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PREFACE

Personal data, code, models, and advanced computation are exciting tools for us scientists. In so little time,
their increased accessibility has empowered us to study the world in revolutionary ways. In particular, these
tools have created a bridge across seemingly distant scientific fields, such as computer science and sociol-
ogy, and have allowed us to deepen our understanding of complex human behaviours and social structures.
Based on the analysis and modelling of geo-located social media data, the research presented in this thesis
finds that the way in which we use social media in times of crisis is a strong indicator of where, when, and
with what intensity we choose to take the streets and protest against injustice.

While this is a fascinating research outcome, it is also worry-some because we live in a world where pow-
erful institutions such as law enforcement agencies often use their power to oppress the most vulnerable
and disenfranchised groups. In the United States, research has demonstrated that the use of force by police
is among the leading causes of death for Black and Brown men, and that racially-rooted police violence is
on the rise. Similar bias in police practices has been observed in many other countries around the world.
Additionally, as paradoxical as it sounds, state-sanctioned violence of this kind is widespread during physi-
cal protests, where the very people that demand justice and accountability for people like George Floyd are
oppressed further. In this light, 2020 and 2021 were no exceptions, as it was documented during the #Jus-
ticeForGeorgeFloyd social movement in the United States, the case study of this research, and as it is being
documented during the #ColombiaResiste social movement which is happening as this paragraph is being
written.

In this sense, the social impact of the research presented here may not turn out to be as exciting as its sci-
entific impact. As proposed in the discussion of this study, our findings may serve to empower activist groups
with tools to better allocate their resources and to communicate with local communities more efficiently. At
the same time, however, the impact of this research could turn out to be more grim, where the models and
insights of this research could equip law enforcement agencies to respond to physical protests more rapidly
and to use more oppressive tactics against protesters. As scientists, it is our responsibility to conduct and
communicate novel scientific research, but we have little power at our disposal to ensure that such research
is used solely for the betterment of society. Such task pertains to policy makers and (to a lesser extent) private
companies, who do have regulatory and veto power at their disposal.

Fortunately, there are effective ways in which policy makers and social media companies can avoid un-
ethical applications of our findings. With regards to law and policy making, regulatory policies can be put in
place for law enforcement agencies to respect the personal privacy of individuals. For example, such policies
could limit the use of location data from social media by law enforcement agencies for the purpose of track-
ing demonstrations and ongoing physical protests. With regards to social media companies such as Twitter,
usage policies can be put in place to limit access of specific data attributes to law enforcement agencies.
For example, just like Twitter has recently increased access to its data for academic purposes, it may limit
access to its data for law enforcement purposes (i.e. by restricting access to location information to law en-
forcement developers). By creating boundaries to access, the use of data for social good can be ensured and
activist groups can safeguard their opportunity to lawfully voice their concerns for more progressive policies
through physical protest.

Leonardo Nicoletti
Vancouver, BC, July 2021
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EXECUTIVE SUMMARY

T HROUGHOUT history, social movements have often been catalysts for radical societal change. In the past
two decades, hashtag activism, the use of social media platforms for internet activism, has become a

driving force behind the development of social movements across the world. From #MeToo to #IdleNoMore
and most recently #JusticeForGeorgeFloyd, social media has been used strategically by activists to mobilize
communities to come together and protest against different forms of injustice. In the field of social move-
ments science, a large body of research has studied the role of hashtag activism for the formation of social
movements, but less efforts have been allocated towards the study of the spatio-temporal relationship that
exists between hashtag activism and political processes. In other words, in spite of the a-spatial nature of so-
cial media, can the study of hashtag activism help us understand human behaviours and societal processes
that occur off-line, in the physical space?

Such conundrum is the basis of the research in this master thesis, where a data-driven framework is imple-
mented to investigate the spatio-temporal relationship between hashtag activism and two important political
processes: physical protest activity and legislative action. Through a combination of time series analysis, re-
gression, geo-spatial analysis, and machine learning, and the use of a large Twitter data-set of geo-located
social media posts, such relationships are quantified, modelled and visualized for the 2020 #JusticeForGe-
orgeFloyd social movement. First, time series analysis is used to measure the temporal relationship between
hashtag activism, physical protest, and legislative action. Second, geo-spatial analysis is used to compare the
nature of this relationship across different spatial resolutions. Finally, regression analysis and deep learning
are used to model, generalize and forecast such spatio-temporal relationships.

The outcomes of this research are two-fold. First, in the case of #JusticeForGeorgeFloyd, it was found that
at the national, state, and county scale, hashtag activism bears a very strong positive temporal relationship
with physical protest activity. Through the statistical modelling of this relationship, it is possible to predict
the intensity of national, state, and county level protest activity on a given day based on the intensity of
state and county level hashtag activism the day before. At the county level, it was found that in some "out-
lier" counties the temporal relationship between hashtag activism and physical protest is characterized by
a disproportional amount of physical protest compared to the intensity of hashtag activism, while in other
counties this relationship is characterized by a disproportional amount of hashtag activism compared to the
intensity of physical protests. In order to make sense of this tendency this research proposes the Mobilization
Synergy Index (MSI), which makes it possible to statistically quantify this trade-off, and to visualize its spatial
distribution in an intuitive way. Through this index, both local policy makers and activists could gain valu-
able insight into their communities and as a result adopt strategies that better reflect community needs and
concerns.

Second, the analysis of instances of hashtag activism in relation to legislative responses revealed that
states in which people engaged more in hashtag activism on average during #JusticeForGeorgeFloyd also ex-
perienced more legislative responses related to policing. Additionally, results from temporally disaggregated
national level and state level data suggests that the number of legislative responses on a given day bears a
very similar positive relationship with each of hashtag activism activity and physical protest activity taken at
a specific time lag prior to the day in which the legislative responses occurred. At the state level, it was found
that while both hashtag activism and physical protest activity result in future legislative responses, this tem-
poral relationship is highly variable by state. Such tendency may serve as an indicator of state-level political
responsiveness during times of crisis.

To the best of our knowledge, this is the first national level quantitative study aimed at measuring the
temporal relationships between hashtag activism, physical protest activity, and legislative action, at various
spatial resolutions. Therefore, the study provides several contributions to the field of social movements re-
search and, more broadly, the computational social sciences.
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1
INTRODUCTION

1.1. BACKGROUND

M AY 25th 2020 represented a key moment for American society. The death of George Floyd in circum-
stances that decisively pointed to police brutality and ethnic discrimination ignited widespread protests

in Minneapolis and many other US cities (The New York Times, 2020). During the months of June, July, and
August, more than 20 million Americans marched across the United States in the names of hashtags #Justice-
ForGeorgeFloyd and #BlackLivesMatter, and inspired people in more than 2000 cities and towns worldwide
to march in solidarity (The New York Times, 2020). At the end of June and to this day, a bold policy proposal
emerged from the movement and started circulating on social media: #DefundThePolice. What began as a
general call for justice quickly evolved into a demand to policy makers at the federal, state, and local level to
take clear action against systematic discrimination and questionable police practices in the country. This de-
mand, fueled by the #DefundThePolice hashtag, has already progressed in a number states and cities, where
policies resulting in the reallocation of public funds away from police forces and towards other uses have
been or are being implemented (Jacobs et al., 2021). This powerful wave of activism has not only challenged
American society to rethink the role and utility of deeply ingrained institutions such as law enforcement, but
it had also fueled Joe Biden’s presidential campaign, who not only supported the #BlackLivesMatter move-
ment, but who also committed to tackling racial discrimination and police violence during his term (Biden,
2020; Biden, 2020). Biden was elected in November, 2020.

1.2. KNOWLEDGE GAP AND RESEARCH QUESTIONS
Throughout the past two decades, hashtag activism, “the creation and proliferation of online activism stamped
with a hashtag” (Jackson et al., 2020), has become a crucial strategy for activists trying to influence social
change (Jackson et al., 2020). Scholars within this area of research have shown the role of social media in
acting as: a tool for some demographics (i.e. youth, underrepresented groups) to shape political discourses
(Carney, 2016; M. Li et al., 2021); a tool to empower and mobilize publics (Xiong et al., 2019); a tool to frame
and re-frame social movements (Ince et al., 2017); a tool to maintain the vitality of a social movement (Tan
et al., 2013); an environment that can contribute to the polarization of political opinions (Grover et al., 2019).
Other studies have found that social media can be studied to understand the structure of social movements,
key players and the strategies responsible for the effectiveness of social movements (Burns and Eltham, 2009).
However, research that focuses on the political consequences of hashtag activism is severely limited as (1)
scholars have barely explored the relationship between hashtag activism and concrete political action such
as the introduction of new legislation and (2) existing quantitative research on the relationship between hash-
tag activism and other forms of political action (i.e. physical protest) is inconclusive. Finally, a majority of the
literature has been limited by the use of small-to-medium samples of social media data carrying little to no
information regarding the geographical processes involved in social media movements.

In this context, scholars who study social movements have stressed that the geographical characteris-
tics of a social movement can be important determinants of its political effectiveness (Amenta et al., 2010).
In a review of 54 social movements, of which 43 took place in the United States, Amenta et al. (2010) note
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that “for a movement to achieve political influence” the mobilization of large numbers of people is some-
times not enough, as “state actors need to see it as potentially facilitating or disrupting their own goals”. In
district-based electoral systems such as the U.S. Congress, social movements have to fit this context to have
long-term political implications, which means “gaining a wide geographical presence” (Amenta et al., 2010).
Nevertheless, empirical evidence demonstrating the role of spatial patterns involved in social movements
in enabling political action is lacking, and scholars have barely explored the role of location based hashtag
activism in contributing to a social movement’s political effectiveness (Ince et al., 2017). For instance, while
there is some evidence that hashtag activism may facilitate physical protest activity (Bonilla and Rosa, 2015;
Boling, 2020; Juris, 2012), and that the mobilization of people for protests during social movements is effec-
tive in influencing political action (Enos et al., 2019; Weldon et al., 2011; Lipsky, 1968), whether increased
social media activity in a specific geographical location is likely to trigger political responses in that specific
location is unclear.

In this context, this study aims to explore the political impact of hashtag-activism at different administra-
tive levels in the United States (i.e. city, county, and state). By making use of a large collection of geo-located
tweets collected during the 2020 #JusticeForGeorgeFloyd social movement, data on legislative responses to
policing from the National Conference of State Legislatures (NCSL) (NCSL, 2020), and data on physical protest
activity from The Armed Conflict Location & Event Data Project (ACLED) (Raleigh et al., 2010), the aim is
to quantify the spatial and non-spatial relationships that may exist between hashtag activism and different
forms of political action towards police brutality in the United States. In doing so, this research uncovers
general statistical trends regarding the relationship between social media activity and place-specific political
processes (e.g. physical protest, legislative change). The relevant research question can be formulated as fol-
lows:

What are the political impacts of location-based hashtag activism during and after social movements?

Throughout this research two sub-questions are considered in order to address this main question:

1. What is the relationship between location-based hashtag activism and physical protest activity?

2. What is the relationship between location-based hashtag activism and legislative action?

1.3. RESEARCH APPROACH
The empirical investigation around the main research question follows a mixed methods approach, involving
a case study and quantitative analysis.

Throughout (recent) history, there have been a number of social media movements that have influenced
public policy (Amenta et al., 2010). In this research, we choose to focus on the #JusticeForGeorgeFloyd move-
ment as a case study to investigate the role of location-based social media activity in contributing to the
political mobilization of people through physical protest, and to state-level legislative responses aimed at re-
forming the U.S. police institution for reducing discriminatory practices within the activity of policing. The
recency, political relevance, and vast amount of data associated with this movement make this case study
highly relevant for addressing our research question.

Based on this case study, the research is implemented via a data-driven quantitative approach. By analyz-
ing a large collection of geo-located tweets from the #JusticeForGeorgeFloyd movement through quantitative
methods, insight can be gained into specific aspects of the research question. More specifically, the use of
time series analysis and forecasting provides insight into the temporal relationships that may exist between
hashtag activism and different forms of political processes; the use of regression analysis provides insight
into the statistical significance of those relationships; and the use of geo-spatial analysis provides insight into
the spatial relationships that may exist between hashtag activism and different forms of political processes at
different spatial scales.

The use of a mixed methods research approach involving both a case study and quantitative methods is
advantageous for several reasons. First, there are large amounts of data available for the case study chosen,
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thus providing a strong empirical foundation for this research. Second, the case study chosen is highly rele-
vant for the current socio-political climate of many countries globally. Finally, the use of Twitter data provides
a myriad of attributes that are relevant for investigating the research sub questions (i.e. network information,
spatial information, lexical information, temporal information). Figure section 1.3 summarizes the structure
and logical flow of this thesis research.

Figure 1.1: Research Flow Diagram

1.4. REPORT STRUCTURE
This master thesis report is structured according to six chapters. Chapter 1 provides contextual background
to the research, outlines the knowledge gaps that drive it, and presents the chosen methodological and em-
pirical research approach. The chapter concludes with a description of the structure and flow of this report.

Chapter 2 provides the theoretical foundation for this thesis research, introduces the case study, and dis-
cusses the knowledge gaps that this research addresses. The chapter first discusses the research landscape
surrounding key topics directly related to this research, namely (a) hashtag activism and social movements
(b) hashtag activism and physical protest and (c) hashtag activism legislative action. In doing so, important
scientific contributions are described and relevant knowledge gaps are discussed. Second, the chapter in-
troduces the case study of #JusticeForGeorgeFloyd and discusses its relevance for use in this research and
for answering the main research question. Finally, the chapter describes the scientific and theoretical links
between the highlighted knowledge gaps and the case study, and introduces the theoretical framework that
drives this research.

Chapter 3 describes the data and methods utilized to leverage the #JusticeForGeorgeFloyd case study and
address each sub-question of this research. In the first section of the chapter, the data required to conduct
the research is introduced. For each data source the collection process is highlighted, the data structure is
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illustrated, and the pre-processing steps used to prepare them for analysis are described. In the second sec-
tion, the computational procedures and modelling techniques used in the research are introduced. As such,
specific methods for time series modelling, regression analysis, machine learning, and geo-spatial analysis
are described and their implementation in relation to the research problem is clarified.

Chapter 4 presents the results of the analysis conducted to investigate the two sub-questions of this re-
search. In applying each step of the proposed experimental framework presented in chapter 3 to the case
study of #JusticeForGeorgeFloyd, insight into the relationship between hashtag activism and two forms of
political processes - physical protest and legislative action - are presented. First, the spatio-temporal relation-
ship between hashtag activism and physical protest is explored. For this, time-series modelling, regression
analysis and geo-spatial analysis steps are applied to explore how hashtag activism and physical protest are
related in time and space. This section concludes with the development of a novel index, aimed at providing
an accurate and granular picture of where hashtag activism is most likely to translate into physical protest
activity and what that may mean for local policy makers. Second, the spatio-temporal relationship between
hashtag activism and legislative action is explored. For this, time-series modelling, regression analysis and
geo-spatial analysis steps are applied to explore how hashtag activism and legislative action are related in
time and space.

Chapter 5 discusses the main results presented in chapter 4 and the possible implications of this research
within the realms of academia, policy, and activism. The chapter first discusses each result in (a) the scientific
context by outlining if and how it constitutes a contribution to the broader research landscape; (b) the socio-
political context by outlining its societal meaning and implications for policy making. Second, this chapter
discusses the scientific limitations of the study and describes areas of future research to address these limita-
tions.

Chapter 6 summarizes answers to the research sub-questions and the main research question, and con-
cludes the study with a reflection on the ethical implications of this research, and in which ways these can be
addressed.
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LITERATURE OVERVIEW

H ASHTAG activism is a relatively recent societal phenomenon. Starting in 2008, adoption of social media
platforms such as Twitter and Facebook became increasingly widespread for private and public entities,

non-profit organizations, and the public as a whole (Curtis et al., 2010). In 2011, the use of Twitter and the
hashtag #IranElection as a strategic tool for Iranians to protest a contested election and mobilize politically
exemplified the political power and implications of hashtag activism (Jackson et al., 2020). Since then, schol-
ars have defined the concept of hashtag activism as the “act of fighting for or supporting a cause with the use
of hashtags as the primary channel to raise awareness of an issue and encourage debate via social media”
(Tombleson and Wolf, 2017) and more broadly the “the creation and proliferation of online activism stamped
with a hashtag” (Jackson et al., 2020). Throughout the past decade, hashtag activism has played a role in nu-
merous social movements across the world, and scholars have used the increasingly available data generated
by social media platforms to study the mechanisms of hashtag activism and the extent of its socio-political
implications.

The focus of this research is on the relationship between hashtag activism and two concrete forms of po-
litical processes: physical protest and legislative action. Physical protest is defined as a group of strategies for
"relatively powerless groups" (Lipsky, 1968) to take collective action through physical means and obtain bar-
gaining power in the political process (Lipsky, 1968; Eisinger, 1973). Physical protest has been, and continues
to be, an important political resource for minority and marginalized groups to disrupt routine activity and
apply political pressure on public authorities and policy-makers (Lipsky, 1968; Eisinger, 1973). Legislative
action is defined as any official change in the legislative process such a the introduction of new legislation by
representatives, the implementation of new legislation into law, or the reform of an existing piece of legisla-
tion.

