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It is shown that the current response to an electric field is strongly nonlocal slightly above the super-
conducting transition temperature 7,. The length scale for nonlocality is defined by the correlation
length for superconducting fluctuations &(7) and diverges at T,. This makes it possible to observe the
nonlocal part of the conductance in a multiterminal measurement on a sample of size 27R ~§(T). The
local part, originating from the Aslamazov-Larkin correction to the conductivity, exceeds usual meso-
scopic interference effects near T,. We use a simple approach (the time-dependent Ginzburg-Landau
equation) to calculate the nonlocal resistances for a ring geometry. We predict that the ratio of voltages
measured by two different sets of probes attached to the same ring should oscillate as a function of the
flux with a period equal to the “superconducting” flux quantum. This is strikingly different from the
known Aharonov-Bohm effect for rings made of a “dirty” normal metal, where such a ratio should be

flux independent.

I. INTRODUCTION

The effects of fluctuations of the superconducting order
parameter in the vicinity of the transition temperature
have been studied intensively, both experimentally and
theoretically, for more than two decades.’? The usual
way of an experimental investigation of these fluctuations
consists of measurements of the excess conductivity o',
determined as the difference between the linear extrapola-
tion of ¢(T') down from high temperatures, and the actu-
al value of the conductivity o(T') in the vicinity of the
transition to the superconducting state. Applied to a
macroscopic sample,’ these measurements give informa-
tion about the magnitude of the fluctuations, but not
about their spatial structure. The correlation length £(7)
of the fluctuations diverges at the transition temperature.
Thus we can expect an increasing nonlocality of the con-
ductance, while the temperature T approaches the criti-
cal value T,: Current density at a given point r depends
on electric fields existing on distances ~&(T') from this
point.

Experimentally, the manifestation of a nonlocal con-
ductance should be expected if contacts to a sample are
separated by distances of the order of £(T'). This deter-
mines the main requirement for sample fabrication. Re-
cent developments of patterning techniques allow for the
preparation of networks from superconducting metals
out of building blocks with a submicron size.*> Refer-
ence 6 demonstrates the possibility to produce a one-
dimensional wire with an interprobe distance, which is
comparable with £(7) at temperatures separated reason-
ably well from T,. We believe that manufacturing of
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samples with similar sizes and suitable for multiterminal
measurements is also possible now.

In this paper we analyze the nonlocal paraconductance
for a ring threaded by a magnetic flux. We propose a
multiterminal measurement that allows to single out the
nonlocal part of the conductance. Voltages V,, V; mea-
sured by two different sets of probes attached to the ring
oscillate due to the changing flux. These oscillations con-
tain a ‘“usual” part corresponding to the modulation of
the local conductivity (the well-known Aharonov-Bohm
effect’) as well as a new nonlocal part. The modulation
of the local conductivity obviously does not affect the ra-
tio ¥3/V,, that will be determined solely by the sample
geometry (see Fig. 1) and Kirchof’s rule. The nonlocal
part of the conductivity, however, makes this ratio oscil-
late, because this is the part that violates Kirchof’s rule.
Nonlocality and resulting deviations from Kirchof’s rule

FIG. 1. Four-terminal setup for a ring of radius R. Two
current probes are connected to the ring at angles a, and a, in-
jecting a current I; this leads to a voltage difference V, between
these probes. The voltage difference ¥V is measured between
voltage probes at angles 3, and j3,.
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depend on the ratio R /£(T) that changes with tempera-
ture (R is the radius of the ring). We calculate the oscil-
latory parts of the paraconductance and of the ratio
Vg/V 4, in the limits of both large and small 27R /§(T).
Observation of the proposed oscillations would give a
clear manifestation of the nonlocal paraconductance.

Our calculations account for the order-parameter fluc-
tuations in the lowest order of perturbation theory, giv-
ing the nonlocal contribution to the paraconductance. In
the next section, we show that this contribution origi-
nates only from the Aslamazov-Larkin (AL) part of the
correction to the conductivity,® corresponding to the
most divergent diagram in the second order of perturba-
tion theory. The first-order correction, i.e., the well-
known Maki-Thompson (MT) part of the paraconductivi-
ty,” gives only a local enhancement of the conductivity.

