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Diffusion of renewable technologies have been on makers’ minds since the 1970s, because of 

varying reasons. Expensive energy, depletion of resources and the environmental concerns 

lead societies to look for alternative energy generation methods. Wind turbines provide a 

promising alternative for energy generation. It is environmentally friendly, sustainable, and 

humankind has a long history with wind energy, which makes it familiar. Also, researchers 

claim that among all renewable technologies, wind energy is the most promising one in terms 

of cost competitiveness (Menz & Vachon, 2006). 

There were two early significant attempts for using wind energy as a source in electricity 

generation. After the oil crisis, both the United States and Denmark became in favour of wind 

energy, and implemented various policies to foster wind turbine diffusion. 

Both governments put wind energy on their agenda and created policies for wind turbine 

diffusion, but on the basis of the percentage of installations and development of wind turbines, 

Denmark is considered much more successful. California had only a 2 percent share of energy 

for wind turbines in 1994 whereas this value was about 6 percent in Denmark (Sawin, 2001). 

To understand the differences of policies and their related consequences, this research has 

been designed. 

This research models the diffusion of wind turbines in California and in Denmark with system 

dynamics simulation. The notions of diffusion from the literature is embedded into the models 

which are also in line with the diffusion stories of the cases. The results of the study shows 

that in addition to persistent demand-pull policies of Denmark, the initial conditions there 

created a more suitable environment for diffusion, due to expensive conventional technologies 

in and high dependency on imports in Denmark. On the other hand, in California, 

conventional technologies were cheaper resulting in more efforts to make the wind turbines 

cost competitive. Besides, California focused on supply-push type of policies and their 

demand-pull policies were frequently changing and they offered for short periods of time, 

which could be considered ineffective in familiarity gain with the technology. 
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Aff: affinity 
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KPI: key performance indicator 
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1.1. Research Problem 
Sustainable technologies are high on the agenda nowadays, due to diminishing natural 

resources and high levels of greenhouse gases. Therefore, not only governments, but also the 

private sector has been working on sustainable solutions for a better future. Energy is on top 

of the list of these sustainable technologies. Many different sustainable energy initiatives have 

been introduced into the market so far, such as wind turbines, photovoltaic panels, and 

biomass energy and so on. Among these technologies, wind power has been treated with more 

attention, because of the promising economic competitiveness of the technology in the market 

(Menz & Vachon, 2006).  

As well as the technological development of these technologies, adoption of these in society 

represents a challenge for policy makers. Having a promising technology is not enough for 

people to adopt it, since they might be unsure about the true benefits, they might resist change 

due to cultural, psychological or economic factors or they might simply not know about the 

new technology. To overcome these undesired settings in the society and ensure diffusion, 

policy makers should come up with effective policies having long lasting effects. Abundant 

research has been done with the focus of innovation diffusion, to understand how diffusion 

occurs. Nevertheless, as many recent investigations state, most of the studies focus on static 

measures of diffusion, although the phenomenon itself is a process over time (Hekkert, Suurs, 

Negro, Kuhlmann, & Smits, 2007) (Jacobsson & Johnson, 2000). Static measures can be 

imagined as having a screenshot of the system at a certain point time, and analysing it only for 

that captured moment. For instance, as a static measure, barriers to diffusion have been 

researched widely in the literature, but it is possible to explain the barriers as certain 

consequences of a mechanism in the system under certain circumstances. For instance, in the 

study of Kemp Schot and Hoogma, high price of an innovation is shown as a barrier, resulting 

in low market share and slow learning processes which might decrease cost of the product 

(1998). However, this interpretation is a static understanding of a dynamic process. To be 

clearer, if we see the price of the product as a variable, we can see that it is related to many 

different sources, such as demand, and learning processes. Besides, demand and learning 

processes are dependent on price as well, and this situation could follow different paths. If the 

price is high, there might be low demand, therefore learning processes become slower resulting 

in slow decrease of price. However, this situation could follow a different path as well, demand 

may be high due to the nature of the innovation even though it is expensive, or there might 

be extra governmental incentives which temporarily decreases cost and affect the level of 

adoption. Different levels of variables will result in different end states over time such as 

adoption or no adoption. The whole process relating to each of these variables in the system (not 

in isolation) with an end state is called mechanism in this research. A mechanism is defined by 

Yucel as follows: “The mechanisms are different manifestations of the change processes and interactions of 
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the general scheme” (Yucel, 2010). It is also possible to see the mechanisms as building blocks of 

a system, where every mechanism behaves as a wheel inside the clock.  

Socio-technical systems are systems too with its underlying social, economic and technological 

subsystems, therefore it is possible to interpret them with mechanisms. Complex socio-

technical systems are a subset of a system, which is comprised of social subsystem having actor 

interactions, and technical subsystem having the development and compatibility of the 

technical system that the technology is embedded in. The word complex indicates that there 

is a strong interdependency between social and technical subsystem both internally and with 

each other; through many different layers of interaction and feedback effects (Dijkema & 

Basson, 2009). Diffusion of innovation occurs within a socio-technical system, where the 

social subsystem consists of suppliers, potential adopters and adopters and technical 

subsystem indicates the maturity of the technology, and consequently its cost. Since diffusion 

of innovation is a process going through time within a socio-technical system, and since it is 

possible to describe a system through a combination of different mechanisms, it should be 

possible to analyse the diffusion process with the combined interactions of different social 

and technical mechanisms. 

A static interpretation of the barriers, does not help the researchers to come up with effective 

policy interventions for steering of diffusion of a given technology, because the policies to 

overcome a certain barrier could have unexpected systemic effects. To illustrate, we take 

Kemp, Schot and Hoogma’s technological barrier example again, and assume that in such a 

situation, R&D subsidies are given to improve the ill developed technology. Then, although a 

considerable amount of money has spent on the subsidies and the technology became 

competitive with incumbent ones, the adoption rate could still be slow, because during this 

development time, potential adopters may have developed a negative attitude towards the 

technology. And if this new situation would be treated as a barrier to overcome, policy makers 

could come up with demand boosting policies. The time lost for overcoming the technological 

barrier caused negative attitude on potential adopters as a new barrier at a later stage. This 

example illustrates that barriers are not independent from each other, and time has a role in 

the appearance and disappearance of these barriers. Therefore, policies based on static 

interpretation of the mechanisms as barriers would be costly and time consuming and the level 

of success is also questionable, since the rate of diffusion matters a lot as well as the percentage 

of adopters in the end. 

 For this reason, a more dynamic perspective should be adopted for explaining causal, and 

cyclical and sometimes delayed effects of interventions. In the literature Hekkert et al. have 

identified the functions of innovation systems (2007). These functions are the mappings of general 

activities that foster or hamper innovation. Most of the functions that he explains resemble 

the mechanisms defined by Yucel, such as Hekkert’s function 2: knowledge development and 

Yucel’s individual and social learning. The importance of a dynamic interpretation of 

innovation diffusion has been mentioned by other researchers as well. As Jacobsson and 
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Johnson said, the vast amount of forces that may block the diffusion process of a certain 

technology are likely to reinforce one another, resulting in system failure (Jacobsson & 

Johnson, 2000), of course the other way around is also possible. 

An analysis of a known case from a different point of view could be useful for bringing new 

insights to known problems. With this aim, a dynamic understanding of innovation diffusion 

could reveal the hidden details of the process. If diffusion of innovation would be analysed 

with this mechanism perspective on a commonly known diffusion story, then it might be 

possible to observe the contribution of a dynamic perspective on explaining diffusion 

processes. With this aim, wind turbine diffusion in Denmark and California, US has been 

chosen as a comparative case study, because of similar settings for the technology diffusion 

and widely differing diffusion patterns. Figure 1.1 and Figure 1.2 show wind turbine instalment 

per year in Denmark and US between 1975 and 1999. About 90% of wind turbines installed 

in the US in these years are located in California (Norberg-Bohm, 2000). When we look at the 

graphs, the cumulative capacities seem similar, whereas annual capacity instalment varies 

greatly. After the 1990’s Denmark was able to get the leadership in the global wind turbine 

market (Morales, 2013). For two cases with such similar settings, how could one be able to 

cover the global market whereas the other was left with unutilized wind turbines? 

Understanding which mechanisms were active in what ways in these two cases, could bring a 

holistic and dynamic understanding of the diffusion process. For instance, Kamp claims that 

in Denmark, the learning by doing (individual learning) mechanism helped the diffusion 

process, where in contrast this mechanism was rather low in US (Kamp, 2002). To what extent 

this was true, and what were the other working mechanisms under the process is an interesting 

question. 

 

Figure 1.1 Wind Turbine Installations in US 1977-1995 (EERE, 2006) 
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Figure 1.2 Wind Turbine installations in Denmark 1975- 1999 (Spliid, 2012) 

To understand why these differences occur, the current methods remain insufficient. 

Therefore this research aims to explain the reasons behind these differences by looking at the 

active mechanisms and their interactions with a dynamic point of view.  

1.2. Problem Definition 
Wind turbine innovation development in the US and Denmark was stimulated for similar 

reasons around the 1970s which were mainly the oil crisis and environmental concerns 

(Norberg-Bohm, 2000; Olume & Kamp, 2004). Therefore both governments took action to 

help wind turbines to diffuse through for electricity generation. However, the diffusion was 

long lasting in Denmark whereas it was a short term trend in the US. The underlying reasons 

for different results of these two similar cases are unknown. Current analyses try to explain 

these results from a static perspective and considering the underlying mechanisms in isolation 

under a static time frame. These static and isolated approaches ignore the interactions of 

different mechanisms with each other, and also they provide a discrete understanding of a 

continuous process to explain the wind turbine diffusion patterns of California and Denmark. 

1.3. Research Goal 
The objective of this research is to clarify the reasons behind the difference in wind turbine 

diffusion in Denmark and US with a dynamic analysis approach.  

If the underlying reasons of the difference in these two diffusion stories can be revealed, the 

lessons derived from the past could be useful for developing new policies for renewable energy 

systems diffusion. The dynamic understanding of the known diffusion story could result in 

new results differing from the ones in the literature. Besides, the dynamic approach for 
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innovation diffusion could create awareness among policy makers and researchers about 

different policy analysis tools. 

If this research reaches its aim, which is explaining underlying mechanisms of different wind 

turbine diffusion stories in Denmark and California, then this could be an indication of the 

necessity to adopt a more dynamic approach for analysing diffusion processes. Also, so far, 

most studies in the diffusion literature with a dynamic perspective are qualitative (Hekkert et 

al., 2007). Thus, an attempt to take this qualitative approach into modelling could bring a clear 

view to benefits and shortcomings of dynamic perspective. 

1.4. Research questions 
This study aims to answer the following research question: 

What are the underlying mechanisms and their relations explaining the commonalities and differences of wind 

turbine diffusion stories in California US and Denmark? 

To have a detailed answer to this question, the following questions are needed to be answered: 

- What are the factors that stimulate and/or hinder the adoption of wind turbine 

technology, and how do these factors relate to each other? (RQ1) 

- Which mechanisms are adequate representatives for explaining the relationships among 

the determined factors? (RQ2) 

- What kind of policies have been implemented in California and Denmark for wind 

turbine diffusion, and what were the aimed mechanisms of these policies? (RQ3) 

- How can these differences be explained in a dynamic way?(RQ4) 

- What is the contribution of a dynamic analysis to understand the differences of the 

diffusion stories of the wind turbines in California and Denmark? (RQ5) 

The first research questions are aimed at understanding the conceptual relations of different 

factors playing a role in wind turbine diffusion in general. When these factors are put together, 

their resemblance to suggested mechanisms of innovation diffusion is assessed with the 

second research question. The third question brings policies into the picture, by looking at the 

real cases in California and Denmark, and tries to explain which policy affects which 

mechanism. Research question 4 is about the implementation of the conceptual model with a 

chosen methodology, with the purpose of explaining the differences in these two cases in a 

dynamic way. Then, the research question 5 reflects on the ability of the chosen dynamic 

method for explaining the differences. 
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1.5. Structure of the thesis 
The structure of the thesis is given in Figure 1.3. It is possible to see this work in three phases. 

The first one is the conceptualization phase, in which the real life problem is put into a 

systemic frame. The second phase carries this conceptualization to a simulation model. The 

final phase is the conclusion phase, where the insights from the research are summarized as 

well as the limitations.  

Conceptualization Phase 
(RQ1, RQ2, RQ3)

Modelling Phase
(RQ4)

Conclusion Phase
 (RQ5)

Chapter 1
Introducing 
Research 
Problem

Chapter 2
Methodology 
and Theories 
behind the 
research

Chapter 3
Wind turbine 
development 
in California 
US

Chapter 4
Wind turbine 
development 
in Denmark

Chapter 5
Model 
Implementati
on

Chapter 6 
Verification 
and 
Validation of 
the model

Chapter 7
Comparison 
of Results

Chapter 8
Conclusion: 
Achievement
s and 
Limitations of 
the study

 

Figure 1.3 Structure of the thesis 

o Before going into modelling from the conceptualization, the methodology used for 

modelling is explained in Chapter 2. Also, concepts related with the theory of 

innovation diffusion are explained. 

o The following two Chapters (Chapter 3 and 4) include the information about the wind 

turbine development and diffusion in California, United States and Denmark 

respectively. First a brief history of wind turbines is introduced, then the structure of 

the energy market in each country is summarized. The motives of the governments and 

the society for wind electricity is also explained, as well as the actions taken for realizing 

the motives. Finally, conceptualization of the socio-technical system of each case is 

introduced at the end of the chapters. 

o Chapter 5 is about creating a system dynamics model from two conceptual cases. 

Quantification of the model is also explained as well as the assumptions and finally, a 

comparative summary is provided at the end of the chapter for summarizing the 

similarities and differences in both cases from modelling perspective. 

o Chapter 6 is about the verification and the validation of the model, where verification 

implies “building the thing right” and validation corresponds to “building the right 

thing” (Boehm, 1981). 

o After making sure that the model is working properly and does what is intended, in 

Chapter 7, the initial settings and different policies of both cases are compared and 
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tested understand the sources of differences. The rate and the cumulative installed 

capacity of wind turbines would be the main key performance indicators for assessing 

these differences. 

o Finally, Chapter 8 summarizes the research, and answers the question “what has this 

model achieved?” Besides, the limitations of the study and suggestions for further 

research are presented. 

  



10 
 

  



11 
 

 

This chapter is separated into two sections. The first section explains the reasons for choosing 

system dynamics as a model for the interpretation of the dynamic approach. The second 

section gives brief information on each theory used in the model for building up the reader’s 

knowledge. Then, the third section explains the way these theories have been implemented in 

the study. Finally, clear steps for the whole research methodology are given. 

2.1 Methodology for modelling innovation diffusion dynamically 

This study looks for the impact of governmental policies in wind turbine diffusion. A dynamic 

model is also a requirement for this study, since the current state of the system will have an 

effect on the upcoming state of the system. For diffusion of wind turbines, the current level 

of knowledge for example, will have an impact on cost of wind turbines, and the cost of wind 

turbines will affect the number of wind turbines sold, and therefore the knowledge generated 

in the next time step. In the end, knowledge is also affected by itself over time, therefore a 

dynamic representation of the system is needed. One of the suitable methods for dynamic 

modelling is system dynamics. For understanding the reach of governmental policies in 

diffusion a suitable approach is a system dynamics simulation model for the following reasons: 

 The analysis requires a change in the system over time. Therefore, an approach having 

temporal features is more suitable for the study. Simulation models of different kind 

offers this feature, whereas techniques like regression analysis do not have the ability 

to represent the change over time as effectively. 

 A diffusion process is a continuous process, since the accumulation of knowledge and 

experience curves are not countable (Birta & Arbez, 2007) 

 For understanding the relationships among different variables, and tracking where the 

policy goes, a white box model is needed. System dynamics offer this feature, whereas 

econometric calculations are looking into the relationships among the variables in 

isolation and behave as black box models (Melberg, 2000) 

 System dynamics is more of a strategic approach rather than being operational, which 

fits well into governmental perspective. Also this approach do not focus on the exact 

numeric results, but looks for the behaviour of the system under different 

circumstances. Once the cause of a behaviour is understood, it is possible to influence 

this behaviour with different strategies. 

 This policy analysis takes an aggregated perspective from top-down approach, because 

the diffusion is analysed from governmental perspective. Therefore, instead of focusing 

the detailed interaction structures among the players of the market, the dominant 

structures in the system should be clarified so that the determination of what went 

right/wrong should be possible on key variables. The focus here is on the variables 
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rather than actors, if the significant variables are determined, then necessary actions 

with related actors can be identified as a following step if desired (Scholl, 2001). 

Therefore, rather than an agent based modelling having a bottom-up approach, system 

dynamics approach suits more to the point of view taken in this research. 

The next section gives information on how system dynamics works as well as the other 

theories used in the study.  

2.2 Theoretical Framework 

The main outcome of this research is a system dynamics based policy analysis for wind turbine 

diffusion. Therefore system dynamics is main technique for the study, and the other 

techniques and theories are embedded in it. However, it should be kept in mind that scope of 

the theories are much more wider and deeper, but the focus on these theories is kept limited 

according to the boundaries of the cases. 

 

System dynamics (SD) was introduced to the management world during 1950s by Jay W. 

Forrester. The main idea of system dynamics is the interpretation of the system in feedback 

loops, instead of a linear process. It assumes that the complexity of the system comes from its 

internal causal structure (Meadows & Robinson, 1985). Due to its long existence and 

popularity, SD is a well-documented modelling approach, making it easy to follow the standard 

model cycle (Waveren, et al., 1999). However the use of this tool is rather new in the 

innovation diffusion field (Hsu, 2012; Tsai & Hung, 2014).  Therefore, studying diffusion of 

wind turbines with System Dynamics would be a novel method for diffusion literature, but 

since the modelling cycle is well established in SD, the model will have strong roots. 

SD is a computer based modelling approach for complex systems. It has two main concepts 

for modelling; feedback loops and stocks and flows. A feedback loop represents a causal path 

between variables, in which each variable is affected by the previous one. An example for this 

could be the population loop; if there is high population, births per year will increase, then if 

there are a lot of births, the population will increase leading to more births per year (Figure 

2.1). 

 

Figure 2.1 Example of a feedback loop 
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Dynamic behaviour is represented via stocks and flows. Flows go into and out of the stocks, 

and the level of stocks changes according to the flow rate over time. A common example for 

this is a population of a society with an inflow (women giving births) and decreasing it with 

an outflow (death rate) (System Dynamics Society, 2014) (Figure 2.2). A stock can have more 

than one inflow and/or outflow, and the flows are affected by the feedback loops. There could 

also be time delays in the system. 

 

Figure 2.2 Example of a stock and flow relationship 

Relationships between the stocks and flows are defined with differential equations. Then the 

simulation model runs these equations with a given time step over a specific time range. It is 

also possible to implement non-linear relation between variables in the model. The behaviour 

of each variable over time can be seen as a graph and table as a result of the simulation.  

By creating feedback loops with stocks and flows, and connecting these loops together an 

appropriate system description can be reached. This way, the system consists of analysable 

atomic mechanisms. Yet, these mechanisms are analysed within the system, not in isolation. 

This aspect is crucial in diffusion studies, since a policy (which could be an influence on a 

certain variable for a certain time period) can affect the final state of the diffusion process. 

The atomic mechanisms are also existent in diffusion processes, which are explained in the 

next section. 

 

Diffusion of innovation is a field of study looking for the reasons and the rate of adopting an 

innovation in or through cultures. The idea was introduced by Rogers in 1962 and grew since. 

His theory tries to explain how, why and at what rate an idea is accepted in  a culture or through 

the cultures (Rogers & Everett, 1983). His theory suggests that there are four main factors 

driving the diffusion process: the innovation itself, communication channels, time and the 

social system that the innovation spreads through. Rogers’ view on diffusion of innovation is 

more at the individual level, whereas Bass introduced a more aggregated model in 1969. His 

model was based on differential equations, and it models the interaction between the adopters 

and potential adopters on a diffusion process (Bass, 1969). The model principle is “The 

portion of the potential market that adopts at a specific time t given that they have not yet 

adopted is equal to a linear function of previous adopters” (Bass, 1969). This way he suggested 

the diffusion process happens over time, with the interaction of actors and it is about the 
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innovation itself. In both of these theories, the diffusion is considered successful when it 

follows a stabilization S-curve in Figure 2.3. Later Rotmans discussed different paths that a 

diffusion process can follow; such as lock-in, backlash, and system breakdown (2005). 

However, there are quite range of studies discussing the reasons for these different paths. 

Some of the studies which are also used in analysing diffusion of renewable energy 

technologies are barriers to innovation, functions of innovation systems and mechanisms of innovation. 

 

Figure 2.3 Different change paths (Rotmans, 2005) 

 

2.2.2.1 Barriers to Innovation 

In 1998, Kemp Schot and Hoogma published a paper including barriers for diffusion of an 

innovation. They grouped these barriers into 7 categories (Kemp, Schot, & Hoogma, 1998):  

- Technological factors 

- Government policy and regulatory framework 

- Cultural and psychological factors 

- Demand factors  

- Production factors 

- Infrastructure and Maintenance 

- Undesirable Societal and Environmental Effects of New Technologies 

Technological factors are summarized as follows: if there is a new technology, it would 

probably be ill-developed in terms of user needs, and would be expensive due to low-scale 

production. Therefore, they need to be optimized, but it might not be possible due to lack of 

revenue coming from low number of sales. So, the technology would be stuck in ill-developed 

form and the diffusion will not happen.  

Government policy might hinder the diffusion process by creating difficulties in the existing 

regulatory framework. Also, unclear messages saying that there is a need for a technology for 
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a certain need would result in investing in many technologies, some of which will be ineffective 

in the end. 

Cultural and psychological factors affect the diffusion process as well and they might become 

barriers for a certain technology. For instance, environmental concern nowadays fosters the 

diffusion of renewable technologies, but this was not on people’s minds 30 years ago. Besides, 

for some products, such as cars, it is a symbol of status for the consumer which shapes their 

preferences. 

Demand factors are also stated as economic barriers. Consumers are not sure what to expect 

from the new technology. As a result, their willingness to pay for an unknown product is lower 

compared to the incumbent technology. The difficulty in changing consumer preferences is 

seen as a barrier. Also, for some technologies consumers need to change their lifestyles, and 

this also creates a resistance to buy the product. With these concerns companies are reluctant 

to offer new technologies.  Again, the high price of new technology also results in small-scale 

production and slow learning curves. 

Production factors, or barriers on the supply side implies the cumbersome and long process 

from prototype to mass production. Most of the manufacturers do not want to risk their core 

competencies by switching to new technology, because they might lose their market position 

such as cost leadership or differentiation. For this reason, most of the time new enterprises 

take the action for launching new products. Yet, new enterprises are short on budget, and they 

rely heavily on subsidies. Besides, they do not have the ability to produce the technology in 

large quantities, and consequently learning curves are developing slowly and cost of the 

product remains high. Finally they do not have the ability to conduct big marketing campaigns 

so that the customer would be aware of the product. 

For some technologies, the infrastructure might needed to be changed as well, and the 

diffusion might become a chicken and egg problem (Farrell, Keith, & Corbett, 2003). For 

instance, for the diffusion of electric cars, charging stations should be established, so that 

customer would not have to worry about running out of battery. Yet, there is a risk that the 

electric cars would not diffuse anyway, and in that case the charging stations will become 

useless. Finally, there is a risk of introducing new problems from new technologies, and this 

will hamper the process of diffusion.  

It is possible to see that these barriers are connected to each other. For instance, technological 

barriers results in expensive products, therefore the consumer does not buy the product 

(demand barrier) and this results in small-scale production affecting learning curves. Also, the 

word barrier implies a static meaning, an obstacle that is needed to be climbed over. However, 

when a deep look is taken into these factors, it is possible to see more of a dynamic structure. 

The barriers can be seen as certain end states of a mechanism. For instance, as a technological 

barrier, they suggest that ill developed technology is not able to satisfy the user needs, therefore 

the adoption rate is low; and the reason for ill development is low scale production. However, 
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it is possible to interpret this as a generic mechanism where the triggering event is production 

scale and the result is adoption rate. And the low or high level of these factors represent certain 

functioning of the mechanism under certain conditions.  

The contributing feature of this categorization is focusing on the production side of the 

process, instead of taking only demand into account. The limitation of the study for the 

purpose of this study is the static understanding of factors influencing diffusion. Therefore, in 

this study, the factors will be interpreted with their dynamic features and will be used in 

modelling the diffusion process together with functions of innovations and mechanism of 

innovation. 

2.2.2.2 Functions of Innovation Systems 

In 2007, Hekkert et al criticized the existing methods for analysing technology specific 

innovations, and suggested seven mechanisms which are dynamic functions of innovation systems. 

Innovation Systems (IS) approach has occurred over the last decades, with the combination 

of evolutionary and institutional theories. The approach claims that diffusion of the 

technology is both a collective and an individual act (Edquist, 2001). The IS approach takes 

into account the economic activities of the firms, institutions and the economic structures of 

the society as well as the technology characteristics, indicating a socio-technical holistic 

approach to diffusion. On top of this approach, Hekkert et. al introduces the functions of 

innovations, where the entrepreneurial activities of the firms are taken into account in diffusion, 

and a dynamic point of view is introduced to the approach, saying that these mechanisms’ 

behaviour is time dependent, and they also interact with each other.  These functions are 

defined as follows: 

Function 1. Entrepreneurial Activities 

As it is mentioned in barriers to innovation, existing manufacturers do not want to take the 

risk of losing market share and core competencies by focusing on innovations. These activities 

are carried out by entrepreneurs most of the time, which generates experimental knowledge 

for the product and strengthens learning-by doing mechanism. Thus, entrepreneurial activities 

are one of the drivers for innovation to get mature. 