In this context, this chapter lays the theoretical foundations that guide this research and discusses state
of the art literature regarding three relevant areas of study:

1. Hashtag Activism and Social Movements

2. Hashtag Activism and Physical Protest

3. Hashtag Activism and Legislative Action

2.1. HASHTAG ACTIVISM AND SOCIAL MOVEMENTS
According to Della Porta and Mattoni (2015), social movements are formed by networks of informal rela-
tions between numerous groups and individuals with shared beliefs and solidarity. During a social move-
ment, these networks are mobilized around contentious themes through the frequent use of various forms
of protest with the objective of enabling different forms of social change (Della Porta and Mattoni, 2015).
Thus, the functioning of social movements is two fold, where (1) internal communication across social net-
works serves to strengthen collective identities and solidify value systems and (2) external communication
with outside actors such as potential allies, bystanders and opponents serves to gather further support and

5
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challenge institutions (Della Porta and Mattoni, 2015).

Historically, mass media has played a central role in the diffusion of information during social move-
ments. Activists have leveraged mass media platforms to engage in political discourse and attempt to influ-
ence public opinions and gather support across the public and political spheres (Della Porta and Mattoni,
2015). However, because of the constraints associated with journalism (i.e. selection and descriptive biases),
the influence that activists could exert through the use of mainstream media has been, in the past, limited
(Della Porta and Mattoni, 2015). In this context, through the recent adoption of social media, hashtag ac-
tivism has become a crucial strategy for activists to shape social movements in drastically new ways and
influence social change (Jackson et al., 2020). In greatly facilitating interactions between organizations and
the public, social media platforms foster environments of political discussion and participation where rapid
information diffusion beyond spatial boundaries facilitates the creation of communities that share values,
characteristics, and interests (Kent, 2013; Fuchs and Sandoval, 2014). In addition, through the use of social
media data, scholars have demonstrated that hashtag activism is an effective tool for underrepresented social
groups (e.g. ethnic minorities, youth, women) to shape political discourses and advance social movements
(Carney, 2016; M. Li et al., 2021; Xiong et al., 2019). For example, in an analysis of social media posts data
from Twitter collected during the #MeToo social movement, Xiong et al. (2019) found that hashtags func-
tioned as a tool to empower and mobilize publics around the issue of sexual assault, and as a mechanism for
Social Movement Organizations (SMOs) to effectively engage with the public. Xiong et al. (2019) concludes
that such mechanisms allow for a more efficient organization of social movements. Through leveraging other
case studies, scholars have demonstrated that hashtag activism is also effective for framing and re-framing
social movements, and to maintain the vitality of social movements over time (Ince et al., 2017; Tan et al.,
2013). Finally, there is consensus that, in the context of social justice and social change, decentralized net-
works such as those found on social media have allowed activist groups to position themselves as key actors
to influence public discourse and call for collective action (Benford and Snow, 2000).

In short, by creating novel opportunities to influence the structure and reach of social movements, hash-
tag activism is found to play a central role in the development of social movement characteristics (i.e. net-
works of informal relations, shared values, mobilization around contentious themes, calls for protest). How-
ever, most research surrounding hashtag activism during social movements has placed little focus on the
spatial relationships that may exist between hashtag activism and social movements. Thus, the question of
whether hashtag activism can explain the geographical patterns of social movements remains largely dis-
puted.

2.2. HASHTAG ACTIVISM AND PHYSICAL PROTEST

Physical protest is a key characteristic of social movements. Activists use physical protest as a non-conventional
form of political action to disrupt daily routines, attract public attention and apply political pressure on
protest targets (e.g. policy-makers) (Della Porta and Mattoni, 2015). While scholars agree that physical protest
is a political resource for social movements (Enos et al., 2019; Weldon et al., 2011; Lipsky, 1968; Heaney, 2020),
there is no consensus regarding the potential relationship that may exist between hashtag activism and phys-
ical protest (Brantly, 2019; Howard et al., 2011; Shirky, 2011). This lack of consensus partly originates from
the dearth of empirical research on this topic, and partly from the fact that the little empirical research that
exists is limited to isolated case studies.

The hypothesis that hashtag activism may bear a relationship with physical protest stems from the gen-
eral consensus from social movements research that the “best predictor of attendance of a protest is not
ideology or other substantive factors but whether an individual already knows someone else going to the
protest” (Schussman and Soule, 2005; Tufekci and C. Wilson, 2012). In the digital era, such tendency could
suggest that protest organizers coordinate protests on social media and that protest attenders learn about
the logistics of a physical protest through their social media networks. In a survey of participants from the
Tahrir Square protests in Egypt Tufekci and C. Wilson (2012) discovered patterns that confirm this hypothesis.
During the 2011 Egyptian revolution, not only was social media the primary source of information regarding
physical protests and their associated logistics, it also offered pieces of information that authorities could not
control and that were key to individuals’ decisions to participate in physical protests (Tufekci and C. Wilson,
2012). The authors conclude that, during the Tahrir Square protests, use of social media increased the prob-
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ability that an individual participated in physical protests (Tufekci and C. Wilson, 2012). Similarly, through
leveraging big data from multiple social media platforms generated during Ukraine’s 2013-2014 Euromedian
protests, Brantly (2019) found evidence suggesting that social media plays a role in shifting protests from the
digital to the physical space. The strongest correlations were found with social media activity taken at time
t-1 and physical protest at time t. Although statistically significant, such evidence was associated with a wide
margin of error (Brantly, 2019). Following a similar methodology Bastos et al. (2015) found that, for the case of
the Indignados, Occupy, and Vinegar social movements, Twitter and Facebook activity could be informative
of next day’s protest activity. This study, however, found this relationship to be bi-directional, in that physi-
cal protest could also be predictive of next day’s social media activity. Due to its limited geographical scope,
it also could not test whether these relationships exist across different geographical locations of a country.
Moreover, similar research conducted by S. L. Wilson (2017) with the use of geo-located tweets collected for
the same case study generated conflicting results: while social media activity increased nationwide during
mass protests, it decreased at sites of mass protest. More recently, a study of twitter data related to the 2016
Black Lives Matter (BLM) protests in Charlotte, NC, found a unidirectional causal relationship where physi-
cal protests appear to drive tweet activity (Karduni and Sauda, 2020). In addition, the authors identified two
distinct communities who engage in social media during crisis events in the same way; 1) those who use both
social media and (physical) urban space and 2) those who are connected to the movement only through so-
cial media (Karduni and Sauda, 2020).

Overall, the study of the relationship between hashtag activism and physical protest is inconclusive be-
cause of little empirical research and limited case studies. Additionally, most of the literature within this area
of research studies this relationship through a broad lens and does not consider the geo-spatial relationships
that may exist between digital and physical protests at sub-national levels (Brantly, 2019).

2.3. HASHTAG ACTIVISM AND LEGISLATIVE ACTION

Several scholars have dedicated their research efforts towards understanding how social movements have
influenced politics in terms of legislative action, the framing of political discourse, institutional change and
reform. Scholars within this area of research have demonstrated that social movements in general almost
always result in some sort of political response (Amenta et al., 2010); that politicians often leverage social
movements to frame their policy discourses and connect to voters (Zhuravskaya et al., 2020); and that the
mobilization of people for protests during social movements is effective in influencing political action (Enos
et al., 2019; Weldon et al., 2011; Lipsky, 1968). Recently, more literature on the role of networked social move-
ments and hashtag activism in enabling political change has become available. For example, Ouassini (2021)
examined the case of Amina Fali, a young woman in Morocco who committed suicide after being forced to
marry her rapist under Article 475 of the Moroccan penal code. The author presents qualitative and anec-
dotal evidence that, through hashtags such as #RIPAmina, social media channels Twitter and Facebook were
instrumental in pressuring the Moroccan government to repeal Article 475 (Ouassini, 2021).

As such, while scholars generally agree that hashtag activism can have many political consequences in-
cluding legislative action (Shirky, 2011; Earl and Kimport, 2011; Bennett and Segerberg, 2012), supporting
evidence through quantitative research is mostly lacking. In 2016, a study of millions of social media posts
collected from twitter during the 2014 BLM social movement in Ferguson, MO, measured the impact of hash-
tag activism on “elite responses” in the form of social media acknowledgements by political leaders accounts
(e.g. president, members of congress etc.) (Freelon et al., 2018). By providing empirical evidence that re-
peated social media participation rates by BLM users was accurate in predicting elite responses, this study
was the first to demonstrate that social movements can attract elite attention through social media (Freelon
et al., 2018).

Overall, empirical research aimed at quantifying the potential relationship between hashtag activism and
legislative action is very scarce. In this light, scholars have stressed that researchers should leverage larger
sources of data and geo-information to explore the role of hashtag activism in contributing to the political
outcomes of social movements’ (Ince et al., 2017).
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2.4. CASE STUDY: #JUSTICEFORGEORGEFLOYD

2.4.1. THE PROBLEM OF POLICE BRUTALITY IN THE UNITED STATES AND THE BIRTH OF

#BLACKLIVESMATTER

In the past decade, police brutality has harnessed much public attention in the United States. With both the
increasingly common use of smartphones and social media across the U.S. population, the world has wit-
nessed a constant flow of heartbreaking videos documenting the killing of unarmed Black and Brown people
at the hands of U.S. police forces. At the same time, U.S. public authorities have remained systematically
opaque with regards to the publicly available information regarding police involved deaths (Edwards et al.,
2019; Burghart, 2020). As a result, the past decade has also seen the development of a serious research effort
dedicated to (1) building reliable and accurate databases on all U.S. police involved deaths since the year 2000
and (2) using such databases to generate robust statistical evidence of trends in police violence across U.S.
cities and demographics (Edwards et al., 2019; Burghart, 2020). This research effort has been crucial in the
framing of police brutality as a grand challenge for U.S. society and in increasing the legitimacy of civil rights
activist groups such as #BlackLivesMatter. Indeed, by leveraging the Fatal Encounters database (Burghart,
2020), a landmark study published in the Proceedings of the National Academy of Sciences of the United
States of America (Edwards et al., 2019) has demonstrated that police violence is among the leading causes
of death for young men of color in the United States. Over the course of their life time, Black American men
have a 1 in 1000 risk of being killed by the police, more than double the risk that white American men face
(Edwards et al., 2019). Compared to white Americans, Native Americans and Latinx people also face a higher
risk of being killed by the police (Edwards et al., 2019). Edwards et al. (2019) also demonstrate that police
involved deaths per 100,000 have increased for all demographics since the year 2000, and with this increase
the risk gap between white Americans and Americans of color has grown wider.

In the wake of this grim reality, a powerful wave of activism dedicated to ending racial inequality and
state sanctioned violence was born. In 2013, after the acquittal of 17 year old Trayvon Martin’s murderer,
#BlackLivesMatter, “a global organization in the US, UK, and Canada, whose mission is to eradicate white
supremacy and build local power to intervene in violence inflicted on Black communities by the state and
vigilantes” (Matter, n.d.), was created. The placement of a hashtag at the beginning of its name reflects an
crucial characteristic of the #BlackLivesMatter social movement: the use of hashtag activism as a primary
strategy for political mobilization (Ray et al., 2017). Indeed, the #BlackLivesMatter social movement has con-
tinuously leveraged social media (and mostly Twitter) to empower youth of color in the United States and
elsewhere to engage in political discourse and play an active role in debates that initiated after the deaths
of unarmed black men at the hands of the police (Carney, 2016). This has been the case since the killing
of Trayvon Martin in 2012 to today, with the killing of George Floyd in 2020. In this context, another key
characteristic of the #BlackLivesMatter movement is the use of names and grievance as a way to build and
strengthen collective identities (Ray et al., 2017). Through hashtags such as #TrayvonMartin, #TamirRice or
#EriceGartner the #BlackLivesMatter movement humanises victims of police brutality and thus amplifies the
severity of the problem and the urgency through which political change must happen (Ray et al., 2017; Le-
bron, 2017).

2.4.2. BACKGROUND ON #JUSTICEFORGEORGEFLOYD AND RELEVANCE FOR RESEARCH

The murder of George Floyd by officer Derek Chauvin on the 25th of May 2020 and the events that followed is
the most recent example of the use of hashtag activism as a key strategy for activists to call for social change.
Indeed, daily counts of #BlackLivesMatter tweets exploded shortly after the murder of George Floyd and
remained high for numerous months after (Priniski et al., 2021). At the same time, thousands of physical
protests were organized across the country for people to march in solidarity of George Floyd and demand
immediate change regarding police reform, police accountability, and racial injustice (The New York Times,
2021). At the end of 2020 and over the past year, several U.S. government bodies at the state and local level
have addressed such demands, developing legislation that ranged from curbing specific types of use of force
by police officers, to reallocating a portion of public funds away from police forces and towards other uses
(Jacobs et al., 2021). While it is intuitive that physical and hashtag activism may have facilitated such political
changes, the extent to which hashtag activism may have played a role in the political mobilization of people
across the United States and the development of legislation is unclear.

In this context, the social significance of the #JusticeForGeorgeFloyd social movement, the intense use
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of social media during the movement, its geographic coverage in terms of physical protest, and the still-
ongoing political activity related to the movement make this case highly relevant for the study of the political
implications of hashtag activism. Additionally, the availability of high quality data regarding social media
activity, physical protest, and legislative change represents an opportunity to leverage quantitative methods
in this study and contribute to the growing body of evidence-based literature in the field social movement
research.

2.5. CONCEPTUALIZATION
From the literature review, it is clear that scientific understanding of the relationship between hashtag ac-
tivism and political processes is still in its infancy. On a theoretical level, scholars agree that social move-
ments and, more recently, networked social movements have real political consequences. On an empirical
level, however, there is a lack of evidence-based research to support this claim, and the set of evidence-based
research that does exist has been inconclusive. More specifically, such research is in disagreement with re-
gards to the statistical relationship between hashtag activism and physical protest, and is completely lacking
with regards to the relationship between hashtag activism and legislative change. Finally, few scholars have
incorporated a geo-spatial dimension in their study of the socio-political implications of hashtag activism
and social movements in general (Brantly, 2019; S. L. Wilson, 2017).

In building on top of the theoretical understanding that (networked) social movements can have political
consequences, this research aims to leverage a relevant case study through a quantitative approach to provide
an evidence based understanding of the political implications of hashtag activism. As such, fig. 2.1 illustrates
the theoretical framework that guides this research. Through this framework, and the use of the #JusticeFor-
GeorgeFloyd social movement as a case study, the relationship between hashtag activism, physical protest,
and legislative change are modelled and quantified.

Figure 2.1: Theoretical Framework
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METHODOLOGY

Q UANTIFYING the impacts of location-based hashtag activism on physical protest and legislative action
requires an experimental design that takes into consideration key problem-specific dimensions. Each

of hashtag activism, physical protest, and legislative action describe complex societal mechanisms that are
(a) time-dependent (i.e. they may occur differently at specific times), (b) location-dependent (i.e. they may
occur differently at specific geographical locations) and (c) dynamic (i.e. their occurrence may evolve across
time and space). Thus, appropriate quantitative methods must be selected to account for the temporal, spa-
tial, and evolving nature of these processes.

First, we must consider the specific temporal properties of hashtag activism, physical protest, and legisla-
tive action, and quantify how these may or may not relate to each other through time. In order to address
sub-question 1 (i.e. What is the relationship between location-based hashtag activism and physical protest
activity?) and sub-question 2 (i.e. What is the relationship between location-based hashtag activism and leg-
islative action?) one needs to understand how instances of hashtag activism over time relate to past, present,
and future rates of physical protest activity and legislative action. Additionally, we need to understand if
temporal information relating to hashtag activism can provide useful insight regarding future instances of
physical protest and legislative action. Thus, the method chosen to address these analytical problems is
Time-Series Analysis, to extract temporal patterns, combined with Machine Learning techniques for Time-
Series Forecasting.

Second, we must consider the geo-spatial characteristics of hashtag activism, physical protest, and leg-
islative action, and quantify how these may or may not relate to each other through space. Each of these
processes, and especially hashtag activism and physical protest, is not only dynamic through time: rather
as time goes by it is likely to also evolve across space. For example, a series of physical protests may take
place across New York City, NY, today and another series of physical protests may take place in Pittsburgh,
PA, tomorrow. Similarly, thousands of social media users may be engaging in hashtag activism from different
geographical locations today, and they may continue to do so from new geo-graphical locations tomorrow.
Thus, in order to address the sub-questions of this research one must combine Time-Series Analysis with tra-
ditional Geo-spatial Analysis in order to accurately study such interactivity that exists across both spatial and
temporal dimensions.

Third, in order to quantify the impacts of hashtag activism on physical protest activity and legislative ac-
tion, we must establish statistical relationships between these three processes and measure how these change
over time and across space. In order to address this analytical requirement we incorporate Regression Analysis
and Modelling (i.e. power regression) within the temporal and spatial analyses aforementioned.

Finally, in order to successfully implement each of these analyses, appropriate data describing instances
of hashtag activism, physical protest, and legislative action during the case study of #JusticeForGeorgeFloyd
must be collected. This data must also satisfy the problem-specific dimensions of this research: it must
carry detailed spatial, temporal, and contextual information relating to instances of hashtag activism, physi-
cal protest, and legislative action.

11
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Thus, this chapter describes the data and methods utilized to leverage the #JusticeForGeorgeFloyd case
study and approach each sub-question of this research. In the first section, the data required to conduct
this research is introduced. For each data source the collection process is highlighted, the data structure is
illustrated, and the pre-processing steps used to prepare it for analysis are described. In the second section
of this chapter the computational procedures and modelling techniques chosen for this research are intro-
duced. Accordingly, specific methods for time-series modelling, regression analysis, machine learning, and
geo-spatial analysis are described and their implementation in relation to the research problem is clarified.
Figure ?? provides a general overview of the experimental design proposed in for this research.

