso A, Robillard MP (eds) Proceedings of the international conference
on software engineering (ICSE Companion Volume), ACM. ACM Press, New York, pp 499–500. http://
dblp.uni-trier.de/db/conf/icse/icse2017c.html#PentaT17

DiMaggio PJ, Powell WW (1983) The iron cage revisited: institutional isomorphism and collective rationality
in organizational fields. Am Sociol Rev 48(2):147–160. https://doi.org/10.2307/2095101. http://www.
jstor.org/stable/2095101?origin=crossref

Druskat S (2016) A proposal for the measurement and documentation of research software sustainability in
interactive metadata repositories. arXiv:160804529

Egghe L, Rousseau R (2003) A measure for the cohesion of weighted networks. JASIST 54(3):193–202.
http://dblp.uni-trier.de/db/journals/jasis/jasis54.html#EggheR03

Elkins T, Keller RT (2003) Leadership in research and development organizations: a literature review and
conceptual framework. Leadersh Q 14(4-5):587–606

Espejo R (ed) (1993) Organisational fitness. Frankfurt am Main [u.a.], Campus-Verl.
Falessi D, Smith W, Serebrenik A (2017) Stress: A semi-automated, fully replicable approach for project

selection. IEEE, ESEM, pp 151–156. http://dblp.uni-trier.de/db/conf/esem/esem2017.html#FalessiSS17
Fenton NE (1991) Software metrics - a rigorous approach. Chapman and Hall, UK
Ferenc R, Hegedüs P, Gyimóthy T (2014) Software product quality models. In: Evolving software systems.

Springer, Berlin, pp 65–100
Ford D, Smith J, Guo PJ, Parnin C (2016) Paradise unplugged: identifying barriers for female participation

on stack overflow. In: FSE, pp 846–857

http://dl.acm.org/citation.cfm?id=2819009.2819224
http://dl.acm.org/citation.cfm?id=2819009.2819224
http://dblp.uni-trier.de/db/journals/software/software33.html#AvgeriouKNOS16
http://dblp.uni-trier.de/db/journals/software/software33.html#AvgeriouKNOS16
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/TSE.2008.68
https://doi.org/10.1145/965660.965670
http://dblp.uni-trier.de/db/journals/computer/computer39.html#CrowstonH06
http://dblp.uni-trier.de/db/conf/icse/icse2017c.html#PentaT17
http://dblp.uni-trier.de/db/conf/icse/icse2017c.html#PentaT17
https://doi.org/10.2307/2095101
http://www.jstor.org/stable/2095101?origin=crossref
http://www.jstor.org/stable/2095101?origin=crossref
http://arxiv.org/abs/160804529
http://dblp.uni-trier.de/db/journals/jasis/jasis54.html#EggheR03
http://dblp.uni-trier.de/db/conf/esem/esem2017.html#FalessiSS17

Empirical Software Engineering

Fredrickson JW (1986) The strategic decision process and organizational structure. The Academy of Mgmt
Rev 11(2):280–297. https://doi.org/10.5465/AMR.1986.4283101

Fuks H, Raposo AB, Gerosa MA (2005) Applying the 3c model to groupware development. Int J Cooperative
Inf Syst 14(2):299–328

Gallagher S (2006) Introduction: The arts and sciences of the situated body. Janus Head 9(2):1–2
Gamalielsson J, Lundell B (2013) Sustainability of open source software communities beyond a fork: how

and why has the libreoffice project evolved? J Syst Softw 3(11):128–145. https://doi.org/10.1016/j.jss.
2013.11.1077

Garzarelli G, Galoppini R (2003) Capability coordination in modular organization: voluntary fs/oss produc-
tion and the case of debian gnu/linux. Industrial Organization 0312005, EconWPA. http://ideas.repec.
org/p/wpa/wuwpio/0312005.html

Giraldo LF, Passino KM (2016) Dynamic task performance, cohesion, and communications in human groups.
IEEE Trans Cyber 46(10):2207–2219

Glance DG (2004) Release criteria for the linux kernel. First Monday 9(4):4–5
Hata H, Todo T, Onoue S, Matsumoto K (2015) Characteristics of sustainable oss projects: A theoretical and

empirical study. In: Proceedings of the 8th international workshop on cooperative and human aspects of
software engineering, CHASE ’15. IEEE Press, Piscataway, pp 15–21. http://dl.acm.org/citation.cfm?
id=2819321.2819325

Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–
184. https://doi.org/10.1080/00031305.1998.10480559. http://amstat.tandfonline.com/doi/abs/10.1080/
00031305.1998.10480559