Function 2. Knowledge Development 

This function is mainly about learning, containing both learning-by-doing and learning-by 

searching mechanisms. Learning-by-doing and learning-by-searching mechanisms are 

concepts related to economic theory. Learning by doing stands for the experience gained for 

a production of a specific product over time by producing it. The learning by doing mechanism 

implies that “the more one engages in development, the more opportunities exist to reduce 

costs and improve the product”(Ibenholt, 2002). The same idea is also behind the learning by 

searching process, but this time, learning is not coming from the production, but from the 

R&D efforts put into the development of the product both by public and private resources. 
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These processes are crucial in innovation diffusion as Lundvall once stated (1992). R&D 

investments, projects and patents are mentioned as a measurement of knowledge 

development. 

Function 3. Knowledge Diffusion through Networks 

Exchange of information is as important as knowledge development for a healthy diffusion. 

The number of members in the network (network size) and the level of interaction among 

them (network intensity) are the two main drivers for information spread.  

 

Function 4. Guidance of the Search 

This function also resembles a barrier defined by Kemp, Schot and Hoogma (1998). If there 

are many available technologies and there are no clear messages for choosing one, the rate of 

diffusion would slow down. Thus, the government takes initiative for guiding the market for 

a certain technology in such situations. These initiatives can be observed via targets of the 

government and publications. 

Function 5. Market Formation 

This function implies governmental support for new technologies to compete with the 

incumbent ones. Creating a protected space for new technologies will make them economically 

competitive in the market. Creating niche markets is one of the methods for doing so, and 

another one is offering tax credits or consumption quotas which would create a temporary 

competitive advantage.  

Function 6. Resources Mobilization 

Allocation of resources including both human capital and financial resources is also necessary 

as an input for the other functions. Yet, this function is rather vague and conceptual, since it 

is quite difficult to measure the mobilization of resources. It can be assumed that this function 

creates an input for R&D investments, therefore a partial measure for this function can be 

considered as R&D investments. 

Function 7. Creation of Legitimacy 

The new technology will compete with the existing ones. For this reason, it is likely to face 

with opposition as well as support from different parties with different interests. Lobbying or 

bringing new legislation for adoption of a technology would create a legitimate environment 

for the new technology. This function resembles the barrier of government policy and 

regulatory framework explained by Kemp Shot and Hoogma (1998). 
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Figure 2.4 Relationship between the functions - motors of change (Hekkert et. al, 2007) 

These functions are connected with each other as it is shown in Figure 2.4. Fulfilment of a 

function would create an impact on others. The Figure shows the relationships of different 

functions forming a system. For example, with more knowledge, the expectations for the 

technology will become clearer, and if it is desirable among the consumers, this will increase 

the entrepreneurial activities. These relationships imply that the model of the system is non-

linear with multiple interactions between the functions influencing the performance of the 

system negatively or positively (Hekkert et al, 2007). The relationship between these functions 

also implies feedback loops in which the mechanisms are interconnected. 

Functions of innovation systems bring the dynamic understanding to the innovation diffusion 

systems. Yet, these functions remain qualitative so far, and even though it is implied that the 

relationships exist between them, no quantitative study was found showing the degree of these 

relationships. This situation creates a motive for system dynamics based analysis of the 

relationship of the functions. 

2.2.2.3 Mechanisms of Innovation 

Yucel identifies the main mechanisms which can take place in diffusion studies (2010). He 

explains mechanisms as atomic parts of the system, which could be linear and/or cyclical 

(feedback loops). As he stated, not all of the mechanisms are active in every diffusion process, 

but each process is a unique combination of these mechanisms. The features of the 

mechanisms are that they should be generalizable, simple, policy-relevant and empirically 

and/or theoretically grounded. The mechanisms coming from his work and their relationship 

with the functions can be listed as: 

- Experience driven change in option properties: This mechanism stands for knowledge 

accumulation through actors’ experiences. Under the mechanisms resulting in experience 

driven change in product properties; learning by doing and learning by using mechanisms are 

explained. In a way, Hekkert also mentions the importance of the learning-by-doing 
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phenomenon, but he claims that the actor who is widely involved in this process is not the big 

companies but the entrepreneurs. It should be noted that whether the activities are coming 

from the big company efforts or from the entrepreneurs, the learning-by-doing structure 

works as an improvement in option properties. 

-Scale-driven change in option properties: The number of users of an innovation and also 

the volume of production has positive or negative effects on diffusion depending on the 

circumstances and the nature of the innovation. An example for this mechanism of change is 

crowding process. For instance, if the number of charging stations for electric vehicles remain 

constant and if there is an unexpected increase in number of electric vehicle owners, the 

charging stations will be insufficient suddenly, and the availability of the stations will drop 

dramatically, creating a negative perception on the users. 

- Resource driven change in option properties: This mechanism also resembles Hekkert’s 

function 2 and 6, knowledge development and resources mobilization.  The allocation of 

resources could be into the option itself, or the methods of provision as well as the capacity 

of the provision system. R&D spending is a measurable allocation of resources for an option 

development, which can be modelled by learning by searching mechanism.  

- Exogenous Change in option properties: This mechanism considers the global 

improvement on a knowledge on a certain technology, coming from different socio-technical 

systems. This difference can come from another social environments, such as if the R&D 

spending and learning on wind turbine capacities in China leads to a certain improvement, this 

will be also followed by the Danish manufacturers. Another improvement can come from a 

technological spillover where a certain improvement on a certain technology could be useful 

in another one. For instance, developing aerodynamically efficient wind blades is a spillover 

coming from the aerospace industry. 

- Individual learning: By using a product actors can improve their information precision 

about the given technology via direct observation or with experience. Then with time, they 

can decide the utility of the innovation based on direct observation or by direct experience. 

This mechanism is also existent in the model, it is modelled with familiarity work of Struben 

and Sterman (2008). The information gathered from the users are also effective in social 

learning which is explained below. 

- Social learning: This mechanism is about diffusion of information among the actors and it 

is strongly related with Hekkert’s function 3, knowledge diffusion through networks. The 

interaction between the actors using the innovation and the other ones can influence the rate 

and the direction of the diffusion process. This mechanism is also based on Bass diffusion 

model in its simplest form, where the interaction among the adopters and potential adopters 

affect the diffusion process.  

- Learning from external sources: Similar to Struben and Sterman’s familiarity model, 

learning from external sources is also taken into account in Yucel’s work (2008) (2010). 



20 
 

Marketing and awareness campaigns, newspapers and scientific reports are the common 

examples for these sources. These sources are also quite important in shaping actors’ 

knowledge and attitude towards a new technology, playing an important role in diffusion. 

-Reference formation and change: Similar to the psychological and cultural barriers 

mentioned by Kemp, Schot and Hoogma, Yucel mentions the importance of “demand 

requirements” of the potential adopter, such as personal expectations, social norms which can 

determine the reference point for assessing an option whether it suits the needs of him/her 

(1998). Also, regulatory limitations could be interpreted as a reference point playing a role in 

the actor’s decision.  

-Commitment formation: If an actor already invests in a certain technology and feels 

comfortable with using it, it could be difficult to switch to the new technology, event that the 

new technology offers an economic improvement. Also, the governmental decisions on going 

for a certain type of new technology among a set of immature new technologies can limit the 

“competition” and results in leaving the most profitable technology behind. Commitment 

formation is a phenomenon widely discussed by the researchers, and it could affect a diffusion 

process negatively or positively depending on the structure of the socio-technical system. 

-Preference structure change: Although for a short period of time it is possible to assume 

that the actors’ preferences on a certain structure is fixed, these preferences also change over 

the long term. For instance, during 1970s, the society was not concerned about sustainability 

of the world resources, however since 2000, the awareness for the sustainability issue has 

increased, shaping the consumer demands. There were no green electricity demand during 

1970s, but nowadays, some consumers are willing to pay higher electricity rates to consume 

electricity from green sources. This changes in preferences can lead actors to take action and 

force the companies and the government to focus on new technologies with different 

properties. 

The major mechanisms from Yucel’s work are explained above (2010). The overlap of these 

mechanisms with the functions of innovations and barriers to diffusion is clear, as the naming 

suggests. Yet a detailed relationship between these three theories are given in section 2.3.1 

Combination of Theories. 

2.3. Methodology 

This research has explorative features, trying to determine the cause-and-effect relationships 

among the factors taking a role in diffusion of wind turbine technology in California and in 

Denmark. 
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As it is explained before this study is based on three pillars: Hekkert’s functions, Yucel’s 

mechanisms and the dynamic interpretation of barriers to diffusion which is highlighted by 

Kemp Schot and Hoogma (2007; 2010; 1998). Table 2.1 shows the concepts that are in this 

study and the correspondence between them.  

Table 2.1 Combination of theories 

Function of Innovation 
Systems (Hekkert et al 2007) 

Mechanisms of Transition 
(Yucel, 2010) 

Barriers to Diffusion (Kemp, 
Schot and Hoogma, 1998) 

F1: Entrepreneurial activities Experience driven change in 
option properties 

Technological, production and 
demand factors 

F2: Knowledge development Experience driven change in 
option properties 
Resource driven change in 
option properties 

Technological, production and 
demand factors 

F3: Knowledge diffusion through 
networks 

Individual and social learning, 
Familiarity 

Cultural and psychological factors 

F4: Guidance of the research Commitment formation Government policy and regulatory 
framework, Demand factors 

F5: Market formation Not a mechanism but a function 
affecting the purchasing decision 

Government policy and regulatory 
framework, Demand factors 

F6: Resources mobilization Resource driven change in 
option properties 

Government policy and regulatory 
framework 

F7: Creation of Legitimacy Preference structure change Government policy and regulatory 
framework 

 

Table 2.1 shows the correspondence between the theories across Functions of Innovation 

Systems, Mechanisms of Transition and Barriers to Diffusion. Function 1 says that 

entrepreneurial activities are the key drivers of experience for developing the technology. 

Yucel also says that experience driven change in option properties help diffusion by 

accumulation of actor’s experiences leading to improvement in product properties. Both 

concepts address learning-by-doing phenomenon from different approaches. Yet, Yucel does 

not specify the sources of this learning-by-doing mechanism, whereas Hekkert claims that it 

is mainly based on entrepreneurial activities. Similarly, Kemp, Schot and Hoogma states that 

technological barriers due to low performance of new technology is not improved unless a 

certain level of production triggers the learning by doing mechanism, leading to an 

improvement in the technology and consequently increased demand. Function 2 refers to 

learning by searching mechanism and learning by doing mechanism coming from not only the 

entrepreneurs but from all actors such as big firms and from the research centres. Yucel’s 

experience driven change in option properties covers all learning by doing mechanisms and 

resource driven change in option properties implies the R&D spending and other resource 

allocation such as building research centres for a certain technology, and/or industry-

government agreements. The negative functioning of these mechanisms can create a range of 

barriers according to Kemp, Schot and Hoogma, such as ill developed technology, and low 
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scale of production and consequently low demand. Function 3 is more about the demand side 

of the diffusion, mentioning the word of mouth coming from adopters and non-adopters. 

Similarly, individual and social learning of Yucel’s mechanisms address the same concepts. 

These could be treated as a barrier when there is a negative word-of-mouth about the 

technology, if it does not fit with the expectations and the social norms of the adopters, which 

is categorized under cultural and psychological factors. Function 4, the guidance of the 

research represents the determination of the authorities, adopters or the investors to focus on 

a certain technology among various alternatives. When the guidance is determined and the 

mind-set is created accordingly, instead of spending a lot of money towards different immature 

options, all the resources are allocated to the certain technology resulting in considerable 

improvement. Yucel addresses this issue by explaining the effect of commitment formation to 

the certain technology. For sustainable technologies, Kemp, Schot and Hoogma mentions that 

this choice of direction could be a barrier for other technologies for diffusion. Function 5 

covers the demand pull type of policies of government such as creating niche markets with 

pilot programs or offering subsidies. This could be understood as an input fostering the 

demand for the new technology by affecting certain mechanisms. For example, if a subsidy is 

offered this would trigger more purchases and it will trigger the individual and social learning 

mechanisms. From the barrier perspective, it can be seen as a government intervention to the 

demand barriers. Function 6 behaves as an input to Function 2, where the resources are 

allocated to contribute knowledge development by the government. Therefore the 

correspondence to Yucel’s mechanisms are the same as Function 2, but since the government 

is involved, the corresponding barrier is mentioned as governmental policy in Kemp Schot 

and Hoogma’s work. Finally, function 7 stands for the demand for the new technology coming 

from the bottom, such as advocacy groups working for the legitimacy of the new technology. 

Yucel mentions this phenomenon by explaining the preference structure change for the actors 

where all the conventional options are not satisfactory and they look for the new options. 

However, the existing regulatory framework may hinder the development of the new 

technology, therefore this could be defined as a governmental barrier from Kemp Schot and 

Hoogma’s perspective.  

Note that not all of these mechanisms are active in wind turbine diffusion in California and 

Denmark. Function 4 and Function 7 is not observed in the stories of diffusion in these cases, 

because the only promising technology for that time in terms of cost competitiveness was 

claimed to be wind turbine technology, removing the doubt in guidance of the research. Also, 

this diffusion was supported and steered by the government from the beginning, therefore 

there was no need for creation of legitimacy in these diffusion stories. The next section will 

explain the methodology in a step by step manner from creating a conceptual model with these 

functions to implement those within a system dynamics model.  
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Figure 2.5 shows the followed steps for building this study. At first, a literature survey is done 

simultaneously to explore the wind turbine diffusion stories of two cases, and the theories in 

innovation diffusion which fits into these stories (Chapter 2, 3 and 4). Then the knowledge of 

these two searches are combined into a conceptual model. The conceptual model is transferred 

to a working model with no data in Vensim1 Then the necessary data is collected from various 

sources, mainly energy related websites, such as the Energy Information Association (EIA) in 

the U.S. Two different models with different data but with the same concepts is created as a 

result. The policies which are found in literature survey are implemented for each case 

(Chapter 5). Then verification and validation study is conducted for ensuring the usefulness 

of the model (Chapter 6). Finally, policy testing study is done for determining the most and 

the least effective policies that have been used in these cases and their influences on wind 

turbine diffusion (Chapter 7). Then the insights gathered from the study is explained (Chapter 

8). 

 

Literature survey for 

qualitative case stories

Literature survey for 

innovation diffusion 

related concepts

Building a conceptual 

model
Data gathering Model Implementation

Verification and 

Validation of the model

Policy testing and 

insights

 

Figure 2.5 Methodology 

 In this chapter, theoretical framework and the methodology for the study is given. In the next 

two chapters, the qualitative knowledge about wind turbine diffusion in California and in 

Denmark is provided respectively.  

                                              
1 System Dynamics simulation software 
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The Unites States is one of the prime movers in taking initiative in wind turbine technology, 

together with Denmark and Germany. However, about 95% of the wind turbines in U.S. were 

installed in California, due to state policies and favourable weather conditions (Sawin, 2001). 

Also, for population size and geographic perspective, California is more comparable to 

Denmark than the all of the United States. Therefore, California is chosen as one of the case 

studies for wind turbine diffusion. The following sections give information about the history 

of wind turbines in the United States, general organization of the energy market, federal and 

state based motives and policies for fostering wind turbine diffusion, and finally conceptual 

system description of California. 

3.1 History 

Wind mills have a long history. However, the attempts to generate electricity from wind power 

started in late 1800s. The world’s first power plants were built in New York and in Berlin 

(Hau, 2006). However, with the world wars and energy generation technologies from fossil 

fuels shifted the researchers’ attention from wind turbines. A milestone in wind turbine 

development was achieved in the 1940s in United States with 1250 kilowatt (kW) two-blade 

wind turbine. However, this wind turbine had a permanent breakdown in 2 years (Heymann, 

1998). This effort, however, did not trigger further researches in US, because of the conclusion 

that wind power is much more expensive compared to conventional fuels (Sawin, 2001). The 

real motivation for focusing wind turbines as an energy source occurred in the 1970s, when 

the oil crises had been faced. With the oil crises and the acid rains, a search for different energy 

generation technologies had accelerated (Norberg-Bohm, 2000). Traditional knowledge of 

wind mills and the previous attempts at wind electricity generation led the government to build 

on existing knowledge and focus on wind turbines. 

3.2 Energy Market Structure in United States 

Before explaining the government’s role in the wind turbine development and diffusion in 

United States, an introduction of the relevant actors and their relations is necessary for a 

comprehensive understanding.  

The electricity has three main processes, owned by different stakeholders. Generation, 

transmission and distribution. The deregulated market resulted in a different combination of 

responsibilities of utilities. Some of the utilities have their own generation plants, however, 

most of them are only involved in distribution. The ownership of these utilities are both public, 

private and cooperative. The electricity market in the US was under heavy regulation since 

early 1970s, but with the oil crisis and changed governmental mind-set, a series of legislations 

for deregulation has been introduced. This situation ended the monopoly of electricity 

generation of utilities, and nonutility participants emerged (EIA, 1994). The transmission 

network is controlled by non-profit organizations called Independent System Operators (ISO) 

for reliable electricity market. 
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The federal government of United States intervene with the electricity market via regulations 

and incentives with different public institutions: Department of Energy (DOE), 

Environmental Protection Agency, Federal Trade Commission and Nuclear Regulatory 

Commission. Apart from federal institutions, states also have the power to determine their 

own electricity agendas in line with the federal strategies.  

Currently, wind power constitutes 4.13% of the United States’ electricity generation, where in 

total 13% of the electricity is coming from renewables (including hydropower) (EIA, 2013). 

This number was almost 0% before 1970s and it was still quite low (below 1%) until 2000s. 

The policies that have been implemented by the states and federal government to reach this 

increase in percentage is given in the next section. 

3.3 Wind turbine Motives and Policies in California 

There were two main drivers in the US for focusing on wind technology. The first one was 

the concern of high oil prices starting with the oil crises, and continuing with the Persian Gulf 

War, and the second driver was the environmental concerns; including acid rain, urban smog 

and lately the climate change (Norberg-Bohm, 2000). With these concerns, there were several 

policy attempts to find different energy generation alternatives. It is possible to categorize 

these policies in supply-push and demand-pull policies, where supply-push policies aim to 

stimulate innovations, whereas demand-pull policies tries to create a market for new 

technologies.  

Supply push technologies are easily visible from R&D spending. Until 1977, the R&D budget 

was rather low for all energy types, but the Department of Energy decided to increase the 

budget about six times (Norberg-Bohm, 2000). Yet, with the change of the government policy 

with Reagan’s administration, the budgets were cut drastically and it remained low until 1999 

(Norberg-Bohm, 2000). In Figure 3.1 R&D spending for energy over time can be observed. 

In total, from 1975 to 1988, the US spent $427.4 million on R&D only for wind technology. 

 

Figure 3.1 Energy Technology R&D Budget Authority of DOE and Predecessor Agencies, 1966 t0 1997 (Norberg-Bohm, 
2000) 
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R&D efforts on wind turbines followed two paths. The first path was about creating a large, 

cost-competitive wind turbine. The program called Mod Program, and it was carried by NASA 

and DOE jointly. The aim was to reach about 3 to 5 mW wind turbine, and about half of the 

R&D spending for the 1970s used in this program. The program was unsuccessful in reaching 

its target, but with the researches it gathered a considerable amount of experimental data on 

grid connection (Norberg-Bohm, 2000). One of the designs of these wind turbines is shown 

in Figure 3.2. 

 

Figure 3.2 MOD-1 (rotor diameter 61 m, 2000 kW, 1979 ) (Hau, 1998) 

The second path was about smaller wind turbine innovation, under the support of DOE. They 

provided R&D subsidies to work on the technology, and in the end, these efforts resulted in 

12 key innovations, such as rotor size improvements, 7 of them related to total or partial public 

funding, 3 of them coming from the private sector. The source of remaining two is unknown 

(Norberg-Bohm, 2000). 

Demand pull policies in the US started with the Public Utilities Regulatory Policy Act 

(PURPA), which was published in 1978 and implemented in 1981. This policy required utilities 

to purchase power from “qualifying facilities” which are defined as small renewable heat 

and/or electricity generators (Martinot, Wiser, & Hamrin, 2005). PURPA is the ancestor of 

the feed in tariff of today, however the cost calculation was different. The cost was determined 

as “avoided cost”, which is the marginal cost for a public utility to produce one unit of power 

(IEPA, 2014). The calculation of this cost was left to the states, but its aim was to approximate 

the avoided costs to the utilities (Martinot, Wiser, & Hamrin, 2005).  
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In 1980, California offered a 25% state tax credit for investments in wind power, where there 

was also a 25% tax credit from the federal government. Federal tax credit had ended in 1985, 

and state tax credit was reduced in 1985 and ended in 1987 (Sawin, 2001). 

California took the PURPA act to a further stage by offering long term contracts at a fixed 

electricity price for the first 10 years, in which the contract duration varies between 15 to 30 

years (Martinot, Wiser, & Hamrin, 2005). This was a real stimulant in the California wind 

market, but only for a short period of time. This offer started at the end of 1983 and continued 

until 1985. The effect of this offer on wind turbine installations can be observed in Figure 3.3. 

 

Figure 3.3 Annual Wind Turbine Installations (megawatts) (Norberg-Bohm, 2000) 

In 1991, there was a new tax credit for wind power. The federal government offered 1.5 

¢/kWh reduction on electricity cost for wind with the Energy Policy Act. 

Apart from these effective policies, there were other attempts which remained impotent. Since 

1970, US regulated SO2 and NOx emissions with Clean Air Act. However, instead of going 

for renewables, investors went for gas turbines, enabling them to meet with sulphur caps with 

no additional equipment (Norberg-Bohm, 2000). Also, paying for the fines for exceeding the 

caps was still more profitable than going for coal-free technologies (Norberg-Bohm, 2000). 

Overall, for supply-push efforts, big projects were not really fruitful, while a focus on existing 

small scale wind turbines brought useful innovations. Demand-pull policies were effective at 

the time of implementation, but they were scattered and fluctuating. Therefore the wind 

turbine installations in California followed a wavy path which did not result in continuous 

installations ensuring persistence.  
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3.4 Conceptualization of the Case 

Conceptualization is structured by answering the following questions (Albin, 1997): 

 What are the active actors and what are their aims and responsibilities? 

 How do the actors interact with each other? 

 In what kind of environment do they interact? What are the boundaries of the 

environment? 

 What are the basic mechanisms in the system? 

 What are the key variables in the model? 

The conceptualization process is structured with the reverse engineering style, by choosing the 

starting point as installed wind turbines. Before starting to explain this process, the introduction 

of actors with their motives and concerns is presented in Figure 3.4. Since the model’s purpose 

is policy analysis, an aggregated point of view has been chosen, therefore, the interaction 

among the actors responsible for generation, transmission and distribution is treated as one 

actor called utility. The reasoning for this simplification is the fact that for the time period of 

1980-1995, environmental concern of the end consumers was low, therefore there were no 

green-electricity demand coming from the end of the electricity supply chain, and the only 

main driver was cost for utilities, which was the same for also other actors (Norberg-Bohm, 

2000). In addition to utilities, wind turbine producers are the second main actor, having 

learning processes and determining cost and get benefits from R&D subsidies. The final actor 

is the government, aiming to help the utilities to install wind turbines by making wind turbines 

cost competitive, and offering subsidies to producers. 

 

Figure 3.4 Actors, their aims and responsibilities 

As well as the actors’ own actions, their interactions are important for understanding decision 

flows. An action sequence diagram is shown in Figure 3.5 for showing the relationships 

between the actors. This diagram shows the interaction of actors, where the vertical lines can 

be seen as the time axis. The arrows shows the action happening between corresponding 
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actors.  Some of the actions are continuous throughout the process, therefore those are shown 

in dashed lines.  

 

Figure 3.5 Action Sequence Diagram 

After defining the actors and their interactions, it is time to define system boundaries. The 

duration of the analysis is from 1980 to 1995, because this is the only time period, a 

considerable amount of wind turbines are installed. The physical boundary is defined at the 

beginning, as California. Wind turbines were the only promising renewable technology at the 

time in terms of cost competitiveness (except from hydropower), therefore the other 

renewable technologies are not considered (Menz & Vachon, 2006). 

In a nutshell, California’s wind turbine producers learned from learning by doing with DOE’s 

subsidies on small scale wind turbines, but that was not the only source of knowledge. 

Learning by searching with significant R&D investments which focused on large wind turbines 

brought a valuable knowledge to wind turbine technology. From the adopters’ side, the utilities 

focused on profitability of wind turbines, and they did not take initiatives on wind turbine 

diffusion which could have strengthened the knowledge share. 

Before explaining the remaining questions in this description phase, the Denmark story will 

be analysed in the same way. Then the remaining questions for both cases will be answered 

together in Chapter 5.  
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This chapter gives information about the wind turbine diffusion in Denmark and related 

policies fostering and/or hampering it. The next section gives a brief history of wind turbine 

development in Denmark before 1970s, the second section takes a look at the energy market 

structure in Denmark, and the third section explains the motivations for wind turbine diffusion 

and related policies. The final section puts all the information in a frame and structures the 

conceptualization of wind turbine diffusion in Denmark. 

4.1. History 

Denmark’s story with turbines started way before the 1970s, with the contributions of the 

Danish physics professor Poul la Cour. In 1903 he created a windmill producing direct current 

(DC) electricity named ‘Klapsejler’ (Heymann, 1998). His windmill helped Denmark to survive 

fuel shortages in  World War II  (WWII) (Kamp, 2002). With time, the aerodynamic structure 

of wind turbines was developed with la Cour’s efforts.  