Figure 3.1: Experimental design chosen to conduct this research. This diagram is meant to be read from top to bottom, where each
arrow represents a flow between an output and input. The top section (green) presents the data sources chosen for this research. The
orange section presents the specific outputs resulting from the data collection phase. The yellow section describes the specific outputs
resulting from the data pre-processing phase. The blue section presents the chosen methods for analysis related to time-series analysis.
The red section presents the chosen methods for analysis related to regression analysis. Finally, the thick arrows on the right and left of
the diagram highlight which research phases address which key problem-specific dimension.

3.1. DATA

3.1.1. DATA DESCRIPTION AND COLLECTION PROCESS

GEO-LOCATED SOCIAL MEDIA POSTS DATA

As argued in section 2.4 of chapter 2, Twitter was the social media platform of choice for hashtag activists
during the #JusticeForGeorgeFloyd social movement. Thus, the primary data-set used for this research con-
sists of a collection of geo-located social media posts (i.e. tweets) generated over the duration of the #Jus-
ticeForGeorgeFloyd social movement across the United States. This data was collected through the Twitter
API v2 via the "Academic Research product track", an exclusive license that provides academic researchers
with full access to the Twitter historical archive since March 26, 2006 (Twitter, 2021). In order to retrieve this
data the Python programming language was used to connect to the https://api.twitter.com/2/tweets/
search/all endpoint. In order to build a successful query the following constraints were taken into consid-
eration:

1. Every tweet returned by the API must be related to the #JusticeForGeorgeFloyd social movement.
2. Every tweet returned by the API must originate from a location within the United States.

https://api.twitter.com/2/tweets/search/all
https://api.twitter.com/2/tweets/search/all
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3. Every tweet returned by the API must have been created between May 20th 2020 and November 10th
2020.

4. Every tweet returned by the API must carry geo-information.

Additionally, in order to satisfy the data requirements of this research, fields pertaining to temporal, loca-
tion, network, and textual features are specified.

The resulting query is presented as such:

1 query_params = {'query': f'(("george floyd" OR "elijah mcclain" OR "breonna taylor" OR
(police brutality) OR blacklivesmatter OR (police violence) OR blm OR (racism police)
OR (blacklives) OR (police accountability) OR "police reform" OR (defund police) OR
(abolish police) OR "abolish the police" OR "police abolition" OR (police racist) OR
(brutal police) OR (black lives) OR (police kill black) OR (black killed police) OR
("no justice" "no peace") OR "murdered by police" OR (police profiling) OR (police
discrimination)) OR (#policereform OR #policeaccountability OR #defundthepolice OR
#abolishthepolice OR #abolishpolice OR #defundpolice OR #criminaljusticereform OR
#notoracism OR #blacklivesmatter OR #blm OR #georgefloyd OR #justiceforgeorgefloyd OR
#icantbreathe OR #nojusticenopeace OR #justiceforfloyd OR #justiceforgeorge OR
#sayhername OR #stopracismnow OR #blacklivesstillmatter OR #taketheknee OR
#breonnataylor OR #justiceforbreonnataylor OR #blackwomenmatter)) has:geo
point_radius:[{geo_query}]',

,→
,→
,→
,→
,→
,→
,→
,→
,→
,→
,→
,→

2 'tweet.fields': 'author_id, conversation_id, created_at, geo, entities, id,
in_reply_to_user_id, referenced_tweets, public_metrics, text',,→

3 'place.fields': 'contained_within, country, country_code, full_name, geo, id, name,
place_type',,→

4 'max_results': '500',
5 'expansions': 'geo.place_id, author_id, entities.mentions.username, in_reply_to_user_id,

referenced_tweets.id, referenced_tweets.id.author_id',,→
6 'user.fields': 'created_at,description, id, location, name, protected, public_metrics,

url, username, verified',,→
7 'start_time': '2020-05-20T00:00:00.00Z',
8 'end_time': '2020-11-10T00:00:00.00Z'}

Finally, because the Twitter API v2 allows for a maximum search radius of 25 miles, a grid consisting of
equally sized 1770 km2 hexagons covering the United States’ landmass was created using the h3 Python li-
brary (Uber, 2021). Through an iterative process, and according to the above query, tweets within a 25 mile
radius of the centroid of each hexagon were collected. As a result, the API returned a collection of 1,066,440
tweet objects each represented as a .json file structure as described in fig. 8.1 in the appendix. Each such
tweet object contains temporal features, location features, network features and textual features. Table 3.1
describes the attributes returned for each tweet file.
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Description

id The unique ID that serves to identify each tweet object.
created_at The timestamp (year-month-day hour:min:second.timezone) at which the

tweet was created.
public_metrics The number of retweets, replies, likes, and quotes that the tweet received.

entities Any special entities extracted from the tweet text (urls, user mentions, hash-
tags, place mentions).

geo The geographical location where the tweet was created. If the user had en-
abled location tracking at the time the tweet was created, the latitude and
longitude coordinates of the tweet are found within the "coordinates" sub-
attribute. Otherwise if the user tweeted from a known place (e.g. restaurant,
shop, neighborhood, city), this information is found within the "place_id"
sub-attribute.

author_id The unique ID that serves to identify the creator of the tweet.
text The text that the user wrote when creating the tweet.

conversation_id If a tweet is part of a conversation (e.g. a reply in a thread), this attribute is
the unique ID that serves to identify the conversation of which a tweet may
be part of.

Table 3.1: Attributes returned by the Twitter API v2 with the specified search query, for each tweet object

GEO-LOCATED PHYSICAL PROTEST DATA

Data on physical protest activity was retrieved from The Armed Conflict Location & Event Data Project (ACLED)
(Raleigh et al., 2010). ACLED is an event based data project that "codes the actions of rebels, governments,
and militias within unstable states, specifying the exact location and date of battle events, transfers of mil-
itary control, headquarter establishment, civilian violence, and rioting". In the case of #JusticeForGeorge-
Floyd, ACLED is particularly relevant as it includes the most complete and reliable information regarding
every Black Lives Matter physical protest that took place in the United States during 2020. ACLED data was
acquired through the ACLED website as a .csv tabular file, of which relevant attributes pertaining to the time-
stamp, type, organizing actors, and location of each protest are extracted (table 3.2).

Description

event_id_cnty An individual identifier by number and country acronym.
event_date The date the event occurred in the format: yyyy-mm-dd.
event_type The type of conflict event.

actor1 The named actor involved in the event.
assoc_actor_1 The named actor allied with or identifying ACTOR1.

actor2 The named actor involved in the event.
assoc_actor_2 The named actor allied with or identifying ACTOR2.

interaction A numeric code indicating the interaction between types of ACTOR1 and AC-
TOR2.

location The location in which the event took place.
latitude The latitude of the location.

longitude The longitude of the location.
fatalities The number of reported fatalities which occured during the event.

Table 3.2: Attributes extracted from ACLED data (Raleigh et al., 2010)

STATE LEVEL LEGISLATIVE ACTION DATA

To date, the most reliable source of data on official U.S. legislation related to policing is the "Legislative Re-
sponses for Policing - State Bill Tracking Database" from the National Conference of State Legislatures (NCSL)
(NCSL, 2020). This database has been actively tracking the status of every piece of law enforcement legisla-
tion for the United States’ 50 states and the District of Columbia (NCSL, 2020). Data on legislative responses
to policing is available for the year of 2020 and 2021. Although this data is publicly available, the NCSL does
not facilitate public download in a user friendly format. Thus, in order to retrieve this data the Python library
BeautifulSoup4 (PyPi, 2021) was used to scrape status information about each piece of legislation introduced
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since May 2020. In total, a data-set consisting of 2958 state policies, of which 743 were introduced in 2020
and 2215 were introduced in 2021, was created. Table 3.3 describes the attributes extracted for each piece of
legislation.

Description

policy_id A unique identifier for legislation.
state The state where the legislation is to be implemented.
year The year in which the legislation was introduced.
date The legal status of the legislation (i.e. pending, failed, enacted, vetoed,

to mayor, adopted).
status The named actor allied with or identifying ACTOR1.

date_of_last_action The most recent date where action concerning the legislation took place.
author The named author of the legislation.
topics The topics related to the legislation.

summary A brief description of the legislation.
history A history of the different legal stages the legislation went through.

Table 3.3: Attributes extracted from NCSL data

2016 US-COUNTY AND US-STATE SHAPES AND DEMOGRAPHICS

In order to study any kind of geo-spatial relationships between social media activity, physical protest activity
and legislative action, data must be aggregated across common spatial scales. For this research, the U.S.
county and state spatial scales are chosen and the associated geo-spatial data is downloaded from the U.S.
Census public API (Bureau, 2021). Additionally, basic demographic indicators at the U.S. county and State
level are retrieved from the U.S. Census public API.

3.1.2. DATA PRE-PROCESSING

GEO-LOCATED SOCIAL MEDIA POSTS DATA

The .json format raw tweet objects returned by the Twitter API v2 are a complex data structure and carry more
information than needed for this research. Thus, the first step in pre-processing the tweet data is to extract
features of interest from each tweet object and store them in a tabular format that is appropriate for data
analysis. This is performed by programmatically iterating through each .json file and extracting the following
information:

1. Basic tweet information (tweet_id, conversation_id, created_at, text, hashtags).
2. Location information (coordinates, place_full_name, place_country_code, place_country, place_type,

place_bbox, place_from_text).
3. Public metrics and engagement information (retweet_count, reply_count, like_count, quote_count).
4. Information regarding the user who created the tweet (user_id, username, user_full_name,user_following,

user_followers, user_location, user_created_at, user_bio).
5. Information regarding any additional user that a tweet may be replying to or engaging with (in_reply_to_user_id,

in_reply_to_username, in_reply_to_user_full_name, in_reply_to_user_following, in_reply_to_user_followers,
in_reply_to_user_location, in_reply_to_user_created_at, in_reply_to_user_bio).

6. Information any additional tweet that a tweet may be referencing (referenced_tweet_id, referenced_tweet_type,
referenced_tweet_text, referenced_tweet_created_at, referenced_tweet_author_id, referenced_tweet_conversation_id).

Once this iterative process has been completed, features from all tweets are combined together in one
data-frame with the use of the Pandas Python package (Pydata, 2021). The result is a table of 1,066,440 tweets,
where 267,033 tweets have location information at below-city level (i.e. exact location coordinates, coordi-
nates of a point of interest such as a restaurant, an administrative bounding box such as for a neighborhood or
a park), and 799,407 have location information at the city level. In order to extract a set of latitude-longitude
coordinates for each tweet, the geographic centroid is calculated for each tweet that has a bounding box as
location information. The geographical scope of the resulting data-set is illustrated in fig. 3.2.

In order to allow comparison between physical protest counts, tweet counts and legislation, tweet data
must be further manipulated and aggregated at area and time units common to all three data-sets. Thus, a
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Figure 3.2: Geographical scope of hashtag activism tweets during #JusticeForGeorgeFloyd from tweet data-set. Each dot represents one
tweet.

spatial join is first performed between tweet data and both 2016 US-county shapes and 2016 US-state shapes.
Second, tweet data is aggregated spatially and temporally (by day). The result is five new data-sets:

1. Total number of daily tweets, irrespective of geographical location (168 records).
2. Total number of tweets by county, irrespective of time (3111 records).
3. Total number of tweets by State, irrespective of time (51 records).
4. Total number of daily tweets by county (522648 records).
5. Total number of daily tweets by state (3121 records).

GEO-LOCATED PHYSICAL PROTEST DATA

The ACLED data-set chosen for this research contains information about six different types of crisis events -
Protests, Strategic developments, Violence against civilians, Riots, Battles, and Explosions/Remote violence
- from January 1st 2020 to February 12th 2021 in the United States. Additionally, the ACLED data-set has
recorded 403 actors directly or indirectly involved in one type of crisis event during this time-frame in the
United States alone. Thus, the first step in pre-processing this data for analysis is to filter it to contain only
crisis events that are relevant to the #JusticeForGeorgeFloyd case study. Thus, the following requirements are
identified:

1. Each crisis event must either be a physical protest or a riot. For this the data-set is filtered according to
the "EVENT_TYPE" field to equal "Protests" or "Riots".

2. Each crisis event must have taken place between May 20th 2020 and November 10th 2020. For this the
data-set is filtered according to the "EVENT_DATE" field.

3. The actors (i.e. social group, political interest group, or social movement organization) directly or in-
directly involved in each crisis event must either be in support of the #BlackLivesMatter movement
or have its political interests closely aligned with those of #BlackLivesMatter. For this the data-set is
filtered according to the "ASSOC_ACTOR_1" and "ASSOC_ACTOR_2" fields to match any of the follow-



3.1. DATA

3

17

ing actors: "BLM: Black Lives Matter", "NAN: National Action Network", "African American Group",
"NAACP", "BSU: Black Student Union", "NABPP", "SURJ", "APSP: African People’s Socialist Party",
"Black Fist Coalition", "Black, Young, And Educated", "Black Panthers", "CCBP: Chesapeake Coalition
of Black Pastors", "NABPP: New Afrikan Black Panther Party", "Black Leaders Movement LNK", "Black
Unity", "RBPP: Revolutionary Black Panther Party", "BU: Black Unity", "Black Horse Militia", "APSP:
African People’s Socialist Party", "RAM: Revolutionary Abolitionist Movement", "NFAC: Not Fucking
Around Coalition".

As a result, the ACLED data-set was reduced to 10278 protest events of which the geographical scope is
illustrated in fig. 3.3.

Figure 3.3: Geographical scope of physical protest events during #JusticeForGeorgeFloyd from ACLED data-set. Each dot represents one
physical protest.

In order to allow comparison between physical protest counts, tweet counts and legislation, ACLED data
must be further manipulated and aggregated at area and time units common to all three data-sets. Thus,
a spatial join is first performed between ACLED data and both 2016 US-county shapes and 2016 US-state
shapes. Second, ACLED data is aggregated spatially and temporally (by day). The result is five new data-sets:

1. Total number of daily physical protests, irrespective of geographical location (168 records).
2. Total number of physical protests by county, irrespective of time (3111 records).
3. Total number of physical protests by State, irrespective of time (51 records).
4. Total number of daily physical protests by county (522648 records).
5. Total number of daily physical protests by state (3121 records).

STATE LEVEL LEGISLATIVE ACTION DATA

The NCLS data on legislative responses to policing contains information about state legislature relating to fif-
teen different policing topics: ’Data and Transparency’, ’Technology’, ’Other Issues’, ’Employment and Labor’,
’Oversight’, ’Decertification’, ’Executive Orders’, ’Policing Alternatives and Collaboration’, ’Associated Bills: NJ
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S 2801 - Identical’, ’Officer Safety and Wellbeing’, ’Use of Force’, ’Investigations and Discipline’, ’Certification’,
’Training’, and ’Standards’. Additionally, the legal status of each piece of legislation is available as one of the
following categories: "Adopted", "Enacted", "Failed", "No Status", "Pending", "To Congress", "To Governor",
"To Mayor", and "Vetoed". The geographical scope of this data-set is illustrated in fig. 3.2.

Figure 3.4: A histogram of state-level counts of legislative responses to policing, grouped by status categories (June 2020-June 2021)

In order to make this data comparable to physical protest data and tweet data, it is aggregated spatially
and temporally (by day). The result is three new data-sets:

1. Total number of daily legislative responses, irrespective of geographical location (219 records).
2. Total number of legislative responses by State, irrespective of time (51 records).
3. Total number of daily legislative responses by state (1068 records).

COMBINING AND NORMALIZING DATA-SETS

Following the data pre-processing steps outlined above, data sources are combined together through tabular
merging according to common keys. For example, the total count of physical protests by state data is merged
with the total count of tweets by state data and the total count of legislative responses to policing data accord-
ing to the "state" attribute. County level total counts data can be merged together in a similar fashion. Data
describing the temporal dimension only (e.g. total daily count of tweets and total daily count of protests) can
be merged according to "date" attribute. Finally, data describing both temporal and spatial dimensions (e.g.
total daily count of tweets by state and total daily count of physical protests by state) can be merged according
to both the "state" and "date" attributes. Finally, each data-set describing absolute counts irrespective of the
temporal dimension (e.g. total count of tweets by county) is normalized by population count. This is done by
dividing the absolute count variable of each specific area unit by the population of that area unit. Additional
pre-processing steps specific to each analysis or modelling technique used in this research is described in the
following sections of this chapter.

3.2. TIME: TIME-SERIES ANALYSIS AND FORECASTING
In nature and in society there are several processes, such as instances of physical protest or social media posts,
that can be characterized by sequential events or occurrences. Such processes, when translated into data-
set consisting of sequential observations, are defined as time-series (Wei, 2006). In this context, time-series
analysis is the use of statistical tools and algorithms to extract temporal patterns from time-series, and Time-
series Forecasting is the use of these temporal patterns to predict future values from past values (Wei, 2006).
Time-series analysis and forecasting finds applications in a wide range of scientific fields, such as Economics,
Sociology and Meteorology. In this research, time-series analysis is used to extract the temporal patterns
and relationships that exist between hashtag activism, physical protest, and legislative action processes, and
time-series forecasting is used to predict instances of physical protest and legislative action based on past
instances of hashtag activism.
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3.2.1. CORRELATED TIME-SERIES ANALYSIS
When two time-series are contextually related, they may or may not exhibit similar temporal behaviour. The
study of this temporal relationship between two or more time-series is called correlated time-series analysis.
Essentially, specific statistical tests can be executed to quantify local and global relationships between time-
series. Correlated time-series analysis methods can generate useful insight regarding the flow of information
between different time-series (Wei, 2006).