Hofstede G, Hofstede G, Minkov M (2010) Cultures and organizations: software of the mind, 3rd edn,
McGraw-Hill Companies, Incorporated, IBM Inc. http://books.google.it/books?id=o4OqTgV3V00C

Homscheid D, Schaarschmidt M (2016) Between organization and community: investigating turnover inten-
tion factors of firm-sponsored open source software developers. In: Proceedings of the 8th international
ACM web science conference. ACM Press, Piscataway, pp 326–337

Hung H, Gatica-Perez D (2010) Estimating cohesion in small groups using audio-visual nonverbal behavior.
IEEE Trans Multimed 12(6):563–575

Jansen S (2014) Measuring the health of open source software ecosystems: beyond the scope of project
health. Inf Softw Technol 56(11):1508–1519. http://dblp.uni-trier.de/db/journals/infsof/infsof56.html#
Jansen14

Jeppesen HJ, Jnsson T, Shevlin M (2011) Employee attitudes to the distribution of organizational
influence: who should have the most influence on which issues? Econ Ind Democr 32(1):69–86.
https://doi.org/10.1177/0143831X10372432. http://eid.sagepub.com/content/32/1/69

Jiménez M, Piattini M (2008) Problems and solutions in distributed software development: a systematic
review. In: Berkling, K, Joseph, M, Meyer, B, Nordio, M (eds) Second international conference on
software engineering approaches for offshore and outsourced development SEAFOOD 2008, Zurich,
Switzerland, July 2-3, 2008, lecture notes in business information processing, vol 16. Revised Papers,
Springer, http://dblp.uni-trier.de/rec/bib/conf/seafood/JimenezP08, pp 107–125

Jongeling R, Sarkar P, Datta S, Serebrenik A (2017) On negative results when using senti-
ment analysis tools for software engineering research. Empir Softw Eng 22(5):2543–2584.
https://doi.org/10.1007/s10664-016-9493-x

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian DE (2016) An in-depth study of
the promises and perils of mining github. Empir Softw Eng 21(5):2035–2071. http://dblp.uni-trier.de/
db/journals/ese/ese21.html#KalliamvakouGBS16

Keivanloo I, Forbes C, Hmood A, Erfani M, Neal C, Peristerakis G, Rilling J (2012) A linked data plat-
form for mining software repositories. In: In: 2012 9th IEEE working conference on mining software
repositories (MSR), vol 3, no 6, pp 32–35. https://doi.org/10.1109/MSR.2012.6224296

Kilduff M, Tsai W (2003) Social networks and organizations. Sage Publications Ltd. http://www.
amazon.com/Social-Networks-Organizations-Martin-Kilduff/dp/0761969578/ref=si3 rdr bb product/
102-5868296-6616105

Kim H (2007) A multilevel study of antecedents and a mediator of employee-organization relationships. J
Public Relat Res 19(2):167–197. https://doi.org/10.1080/10627260701290695

Kozdoba M, Mannor S (2015) Community detection via measure space embedding. In: Cortes C, Lawrence
ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28:
annual conference on neural information processing systems (NIPS), pp 2890–2898. http://dblp.uni-trier.
de/db/conf/nips/nips2015.html#KozdobaM15

Kraut RE, Streeter LA (1995) Coordination in software development. Commun ACM 38(3):69–81
Krippendorff K (2004) Content analysis: an introduction to its methodology, 2nd edn. Sage Publications

https://doi.org/10.5465/AMR.1986.4283101
https://doi.org/10.1016/j.jss.2013.11.1077
https://doi.org/10.1016/j.jss.2013.11.1077
http://ideas.repec.org/p/wpa/wuwpio/0312005.html
http://ideas.repec.org/p/wpa/wuwpio/0312005.html
http://dl.acm.org/citation.cfm?id=2819321.2819325
http://dl.acm.org/citation.cfm?id=2819321.2819325
https://doi.org/10.1080/00031305.1998.10480559
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
http://books.google.it/books?id=o4OqTgV3V00C
http://dblp.uni-trier.de/db/journals/infsof/infsof56.html#Jansen14
http://dblp.uni-trier.de/db/journals/infsof/infsof56.html#Jansen14
https://doi.org/10.1177/0143831X10372432
http://eid.sagepub.com/content/32/1/69
http://dblp.uni-trier.de/rec/bib/conf/seafood/JimenezP08
https://doi.org/10.1007/s10664-016-9493-x
http://dblp.uni-trier.de/db/journals/ese/ese21.html#KalliamvakouGBS16
http://dblp.uni-trier.de/db/journals/ese/ese21.html#KalliamvakouGBS16
https://doi.org/10.1109/MSR.2012.6224296
http://www.amazon.com/Social-Networks-Organizations-Martin-Kilduff/dp/0761969578/ref=si3_rdr_bb_product/102-5868296-6616105
http://www.amazon.com/Social-Networks-Organizations-Martin-Kilduff/dp/0761969578/ref=si3_rdr_bb_product/102-5868296-6616105
http://www.amazon.com/Social-Networks-Organizations-Martin-Kilduff/dp/0761969578/ref=si3_rdr_bb_product/102-5868296-6616105
https://doi.org/10.1080/10627260701290695
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#KozdobaM15
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#KozdobaM15