During WWII there were other efforts for generating electricity from wind mills. F.L. Smidth’s 

windmill ‘Aeromotor’ had maximum capacity of 70 kW with two or three blades. However, 

after WWII, small windmills offering decentralized electricity with direct current were quickly 

replaced by centralized fossil fuel based power plants (Kamp, 2002). However, the efforts for 

building wind turbines did not stop completely. Johannes Jull worked on wind turbines during 

the 1940s and 1950s and he even built a 200 kW turbine with a 24 meter rotor in 1956 with 

the support of government which was named ‘Gedser’. The main design criteria of this wind 

turbine was based on la Cour’s design, which promotes simplicity. The designs of Danish wind 

turbines are still based on the principles of Gedser design (L. Kamp, 2002). This wind turbine 

was tested for ten years until 1967. In total, it produced 2.2 million kWh of electricity (Gipe, 

1995). However, the Danish government reported that it is not possible for wind turbines to 

compete with the fossil fuels for electricity generation from an economic perspective in 1962 

(Kamp, 2002). Therefore, for economic reasons the operation of the Gedser turbine was 

stopped (Heymann, 1998). However, with the oil crisis in 1973, Denmark went back to 

focusing on wind energy. 

As of 2013, 33.2 % of Denmark’s electricity generation is coming from wind energy (Danish 

Wind Industry Association, 2013). Additionally, with the experience they gained, Denmark 

has a large share in the global wind turbine market (Morales, 2014). To understand how 

Denmark reached such high percentages, the next section will introduce the electricity market 

structure in Denmark briefly. Then in the next section, the motives and policies for wind 

turbines in Denmark will be explained. 

 



33 
 

4.2. Electricity Market Structure in Denmark 

The Danish electricity market was liberalized at the end of the 1990s (European Commission, 

2007). With the new structure Grid companies and Transmission system operators (TSO’s) 

maintain monopoly activities. The generation of electricity is rather competitive, with 

generation companies and independent producers such as owners of wind turbines. It should 

be noted that Denmark allowed from the beginning to own power companies by consumer 

cooperatives and municipalities (Bergman, 2003). Therefore, the liberalization process did not 

have significant effects on the electricity generation structure. 

The main structure of the relationship among the actors are similar to United States. There 

were three main processes; generation, transmission and distribution. From the deregulation 

act, generation activities were not get affected significantly, since Denmark allowed private 

cooperatives to have their own power generation facility. The prices were regulated by the 

government for having a secure market. Also, even though environmental concerns were high 

on the agenda, there was no specific demand for green electricity coming from the consumers. 

Instead, environmental concern only resulted in high preference of wind turbines over nuclear 

energy. The cooperatives’ main focus was also on profits, and they worked closely with the 

utilities, therefore it is assumed in this research that the aims of the cooperatives are covered 

under the aims of utilities.  

Danish electricity generation was heavily based on fossil fuels, and the second major source 

was coal. However, Denmark has little fossil fuel, and consequently, they were highly 

dependent on imports (before the 1970s, Denmark was not exploiting the oil and gas reserves 

in the North Sea) (Heymann, 1998).  

Currently, Denmark has two separated transmission systems, where the eastern one is 

connected to Nordic market (NORDEL) and the western one is the synchronous grid of 

Continental Europe (Gellert, 2011). With the North Sea reserves and wind production, the 

country produced 156% of its electricity need in 2007, and exported the remaining 56%. 

(European Commission, 2007). 

4.3. Motives and Policies for Wind Energy in Denmark 

The motivation for focusing on wind turbines in Denmark was also coming from the 1973 oil 

crisis. In 1973, 94% of Denmark’s energy supply was coming from imported oil and the rest 

was mainly based on coal, which was also imported (L. Kamp, 2002). Similar to United States, 

Danish wind turbine policies followed two paths: supply-push and demand-pull. Under the 

supply-push policies Risø National Laboratory and Technical University of Denmark started 

a Wind Power Programme, to develop knowledge about large wind turbines (Van Est, 1999). 

In the first phase of this programme, 35 million DKK was spent on developing wind turbines, 

and 82% of this budget went to development of large wind turbines. Within this programme, 

a formal Danish team visited the United States to co-operate and exchange knowledge about 

with turbines. However, The American wind turbine producers did not approach this idea 
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positively. After the meeting, the development of wind turbines in Denmark and the United 

States followed different paths (Kamp, 2002). 

Apart from putting R&D efforts into wind energy, the Wind Power Programme directly 

involved the utilities in the programme, since they will be the potential buyers of the 

technology. This involvement helped utilities to become more familiar with the technology 

from the development phase, which could be also interpreted as a demand-pull policy 

regarding large wind turbines (Kamp, 2002). The efforts to build large wind turbines continued 

until 1990. Gedser turbines, the Nibe turbines (Figure 4.1), Masnedø turbines and Tjæreborg 

were the results of large wind turbine development efforts triggered by mainly learning by 

searching mechanisms (Sawin, 2001). However, the utilities could not reach the expected 

performance from large wind turbines, therefore the government abolished the programme 

around 1990 (Kamp, 2002).  

 

Figure 4.1 Nibe A and Nibe B, 1979 (Hau, 2006) 

It should be noted that Denmark had little knowledge about aerospace principles, therefore 

their wind turbine designs were not that affected by the aerospace industry. Yet, the lack of 

this potential spill over had no effect on developing quality wind turbines (Kamp, 2007). 

The development of small scale wind turbines in Denmark started independently from R&D 

spending, with the efforts of small entrepreneurs. These entrepreneurs were in favour of small, 

locally owned power plants instead of centralised power plants. Besides, the society was 

environmentally conscious, therefore their mind-set was highly in favour of renewables instead 

of nuclear energy (Sawin, 2001). Therefore the Danish government provided clear aims to the 

producers by stating that they want to reach 10% wind share in electricity generation by 2000 

(Olume & Kamp, 2004).  In 1979, the Danish Ministry of environment ordered utilities to 
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provide wind turbine access to the grid and pay the fair rates for the electricity they generated. 

They provided 30 percent of the investment cost payment. This reduction was given to buyers 

of wind turbines, not to the producers (Buen, 2006). It should be kept in mind that, this 

subsidy was given to the wind turbines which are approved by Risø Test Station assuring 

quality. Also a Danish wind atlas was published showing the best locations for siting wind 

turbines in 1980-1981.  

In 1985, there was an agreement between the government and utilities for 10 years. Utilities 

were able to buy the wind generated electricity by paying 85 percent of its price. This policy 

resulted in increase in wind turbine installations (Figure 4.2).  

In 1986-87 investment subsidy was reduced to 20% and 10% respectively. And this subsidy 

was removed totally in 1989 (Kamp, 2002). Also the criteria for receiving the investment 

subsidy were tightened. In 1988, there was a new agreement between the government and the 

power companies to install 100 mW wind power at the end of 1990. However, this agreement 

was only totally realized at the end of 1992 (Buen, 2006).  

 

Figure 4.2 Wind turbine installations in Denmark and related policies (Buen,2006) 

In brief, similar to California, large scale wind turbine efforts were not that successful. 

Nevertheless, during these efforts the government involved the utilities in the development 

process, which triggered a learning by interacting mechanism. Also, the government was clear 

with their aim to reach 10% energy production from wind energy by 2000, which created 
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awareness and security in the market. Demand-pull policies were effective for initiating the 

demand, but their long-lasting effects are open for discussion.  

4.4. Conceptualization of the Case 

For conceptualization of the Denmark story the same steps will be followed as in the California 

case.  

Conceptualization is structured by answering the following questions (Albin, 1997): 

 What are the active actors and what are their aims and responsibilities? 

 How do the actors interact with each other? 

 In what kind of environment do they interact? What are the boundaries of the 

environment? 

 What are the basic mechanisms in the system? 

 What are the key variables in the model? 

In Denmark there are actually four actors instead of three in the California case. Because some 

of the wind turbines were owned privately at that time. However, since utilities are the buyers 

of this electricity, and they are interested in the producing costs, for modelling purposes this 

separation has no significant impact. Besides, most of the time, installation costs were shared 

between the wind farm owner and the utility meaning that they have partial ownership of the 

farm. For this reason, again the utilities will be considered as the wind turbine owners as well. 

The relationship among the actors and their motives are also the same as California case which 

is shown in Figure 4.3. The reason for having the same actor framework in both cases is due 

the similar mind-set of these actors. For example, the utilities in both cases were mainly 

concerned about the profit due to deregulation of the energy sector in both countries. 

Producers have global goals for selling wind turbines with maximum profit, and they also 

exported their wind turbines showing that the aims of the producers did not change according 

to their location. Finally, both the governments in Denmark and in the United States have the 

priority of secure energy supply, and for this specific case they focused on wind energy as an 

alternative source.  Environmental concerns were existent, however, this resulted in only for 

the preference of wind energy instead of nuclear energy (Buen, 2006). In addition to utilities, 

wind turbine producers are the second main actor, having learning processes and determining 

costs and get the benefits from R&D subsidies. The final actor is the government, aiming to 

help the utilities to install wind turbines by making wind turbines cost competitive, and 

offering subsidies to producers. 
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Figure 4.3 Actors, their aims and responsibilities 

As well as the actors’ own actions, their interactions are important for understanding decision 

flows. An action sequence diagram is shown in Figure 4.4 for showing the relationships 

between the actors. The vertical line represents the timeline. The arrows shows the actions 

happening between corresponding actors.  Some of the actions are continuous throughout the 

process, therefore those are shown in dashed lines.  
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Figure 4.4 Action Sequence Diagram 
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After defining the actors and their interactions, it is time to define system boundaries. The 

duration of the analysis is from 1980 to 1995, to be consistent with the California case. The 

physical boundary is defined as Denmark. The choice of wind power is coming from 

Denmark’s governmental aims, stating that wind power is the only alternative to conventional 

energy generation (Danish Energy Authority, 2001).  

When we look at the overall history of wind turbine diffusion in Denmark, we see that Danish 

producers learned building good wind turbines with mainly experimenting on small scale wind 

turbines (learning by doing). There were also R&D efforts with the research centres and 

governmental efforts resulting in extra knowledge for improvement of wind turbines (learning 

by searching). Due to the determination of government on having wind turbines as an energy 

alternative, the willingness of the society to adopt wind turbines instead of nuclear energy and 

the efforts of Danish Windmill Owners Association; the knowledge share among the adopters 

was strong implying the importance of Knowledge Diffusion via Networks function of 

Hekkert. Also, the decision making mechanism of adopters, which were the utilities, was based 

on maximizing profits.  

Explanation of the remaining questions are given in the next chapter since the system is quite 

similar to the system in California. A common model with different parameters is created in 

Chapter 5, showing the common key variables and active mechanisms in the system. 
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This chapter builds on the previous three chapters. Chapter 2 introduces the theoretical 

framework to be used for building the model, whereas Chapter 3 and 4 gives the storyline of 

the model for California and Denmark case respectively. The following diagram shows the 

structure of this chapter (Figure 5.1). 
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Figure 5.1 Structure of System Description 
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As Figure 5.1 suggests, first the conceptualization questions which were not answered in 

Chapter 3 and 4 will be answered. Then, the active mechanisms in the diffusion will be 

explained with their theoretical relations one by one. In the third section, a common 

conceptual model will be built. Before going through the model implementation, the 

conceptual differences in the cases will be underlined. The fourth and fifth sections will be 

about implementation of the conceptual model into a working one, for California and 

Denmark respectively. Data gathering processes and the sources will be also explained in these 

chapters. After building the working models, policies and their interpretation and 

implementation into the model will be explained. Finally the initial results of the model will be 

presented as base cases. However, conclusions coming from these models will not be 

highlighted here, since validation of the model is necessary (Chapter 6). 

5.1. Finishing up the Conceptualization Phase 

In the conceptualization phases of California and Denmark, these two questions were left 

unanswered:  

 What are the basic mechanisms in the system? 

 What are the key variables in the model? 

The reason for postponing the answers of these questions is the great similarity of the two 

cases. The first three questions answered in Chapter 3 and 4 implies that the structure of the 

cases looks similar. First of all, the main actors in both cases and their aims and responsibilities 

are the same. Secondly, the decision making mechanism of adopters, which is a based on costs 

is the same because in both cases the actors aim to maximize their profits. When we look at 

the Table 2.1. and compare it with the qualitative knowledge coming from Chapter 3 and 4, 

we see that both in California and in Denmark, some of the learning is occurred via learning 

by searching, triggered by R&D investments. Also, both cases showed improvement on 

capacity factors, and investment costs by time, where learning-by-doing phenomenon is 

observed. Also, as it is observed in every diffusion story, knowledge diffusion via networks 

were visible, where the adopters communicate with each other about wind turbine technology. 

The active mechanisms are mainly learning by doing, learning by searching and knowledge 

diffusion through networks. There were no competition of an alternative renewable 

technology at the time, therefore resource allocations and the guidance of the search were only 

focused on wind energy. The existence of these active mechanisms/functions show that both 

cases can be represented with the same structure. Of course, the functioning of these 

mechanisms differ in both cases, but the concepts in the cases will be the same.  

To determine the key variables, three different sources are used. The first one was based on 

the historical results, and the factors which cannot be assessed quantitatively are also based on 

these historical results. For example, the learning rates for capacity factor of wind turbines and 

their investment costs are determined by sensitivity studies by looking at the best fit to the 

historical data in terms of results. For this reason, wind turbine installations per year, capacity 
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factor of wind turbines over time and similar performance measures are determined. Secondly, 

the policy based variables are determined, such as R&D investments, and subsidies. The third 

source of variables is coming from the literature. Since the active mechanisms are 

conceptualized in Chapter 2, the variables affecting these mechanisms are gathered from the 

literature and they put together in feedback mechanisms. There was an iterative and 

simultaneous process in determining the mechanism and the key variables, therefore even 

though one is presented before the other in this report, it is not possible to say that one follows 

the other in conceptualization. Since both of the systems have the same structure, the same 

key variables and mechanisms are active in both of them. Thus, key variables for these cases 

are shown in Table 5.1. 

Key variables for wind turbine diffusion are separated into two categories as endogenous and 

exogenous. Endogenous variables are the ones affecting and being affected from other 

variables, whereas exogenous variables are the ones only affecting the other variables, but not 

getting affected. Also, the variable actor relation is shown in the parenthesis of each variable. 

“U” stands for utilities and “P” stands for producers. There are no variables regarding 

government, since the government is not affected by those (exogenous actor). The change of 

these variables over time will be the outcomes of the model. It should be noted that there will 

be more variables in the model implementation to be able to meaningfully represent the real 

world, however the outcomes of the change in those variables are secondary results, therefore 

they are not presented in the table.  

Table 5.1 Key Variables in Wind Turbine Diffusion 

Endogenous Variables Exogenous Variables 
Wind turbine installations (U) R&D subsidies (P) 

Familiarity with the wind turbines (U) Initial investment cost of wind turbines 
(P,U) 

LCOE of wind (P, U) LCOE of natural gas, oil, hydropower and 
nuclear (U) 

Wind turbine capacity factor (P) Operation cost of wind turbines (U) 
Affinity with the wind turbines (U) Initial wind turbine capacity factor (P, U) 

Affinity with the conventional techs (U) Average annual electricity demand (U) 

R&D based knowledge stock (P) Effectiveness of users, and non-users(U) 
Learning by doing experience stock (P) Tax credits (U) 

 

The reason for having wind turbine installations as a key variable is obvious, since it is the 

main outcome that we are interested in the model. Familiarity with the wind turbines is also a 

key variable, because it represents the percentage of utilities who are aware that the wind 

turbine is an option for generating electricity. Levelized Cost of Electricity (LCOE) of wind is 

also crucial, which is explained in section 5.1.4, because it represents the cost of installing wind 

turbines and producing electricity from it. Wind turbine capacity factor is another variable 
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affected from learning-by-doing and learning-by-searching mechanisms, and it influences the 

performance of wind turbines, leading to an impact on LCOE. Affinity with the conventional 

technologies and the wind turbines are also significant, because these variables are results in 

utilities’ decision making to install wind turbines. R&D based knowledge stock has a direct 

effect on learning-by-searching mechanism, and learning by doing experience stock has a 

direct effect on learning-by-doing mechanism, therefore they are also considered as key 

endogenous variables.  

The exogenous variables are also important since they have an impact on the endogenous 

ones. R&D subsidies have direct effect on R&D based knowledge stock, initial investment 

cost of wind turbines is the starting point for learning-by-doing and learning-by-searching 

mechanisms, LCOE of other technologies affects the decision of the utilities whether installing 

wind turbines are profitable or not, so as the operation cost of wind turbines. Also, initial wind 

turbine capacity factor stands for another reference point for learning-by-doing and learning-

by-searching mechanisms. Average annual electricity demand has an effect on determining the 

demand increase per year and subsequently the new installations for electricity generation. 

Effectiveness of the users and non-users affects the familiarity where the relationship is 

explained in section 5.1.5.  The next question which should be answered is the relationship 

among these variables. To answer this question, each mechanism will be shown in the context 

of wind turbine diffusion.  
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This mechanism was present both in Hekkert’s work and Yucel’s work (2007; 2010). The 

implementation of this mechanism in wind turbine diffusion case is conceptualized as in 

Figure 5.2. 

 

Figure 5.2 Learning by doing mechanism in wind turbine diffusion 

As the Figure 5.2 shows, there is a positive relationship between the cumulative installations 

of wind turbines and learning by doing experience. Experience accumulation results in better 

capacity factors which decreases the costs and increases the installations of wind turbines, 

since people learn on building better and more efficient processes with experience. Similarly, 

experience increases productivity and as a result investment cost of wind turbines decreases, 

resulting in decrease in LCOE and higher wind turbine installations. It should be noted that 

Hekkert’s function 1, entrepreneurial activities are embedded in this learning by doing 

mechanism in an aggregated way. 

This mechanism is widely accepted in economic theory and its role in wind turbine diffusion 

is highlighted by many studies (Ibenholt, 2002; Kamp, 2007; Kemp, Schot, & Hoogma, 1998; 

Klaassen, Miketa, Larsen, & Sundqvist, 2005; Kobos, Erickson, & Drennen, 2006). Thus this 

mechanism is one of the main feedback loops in wind turbine diffusion. 

 

This mechanism is also strongly mentioned by Hekkert in Function 2 and 6, and by Yucel’s 

resource driven change in option properties. The same variables are being affected by the learning-by-

searching mechanism, which are the capacity factor and investment cost of wind turbines. It 

should be noted that in real learning processes, other things are improved as well such as rotor 

blades. However, the capacity factor and investment cost variables carry the improvements on 
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other parts of wind turbines since they are the two key indicators of performance and cost. 

Figure 5.3 shows the relationship between R&D spending and LCOE of wind turbines. 

 

Figure 5.3 Learning by searching mechanism in wind turbine diffusion 

The dashed arrow implies that there could be a relationship between wind turbine installations 

and R&D spending, which could be negative, however, this possible relationship is ignored in 

the conceptual model, since there is no indication of such relationship in the literature and 

governmental R&D supports are highly affected by authorities’ points of view.  

 

Both of these mechanisms influence the same factors, but measuring the contribution of them 

separately is not possible. To model the effects of these mechanisms on capacity factor and 

investment cost Klaassen et al’s work on two factor learning curves is taken as base knowledge 

(2005). 

With the experience of a certain technology, producers learn efficient ways to produce the 

product and therefore the cost decreases. The relationship between learning and cost 

reduction has been found in many empirical studies (Argote & Epple, 1990; Dutton & 

Thomas, 1984).  As a common formula, one factor learning curve is as follows (Koomey & 

Hultman, 2007): 

                                                     𝑆𝑃𝐶 = 𝐴 . (
𝐶𝐶

𝐶𝐶0
)−∝                                                         (1) 
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Where SPC is investment cost per unit for the technology (specific cost) and CC is the 

cumulative capacity at a given time divided by the cumulative capacity at time 0 (CC0). – α is 

the learning factor, and A is the specific cost at time 0. 

This formulation indicates that there is a constant percentage learning rate causing the decrease 

in cost. However, there is no separation between different learning styles in this formula, so 

that learning by doing and learning by searching stand together in it. Hence, this traditional 

formula do not help the policy makers in allocation of R&D resources (Klaassen et al., 2005). 

To overcome this problem, Kouvaritakis et al offered the following formula, including 

cumulative R&D expenditures in addition to cumulative installed capacity (2000). In this 

model, there was a depreciation of R&D knowledge as well. However, this is ignored in this 

study, since there was no proof of missing knowledge on such a short time period of 15 years 

(1980-1995). Additionally, in a one-factor learning curve, learning-by-doing is measured with 

cumulative capacity, and that only depreciates with lifetime of the technology, which is about 

20 years, and the forgetting feature is ignored. To have a more consistent formula, forgetting 

the knowledge coming from learning by searching structure is also ignored. The modified 2 

Factor Learning Curve formula is as follows: 

                                                     𝑆𝑃𝐶 = 𝐴 . (
𝐶𝐶

𝐶𝐶0
)

−∝

. (
𝐾𝑆

𝐾𝑆0
)

−𝛽

                                         (2) 

In this formula (2) KS is the knowledge stock at a given time, where KS0 is the initial 

knowledge stock. β represents learning by searching index. The remaining symbols are the 

same as (1) These separate parts of the formula represent the percentage improvements 

coming from learning by doing and learningy by searching respectively, and to reach the total 

improvement on specific cost these values are multiplied.  

The learning also occurs for performance improvement. For example, with time, the capacity 

factor of wind turbines increases. To model this learning curve the same formula is used, but 

with a percentage increase in performance. The following formula is used for calculating 

learning curves for performance increase: 

                                                     𝑃𝐹 = 𝑃𝐹0 . (
𝐶𝐶

𝐶𝐶0
)

𝛿

. (
𝐾𝑆

𝐾𝑆0
)

𝜃

                                              (3)                                                      

Equation (3) has the same logic as equation (2). PF stands for performance at a given time, 

where PF0 is the initial performance. Learning rates for different performance measures can 

be different, therefore for each measure the values of δ and θ would be different.  
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The purchasing decision is based on the levelized cost of energy (LCOE) calculation. During 

the 1980s, there were environmental concerns but those concerns were only coming from the 

governmental perspective. Therefore, actors’ decisions were mainly affected by the cost of 

generating electricity (Norberg-Bohm, 2000). Also, the only promising renewable technology  

in terms of cost competitiveness was wind turbines (compared to conventional technologies; 

such as nuclear power, coal power and oil based power plants) (Menz & Vachon, 2006). For 

this reason the utilities’ purchasing decision is based on LCOE comparison of different 

technologies, which is modelled as conventional technologies vs. wind. The separation of 

preference among conventional technologies is modelled in an aggregated fashion, since the 

power mix of conventional technologies did not change significantly in the duration of the 

model, and the detailed preferences of conventional technologies are the out of the scope of 

this study.  

Levelized cost of energy (LCOE) is a common method for calculating electricity cost. It is the 

cost of electricity to reach the break-even point over the lifetime of the project for generating 

it from a specific source (NREL, 2013). It takes investment cost, fuel cost, operation and 

maintenance cost into account, and gives an aggregated cost which makes it possible to 

compare electricity cost coming from different sources. It can be written as the following 

formula (IEA, 2005): 

𝐿𝐶𝑂𝐸 =  

∑
𝐼𝑡  +  𝑀𝑡 + 𝐹𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

 

It = investment cost at year t 

Mt = operations and maintenance cost in the year t 

Ft = fuel cost in the year t 

Et = Electricity generation in the year t 

r = discount rate 

n = lifetime of the project 

This formula calculates the net present value (NPV) of each cost for year t and divides this 

total cost by the electricity generation at year t discounted into year 1. However, this common 

method is not very suitable for system dynamics method in its current form, because SD is a 

time based simulation, and NPV calculations in SD is not very reliable. The reason for this is 

due to the nature of system dynamics simulation. For calculating NPV, the costs for the whole 

lifetime should be known, but SD simulations progress step by step over time and do not have 

memory on the values for the whole period. Therefore, another way of dealing with calculating 

LCOE should be implemented into the simulation. To solve this problem, instead of 

calculating NPV of each cost, the equivalent annual cost of investment cost is calculated and 

(4) 
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time dependent costs are left at their time t. Equivalent annual cost (EAC) is the cost per year 

of owning and operating an asset over its lifetime (Short, Packey, & Holt, 1995). 

𝐸𝐴𝐶 =  
𝐼0. 𝑟. (1 + 𝑟)𝑛

(1 + 𝑟)𝑛 − 1
 

I0 stands for the investment costs for the technology (Stoft, 2002). After calculating EAC of 

investment cost, LCOE at time t is calculated in the model as follows (NREL, 2000): 

𝐿𝐶𝑂𝐸𝑡 =
𝐸𝐴𝐶

𝐸𝑡

+ 𝑀𝑡 +  𝐹𝑡 

This final version (6) is used for cost calculation of different technologies, which would be 

more suitable for system dynamics working principles. 

In the model, there is another variable called affinity which is used for modelling actors’ 

decision making process. This variable represents the actors’ possibility of purchasing an 

option under a certain performance. It is generally modelled exponentially as follows (Struben 

& Sterman, 2008). This formula is based on standard multinomial logit choice models in the 

literature. It is a commonly used choice framework for modelling consumer choice among 

different options in the consideration set. In our case the consideration set is wind turbine vs. 

conventional technologies:  

𝑎𝑗 = 𝑎∗exp (−𝛽 [
𝐿𝐶𝑂𝐸𝑗

𝐿𝐶𝑂𝐸∗
− 1]) 

a* represents a reference affinity for the reference LCOE value LCOE*. The reference value 

stands for an normal value that the adopter has an idea about. For example, an actor decides 

whether the given LCOE of the available options are expensive or not by comparing it with 

the reference LCOE*. If the given LCOE is more expensive than the reference value, the 

affinity decreases and vice versa. The reference values are determined separately for 

conventional technologies and for wind turbines. For conventional technologies, the average 

LCOE of all times is taken as LCOE* and then affinity at this value is assigned as 1, because, 

at an average price of electricity generation cost, the utilities will go for the conventional 

methods. After determining reference values of conventional technologies, wind turbine 

reference values are determined accordingly. Assuming that if wind turbine is competitive with 

the conventional technologies, the affinity to the wind turbines is assigned to 1 with lower 

reference LCOE* value, since it is a relatively new technology and utilities will have questions 

in their mind for going for a new technology. Besides there will be switching costs of the 

utilities for moving to a new technology, due to limited experience and unknowingness of the 

new technology. This way affinity is modelled as a decision making process of utilities for 

purchasing wind turbines. 