The AL contribution to the paraconductance can be
easily accounted for in the framework of the time-
dependent Ginzburg-Landau (TDGL) theory.! This ap-
proach is especially convenient for our problem, as it
simplifies obtaining results in spatially-confined and mul-
titerminal geometries. In Sec. III we present the calcula-
tion of the nonlocal fluctuation conductivity for a ring,
along the same lines as the treatment given in Chapter 7
of Ref. 1. Next we discuss the four-terminal setup in Sec.
IV, followed by a calculation of the voltage ratio in Sec.
V. There we apply the obtained formulas to a current-
biased ring placed in a magnetic field. We calculate volt-
ages ¥V, and ¥z measured by two sets of probes, and the
ratio V/V,. The flux dependence of this ratio demon-
strates the paraconductance nonlocality. At tempera-
tures near T, when &(T)X 27wR (Sec. V A), the paracon-
ductance correction is proportional to [T —T*]!, where
T} is the transition temperature suppressed by the mag-
netic flux (Little-Parks effect, see Ref. 1). In this case the
local and nonlocal parts of the AL correction are of the
same order of magnitude. Both parts oscillate when the
flux is changed. Away from T, (Sec. VB), if the
temperature-dependent coherence length is small enough
such that £(T) S2mR, the nonlocal correction still has a
periodic flux dependence, but of exponentially small am-
plitude, ~exp[ —27R /&(T)]. We discuss our results in
Sec. VI. In particular, we analyze there the possibility to
distinguish the predicted oscillations from the mesoscop-
ic fluctuations occurring in normal rings due to the
coherent motion of free electrons.”

II. FLUCTUATION CONDUCTIVITY
IN ONE-DIMENSIONAL SUPERCONDUCTORS

It is well-known"? that the normal conductivity o o
of a superconductor at a temperature T above T, is
enhanced by fluctuations of the order parameter. In a
microscopic theory,!! a systematic perturbation expan-
sion up to second order in the fluctuation propagator
yields two different contributions to this excess conduc-
tivity o’.

Among all possible second-order contributions there is
one that is most divergent at T,. This term is known as
the Aslamazov-Larkin (AL) correction,® which describes
the conductivity of a fluctuating pair of electrons. Intro-
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ducing the reduced temperature 7=(T—1T,)/T,, we can
write the AL correction for the one-dimensional conduc-
tivity!? of a wire as®

’ =162§(0) —3/2 1
OALT 16 7 T , (1)

where £(0) is the zero-temperature coherence length.'?

The first-order contributions are known as the Maki-
Thompson (MT) correction,” which describes the addi-
tional scattering of electrons by a superconducting fluc-
tuation. In one and two dimensions, this contribution is
divergent. The singularity can be removed by introduc-
ing a low-energy cutoff, which corresponds physically to
the presence of a pair-breaking interaction. In one di-
mension, the MT term is given by?

Vo4 T 1
OMT 40“‘8 TS /o072 (2)
where the pair-breaking parameter 8 can be expressed in
terms of the phase-breaking length L ;:
2
s=510) 3)
Ls
An important difference between the AL and MT con-
tributions, which is due to their different origin, is the
length scale on which they are nonlocal. This is easy to
understand by analyzing the corresponding contributions
diagrammatically. The AL part is given by the diagram®
of Fig. 2(a); a typical diagram for the MT part® is shown
in Fig. 2(b). We see that the field vertex and the current
vertex in Fig. 2(a) are linked via two fluctuation propaga-
tors only. The typical length scale of these (£(T')) deter-
mines the nonlocality of the current response to an ap-
plied electrical field—the AL correction describes the ex-
cess current carried by superconducting pairs of a

(a)

i, E@

(b)

im. E(@)