Empirical Software Engineering

Kujala S, Kauppinen M, Lehtola L, Kojo T (2005) The role of user involvement in requirements quality and
project success. In: Proceedings of the 13th IEEE international conference on requirements engineering,
RE ’05. IEEE Computer Society, Washington, pp 75–84. https://doi.org/10.1109/RE.2005.72

Lai K, Wong CWY, Cheng TCE (2006) Institutional isomorphism and the adoption of information tech-
nology for supply chain management. Comput Ind 57(1):93–98. http://dblp.uni-trier.de/db/journals/cii/
cii57.html#LaiWC06

Lancichinetti A, Fortunato S, Kertesz J (2008) Detecting the overlapping and hierarchical community struc-
ture of complex networks. http://arxiv.org/abs/0802.1218, Comment: 20 pages, 8 figures. Final version
published on New Journal of Physics

Li W, Yang C, Yang C (2010) An active crawler for discovering geospatial web services and their distribution
pattern - a case study of ogc web map service. Int J Geogr Inf Sci 24(8):1127–1147. http://dblp.uni-trier.
de/db/journals/gis/gis24.html#LiYY10

Li Y, Tan CH, Teo HH (2012) Leadership characteristics and developers’ motivation in open source software
development. Inf Manag 49(5):257–267. http://dblp.uni-trier.de/db/journals/iam/iam49.html#LiTT12

Magnoni S, Tamburri DA, Di Nitto E, Kazman R (2017) Analyzing quality models for software communities.
Communications of the ACM -: Under Review

Manning C, Schütze H (1999) Foundations of statistical natural language processing. MIT Press, Cambridge
Medus A, Acuña G, Dorso CO (2005) Detection of community structures in networks via global optimiza-

tion. Physica A: Stat Mech Its Appl 358(2-4):593–604. http://www.sciencedirect.com/science/article/
B6TVG-4G9PW36-3/1/b3321e67c43a26b2c87ddbe0579878a6

Mendez C, Padala HS, Steine-Hanson Z, Hilderbrand C, Horvath A, Hill C, Simpson L, Patil N, Sarma A,
Burnett M (2018) Open source barriers to entry, revisited: a sociotechnical perspective. In: ICSE, pp
1004–1015

Miles M, Gilmore A, Harrigan P, Lewis G, Sethna Z (2015) Exploring entrepreneurial marketing. J Strateg
Mark 23(2):94–111. https://doi.org/10.1080/0965254X.2014.914069

Millen DR, Fontaine MA, Muller MJ (2002) Understanding the benefit and costs of communities of
practice. Commun ACM 45(4):69–73. https://doi.org/10.1145/505248.505276. http://portal.acm.org/
citation.cfm?id=505276

Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analy-
sis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on internet
measurement, IMC ’07. ACM, New York, pp 29–42, https://doi.org/10.1145/1298306.1298311

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: apache
and Mozilla. ACM Trans Softw Eng Methodol 11(3):309–346. https://doi.org/10.1145/567793.567795

Molzberger P (1986) Analyzing mental representation by means of nlp (neuro linguistic programming). In:
Becker JD, Eisele I (eds) Proceedings of the workshop on parallel processing: logic, organization, and
technology (WOPPLOT), Springer, Springer, NL, Lecture Notes in Computer Science, vol 253, pp 120–
135. http://dblp.uni-trier.de/db/conf/wopplot/wopplot1986.html#Molzberger86

Moody J, White DR (2003) Structural cohesion and embeddedness: a hierarchical concept of social groups.
Am Sociol Rev 68:103–127

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engineered software projects. Empir
Softw Eng 22(6):3219–3253

Nagappan N, Murphy B, Basili V (2008) The influence of organizational structure on software quality: an
empirical case study. In: International conference on software engineering. IEEE, Leipzig, pp 521–530.
https://doi.org/10.1145/1368088.1368160

Nevo D, Wand Y (2005) Organizational memory information systems: a transactive memory approach. Decis
Support Syst 39(4):549–562. http://dblp.uni-trier.de/db/journals/dss/dss39.html#NevoW05

Newman M (2003) Fast algorithm for detecting community structure in networks. Phys Rev E 69:667–674
Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103:8577–8582.

http://www.pnas.org/cgi/doi/10.1073/pnas.0601602103
Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E

69(026113):620–627
Nguyen T, Wolf T, Damian D (2008) Global software development and delay: does distance still matter?