 

(5) 

(6) 

(7) 
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For modelling familiarity, a qualitative understanding of methods is used and this 

understanding is harmonized with Struben and Sterman’s familiarity work. The third function 

of Hekkert emphasizes the importance of exchange of information among adopters (2007). 

Also, Kamp states that the learning by interacting mechanism was strong in Denmark, which 

was one of the main reasons of successful wind turbine diffusion (2002). Therefore, a 

mechanism representing this exchange of information is essential.  

Hekkert mentions that it is possible to measure function 3 with network size and network 

intensity. To model that, the network size is measured not with the number of utilities, but 

total installed capacity in California and in Denmark. The percentage of wind turbine capacity 

represents the share of wind turbine installations in an aggregated way. Network intensity is 

represented by the variables; effectiveness of contacts with users and effectiveness of contacts with non-users. 

Users stand for the utilities who already installed wind turbines. Non-users stand for all utilities 

except having wind turbines. Familiarity increases with the total social exposure coming from 

effectiveness of users, non-users and external stimulants such as marketing. This increase is 

called familiarity gain and it is represented with nt. The effectiveness of users are calculated by 

multiplying the share of wind turbines over total installed capacity with the familiarity at that 

time and the effectiveness ratio of users on potential adopters. The remaining share represents 

the share of non-users in the network which is also multiplied by familiarity and the 

effectiveness ratio of the non-users. It is assumed that there is a positive relationship between 

the network intensity and effectiveness of contacts, since in a network having strong 

relationships, word of mouth would be stronger. The marketing ratio is then added to the 

formula as an extra motivation in familiarity gain. The formula is shown below (Struben & 

Sterman, 2000): 

𝑛𝑡 =  𝛼 +  𝑐𝑖𝐹 (
𝑊

𝑁
) +  𝑐𝑗𝐹(1 −

𝑊

𝑁
) 

In the familiarity gain formula which is illustrated in 8, α represents the social exposure gained 

by marketing/awareness programmes, ci represents the effectiveness ratio of users, F 

represents familiarity value at that time, W represents the installed mW of wind turbines, N 

represents the total installed capacity for electricity generation in mW and finally cj represents 

the effectiveness ratio of non-users on adoption. 

Familiarity represents the awareness percentage of the utilities with the wind turbines. It is a 

number between 0 and 1. It also decays over time, since people lose familiarity if the social or 

direct exposure to that technology is low. The decay is modelled with the following 

exponential function (Struben & Sterman, 2000): 

∅𝑡 =  ∅0

exp (−4𝜀(𝑛𝑡 − 𝑛∗))

1 + exp (−4𝜀(𝑛𝑡 − 𝑛∗))
 (9) 

(8) 
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In this function which is a characteristic logistic function, nt represents the social exposure 

from users, nonusers and awareness campaigns at time t. n* represents the reference rate of 

social exposure where familiarity decreases at half of the normal rate. The greater the exposure, 

the slower is the decay. ∅0 Is the maximum familiarity decay rate. Familiarity decreases fastest 

when nt is small. ε stands for the slope of the decay rate at a given point. It is assumed that ε 

is 1/n* which normalizes the elasticity of the familiarity decay to exposure at 1. 

After introducing the variables affecting the familiarity, the structure of the mechanism is 

shown in Figure 5.4. 

 

Figure 5.4 Familiarity mechanism 

As can be seen in the picture, familiarity increases with the total social exposure and decreases 

with time. The distinction between the users and non-users is done by looking at the share of 

wind turbine capacity in total installed capacity for electricity generation. 

All main mechanisms and decision making processes are now explained. In the next section, 

how these structures put together is illustrated.  

 

 

 

 

 

 

social exposure

from users

social exposure from

non users

familiarity with

the wind turbines
familiarity loss

familiarity gain

total social exposure

to wind turbines

normal social

exposure

maximum decay

rate

+
+

-+ +

+

+

+



51 
 

 

In a model representing wind turbine diffusion, the mechanisms introduced in the previous 

sections should be put together in a meaningful way. Figure 5.5 shows the conceptual diagram 

of the model, where every mechanism is integrated.  

 

Figure 5.5 Conceptual Diagram of Wind Turbine Diffusion Model 

In brief, there are two main things influencing wind turbine installations. The familiarity with 

them and the affinity with them. Familiarity increases with installations and decreases with 

time. Affinity is a way of comparing wind turbines with other technologies, and deciding the 

level of fondness towards wind turbines. This comparison is based on LCOE comparison of 

wind turbines and conventional technologies. LCOE represents the price of electricity at 

which electricity should be generated from a power source to break even over the lifetime of 

that power plant (NREL, 2013). Therefore, it is a calculation method including both 

performance and cost related factors, like capacity factor and investment cost, which are 

improved over time with learning by doing and learning by searching mechanisms. Demand 

is modelled with yearly installed capacity increase which represents the total capacity increase for 

electricity generation. The main diffusion structure is the same for California and Denmark, 

since actors’ responsibilities, decision making structures and the motives are the same. 

However, there are differences between them in terms of strength of different loops, and the 

policies strengthening or weakening these loops. The conceptual differences between these 

two cases are explained in the next section. 
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5.2. Differences between California and Denmark and Main 

Assumptions 

When we look at the numerical data, we see a lot of differences between California and 

Denmark, such as the R&D spending of governments. However, there are some other 

differences coming from qualitative data, and they should be explained before going to data 

gathering and model implementation phase. Also there are other assumptions regarding the 

mechanisms themselves which should be made clear. These conceptual differences and 

assumptions are as follows: 

- The network intensity and knowledge share was stronger in Denmark, because in 

Denmark there were wind associations and they were publishing informative 

magazines about wind turbines. Such an organization was not present in California 

(Kamp, Smits, & Andriesse, 2004; Norberg-Bohm, 2000). 

- The learning by doing curve is stronger compared to learning by searching curves 

(Kamp, 2007; Klaassen et al., 2005). 

- The learning by doing mechanism is only affected by locally produced wind turbines.  

- The learning by searching mechanism is not state based, but country based, therefore 

R&D spending of whole country for wind energy is more realistic, since R&D based 

knowledge spreads through fast and also most of the activities were in California in 

Unites States. 

- Installed capacity increases with the same yearly rate, which is the average rate of actual 

yearly increases.  

- There is no distinction between onshore and offshore wind turbines since there were 

no significant attempts in installing offshore wind turbines during 1980s and 1990s. 

- The source of production (whether it is locally produced or imported) is not modelled 

in detail, because the model focuses on the installation of wind turbines. However, this 

simplification might affect the learning curves. For instance, if Denmark sold 2000 

wind turbines to California during 1985, and the production of these turbines increased 

the knowledge of Danish producers (Norberg-Bohm, 2000). To compensate this 

omission, learning rate factors were increased in which the results imitate real data.  

- Utilities purchase the wind turbines and operate them, so there is no third actor as wind 

turbine operator.  

- There is no inflation, and all money values are in the form of dollar value of 1980. 

These assumptions are the ones that should be considered while implementing the model. 

The next section explains the implementation process of the model with data sources.  
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5.3. Implementation of the model 

The conceptual model is turned into a working model in Vensim. There were four views of 

the model, the first one is mainly modelling the wind turbine installation process, the second 

view represents the modelling of capacity increase, the third view shows the learning processes 

and finally the fourth view shows the familiarity modelling. The visualization of these views 

can be seen in Appendix A. Also detailed explanations of them are given under the figures in 

the appendix. For checking the detailed equations, please see Appendix B.  

After constructing the model, the data should be filled in for each case. The data source for 

each variable is shown in Table 5.2 and 5.3 respectively for California and Denmark with 

implementation notes. When these data are installed, a simulation of two cases without policy 

interventions is attained. 

Table 5.2 Data Sources for California 

Variable Data Source Notes 

Interest rate (Sawin, 2001) The same interest rate is used for calculating LCOE of 

conventional technologies. 

Operation and Maintenance 

Costs 

 The numbers are taken from Sawin’s work (2001)averaged 

out, and for having realistic results they are also compared 

with the  report published by Lantz, Wiser, & Hand  (2012).  

Capacity factor  (California Energy 

Commission, 2002) 

The reference value in 1980 was 12% and in 2000 was 24%. 

The learning curve fix is made according to these reference 

values. 

Average lifetime of different 

technologies 

(Tidball, Bluestein, 

Rodriguez, & Knoke, 

2010) 

 

LCOE of oil, natural gas, 

nuclear power and 

hydropower 

(EIA, 1996; EIA, 

2014;  Koomey & 

Hultman, 2007) 

It was not possible to find LCOE’s directly. Instead, 

investment cost, O&M cost and fuel costs are found 

separately and LCOEs are calculated. 

Consumption percentages 

for oil, natural gas, nuclear 

power and hydropower 

(EIA, 1999) The percentages are calculated by the given total volumes 

Installed capacity for 

electricity generation, and 

average increase 

(EIA, 2013)   

Initial investment cost of 

wind turbine per kW 

(Sawin, 2001) Also the yearly decrease of this cost is modelled internally 

with the learning curves, real data used as a reference. 

Capacity of a wind turbine (Hau, 2005)  

R&D spending (Kammen & Nemet, 

2006)  

 

Strength of learning curves (Azevedo, Jaramillio, 

Rubin, & Yeh, 2013) 

α and β values show a significant difference for different 

sources. Therefore they were adjusted in the model with 

trial and error. 

Variables used for modelling 

familiarity 

(Struben & Sterman, 

2008) 

The initial values are taken from Struben’s and Sterman’s 

work, but to be able to reach more realistic results sensitivity 

testing is done for these variables, and their final values are 

determined accordingly. 

Time delay of R&D 

information 

(Klaassen et al., 2005)  
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For Denmark, most of the variables are the same, but the values of these variables differ. The 

sources for Danish case data is shown in Table 5.3 

Table 5.3 Data Sources for Denmark 

Variable Data Source Notes 

Interest rate (Sawin, 2001) These interest rate was taken from Danish market 

data 

Operation and 

Maintenance Costs 

(Chabot, 2012) (Morthorst, 2009) The values are converted to 1980 dollar value, as it 

is done with the other monetary variables. 

Capacity factor  (Lantz, Wiser, & Hand, 2012) 

(Bach, 2012) 

The initial capacity factor was 11% and it has 

increased to 25% by 2000. The calibration for the 

model is done with these reference values. 

Average lifetime of 

different technologies 

(Tidball, Bluestein, Rodriguez, & 

Knoke, 2010) 

 

LCOE of oil, coal and 

natural gas 

(BP, 2014; EIA, 1996; EIA, 2014;  

Koomey & Hultman, 2007) 

Investment cost, O&M cost and fuel costs are 

found separately and LCOEs are calculated. Same 

values are used for conventional technologies in 

Denmark with the assumption that these mature 

technologies have similar prices in the world. Also, 

for conventional technologies, the power plants are 

rather inexpensive, but most of the cost is coming 

from fuel price, which is different for Denamark. 

Also, interest rates are used for calculating Danish 

LCOE’s are different. 

Consumption percentages 

for oil, coal and natural 

gas 

(Danish Energy Authority, 2001) The percentages are calculated by the given total 

volumes. 

Installed capacity for 

electricity generation, and 

average increase 

 (EIA, 2013)  Apart from United States, EIA has statistics of 

other countries, including Denmark. 

Initial investment cost of 

wind turbine per kW 

(Lantz, Wiser, & Hand, 2012) Also the yearly decrease of this cost is modelled 

internally with the learning curves, real data used as 

a reference. 

R&D spending (Sawin, 2001)  

Strength of learning 

curves 

(Lanz, Wiser & Hand, 2012) α and β values were not present, instead the 

investment cost decrease is given as a graph, the 

values are determined by sensitivity testing with the 

best fit for the historical results 

Variables used for 

modelling familiarity 

(Struben & Sterman, 2008) The initial values are taken from Struben’s and 

Sterman’s work, but to be able to reach more 

realistic results sensitivity testing is done for these 

variables, as well as taken the qualitative 

information about stronger relationships among the 

actors and their final values are determined 

accordingly. 

 

 After putting all data into the model, policy interventions are added to each case. The details 

of this process are explained in the following section. 
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5.4. Policy implementations in the model 

Wıth a chronological order of implementation of policies, at first California policy 

interventions and how it is embedded in the model is explained, then the same process will be 

followed for the Denmark case. 

 

Energy tax credits from the state and the government 
In 1980, the total of these credits were resulting in about a 50 percent reduction in electricity 

generation costs from wind turbines. These tax reductions continued until 1985. In 1985, 

federal tax credit was ended (25 percent). Also in the same year, state tax was reduced to 10 

percent and it was removed in 1987 (Sawin, 2001). To implement this policy, a percentage 

reduction in LCOE of wind is modelled with a STEP function. This way, the tax reductions 

with the same percentages are reflected in the model as cost reduction. 

The PURPA Act 
The PURPA act has two different policy interventions. The first one is the avoided cost 

subsidy which was given between 1983 and 1987 and the second one is the long term contract 

offers with an electricity price guarantee between 1983 and 1985. 

The avoided cost policy required utilities to purchase power from qualifying facilities (QFs) 

including the wind turbine owners (Norberg-Bohm, 2000). Then, utilities bought the electricity 

from these facilities at avoided cost. Avoided cost is the marginal cost for the utility to produce 

one more unit of electricity (IEPA, 2014). Since QFs decrease the utility’s need to produce 

this additional power, they pay the price to QF which is equal to the production cost of the 

utility. To model this policy intervention, between 1983 and 1985, if the LCOE of wind is 

more than the LCOE of conventional technologies, the difference is decreased from LCOE 

of wind, making the cost of wind same as conventional technologies. The remaining extra 

costs are assumed to be paid by the government.  

Under the PURPA act, California was offering long term contracts which had a guaranteed 

electricity price for 10 years. This offer started at 1983 and finished in 1985 (Martinot, Wiser, 

& Hamrin, 2005). This is not a reduction of cost, but a guarantee of profit, which gives an 

opportunity to wind turbine owners to make relatively the same profit as the conventional 

technologies for ten years. However, in the model, the profit is not modelled, because there is 

not a distinction between the expenses and revenues. To be able to create a similar effect, cost 

reduction is used. For modelling this, the new LCOE offer for these long term contracts is 

calculated by taking the average LCOE of conventional technologies, and adding an extra 

costs (which was 25 1980$/mWh) since the state would not be able to cover the exact profit 

coming from wind turbines. Then an extra demand with this new LCOE is determined with 

the same affinity structure, and a new share of wind turbines of the total demand is installed. 

The logic behind this way of implementation is to imitate the profit that the producer makes, 

not by increasing the revenues, but by decreasing the costs. Note that 25 dollar value is chosen 
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after a sensitivity analysis with the results of yearly installations of wind turbines, because there 

were no data showing the profits of these contracts. 

Energy Policy Act 
Under this policy, the federal government offered 15 $/mWh reduction on electricity cost for 

electricity generation from wind energy in 1990-1991 (Sawin, 2001). This is also modelled with 

STEP function by reducing 15 dollars from LCOE of wind for the given period. 

R&D Funding 
R&D expenditures changed significantly according to the governmental policies. Therefore it 

is modelled as an exogenous variable changing over time (with lookup function) (Sawin, 2001). 

All dollar values are converted to the 1980 dollar value (Figure 5.6).  

 

Figure 5.6 R&D expenditures of US (1980 million $) 

 

 

Investment Subsidy 
In 1979, the Danish Ministry of environment provided 30 percent of the investment costs to 

utilities. This offer was reduced to 20 percent in 1986 and 10 percent in 1987. In 1989, it was 

totally removed with the belief that wind turbines had become cost competitive (Kamp, 2002). 

To model this policy, a STEP function is created with the related percentages and years, and 

a reduction of this cost is directly applied to investment cost, not to LCOE of wind. 

EnergiPlan act 
With this policy, it is made clear that the government focuses on wind based energy and wishes 

to reach a 10 percent wind share in electricity generation in 2000. This clear aim is interpreted 

as an external exposure to familiarity, since these acts creates a secure feeling in the investor 
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by decreasing the uncertainty of the future. Therefore, external exposure to wind turbines as a 

variable is added to familiarity until 1987. The reason for stopping in 1987 is the loss of trust 

to the wind turbines due to failures of some wind turbines. The government also revised their 

goals and put the subsidies back at about this time, indicating that they were also not 

deterministic about their goals towards the end of 1980s (Kamp, 2002). 

10 Year Agreement between the Government and the Utilities 
In 1985, an agreement between Danish government and the utilities was made for 10 years. 

According to this agreement, utilities were paying the wind generated electricity price at 85 

percent of its actual price (Buen, 2006). To model this, 15 percent decrease in LCOE of wind 

is modelled with STEP function from 1985. 

100 MW Wind Turbine Agreement 
In 1988, on behalf of the government, utilities were to install 100 mW wind power by the end 

of 1990. However, the target was reached at the end of 1992. The detailed distribution of these 

installations per year is not known. Therefore, this agreement is modelled with a decreasing 

RAMP function for the given time period which reaches 100 mW in 1992. This addition is 

directly added to yearly local installations. 

R&D expenditures 
R&D spending of Denmark was also changing with time, therefore it is modelled as a time 

based lookup function with 1980 $ value. Figure 5.7 shows Danish R&D spending for wind 

turbines (Sawin, 2001). 

 

Figure 5.7 R&D expenditures of Denmark (1980 million $) 
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After implementing all these policies as the way they are explained. The following initial results 

are gathered, which will be used as a base case for the next chapters. The following figures 

show the real vs. model results for yearly installed capacity for California and Denmark 

respectively. 

 

Figure 5.8 Yearly installed capacity - California real data vs. model results 

 

 

Figure 5.9 Yearly installed capacity - Denmark real data vs. model results 

As Figures 5.8 and 5.9 shows, the model is able to capture the major changes in wind turbine 

installations. Since the aim is to catch the behaviour instead of the exact data, the results of 

the model is promising. However, without a validation study the model is not trustworthy, for 

this reason the next chapter will be about the verification and the validation of the model.  
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The aim of this chapter is to test the model from various aspects to understand whether the 

model fits its purpose or not. This way, the purposefulness and the usefulness of the model 

will be analysed. It should be noted that all models are wrong since they are the simplified, 

limited versions of reality (Sterman, 2000). However, this does not necessarily mean that all 

models are useless. If the model’s representation of the real world shows plausible results for 

the purpose, then it can be a helpful tool for understanding the system at hand. Therefore, 

various tests have been suggested in the literature for showing the usefulness of the model. 

The next section offers a verification and validation design for the model created for diffusion 

of wind turbines in California and Denmark by combining some of the widely used methods 

in the literature. Then the second section in this chapter explains the implementation process 

of these tests, and finally the last section reflects on the results from the tests, and gives a 

conclusion about the usefulness of the model. 

6.1. Verification and Validation Design 

Verification stands for checking whether the model is coded into the simulation correctly. It 

verifies the relationship between the simulation model and the conceptual model, and looks 

for flaws that might occur during the implementation process. On the other hand, validation 

analyses whether the conceptual model, and consequently the simulation model represents the 

reality adequately keeping the purpose in mind. It could be interpreted as quality assurance of 

the model (Yucel, 2013). 

Many different tests for verification and validation are suggested in the literature, which are 

both qualitative and quantitative. However, choosing one of these tests and implementing it 

would be insufficient, because the aspects that these tests are focusing on are different. For 

this reason, the following verification and validation design is constructed by combining 

Sterman’s and Barlas’ work. The design can be seen in Figure 6.1 (Sterman, 2000; Barlas, 1996). 
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Figure 6.1 Verification and Validation Design (Barlas, 1996; Sterman 2000) 
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This design starts with a structure assessment test which looks at whether the model is 

consistent with the real world and also with the literature. This step has a qualitative nature. 

Boundary adequacy test analyses whether the model has all the necessary feedbacks or not, and 

also checks for the presence of unnecessary feedbacks. Structure confirmation test looks for 

whether the level of aggregation is appropriate, the representation of decision rules conforms 

to reality and model structure is consistent with the descriptive knowledge of the system 

(Sterman, 2000). Parameter confirmation test checks whether all parameters have real world 

counterparts, and if not whether they are acceptable (they are acknowledged in theory). 

Dimensional consistency test looks for the units in equations and checks whether the units of the 

right hand side of the equations are consistent with the left hand side of the equations without 

having parameters with no real world meanings (such as $3/mWh2).  If the model passes all of 

these tests, then it is possible to say that the model is structurally valid (Barlas, 1996). Then 

the second phase of validation is performed which are Structure oriented behaviour tests. 

Structure oriented behaviour tests are conducted quantitatively on the simulation itself and 

looks at the behaviour changes in the model under different circumstances. Extreme condition 

test evaluates the validity of the equations by checking the plausibility of the simulation results 

under extreme conditions and comparing the results with the logical expectations in real world 

for the same extreme conditions (Barlas, 1996). For example, if the price of wind turbines is 

extremely high, no one would buy the product, therefore there will not be any learning coming 

from learning-by-doing process. Behaviour sensitivity test looks for the model’s behaviour change 

and its sensitivity to parameter responses. The sensitivity could be in three forms: Numerical 

sensitivity, behavioural sensitivity and policy sensitivity. Numerical sensitivity stands for the 

change in a parameter resulting in the numerical values of the results. Behavioural sensitivity 

stands for a change in a parameter resulting in the behaviour mode of the model, such as if 

the adoption of wind turbines grows exponentially instead of reaching an S-curve. Policy 

sensitivity stands for a change in a parameter reversing the impact or desirability of an applied 

policy (Sterman, 2000). When these structure oriented behaviour tests are passed successfully 

by the model, it is possible to conclude that the model behaves realistically under different 

circumstances, and the next step in validation can be conducted. 

The final step in validation checks the fit of the model behaviour with the real world data. R2 

metric and mean absolute error (MAE) metric are two of the commonly used statistical metrics 

looking for the fit of model data with the real world data. This final step built on previous 

steps shows that the model is not only structurally satisfactory but also able to reproduce 

similar outcomes as the real world.  

To measure the effectiveness of these tests key performance indicators (KPIs) should be 

defined. For testing diffusion of wind turbines model, the following variables are chosen as 

KPIs: 
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 Total installed capacity of wind turbines 

 LCOE of wind 

 Yearly local installations of wind turbines 

 Percentage of wind turbine capacity  

 Familiarity with the wind turbines 

LCOE of wind has the capacity factor and investment cost per kW in it, and these two variables are 

affected by learning by doing and learning by searching mechanisms. Both yearly local installations 

of wind turbines and total installed capacity of wind turbines are chosen as KPIs because it is possible 

to have different installation rate per year and have the same cumulative total capacity of wind 

turbines in the end. Percentage of wind turbine capacity is also important for checking the diffusion 

not only in absolute numbers but also in percentage of installed capacity. Familiarity with the 

wind turbines is a necessary but not sufficient condition for diffusion of them, therefore as a 

performance indicator, it can give insightful results. 

The next section performs the tests explained in this chapter with the logical order shown in 

Figure 6.1. Some of the tests are qualitative and general, therefore direct influence on KPIs 

will not be stated for those, whereas for the others the results of the test for each KPI will be 

shown. 

6.2. Implementation of the tests 

This section starts with structure assessment tests. If the model passes these tests, structure 

oriented behaviour tests will be conducted. If the model fails, the modifications for making 

the model will be applied and the same tests will be conducted again until the model passes 

those. This procedure will be followed for the other steps as well, which are structure oriented 

behaviour tests and behaviour pattern tests. 

 

The following tests aim to check whether the model is consistent internally and it adequately 

represents the notions in the literature as well as in the real world. Boundary adequacy test, 

structure confirmation test, parameter confirmation test, and dimensional consistency test will 

be conducted respectively.  

6.2.1.1.  Boundary Adequacy Test 

This test is qualitative in nature, looking for the sufficient representation of the real world in 

the model. It compares the feedbacks in the model by checking unnecessary exogenous 

variables and the exogenous variables which could be important in the model, so which should 

be represented endogenously (Sterman, 2000).  

For the wind turbine diffusion model, the full list of exogenous variables is given in Appendix 

C. As it can be observed immediately, most of these variables are not affected by the wind 

turbine diffusion. One critical variable which could be also modelled as endogenously is 



64 
 

operation cost of wind turbines, which could be interrelated with the performance of wind turbines, 

and indirectly with learning mechanisms. However, in the literature, no study was found 

explaining this relationship. Also, the operation cost has a small effect on LCOE of wind turbines 

due to its small value compared the equivalent annual cost of wind turbines. In sum, there is 

not a significant effect of modelling operation cost of wind turbines exogenously. 

Another critical variable could have been the average lifetime of wind turbines, since that variable 

would also be influenced by learning mechanisms, but the lifetime of wind turbines did not 

change significantly since 1970s. Considering the duration of the model, taking this variable as 

constant is an acceptable assumption which would not have crucial impacts on the model 

behaviour.  