FIG. 2. Conductivity diagrams for superconducting fluctua-
tions. Bold lines denote (impurity-averaged) electron propaga-
tors, a wavy line the fluctuation propagator. The AL diagram
(a) connects current and field vertex [J(r) and E(r’), respective-
ly] by fluctuation propagators only, leading to nonlocality over
&(T). The MT diagram (b) connects these vertices by impurity-
averaged electron propagators, leading to nonlocality over elas-
tic mean free path /,.
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characteristic size £§(7'). The MT correction describes
the excess current carried by normal electrons, which are
scattered by a fluctuating pair, see Fig. 2(b). However,
normal electrons are scattered by impurities as well. Asa
result, averaged over impurity positions, the electron
propagators that correspond to the lines connecting the
field and the current vertices in Fig. 2(b) decay on the
length scale given by the elastic mean free path /,, which
is much shorter than &(7) in the vicinity of the transition
temperature. Thus in a sample of a size that is compara-
ble with &(T), the fluctuation conductivity, averaged over
impurities, will consist of a local contribution due to MT
and a nonlocal contribution due to AL. By comparing
Egs. (2) and (1) we see that the AL correction gives the
largest contribution to the conductivity close to T, pro-
vided there is enough pair-breaking, such that 7/86<1,
whereas away from 7. the MT correction becomes more
important. On the other hand, close to T, the supercon-
ducting fluctuations become strong, and the perturbative
results given above will cease to be valid. A lower bound
to the allowed values of T'— T, can be obtained by requir-
ing that the larger correction (o) still be smaller that
the normal conductivity o,,.. Substituting for o, the
well-known Drude conductivity,!* we obtain the require-
ment

o 3
AL _3m £0) 1 sp g @)
0 norm 8 I, kES

Here S is the cross-sectional area of the one-dimensional
wire.

Since we will be interested in the nonlocal AL correc-
tion in the rest of this paper, we thus will mainly consider
temperatures that are close to 7., such that the sample
size 27R is smaller or, at least, does not exceed greatly
the coherence length £(T).

Making R smaller, one can get eventually into the re-
gime at which 27R ~L,. In this limit, the mesoscopic
part of the correction to the conductance G, (i.e., the
part representing interference between normal electrons)
inevitably brings nonlocality into the conductance. An
estimate 8G ., at L, S27R is!s

372 -1/2

V3 e
T A

Ly
2mR

9

SGmeso = 27T 8

(5)

In order to exclude consideration of these fluctuations, it
is enough to assume that there is a sufficiently wide inter-
val between £(T) and L 4,

§(T)R27R>>L . (6)

This is the most strongly formulated requirement on R,
that allows simply to neglect the overall mesoscopic
correction to the sample conductance, while the nonlocal
AL correction is large. In Sec. VI, we will show that this
requirement can be relaxed, and that even for
27R ~L 4R £(T), the AL nonlocal term is the leading one
in the nonlocal resistance, although it is exponentially
small in the parameter 27R /§(T).

Condition (6) simultaneously means that the magnitude
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of the AL correction is larger than the MT one. So, in
the range of temperatures

e 1 17 o) -
8 I, kiS Ly’

we can neglect the MT contribution to the excess conduc-
tivity and also satisfy the condition for small fluctuations.

We finally note that the AL correction can be account-
ed for in a phenomenological theory as well, by adding an
equation of motion for the order parameter to the static
Ginzburg-Landau equation.!® The resulting time depen-
dent Ginzburg-Landau (TDGL) theory is the formalism
we will use in the remainder of this paper.

III. NONLOCAL FLUCTUATION CONDUCTIVITY
FOR A SUPERCONDUCTING RING

The nonlocal relation between current density and
electric field replacing the usual Ohm’s law, can be ex-
pressed by the equation

Ji(n)= [dro (r,r)E}(r) , (8)

where aij(r,r’) is the nonlocal conductivity tensor.

As we discussed in the previous section, we will be in-
terested in the small nonlocal correction ¢’ to the normal
conductivity o, due to fluctuations of the order pa-
rameter ¥. Since the normal conductivity is a local, iso-
tropic quantity on the lengthscales we are dealing with,
we can write the total conductivity tensor as

0 (0,1 ) =000 8(r—1') + o (r,1') . 9)

We calculate the correction o’ with the help of the Kubo
formula

oy, e)=lim —— [ dr cos(wt )(J,(r,01J,(r',1)) , (10)

0—0 kB T
which relates the elements of the conductivity tensor to

the correlation function of the components of the opera-
tor for the supercurrent J(r)

e

*

vV _ 27A
i d,

27 A

v
-+

I(r)= v v—9¢ v*

(11

Here, e is the electron charge, m* its effective mass, A is
the vector potential, and @, the flux quantum.