In: 2008 IEEE International Conference on Global Software Engineering, 2008 ICGSE, vol 8, pp 45–54.
https://doi.org/10.1109/ICGSE.2008.39

Nielsen SH (1995) Software quality management and organisational fit. Australasian J Inf Systems
3(1):1449–1576

di Nitto E, Gatti S, Invernizzi S, Tamburri DA (2013) Supporting awareness in open-source forges. Journal
of Software: Evolution and Process - under review 1(4):1–21. Available Online for Peer-Review Only:
https://tinyurl.com/ya3nhsqs

https://doi.org/10.1109/RE.2005.72
http://dblp.uni-trier.de/db/journals/cii/cii57.html#LaiWC06
http://dblp.uni-trier.de/db/journals/cii/cii57.html#LaiWC06
http://arxiv.org/abs/0802.1218
http://dblp.uni-trier.de/db/journals/gis/gis24.html#LiYY10
http://dblp.uni-trier.de/db/journals/gis/gis24.html#LiYY10
http://dblp.uni-trier.de/db/journals/iam/iam49.html#LiTT12
http://www.sciencedirect.com/science/article/B6TVG-4G9PW36-3/1/b3321e67c43a26b2c87ddbe0579878a6
http://www.sciencedirect.com/science/article/B6TVG-4G9PW36-3/1/b3321e67c43a26b2c87ddbe0579878a6
https://doi.org/10.1080/0965254X.2014.914069
https://doi.org/10.1145/505248.505276
http://portal.acm.org/citation.cfm?id=505276
http://portal.acm.org/citation.cfm?id=505276
https://doi.org/10.1145/1298306.1298311
https://doi.org/10.1145/567793.567795
http://dblp.uni-trier.de/db/conf/wopplot/wopplot1986.html#Molzberger86
https://doi.org/10.1145/1368088.1368160
http://dblp.uni-trier.de/db/journals/dss/dss39.html#NevoW05
http://www.pnas.org/cgi/doi/10.1073/pnas.0601602103
https://doi.org/10.1109/ICGSE.2008.39
https://tinyurl.com/ya3nhsqs

Empirical Software Engineering

Nooteboom B, Vanhaverbeke W, Duysters G, Gilsing VA, van den Oord A (2006) Optimal cognitive distance
and absorptive capacity. Res Policy 36(7):1016–1034

Novielli N, Calefato F, Lanubile F (2014) Towards discovering the role of emotions in stack overflow,
vol 2014. ACM, New York, pp 33–36. https://doi.org/10.1145/2661685.2661689

Onoue S, Hata H, Matsumoto K (2014) Software population pyramids: The current and the future of oss
development communities. In: Proceedings of the 8th ACM/IEEE international symposium on empirical
software engineering and measurement, ACM, p 34

Onoue S, Hata H, Monden A, Matsumoto K (2016) Investigating and projecting population structures in open
source software projects: a case study of projects in github. IEICE Trans Inf Syst 99(5):1304–1315

Oreja-Rodriguez JR, Yanes-Estevez V (2006) Knowledge structures of organisational environments:
study of perceived uncertainty. IJKL 2(1/2):41–57. http://dblp.uni-trier.de/db/journals/ijkl/ijkl2.html#
Oreja-RodriguezY06

Otte E, Rousseau R (2002) Social network analysis: a powerful strategy, also for the information sciences. J
Inf Sci 28(6):441–453

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2015) Mining version histories
for detecting code smells. IEEE Trans Softw Eng 41(5):462–489

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2017) The scent of a smell: an extensive
comparison between textual and structural smells. IEEE Transactions on Software Engineering

Palomba F, Tamburri DA, Serebrenik A, Zaidman A, Fontana FA, Oliveto R (2018) How do community
smells influence code smells? In: ICSE (Companion Volume), ACM

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In: Proceedings
of the 16th ACM SIGSOFT international symposium on foundations of software engineering, SIGSOFT
’08/FSE-16. ACM, New York, pp 2–12. https://doi.org/10.1145/1453101.1453105