ROLLING WINDOW CROSS CORRELATION

A common method for performing correlated time-series analysis is a procedure called rolling window cor-
relation (RWC), where the correlation between two time-series is repeatedly computed over a specific time
window throughout the length of the time-series. This procedure involves (a) choosing two time-series that
cover the same temporal extent, (b) choosing a temporal window of a specific length, (c) computing the Pear-
son correlation p value between the two time-series within that window of time and (d) shifting (or rolling)
the window by some offset and repeating step (c). This process is executed for the entire length of the two
time-series (Shakil et al., 2016). The Pearson correlation p is calculated as such (Benesty et al., 2009):

p =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(3.1)

While RWC has proven useful for a variety of applications ranging from neuroscience (Shakil et al., 2016),
finance (Andersson et al., 2008), urban planning (Zhang and Fan, 2019) to social studies (Vomfell et al., 2018),
it has some limitations. Mainly, results of RWC are highly dependent on the size of the window that is used
and, because this parameter is somewhat arbitrary, they may not be entirely objective . This limitation can
be controlled for by performing RWC with different window sizes and taking note of how results change each
time. This phenomenon is illustrated in fig. 3.5, where RWC analysis is computed on tweet count and protest
count data during the #JusticeForGeorgeFloyd social movement for the example of New York State (NY) us-
ing a seven day (top) and three day (bottom) window. In this research, RWC is utilized to study the evolving
temporal relationship between tweet count and protest count throughout the #JusticeForGeorgeFloyd social
movement.

Figure 3.5: Results of Rolling Window Correlation analysis for tweet count and protest count time-series during the #JusticeForGeorge-
Floyd social movement for NY using a seven day (top) and three day (bottom) window

TIME LAGGED CROSS CORRELATION ANALYSIS

While RWC analysis can generate information regarding the relationship between two time-series, it cannot
generate insight regarding the flow of information between two time-series. That is, it cannot describe the
directionality between two time-series, such as the existence of a leader-follower relationship where one vari-
able expresses occurrence before the other variable. One method that is effective for this type of inference
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is time lagged cross correlation analysis (TLCC) (Shen, 2015). Essentially, TLCC studies the directionality
between two time-series, xt an yt , by identifying lags of x that may be the best predictors of yt . This method
involves (a) choosing two time-series that cover the same temporal extent and (b) fitting a regression model
n ∗2 times using the yt data and the xt−n and xt+n data, where |n| is the maximum number of time lags. In
this research TLCC is used to test the hypothesis that one of hashtag activism or physical protest happens
before the other.

As an example, fig. 3.6 illustrates the results of TLCC using tweet count and protest count data during
the #JusticeForGeorgeFloyd social movement for NY. In fig. 3.6, it is shown that, for NY, the optimal Pearson
correlation p value between tweet count and protest count time-series is obtained when a time lag of one
day is introduced in the tweet count data. In other words, during the case study of #JusticeForGeorgeFloyd in
NY, the best predictor of physical protest activity at time t (in days) is the number of social movement related
tweets posted at time t1 (i.e. the day before).

While TLCC is useful for identifying the directionality between two time-series, it is important to note
that this method is not a measure of causality. While it can identify time lags at which best correlations are
obtained, it does not provide statistically significant information for causal inference.

Figure 3.6: Example of TLCC analysis results for New York State (NY), where the optimal Pearson correlation p value is found with tweet
count leading by a time lag of one day.

3.2.2. GRANGER CAUSALITY ANALYSIS
A more comprehensive method for analyzing the relationship between two time-series is Granger Causality
Analysis. Granger causality is a statistical hypothesis test developed to study the exchange of information
between two or more time-series (Granger, 1969; Zhao et al., 2020). In the field of social movements research,
Granger causality analysis has proven useful in a number of instances, such as for the study of causal rela-
tionships between social network nodes (Ver Steeg and Galstyan, 2012) and the study of causal relationships
between protests and repression (Carey, 2006). More relevantly, and as previously discussed in 2, Bastos et al.
(2015) and Brantly (2019) both implemented Granger causality to argue for the existence of causal relation-
ships between social media activity and physical protest activity.

Essentially, Granger causality determines whether prior values from one time-series can be used to pre-
dict current and future values of another time-series. Thus, while Granger causality does not always imply
True Causality, it is said that a time-series x2 Granger-causes another time-series x1 if lagged values of x2
provide statistically significant information about future values of x1 (Granger, 1969). As such, the Null hy-
pothesis that x2 does not Granger-cause x1 is tested by first identifying the correct lagged values of x1 to use
in a uni-variate auto-regression of x1:

x1t = a0 +a1x1t−1 +a2x1t−2 +·· ·+am x1t−m + error t (3.2)

Following this step, the auto-regression is modified to include lagged values of x2:

x1t = a0 +a1x1t−1 +a2x1t−2 +·· ·+am x1t−m +b1x2t−1 +·· ·+bq x2t−q + error t (3.3)

Next, the lagged values of x2 that (a) collectively add explanatory power to the auto-regression according
to an F-test and (b) are found to be individually significant from the value of their t-statistic are retained in
the auto-regression. In the above equation, q is the smallest lag and t −q is the largest lag for which a lagged
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value of x2 is significant. Finally, we accept the Null hypothesis that x2 does not Granger-cause x1 if no lagged
values of x2 are retained in the auto-regression (Granger, 1969).

In this research, Granger causality analysis is implemented using the grangercausalitytests function from
the statsmodels Python library (Seabold and Perktold, 2010). This function performs four F-tests for granger
non-causality of two time-series, where the Null hypothesis is that the second time-series x2 does not Granger
cause the first time-series x1. In this implementation "Granger causality means that past values of x2 have a
statistically significant effect on the current value of x1, taking past values of x1 into account as regressors. We
reject the null hypothesis that x2 does not Granger cause x1 if the p-values are below a desired size of the test"
(McKinney et al., 2011). With national, state-level, and county-level data, Granger causality is implemented
to study whether data on tweet counts can provide information that is statistically significant for the forecast
of future physical protest counts.

3.2.3. MULTI-VARIATE TIME-SERIES FORECASTING

Time-series forecasting is the use of temporal patterns extracted during time-series analysis to predict future
values from past values (Wei, 2006). When two or more time-series are found to be correlated, multi-variate
time-series forecasting methods can be used to predict future instances of a time-series of interest based on
its past values and the past values of other time-series it is correlated with (Wei, 2006). In this research, multi-
variate time-series forecasting is used to predict future instances of physical protest and legislative action
based on past instances of both physical protest and hashtag activism. As such, two predictive models are
developed: a simple Long Short Term Memory (LSTM) neural network and a Long Short Term Memory neu-
ral network combined with a Vector Autoregressive (VAR) model (LSTM VAR). In the following sections, the
technical characteristics of each model are described, the modelling choices are motivated, and the overall
machine-learning modelling workflow is described.

VECTOR AUTOREGRESSIVE ( VAR) MODEL

The Vector Autoregressive (VAR) Model is a statistical model designed to learn the relationship that exists be-
tween different temporal signals, and use this information for the purpose of time-series forecasting (Zivot
and Wang, 2006). Across numerous disciplines, VAR is considered to be one of the most effective and intu-
itive methods for the analysis and forecasting of multi-variate time-series (Zivot and Wang, 2006). In par-
ticular, VAR models have demonstrated success for modelling the dynamic nature of time-series and have
found many applications in the realm of policy analysis. These characteristics make VAR very attractive and
suitable for modelling the multi-variate relationship between hashtag activism and physical protest, and for
forecasting physical protest counts (Zivot and Wang, 2006). If Yt =

(
y1t , y2t , . . . , ynt

)′ "denote an n ×1 vector
of time-series variables, the basic p-lag vector autoregressive (VAR(p)) model has the form:

Yt = c+Π1Yt−1 +Π2Yt−2 +·· ·+Πp Yt−p +εt , t = 1, . . . ,T (3.4)

"where Πi are n coefficient matrices and εt is an n ×1 unobservable zero mean white noise vector pro-
cess (serially uncorrelated or independent) with time invariant covariance matrix" (Zivot and Wang, 2006, p.
386). Since in this research, we have two time-series (tweet count and physical protest count), the associated
bivariate (VAR(2)) model has the form:

(
y1t

y2t

)
=

(
c1

c2

)
+

(
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)(
y1t−1

y2t−1

)
+

(
π2

11 π2
12

π2
21 π2

22
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)
+

(
ε1t

ε2t

) (3.5)

or

y1t = c1 +π1
11 y1t−1 +π1

12 y2t−1 +π2
11 y1t−2 +π2

12 y2t−2 +ε1t

y2t = c2 +π1
21 y1t−1 +π1

22 y2t−1 +π2
21 y1t−1 +π2

22 y2t−1 +ε2t
(3.6)

where y1t is tweet count and y2t is physical protest count, and where cov(ε1t ,ε2s ) =σ12 for t = s;0 other-
wise (Zivot and Wang, 2006, p. 386).
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LONG SHORT-TERM MEMORY (LSTM) ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) are a revolutionary machine learning technique (also known as deep learn-
ing), consisting of a set of inter-connected nodes (i.e. mathematical formulas), which mimics the functioning
of biological networks (e.g. the human brain) to recognize patterns within large amounts of data (McCulloch
and Pitts, 1943; Yegnanarayana, 2009). Neural networks are unique because they constantly update their
knowledge about their environment (i.e. the data) as they face new experiences, through a process called
backpropagation, where the connection weights within the network are adjusted based on the error found
during the learning process (McCulloch and Pitts, 1943; Yegnanarayana, 2009). A high level representation of
a simple ANN structure is illustrated by fig. 3.7.

Figure 3.7: Example of a simple ANN structure

In recent years, through the increased availability of implementation methods for deep learning, Long
Short Term Memory (LSTM) neural networks have become a popular and very effective method for the
modelling of sequences, including multi-variate time-series forecasting (Sherstinsky, 2020). LSTM neural
networks are a type of Recurrent Neural Networks (RNN) that were designed to overcome the vanishing gra-
dient or back-propagated error decay problem associated with RNNs, where the backpropagated gradients
become exponentially small and cause the learning process to stop, that arises during the learning of long se-
quences (Hochreiter and Schmidhuber, 1997). Essentially, LSTM neural networks use memory blocks to store
long sequences of data and based on them predict the next values of a sequence (Hochreiter and Schmidhu-
ber, 1997; Sherstinsky, 2020; Greff et al., 2016). Fig. 3.8 illustrates the memory block of a simple RNN (SRN)
(left) and compares it to the structure of a LSTM memory block (right).

LSTM neural networks have proven to be very effective for the forecasting of multi-variate time-series
across several disciplines, such as traffic flows (Ma et al., 2015), the concentration of air pollutants (X. Li et al.,
2017), stock prices (Bao et al., 2017), and electric loads (Zheng et al., 2017). In this research, LSTM neural
networks are used in isolation and in combination with VAR for the forecasting of physical protest activity.

MACHINE-LEARNING MODELLING WORKFLOW

In this research, we develop two models for the forecast of next-day physical protest counts based on the
previous seven days of physical protest counts and tweet counts from national level data. First, in order
to prepare the data for modelling, national level data on daily counts of physical protests and tweets is up-
sampled from daily intervals to hourly intervals using linear interpolation. This procedure allows to generate
more data points (from 168 days to 4032 hours) for the models to work with. Next, each of the physical protest
and tweet count time-series are split up into training (60%), validation (10%), and testing (30%) data. Finally,
training, validation, and testing data-sets are each re-shaped into 7-day sequences of data-points. Fig. 3.9
illustrates the portion of data used for training (blue) and the portion of data used for testing (orange) for
each of physical protest and tweet count data-sets.
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Figure 3.8: "Detailed schematic of the SRN unit (left) and an LSTM block (right) as used in the hidden layers of a recurrent neural
network" (Greff et al., 2016)

Figure 3.9: Training (blue) and testing (orange) data used for time-series forecasting with VAR

Using the training data, a VAR model is then fitted to the physical protest and tweet count time-series us-
ing the var _model implementation from the statsmodels Python library (Seabold and Perktold, 2010). The
order selected for the VAR model is selected based on the lowest obtained Akaike Information Criterion (AIC)
value, AIC(n,L) = log êL +2L/n for L̂

(
1 ≤ L̂ ≤ L(n)

max

)
, the state of the art metric for autoregressive model order

selection (Ding et al., 2017). This process is illustrated by fig. 3.10, where the AIC score at each model order
(i.e. lag) is charted and the selected model order (L = 146) is highlighted in red. The resulting fitted values
from the selected VAR model are then saved.

Next, two LSTM neural networks, LSTM and LSTM VAR, are trained and fine-tuned using the LSTM imple-
mentation from the tensorflow Python library and the kerashypetune Python library, respectively. Each model
is a simple LSTM neural network which predicts the next day’s value of physical protest counts based on the
past seven days’ values of physical protest counts and tweet counts. Each model consists of (a) an input layer
of two nodes (physical protest count, tweet count), (b) three hidden layers of LSTM memory blocks using the
tanh activation function, and (c) an output layer of two nodes (predicted physical protest count, predicted
tweet count). The two models differ only in the data that they use for training: the first model, LSTM, uses
the raw values of physical protest counts and tweet counts, whereas the second model, LSTM VAR, uses both
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Figure 3.10: Optimal VAR model order chosen for time-series forecasting

the raw values of physical protest counts and tweet counts and the fitted values obtained from the previously
trained VAR model. The objective behind the LSTM VAR model is to use what the VAR model has learned
about the multivariate relationships between physical protests and tweet counts to improve the training and
predictive power of the LSTM model. Thus, this model is trained and optimized by (a) feeding it seven-day
sequences of both the multi-variate VAR fitted and raw time-series inputs, and adjusting link weights, (b)
using the validation data to predict next-day physical protest counts and compute error values, (c) backprop-
agating error values and adjusting model link weights, and (d) repeating this process until the error values
can no longer be reduced. In contrast, the LSTM model is trained and optimized through the same exact pro-
cess except that it is only fed the raw time-series inputs. Finally, the optimized LSTM and LSTM VAR models
are saved and utilized to predict national-level physical protest counts, using the national-level testing data,
and state-level physical protest counts, using the full state-level data-set. Fig. 3.11 illustrates the high level
machine-learning modelling workflow used to develop, train, fin-tune, and implement each of these models.

Figure 3.11: Machine learning modelling workflow for time-series forecasting
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3.3. RELATIONSHIPS: REGRESSION ANALYSIS
Regression analysis describes a range of statistical methods for quantifying the relationships between a de-
pendent variable and one or more independent variables (Draper and Smith, 1998). Regression is the most
popularly used statistical procedure for the analysis of empirical problems in a wide range of fields such as
biology and environmental sciences, social science, and economics (Fahrmeir et al., 2007). In this research,
regression is used to quantify the statistical relationship between hashtag activism and physical protest, the
statistical relationship between hashtag activism and legislative responses to policing, and the statistical re-
lationship between physical protest and legislative responses to policing. More specifically, due to the left
skewed (log-normal) distribution of both tweet counts and physical protest counts (please see chapter 4) the
power regression model is chosen for modelling such relationships. This regression model is used throughout
all applications of regression modelling of this research. The power regression model is a non-linear regres-
sion model useful for modelling problems where the dependent variable is equal to the independent variable
raised to a power, as such (Draper and Smith, 1998):

y =αxβ (3.7)

In this equation, y is the dependent variable, x is the independent variable, and α and β are the regres-
sion coefficients that describe the relationship between x and y . In this research, the performance of power
regression models is evaluated by using the Pearson correlation score p (see eq. (3.1)) and the coefficient of
determination R2:

R2 = 1− RSS

T SS
(3.8)

where RSS is the Residual Sum of Squares, calculated as RSS = ∑n
i=1

(
yi − f (xi )

)2, and T SS is the Total

Sum of Squares, calculated as TSS = ∑n
i=1

(
yi − ȳ

)2, where yi is a given sample value to be predicted, f (xi )
is the predicted value of yi , where ȳ is the mean sample value, and n is the total number of observations
in the sample. The Pearson correlation score p and the coefficient of determination R2 are two of the most
commonly used evaluation metrics in regression analysis (Fahrmeir et al., 2007).

3.4. SPACE: GEOSPATIAL ANALYSIS
Geospatial analysis is a set of statistical procedures used for gathering, manipulating and analyzing data
through their topological, geometric, or geographic attributes (De Smith et al., 2007). Such data can come
from a variety of data sources, such as satellite imagery, GPS coordinates and spatial networks, and geo-
graphic attributes can be defined explicitly (i.e. longitude-latitude coordinates) or implicitly (i.e. street ad-
dresses). In both cases, geospatial analysis is required to manipulate and combine spatial data together, and
to establish statistical relationships between different spatial data. Geospatial analysis is used as a funda-
mental tool in a wide range of fields such as urban planning, environmental sciences, sociology and trans-
portation(De Smith et al., 2007). In this research, each data source contains explicit and implicit spatial in-
formation, such as geographical coordinates, the shapes of administrative regions, and the name of places
and administrative regions. Thus, as described in section 3.1.1, several traditional geospatial analysis pro-
cedures are used to gather, process, manipulate and combine these different data sources analyze spatial
relationships that exist between them.
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RESULTS

This chapter presents the results of the analysis conducted to investigate sub-question 1 (i.e. What is the
relationship between location-based hashtag activism and physical protest activity?) and sub-question 2 (i.e.
What is the relationship between location-based hashtag activism and legislative action?) of this research.
In applying each step of the proposed experimental framework presented in chapter 3 to the case study of
#JusticeForGeorgeFloyd, insight into the relationship between hashtag activism and two forms of political
processes - physical protest and legislative action - are presented. First, the spatio-temporal relationship
between hashtag activism and physical protest is explored. For this, time-series modelling, regression anal-
ysis and geo-spatial analysis steps are applied to explore how hashtag activism and physical protest are re-
lated in time and space. Then, a deep learning model is developed and tested for the forecasting of physical
protest activity based on past instances of hashtag activism. This section concludes with the development
of a novel index, aimed at providing an accurate and granular picture of where hashtag activism is most
likely to translate into physical protest activity and what that may mean for local policy makers. Second, the
spatio-temporal relationship between hashtag activism and legislative action is explored. For this, time-series
modelling, regression analysis and geo-spatial analysis steps are applied to explore how hashtag activism and
legislative action are related in time and space.