Consider a superconducting ring of radius R, kept at a
temperature T above the transition temperature 7,. A
magnetic field H is applied, perpendicular to the ring,
which corresponds to a flux ® =R 2H through the ring.
Positions along the ring are measured by an angle ¢,
which is equivalent to the formal change of variable

r—Réoe, , (12)

where e, is the unit vector in the angular direction. We
expand the order parameter ¥ in terms of eigenfunctions

2%
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=2 c, (1), (8), (13)

which satisfy the linearized TDGL equation? if we are far
enough above T,., corresponding to the temperature
range (7),

2

7 3 _ @ R?
—_—— = . (14
m R | |76 @y | T Em |Vr TV 1Y
The vector potential has been chosen to be

A=(1/2)HRe;. The temperature-dependent coherence
length is given by &(7)=£&(0)r"!/2, where £(0) is the
zero-temperature coherence length!®* and 7=(T—T,)/
T,.

The solution of Eq. (14) reads

1

= in¢
Y,(¢) VR
, 15)
__# _® |, R
€n Im*R?2 n P, §2(T) ’

The normalization of ¥, has been chosen such that |¢|?
has the dimension of a density.
The order parameter i satisfies the linearized TDGL

ehi
m*R?

(J(¢,0)J(¢",2))=

n,m,n',m'
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equation,” which leads to an equation for the time-
dependent coefficients c,(¢) and hence for the correlator
(cX(0)c,(2)):

O (.
at(c,,(O)c,,(t))

2 2
=L+ ED 2 ek, . a6)
to R D,

The temperature-dependent relaxation time to=m#/
8kz(T —T,), the nth mode decays with time

t,=to/[1+(EXT)/R})(n—D/Dy)*] .

The modes decay more rapidly with increasing mode
number (energy).

Equation (16) is solved under the boundary condition
lc,(0)|>=kyT /e,, imposed by the thermal character of
the fluctuations. The solution reads

(c*(0)c,(t))= exp(—t/t,) . (17)

n
Substituting the expansion (13) in the expression (11) for
the current, we can calculate the current-current correla-
tor appearing in the Kubo formula (10)

S 2n+m—2®/D,)(2n'+m’'—2® /Dy)e ™M (X (0)c, 1 m(0)e ki (E)c, 4 m(E)).

(18)

Since the problem is one dimensional, we dropped the subscripts corresponding to spatial components. The coefficients
¢, are statistically independent, therefore the only nonzero contribution from the correlator in the right-hand side of

Eq. (18) is obtained for n'=n +m,m’'=—m. Using Eq. (17), we find in the zero-frequency limit
bd )= —L 5 pim(6—¢)
a'(¢,d') 7R %e Om > (19)
where
e?1 R 1 2
o= - (20)
2% T m? 2 14+(&(7) /R ) (n— D /D) 2 2+ (&E(T) /R (n—D /Py +(n+m —d /D))

The coefficients o, depend periodically on the flux ® /®,,.

It is a peculiarity of one dimensionality that the component o(¢,¢’') of the nonlocal conductivity tensor has the di-

mension of conductance Q1.

However, its Fourier components o, have the dimension cmQ ™! of a true one-

dimensional conductivity if the Fourier decomposition of ¢-dependent quantities on the ring is defined by

o

F@=312 3 fne™; f,=R [Tdef(@rem,

2nR

as we anticipated in Eq. (19).

21D

We proceed by splitting up the quadratic factors in Eq. (20) into linear terms of the form 1/(z—n). The sum over n

can be performed by noting that

]

2

n=—o %

We find

=mwcotmz .

(22)
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m(&(7)/R ) sinh27R /&(7)

cosh27R /&(1)—cos2m( P /P,)

27
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sinhm[m?+4R?/E%(7)]'?