Prandy K (2000) The social interaction approach to the measurement and analysis of social stratification. No.
19 in 09, SAGE

Prattico L (2012) Governance of open source software foundations: who holds the power? Technol Innov
Manag Rev 1(12):37–42

Prikladnicki R (2012) Propinquity in global software engineering: examining perceived distance in globally
distributed project teams. J Soft Maint 24(2):119–137. http://dblp.uni-trier.de/db/journals/smr/smr24.
html#Prikladnicki12

Raju K (2007) Is the future of software development in open source? Proprietary vs open source software: a
cross country analysis. Journal of Intellectual Property Rights 12(2):21–42

Robles G, Gonzalez-Barahona JM, Herraiz I (2009) Evolution of the core team of developers in libre software
projects. In: 2009 6th IEEE international working conference on mining software repositories, pp 167–
170. https://doi.org/10.1109/MSR.2009.5069497

Robles G, Gonzalez-Barahona JM, Izquierdo-Cortazar D, Herraiz I (2011) Tools and datasets for mining
libre software repositories, vol 1. IGI Global, Hershey, PA, chap 2, pp 24–42. http://www.igi-global.
com/book/multi-disciplinary-advancement-open-source/46171

Romano J, Kromrey JD, Skowronek J, Devine L (2006) Exploring methods for evaluating group differences
on the NSSE and other surveys: are the t-test and Cohen’s d indices the most appropriate choices? In:
Ann. meeting, South Assoc Institutional Research, pp 1–51

Ruikar K, Koskela L, Sexton M (2009) Communities of practice in construction case study organ-
isations: questions and insights. Constr Innov 9(4):434–448. http://proquest.umi.com/pqdweb?
did=1920022811&Fmt=7&clientId=4574&RQT=309&VName=PQD

Ryynnen H (2012) A social network analysis of internal communication in a matrix organisation - the
context of project business. IJBIS 11(3):324–342. http://dblp.uni-trier.de/db/journals/ijbis/ijbis11.html#
Ryynanen12

Sadowski BM, Sadowski-Rasters G, Duysters G (2008) Transition of governance in a mature open software
source community: evidence from the debian case. Inf Econ Policy 20(4):323–332. http://dblp.uni-trier.
de/db/journals/iepol/iepol20.html#SadowskiSD08

Sands R (2018) Blob post on openhub organizational features. https://blog.openhub.net/2012/10/
introducing-ohloh-organizations-a-new-view-on-foss/

Schweik CM (2013) Sustainability in open source software commons: lessons learned from an empirical
study of sourceforge projects. Technol Innov Manag Rev 3:13–19. http://timreview.ca/article/645

Severance C (2012) The apache software foundation: Brian Behlendorf. IEEE Comput 45(10):8–9. http://
dblp.uni-trier.de/db/journals/computer/computer45.html#Severance12h

Siakas KV, Georgiadou E (2002) Empirical measurement of the effects of cultural diversity on software
quality management. Softw Qual J 10(2):169–180. http://dblp.uni-trier.de/db/journals/sqj/sqj10.html#
SiakasG02

https://doi.org/10.1145/2661685.2661689
http://dblp.uni-trier.de/db/journals/ijkl/ijkl2.html#Oreja-RodriguezY06
http://dblp.uni-trier.de/db/journals/ijkl/ijkl2.html#Oreja-RodriguezY06
https://doi.org/10.1145/1453101.1453105
http://dblp.uni-trier.de/db/journals/smr/smr24.html#Prikladnicki12
http://dblp.uni-trier.de/db/journals/smr/smr24.html#Prikladnicki12
https://doi.org/10.1109/MSR.2009.5069497
http://www.igi-global.com/book/multi-disciplinary-advancement-open-source/46171
http://www.igi-global.com/book/multi-disciplinary-advancement-open-source/46171
http://proquest.umi.com/pqdweb?did=1920022811&Fmt=7&clientId=4574&RQT=309&VName=PQD
http://proquest.umi.com/pqdweb?did=1920022811&Fmt=7&clientId=4574&RQT=309&VName=PQD
http://dblp.uni-trier.de/db/journals/ijbis/ijbis11.html#Ryynanen12
http://dblp.uni-trier.de/db/journals/ijbis/ijbis11.html#Ryynanen12
http://dblp.uni-trier.de/db/journals/iepol/iepol20.html#SadowskiSD08
http://dblp.uni-trier.de/db/journals/iepol/iepol20.html#SadowskiSD08
https://blog.openhub.net/2012/10/introducing-ohloh-organizations-a-new-view-on-foss/
https://blog.openhub.net/2012/10/introducing-ohloh-organizations-a-new-view-on-foss/
http://timreview.ca/article/645
http://dblp.uni-trier.de/db/journals/computer/computer45.html#Severance12h
http://dblp.uni-trier.de/db/journals/computer/computer45.html#Severance12h
http://dblp.uni-trier.de/db/journals/sqj/sqj10.html#SiakasG02
http://dblp.uni-trier.de/db/journals/sqj/sqj10.html#SiakasG02