4.1. THE SPATIO-TEMPORAL RELATIONSHIP BETWEEN LOCATION-BASED HASH-
TAG ACTIVISM AND PHYSICAL PROTEST ACTIVITY

As discussed in chapter 2 of this research, the study of the relationship between hashtag activism and physical
protest has been inconclusive, with evidence both in support and against the existence of such a relationship.
This, scholars conclude, is partly due to a lack of empirical research and the use of limited case studies. Addi-
tionally, most of the literature within this area of research has studied this relationship through a broad lens
and does not consider the geo-spatial relationships that may exist between digital and physical protests. In an
attempt to address this knowledge gap, this section presents the results of time-series modelling, regression
analysis, and geo-spatial analysis of hashtag activism and physical protests using the case study of #Justice-
ForGeorgeFloyd. Thus, this section answers one of the main two research questions: What is the relationship
between location-based hashtag activism and physical protest activity?

CORRELATED TIME SERIES ANALYSIS

As described in chapter 3, point data describing instances of hashtag activism and physical protests were ag-
gregated in time and space, so that the temporal relationship between hashtag activism and physical protest
could be studied at different spatial scales. Figure 4.1 shows, in the right half of the chart, the temporal pat-
terns of both hashtag activism (measured in number of tweets) and physical protest at the national level.
On the left side of the chart the temporal relationship between daily number of physical protests and daily
number of tweets is illustrated through a scatter-plot. From fig. 4.1 it can be observed that, at the national
scale, hashtag activism bears a very strong positive relationship with physical protest activity. On days where
people protested more on social media, people also protested more in the street, and vice versa. In the case
of #JusticeForGeorgeFloyd, people may have used Twitter to express outrage about events of police brutal-
ity and to organize physical protests. During protests, more acts of police brutality were documented and
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shared on Twitter, which could have led to yet more protests and to more people showing up to protests, and
so on. This trend can be modelled by a power regression function (yn =−0.004x1.116

n ), represented by the red
dashed line, where yn is the number of physical protests that take place on a given day and xn is the number
of social movement tweets that are posted on a given day. This model is considerably accurate, with a Pearson
correlation score p of 0.852 and an R2 score of 0.726.

Figure 4.1: Temporal (right) and statistical (left) relationship between hashtag activism and physical protests during #JusticeForGeorge-
Floyd, where each dot represents a day. The statistical relationship is modelled by the red dashed line as (yn =−0.004x1.116

n ).

While this model provides a good description of the global relationship or synchrony between hashtag
activism and physical protests, it offers little insight into local synchrony (how a relationshio changes over
time) between the two variables. One method for exploring local synchrony is to compute the Pearson cor-
relation between the two variables for a small subset of time (i.e. a rolling window) and repeat this for the
entire duration of the time-series. Thus, fig. 4.2 illustrates the rolling window Pearson correlation between
hashtag activism and physical protests with the use of a seven day window. The top subplot illustrates the
two time series normalized (as x ′ = x−min(x)

max(x)−min(x) ) on a scale from 0 to 1 and the bottom subplot illustrates the
seven day rolling window Pearson correlation between the two time series. The figure shows that the Pearson
correlation is generally a high value, but oscillates to very low values for brief periods of time. This is due
to the existence of some differences between the seasonality pattern of each time series, mainly the physi-
cal protest time series occasionally experiencing spikes in protest activity on different days than the hashtag
activism time series. This difference could be explained by the existence of a time lag between the two time
series, where higher Pearson correlation values would be obtained through the use of a time lag between the
two time series. This is investigated later in this section.

Figure 4.2: Rescaled hashtag acvitism and physical protest time series (top) and seven day rolling window correlation (bottom).
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While fig. 4.1 and fig. 4.2 provide useful insight into the temporal relationship between hashtag activism
and physical protest, they cannot answer whether this relationship exists in space as well. That is, if an overall
increase in hashtag activism results in an overall increase in physical protest counts, does an increase in
hashtag activism in a particular location result in an increase in physical protest counts in that particular
location? With the use of data on social movement tweet counts and physical protest counts that is aggregated
both in time and in space (i.e. at the state level), fig. 4.3 illustrates the temporal and statistical relationship
between daily number of physical protests and daily number of tweets as scatter-plots for each of the U.S.’s
50 states. From this figure it is evident that the pattern previously observed at the national level also exists at
the state level. Thus, in spite of the existence of a few outliers, the relationship between hashtag activism and
physical protest counts in each state is described by a strong positive correlation. Across 50 states, the median
Pearson correlation p value is 0.74 and there are 44 states associated with Pearson correlation p values greater
than 0.6 (table 8.1. Additionally, similarly to the trend observed at the national scale, the relationship between
state-level hashtag activism and physical protest counts can be modelled by a power regression function
(yn = mxb

n), represented by the red dashed line in each subplot, where yn is the number of physical protests
that take place on a given day in a given state and xn is the number of social movement tweets that are posted
on a given day in a given state.



4

30 4. RESULTS

Figure 4.3: State-level statistical relationships between hashtag activism and physical protests using the #JusticeForGeorgeFloyd social
movement as a case study.

In general, the accuracy of these models is described by a median R2 value of 0.55 across 50 states, and 37
states that are associated with R2 values greater than 0.5. Interestingly, fig. 4.4 shows that across the 25% most
densely populated states, the power regression model yields considerably higher scores, with the median
Pearson correlation p value climbing to 0.8 and the median R2 values climbing to 0.64. Across the 25% least
densely populated states, the opposite trend is observed. Summary statistics for each of the U.S. 50 states can
be viewed in the 8.
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Figure 4.4: Accuracy of Power regression models (R2) across the 25% most population dense U.S. states and the 25% least population
dense U.S. states

In this context, the accuracy of power regression models at the state level seems to be very sensitive to
population density. This is further illustrated in fig. 4.5, where population density is visualized as a power
law function of model accuracy (R2) for each state. In the right subplot, states with a land area smaller than
the bottom 0.05 quantile (i.e. DE) are removed, as considerably less data-points are recorded within those
states. Thus, from the right subplot of fig. 4.5, we can observe that model accuracy increases exponentially
with population density (i.e. each axis is on a logarithmic scale).

Figure 4.5: Accuracy of power regression models (R2) as a function of population density. This relationship is shown for all 50 states (left)
and for the 49 states of which land area is greater than the bottom 0.05 quantile (right).

With state-level data, the seven day rolling window Pearson correlation between hashtag activism and
physical protests is computed for each of the U.S.’ 50 states. Results from this analysis are illustrated by
fig. 8.2 in the appendix. Similar to national level results, it can be seen from this figure that the Pearson cor-
relation is generally a high value, but oscillates to very low values for brief periods of time. While this is the
case in the majority of states, some states instead show a more steady temporal pattern in Pearson correla-
tion p values. It can be observed that these states are not only the same states that obtained the lowest power
regression model scores in fig. 4.3 (i.e. HI, ID, ME, ND, AK, AR, DE, MS, SD, WY, VT), they are also among the
least densely populated states.

MOBILIZATION SYNERGY INDEX

Following the same methodology, the spatial scale is further disaggregated and the temporal relationship be-
tween hashtag activism and physical protest counts is investigated at the county level. Once again, we model
this relationship as a power regression function (yn = mxb

n) for each of U.S. county where tweet and physi-
cal protest data was available (i = 2178 counties). Results from this analysis are illustrated by the bottom left
and right subplots of fig. 4.7, where the obtained Pearson correlation p values and R2 values are illustrated as
kernel density distributions due to the large number of counties analysed. fig. 4.6 shows that, on average, the
county level Pearson correlation p value is positive and relatively high. fig. 4.6 also shows that while a power



4

32 4. RESULTS

regression model achieves a high R2 score in a majority of counties, there is more variance in the accuracy of
the power regression model.

Figure 4.6: Distribution of Pearson correlation p values (left) and R2 values (right) obtained from power regression modelling between
tweet count and physical protest counts at the county level using the #JusticeForGeorgeFloyd case study.

One reason that could explain this variance could be the lack of data-points available in some less densely
populated counties. Another reason is that in some counties one of hashtag activism or physical protest was
more commonly used to engage in activism during the #JusticeForGeorgeFloyd social movement. In other
words, in some counties people use physical protest to greater extents, while in other counties people may
use hashtag activism more instead. In this context, modelling the relationship between hashtag activism and
physical protest and visualizing this trade-off at the county level can provide unique insight into which lo-
cations experience synergy across digital and physical activism mediums, and which do not. Thus, on the
one hand it can help identify which counties have activist groups that mobilize both digitally and physically,
and thus where physical protests can be expected if people are already protesting on social media. On the
other hand, for the counties that exhibit a weaker relationship between both forms of protest, it can gener-
ate insight as to why this relationship is weak. Such tendency can be understood with the help of residual
values resulting from each county’s power regression model. As such, the number of positive residual values
represents the number of data-points (i.e. days) in which physical protests were underestimated by the re-
gression model, and thus where the proportion of physical protests was larger than that of social movement
tweets. Instead, the number of negative residual values represents the number of data-points in which phys-
ical protests were overestimated by the regression model, and thus where the proportion of physical protests
was smaller than that of social movement tweets.

This type of classification can be achieved with the computation of a statistical index which we call the
Mobilization Synergy Index (MSI). Such index is achieved by (a) calculating the number of positive and neg-
ative residuals rpos and rneg respectively from each individual county’s power regression model where each
residual r is r = y−y0, y is the actual number of physical protests on a given day, and y0 is the number of phys-
ical protests predicted by the regression model, and (b) calculating the proportions of positive residual values
(days in which physical protest counts are disproportionally intense) and negative residual values (days in
which tweets counts are disproportionally intense) as rp = rpos /(rpos + rneg ) and rt = rneg /(rpos + rneg ) re-
spectively, and (c) multiplying each of these values by the product of the power regression model’s slope m
and R2 score (so as to capture both the strength of the power relationship between tweet count and physical
protest activity and the accuracy of the power regression model). As such, two measurements are recorded:

MSIpr otest s = rp × (m ×R2) (4.1)

MSIt weet s = rt × (m ×R2) (4.2)
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As such, if in a given county MSIpr otest s > MSIt weet s then physical protest was disproportionately in-
tense over the course of #JusticeForGeorgeFloyd, if instead MSIpr otest s > MSIt weet s then tweet activity was
disproportionately intense over the course of #JusticeForGeorgeFloyd, and finally if MSIpr otest s≈MSIt weet s

then physical protests and tweet counts followed a strong power law relationship where more tweets on a
given day translates in more physical protests on that same day.

Figure 4.7: Spatial (top) and statistical (bottom) distribution of the Mobility Synergy Index (MSI): darker shades represent counties in
which people are likely to protest both digitally and physically on a given day. Shades of blue represent counties in which people are
more likely to protest physically on a given day. Shades of red represent counties in which people are more likely to protest digitally on a
given day.

The Mobilization Synergy Index (MSI) and its spatial distribution is visualized through a bi-variate choro-
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pleth map in the top subplot of fig. 4.7. In this map, darker shades represent counties in which MSIpr otest s

and MSIt weet s converge, and thus where people are likely to protest both digitally and physically on a given
day. In contrast, shades of blue represent counties where MSIpr otest s outweighs MSIt weet s , and thus where
people are more likely to protest physically on a given day. Finally, shades of red represent counties where
MSIt weet s outweighs MSIpr otest s , and thus where people are more likely to protest digitally on a given day.
From fig. 4.7, it can be observed that the areas where the temporal relationship between tweets and physical
protests is stronger are concentrated along the east and west coastlines, while the areas where this relation-
ship is weaker are concentrated in the country’s interior landmass. Areas where people choose to engage in
hashtag activism over physical protest, and vice versa, doe not exhibit any discernible spatial pattern.

TIME-LAGGED CROSS-CORRELATION ANALYSIS

Political mobilization processes such as hashtag activism and physical protest are complex in nature as they
occur in uncontrolled environments where a multitude of influences are at play. For this reason, it is virtually
impossible to establish causal relations between them. Still, some insight can be generated regarding the way
in which these two processes may influence each-other in space and time.

As discussed in chapter 3, Time Lagged Cross Correlation (TLCC) or Lagged Regressions is a way to study
the directionality between two time series, xt an yt , and identify lags of x that may be the best predictors of yt .
In the case of hashtag activism and physical protests, this method involves fitting a power regression model
n ∗2 times using the yt data (daily physical protest counts) and the xt−n and xt+n (daily tweet counts) data,
where |n| is the maximum number of time lags. fig. 4.8 illustrates the results of performing TLCC on national
level data using a time lag of n = 10. The top subplot shows that the optimal Pearson correlation p value
and R2 score is obtained when hashtag activism (i.e. daily number of tweets posted) leads physical protests
by one day. In other words, at the national scale and during the case study of #JusticeForGeorgeFloyd, the
best predictor of physical protest activity at time t (in days) is the number of social movement related tweets
posted at time t−1 (i.e. the day before). This is relationship is further illustrated in the bottom subplot, where
the outputs of power regression models using xt (left) and xt−1 (right) can be compared.

Figure 4.8: Time Lagged Cross Correlation results for hashtag activism and physical protests at n = 10 time lags (top). Power regression
models for hashtag activism and physical protests using same day tweet counts xt (bottom left) and previous day tweet counts xt−1
(bottom right).
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With state-level data, the Time Lagged Cross Correlation (TLCC) between hashtag activism and physical
protests is computed for each of the U.S.’ 50 states. Results from this analysis are summarized by fig. 4.9 and
illustrated in detail by fig. 8.3 in appendix 8. Similar to national level results, in 41 out of 50 states the optimal
Pearson correlation p value is obtained when tweets lead by one or more days. For 20 of those states, the
optimal Pearson correlation p is obtained with a time lag of one day.

Figure 4.9: Optimal time lags for modelling the relationship between hashtag activism and physical protest by state.

GRANGER CAUSALITY ANALYSIS

As discussed in chapter 3, Granger causality is a statistical hypothesis test developed to study the flow of infor-
mation between two or more time series (Granger, 1969). Essentially, Granger causality determines whether
prior values from one time series can be used to predict current and future values of another time series.
Thus, while Granger causality is not a test of True Causality, it is said that a time series x Granger-causes y if
lagged values of x provide statistically significant information about future values of y (Granger, 1969).

With national and state-level data, Granger causality is implemented to study whether data on tweet
counts can provide information that is statistically significant for the forecast of future physical protest counts.
Results from this analysis are summarized in fig. 4.10 and presented in table 8.2 of appendix 8. Overall, at 95%
confidence level, at the national level and for 49 states we can reject the null-hypothesis that tweet count does
not cause protest count. Thus, it is found that tweet count Granger causes protest count at the national level
and in 49 out of 50 States. These results are in harmony with results obtained from the TLCC method.

Figure 4.10: State-level results of Granger causality analysis for the hypothesis that tweet count Granger causes protest count (blue) and
the hypothesis that protest count Granger causes tweet count (orange).

With national and state-level data, Granger causality is also implemented to study whether data on protest
counts can provide information that is statistically significant for the forecast of future tweet counts. Results
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from this analysis are summarized in fig. 4.10 and presented in table 8.4 of appendix 8. Overall, at 95% con-
fidence level, at the national level and for 27 states we cannot reject the null-hypothesis that protest count
does not cause tweet count. Thus, it is found that protest count does not Granger cause tweet count at the
national level and in 27 out of 50 States.

MULTIVARIATE TIME SERIES FORECASTING

As discussed in chapter 3 of this research, time-series forecasting is the use of temporal patterns extracted
during time-series analysis to predict future values from past values (Wei, 2006). In the context of hashtag
activism and physical protest, the coincident temporal patterns of these two processes can be leveraged by
time-series forecasting to make future predictions for either process. In this research, we developed a sim-
ple Long Short Term Memory (LSTM) artificial neural network as well as a LSTM artificial neural network
combined with a Vector Autoregressive (VAR) model (LSTM VAR) to predict future counts of physical protests
based on past values of both physical protests and tweet counts. Each model was trained and fine-tuned on
aggregated national level data, and was used to predict physical protest counts at the national and state-level.
Fig. 4.11 illustrates the predictive performance of the LSTM (red) and the LSTM VAR (blue) models. The left
subplot of fig. 4.11 illustrates the predictions made by each model for physical protest counts over a period
of two months (September 6th to November 8th) alongside actual or observed physical protest counts over
the same time-frame shown in grey. The right subplot illustrates the prediction error ye , as ye = y − y0 where
y is the actual value and y0 is the predicted value, made by each model at each time-step. At the national
level, we can observe that both models where able to predict the general temporal pattern of physical protest
activity. Interestingly, however, each model seems to have overestimated larger spikes of physical protest,
while at the same time underestimated smaller spikes of physical protest. Additionally, the LSTM VAR model
overestimated the largest spike of physical protest (on September 25th) by a considerably larger margin than
the simple LSTM model.

Figure 4.11: National-level physical protest count predictions (left) and prediction error (right) with LSTM neural network (red) and
combined VAR + LSTM neural network (blue).