B [m?+4R?/E%7)]"/? coshm[m

In the next section we will express the voltage along the
ring in terms of the conductivity Fourier components

!
Oy

IV. VOLTAGE IN A FOUR-TERMINAL GEOMETRY

Consider the geometry depicted in Fig. 1. Two current
probes are connected to the ring, such that a current I is
injected into the ring at angle a; and taken out at a,. We
want to calculate the resulting voltage distribution V(¢)
along the ring. We consider the current and voltage
probes, introduced in this section, to be noninvasive, and
neglect their influence on the fluctuating order parame-
ter. The induced total current (that includes both the
normal part and the part caused by superconducting fluc-
tuations) on the ring J,(¢) satisfies the continuity equa-
tion

3J,(9)
d¢

=I[8(¢p—a,)—8(d—a,)] . (24)

This equation expresses current conservation at the nodes
a, and a,. We solve it by substituting the Fourier
decomposition of the current

1 .
J($)=——=F ™, ,
() 27R % ¢ "
which yields a relation for the Fourier coefficients J,,

JmZ—I,—R—(e
im

—ima —ima
1 2
e

), (25)

valid for all m0. Using the nonlocal relation between
current and electric field E(r)=—aV(r)/dr,

(., OV($)
)= [ Tds'ol9=¢173
we find the Fourier coefficients V,,
V. = IR2 —ima,

= (e )
m‘o,,

—ima,
—e

(26)

of the voltage V(¢) along the ring, which can now be cal-
culated by summing the corresponding Fourier series.
Here, o, are the Fourier coefficients of the total nonlocal
conductivity, given by

=0 om0 - 27

. (23)
2+4R2/EX 7))V 2 —cosm(m —2® /D)

f

The voltage is determined up to a constant, correspond-
ing to the term ¥,, with m =0, which is unimportant if
voltage differences are considered.

Suppose that, in addition to the current probes, two
voltage probes are attached to the ring at angles 3, and 3,
(see Fig. 1). The voltage, measured between these probes
can be calculated, using (26)

_l}i (eimﬁz_eimﬂl)(e—imal_e~ima2)

= > . (28
27 m#*0 m-o,

Since we assume that the correction o' is small, we ex-
pand

We rewrite the voltage difference (28) as

’
g m
o norm

X[cosm(B,—a;)+cosm(B;—a,)

IR > 1
2 3

normm=1 M

VB=—

1_

mo

—cosm(B;—a;)—cosm(B,—a,)].

(29)

For completeness, we also give the voltage between the
nodes a; and a,,

V.=Via)—Via,)

g norm

= 1 T

X[1—cosm(a,—a,)] . (30

In the next sections, we will discuss the behavior of (29)
and (30), as well as their ratio, both near 7, and in the
limiting case §(7)/2mR S 1.

V. CALCULATION OF THE VOLTAGE RATIO

A. Nonlocal corrections near T,

At temperatures T near T, we can expand the result

(23) in powers of the small parameter 27R /(7). Keep-
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ing terms up to second order, we approximate the first
term in brackets as

w(&(7)/R ) sinh(27R /&(7))
cosh(27R /&(7)) —cos(2m(D /D))

27+ 4r*/3)(R/E(1)
1—cos(2m® /®y)+ 274 R /E(T))*

(31

It diverges whenever T approaches a temperature T,
given by

TXP)=T, , (32

2(0)
1__2”2LRZ[1——COS(21T<D/¢0)]

which is the transition temperature, suppressed by the
magnetic flux. The second term in (23) is nondivergent,
so close to T*(®P) we approximate it by putting
R /&(7)=0. We find for o},

J

T-T,
T,*

(®) |1+

3¢%0) T,

217‘2R 2 T— Tc
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0" ~€_2L Tc 217sz T—Tc
™2 m? T—T*®) 360 T
e> R 27R? sinh(7m )
27t m3 £X0) cosh(mm)—cosm[(m —2®/®y)] °
(33)

The first term in this result has a simple (1/m?) depen-
dence on m, therefore the summation over m occurring
in Egs. (29) and (30) can be done immediately for this
part.”% The sum over m corresponding to the nondiver-
gent part converges rapidly (as 1/m?®), so it can be easily
estimated by taking only a few terms into account.