It is possible to say that the model confirms the boundary adequacy test by making important 

variables endogenous. Additionally, the model has all important feedbacks and does not 

include the extra feedbacks in line with the descriptive story and the literature as it is explained 

in Chapter 5.  

6.2.1.2.  Structure Confirmation Test 

Structure confirmation test looks for whether the level of aggregation is appropriate, the 

representation of decision rules conforms to reality and model structure is consistent with the 

descriptive knowledge of the system (Sterman, 2000). 

This model analyses the diffusion of wind turbines from a governmental perspective. 

Therefore, the level of aggregation is designed accordingly, and the detailed trade interactions 

in the market are omitted. Decision rules of the utilities are based on LCOE, which includes 

the capacity factor and the cost, so in a sense it has both cost related factors and the 

performance related factors in an actor’s decision making, which is similar to real life. Besides, 

LCOE is also frequently used in investment decisions for power plants. Again, as it is stated 

in the previous section, the descriptive story fits to the model as it was shown in Chapter5. 

Thus, it is possible to conclude that the model passes structure confirmation test. 

6.2.1.3.  Parameter Confirmation Test 

Parameter confirmation test checks whether all parameters have real world counterparts, and if not 

whether they are acceptable (they are acknowledged in theory). As the names of the variables 

suggest, most of them have real world counterparts. But there are some variables which are 

not observable in real life, therefore the justification for each of them is explained in Appendix 

D. 

As the explanations in the justification table shows, it was unavoidable to have variables not 

having real world counterparts, but these variables are existent in the literature and therefore 

they are often used (Ibenholt, 2002; Klaassen, Miketa, Larsen, & Sundqvist, 2005). Thus, the 

validity of the model from parameter perspective is also sufficient. 
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6.2.1.4. Dimensional Consistency Test 

Dimensional consistency test looks for the units in equations and checks whether the units of the 

right hand side of the equations are consistent with the left hand side of the equations without 

having parameters with no real world meanings (such as $3/mWh2).  In the model, the 

variables having real world counterparts have consistent units with the real world. For the 

parameters not having real world meaning, if it is appropriate, “dimensionless” (Dmnl) is 

chosen as a unit. Dmnl unit is acceptable for the factors representing percentages, or for the 

factors that are not possible to assign a meaningful unit. The units of each variable is shown 

in Appendix B. An explanation is necessary for the variables related with familiarity with the wind 

turbines stock. This stock can be understood as a percentage, and its value changes between 0 

and 1 as a multiplicative factor. Therefore, if there would be a unit of this factor, it would add 

an extra dimension, whereas in real life this value captures the cognitive processes that the 

utilities learn information about to wind turbines to consider it as an option. If everyone is 

familiar with wind turbines this value reaches 1, and if no one is familiar with the wind turbines 

this value is 0. Apart from their implication as a percentage, in the familiarity study of Struben 

and Sterman, this value was also modelled as dimensionless (2008).  

Another variable set that might raise a question is the alpha and beta values on learning curves. 

These values are also representing learning rate in literature, therefore they should be 

dimensionless. For affinity, to have a units of measure, aff is assigned as an arbitrary unit. That 

also does not affect the consistency of units. There was no need for parameters with 

meaningless units for ensuring dimensional consistency. Finally, when the “units check” test 

is conducted in Vensim, the program did not give any errors, except warning messages 

regarding table functions of LCOE. Ideally, in system dynamics, table functions should be 

dimensionless. However, in this model, table functions are used as a way of importing external 

data into the model, by taking the x axis as time, and y axis as the imported date. With this 

kind of usage it can be considered okay to have units for those variables.  

With the justifications for variables with no dimension, the units are consistent in the model 

with no futile units. Therefore it is possible to conclude that the model is valid from 

dimensional perspective. 

This last test has been also passed by the model, which was the last step in ensuring structural 

validity. The results of these tests show that the model is structurally valid, therefore it is 

possible to conduct structure oriented behaviour tests. 
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Structure oriented behaviour tests are conducted quantitatively on the simulation itself and 

looks at the behaviour changes in the model under different circumstances. Extreme condition 

test evaluates the validity of the equations by checking the plausibility of the simulation results 

under extreme conditions and comparing the results with the logical expectations in real world 

for the same extreme conditions (Barlas, 1996). Behaviour sensitivity test looks for the model’s 

behaviour change and its sensitivity to parameter responses. In this section, both of these tests 

will be conducted and according to the results, whether the modifications will be done in the 

model, or the last phase of validation will be implemented. 

6.2.2.1. Extreme Condition Tests 

For this test it is necessary to have some hypotheses for extreme conditions. If the model 

behaves as expected under given extreme conditions, then it is possible to conclude that the 

model behaves realistically under supreme conditions. The hypotheses to be tested are listed 

below: 

 If LCOE of wind is extremely high compared to conventional alternatives, there will not 

be any wind turbine installations. 

 If LCOE of wind is extremely low compared to conventional alternatives, the percentage 

of wind turbines installed will increase rapidly. 

 If familiarity with the wind turbines is zero, there will not be any wind turbine installations. 

 If familiarity with the wind turbines is 1, there will be a considerable increase on yearly 

installations. 

 If the alpha values for learning by doing are zero, the LCOE decrease would be quite 

low. (Learning would come only from R&D expenditures which is less strong than 

learning by doing). 

 If the beta values for learning by searching are zero, the LCOE decrease would be 

lower than the actual model, but it will get affected less, compared to alpha values. 

 If both alpha and beta values are zero, there will not be any learning effect on capacity 

factor, capacity, investment cost and consequently on LCOE of wind. 

These hypotheses are tested one-by-one both for California case and Denmark case. The 

results for each hypothesis are shown in Appendix E. The results show that the model 

behaves realistically under extreme conditions. 

6.2.2.2. Behaviour Sensitivity Test 

This test looks for the changes in model’s behaviour for the changes implemented in 

exogenous variables. In other words, it looks for the sensitivity level of the model for the 

changes in variables. All exogenous variables are altered with 10 percent for conducting this 

test with random uniform distribution. Both univariate analysis, where the variables are 
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changed one-by-one is conducted, and multivariate analysis where some variables are altered 

simultaneously is conducted. The results are shown in Appendix F. As the results suggest, the 

model is quite robust to changes in variables, it is numerically sensitive to most of the realistic 

alterations. Also for the variables having no real wold counterparts, the sensitivity testing 

showed that the model is only numerically sensitive to these variables, indicating that the 

assumptions of the quantification do not cause a significant difference in the model. Note that 

sensitivity analysis is quite important also for the variables not having real world counterparts. 

The variables in this model such as maximum decay rate, effectiveness of contacts with users, non-users 

are all variables with no real world meaning, but supported from the literature. Yet, the results 

of sensitivity analysis showed that these variables only affect the model in a numerical way, 

and do not interfere with the model’s behaviour at a significant level validating model’s 

robustness. When we look at the results, we see that alpha and beta values have a greater 

numerical sensitivity, which can raise questions. However, since alpha and beta values 

represent the learning rates in percentages, 10 percent sensitivity analysis already means a 

significant change. Learning with 80 percent and 72 percent rate has immediate effects on cost 

reduction, and people are sensitive to price changes for adoption, and as a result learning rates 

affect the model numerically. Yet, this does not need to be considered as a flaw in the model, 

because if the improvements in cost and capacity factor of the wind turbines were to be higher 

in real life, it is sure that the adoption rate would have increased.  

There are some combinations of variables causing behavioural sensitivity after 75 percent 

confidence bounds, which should be taken into account while testing policies. However, to 

reach this effect, many combinations of policies is required to alter all of the variables, which 

is unrealistic. Therefore, if the policy testing is conducted carefully, the model is reliable 

according to the sensitivity results. 

 

For making a statistical comparison between real installations and the model’s results, R2 and 

Mean Absolute Error/Mean (MAE/Mean) metrics are calculated. These tests are looking for 

point by point to fit of model’s results with the real data. R2, which is called coefficient of 

determination, measures the variance changes of the model compared to real data. If the model 

shows the exact behaviour with the real data, then R2 is one. If the result is 0, it means that 

the covariance of the real data and the model’s results is 0. Therefore, the closer R2 is to 1, the 

better fit is obtained. 

MAPE measures the average error between the model’s results and real data. Since the yearly 

installations during 1980s is close to 0, MAPE does not show realistic results, because the 

percentage change becomes too high even though the real change between values are not that 

high. For example, if there is 0 mW installations in real data and this value is 1mW in the 

model, it is not possible to calculate the MAPE value (Sterman, 2000). Therefore, instead of 

using MAPE, MAE/Mean test is used. This test, also brings the average error of the model I 

(11) 
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terms of percentage, by taking the means of the real data and the model’s results into account. 

The formulas for R2 test and MAE/Mean tests are shown below:  
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The reason for using both R2 and MAE/Mean tests is because they measure different things. 

MAPE/Means shows the percentage error of the data, but two data series with different 

structures could have the same value for MAE/Mean. To see the fit in terms of pattern of 

data R2 test is also important. Having both of these results will give a healthier understanding 

for the fit of model’s data into real results. 

These tests are conducted for three different KPIs, which are investment cost per kW, yearly 

installations and cumulative installations in mW. The reason for choosing these variables is 

because the only available data on a yearly basis was these factors. Also, yearly and cumulative 

installations fit behaves as a test for the whole model, whereas investment cost per kW is a 

specific test for the sub-model of learning curves. 

In Table 6.1 the results of these tests for California and Denmark is shown. For seeing the 

yearly numbers, please see Appendix G. 

 

 

 

 

 

 

(10) 

 

(11) 

 

(12) 

(13) 
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Table 6.1 R-square and MAE/Mean Test Results 

  R2 MAE/ 
Mean 

Comments 

C
a
li

fo
rn

ia
 

Investment 
cost per kW 

0.96 0.01% This result shows that the learning curve fit of California case 
is quite good, because learning factors of alpha and beta fits 
with the literature, and the results fit quite well with the real 
data. 

Yearly 
installations 

0.82 11% The R2 fit of this data is also acceptable since it can still be 
considered as 80 percent fit. Also MAE/Mean is about ten 
percent, which is higher compared the other results but in 
absolute terms 11 percent of error is acceptable. 

Cumulative 
installations 

0.96 1.87% The results show that cumulative installations fit well with the 
real data. 

D
e
n

m
a
rk

 

Investment 
cost per kW 

0.88 1.34% The results show that cumulative installations fit well with the 
real data. 

Yearly 
installations 

0.73 1.33% The reason for having a low R2 value for this variable is due to 
government’s installation of 100 mW during 1988-1992. The 
actual installations per year is not known, but in the data there 
were two hunches which is assumed to be the installations 
coming from government. However, due to modelling 
considerations, this installation is done in the model by 
installing 25 mW per year, which has a different pattern than 
real data. 

Cumulative 
installations 

0.98 2.75% The results show that cumulative installations fit well with the 
real data. 

 

As the high rate of R2 tests and low percentage errors of MAE suggests, the model is able to 

reproduce the real life data successfully. 

6.3. Discussion of the results and Conclusion 

The validation study concludes that the model fits to the purpose, there are no missing or 

extra feedback loops compared to real story and it fits well with the theory in innovation 

diffusion literature. Besides, the model behaves as expected under extreme conditions, and it 

is robust to changes in variables within 10 percent range. Finally, the model is able to generate 

realistic results with an acceptable error margin. As a result of these validation studies from 

different perspectives, it is possible to conclude that the model is able to capture the main 

mechanisms in real innovation diffusion stories of California and Denmark, from the 

governmental perspective. In brief, this Chapter shows that it is safe to use this model with 

the purpose of comparing the governmental policies for wind turbine diffusion in Denmark 

and California. The next chapter explains the main similarities and differences between the 

initial settings of California and Denmark, and then it explains the base case results in a 

comparative manner. Then policy testing is done in both cases to see the effectiveness of 

different policies on the model. 
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The stories of California and Denmark are well known for wind turbine diffusion in the 

literature. This chapter explains these differences by using the models created. First, the 

model’s base case results are discussed in a comparative manner. Then, the differences 

between the model’s initial settings are explained where there are no policies. Thirdly, policy-

by-policy the differences and the effects of these policies on the installations are explained. 

Finally, the insights gathered from this comparison are explained.  

7.1. Comparison of the Model Outcomes of California and Denmark 
The initial results of the model were given in Chapter 5 in Figure 5.8 and Figure 5.9. Since the 

validation of the model is provided in Chapter 6, it is safe to reflect on these results. California 

has two waves of installation, the first wave is coming from the combination of the PURPA 

act and the long-term-contracts. These demand-pull policies offered a cost competitive 

environment for wind turbines, but they did not last long. When they are cancelled, again the 

wind turbine demand decreased significantly, because the level of adoption did not lead to a 

learning curve making the wind turbines cost-competitive. Then the second wave also came 

from the demand-pull policy of 15 $/mWh reduction on the LCOE of wind turbines, making 

the option competitive again. Yet, this does not help the utilities to keep the demand growth. 

As is clear from the Figure 5.8, California’s adoption level goes back to the start level once the 

demand-pull policies removed. The reasons behind this loss is due to the low familiarity ratio 

among the utilities, their network were weak and there were no attempts to bring them 

together or keep them informed about the new technology. In addition, the utilities in 

California were not that vulnerable to the oil price compared to Denmark as it is explained in 

Section 7.2. 

When we look at the model’s results and the real results of Denmark in Figure 5.9., the 

increasing trend of the graph stands out. The reason for this is twofold. First, after a certain 

level, wind turbines become cost-competitive, not because Denmark improved the wind-

turbines tremendously, but because the conventional alternatives were quite expensive for 

Denmark. The second reasons is that the mind-set of the society and the government was 

clear from the beginning, showing a determination and hence increasing familiarity towards 

wind turbines. Also the policy implication of government installing wind turbines of 100 mW resulted 

in as a temporary boost in installations, because it is not a policy directed to the causes of 

adoption, but it is directed to the end result. Yet, note that this installations improved the 

learning curves and familiarity, but not directly. 

The model’s results show a good fit to the real data, and it promise plausible explanations for 

the fluctuations of the graphs in both cases. To understand the causes of differences in these 

two cases, the initial settings of the models, and the effectiveness of policies are tested in the 

following sections. 
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7.2.  Initial Settings for California and Denmark 
Although the active mechanisms for California and Denmark are claimed to be same, there 

are important differences in the initial settings triggering these mechanisms. These differences 

are illustrated in the model by determining the initial values of variables as well as the values 

of exogenous variables. The initial values for the variables for both cases are given in Table 

7.1. 

Table 7.1 Initial Settings of California and Denmark Model 

Variable CA DK Comments 

Alpha value for 
learning by doing on 

capacity factor 

1.07 1.07 Capacity factor learning did not show significant changes between CA and 
DK, therefore in the model, this variable is treated as a global value with 
the same values. 

Alpha value for 
learning by doing on 

investment cost 

0.88 0.95 When we look at the investment cost at 1980 and investment cost at 1995, 
we see that CA had much impressive learning curve compared to DK. 
(For investment costs, the lower the alpha value, the greater the learning 
impact, since it represents the percentage reduction on the cost). To 
capture this effect in the model, alpha and beta values of CA is given 
higher than DK. Also, as Hekkert et. al mentions, learning by doing is 
hugely affected from entrepreneurial activities (2007). In Denmark the 
entrepreneurs were producing agricultural equipment before, therefore 
they learned slowly with trial and error (Karnoe & Garud, 2001)  

Beta value for 
learning by 

searching on 
capacity factor 

1.04 1.04 Since capacity factor is treated as a global value, this learning effect is also 
the same. The reason it is lower than alpha value is based on literature 
(Kamp, 2002). 

Beta value for 
learning by 

searching on cost 

0.90 0.96 The reason to have lower value for CA which results in better cost 
reduction is due to available data. Note that these beta values are also less 
effective compared to alpha values which is based on literature (Kamp, 
2002) 

Effectiveness of 
contacts of nonusers 

0.38 0.45 Since the communication among potential adopters in DK was higher 
than CA due to published Naturlig Energi magazine where the 
performances of wind turbines was made public (Kamp, 2004). This 
magazine helped them to  For this reason, the effectiveness of contacts 
of non-users are assumed to be 15% less in CA. 

Effectiveness of 
contacts of users 

0.68 0.8 Communication between the users of wind turbines were also higher in 
DK due to Wind Meetings where knowledge and experience were shared 
between manufacturers, owners and researchers. They also established 
Danish Windmill Owners Association (Kamp, 2004). For this reason, the 
effectiveness of contacts of users are assumed to be 15% less in CA. 

Initial familiarity 

0.25 0.25 Initial familiarity with the wind turbines were low but not zero for both 
cases. Both CA and DK had historical experiences with wind turbines (see 
Chapter 3 and 4) and they were familiar with the windmills. There were 
no real indication of familiarity difference between two cases in the 
literature, therefore they are assumed to be the same.  

Initial installed 
capacity for 

electricity generation 

55000 7072 This number is based on EIA data, reflecting the real values. 

Initial investment 
cost of wind 

turbines per kW 

2500 
 

1322 This data is taken from the literature and converted to 1980’s dollar value. 
(Sawin, 2001; Lantz et al 2012). 

Interest rate 
0.66 

(mean) 
0.77 

(mean) 
The interest rates are also taken from the literature (Sawin, 2001). 
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0.0265 
(stdev) 

0.0172 
(stdev) 

Maximum decay rate 

0.42 0.42 Maximum decay rate for both cases are assumed to be same, because this 
value represents the reference value for forgetting rate. Due to differences 
in cultures this number could differ, but in general, people tend to forget 
the new technology when the exposure is not frequent enough (Struben 
& Sterman, 2008). Since this situation is valid both for CA and DK the 
same value is used in the simulation. 

Normal social 
exposure 

0.20 0.20 Similar to maximum decay rate, this value represents the reference value 
for forgetting rate. When it is 0.2 it means that familiarity decays with the 
half of the maximum decay rate. Since maximum decay rate is assumed to 
be the same for both cases, it is reasonable to take the same reference 
value for normal social exposure, ensuring the decay behaves the same 
for both cases. 

Operation cost of 
wind turbines 

14.19 
(mean) 

3.53 
(stdev) 

12.73 
(mean) 
3.391 

(stdev) 

These costs change over time, therefore their mean and standard 
deviation is given in the table.  

Percentage increase 
of installed 

electricity capacity 
per year 

2.5% 2.5% This values are also calculated on average, by looking at the net changes 
of installed capacity between 1980 and 1995 (EIA, 2012). The average 
capacity increase per year for both cases turned out to be the same  

Sensitivity value for 
wind turbines 

 

1 1.8 The reason for taking Danish utilities’ sensitivity values higher than 
California is due to market’s results. When weighed average cost of 
conventional methods and LCOE of wind is examined, it is observed that 
standard deviation of the prices is much higher in Denmark compared to 
California. This situation implies an insecure market structure with more 
sensitive buyers to price. The numbers are calibrated with the fit to 
historical data. For both values DK values are 1.8 times higher than CA. 

Sensitivity value for 
conventional 
technologies 

0.54 1 

Weighted average 
cost of conventional 
methods (Average 

LCOE) 

24.87 
(mean) 
2.607 

(stdev) 

61.61  
(mean) 
11.63 

(stdev) 

These values are based on historical data. Since the value changes over 
time the mean and the standard deviation is given in the table. As it can 
be seen, the prices are more stable in California. 

LCOE of wind 
31.75 
6.95 

56.83 
19.68 

These values are calculated by the model, but to show the changes in the 
price over time it is added to the table.  

 

As the comments in Table 7.1 indicate, the main differences between California and Denmark 

is coming from effectiveness of users and effectiveness of non-users, as well as the learning 

rates regarding investment cost.  
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Denmark California 

  

Figure 7.1  Sımulated Wind Turbine Installations with and without Policies in DK and CA 

As is clear from Figure 7.1 the initial settings lead to a considerable amount of installations in 

Denmark whereas there are few installations in California. The reasons for this can be 

explained with these combined effects of variables: 

- First of all, utilities in Denmark are more sensitive to price changes in energy, because 

they purchase all of the resources from outside at very high prices compared to 

California. This situation results in easy switching to a new energy alternative, since 

their satisfaction with the current ones are not that strong. 

- Secondly, the effectiveness of users and non-users for triggering adoption is higher in 

Denmark, and this is beyond the power of government, because this effectiveness was 

coming from the bottom, where the investors and entrepreneurs worked together for 

effective communication in Denmark. Such a movement is not observed in California 

case. When the effectiveness of users and non-users is stronger, this triggers the 

feedback mechanism of familiarity, and familiarity has a multiplicative effect on 

demand share of wind turbines. In a way, it is a percentage value representing the rate 

of utilities who are aware of the advantages and disadvantages of wind turbines. 

Without awareness it is not possible to consider the wind turbines as an option. This 

ratio was higher in Denmark as a result of triggering more adoption. 

- The learning curves were also effective in these results, but in a subtle way. The key 

criterion for adoption is to have a profitable value for wind turbines compared to 

conventional technologies, not to have the lowest value in the global market. Since the 

cost of conventional technologies was already high in Denmark, with the cost 

reductions coming from learning curves, it was easier to reach the desirable LCOE in 

Denmark. On the other hand, in California, the cost of generating electricity from 

conventional sources was already cheaper, and as a result, the learning curves had to 

be more effective to reach a desirable cost. For this reason, Denmark was more 
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promising for wind turbine diffusion initially, which already creates an advantage for 

the diffusion process. 

 

It is also important to look at the stimulating effects of the policies implemented by local and 

federal governments, because as Figure 7.1 shows, the diffusion without any intervention was 

not satisfactory in both cases (It was less than 0.5% both for Denmark and California). In 

Chapter 5, the kind of policies followed by the authorities and how these policies were 

implemented in the model was illustrated now, the results of these policies are shown in the 

next section in a comparative manner. 

7.3.  Policies and their effects on wind turbine installations for 

California and Denmark 
Here, for the policies existing in both cases, the results with and without that policy is 

compared in both cases. For policies having similar mind-set but different implication, a 

similar comparison is also conducted. For unique policies which is non-existent in the other 

case, what-if analysis is done by adding that policy to the lacking case. The results are compared 

and analysed policy-by-policy. 

R&D efforts basically triggers the learning by searching mechanism, which leads to a decrease 

in LCOE of wind turbines, increasing the attractiveness of wind turbines as an energy 

generation option. However, to what extent these R&D investments are effective? The models 

suggest the following results: 

California Denmark 

 
 

Figure 7.2 Effect of R&D investments on cumulative wind turbine installations 

As Figure 7.2 shows, there is a little improvement in wind turbine installations with R&D 

efforts. It is important to note that, in total the United States spent 538.5 million (in 1980 $) 
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from 1980, where in total it spent 200 million from 1970 to 1980 for R&D of wind turbines. 

On the other hand Denmark spent 33.9 million from 1980 to 1995, and they spent 12.5 million 

from 1970 to 1980 which was treated as an initial value (Sawin, 2001; Norberg-Bohm, 2000). 

These results show that, learning by searching mechanisms are not enough for effective 

diffusion, because it takes time to reach a cost competitive results for a new technology only 

by learning by searching. In the meantime, since the new technology is expensive, there is no 

or little adoption, and this situation results in a decrease in familiarity, because familiarity 

requires a certain ratio of social exposure. One of the main sources of social exposure is the 

adopters, and the word of mouth coming among non-adopters about the technology, which 

is not triggered effectively in this policy. 

To show that the importance of the amount spent for R&D research, the amount spent for 

the U.S. is used as an input in the Denmark case and the results are compared with the original 

ones. The graph showing these results are shown below: 

 

Figure 7.3 Comparison of R&D spending of California and Denmark on Denmark Case 

As the previous explanations supports, Figure 7.3 shows that there is a little effect of R&D 

spending when it is used as only policy instrument. However, it should be noted that, with the 

learning by doing mechanism, the R&D efforts become more important, because it is a 

percentage improvement on top of the learning by doing mechanism. When there are few 

installations, the learning-by-doing mechanism remains ineffective, and the additional 

improvement coming from learning-by-searching mechanism becomes insufficient by itself. 
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Although the graph is not shown here, when Denmark’s R&D spending is added to California 

model, similar results are obtained. 

In California, subsidies were offered in terms of tax credits. From 1980 to 1985 the tax credits 

were directly targeted to the LCOE of wind turbines, and the value was about 50%. In 1985 

this value was reduced to 25%, then to 10% and finally to zero in 1987. In addition to this tax 

reduction, under the Energy Policy Act, 15 $ per mWh reduction is applied to the LCOE of 

wind turbines. In Denmark, there were two types of subsidies. From 1980 until 1989, there is 

investment subsidy, which behaves like a tax reduction directly on investment cost. It started 

with 30% and then reduced to 20% in 1985, 15% in 1986, 10% in 1987, and removed in 1989. 

In addition to this tax reduction, the government agreed with the utilities to offer 15% 

reduction in the LCOE of wind turbines starting from 1985. In the following graphs, the 

effects of these reductions on installations will be shown one-by-one. 

California Denmark 

 

Effect of tax credits 

 

Effect of investment subsidies 

 
Effect of Energy Policy Act 

 

Effect of 10 year agreeement 
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Figure 7.4 Effects of subsidies on wind turbine installations 

As the graphs in Figure 7.4 shows, the subsidies in general are more effective than R&D 

efforts, but they do not contribute to the diffusion significantly. The Energy Policy Act 

remains ineffective when it is implemented in isolation, because since the learning by doing 

mechanism is inactive due to low installations, the cost reduction is not enough to make wind 

turbines competitive with a 15 $ subsidy per mWh. It is also important to note that the effect 

of investment subsidies is similar to the subsidies offered on LCOE, because a significant part 

of LCOE belongs to investment cost in wind turbine technology, since there is no fuel cost 

and little operation cost. 