The predictive performance of each model at the national level is further illustrated in fig. 4.12, where we
plot predicted physical protest counts on the x-axis against actual physical protest counts on the y-axis for
the LSTM (red) and LSTM VAR (red) models. In the case of both models, we fit a power-regression model to
the values of predicted and actual physical protest counts and compute its accuracy or R2 score. Fig. 4.12
shows that while on average both the LSTM and LSTM VAR models were able to make accurate predictions of
physical protest counts, the LSTM model scored a much higher accuracy score. This is likely due to the single
instance (September 25th) where the LSTM VAR model largely overestimated physical protest counts.
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Figure 4.12: National-level predicted vs. actual physical protest counts with LSTM neural network (red) and combined VAR + LSTM
neural network (blue).

In order to test the generalization capability of both the LSTM and LSTM VAR models, the predictive
performance of each model was tested for state-level physical protest and tweet count data. Accordingly,
the models were used to predict state-level physical protest counts throughout the entire time-frame of the
#JusticeForGeorgeFloyd social movement (five months). For both models, state-level physical protest count
predictions, aggregated model prediction errors, and disaggregated model prediction errors are illustrated
in fig. 8.6, table 8.5, and fig. 8.7 of the appendix, respectively. State-level model performance results are il-
lustrated in fig. 4.14, where we plot state-level predicted physical protest counts on the x-axis against actual
physical protest counts on the y-axis for the LSTM (red) and LSTM VAR (red) models. From fig. 4.14, we can
observe that both models were successful at accurately predicting daily physical protest counts for each state.
In all cases, both models were able to generalize the temporal patterns learned at the national level to predict
future instances of physical protest based on past instances of physical protest and tweet activity at the state
level.

The state-level performance of each model is further illustrated in fig. 4.13, where the R2 scores obtained
from power regressions of actual values vs. predicted values are compared for each model. Fig. 4.13 shows
that, in most cases, the LSTM VAR model was consistently more accurate in predicting daily, state-level, phys-
ical protest counts, than the simple LSTM model. The LSTM VAR model scored higher than the LSTM model
for 37 states with an average R2 accuracy score of 0.87, whereas the LSTM model only scored higher than the
LSTM VAR model in 13 states with an average R2 accuracy score of 0.79.

Figure 4.13: State-level physical protest prediction accuracy scores (R2) with LSTM neural network (red) and combined VAR + LSTM
neural network (blue).
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Figure 4.14: State-level predicted vs. actual physical protest counts with LSTM neural network (red) and combined VAR + LSTM neural
network (blue).
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4.2. THE SPATIO-TEMPORAL RELATIONSHIP BETWEEN LOCATION-BASED HASH-
TAG ACTIVISM AND LEGISLATIVE ACTIVITY

As discussed in chapter 2 of this research, empirical evidence about the relationship between hashtag ac-
tivism and legislative action is lacking in the field of social movement research. In an attempt to address this
knowledge gap, this section presents the results of time-series modelling, regression analysis, and geo-spatial
analysis of hashtag activism and legislative action using the case study of #JusticeForGeorgeFloyd. Thus, this
section answers the second sub-question of this research: What is the relationship between location-based
hashtag activism and legislative action?

REGRESSION ANALYSIS ON AGGREGATED DATA

One way to quantify the impact of hashtag activism on legislative responses is to model the linear relation-
ship between tweet counts and counts of legislative responses aggregated at the state level. Figure 4.15 (left)
illustrates this relationship as a scatter plot where each dot represents a U.S. state, the x-axis represents the
total number tweets (normalized by population) generated within that state, and the y-axis represents the to-
tal number of legislative responses to policing within that same state since May 25th, 2020. Similarly, the right
subplot of fig. 4.15 illustrates the relationship between physical protest and legislative responses to policing as
a scatter plot where each dot represents a U.S. state, the x-axis represents the total number physical protests
(normalized by population) that took place within that state, and the y-axis represents the total number of
legislative responses to policing within that same state since May 25th, 2020. The relationship between both
tweet counts and physical protest counts with legislative responses to policing is modelled as a power regres-
sion function, represented by the red dashed lines in fig. 4.15.

Figure 4.15 shows that increased tweet counts per-capita in one state bear a positive correlation with
legislative responses in the same state, while increased protest activity per-capita does not relate to more
legislative responses. In fact, without consideration of the temporal dimension physical protests bear no
relationship with subsequent state-level legislative change.

Figure 4.15: Power regression models for hashtag activism and number of legislative responses to policing (left), and physical protests
and number of legislative responses to policing (right)

TIME-LAGGED CROSS-CORRELATION ANALYSIS

While state-level aggregated tweet counts and physical protest counts can provide some insight into the over-
all effects of hashtag activism and physical protest on legislative responses, they may also provide misleading
information as they are time independent. As we have seen in 4.1, hashtag activism and physical protest pro-
cesses are highly time-dependent, and thus deeper insight into their relationship with legislative responses
may be generated by considering this dimension for analysis. As described in chapter 3, point data describ-
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ing instances of hashtag activism and physical protests, and counts of legislative responses to policing were
aggregated in time and space, so that the temporal relationship between (a) hashtag activism and legisla-
tive responses and (b) physical protest and legislative responses could be studied at different spatial scales.
fig. 4.16 illustrates the temporal patterns of each of legislative responses to policing (top), hashtag activism
(middle), and physical protest activity (bottom), at the national level, and reveals that legislative responses
are also time dependent. Indeed, fig. 4.16 indicates that the highest counts of legislative responses to policing
took place many months after peaks of hashtag activism and physical protest activity.

Figure 4.16: Temporal patterns of legislative responses to policing (top), hashtag activism (middle) and physical protest (bottom) at the
national level

Similar to the analysis presented in 4.1, the temporal relationship between both of hashtag activism (x1)
and physical protest (x2) and legislative responses to policing (y), is studied through TLCC analysis, where
the Pearson correlation p value between x1 and y and x2 and y is computed repeatedly such that lags of x1
and x2 that yield the highest correlations yt are identified. fig. 4.18 illustrates the results of performing TLCC
on national level data using a maximum time lag of n = 400. The top subplot shows that the optimal Pearson
correlation p value between hashtag activism and legislative responses is obtained when hashtag activism
(i.e. daily number of tweets posted) leads legislative responses by 263 days. The bottom subplot shows that
the optimal Pearson correlation p value between physical protests and legislative responses is obtained when
physical protests lead legislative responses by 264 days.

This temporal relationship between both hashtag activism and physical protest and legislative responses
to policing is further investigated by performing Lagged Regressions on national level data. Similar to the
analysis presented in 4.1, we use Lagged Regressions to study the directionality between each of x1t and x2t ,
and yt , and identify lags of x1 and x2 that may be the best predictors of yt . As such, a power regression model
is fitted n∗2 times using the yt data (daily counts of legislative responses) and the x1t+−n (daily tweet counts)
and x2t+−n (daily physical protest counts) data, where |n| is the maximum number of time lags. Tables 4.1
and 8.1 illustrate the results of performing Lagged Regressions on national level data using a maximum time
lag of n = 400. For the power regression between tweet counts and counts of legislative responses to policing
the optimal time lag is 235 days, while for the power regression between physical protest counts and counts
of legislative responses to policing the optimal time lag is 236 days.
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Figure 4.17: Time Lagged Cross Correlation results for hashtag activism and legislative responses (top) and physical protests and legisla-
tive responses (bottom) at n = 400 time lags.

lag (days) Parson r R2

236 0.494 0.244
237 0.469 0.220
230 0.447 0.200
229 0.441 0.195
238 0.440 0.194
235 0.432 0.186
228 0.425 0.181
244 0.425 0.181
224 0.420 0.177
239 0.418 0.175

Table 4.1: Top 10 optimal time lags of the tweet count vari-
able for power regressions between tweet counts and counts
of legislative responses to policing, and associated Pearson
correlations p and R2 values.

lag (days) Parson r R2

235 0.500 0.250
220 0.478 0.228
234 0.471 0.221
221 0.458 0.210
236 0.454 0.206
262 0.449 0.201
228 0.447 0.200
263 0.447 0.200
227 0.444 0.197
242 0.436 0.190

Table 4.2: Top 10 optimal time lags of the physical protest
count variable for power regressions between physical
protest counts and counts of legislative responses to policing,
and associated Pearson correlations p and R2 values.

In other words, at the national scale and during the case study of #JusticeForGeorgeFloyd, the best predic-
tor of the number of legislative responses at time t (in days) is the number of social movement related tweets
posted at time t −236 (in days) or the number of social movement related physical protests that took place
at time t −235 (in days). This relationship is further illustrated in fig. 4.18, where the outputs of both power
regression models (x1t−235 and yt (left), x2t−236 and yt (right)) can be compared. In each subplot each dot is
a day, the x-axis represents the daily number of tweets at time t −235 (left) and the daily number of physical
protests at time t −236 (right), and the y-axis represents the daily number of legislative responses to policing
at time t .
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Figure 4.18: Power regression functions for tweet count and number of legislative responses (left) and physical protest count and number
of legislative responses (right) at optimal time lags of 235 days and 236 days respectively.

With state-level data, the Time Lagged Cross Correlation (TLCC) between both hashtag activism and leg-
islative responses and physical protest and legislative responses is computed for each of the U.S.’ 50 states.
Results from this analysis can be viewed in detail in fig. 8.4 and fig. 8.5 of the appendix. On average across
states, the optimal Pearson correlation p value is obtained when tweets lead by 179 days. In other words,
there is an average time lag of 179 days between the time in which hashtag activism peaks and the time in
which the majority of legislative responses occur. The average time lag between the time in which physi-
cal protests peak and the time in which the majority of legislative responses occur is also 179 days. Figure
4.19 illustrates the optimal time lags for modelling the relationship between state-level hashtag activism and
legislative responses (top) and the relationship between state-level physical protest and legislative responses
(bottom). From fig. 4.19, it can be observed that, while a majority there is considerable variance in time lags
across states. In other words, some states experienced the majority of their legislative responses very close
in time to when they experienced the highest peaks in hashtag activism and physical protest, while others
experienced the majority of their legislative responses very far in time to when they experienced the highest
peaks in hashtag activism and physical protest.

Figure 4.19: Optimal time lags between legislative responses to policing and tweet counts (top) and protest counts (bottom), by state.
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T HE digitization of our world in the past two decades has drastically changed the functioning of our soci-
eties. Perhaps most drastic is how digital technologies have transformed the way in which we communi-

cate with others and participate in public discourse. In this context, social media has (a) transferred public
discourse online and (b) made it possible to connect with people well beyond our "traditional" or physical
social circles. One of the biggest impacts of this phenomenon is the use of social media by marginalized or
underrepresented social groups as a tool to voice their opinions, world-views, and experiences in a world
where white, patriarchal, and hetero-normative ideals are the status-quo (Ortiz et al., 2019; Nemer, 2016; J. J.
George and Leidner, 2018; Devito et al., 2019; Trevisan, 2019; Johnson and Callahan, 2013). Through this
process, the evolution and strengthening of collective identities has become amplified and the ability to en-
gage in hashtag activism, organize politically, and take collective action has become easier (Ray et al., 2017;
Lăzăroiu et al., 2018; Gerbaudo and Treré, 2015). As a result, social media has been at the heart of impor-
tant social movements, such as the Arab Spring, #MeToo, and more recently #JusticeForGeorgeFloyd, critical
for the progress of our societies towards more just, accountable, and inclusive standards (Khondker, 2011;
Manikonda et al., 2018).

But what are the true political impacts of location-based hashtag activism during and after these social
movements, and can they be measured?

This question is precisely what this research set out to investigate, as an effort to narrow the gap between
our theoretical and qualitative understanding of the political consequences of hashtag activism, and the em-
pirical evidence that supports this understanding. More specifically, the objectives of this research were to
leverage contemporary data-sources and state of the art quantitative methods to explore and quantify the
impacts of hashtag activism on the processes of physical protest and legislative action. Through a combina-
tion of time-series analysis, regression analysis, geo-spatial analysis, and machine learning for the analysis of
data-sets originating from social media, non-profit organizations, and government, the temporal, dynamic,
and spatial dimensions of hashtag activism, physical protest, and legislative action were unraveled, using the
2020 #JusticeForGeorgeFloyd social movement as a case study.

This fifth chapter discusses the main results presented in chapter 4 and the possible implications of this
research within the realms of academia, policy, and activism. The chapter first discusses each result in (a)
the scientific context by outlining if and how it constitutes a contribution to the broader research landscape;
(b) the socio-political context by outlining its societal meaning and possible implications for policy making.
Second, it discusses the scientific limitations of the research and describes areas of future research to address
these limitations.

5.1. DISCUSSION OF KEY RESULTS

5.1.1. LOCATION-BASED HASHTAG ACTIVISM AND PHYSICAL PROTEST ACTIVITY
Physical protest, "the public use of protest by groups or organizations that seek to influence a political de-
cision or process, which they perceive as having negative consequences for themselves, another group or
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society as a whole" (Rucht, 2007), is the most tangible form of political mobilization in modern societies.
As such, in the twentieth century physical protest evolved from its previously illegitimate connotation of
"irrational outburst of the dangerous classes" to a legitimate and effective political strategy to influence po-
litical action at various levels of government (Rucht, 2007). In the twenty-first century, digital technologies
have enabled protesters to also engage in protest through the internet space and, mostly social media, and
thus hashtag activism was born. As a result, contemporary social movements are characterized by sustained
episodes of both physical and digital protest, but the interplay between these two forms of protest is largely
undetermined. Thus, in order to quantify the political impacts of location-based hashtag activism during
social movements this research set out to investigate a first relevant question:

What is the relationship between location-based hashtag activism and physical protest activity?

Through implementation of the proposed experimental design introduced in section ?? of chapter 3, this
research resulted in several key findings that provide useful insights into this question. First, in the case of
#JusticeForGeorgeFloyd, it was found that at the national scale, hashtag activism bears a very strong positive
temporal relationship with physical protest activity. Through the statistical modelling of this relationship, it is
possible to accurately predict the intensity of national level protest activity on a given day based on the inten-
sity of national level hashtag activism the day before. This observation is in accordance with the qualitative
evidence generated by Tufekci and C. Wilson (2012) on the role of social media in increasing the likelihood of
participation in physical protest during the Tahrir Square protests, and more importantly with the empirical
evidence generated by Brantly (2019) and Bastos et al. (2015) on the potential existence of a one day time-lag
between hashtag activism and physical protest activity.

Second, it was found that this temporal relationship between hashtag activism and protest activity exists
at the state level as well. By modelling this relationship at the state level, through the use of traditional regres-
sion models and the use of more complex deep learning frameworks, it is possible to predict the intensity of
state level protest activity on a given day based on the intensity of state level hashtag activism the day before.
In general, it was found that the accuracy of such predictions increases exponentially with population density.
This could be explained by the fact that population dense states may have a larger number of urban centers,
where social (media) networks may be more connected and thus where people are more aware of both local
and national news. At the same time, urban centers may make it easier for people to gather in public spaces
to engage in protest. The leader-follower relationship between hashtag activism and physical protest activity
was further supported by the results of Granger causality analysis, where it was found at both the national and
state level that hashtag activism Granger causes physical protest activity in the majority of cases. As a result,
this research proposes that hashtag activism may act as a causal factor for physical protest activity, and not
the other way around, where this causal relationship is also strongly related to physical space. This would
be in accordance with other research within the broader topic of hashtag activism and social movements
which has revealed unidirectional relationships between hashtag activism and other characteristics of social
movements (e.g. the framing of political narratives; the polarization of social groups) (Jackson et al., 2020;
Kent, 2013; Carney, 2016; M. Li et al., 2021; Xiong et al., 2019). In this context, a causal spatial relationship
between hashtag activism and physical protest would imply that today social media is not only a vital tool for
activist groups to mobilize people physically, but also to mobilize people physically in targeted geographical
locations.

Third, it was found that the spatio-temporal relationship between hashtag activism and protest activity
continues to hold at the county level. At such small scale, the accuracy of predictions remained generally
high, but considerably more variance was observed and thus, a wider error margin is noted. As discussed in
section 4.1 of chapter 4, this is explained by the fact that in some "outlier" counties the temporal relationship
between hashtag activism and physical protest is characterized by a disproportionate amount of physical
protest compared to the intensity of hashtag activism, while in other counties this relationship is character-
ized by a disproportionate amount of hashtag activism compared to the intensity of physical protests. In
order to make sense of this tendency this research proposed the Mobilization Synergy Index, which makes
it possible to statistically quantify this trade-off, and to visualize its spatial distribution in an intuitive way.
Indeed, both policy makers and activists could gain valuable insight from this index. On the one hand, local
policy makers could utilize it to understand how their communities mobilize in times of crisis, and become
responsive to local demands accordingly. For example, if a specific county is categorized by the index as a
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county where the relationship between hashtag activism and physical protest is strong, local policy makers
could avoid potential public disruption by fulfilling community needs rapidly once local levels of hashtag ac-
tivism peak. In contrast, if a specific county is categorized by the index as a county where people use hashtag
activism disproportionally, this could be a sign for local policy makers to pay closer attention to social media
platforms for understanding community needs. On the other hand, activists could utilize the index to plan
their mobilization efforts more efficiently and effectively. For example, by identifying counties in which peo-
ple engage in hashtag activism intensely but do not mobilize physically, local activist groups could modify
their strategies for physical mobilization so that more people show up at protests. In contrast, in counties
where people engage in physical protest intensely but not in hashtag activism, local activist groups may in-
crease their use of offline mobilization strategies to maximize protest turnout.