Empirical Software Engineering

Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of github contributors. In: Proceed-
ings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering,
ACM, pp 858–870

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their
first contribution in open source software projects. In: CSCW, ACM, pp 1379–1392

Stojanovic L, Ortega F, Dueñas S, Cañas-Dı́az L (2011) Alert: active support and real-time coordination
based on event processing in open source software development. In: Software maintenance and reengi-
neering 2011 (CSMR). IEEE, Oldenburg, pp 359–362, https://doi.org/10.1109/CSMR.2011.52. http://
www.se.uni-oldenburg.de/csmr2011/

Tamburri D, Casale G (2017) Cognitive distance vs. research output in doctoral computing education: a
case-study. IEEE Transactions on Education 4(1):under review

Tamburri DA, di Nitto E, Lago P, van Vliet H (2012) On the nature of the GSE organizational social struc-
ture: an empirical study. In: Proceedings of the 7th IEEE international conference on global software
engineering, vol 1, no 12, pp 114–123

Tamburri DA, Lago P, van Vliet H (2013a) Organizational social structures for software engineering. ACM
Comput Surv 46(1):3,1–3,35. https://doi.org/10.1145/2522968.2522971

Tamburri DA, Lago P, van Vliet H (2013b) Uncovering latent social communities in software development.
IEEE Soft 30(1):29–36. https://doi.org/10.1109/MS.2012.170

Tamburri DA, Kruchten P, Lago P, van Vliet H (2015) Social debt in software engineering: insights from
industry. J Internet Services Appl 6(1):10,1–10,17. http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#
TamburriKLV15

Tamburri DA, Kazman R, Fahimi H (2016) The architect’s role in community shepherding. IEEE Soft
33(6):70–79. http://dblp.uni-trier.de/db/journals/software/software33.html#TamburriKF16

Tamburri DA, Palomba F, Serebrenik A, Zaidman A (2017) Discovering community types in open-source: a
systematic approach and its evaluation - online appendix. http://tinyurl.com/y8oo4vkg

Tikhonov M (2016) Community-level cohesion without cooperation. eLife 5
Tourani P, Adams B, Serebrenik A (2017) Code of conduct in open source projects. ACM, Piscataway,

pp 24–33. https://doi.org/10.1109/SANER.2017.7884606
Traag VA, Krings G, Dooren PV (2013) Significant scales in community structure. Nature.

arXiv:1306.3398:66–89, http://dblp.uni-trier.de/db/journals/corr/corr1306.html#TraagKD13
Tsirakidis P, Kóbler F, Krcmar H (2009) Identification of success and failure factors of two agile soft-

ware development teams in an open source organization. In: International conference on global software
engineering, IEEE, pp 295–296. http://dblp.uni-trier.de/db/conf/icgse/icgse2009.html#TsirakidisKK09

Tullio DD, Staples DS (2014) The governance and control of open source software projects. J Manag Inf
Syst 30(3):49–80. http://dblp.uni-trier.de/db/journals/jmis/jmis30.html#TullioS14

Vasilescu B, Filkov V, Serebrenik A (2015a) Perceptions of diversity on GitHub: a user survey. In: CHASE,
pp 50–56

Vasilescu B, Posnett D, Ray B, van den Brand MGJ, Serebrenik A, Devanbu PT, Filkov V (2015b) Gender
and tenure diversity in github teams. In: Begole B, Kim J, Inkpen K, Woo W (eds) Proceedings of the
33rd annual ACM conference on human factors in computing systems, CHI 2015, Seoul, Republic of
Korea, April 18-23, 2015, ACM, pp 3789–3798. https://doi.org/10.1145/2702123.2702549

Wenger E (1998) Communities of practice: learning, meaning, and identity. Cambridge University Press,
Cambridge

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering: an introduction. Kluwer Academic Publishers, Norwell