An equivalent form of the PURPA act was not in the agenda of Danish government at that 

time, therefore here the results are shown for California and also the policy is artificially added 

to Denmark model to observe the possible effects on Denmark. PURPA basically works like 

a feed-in tariff and government offers to compensate for the extra cost of generating electricity 

from wind turbines compared to conventional technologies. This policy was active in 

California between 1983 and 1987. This policy is implemented to Denmark model with the 

same values. The results are shown below: 
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Figure 7.5 Effect of PURPA act on wind turbine installations 
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To have a better understanding of the PURPA act on installed wind turbines, both yearly 

installations and cumulative installations are shown in Figure 7.5. This figure shows that the 

effect of PURPA is stronger in California, whereas it is possible to reach a better result with 

combination of all policies in Denmark. The most effective policy of California is PURPA, 

since it makes the wind turbines cost competitive leading to adoption. The same effect was 

expected in Denmark normally, but the reason for not having such high installations in 

Denmark is due to the model settings. In Denmark, conventional technologies are already 

high for the utilities, therefore they do not consider the same LCOE for wind turbines and 

conventional technologies with a high level of affinity. The level of affinity is not that strong 

in Denmark with PURPA act, therefore, even though the installation rate increases due to the 

better price offer for the LCOE of wind, it is not as effective as California case.  

EnergiAct represents the determination of Danish government the setting wind turbines as 

the only energy alternative and determining persistent goals for wind turbine share in energy 

generation. This policy has a soft effect similar to marketing, making the option visible to the 

customers. However, such a mechanism is not observable in California, due to rapidly 

changing policies and governmental mind-set towards renewables. Therefore, to see the 

possible effects of EnergiPlan act on California’s installations, this policy is added to the 

California model. The results are shown below: 

California Denmark 

  

Figure 7.6 Effect of EnergiPlan Act on wind turbine installations 

In Figure 7.6 for California, the effect of EnergiPlan is showed in combination to PURPA act, 

because EnergiPlan act do not trigger significant adoption in isolation. The reason for this is 

because even though the people are aware of the wind turbines as an alternative, it remains 

expensive compared to conventional methods and therefore there is little preference for it. 

However, if we make sure that there is a certain potential demand (coming from PURPA act 

in this case) then we can see the importance of awareness creation. If we look at both Figure 

7.5 and Figure 7.6, we see that indeed the effect of PURPA has strengthened with EnergiPlan. 
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On the other hand, in Denmark, this act plays a significant role due to two reasons, firstly; 

there is already demand for wind turbines when there is no policy around due to expensive 

alternatives, secondly; familiarity with the technologies decay non-linearly, and since the 

percentage of adoption is more in Denmark, the decay gets slower. When the extra exposure 

coming from EnergiPlan is added to this value, its effect becomes more than the added value 

due the non-linear nature of familiarity decay. 

California offered long term contracts with a fixed electricity price which is close to 

conventional technologies. There was no such an offer in Denmark, therefore this policy is 

implemented to the Denmark model to see the possible effects. The results are shown below: 

California Denmark 

 

 

 

Figure 7.7 Effect of Long Term contracts for wind turbine installations 

The Figure 7.7 shows that the effect of long term contract policy is similar in both cases. Not 

that the long term contracts were offered only between 1983 and 1995, which explains the 

bump in the graphs at that time. It is clear that this bump has a temporary effect on wind 

turbine installations as expected. It also adds value to the wind turbine installations in total, 

but it is not as significant as PURPA act for California. 
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The Danish government decided to install wind turbines of 100 mW with government funding 

with an agreement with utilities from 1988 to 1992. There was no such an attempt in California, 

therefore to show the possible results this addition is modelled to see the possible effects. 

California Denmark 

 

 

 

Figure 7.8 Effect of government installing wind turbines on diffusion 

Figure 7.8 Shows that the effect of governmental installation has a temporary bump in the 

installations. Also, the familiarity changes were checked for this external installation and the 

model shows almost no change in familiarity. The reason for this is because this installations 

are coming externally, it is an additional mW to yearly need of demand, and it does not affect 

the yearly installations done by utilities or cooperatives. Therefore, the share of wind turbine 

installations do not change, and in total the percentage of wind turbines on installed capacity 

changes insignificantly, since 100 mW has less than 0.1% effect on the share. This value affects 

the social exposure from users and non-users but since the impact itself is quite small, there is 

no long-lasting effects of government installations of wind turbines. 

It is also important to look at the combined effects of policy interventions, due to the 

possibility of one-policy hindering or amplifying the other. To understand whether this kind 

of influence exists in the models, the models run with all policies except one of them, where 

the non-existent policy is altered across all policies. However, the results showed that there is 

no such a thing showing that combination of the policies perform worse than the sum of these 

policies. To see the results please see Appendix H. 

 

 

yearly installations

400

300

200

100

0

1980 1983.8 1987.5 1991.3 1995

Time (Year)
yearly installations : CaliforniaWithAllPolicies

yearly installations : CaliforniaWithNoPolicy

yearly installations : CaliforniaWithGovntInstallingWindTurbines

yearly installations

200

150

100

50

0

1980 1983.8 1987.5 1991.3 1995

Time (Year)

m
W

/Y
e
a
r

yearly installations : DenmarkwithAllPolicies

yearly installations : DenmarkwithNoPolicy

yearly installations : DenmarkwithGovnWindTurbines



82 
 

7.4.  Conclusion  
The differences between California and Denmark cases are twofold. First the initial settings in 

Denmark shows that it provides a more suitable environment for wind turbine diffusion with 

a stronger network, expensive LCOE of conventional alternatives, high sensitivity of adopters 

to price due to a fluctuating and expensive market, and a positive mind-set towards wind 

turbines. On the other hand, in California, the conventional alternatives were already cheaper 

which requires wind turbines to be improved much more to be cost competitive. Also, people 

have no interest in building networks regarding wind turbines, which also resulted in 

decreasing familiarity with the wind turbines and consequently less installations. Apart from 

that, the market was more stable in conventional technologies, which made the utilities to be 

reluctant in switching into a new technology. All of these initial conditions resulted in a less 

promising environment for wind turbine diffusion in California compared to Denmark. 

Although the initial settings were in favour of Denmark, the policy interventions exist to 

counteract these negativities. From a policy making perspective, we see that the most effective 

policies in both cases are in demand-pull policies by offering subsidies and feed in tariffs. The 

Denmark case showed that it is also important to create awareness about the new technology 

to increase its adoption rate. The models’ results also showed that the direct interventions on 

installing wind turbines such as long term contracts in California and the government installing 

wind turbines in Denmark has temporary effects on diffusion whereas the effects of 

stimulating markets also impacts the adoption in the future due to increased familiarity and 

triggered learning by doing mechanism. R&D efforts also improve the adoption, but it has 

effects to a certain extent, therefore spending vast amounts on R&D is not a desirable policy 

in isolation according to the results of the model.  
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8.1. Answers to research questions 
This research aimed to answer the research question: What are the underlying mechanisms and their 

relations explaining the commonalities and differences of wind turbine diffusion stories in California US and 

Denmark? To have a detailed answer for this question, the following 5 research questions are 

answered: 

 What are the factors that stimulate and/or hinder the adoption of wind turbine 

technology, and how do these factors relate to each other? (RQ1) 

The factors fostering or hindering the decision processes are studied by different 

researchers. Three different points of view are taken in this research to explore these 

factors. Hekkert et. al and Yucel offers a dynamic understanding of the diffusion 

stories, whereas the research of Kemp, Schot and Hoogma takes the issue from a static 

perspective by analysing the barriers. (2007; 2010; 1998). In general, knowledge 

diffusion via networks, learning by doing and learning by searching improvements on 

the technology have positive effects on diffusion, but the adoption may be negatively 

affected by the high costs of the new technology, psychological and cultural factors and 

the threat of the new technology to the market players in the incumbent technology. 

 

 Which mechanisms are adequate representatives for explaining the 

relationships among the determined factors? (RQ2) 

The adoption of an innovation is affected by various mechanisms related to different 

actors such as the government, the adopters and the producers. The wind turbine 

diffusion stories showed that the active mechanisms were the same both in California 

and Denmark case; which are learning-by-doing mechanism, learning-by-searching 

mechanism, and familiarity gain with word of mouth from users and non-users. These 

three mechanisms set the base of both diffusion stories, with the LCOE based decision 

making process of adopters. 

 

 What kind of policies have been implemented in California and Denmark for 

wind turbine diffusion, and what were the aimed mechanisms of these policies? 

(RQ3) 

Various policies were implemented with the aim of fostering the diffusion. R&D 

efforts in both countries triggered the learning by searching mechanisms which resulted 

in improvement in LCOE, and the subsidies offered by the governments helped the 

wind turbines to be more cost competitive, and as a result the demand is increased. 

The increased demand helped the producers to sell more wind turbines and triggered 

the learning by doing mechanism, which also improved the cost competitiveness of 

wind turbines. The EnergiPlan act in Denmark helped the potential adopters to be 

aware of the benefits of wind turbine technology in more detail, and since they knew 
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more about the technology, their probability of purchasing one increased, resulting in 

higher demand. Also, the Danish government installed 100 mW of wind turbines which 

helped learning by doing mechanism. Long-term contracts in California, offered an 

alternative way of making wind turbines cost competitive with the conventional 

technologies, and they helped gaining knowledge about wind turbines. All installations 

helped gaining familiarity with the wind turbines, but to reach an effective level of 

familiarity, the exposure coming from the users, non-users and the awareness 

campaigns should be frequent and strong enough, which is not ensured with all the 

policies, such as the Danish government installing 100 mW wind turbines. 

 

 How can these differences be explained in a dynamic way? (RQ4) 

To analyse these differences in a dynamic way, System Dynamics (SD) is chosen as a 

methodology. The reason for choosing SD is based on its features such as: it is a white-

box modelling tool, the model has strategic point of view, it is a continuous simulation 

environment, taking an aggregate perspective and it offers dynamic simulation 

environment. The method of analysis should be over time since diffusion itself is a 

process over time, and it should be continuous due to non-countable features of the 

diffusion such as accumulation of knowledge. Besides, a white-box model is needed to 

track the deep effects of a policy in the process. This study aims to explain the 

differences in the cases from the policy perspective which focuses on the overall picture 

of the system rather than the detailed market relations among the actors, which requires 

a strategic tool as well. Last but not the least, a dynamic approach is needed, since the 

current state of the system has an effect on the next step the system would take. A 

methodology having this feature is needed for reaching a reliable analysis. The 

methodology of system dynamics offers all of these features, therefore it is chosen as 

the suitable methodology for simulating wind turbine diffusion. Another contribution 

this research reached is the ability to test the different, even non-existent policies in 

simulation environment. This way the possible effects of a policy could be tested in 

advance. This way of what-if analysis is not possible with regression analysis, or other 

common methods used in analysing innovation diffusion stories. 

 

 What is the contribution of a dynamic analysis to understand the differences of 

the diffusion stories of the wind turbines in California and Denmark? (RQ5) 

In a nutshell, the system dynamics method revealed that not only the policies resulted 

in better diffusion in Denmark, but also the initial conditions played a role in this 

diffusion. Also, the effect of the policies on mechanisms are revealed with the system 

dynamics method with its transparent structure. Also, the existence of mechanisms 

were in the literature for some time, and the researchers accepted that there is an 

interaction of these mechanisms, however the implementation of these interactions is 

not widely tested yet. This study also provides an example for testing different 

mechanisms not in isolation, but with their interaction resulting in a systemic diffusion. 
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As these sub research questions answer, the underlying mechanisms resulting in a successful 

diffusion story in Denmark and a failure in California comes both from the initial conditions 

and the main nature of the policies used. Denmark’s persistence in creating demand for wind 

turbine installations resulted in effective diffusion in the end, whereas California’s high efforts 

in R&D did not contribute to the diffusion much. Also, Denmark’s electricity was already 

expensive, which makes the wind turbine easier to reach a cost competitive level, whereas in 

California this required a lot of effort. The mechanisms which were active in the diffusion 

process were the same in both cases, implying that the structure of the diffusion story was the 

same, with different values of parameters. Learning-by-doing, learning-by-searching, and 

knowledge diffusion via networks were the main observable ones triggering the diffusion. The 

way actors make their choices were also important in diffusion, and the environmental concern 

was only at the government’s mind at that time, leading to cost based decision making of the 

utilities.  

8.2. Conclusion 
Modelling wind turbine diffusion with system dynamics was able to answer the research 

questions raised at the beginning of this research. The aim of the study was to explain the 

differences of wind turbine stories between California and Denmark, and the model results 

showed that the differences is coming from not only the policy attempts but also the initial 

conditions of these countries, which are highly affected by energy generation costs. Yet, 

without any policy intervention, neither California, nor Denmark would be able to reach the 

observed diffusion rate, which is much higher compared to no-policy cases. The results 

showed that demand-pull policies were more effective compared to supply-push policies in 

fostering adoption, because demand-pull policies not only results in immediate installation 

increasing familiarity with the technology, but also triggering learning-by-doing mechanism, 

which is more effective than learning-by-searching mechanism in wind turbine diffusion. 

Among demand-pull policies, the ones which interfering with the regular market were more 

effective compared to direct installations. For example, subsidies offered for adopting wind 

turbines and PURPA act in California were the most successful ones in fostering installations. 

Additionally, Denmark case showed that creating awareness about the new technology is also 

quite important, because the preference to wind turbines over conventional technologies are 

highly affected from familiarity. After reaching a certain level of familiarity, the installations 

start to accelerate, but a soft threshold for this familiarity should be passed. In California, this 

soft threshold is not reached, because the effectiveness of non-users were low, the percentage 

of adopters also remained low making the effectiveness of users obsolete, and finally there 

was no awareness creation coming from the government with constant changing policies and 

with no clear aim. 

In brief, Denmark was already in an advantageous position for wind turbine diffusion, but 

without policy interventions none of the cases would be successful. California could have 

spent more money on demand-pull policies instead of investing too much on R&D efforts, 

which might result in higher adoption. Another issue with the California’s policies was the 
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constant changing nature of policies. Before understanding the effectiveness of a policy, a new 

policy is introduced, and within 2 to 3 years, it is changed again. These policies help to foster 

installations, but these frequent changes creates disruptions in installations and make their 

effects temporary. When there is a disruption, the familiarity decreases, therefore, re-gaining 

that familiarity takes time. 

What this research reached scientifically is also worth considering. First, it should be realized 

that most of the innovation diffusion analysis studies focus on the demand side of the story, 

where supply side also has an importance. This inadequacy is stated by Hekkert (2007) and 

Kemp, Schot and Hoogma (1998), yet the number of studies taken the supply side into account 

is limited in number. Therefore this study indicates the importance of the supply side of the 

diffusion story as well as it captures the demand side. Another important point is the possibility 

of testing new policies on a known case which is not possible with regression analysis. For 

instance, EnergiPlan act is tested in California, which was originally only existent in Denmark, 

and the effects of this act on California is derived from the model’s results. Of course, “all 

models are wrong” (Sterman, 2000), therefore we cannot conclude that the model would give 

the exact results, yet having this data at hand would be useful for analysing the effectiveness 

of the policies and for developing new policies. Lastly, modelling this cases with system 

dynamics provided a combined view for active mechanisms in the diffusion, and as a result it 

was possible to make a quantitative work on observing the interactions of mechanisms. 

8.3. Suggestions and future work 
This research can only be seen as an early and humble attempt to explain the innovation 

diffusion with a more dynamic approach, compared to widely used methods such as regression 

analysis. This study showed promising results in modelling innovation diffusion, by looking at 

the diffusion stories which occurred in the past. This way it was possible to observe the abilities 

of the system dynamics method in capturing the different diffusion paths. This could be an 

indication for future studies, with the suggestion of forecasting the direction of a certain 

technology in the society with planned policies. In a way, it is possible to move from a 

reflective study to an explorative study with system dynamics.  

Another issue realized in this research is about the diffusion of innovation literature itself. 

Different attempts to give the diffusion studies a more dynamic approach have been tried, but 

these attempts remained theoretical so far. This study was also an attempt to apply these 

theoretical suggestions into case studies. To test the validity of these theories, more case 

studies should be conducted with the other well-known diffusion stories. This way, the 

strength of these theories will be supported. 

In the literature of technology based innovation systems, similar issues are mentioned by 

different researchers, but a common framework showing the relationships of these theories 

do not exist to the author’s knowledge. A common framework showing these similarities and 

the common issues raised by different researchers could be a useful guide for the following 
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diffusion studies. In chapter two, the Table 2.1. can be interpreted as a preliminary attempt 

for creating such a framework. 

It should be noted that the conditions and the mind-sets of the actors has changed in wind 

turbine diffusion since 1980s. At that time, the knowledge about environmental hazards 

coming from the conventional technologies were only at the initial stage. Therefore, there was 

no green demand coming from the consumers, and the utilities only focused on the profit side 

of generating electricity. Yet, this is not the case in today, the amount of environmentally 

friendly consumers increased, demanding green energy from the utilities even at a higher price. 

The change of this mind-set offers a new research area, for understanding the change in 

people’s mind-set and the factors affecting this change. Apart from that, the actor’s mind-sets 

should be reflected on diffusion studies for more realistic results. 

8.4. Reflection 

System dynamics simulation is chosen as an educated guess for analysing the diffusion story 

of wind turbines in California and Denmark. Yet, of course it is possible to analyse it with 

different methods. A close competitor for system dynamics is agent-based modelling, which 

is becoming popular among the researchers studying innovation diffusion. Agent-based 

modelling also provides a suitable platform for diffusion studies because it makes it possible 

to simulate the autonomous actions of actors, which could easily be the adoption in this case, 

and assess the effects as a system as a whole. With this methodology, actor based, bottom-up 

simulation models can be developed enabling an emergent behaviour as well. However, for 

the aim of this study, agent based modelling did not fit the purpose as much as system 

dynamics. Because, agent-based simulation has an actor perspective, the underlying structures, 

which are mechanisms in this case are not clear. In a way, from structural point of view, agent-

based modelling behaves like a black-box model and it makes it difficult to trace the chain of 

events causing the results of the simulation. Besides, agent based modelling is focusing on the 

micro-level decision making structures of actors, however one of the aims of this study is to 

reveal the strategic set of actions from governmental perspective. With a different point of 

view to the same case study, agent-based modelling could reveal different important points, 

yet it is not possible to conclude that one method is better than the other since they take 

different perspectives for understanding the same phenomenon. The choice of system 

dynamics for this research was an educated guess, taken without analysing all the different 

methods precisely. Yet, this educated guess includes a logical but quick analysis for the choice 

of methodology. Regression analysis and econometric models were not dynamic in nature, 

agent-based simulation was more focused on the actor perspective rather than the underlying 

structure, and system dynamics was offering a good fit to for this purposes. Therefore, system 

dynamics is chosen as a methodology, which was taking a risk at the beginning, but worked 

well in the end.  



89 
 

In this section the aim is to reflect on the model’s ability and validity for this research. Also, 

what kind of improvements could be done in the model will be discussed as well. The created 

model is a simple one, but it was able to capture the main dynamics of the diffusion stories of 

California and Denmark. A simple model was not that easy to create, because on the one hand 

you should ensure that every variable is put into the model in a transparent way, and no 

significant mechanism is left out to reach reliable results. With this aim, most of the time spent 

in this research was put into building the model, starting from the literature survey and learning 

about the histories of diffusion in California and Denmark. The validation study also showed 

that the model is robust to changes, and behaves as expected under extreme conditions which 

increases the validity of the model. However, no model is perfect by nature. One of the main 

purposes of the model is to simplify reality in an understandable way, but this means that some 

of the factors affecting the behaviour of the model are left out from the beginning. Therefore, 

this model does not fully explain what really happened in wind turbine diffusion in California 

and Denmark, but it can point at the main important reasons in the story. Also, there is another 

limitation of this model, which is the part trying to quantify the qualitative knowledge. To 

overcome this limitation, all soft variables are based on the literature, which could be 

interpreted as a commonly accepted existence of those variables, supporting the structure of 

the model. However, the exact quantification of these variables is based on experimentation 

with the model, which has no real counterpart, therefore it is impossible to ensure the truth 

of these variables. To deal with this problem, the qualitative statements from the literature on 

wind turbine diffusion stories are taken as base points and the improvements on the values 

are done by looking at the model’s results. 

Another limitation of the model is the way the structure is created and the policies are 

implemented. System dynamics offers a flexible modelling environment, therefore it is 

possible to model a phenomenon in a thousand different ways. This is both an advantage and 

a disadvantage. The advantage is coming from the freedom of the modeller to put his/her 

notion to the model in a more flexible way, but this way threatens the validity of the model. 

Because, reaching the desired result is not the aim of this study, but reaching the desired result 

with the right interpretation of the story and correct way of implementation to the simulation 

software matters more. Therefore, as much as possible, the model’s structure tries to reflect 

on the mechanisms available in the literature. Yet, for implementing the policies in the model 

has no literary proof, since they are case based, provisional methods. There is no proved way 

out of this problem, therefore the policies are implemented with logical processes by checking 

their effects on each variable, and ensuring that there is no non-sense response in any of the 

variables. 

A controversial situation can be spotted from the relation between the assumptions and the 

conclusions. The model is structured based on the statement saying that learning-by-doing has 

stronger effect compared to learning-by-searching effect. Then, the conclusion is also reflects 
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the same. To what extent this conclusion is valid based on this assumption? To test that, in 

the model, I changed the beta and alpha values with each other and observed the results, when 

all policies, and when solely R&D policies are active. The results showed that there is an 

improvement when the parameter values are interchanged, yet, still the effect of R&D policies 

on adoption stays limited. This test is made in the Danish model, and the results showed that 

only 50 mW extra installation occurred cumulatively at the end of the simulation. Note that, 

the case stories also qualitatively indicate the same result. The United States spent a 

considerable amount of money for research and development compared to Denmark, yet the 

Danish government was more successful in stimulating adoption. Therefore, even though the 

assumption looks like a weakness of the model, the results support the assumption both 

quantitatively and qualitatively. 

After stating these limitations of the model, the benefits of it should not be overlooked.  This 

model assisted in tracking the effects of policies on the mechanisms, which could be seen as a 

novelty in innovation diffusion. With regression analyses, it is possible to observe the overall 

effects of policies on the diffusion, but it is not possible to understand the way that policy 

enhance or diminish the rate of diffusion. With system dynamics modelling, the relationships 

can be revealed, which could be a promising tool for policy makers in transition studies. 

Another benefit of the model is in determining the main active mechanisms in the diffusion. 

For instance, if we put all possible mechanisms and remove each of them one by one with a 

simplified model of the same problem, and if we reach the similar results we can prioritize on 

the effectiveness of the mechanisms on the diffusion. This is partially done in policy testing in 

Chapter 7 from the policy perspective, but for an extension of the study, the effects of other 

mechanisms on the model could be tested resembling to a what-if analysis.  

For extending the model, other implications are also possible. At the beginning, the idea was 

also look for the imports of each country to the other and their effects on diffusion, but due 

to time constraints this is not realized. But, researching the wind turbine installations from the 

market perspective could bring new insights to the diffusion stories, because we know that 

Denmark not only uses wind energy as one of the main energy sources in the country, but 

they have a significant market share in the global market. A number of studies could be done 

focusing on the limitations of the model as a follow up research. 
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Building this research took a lengthy process with various challenges in different steps. As it 

is shown in Figure 2.5. there were seven different steps in the research from beginning to the 

end, which are: 

 Literature survey for qualitative case stories 

 Literature survey for innovation diffusion related concepts 

 Building a conceptual model 

 Data gathering  

 Model Implementation 

 Verification and the Validation of the model 

 Policy testing and the insights. 

The difficulties experienced in each of these steps are explained below: 

Literature survey for qualitative case stories & innovation diffusion concepts 

Before deciding on my research topic, I only heard about innovation diffusion, but I was not 

knowledgeable about the theory. When I started reading, I realized that it has a very wide 

spectrum focusing on different styles of innovation diffusion and reflecting on different 

challenges encountered. Therefore, the first challenge was about narrowing down and finding 

the related concepts in the theory. To be able to determine the related concepts I had to learn 

about the diffusion stories of wind turbines from various sources. The focus was mainly on 

the scientific publications, to increase the reliability of the knowledge gathered. The more I 

read about the case stories, the more innovation diffusion literature made sense to me. In the 

end, I ended up with two detailed stories of wind turbine diffusion and a bunch of concepts 

relating to diffusion of innovation. Another issue is about the statement in the literature saying 

learning-by-doing has a stronger effect than learning-by-searching mechanism. This is a 

qualitative statement regarding wind turbines, but whether this is a general condition or a 

specific to this story is controversial. I believe that this was the case for wind turbine 

technology, because even from the 1980s, the technology was in a usable condition, so it was 

sort of developed. Before reaching this point, it is necessary to focus on learning-by-searching 

as well. And there is not a real way of measuring the effects of learning-by-doing and learning-

by-searching on the performance or cost improvement. Therefore, in the model I tried to keep 

them close, even though I assigned a higher effectiveness ratio for learning-by-doing. 

 

Building a conceptual model 

During my literature search, the relationships and the feedback loops started to take shape in 

my mind with the possible idea of using system dynamics as a method. The stories explained 

in the literature seemed a suitable input for SD simulation, therefore I searched for the 

applications of SD on innovation diffusion in the literature. There were some attempts, but 

the number of them were quite limited, and most of them have a narrower focus. When I 
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looked at the features of SD and the concerns of authors’ on reflecting on the limitations of 

current methods on analysing SD, I realized that there is a good match among the two. After 

looking at all the features of SD and seeing whether it satisfies the expectations of the research, 

I concluded that SD is a good approach. Doing so, I started building the conceptual model 

with the feedback loops and the relationships of these feedback loops with each other. Since 

there was no similar study in the literature that could assist me, I modelled different parts of 

the conceptual model by taking different references from the literature. For the parts not 

existing in the literature, expert opinion is used as a feedback. The initial conceptual model is 

not exactly used in the implementation, because due to the challenges encountered in the 

implementation, the mistakes in the conceptual model was realized and fixed accordingly. 