5.1.2. LOCATION-BASED HASHTAG ACTIVISM AND LEGISLATIVE ACTION

Legislative action, the development, reform, or creation of legal structures, is the most tangible form of po-
litical action in democratic countries. For this reason, a majority of social movements have as a primary
objective to influence political processes through triggering concrete action at the legislative level (Amenta
et al., 2010). While there exists limited evidence of instances in which legislative action has occured during or
after social movements (Amenta et al., 2010; Enos et al., 2019; Weldon et al., 2011; Lipsky, 1968), the relation-
ship between legislative action and political protest, especially hashtag activism, has largely been unexplored
through a quantitative lens. For this reason, this research set out to investigate a second relevant question:

What is the relationship between location-based hashtag activism and legislative action?

Through the implementation of the proposed experimental design introduced in chapter 3, several key
findings were obtained that provide useful insight into this question. First, data on instances of hashtag ac-
tivism aggregated by state and across the full time-frame of the #JusticeForGeorgeFloyd social movement
revealed that states in which people engage more in hashtag activism on average also experienced more leg-
islative responses related to policing in total. Unexpectedly, the opposite relationship was observed with re-
gards to the relationship between average physical protest activity and the number of subsequent legislative
responses to policing. One interpretation for these opposite findings could be that, during the #JusticeForGe-
orgeFloyd social movement, hashtag activism in a specific state was more effective at influencing legislative
action in that same state than physical protest. In this case, state representatives would appear to be more
sensitive to their voters’ concerns when they are expressed through social media. An argument that could
support this theory is that digital protests involve more people than physical protests (e.g. one tweet can be
retweeted millions of times) and, as a result, policymakers may feel more pressure to act in response to them.
What is more, social media platforms like Twitter make it easier for activists to publicly target and pressure
specific politicians through "cancel culture" (D. Clark, 2020). As a result, political issues can quickly turn
into personal issues. However, results above-discussed on the spatio-temporal relationship between hash-
tag activism and physical protest suggest that this interpretation is likely not accurate. Indeed, since state
level physical protest activity and hashtag activism are strongly correlated in time, state level results aggre-
gated across the full time-frame of the #JusticeForGeorgeFloyd social movement likely reflect the presence
of outliers in the data (i.e. days with unusually high levels of physical protest or hashtag activism) that when
aggregated may have skewed some data-points towards high or low extremes.

In this context, results from temporally disaggregated national level and state level data confirm this hy-
pothesis. At both spatial scales it was found that the number of legislative responses on a given day bears a
very similar positive relationship with both hashtag activism activity and physical protest activity taken at a
specific time lag prior to the day in which the legislative responses occurred. At the national level, the num-
ber of legislative responses at time t (in days) can be predicted from the number of social movement related
tweets posted at time t−236 (in days) or the number of social movement related physical protests that took
place at time t−235 (in days). The accuracy of these predictions, however, was associated with considerable
variance. Thus, while hashtag activism activity and physical protest activity can inform a general idea of fu-
ture legislative developments, they may not be used to predict specific counts of legislative responses in the
future. This research argues, however, that such an objective is not relevant in the context of measuring the
political impacts of hashtag activism, and that the insights generated from this analysis may prove very useful
for activists. As such, the simple observation of a positive relationship between the two of hashtag activism
and physical protest activity and legislative action represents important positive feedback for the efforts of
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activists during #JusticeForGeorgeFloyd. What’s more, these findings imply that hashtag activism and physi-
cal protest are both effective strategies for influencing legislative action, and that the more intensely they are
used, the more likely it is that activist demands will be reflected into law and policy.

Finally, at the state level it was found that while both hashtag activism and physical protest activity result
in future legislative responses, this temporal relationship is highly variable by state. As observed in fig. 4.19
of chapter 4, some states experienced the majority of their legislative responses very close in time to when
they experienced their highest peaks of hashtag activism and physical protest activity, while others experi-
enced the majority of their legislative responses very far in time to when they experienced their highest peaks
of hashtag activism and physical protest activity. This tendency does not necessarily suggest that state-level
representatives were more responsive in some states and less responsive in other states, as a state may expe-
rience faster legislative responses but less legislative responses in total. Nonetheless, this tendency indicates
that more complex, state-specific activism strategies may have taken place during the #JusticeForGeorge-
Floyd movement which could have influenced the speed at which each state responded politically to the
social movement. However, exploring these issues was outside the scope of this study and is left for future
research.

5.2. RESEARCH IMPACT

This research represents the first national-level quantitative study aimed at measuring the temporal relation-
ships between hashtag activism, physical protest activity, and legislative action, at various spatial resolutions.
It adds several potential scientific contributions to the field of social movements research and, more broadly,
the computational social sciences.

1. The research offers a computational framework that leverages open source social media data and phys-
ical protest data which are available for most countries in the world, thus allowing its approach and
results of this study to be scaled up to other social movements in other parts of the world.

2. The research contributes additional empirical evidence that hashtag activism is strongly related to
physical protest activity through time, and that a unidirectional relationship between hashtag activism
and physical protest may exist. This evidence is grounded in robust statistical analysis and the use of
an expansive and timely geo-located data-set.

3. The research demonstrates that hashtag activism and physical protest activity are not only related
through time, but also across the spatial dimension. As such, it contributes novel empirical evidence
that the temporal relationship between hashtag activism and physical protest activity exists at different
spatial resolutions, including the state and county levels.

4. The research provides evidence that deep learning frameworks can be used effectively for the predic-
tion of physical protest activity during social movements based on the raw count of relevant social
media posts. Through this research a deep learning model, namely a Long Short Term Memory (LSTM)
neural network combined with a traditional Vector Autoregression (VAR) model, was trained and vali-
dated for the prediction of physical protest activity for a chosen case-study. For obvious ethical impli-
cations, however, this model will not be shared publicly.

5. The research offers the Mobilization Synergy Index, a novel statistical index that sheds new insight into
the spatial distribution of the temporal relationship between hashtag activism and physical protest.
Such an index makes use of simple statistical concepts to explain why some geographical areas exhibit
a weaker temporal relationship between hashtag activism and physical protest activity. The index may
serve as a tool for local policy makers and activists to understand how their communities mobilize in
times of crisis, and thus improve the effectiveness of local political and activism strategies.

6. The research demonstrates that hashtag activism may have real political consequences that go beyond
political mobilization for physical protest. As such, it offers novel empirical evidence that the intensity
of hashtag activism today can provide insight into the significance of future political action in terms of
new legislative responses. Additionally, the research provides statistical evidence that this trend may
also be related over space, where state level hashtag activism informs state level legislative responses.

5.2.1. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

Due to the scope of this research, this study comes with a number of limitations that may inform future
scientific efforts:
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1. External validity: due to the analysis of a single case study, the results of this research could only be
valid for the specific case of #JusticeForGeorgeFloyd and may not be observed for other social move-
ments in other parts of the world. Future research may address this limitation by implementing the
proposed experimental framework to the case of other relevant social movements in other geographi-
cal areas.

2. Spatial resolution: While this research makes use of a large data-set with considerable geographical
coverage, the spatial resolution of this data is still limited. For this reason, the analysis could not be
implemented for sub-county level patterns in hashtag activism and physical protest activity (e.g. the
neighborhood or precinct level). This limitation is difficult to address, as the availability of sub-city
level geo-located social media data is scarce due to a number of ethical considerations (e.g. privacy).
Nonetheless, future research could address this limitation by using sources of social media data that
come with improved spatial resolution.

3. Restrictive Legislative data: Due to the lack of a concerted effort to collect local level (i.e. county-
level or city-level) legislative responses to policing, this research could only analyze state-level data
relating to legislative action. Future research leveraging on local-level data on legislative responses
could greatly improve this limitation and provide more accurate insights into the impact of hashtag
activism on legislative responses. With such analysis, a similar index to the Mobilization Synergy Index
proposed in this research could be developed.
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CONCLUSION

T HROUGH this research, the political impacts of location-based hashtag activism during social movements
were analyzed with the help of two main guiding questions. Let us revisit each one of them, and describe

how this research has answered them. Finally, let us discuss some important ethical implications associated
with the results of this research.

6.1. RESEARCH QUESTIONS
1. What is the relationship between location-based hashtag activism and physical protest activity?

The relationship between location-based hashtag activism and physical protest activity can be de-
scribed as a spatio-temporal, positive power-law correlation, and potentially as a unidirectional re-
lationship, where the highest spikes in hashtag activism would occur one day before the highest spikes
in physical protest activity. In other words, when people with similar values, experiences, world-views,
and interests, come together as a collective voice on social media, it is likely that they will also come
together physically the next day to express their collective voice in public spaces. As we have seen with
county-level results, however, there exist geographical areas in which this relationship does not hold,
and where one of hashtag activism or physical protest activity is disproportionally intense over time.

2. What is the relationship between location-based hashtag activism and legislative action?

The relationship between location-based hashtag activism and legislative action can also be described
as a spatio-temporal, positive power-law correlation, and potentially as a unidirectional relationship,
where hashtag activism may influence future legislative action. The temporal nature of this relation-
ship, however, varies greatly by geographical area. The reasons for these differences are outside the
scope of this study but could be explored in future research.

6.2. ETHICAL CONSIDERATIONS
Personal data, code, models, and advanced computation are exciting things for us scientists. In so little time,
their increased accessibility has empowered us to study the world in revolutionary ways. In particular, these
tools have created a bridge across seemingly distant scientific fields, such as computer science and sociol-
ogy, and have allowed us to deepen our understanding of complex human behaviours and social structures.
Through this research, the analysis and modelling of geo-located social media data has taught us that the way
in which we use social media in times of crisis is a strong indicator of where, when, and with what intensity
we choose to take the streets and protest against injustice.

While this is a fascinating research outcome it may also raise some ethical concerns because we live in a
world where powerful institutions such as law enforcement agencies often harness their power and knowl-
edge of social mechanisms to oppress the most vulnerable and disenfranchised groups. In the United States,

49



6

50 6. CONCLUSION

research has demonstrated that police use of force is among the leading causes of death for Black and Brown
men, and that racially-rooted police violence is on the rise. Similar bias in police practices has been observed
in many other countries around the world. Additionally, as paradoxical as it sounds, state-sanctioned vi-
olence of this kind is widespread during physical protests, where the very people that demand justice and
accountability for people like George Floyd are oppressed further. In this light, 2020 and 2021 were no ex-
ceptions, as it was documented during the #JusticeForGeorgeFloyd social movement in the United States,
the case study of this research, and as it is being documented during the #ColombiaResiste social movement
which is happening as this paragraph is being written.

From this point of view, the social impact of this research may not be as exciting as its scientific impact.
While its findings might empower activist groups with tools to better allocate their resources and commu-
nicate with local communities more efficiently, they could also be diverted to other less desirable uses. For
instance, the models and insights of this research could equip law enforcement agencies with tools to re-
spond to physical protests more rapidly and to use more oppressive tactics against protesters. As scientists, it
is our responsibility to conduct and communicate novel scientific research, but we have little scope to ensure
that such research is used solely for the betterment of society. Such a task is the role of policy makers and (to
a lesser extent) private companies, who do have regulatory and veto power at their disposal.

Fortunately, there are effective ways in which policy makers and social media companies could prevent
unethical applications of this research. With regards to law and policy making, regulatory policies can be
put in place for law enforcement agencies to respect the personal privacy of individuals. For example, such
policies could limit the use of location data from social media by law enforcement agencies for the purpose
of tracking demonstrations and ongoing physical protests. With regards to social media companies such as
Twitter, usage policies can be put in place to limit access of specific data attributes to law enforcement agen-
cies. For example, just like Twitter has recently increased access to its data for academic purposes, it may
limit access to its data for law enforcement purposes (i.e. by not providing location information to law en-
forcement developers). By creating boundaries to access, the use of data for social good can be ensured and
activist groups can safeguard their opportunity to lawfully voice their concerns for more progressive policies
through physical protest.

#JusticeForGeorgeFloyd
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EXAMPLE TWEET OBJECT

Figure 8.1: Example of data structure for one tweet object, as provided by the Twitter API
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ROLLING WINDOW CORRELATION AT THE U.S. STATE LEVEL

state twt_pvalue protst_pvalue twt_statistic protst_statistic tweet_normresult protest_normresult corr_p_valu parson_r r2
AK 2.175×10−14 1.221×10−28 62.918 128.546 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.748×10−12 0.627 0.393
AL 3.463×10−27 1.789×10−41 121.855 187.649 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.278×10−28 0.726 0.528
AR 4.303×10−28 7.729×10−37 126.026 166.301 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.619×10−18 0.643 0.413
AZ 8.982×10−24 7.747×10−32 106.134 143.271 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.284×10−28 0.743 0.552
CA 1.648×10−32 2.011×10−32 146.367 145.968 reject NH: tweet data not gaussian reject NH: protest data not gaussian 4.343×10−70 0.923 0.853
CO 1.049×10−21 8.085×10−25 96.613 110.949 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.216×10−28 0.768 0.589
CT 4.955×10−31 1.692×10−46 139.560 210.786 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.784×10−28 0.726 0.527
DC 7.965×10−36 2.640×10−32 161.636 145.424 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.805×10−6 0.391 0.153
DE 1.333×10−23 3.236×10−23 105.344 103.570 reject NH: tweet data not gaussian reject NH: protest data not gaussian 0.000 0.329 0.108
FL 1.339×10−31 9.501×10−28 142.176 124.442 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.324×10−40 0.811 0.657
GA 8.047×10−26 1.525×10−34 115.564 155.732 reject NH: tweet data not gaussian reject NH: protest data not gaussian 4.341×10−46 0.839 0.705
HI 1.402×10−23 7.280×10−39 105.243 175.631 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.475×10−26 0.744 0.554
IA 9.836×10−25 3.298×10−36 110.557 163.399 reject NH: tweet data not gaussian reject NH: protest data not gaussian 6.524×10−50 0.868 0.754
ID 5.406×10−35 1.960×10−55 157.806 251.939 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.635×10−8 0.447 0.200
IL 1.671×10−28 1.669×10−32 127.918 146.341 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.410×10−38 0.805 0.648
IN 1.068×10−26 1.712×10−32 119.603 146.291 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.485×10−41 0.824 0.679
KS 4.254×10−30 3.869×10−39 135.260 176.896 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.605×10−19 0.663 0.439
KY 6.943×10−27 6.775×10−30 120.464 134.329 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.756×10−27 0.715 0.511
LA 9.173×10−31 1.484×10−28 138.328 128.155 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.620×10−28 0.725 0.525
MA 2.991×10−33 1.298×10−32 149.779 146.844 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.551×10−33 0.764 0.583
MD 1.583×10−26 1.097×10−38 118.815 174.810 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.346×10−24 0.692 0.479
ME 2.047×10−29 8.550×10−40 132.117 179.915 reject NH: tweet data not gaussian reject NH: protest data not gaussian 9.207×10−24 0.709 0.503
MI 1.892×10−33 2.880×10−35 150.695 159.065 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.258×10−44 0.834 0.695
MN 7.860×10−33 1.527×10−35 147.847 160.334 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.881×10−39 0.823 0.678
MO 8.334×10−29 2.526×10−26 129.309 117.881 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.367×10−34 0.777 0.604
MS 1.935×10−25 5.902×10−38 113.810 171.446 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.259×10−25 0.711 0.505
MT 3.272×10−22 4.048×10−26 98.943 116.938 reject NH: tweet data not gaussian reject NH: protest data not gaussian 3.773×10−18 0.629 0.396
NC 2.505×10−26 7.105×10−32 117.898 143.444 reject NH: tweet data not gaussian reject NH: protest data not gaussian 9.411×10−43 0.836 0.699
ND 5.278×10−26 1.437×10−7 116.408 31.511 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.904×10−8 0.480 0.230
NE 6.901×10−21 4.506×10−26 92.845 116.723 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.352×10−19 0.763 0.583
NH 8.647×10−12 6.520×10−22 50.948 97.564 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.279×10−13 0.689 0.475
NJ 4.310×10−28 8.867×10−36 126.023 161.422 reject NH: tweet data not gaussian reject NH: protest data not gaussian 8.679×10−29 0.757 0.573
NM 7.303×10−21 8.418×10−21 92.732 92.448 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.573×10−24 0.742 0.551
NV 1.043×10−22 3.464×10−37 101.229 167.906 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.177×10−9 0.505 0.255
NY 1.239×10−28 2.011×10−29 128.516 132.152 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.657×10−51 0.869 0.755
OH 7.792×10−29 1.031×10−39 129.444 179.541 reject NH: tweet data not gaussian reject NH: protest data not gaussian 5.538×10−37 0.795 0.632
OK 3.723×10−25 8.620×10−42 112.500 189.109 reject NH: tweet data not gaussian reject NH: protest data not gaussian 4.196×10−11 0.524 0.275
OR 2.838×10−25 3.653×10−28 113.043 126.354 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.326×10−39 0.807 0.651
PA 5.372×10−29 6.829×10−34 130.188 152.733 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.515×10−37 0.797 0.635
RI 5.670×10−24 2.664×10−20 107.054 90.144 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.775×10−13 0.598 0.358
SC 1.822×10−34 1.099×10−30 155.376 137.966 reject NH: tweet data not gaussian reject NH: protest data not gaussian 2.321×10−39 0.811 0.658
SD 3.430×10−28 4.382×10−37 126.480 167.436 reject NH: tweet data not gaussian reject NH: protest data not gaussian 3.048×10−20 0.715 0.512
TN 2.230×10−26 2.066×10−28 118.130 127.493 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.055×10−42 0.832 0.691
TX 4.755×10−34 1.322×10−34 153.457 156.018 reject NH: tweet data not gaussian reject NH: protest data not gaussian 3.736×10−44 0.828 0.686
USA 3.252×10−30 9.731×10−32 135.797 142.815 reject NH: tweet data not gaussian reject NH: protest data not gaussian 8.723×10−60 0.894 0.799
UT 2.754×10−29 2.537×10−29 131.524 131.688 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.152×10−23 0.715 0.511
VA 3.881×10−26 1.605×10−29 117.022 132.604 reject NH: tweet data not gaussian reject NH: protest data not gaussian 9.503×10−49 0.858 0.736
VT 4.018×10−19 8.432×10−25 84.717 110.865 reject NH: tweet data not gaussian reject NH: protest data not gaussian 1.122×10−13 0.614 0.377
WA 8.205×10−27 7.306×10−35 120.130 157.204 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.642×10−44 0.835 0.697
WI 1.102×10−22 1.105×10−40 101.120 184.008 reject NH: tweet data not gaussian reject NH: protest data not gaussian 7.982×10−30 0.731 0.534
WV 2.790×10−28 5.838×10−48 126.893 217.519 reject NH: tweet data not gaussian reject NH: protest data not gaussian 3.088×10−32 0.784 0.615
WY 2.014×10−11 1.214×10−28 49.256 128.557 reject NH: tweet data not gaussian reject NH: protest data not gaussian 9.384×10−12 0.575 0.331