We will discuss a symmetric set up (see also Fig. 1):
The current probes are attached to the ring at angles
a;=0 and a,=m/2; the voltage probes at angles B,=m
and B;=3w/2. Substituting these values for the angles in
Eq. (29) and performing the summation over m as indi-
cated above, we find for the voltage difference ¥,

sinhm
coshm+cos(27d /D)

2 2
8 R ~0.06
i

e’
2 77" EX0)

(34)

We introduced here the normal resistance of the ring &, =27R /0 o,

The first term is due to the normal conductivity, which is local and therefore contributes the constant term I.%, /16,
which is determined only by the geometry: It is the voltage drop over 1/4 of the ring, through which 1/4 of the total
current flows. The term that diverges for T— T} (®) reflects the main nonlocal contribution. It depends both on the
temperature and on the flux via T*(®). At T=T,, this term is of the same order of the nondivergent term. The latter
is obtained approximately by extracting the term m =1 out of the sum over m, and performing the remaining part nu-
merically, which is almost independent of the flux and gives the constant factor 0.06 in (34). As can be seen, the m =1
term accounts for about 90% of the complete nondivergent part, due to the rapid convergence of the corresponding
series. The divergent term is a small correction to the normal part as long as [T —T*(®)]/T, >e*R, /#, which also
implies that it is still more important than the nondivergent term. Along the same lines we calculated the voltage
difference V,. This difference has the same structure of the divergent and nondivergent corrections, but the corre-
sponding numerical prefactors are different.

Next we will study the ratio of both voltage differences

T—T,
T,*

27T2R 2 T_ Tc
360 T,

16 e_2 R? sinh7r
97% %~ " £%(0) coshm+cos(2m®/d,) ’

1+

(P) (35

r

where we kept only the first term of the nondivergent The ratio (35), expressed in terms R, and flux P, takes

part. This equation clearly demonstrates the nonlocality  the form

of the paraconductance. The voltage Vj is smaller than % R

the geometry-determined value V,/3, and oscillates _@_=_l+6_4 a

when the flux is varied. In the absence of superconduct- Va 9 27T R,

ing  fluctuations,  voltages  V(a;)—V(B,) and 16 _e? R2 sinhm

V(B,)— V(a,) would be also equal to ¥, /3. Due to the 2772 " £2(0) coshm+cos(2m®/®)

nonlocality, these voltages are larger than V,/3 and os-
cillate with the changing flux as well. The phases of os-
cillations for these voltages and for Vg are opposite to
each other.

We believe that the main part of the correction [the
most divergent term in (35)] can be extracted from a set
of measurements of the ratio (35) as a function of T at a
constant flux. In order to extract the smaller nondiver-
gent part, we propose to keep the two-terminal resistance
R,=V,/I constant instead of a constant temperature.

(36)

which is convenient for a measurement of the nondiver-
gent part as a function of flux.

B. Nonlocal corrections away from T,

Away from T,, in the limit £(T)/(27R)S 1, we can
approximate (23) by
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2
e R wR . — 1
= T 1— +2 —27R /&(T)
"= 2% m? £0) /T 1+ (E(m? /AR )] e cos(2m® /D) (37

We kept only the leading flux-dependent term, which has an amplitude that decreases exponentially as
exp[ —2mR /&(7)] with increasing T—T,. Since we are away from T, it is instructive at this point to check whether
the local flux-dependent part of the MT correction is still smaller than the nonlocal oscillating part of the AL correc-
tion, since the conditions discussed in Sec. II were related to the flux-independent values. In order to do this, we calcu-
late the MT term for a ring, following the standard diagrammatic calculation of Ref. 9:

L, sinh(2nR /L) . &(7) sinh(27R /&(7))
cosh(2mR /L 4)—cos(2m® /®,)  cosh(27R /&(7))—cos(2m D /P,) '

elm 1
2% 2 7—6

(38)

oMT

In the case 7/8 51, we can calculate the voltage difference ¥ in the symmetric setup discussed above, using (28),