 

Data gathering 

This was one of the most time consuming parts of the research. It is impossible to find the 

exact data that you want, therefore, a new method of calculating those data should be found. 

In this case it was the LCOE’s of different technologies. After 2000, the LCOE’s of different 

energy sources are available on the web, but prior to 2000, it is hard to come by this data. 

Therefore, the LCOE’s are calculated manually with the found investment costs, operation 

costs and fuel costs of that time, and finding all of this information took some time. Also, 

some data is not available by nature, such as the familiarity of the potential adopters to wind 

turbines. It is not measurable, therefore based on the qualitative knowledge found in the 

literature, assumptions are made for this kind of data. After finding the data, it was time for 

implementing the model. 

 

Model Implementation 

After having the conceptual model and the data, it was rather a straightforward process to 

implement the model. However, this part requires a detailed modelling of the variables, and 

therefore some points which are overlooked in the conceptual model had to be re-designed. 

For example, for modelling the familiarity mechanism, at first, the Bass model of diffusion 

was used. However, during the implementation it is realized that this model does not fully fit 

into the story with a little number of actors (number of utilities are much limited compared to 

the whole society). Besides, there were too many degrees of freedom that this model brought, 

in which some of them were inexplicable in the wind turbine diffusion context. Therefore, 

another way of modelling this familiarity mechanism has to be found. In the end, Struben and 

Sterman’s work (2008) suited much better in modelling this mechanism. It is adapted 

according to the nature of this study. 

 

Verification and Validation 

After building the model it should be ensured that the model is trustable. For this reason, the 

verification and the validation study is designed. The design of the study is also based on the 

literature, making sure that the model is acceptable from different perspectives such as 

structure, or dimension. The steps to be followed were clear in this part of the research, and 
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they are followed point-by-point. The results showed that the model is robust to parameter 

changes and behaves realistically under extreme conditions. Thus, it was possible to move 

forward with the study to generate useful insights from the model. 

 

Policy Testing and the Insights 

This part was designed for making use of the created models. The models were created with 

a purpose of understanding the differences between two cases. Therefore, as well as the 

policies, the initial settings in these models are compared. Then, the policies which are similar 

to each other are compared in isolation and their effects on diffusion is discussed. Then the 

policies which are unique to a case tested into the other case resembling to a what-if analysis. 

This process was time consuming, but useful for generating insights. The process of generating 

insights is more of a cognitive work, by comprehending and interpreting the results and 

tracking back the reasons of these results.  
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Appendix A.1. – First view: Wind turbine installation process 
The picture of this view is separated into 4 main subsections. The first subsection is about LCOE’s of conventional technologies, 

second subsection is about LCOE of wind, third subsection shows the decision making mechanism by comparing LCOE’s and 

final section shows the wind turbine installations. After partial representation of these subsections, the combined version will be 

shown at the end. 

 

Figure U.0.1 LCOE modelling of conventional technologies 
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For modelling LCOE’s of conventional technologies, at first the power mix of the case is determined. Figure U.1 shows Denmark 

case. In Denmark, main electricity sources were oil, coal and natural gas. Their LCOE’s are calculated separately with the same 

interest rates which are also used for wind. The reason for calculating the weighted average cost of conventional technologies is 

to have an idea of average cost of electricity with conventional methods. Then this weighted average is treated as the LCOE of 

conventional methods in the model. 

 

Figure U.2 LCOE modelling of wind turbines 

For modelling LCOE of wind, the same formula explained in Chapter 5 is used. The calculation of LCOE is done within the 

model this time, because this is an immature technology and the learning curves have not been reached to plateau as conventional 
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Figure U.3 Decision making modelling for wind turbine purchases 

This part of the model compares LCOE of wind turbines with LCOE of conventional technologies, and then determines the 

percentage share of wind turbines for newly installed capacities. LCOE of conventional technologies is the average of weighted 

average cost of conventional methods over time, which is 60$ for Denmark. Affinity with the conventional technologies at this price is 

assigned to 1, assuming that utilities will install the methods that they already know of, on the average price. Reference LCOE of 
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the conventional technologies, it will still be considered a little bit inferior, due to the prejudice over a new technology. Yet, if it is 

a bit cheaper than the conventional ones, then this prejudice is left.  

Perceived affinity of wind turbines is the multiplication of affinity value with the familiarity, since to be able to decide on buying 

something an actor should be aware of its existence. Familiarity with the conventional technologies is assumed as 1, due to mature 

nature of these technologies. Share of purchases of wind turbines is calculated by dividing perceived affinity of wind turbines to 

total perceived affinity. This comparison is the percentage share of people who would consider buying wind turbines. Then this 

value is multiplied with the average expected capacity expectations of the utilities and the share is installed as wind turbines. 

 

Figure U.4 Installation of wind turbines 

The part of the model in Figure U.4 represents the yearly installations of wind turbines. As an assumption 15% of the wind turbine 

demand is imported. The construction of wind turbines is 6 months and decommission of the wind turbines are determined by 

their age, where the lifetime of wind turbines is 20 years. Total installed capacity of wind turbines shows the cumulative capacity 

installed coming from imported and local manufacturers. 
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Appendix A.2. – Second view: Installed Capacity  

 

Figure U.5 Installed capacity and Demand modelling 

This view is based on the assumption that for each new installation increasing electricity capacity, some of this increase will be 

done with wind turbines. Therefore the installed capacity of California and Denmark at 1980 is found, and their average percentage 

increase is calculated. The installed electricity capacity expectation and installed capacity for electricity generation are both the same values, 

however for calculating the yearly increase, installed capacity for electricity generation has a delay of one year. Then for introducing the 

uncertainty of this increase, average expected capacity increase for upcoming 5 years is calculated by focusing 5 years from that point in 

time, by looking at last 5 years energy increase. This forecasting is done by the model itself. 
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Appendix A.3. – Third view: Learning mechanisms 
This view is separated into two parts, modelling learning by searching mechanism, and modelling learning by doing mechanism. 

Figure U.6 shows the modelling of learning by searching mechanism: 

  

 

Figure U.6 learning by searching mechanism in the model 

Here in this mechanism, according to Klaassen et al’s work, there is a maturity time for R&D spending to turn into useful 

knowledge. In general this delay time is assumed to be three years (Klaassen et al., 2005). Therefore in this model, the delay time 

for mature knowledge is also set to three years. The variable R&D spending for wind turbine technology is a lookup function imitating 

the real R&D spending of governments. When the knowledge matures, it accumulates into R&D based knowledge stock. Initial R&D 

stock is calculated by adding the spending before 1980. Then according to the formula in Chapter 5, effect of R&D on cost and 

capacity factor is calculated and the results are reflected into capacity factor and investment cost. Note that in the figure initial 
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values of capacity factor and investment cost is not shown, however in the model, these values are also used to calculate their 

current values. Initial values are gathered from historical data. 

 

  

Figure U.7 learning by doing mechanism in the model 

Learning by doing mechanism is modelled similarly. The measure for learning by doing is the installed capacity of local wind turbines 

per year and initial cumulative experience is the total installed wind turbine capacity in California and Denmark before 1980, which were 
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8 and 5 mW respectively. Again, this figure does not show, but initial values of capacity factor and investment cost of wind turbines 

are also in the model.  

Appendix A.4. – Fourth view: Modelling Familiarity 
This view shows how the familiarity with the wind turbines is modelled. The implementation of this structure is shown in Figure 

U.8: 

 

Figure U.8 modelling familiarity with the wind turbines 

As it was explained in Chapter 5, familiarity increases with total social exposure to wind turbines from users and nonusers, and it 

decays with time, depending on the exposure level and reference rates. To understand this mechanism better, it should be thought 

that there are 2 platforms: wind turbine and conventional technologies. The share of wind turbine installation over total capacity 

gives the share of wind turbine users in an aggregated way. Then, for non-users, the word of mouth mechanism works, where this 

mechanism is strengthened with the visibility of wind turbines for users. These word of mouth mechanisms are related with 

familiarity with the

wind turbinesfamiliarity gain familiarity loss

maximum decay

rate

epsilon

normal social

exposure

fractional familiarity

decay rate

total social exposure

to wind turbines

social exposure and word of
mouth from wind turbine

owners

effectiveness of

contacts of users

total installed capacity

of wind turbines

installed capacity for

electricity generationword of mouth of wind

turbines from non users

effectiveness of

contacts of nonusers



108 
 

familiarity as well; if many utilities are aware of wind energy option, more people will talk about it, so that social exposure increases. 

This is the last mechanism, which connects to the first view in modelling perceived affinity (See Figure U.3). 

Appendix A.5. – Full pictures of the views 
This section of the appendix shows the full visualization of 4 views to show the connections. It should be noted that this picture 

is for Denmark without policy implementation. 

 

  



109 
 

 

Figure U.9 Screenshot of view 1: Wind turbine installations 

LCOE of oil

LCOE of
natural gas

LCOE of wind

<Time>

weighted average cost of
conventional methods

installed capacity of

local wind turbines

operation cost of

wind turbines

interest rate

average lifetime of

wind turbines

equivalent annual

cost

hours per year

capacity
factor

fixed costs per unit

electricity for wind energy

demand for wind

based generation

decommission of local

wind turbinesinvestment cost of

per kw

LCOE of coal

percentage
consumption of

natural gas

<Time>

percentage
consumption of oil

percentage

consumption of coal

imported capacity of

wind turbines

imported installed

capacity of wind

turbines

total installed

capacity of

wind turbines

decomission of

imported wind turbines

kW mW

conversion

local wind turbine

capacity under

constructionoperational delay of

local wind turbines
yearly installations

construction delay import percentage

imported wind

turbine capacity

under construction
operational delay of

imported wind turbines

import
rate

average expected capacity
increase for upcoming 5

yearsshare of purchases of

wind turbines

affinity to wind

turbines

affinity to conventional

technologies

sensitivity value for

wind turbines (beta0)

sensitivity for
conventional techs

(beta0)

reference LCOE of

wind turbines

affinity at reference

LCOE for wind turbines

reference LCOE of

conventional techs

affinity at reference
LCOE for conventional

techs

perceived affinity of

wind turbines

familiarity with the

wind turbines

familiarity with
conventional
technologies

perceived affinity of

conventional technologies

year



110 
 

 
Figure U.10 Screenshot of view 2 : Installed Capacity for Electricity Generation 

 

  

capacity
factor

hours per year

yearly electricity
generation from wind

turbines

initial installed capacity

for electricity generation

percentage increase of
installed electiricty capacity

per year

yearly electricity capacity

increase expectation

average expected capacity
increase for upcoming 5

years

total installed capacity

of wind turbines

installed capacity for

electricity generation

installed electricity

capacity

expectation
electricity capacity

increase
percentage of wind
turbine capacity in

Denmark

year



111 
 

 

Figure U.11 Screenshot of view 3 : Learning Curves 
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Figure U.12 Screenshot of view 4: Familiarity with the wind turbines 
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The table below shows the names, equations and the units of the variables used in both cases. 

Note that some of the variables exist only one of the cases if it is a policy based variable. Also 

for different values used in the cases are shown with a dash. 

Variable  Formula(Denmark/California) Unit 
Percentage 
consumption of coal 

Lookup with Time Dmnl 

Percentage 
consumption of oil 

Lookup with Time Dmnl 

Percentage 
consumption of natural 
gas 

Lookup with Time Dmnl 

LCOE of coal Lookup with Time $/mWh 
LCOE of oil Lookup with Time $/mWh 
LCOE of natural gas Lookup with Time $/mWh 
Weighted average cost 
of conventional 
methods 

LCOE of natural gas*percentage consumption of natural gas + 
LCOE of oil*percentage consumption of oil + LCOE of 
coal*percentage consumption of coal 

$/mWh 

Operation cost of wind 
turbines 

Lookup with time $/mWh 

Capacity Factor initial capacity factor*effect of R&D on performance 
increase*effect of learning by doing on performance increase 

Dmnl 

Hours per year 8760 h 
Equivalent annual cost (investment cost of per kw*interest rate*(1 + interest rate 

)^average lifetime)/((1 + interest rate)^average lifetime - 1 )* 
kW mW conversion 

$/mw 

Investment cost of 
wind turbine per kW 

initial investment cost of wind turbines per kW*"effect of R&D 
on cost"*effect of learning by doing on cost*(1-investment 
subsidy) 

$/kW 

kW mW conversion 1000 kW/mW 
Fixed costs per unit 
electricity for wind 
energy 

(equivalent annual cost )/ (hours per year * capacity factor ) + 
operation cost of wind turbines 

$/mWh 

Avoided cost 
compensation for wing 

MAX(LCOE of wind-weighted average cost of conventional 
methods,0) 

$/mWh 

PURPA act 
implementation 

STEP(avoided cost compensation for wind, 1983) - 
STEP(avoided cost compensation for wind, 1987) 

$/mWh 

LCOE of wind fixed costs per unit electricity for wind energy*"10 year 
agreement between government and utilities" 

$/mWh 

LCOE of wind coming 
from long term 
contracts 

weighted average cost of conventional methods + 20 $/mWh 

10 year agreement 
between government 
and utilities 

1 - STEP( 0.15, 1985) Dmnl 
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Sensitivity value for 
wind turbines (beta0) 

1.8/1 Dmnl 

Reference LCOE of 
wind turbines 

43/20 $/mWh 

Affinity at reference 
LCOE of wind turbines 

1 aff 

Affinity to wind 
turbines 

affinity at reference LCOE for wind turbines*EXP(-"sensitivity 
value for wind turbines (beta0)"*(LCOE of wind/reference 
LCOE of wind turbines-1)) 

aff 

Reference LCOE of 
conventional techs 

60/28 $/mWh 

Affinity at reference 
LCOE for conventional 
techs 

1 aff 

Sensitivity for 
conventional 
techs(beta0) 

1/0.54 Dmnl 

Familiarity with 
conventional 
technologies 

1 Dmnl 

Perceived affinity of 
conventional 
technologies 

affinity to conventional technologies*familiarity with 
conventional technologies 

aff 

Perceived affinity of 
wind turbines 

familiarity with the wind turbines*affinity to wind turbines aff 

Share of purchases of 
wind turbines 

perceived affinity of wind turbines/(perceived affinity of wind 
turbines + perceived affinity of conventional technologies) 

Dmnl 

Average expected 
capacity increase for 
upcoming 5 years 

FORECAST(capacity increase expectation per year,5,5) mW/year 

Demand for wind 
based generation 

average expected capacity increase for upcoming 5 years*share 
of purchases of wind turbines 

mW/year 

Yearly installations demand for wind based generation*(1-import percentage) 
+government agreement for installing wind turbines 

mW/year 

Import percentage 0.15 Dmnl 
Imported capacity of 
wind turbines 

demand for wind based generation*import percentage mW/year 

Import rate imported capacity of wind turbines mW/year 
Imported wind turbine 
capacity under 
construction 

INTEG(import rate-operational delay,0) mW 

Construction delay 0.5 year 
Operational delay of 
imported wind turbines 

imported wind turbine capacity under construction/construction 
delay 

mW/year 

Imported installed 
capacity of wind 
turbines 

INTEG(operational delay of imported wind turbines-
decommission of imported wind turbines,0) 

mW 

Decommission of 
imported wind turbines 

imported installed capacity of wind turbines/average lifetime of 
wind turbines 

mW/year 

Average lifetime of 
wind turbines 

20 year 

Local wind turbine 
capacity under 
construction 

INTEG(yearly installations-delay until turbines are 
operational,0) 

mW 
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Operational delay of 
local wind turbines 

local wind turbine capacity under construction/construction 
delay 

mW/year 

Installed capacity of 
local wind turbines 

INTEG(operational delay of local wind turbines-
decommission,5) 

mW 

Decommission of local 
wind turbines 

installed capacity of local wind turbines/average lifetime of wind 
turbines 

mW/year 

Total installed capacity 
of wind turbines 

installed capacity of local wind turbines + imported installed 
capacity of wind turbines 

mW 

Percentage increase of 
installed electricity 
capacity per year 

0.025 1/year 

Initial installed 
capacity for electricity 
generation 

7072/55000 mW 

Electricity capacity 
increase 

installed capacity expectation per year*(percentage increase of 
installed electricity capacity per year) 

mW/year 

Installed electricity 
capacity expectation 

INTEG(electricity capacity increase, initial installed capacity for 
electricity generation) 

mW 

Installed capacity for 
electricity generation 

DELAY FIXED(installed electricity capacity expectation, 1, 
initial installed capacity for electricity generation) 

mW 

Yearly electricity 
capacity increase 
expectation 

installed electricity capacity expectation-installed capacity for 
electricity generation 

mW/year 

Percentage of wind 
turbine capacity in 
Denmark 

total installed capacity of wind turbines/installed capacity for 
electricity generation*100 

Dmnl 

RD Spending for wind 
turbine technology 

Lookup function with time Million 
$/year 

RD based knowledge 
rate 

RD Spending for wind turbine technology Million 
$/year 

Not matured R&D 
knowledge 

INTEG(RD based knowledge rate-maturity time,0) Million $ 

Maturity rate of R&D 
knowledge 

"not matured R&D knowledge"/time delay of the info Million 
$/year 

Information time delay 3 year 
R&D based knowledge 
stock 

INTEG(maturity rate of R&D knowledge, initial R&D stock) Million $ 

Initial R&D stock 12.5 Million $ 
Beta value for learning 
by searching on 
capacity factor 

1.04/1.04 Dmnl 
 

Beta value for learning 
by searching on cost 

0.96/0.9 Dmnl 
 

Strength of learning by 
searching on capacity 
(beta1) 

LOG(beta value for learning by searching on capacity, 2) Dmnl 

Strength of learning by 
searching on capacity 
factor (beta2) 

LOG(beta value for learning by searching on capacity factor, 2) Dmnl 

Strength of learning by 
searching on cost 
(beta3) 

LOG(beta value for learning by searching on cost, 2) Dmnl 
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Effect of learning by 
searching on capacity 
increase 

(R&D based knowledge stock/initial R&D stocK”)^strength of 
learning by searching on capacity (beta1) 

Dmnl 

Effect of R&D on 
capacity factor increase 

(R&D based knowledge stock"/initial R&D stock)^strength of 
learning by searching on capacity factor (beta2) 

Dmnl 

Effect of R&D on cost  (R&D based knowledge stock/initial R&D stock)^strength of 
learning by searching on cost (beta3) 

Dmnl 

Installed capacity of 
local wind turbines per 
year 

installed capacity of local wind turbines/year mW/year 

Learning by doing 
experience rate 

Installed capacity of local wind turbines per year mW/year 

Cumulative learning by 
doing experience 

INTEG(learning by doing experience rate, initial learning by 
doing experience) 

mW 

Initial cumulative 
experience 

5 mW 

Alpha value for learning 
by doing on capacity 
factor 

1.07/1.062 Dmnl 

Alpha value for learning 
by doing on cost 

0.947/0.88 Dmnl 

Strength of learning by 
doing on capacity 
(alpha1) 

LOG(alpha value for learning by doing on capacity, 2) Dmnl 

Strength of learning by 
doing on capacity 
factor (alpha2) 

LOG(alpha value for learning by doing on capacity factor, 2) Dmnl 

Strength of learning by 
doing on cost (alpha 3) 

LOG(alpha value for learning by doing on cost, 2) Dmnl 

Effect of learning by 
doing on capacity 
increase 

(cumulative learning by doing experience/initial cumulative 
experience)^strength of learning by doing on capacity (alpha1) 

Dmnl 

Effect of learning by 
doing on capacity 
factor increase 

(cumulative learning by doing experience/initial cumulative 
experience)^strength of learning by doing on capacity factor 
(alpha2) 

Dmnl 

Effect of learning by 
doing on cost 

(cumulative learning by doing experience/initial cumulative 
experience)^strength of learning by doing on cost (alpha3) 

Dmnl 

Initial investment cost 
of a wind turbine per 
kW 

1322/2500 $/kW 

Initial capacity factor of 
a wind turbine 

0.12 Dmnl 

Investment subsidy 0.3 - STEP(0.1, 1986) - STEP(0.1, 1987) - STEP(0.1, 1989) Dmnl 
Familiarity gain total social exposure to wind turbines*(1-familiarity with the 

wind turbines) 
Dmnl/Year 

Familiarity with the 
wind turbines 

INTEG(familiarity gain-familiarity loss,0) Dmnl 

Familiarity loss familiarity with the wind turbines*fractional familiarity decay rate Dmnl/Year 
Fractional familiarity 
decay rate 

EXP(-4*epsilon*(total social exposure to wind turbines-normal 
social exposure))/(1+EXP(-4*epsilon*(total social exposure to 
wind turbines -normal social exposure)))*maximum decay rate 

1/Year 

epsilon 5 Year/Dmnl 
Maximum decay rate 0.425 1/Year 
Normal social exposure 0.2 1/Year 
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Word of mouth of wind 
turbines from non-
users 

(installed capacity for electricity generation-total installed 
capacity of wind turbines)/installed capacity for electricity 
generation*familiarity with the wind turbines*frequency and 
effectiveness of contacts of nonusers 

1/Year 

Social exposure and 
word of mouth from 
wind turbine owners 

(total installed capacity of wind turbines/installed capacity for 
electricity generation)*frequency and effectiveness of contacts of 
users*familiarity with the wind turbines 

1/Year 

Effectiveness of 
contacts of nonusers 

0.45/0.3825 Dmnl/Year 

Effectiveness of 
contacts of users 

0.8/0.68 Dmnl/Year 

Awareness campaigns 
for wind turbines 

STEP(0.02,1981) - STEP(0.02, 1987) Dmnl/Year 

Total social exposure to 
wind turbines 

awareness campaigns for wind turbines + social exposure and 
word of mouth from wind turbine owners + word of mouth of 
wind turbines from non-users 

1/Year 
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1. Percentage of consumption of coal 

2. Percentage of consumption of oil 

3. Percentage of consumption of natural gas 

4. LCOE of coal  

5. LCOE of oil 

6. LCOE of natural gas 

7. Operation cost of wind turbines 

8. Interest rate 

9. Reference LCOE of conventional techs 

10. Reference LCOE of wind turbines 

11. Affinity at reference LCOE for conventional technologies 

12. Affinity at reference LCOE for wind turbines 

13. Average lifetime of wind turbines 

14. Construction delay 

15. Effectiveness of contacts of non-users 

16. Effectiveness of contacts of users 

17. Import percentage 

18. Initial capacity 

19. Initial capacity factor 

20. Initial cumulative experience 

21. Initial installed capacity for electricity generation 

22. Initial investment cost of wind turbines per kW 

23. Initial RD stock 

24. Maximum decay rate 

25. Normal social exposure 

26. Percentage increase of installed capacity per year 

27. Sensitivity for conventional techs (beta) 

28. Sensitivity value for wind turbines (beta) 

29. Beta value for learning by searching on capacity factor 

30. Beta value for learning by searching on cost 

31. Beta value for learning by searching on capacity 

32. Alpha value for learning by doing on capacity factor 

33. Alpha value for learning by doing on capacity 

34. Alpha value for learning by doing on cost 
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Variable Justification 
Affinity at 
reference 
LCOE for 
conventional 
techs and for 
wind turbines 

Affinity represents the performance related consideration of the buyer at a 
reference value (Struben & Sterman, 2008). This value is based on the following 
assumptions: 
-For conventional technologies, reference LCOE is chosen as the average of the 
values over time in the model. Then for this value affinity is chosen as 1, since 
utilities would prefer the conventional technologies if they have reasonable price.  
-The assumption behind the reference value for LCOE of wind turbines is also 
based on the LCOE of conventional technologies. If wind turbines have the same 
LCOE with conventional technologies, then there will not be any reason for a 
utility to not choosing wind turbines. However, since wind technology is relatively 
new, this might have negative effect on the customer, s/he would need an extra 
incentive to go for wind. As a result, reference LCOE of wind turbines are chosen 
about 5 dollars less than the average LCOE of conventional technologies. For that 
LCOE, the affinity is chosen as 1. 

Sensitivity for 
conventional 
techs and for 
wind turbines 

This sensitivity parameter captures two factors: the impact of random factors and 
population size effects on heterogeneity, and individual sensitivity to performance. 
However, in practice these values are not identifiable and they are represented with 
β (Ben-Akiva & R., 1985). In the model this value is calibrated with sensitivity 
analysis where the results of yearly installations were compared with historical data. 
As expected, the sensitivity to wind turbines are higher than sensitivity to 
conventional techs, because uncertainty with the wind turbines are higher since it 
is a new technology. People would be more concerned about the price changes of 
wind turbines, which could be permanent, because the technology is not mature. 
The sensitivity to price changes is higher in Denmark compared to California, 
because the price volatility is higher in Denmark, implying an insecure market. 