Table 8.1: State-level normality tests and rolling window correlation for tweet count and protest count
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Figure 8.2: Seven day rolling window correlation for each of the U.S.’s 50 states using the #JusticeForGeorgeFloyd as a case study.
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TIME-LAGGED CROSS-CORRELATION ANALYSIS AT THE U.S. STATE LEVEL

Figure 8.3: Time-lagged cross-correlation analysis for each of the U.S.’s 50 states using the #JusticeForGeorgeFloyd as a case study.
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Figure 8.4: Time-lagged cross-correlation analysis (tweets and legislation) for each of the U.S.’s 50 states using the #JusticeForGeorge-
Floyd as a case study.
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Figure 8.5: Time-lagged cross-correlation analysis (physical protests and legislation) for each of the U.S.’s 50 states using the #JusticeFor-
GeorgeFloyd as a case study.
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GRANGER CAUSALITY ANALYSIS AT THE U.S. STATE LEVEL

granger_relationship p_value state

tweet_count ->protest_count 0.0 AK
tweet_count ->protest_count 0.0 AL
tweet_count ->protest_count 0.0 AR
tweet_count ->protest_count 0.0 AZ
tweet_count ->protest_count 0.0 CA
tweet_count ->protest_count 0.0 CO
tweet_count ->protest_count 0.0 CT
tweet_count ->protest_count 0.0 DC
tweet_count ->protest_count 0.4189 DE
tweet_count ->protest_count 0.0 FL
tweet_count ->protest_count 0.0 GA
tweet_count ->protest_count 0.0 HI
tweet_count ->protest_count 0.0 IA
tweet_count ->protest_count 0.0247 ID
tweet_count ->protest_count 0.0 IL
tweet_count ->protest_count 0.0 IN
tweet_count ->protest_count 0.0 KS
tweet_count ->protest_count 0.0 KY
tweet_count ->protest_count 0.0 LA
tweet_count ->protest_count 0.0 MA
tweet_count ->protest_count 0.0 MD
tweet_count ->protest_count 0.0 ME
tweet_count ->protest_count 0.0 MI
tweet_count ->protest_count 0.0 MN
tweet_count ->protest_count 0.0 MO
tweet_count ->protest_count 0.0 MS
tweet_count ->protest_count 0.0071 MT
tweet_count ->protest_count 0.0 NC
tweet_count ->protest_count 0.2303 ND
tweet_count ->protest_count 0.0 NE
tweet_count ->protest_count 0.0061 NH
tweet_count ->protest_count 0.0 NJ
tweet_count ->protest_count 0.0 NM
tweet_count ->protest_count 0.0 NV
tweet_count ->protest_count 0.0 NY
tweet_count ->protest_count 0.0 OH
tweet_count ->protest_count 0.0 OK
tweet_count ->protest_count 0.0 OR
tweet_count ->protest_count 0.0 PA
tweet_count ->protest_count 0.0062 RI
tweet_count ->protest_count 0.0 SC
tweet_count ->protest_count 0.0 SD
tweet_count ->protest_count 0.0 TN
tweet_count ->protest_count 0.0 TX
tweet_count ->protest_count 0.0 USA
tweet_count ->protest_count 0.0 UT
tweet_count ->protest_count 0.0 VA
tweet_count ->protest_count 0.0 VT
tweet_count ->protest_count 0.0 WA
tweet_count ->protest_count 0.0 WI
tweet_count ->protest_count 0.0 WV
tweet_count ->protest_count 0.1253 WY

Table 8.2: National and State-level results of Granger causality analysis for the hypothesis that tweet count Granger causes protest count.
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granger_relationship p_value state

protest_count ->tweet_count 0.0167 AK
protest_count ->tweet_count 0.1941 AL
protest_count ->tweet_count 0.138 AR
protest_count ->tweet_count 0.0008 AZ
protest_count ->tweet_count 0.1678 CA
protest_count ->tweet_count 0.1262 CO
protest_count ->tweet_count 0.2926 CT
protest_count ->tweet_count 0.9055 DC
protest_count ->tweet_count 0.0673 DE
protest_count ->tweet_count 0.5815 FL
protest_count ->tweet_count 0.0328 GA
protest_count ->tweet_count 0.0027 HI
protest_count ->tweet_count 0.0002 IA
protest_count ->tweet_count 0.0 ID
protest_count ->tweet_count 0.1795 IL
protest_count ->tweet_count 0.0213 IN
protest_count ->tweet_count 0.0001 KS
protest_count ->tweet_count 0.1958 KY
protest_count ->tweet_count 0.08 LA
protest_count ->tweet_count 0.0002 MA
protest_count ->tweet_count 0.0841 MD
protest_count ->tweet_count 0.0 ME
protest_count ->tweet_count 0.4056 MI
protest_count ->tweet_count 0.0 MN
protest_count ->tweet_count 0.0041 MO
protest_count ->tweet_count 0.0146 MS
protest_count ->tweet_count 0.0 MT
protest_count ->tweet_count 0.0531 NC
protest_count ->tweet_count 0.0001 ND
protest_count ->tweet_count 0.0116 NE
protest_count ->tweet_count 0.0 NH
protest_count ->tweet_count 0.8118 NJ
protest_count ->tweet_count 0.0 NM
protest_count ->tweet_count 0.6764 NV
protest_count ->tweet_count 0.3411 NY
protest_count ->tweet_count 0.6884 OH
protest_count ->tweet_count 0.0259 OK
protest_count ->tweet_count 0.7193 OR
protest_count ->tweet_count 0.2883 PA
protest_count ->tweet_count 0.6172 RI
protest_count ->tweet_count 0.0 SC
protest_count ->tweet_count 0.0 SD
protest_count ->tweet_count 0.3117 TN
protest_count ->tweet_count 0.2259 TX
protest_count ->tweet_count 0.6817 USA
protest_count ->tweet_count 0.0006 UT
protest_count ->tweet_count 0.3075 VA
protest_count ->tweet_count 0.375 VT
protest_count ->tweet_count 0.0 WA
protest_count ->tweet_count 0.1443 WI
protest_count ->tweet_count 0.0108 WV
protest_count ->tweet_count 0.3425 WY

Table 8.3: National and State-level results of Granger causality analysis for the hypothesis that protest count Granger causes tweet count.



8

64 8. APPENDIX

CO-INTEGRATION TESTS AT THE U.S. STATE LEVEL

variable test_statistic C(95%) signif state

tweet_count 24.64 12.3212 True AK
protest_count 6.13 4.1296 True AK
tweet_count 40.58 12.3212 True AL
protest_count 6.68 4.1296 True AL
tweet_count 43.85 12.3212 True AR
protest_count 9.03 4.1296 True AR
tweet_count 34.59 12.3212 True AZ
protest_count 8.23 4.1296 True AZ
tweet_count 55.18 12.3212 True CA
protest_count 11.65 4.1296 True CA
tweet_count 39.47 12.3212 True CO
protest_count 13.79 4.1296 True CO
tweet_count 42.49 12.3212 True CT
protest_count 17.84 4.1296 True CT
tweet_count 3.14 12.3212 False DC
protest_count 0.74 4.1296 False DC
tweet_count 426.93 12.3212 True DE
protest_count 4.2 4.1296 True DE
tweet_count 34.42 12.3212 True FL
protest_count 13.12 4.1296 True FL
tweet_count 31.55 12.3212 True GA
protest_count 3.72 4.1296 False GA
tweet_count 16.71 12.3212 True HI
protest_count 0.54 4.1296 False HI
tweet_count 36.54 12.3212 True IA
protest_count 7.84 4.1296 True IA
tweet_count 33.97 12.3212 True ID
protest_count 4.27 4.1296 True ID
tweet_count 51.4 12.3212 True IL
protest_count 18.44 4.1296 True IL
tweet_count 41.22 12.3212 True IN
protest_count 14.06 4.1296 True IN
tweet_count 32.94 12.3212 True KS
protest_count 13.2 4.1296 True KS
tweet_count 22.12 12.3212 True KY
protest_count 5.61 4.1296 True KY
tweet_count 28.92 12.3212 True LA
protest_count 7.15 4.1296 True LA
tweet_count 75.45 12.3212 True MA
protest_count 28.19 4.1296 True MA
tweet_count 23.49 12.3212 True MD
protest_count 5.98 4.1296 True MD
tweet_count 30.2 12.3212 True ME
protest_count 3.14 4.1296 False ME
tweet_count 43.93 12.3212 True MI
protest_count 13.6 4.1296 True MI
tweet_count 42.9 12.3212 True MN
protest_count 8.98 4.1296 True MN
tweet_count 61.22 12.3212 True MO
protest_count 18.05 4.1296 True MO
tweet_count 26.9 12.3212 True MS
protest_count 9.74 4.1296 True MS
tweet_count 72.16 12.3212 True MT
protest_count 6.34 4.1296 True MT
tweet_count 59.98 12.3212 True NC
protest_count 7.97 4.1296 True NC
tweet_count 1.42 12.3212 False ND
protest_count 0.06 4.1296 False ND
tweet_count 46.16 12.3212 True NE
protest_count 3.31 4.1296 False NE
tweet_count 438.89 12.3212 True NH
protest_count 7.15 4.1296 True NH
tweet_count 29.02 12.3212 True NJ
protest_count 11.81 4.1296 True NJ
tweet_count 26.81 12.3212 True NM
protest_count 4.81 4.1296 True NM
tweet_count 46.75 12.3212 True NV
protest_count 20.7 4.1296 True NV
tweet_count 95.21 12.3212 True NY
protest_count 16.91 4.1296 True NY
tweet_count 68.68 12.3212 True OH
protest_count 14.33 4.1296 True OH
tweet_count 40.75 12.3212 True OK
protest_count 14.24 4.1296 True OK
tweet_count 37.08 12.3212 True OR
protest_count 12.08 4.1296 True OR
tweet_count 84.82 12.3212 True PA
protest_count 22.35 4.1296 True PA
tweet_count 34.0 12.3212 True RI
protest_count 12.48 4.1296 True RI
tweet_count 9.63 12.3212 False SC
protest_count 2.89 4.1296 False SC
tweet_count 1.46 12.3212 False SD
protest_count 0.05 4.1296 False SD
tweet_count 24.4 12.3212 True TN
protest_count 8.88 4.1296 True TN
tweet_count 38.48 12.3212 True TX
protest_count 11.05 4.1296 True TX
tweet_count 22.81 12.3212 True UT
protest_count 8.58 4.1296 True UT
tweet_count 25.04 12.3212 True VA
protest_count 2.44 4.1296 False VA
tweet_count 44.02 12.3212 True VT
protest_count 12.56 4.1296 True VT
tweet_count 49.37 12.3212 True WA
protest_count 11.78 4.1296 True WA
tweet_count 27.77 12.3212 True WI
protest_count 11.8 4.1296 True WI
tweet_count 32.16 12.3212 True WV
protest_count 3.87 4.1296 False WV
tweet_count 32.56 12.3212 True WY
protest_count 2.52 4.1296 False WY
tweet_count 52.21 12.3212 True USA
protest_count 17.19 4.1296 True USA

Table 8.4: State-level co-integration tests
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LSTM PREDICTION ERROR AT THE NATIONAL AND STATE-LEVEL

Figure 8.6: National-level physical protest count predictions with LSTM neural network (red) and combined VAR + LSTM neural network
(blue).
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tweet_count_lstm tweet_count_lstm_var protest_count_lstm protest_count_lstm_var state

1.63174465309194 0.9851871057985988 0.34166806706859554 0.254757023054979 AK
11.786798575957118 9.479509345884614 0.7181662198401891 0.5324006983283389 AL
6.650622331336926 4.590145606948933 0.4403163881744126 0.33943155017375976 AR
28.77921582992491 21.23793296574892 0.4485823686682536 0.30707144941654047 AZ
404.4084227098777 336.7806295058118 6.007457786461597 2.9490765513812516 CA
30.01621425355721 26.59957928280264 0.7993148435610226 0.5649572078856558 CO
15.334285431189157 11.02505529408219 1.896353718992696 1.3939363271591505 CT
23.736083785650997 23.81068069179058 0.11086437356012052 0.07793381179396766 DC
0.7325222082128885 0.7159716193011622 0.3421247586505661 0.2908898635219365 DE
88.12077214157925 69.51680985979907 2.7537371048288377 1.7902235603602197 FL
86.19234353603818 73.44897694097348 1.6713623859351712 0.8724158856359889 GA
11.792400674815646 9.984452420722613 0.40686146920549854 0.24948583249649936 HI
8.744681662462858 7.232269350463589 0.4478089436769372 0.29619341233604535 IA
2.4082968930696698 1.7056638770117498 0.16536612496970338 0.1531584145572045 ID
87.44650952462074 77.17844138526935 2.5512773094083148 1.4318422797671726 IL
29.64258375965722 24.856338336057984 1.0406612790715757 0.6146814918287979 IN
7.596514682829078 4.6646413313963055 0.538870446451288 0.4273335084921411 KS
35.27923582287327 33.346640730585136 0.858949893716185 0.6930373347654135 KY
15.082717459282277 12.49877140264469 0.6605243445159249 0.5197826014082174 LA
44.371240531710946 40.80492706779965 1.9651804282308123 1.2183749864623408 MA
17.220220305719156 12.134207658043596 1.054893421176555 0.6049653200942864 MD
4.712338896284972 4.779128526357501 0.4312755912392352 0.29121200653814017 ME
39.26284626658697 32.649136507918755 2.2736716827165804 1.2908681860732523 MI
37.60891257499972 30.988163629976786 0.5637418400213641 0.4416140288511977 MN
23.584773396686856 19.414096657499528 1.1517504417466091 0.7516604567751498 MO
7.6928909975281705 6.095523738663566 0.3597730114512824 0.2520372894607872 MS
2.461001533697911 1.9912504818000762 0.30638775656288 0.20538945196792338 MT
53.048239071872416 41.72391583153716 1.8599233018289973 1.1259518981366636 NC
1.0845398726706077 0.8065042804164961 0.23576849319214016 0.18078224158984635 ND
4.497626957375036 3.2732644772140986 0.2814055141637685 0.21466245161975894 NE
6.917417567540771 5.957940319807103 0.3279720760202953 0.31228440069476443 NH
22.033960911131445 14.502067721326917 1.29235694449712 0.9038380907979418 NJ
4.887234961705204 3.8938534158028233 0.4993964532394889 0.3597711472784601 NM
31.740694851241958 25.811818953071192 0.22938030479483743 0.20473067668484166 NV
193.32098471055713 155.19002733485738 2.7253931111086476 1.7080818533848026 NY
43.71758675433871 32.76663751839004 2.2714852356348474 1.6789330965437155 OH
11.236223729190684 8.593552591084453 0.8608258513145886 0.7041220905616566 OK
31.46619025087569 25.49808775889185 1.2707095962331014 0.9618626634376153 OR
64.45493012022322 48.564322163796064 2.1110752934090766 1.2551703442554134 PA
3.634083897780312 3.0198348841343443 0.23951033290628052 0.17125112133223994 RI
12.261648992214887 8.650423363451342 0.5935496190537264 0.44972230293626536 SC
1.094090331933008 0.6800541164605686 0.05360725929713853 0.07534496892633583 SD
31.0187440318061 25.165153238529058 0.8179922869302388 0.5046314795751303 TN
318.3269475667483 291.18826928563954 3.0199716619188743 1.696242563175341 TX
6.61191603109787 4.992015052961891 0.21566761713590943 0.1840298138968798 UT
26.172762526691542 19.803941462250105 1.478927738798053 1.0383042192858312 VA
1.8152779739658185 1.306537454018416 0.5080003443358236 0.32388305396713185 VT
55.959254478781034 45.185026789100725 1.6681479250630276 1.1719343201862271 WA
35.375162133862275 30.831447877571232 1.7882649235851182 1.303275537353162 WI
3.284356242592954 2.4738900360095832 0.23132859531003916 0.17959034062514084 WV
1.4774450121743548 1.2560884846069857 0.25293273451736775 0.18375998517876252 WY
900.9194036005148 673.1375783191256 11.79289524971523 12.795728123580574 USA

Table 8.5: National and state-level prediction error with both LSTM and LSTM + VAR models
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Figure 8.7: State-level physical protest count prediction error with LSTM neural network (red) and combined VAR + LSTM neural network
(blue).
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