(37), and (38):

I, 1 e2, g0 [1]” 7| 7' e* R R — 3
Vp=——Il1———R - 144= | —-—— RV —27R/&(7) = |l
5”16 { 32 2" R 5 |~ 96 7 &0) &) in Y1/ cos(2m® /g | 1475
(39)
I

The second term in brackets corresponds to the sum of 27R 27R 2 2 3

the usual flux-independent AL and MT corrections.!’ 57) <In 72T g(;) ZR J . (42)

Note that the MT part behaves as 47/8 times the AL T £°0) 2m ¢

part, as given by Eq. (2). In addition we find an oscillat-
ing term, due to the nonlocal AL part and the flux-
dependent MT part. The latter arises because the fluc-
tuation propagator itself depends periodically on flux in a
ring geometry. However, as long as it is local, it does not
contribute to the flux dependence of the voltage ratio.
This holds also in the opposite limit, 7/8> 1, i.e., even in
the case, when the main oscillatory part of ¥, ¥V, origi-
nates from the MT term. The ratio of these voltages os-
cillates only due to the nonlocal part of the AL correc-
tion

Ve 1 a*e? R

_‘/_ =—3— _ E—ﬁ—ﬁn E(—()T\/me _ZﬂR/g(T)COS(z’IT@/q)O) .
a

(40)

Until now we discussed oscillations of only the
impurity-averaged quantities. However, for rings with
perimeter 27R ~ L ;> §(T'), mesoscopic fluctuations may
become important. In the next section, we establish re-
quirements under which the nonlocality of paraconduc-
tance remains to be the main source of oscillations in the
ratio (40).

VI. CONCLUDING REMARKS

Now that we found the precise form of the corrections
due to superconducting fluctuations, we would like to re-
visit the comparison of the magnitude (40) with the mag-
nitude of the usual mesoscopic fluctuations, which occur
as a consequence of the lack of averaging on length scales
of the order of L 4,.18 Using Egs. (5) and (39) we require

8G meso _ (e2/#)(Ly/(2mR))*"? -
8GaL  (e2/#)R /£(0))V'rexp[ —27R /E(T)] ~

’

(41)

which leads to the inequality

We can satisfy (42), even if L ; exceeds §(T), since the AL

nonlocal correction scales with the perimeter, whereas

the mesoscopic fluctuations are limited to the value of
2

e”/h.

Supposing the logarithm in the right-hand side of (42)
to be large, one can treat this inequality iteratively. After
the first iteration, one has

27R _ n

&r)

277'R2 372

£%(0)

2mR
L,

(43)

Taking Al as a possible material to make the ring, we
substitute typical numbers, taken from Refs. 6 and 19:
§(0)=0.175 pm, L,=1.5 pm; the radius R can be 0.5
pm. Supposing the logarithm in the right-hand side of
(42) to be large, and solving (42) iteratively, we find that
&(7)=0.84 um, or equivalently that the reduced tempera-
ture 7<0.04, which is experimentally feasible. An esti-
mate of V3/V, according (40) with the above parameters
and with &, ~100 Q, shows that the oscillating part of
this ratio has an amplitude ~10~%. Thus we are able to
relax the stronger requirement (6) to include the regime
where §(7)<27R =L,.

In conclusion we studied the response of a supercon-
ducting ring to an electric field. Slightly above the super-
conducting transition temperature 7., this response is
strongly nonlocal. The length scale for nonlocality is
defined by the correlation length for superconducting
fluctuations §(7) and diverges at T,,. The nonlocal part of
the conductance can be obtained in a multiterminal mea-
surement on a ring of size 27R of order or somewhat
exceeding &(7). This part originates from the
Aslamazov-Larkin correction to the conductivity, and
near T,, exceeds known mesoscopic interference effects.
We use the time-dependent Ginzburg-Landau equation to
calculate the nonlocal resistances in the simplest case,
when the influence of leads on these fluctuations are not
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taken into account. The latter simplification cannot
change our main prediction: Due to the nonlocality, the
ratio of voltages measured by two different sets of probes
attached to the ring should oscillate as a function of the
flux quantum.
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