Xiao L, Cai Y, Kazman R (2014) Design rule spaces: a new form of architecture insight. In: Jalote P, Briand
LC, van der Hoek A (eds) Proceedings of the international conference on software engineering (ICSE).
ACM, New York, pp 967–977. http://dblp.uni-trier.de/db/conf/icse/icse2014.html#XiaoCK14

Zhu H, Kraut R, Kittur A (2012) Organizing without formal organization: group identification, goal setting
and social modeling in directing online production. In: Proceedings of the ACM 2012 conference on
computer supported cooperative work. ACM Press, pp 935–944. http://dl.acm.org.proxy.lib.umich.edu/
citation.cfm?id=2145344

Zich J, Kohayakawa Y, Rödl V, Sunderam V (2008) Jumpnet: improving connectivity and robustness
in unstructured p2p networks by randomness. Internet Math 5(3):227–250. http://dblp.uni-trier.de/db/
journals/im/im5.html#ZichKRS08

Zimmermann J (2008) Overcoming the inherent sources of liability of foreignness: measuring and compen-
sating the disadvantage of being foreign. PhD thesis, Uni Augsburg

https://doi.org/10.1109/CSMR.2011.52
http://www.se.uni-oldenburg.de/csmr2011/
http://www.se.uni-oldenburg.de/csmr2011/
https://doi.org/10.1145/2522968.2522971
https://doi.org/10.1109/MS.2012.170
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/software/software33.html#TamburriKF16
http://tinyurl.com/y8oo4vkg
https://doi.org/10.1109/SANER.2017.7884606
http://arxiv.org/abs/1306.3398:66--89
http://dblp.uni-trier.de/db/journals/corr/corr1306.html#TraagKD13
http://dblp.uni-trier.de/db/conf/icgse/icgse2009.html#TsirakidisKK09
http://dblp.uni-trier.de/db/journals/jmis/jmis30.html#TullioS14
https://doi.org/10.1145/2702123.2702549
http://dblp.uni-trier.de/db/conf/icse/icse2014.html#XiaoCK14
http://dl.acm.org.proxy.lib.umich.edu/citation.cfm?id=2145344
http://dl.acm.org.proxy.lib.umich.edu/citation.cfm?id=2145344
http://dblp.uni-trier.de/db/journals/im/im5.html#ZichKRS08
http://dblp.uni-trier.de/db/journals/im/im5.html#ZichKRS08

Empirical Software Engineering

Damian A. Tamburri is an Assistant Professor at the Jheronimus
Academy of Data Science, in s’Hertogenbosch, The Netherlands. He
completed his Ph.D. at VU University Amsterdam, The Netherlands
in March 2014 “cum laude and mention” one year in advance of a
standard Ph.D. Contract. His research interests lie mainly in Complex
Software Architectures (with a focus on Data-Intensive Architectures,
Cloud & Microservices as well as Machine-Learning & Computa-
tional Intelligence Architectures), Complex Software Architecture
Properties (with a focus on Privacy & Security), and Empirical
Software Engineering (with a focus on Organisational, Social, and
Societal aspects with Qualitative Methods, social-networks analysis
as well as Machine-Learning). He has published over 80+ papers
in either Journals such as the Transactions on Software Engineering
(TSE) Journal, The ACM Computing Surveys (CSUR) Journal, the
IEEE Software Magazine or top software engineering conferences
(such as ICSE or FSE) and top software architecture conferences
(such as ECSA or WICSA). He has been an active contributor and

lead research in many EU FP6, FP7, and H2020 projects, such as S-Cube, MODAClouds, SeaClouds, DICE,
ANITA, DossierCLOUD, ProTECT, and more. He is IEEE Software editorial board member, secretary of
the TOSCA TC as well as secretary of the IFIP TC2, TC6, and TC8 WG on “Service-Oriented Computing”.

Fabio Palomba is a Senior Research Associate at the University of
Zurich, Switzerland. He received the PhD degree in Management
& Information Technology from the University of Salerno, Italy, in
2017. His research interests include software maintenance and evolu-
tion, empirical software engineering, source code quality, change and
defect prediction, and mining software repositories. He was also the
recipient of two ACM/SIGSOFT and one IEEE/TCSE Distinguished
Paper Awards at ASE’13, ICSE’15, and ICSME’17, respectively.
Moreover, he was the recipient of a Best Paper Award Honor-
able Mention at CSCW’18 and a Best Tool Demo Paper Award at
SANER’18. He serves and has served as a program committee mem-
ber of various international conferences (e.g., MSR, ICPC, ICSME),
and as referee for various international journals (e.g., TSE, TOSEM,
JSS) in the fields of software engineering. Since 2016 he is Review
Board Member of EMSE. He was the recipient of four Distinguished/
Outstanding Reviewer Awards for his reviewing activities conducted
for EMSE, IST (twice), and JSS. He co-organized the 2nd Interna-

tional Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE 2018). He
was also Guest Editor of special issues related to his research interests that will appear in EMSE and JSEP.