Alpha values 
for learning 
by doing on 
capacity 
factor, 
capacity, and 
cost 

Alpha values are coming from the literature of learning curves. Therefore, the 
existence of these values are acceptable in the model. For finding the appropriate 
alpha values, a sensitivity analysis has been conducted, by comparing each factor 
with its historical counterpart. For example, capacity of wind turbines were only 
75 mW in 1980, and they increased to 300 mW in 1995 (Lantz, Wiser, & Hand, 
2012) . To reach the same performance improvement in the model, sensitivity 
analysis is conducted. After reaching the corresponding values, a comparison of 
those with the literature on learning curves for renewable energy and wind turbines is made. 
It is shown that alpha and beta values are similar to these studies. Note that there 
is no separation between alpha and beta values in the literature expilicitly, therefore 
their combined effects are taken as a measure (Ibenholt, 2002; Klaassen et al., 2005; 
Koomey & Hultman, 2007) 

Beta values 
for learning 
by searching 
on capacity 
factor, 

These values represent the similar concept with alpha values. They are the learning 
coming from learning by searching processes. For finding the appropriate beta 
values, a sensitivity analysis has been conducted. It should be noted that, the 
performance of the variables getting affected from alpha and beta values are closely 
related, and it is not possible to separate them. Only qualitative knowledge known 
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capacity and 
cost 

for this issue is the claim by Kamp saying that learning by doing efforts were more 
effective than learning by searching efforts in wind turbine development (2007). 
Therefore, the analysis of alpha and beta values have been analysed together with 
the assumption alpha>beta. The comparison with the literature for these values 
are conducted together with the alpha values as it is explained above. 

Maximum 
decay rate 

This value is also adapted from Struben and Sterman’s familiarity study (2008). 
Familiarity is a soft variable, so its decay is not easy to measure. This value 
represents the familiarity decay speed when the social exposure is lowest. In 
Struben’s and Sterman’s study, this value was 1. Yet, their model represents the 
regular consumers in which awareness of the technology could decay much rapidly, 
due to fast changing trends in consumer preferences and due to their cultural and 
social concerns. Besides, their motives to adopt the technology is not solely based 
on performance and cost, soft concerns such as status symbol plays a role. Last 
but not the least, more social exposure is required to be familiar with the 
technology (number of potential car owners is much more than number of utilities 
in the society). Therefore, as a combined effect of these different factors with the 
wind turbine diffusion, it is assumed that the familiarity decays much slower for 
wind turbines. A base case for this low rate is chosen as 30 percent arbitrarily. 
Then, a sensitivity analysis has also been conducted for this value for both cases. 
This value is set the same in both cases on purpose, because it is a soft variable 
which makes it difficult to explain the reasons behind different values. Besides, 
since the utilities’ aims and responsibilities are assumed to be the same both in 
Denmark and California, having the same maximum decay rate.  

Normal social 
exposure 

This number represents the level of social exposure required to minimize the 
familiarity decay. When the social exposure is high enough, there is no decay in 
familiarity. Normal social exposure behaves as a reference value for representing 
familiarity decay. This number is the reference rate of social exposure where 
familiarity decreases at half of the normal rate. This value is directly transferred 
from Struben and Sterman’s work with the idea behind that it should be at least as 
easy as regular transition studies to get familiar with the technology under certain 
level of exposure due to tightened network. Besides, decision makers in this case 
are constantly looking for the advantageous options in the field, whereas regular 
consumers are not that active for searching a new technology. Since familiarity 
decays slower in this model, the same rate of normal social exposure is acceptable 
considering the term at least. This value is set the same in both cases on purpose, 
because it is a soft variable which makes it difficult to explain the reasons behind 
different values. Besides, since the utilities’ aims and responsibilities are assumed 
to be the same both in Denmark and California, having the same maximum decay 
rate. 

Epsilon Epsilon is the decay rate at the normal social exposure. In the model created by 
Struben and Sterman, the value was equal to 1/normal social exposure 
representing the slope of familiarity decay, therefore it is taken the same in this 
model. Also sensitivity testing has been conducted, and the results showed that for 
the 10% change in epsilon, the changes in numerical results of the model were 
insignificant. 

Effectiveness 
of contacts of 
nonusers 

These values represent the influence of non-users on each other for deciding the 
adoption of wind turbines. In general, in transition studies, these numbers are low. 
In Struben and Sterman’s work, where they were modelling electric vehicle 
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transition, they have chosen this values as 0.15 (2008). In our model, the same 
value has been used for California case. It should be noted that Struben and 
Sterman claimed that this number was more optimistic compared to real life. 
However, they were modelling regular consumers, in which the communication 
among potential users are rather low, compared to networks among utilities. The 
number of utilities are lower, and the communication among them are stronger 
due to lobbying activities and/or their associations. Consequently, 0.15 is not that 
optimistic in wind turbine diffusion context. It should be noted that this value was 
10 percent more in Denmark, because the communication among the customers 
were stronger in Denmark (Olume & Kamp, 2004). Additionally, a sensitivity 
analysis has also been done for this value and comparison for yearly installations has 
been done as well with the historical data. 

Effectiveness 
of contacts of 
users 

These values are quite similar to the values effectiveness of contacts of non-users. The only 
difference here is that owners of wind turbines influence the potential adopters. 
Since the information is coming from direct experience, the validity of it and 
consequently the effect of it is much stronger. This value is chosen as 0.8 for 
California case and it is increased 10 percent for Denmark case where 10 percent 
is chosen arbitrarily (in line with the increase in effectiveness of contacts of nonusers). Also 
a sensitivity test is conducted and the results show that the numerical changes of 
yearly installations, and familiarity with the wind turbines are insignificant due to low 
number of adopters. 
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 If LCOE of wind is extremely high compared to conventional alternatives, there will not be any wind 

turbine installations: 

To test this hypothesis LCOE of wind is multiplied by five in each model. The results are as 

follows: 

California Denmark 

 

The reason for having non-zero installation 

between 1983 and 1986 is the result of policy 

PURPA act. That act was offering LCOE of 

wind with the same cost of conventional 

technologies, therefore there are still 

installations. When we disable that policy, 

the yearly installations are zero at that time. 

Also, there is a policy in 1991 offering 15 

dollar subsidy per mWh. Due to that policy, 

about 3-4 mW of installations occur but that 

number is quite low not affecting the validity. 

 

The installations per year are ranging from 1 

to 3.5 megawatts per year, which can be 

considered insignificant, so that the 

hypothesis can be accepted as true. The 

reason for this small installations, is due to 

strong network in Denmark, the familiarity 

does not decrease so quickly. 
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 If LCOE of wind is extremely low compared to conventional alternatives, the percentage of wind 

turbines installed will increase rapidly: 

For testing this hypothesis, the LCOE of wind turbines was divided by 5 this time to ensure 

it is low enough compared to conventional alternatives. 

California Denmark 

 

As expected, the percentage share of wind 

turbine capacity compared to all installed 

capacity in California, the share increases 

rapidly to 10 percent in 1990. The reason for 

not having 100 percent is based on the 

assumption that there are no replacements of 

existing power plants, only new installed 

capacity is shared among different 

alternatives. The reason there is a slow 

increase after reaching 10 percent is the 

familiarity process in California increases 

slowly. 

 

Also as expected, the percentage share of 

wind turbine capacity increases rapidly and 

reaches a plateau since the additions are only 

coming from new power plants, there is no 

replacing of existing power plants with the 

wind turbines. Also, the familiarity process is 

stronger in Denmark due to higher 

communication among the actors, therefore 

percentage share of wind turbines are higher 

in Denmark. 
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 If familiarity with the wind turbines is zero, there will not be any wind turbine installations. 

To implement this test, effectiveness of contact with users and effectiveness of contacts with 

non-users are set to zero. This ensures that there is no familiarity gain in the model, and also 

initial value for familiarity is set to 0 to ensure that the utilities are not familiar with the wind 

turbines. 

California Denmark 

 

 

This graph shows the total mW of wind 

turbines installed cumulatively over time. 

The yearly installation graph was 0 all the 

time as the hypothesis suggests, therefore 

another KPI is shown in this graph for better 

visualization.  

 

The reason there is an increase in Denmark 

for installed capacity after 1988 is because of 

the governmental decision to install 100 mW 

wind turbine capacity which belongs to the 

public. When that policy is disabled, the 

results are as expected, there are no wind 

turbine installations. 
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 If familiarity with the wind turbines is 1, there will be a considerable increase on yearly installations. 

To make familiarity 1, the initial stock of familiarity is set to 1 and effectiveness of contacts 

with users and effectiveness of contacts with non-users are also set to 1. This way only 

influence on adoption will be the LCOE comparison of wind turbines and other alternatives, 

resulting in higher installed capacity compared to calibrated model.  

 

California Denmark 

 

When familiarity is set to one for the model, 

there is a significant increase in yearly 

installations as the hypothesis suggested.  

 

Also in Denmark, there is a significant 

increase in yearly installations, as expected. 

However the difference of increase is lower 

in Denmark than California. The reason for 

this is because familiarity with the wind 

turbines in Denmark is already stronger 

than California case. Besides, in concrete 

numbers, the yearly capacity demand of 

Denmark is lower than California’s demand. 
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 If the alpha values for learning by doing are zero, the LCOE decrease would be quite low. (Learning 

would come only from R&D expenditures which is less strong than learning by doing). 

For this test, alpha values are set to 1 for each variable, meaning that there is no effect of 

learning by doing in the model. The rest of the variables (including beta values) are left the 

same as the base model. 

California Denmark 

 

This graphs shows the change in LCOE. The 

blue line is the result of extreme condition 

test, and the results show that except from 

some fluctuations due to interest rate and 

R&D expenditures, LCOE of wind do not 

decrease significantly.  

 

Denmark showed similar results as California, 

as expected.  
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 If the beta values for learning by searching are zero, the LCOE decrease would be lower than the 

actual model, but it will get affected less, compared to alpha values. 

For this test, alpha values set back to their original values and beta values are all set to one, 

meaning that there is no effect of learning by searching mechanisms in the model.  

California Denmark 

 

Effect of R&D expenditures are effective, 

but only slightly, as the hypothesis 

suggests.  

Denmark showed similar results as California, 

as expected.  
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 If both alpha and beta values are zero, there will not be any learning effect on capacity factor, capacity, 

investment cost and consequently on LCOE of wind. 

For testing this hypothesis, both alpha and beta values are set to 1, and comparison is made 

with the case where only alpha values are set to 1. 

California Denmark 

 

In this graph green line represents the base 

case, where both learning by doing and 

learning by searching factors are active. For 

red line, only learning by searching 

mechanism is active and the LCOE decreases 

slightly. When both of these mechanism are 

deactivated (blue line) the cost decrease is 

only affected from interest rates.  

Denmark showed similar results as 

California, as expected.  
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Appendix F.1. Univariate Sensitivity Analyses 
For all exogenous parameters in the model a sensitivity analysis is conducted with 10 percent increase/decrease for the value of 

each variable. 1000 simulations for each parameter is run with the random uniform distribution. The sensitivity analysis results 

with confidence bounds are given for related KPIs per parameter below (Not shown KPIs indicate that the model is not 

numerically sensitive to that parameter, but yearly installations KPI is not shown unless stated otherwise, because there is no 

parameter between yearly installations and total installed capacity of wind turbines which could generate different results for these two 

KPIs.): 

Affinity at reference LCOE for conventional technologies and Affinity at reference LCOE for wind turbines: 

This parameter had the value of 1 in the base simulation. Since it affects directly the preference for wind turbines, the installations 

are affected directly. The results show that the model is only numerically sensitive to this parameter. The reason for there is little 

sensitivity in LCOE is the learning curves coming from learning by doing is less sensitive, since LCOE depends on many factors. 

Also, perceived affinity is determined by taking the percentage affinity of wind turbines to total affinity, therefore, 0.9 affinity of 

conventional technologies corresponds to 1.1 affinity for wind turbines. As a result, sensitivity analyses are the same for these 

parameters. 
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LCOE of 

wind 

  

Percentage of 

wind turbine 

installations 

  

 

Average Lifetime of Wind turbines 

Although this value is based on real life data, which is commonly accepted as 20 years for wind turbines, it has important effects 

on LCOE of wind turbines. The results of sensitivity analysis according to this parameter is shown below. The results show that 

the model is numerically sensitive to average lifetime of wind turbines, and this sensitivity is not strong. Again, familiarity with the 

wind turbines is not affected from this value because the percentage change of wind turbine share is not strong enough.  
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Percentage of 

wind turbine 

installations 

  

 

Construction Delay: 

Ten percent alteration of this value did not change the model significantly even from the numerical perspective. This result is 

acceptable, since there is only a insignificant effect of this factor on learning curves (it affects knowledge accumulation via learning 

by doing) and these values are even get less significant in LCOE calculation.  

 

Effectiveness of Contacts of nonusers: 

The changes of this parameter affects all KPIs, because it directly affects familiarity. When familiarity is changed, perceived affinity 

for the technology is changed immediately, resulting in change in installations. The results show that the model is numerically 

sensitive to this value. 
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Familiarity 

with the 

wind 

turbines 

 
 

Effectiveness of Contacts of users: 

Since the adoption is only about 2.5 percent in California and about 6 percent in Denmark, the effectiveness of contacts of users 

did not affect the model’s results significantly. Only for Denmark, the familiarity with the wind turbines changed a bit after 1988, 

due to increased percentage of users which has no significant effects on other KPIs. 
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Initial Capacity Factor & Initial Investment Cost: 

This value was also taken from the literature, but sensitivity analysis is required to see whether the model behaves differently if 

there is a mistake with the assumption. The results show that only numerical sensitivity is in question regarding this parameter. 

Yet, since the aim of system dynamics is to capture the behavior of the system, numerical sensitivity is acceptable. The results are 

shown below. The reason for there is no change in California’s familiarity is due to low percentage of adoption which is under 

normal social exposure. As expected, changes in initial investment cost showed similar results. 
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Initial Cumulative Experience & Initial R&D stock: 

The 10 percent change in this value showed only numerical sensitivity and this sensitivity was so low that it can be ignored. For 

illustration, total installed capacity of wind turbines graph is shown below. It can be concluded that, if there is no significant difference 

between initial cumulative experiences, both cases can be considered equal in terms of starting point for diffusion from experience 

perspective. (Only 8 mW of wind turbine capacity was installed in California and this value was 5 mW in Denmark) Also the 

results for initial R&D stocks were the same. The reason for this small change is the initial experience stocks affect the rate of 

learning curves not the ultimate result that the learning curve reaches. Therefore its effect on LCOE is rather small, resulting in 

small difference in total installed capacity of wind turbines. 
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Initial installed capacity for electricity generation & Percentage increase of installed capacity per year 

As expected, this value only affects the results of the model in absolute terms, not in percentages. If there is an increase in total 

demand, the number of installed wind turbines increases as well, but the percentage share of this distribution is not affected 

significantly. Thus, below only total installed capacity of wind turbines and percentage of wind turbine installations are shown. The results 

were similar for percentage increase of installed capacity per year since it alters the installed capacity in a similar perspective. 
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Maximum Decay Rate: 

Also the results of the changes in this parameter results in numerical sensitivity of the model. The most sensitive KPI is familiarity 

with the wind turbines, since the forgetting of technology increases when this decay rates. According to the changes in familiarity, 

the demand for wind turbines changes as well, affecting percentage of wind turbine capacity and total installed capacity of wind 

turbines. This value has no effect on LCOE, since the ultimate decrease in learning curves depends on accumulated knowledge. 
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Normal Social Exposure: 

Ten percent change in this level does not affect the model behaviour numerically, except for the familiarity for Denmark. The 

reason that California is not affected but Denmark is affected is because Denmark reaches over 5 percent wind turbine installation 

percentage, which is higher than normal social exposure. 
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Sensitivity value for conventional technologies & Sensitivity value for wind turbines: 

These values represent the buyers’ sensitivity to price changes for conventional technologies or wind turbines respectively. Only 

slight numerical sensitivity is observed for these values which could be considered insignificant.  
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Beta value for learning by searching on cost & Beta value for learning by searching on capacity factor: 

These values affect the ultimate decrease on cost and ultimate increase on capacity factor with learning by searching mechanism. 

Since these values affect LCOE (not the slope but the real value), the installations are numerically sensitive to this value. The 

results are shown below: 
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Alpha value for learning by doing on cost & Alpha value for learning by doing on capacity factor: 

These values affect the ultimate decrease on cost and ultimate increase on capacity factor with learning by doing mechanism. Since 

these values affect LCOE (not the slope but the real value), the installations are numerically sensitive to this value in the 95% 

confidence bounds. There is a behaviour change in the graphs but this is caused by increasing the values over the real possible 

value. For instance, alpha value for learning by doing on capacity factor has to be above 1. If it is lower than 1 it means that with 

time capacity factor decreases, showing inferior performance, which is unrealistic. When the sensitivity analysis is done with 

considering these bounds, there was no behaviour change. The results without the bounds are shown below to illustrate the point 

better. The results for cost and capacity factor was similar. Again, for familiarity, there is not real change in California but the 

results are sensitive in Denmark. This is due to higher percentage of adoption in Denmark, which goes higher than normal social 

exposure. 
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Appendix F.2. Multivariate Sensitivity Analyses 
After making these univariate sensitivity analyses, multivariate sensitivity analyses are done by combining closely related variables. 

For example, for familiarity; effectiveness of users and non-users, maximum decay rate and normal social exposure are the main 

variables affecting the feedback loops. Therefore their combined effects are also investigated with sensitivity analysis. The 

descriptions of each of these multivariate sensitivity analyses are given below: 

 Multivariate sensitivity analysis for testing variables related with familiarity 

 Multivariate sensitivity analysis for testing variables related with learning curves 

 Multivariate sensitivity analysis for testing variables related with affinity (purchasing decision) 

Again, each of the variables are changed 10 percent with random uniform distribution. The simulation is run 1000 times number 

of variables altered. 

 

 Multivariate sensitivity analysis concerning Familiarity: effectiveness of users, effectiveness of nonusers, maximum decay rate, normal social 

exposure, initial familiarity: 5000 runs with 10% alteration of values with random uniform distribution. 
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The results for California is only numerically sensitive under 95% confidence bounds. But for Denmark, the familiarity is 

behaviorally sensitive to combined effect of variables influencing familiarity. This behavior change does not result in significant 

behavior change in the model for installed capacity and the percentage of installed capacity, since familiarity only increases the 

demand. As it was explained before, the reason for Denmark to be behaviorally sensitive to familiarity is due to high level of 
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adoption which is more than normal social exposure. This way, familiarity decays quite slowly, and it get closer to well-known S-

curve.  Same situation only happens for California for 5 percent of the simulations. 

 Multivariate analysis regarding learning curves: alpha values for learning by doing on cost, alpha value for learning by doing on capacity 

factor, beta value for learning by searching on cost, beta value for learning by searching on capacity factor, initial RD stock initial cumulative 

experience (initial installed capacity), initial investment cost per kW, initial capacity factor are changed with 10 percent random uniform 

distribution over 8000 runs.  
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Familiarity 

with the 

wind 

turbines 

  

The results show that the model is numerically sensitive to combined changes in learning curves more that 75 percent of the 

confidence bounds. Behavior change is in California is coming from the comparison of LCOEs of conventional technologies and 

wind turbines, resulting in expensive wind turbines and lower rate of adoption due to slow learning. For Denmark, even though 

the learning curves get slower, wind turbines remain advantageous to conventional technologies, because Denmark’s energy cost 

is high. Familiarity sensitivity difference between California and Denmark is due to level of adoption as it is explained before. 
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 Multivariate analysis share of wind turbine purchases: affinity ay reference LCOE of wind turbines, reference LCOE of wind turbines, 

affinity at reference LCOE of conventional technologies, reference LCOE of conventional technologies, sensitivity value for wind turbines, 

sensitivity for conventional technologies are changed with 10 percent random uniform distribution over 6000 runs.  
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Model’s response to sensitivity analysis regarding affinity is numerical sensitivity. The reason there is no behavior sensitivity for 

this analysis, is because LCOE of wind turbine remains at the same advantage compared to LCOE of conventional technologies, 

unlike previous analysis. Therefore, utilities adoption level differs in percentage, but there is no behavior change. Familiarity 

sensitivity difference between California and Denmark is due to level of adoption as it is explained before. 
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Here the tables show the real data, model’s data and the results of these tests, as well as the 

graphs of the data both for California and Denmark. 

 Denmark  R2 and  MAE/Mean tests  

  investment cost cumulative installations yearly installations  

  real model real model real  model  

1980 1322 1322.00 2 5.00 2 1.40  
1981 1322 1248.06 6 6.09 4 2.41  
1982 1360 1195.01 10 9.12 4 4.56  
1983 1284 1145.09 14 16.19 4 14.32  
1984 1265 1091.72 20 31.04 6 13.76  
1985 1209 1042.04 47 48.62 27 22.28  
1986 1133 998.38 72 73.75 25 25.57  
1987 1058 959.49 112 104.08 40 26.80  
1988 982 925.85 190 135.94 78 57.84  
1989 1095 895.92 246 185.26 56 55.51  
1990 1076 868.11 325 242.24 79 60.71  
1991 1020 843.12 392 300.26 67 62.08  
1992 982 820.78 435 358.17 43 39.31  
1993 906 800.83 467 407.81 32 62.75  
1994 831 783.00 520 470.23 53 82.81  
1995 793 766.64 599 552.86 79 96.69  

R2 0.88 0.98 0.73  
MAE/Mean 1.34% 2.75% 1.33%  

        

California  R2 and  MAE/Mean tests  

  investment cost cumulative installations yearly installations  

  real model real model real  model  

1980 2500.00 2500.00 0 8.00 0 0.00  
1981 2297.00 2189.47 10 7.87 0 0.00  
1982 1847.19 1990.29 70 11.03 10 3.17  
1983 1466.00 1792.83 240 22.77 60 11.74  
1984 1404.00 1374.73 617 300.35 170 277.58  
1985 1350.00 1063.98 911 682.08 377 381.72  
1986 1044.07 906.82 1235 973.06 398 290.99  
1987 750.00 813.02 1304 1192.55 275 219.48  
1988 701.75 750.37 1202 1279.71 154 87.16  
1989 698.50 707.12 1302 1291.80 59 12.09  
1990 681.37 675.06 1454 1297.51 64 5.71  
1991 618.11 649.39 1679 1369.92 161 72.41  
1992 621.00 627.24 1655 1443.12 165 73.20  
1993 632.00 607.96 1608 1481.98 17 38.86  
1994 599.50 590.91 1609 1510.12 9 28.14  
1995 567.00 575.53 1523 1527.64 54 17.52  

R2 0.96 0.96 0.82  
MAE/Mean 0.01% 1.87% 11.00%  
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This appendix looks for the possible effect of combined policies which might result in worse 

results in wind turbine diffusion compared to sum of all policies. To test this, the policies were 

removed from the model one by one and their results are compared with the full model. This 

method is repeated both for California and Denmark cases. 

Appendix H.1. Testing the combined effects of policies in California 
Below the results of removing one policy in California model is shown, by showing the yearly 

installations and cumulative installations. 

  

 
 

Figure H.1 Effect of all policies except R&D installations 

As the Figure shows, when the R&D investments are cut, the wind turbine installations are 

decreased a little, showing that R&D investments have a positive effect in combination to all 

other policies. This variable triggers the learning by searching mechanism which helps to cost 

reduction by improving capacity factor of wind turbines and decreasing the investment cost, 

and as a result less costly wind turbines result in more installations. 
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Figure H.2 Effect of all policies except PURPA act 

As expected, PURPA act has a significant impact on wind turbine installations in California, 

but it has no negative effects in combination with the other policies, since the green line is 

lower than the full model’s result. This act directly intervenes to the LCOE of wind turbines 

and makes it a cost competitive option. Even when the act is removed, due to learning by 

doing mechanism, the costs were reduced therefore there is more preference on installations. 

  

  

Figure H.3 Effect of all policies except long term contracts 

The Figure shows that long term contracts result in additional installations during the period 

of 1983 -1985. Since the installations with all policies (red line) is higher than the installations 
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with all policies except long term contracts (green line), it can be concluded that long term 

contracts do not interfere with the other policies negatively. 

  

  

Figure H.4 Effect of all policies except subsidies 

This Figure shows that there is al little effect of subsidies on wind turbine installation. The 

first part of the installation only shows its effect during 1981-1983, because after 1983 PURPA 

act starts and its effect overrules the effect of subsidies, since LCOE decreases more with 

PURPA act. During 1990-1991, another subsidy of Energy Policy Act Credit shows its effect 

by offering 15 $/mWh subsidy. These results imply that the effect of federal and state tax 

credits becomes redundant when PURPA act is active, because they both target the same 

value. However, these policies have no negative effect on the model when combined with the 

other policies. 
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Appendix H.2. Testing the combined effects of policies in Denmark 
Below the results of removing one policy in California model is shown, by showing the yearly 

installations and cumulative installations. 

  

  

Figure H.5 Effect of all policies except R&D installations in Denmark 

Similar to California case, the effect of R&D installations are visible but not that strong. There 

is no combined effect of this policy hindering the other policies. 

  

  

Figure H.6 Effect of all policies except investment subsidies in Denmark 

Unlike California, subsidies directly or indirectly affecting LCOE of wind turbines are effective 

in Denmark. The main reason is the lack of feed in tariff in the policies of Danish goverment. 

These subsidies are the main ones helping the utilities to install wind turbines in a cost 

competitive manner whereas that was provided by PURPA act in California. Besides, as the 

Figure suggests, there is no combined effect of this policy on the model. 
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Figure H.7 Effect of all policies except 10 year agreement between the government and the utilities in Denmark 

Similar to investment subsidies, this 10 year agreement is a reduction on LCOE starting from 

1985 and it helps the utilities to install wind turbines by making it a more cost competitive 

option. It is observed that there is no negative effect of this policy when it is combined with 

the other policies. 

 
 

Figure H.8 Effect of all policies except Government installing wind turbines in Denmark 

This policy only contributes to the result by not interfering with the any feedback loops. 

Therefore it has no negative effect on the model when it is run with the other policies. 
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Figure H.9 Effect of all policies except EnergiPlan Act in Denmark 

This Figure shows that EnergiPlan was one of the significant policies stimulating wind turbine 

installations in Denmark. Yet, it has no counter effect on the other policies. 
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