Alexander Serebrenik (PhD, K.U. Leuven, Belgium 2003; MSc,
Hebrew University, Israel, 1999), senior member of IEEE, is an Asso-
ciate Professor of software evolution at Eindhoven University of
Technology. His research covers a wide range of topics, from source
code analysis, to collaborative and human aspects of software engi-
neering. He has co-authored a book “Evolving Software Systems”
(Springer Verlag, 2014), and more than 100 scientific papers and arti-
cles. He has won Distinguished Paper awards at the International
Conference on Software Engineering (2017) and the International
Conference on the Quality of Information and Communications Tech-
nology (2014), as well as special contribution awards at ESEM 2018
and MSR 2017. He is the steering committee chair of the International
Conference on Software Maintenance and Evolution. He is member
of the editorial boards of Empirical Software Engineering (Spinger
Verlag), Journal of Systems and Software (Elsevier), and Science of
Computer Programming; he has also serves or served on the pro-
gram committees of such software engineering conferences as ICSE,
ESEC/FSE, ICSM(E), MSR, SANER and ICPC, winning several
Distinguished Reviewer awards.

Empirical Software Engineering

Andy Zaidman is an associate professor at the Delft University of
Technology, The Netherlands. He obtained his MSc. (2002) and PhD
degree (2006) in Computer Science from the University of Antwerp,
Belgium. His main research interests are in software evolution, pro-
gram comprehension, mining software repositories, software quality
and software testing. He frequently serves on the program commit-
tees of conferences such as MSR, ICSM(E), ICPC, and SANER. He
has been involved in the organisation of conferences such as WCRE
(2008, 2009), VISSOFT (2014) and MSR (2018). He is an associate
editor of the Journal of Systems and Software (JSS) and member of
the steering committee of the Mining Software Repositories confer-
ence. In 2013 he was the laureate of a prestigious NWO Vidi research
grant for his research into software testing.

Affiliations

Damian A. Tamburri1 · Fabio Palomba2 ·Alexander Serebrenik3 ·Andy Zaidman4

Fabio Palomba
palomba@ifi.uzh.ch

Alexander Serebrenik
a.serebrenik@tue.nl

Andy Zaidman
zaidman@tudelft.nl

1 Jheronimus Academy of Data Science (JADS), Eindhoven University of Technology, s’Hertogenbosch,
The Netherlands

2 University of Zürich, Zürich, Switzerland
3 Eindhoven University of Technology, Eindhoven, The Netherlands
4 Delft University of Technology, Delft, The Netherlands

http://orcid.org/0000-0003-1230-8961
mailto: palomba@ifi.uzh.ch
mailto: a.serebrenik@tue.nl
mailto: zaidman@tudelft.nl

	Discovering community patterns in open-source: a systematic approach and its evaluation
	Abstract
	Abstract
	Introduction
	Research Questions
	Motivations
	Structure of The Article

	Background and Research Statement
	Organisational Structures Explained
	Organisational Types and Their Characteristics
	A Methodology to Discover Organisational Patterns in Software Engineering

	Organisational Structure Quality

	YOSHI: An Automatic Tool for Discovering Community Types
	The Yoshi Approach to Open-Source Community Design Patterns Detection: General Overview
	Yoshi : Algorithmic Representation
	Community Structure
	Community Geodispersion
	Community Longevity
	Community Engagement
	Community Formality
	Community Cohesion

	Yoshi—Architecture

	Evaluation
	Study Design
	Study Results
	Does Yoshi correctly measure the community aspects characterising different software communities?
	Geodispersion
	Engagement
	Formality
	Summary

	Does Yoshi provide a meaningful view of the community structure of a software system?

	Discussion and Further Insights
	Tool Limitations and Threats to Validity
	Tool Limitations
	Industry vs. Open-Source, insights from Yoshi
	Threats to Validity
	Threats to Construct Validity
	Threats to Conclusion Validity
	Threats to External Validity

	Related Work
	Governance and Community Aspects in Open-Source
	Computer-Supported Cooperative Work in Open-Source

	Conclusions and Future Work
	Lessons Learned
	Future Work and Outlook: Forming the Software Community Shepherd

	References
	Affiliations

