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Abstract

This thesis investigates the feasibility and effectiveness of Acoustic Emission (AE) methods for moni-
toring fatigue crack growth in metallic materials, with the aim of enhancing predictive capabilities and
understanding of crack propagation under cyclic loading. The research specifically examines the corre-
lation between various AE parameters—such as amplitude, count rate, energy rate, and entropy—and
fatigue crack growth rates, using a multi-parametric approach.

Experiments were conducted on multiple specimens under different loading conditions, and both time-
domain and frequency-domain AE parameters were analyzed. The study found that parameters like
energy rate and rise angle were particularly effective in detecting specific stages of fatigue crack growth,
while count rate and amplitude provided consistent indicators of crack initiation and progression. How-
ever, the study also highlighted limitations in the use of filtering techniques, such as SNR and amplitude
filters, which can inadvertently remove crucial AE signals.

The findings suggest that while AE methods have potential for accurately monitoring fatigue crack
growth, their effectiveness is influenced by the choice of AE parameters and the management of noise.
To improve accuracy, the study recommends further research that includes a broader range of speci-
mens, explores additional AE parameters, integrates complementary techniques such as Digital Image
Correlation (DIC), and applies advanced analytical methods like machine learning. Future research
should also consider the impact of environmental factors, such as corrosion fatigue, particularly in ma-
rine environments where realistic AE data is critical.

Overall, this study contributes to the broader understanding of AEmonitoring for fatigue damage, laying
a foundation for future research and practical applications, while acknowledging the need for further
refinement and validation of AE techniques across diverse materials and conditions.
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√
m ]

Kt Stress concentration factor [ – ]
N Number of cycles [ – ]

x



1
Introduction

1.1. Background and Motivation

Offshore and marine structures, such as oil platforms, wind turbines, and marine vessels, are subjected
to harsh environmental conditions, extreme loads, and corrosive agents. These structures, including
offshore platforms, pipelines, and sub-sea components, are particularly vulnerable to fatigue cracks
caused by cyclic loading and corrosive environments [22]. Fatigue damage accumulates gradually
over time due to repeated loading and unloading cycles, weakening materials and potentially leading
to catastrophic failures of the structure. Timely detection of cracks through monitoring is essential to
prevent compromising structural integrity, (see Figure 1.1 and Figure 1.2). Thus, effective monitoring
of fatigue or structural health becomes imperative to ensure longevity and safety of the structure.

Figure 1.1: Crack caused by fatigue in a joint [19].

For example, offshore wind technology, while promising, often requires substantial financial support
due to its capital-intensive nature [48]. Implementing cost reduction strategies is essential for its sus-
tainable development [48]. Findings from a case study by Vieira et al. [48] suggest that installing SHM
systems on offshore wind support structures can optimize maintenance strategies, shifting from pre-

1



1.2. Impact of fatigue damage in maritime structures 2

ventive to predictive maintenance. This approach not only reduces operational costs but also extends
the operational life of wind farms [48].

In the realm of structural health monitoring (SHM) techniques, acoustic emission (AE) testing stands
out as a critical tool for ensuring the integrity and safety of offshore and marine structures. AE testing is
a powerful non-destructive technique, which involves detecting, analyzing, and monitoring the transient
stress-induced acoustic waves generated by materials under stress or deformation. When a material
is subjected to stress, it undergoes deformation, which results in the release of energy in the form
of elastic waves. For instance, the amplitude and frequency of emissions can indicate the type and
severity of defects, cracks, or other anomalies which occur within the material or structure [16]. By
analyzing these emissions, valuable insights can be gain into the structural health and potential risks.

Figure 1.2: An image depicting a longitudinal stiffener within the deck near the transverse bulkhead, situated within the ballast
tank, reveals that the crack initiated from the termination point of the bracket’s toe [45].

1.2. Impact of fatigue damage in maritime structures

Accidents stemming from fatigue can lead to abrupt and catastrophic failures. For instance, an oil
tanker experienced a rupture due to the brittle propagation of a crack encircling its circumference. This
crack originated from a small notch or sharp flaw and rapidly elongated due to heightened stresses at
its tip caused by the tanker’s movement at sea. Consequently, the crack expanded swiftly, resulting in
the complete fracture of the tanker [5].
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Figure 1.3: An oil tanker experienced brittle fracture due to the propagation of a crack that extended fully around its girth
(Image from book: [5]).

On the evening of March 27, 1980, amidst adverse weather conditions off the coast of Dundee,
Scotland, the Alexander L. Kielland semi-submersible drilling rig tragically capsized while housing over
200 workers. With wind gusts reaching 40 knots and waves towering up to 12 meters high, the rig
suddenly experienced a ”sharp crack” followed by a significant tilt of 30°. Investigation revealed that
a fatigue crack in one of the bracings, specifically bracing D-6, led to the collapse. This crack, traced
back to a small 6 mm fillet weld connecting a non-load-bearing flange plate holding a sonar device,
was exacerbated by cold cracks in the welds and weakened flange plate, ultimately causing the rig to
overturn, claiming the lives of 123 individuals [49].

Figure 1.4: Fractures on the Alexander L. Kielland rig [49].

1.3. Scope and objective

In the pursuit of structural integrity and safety assurance, the necessity of regular maintenance is
paramount [9]. Nevertheless, conducting routine maintenance operations offshore presents consid-
erable challenges, particularly in detecting and monitoring the development of subsurface cracks that
are often not visible. Moreover, the demanding environmental conditions and associated risks signifi-
cantly escalate maintenance costs.

An effective approach to addressing these challenges is through the Acoustic Emission (AE) tech-
nique, which is being widely utilized. Since, it offers real-time damage detection and integrity assess-
ment for materials and structures across diverse operational situations [9]. Its ability to capture stress
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waves using appropriate sensors enables probing of damage development within materials, providing
a more comprehensive understanding of structural integrity and enhancing the effectiveness of fatigue
crack monitoring [16, 36]. Given its importance, research on detecting AE and fatigue cracks holds
significant engineering relevance.

The principal aim of this literature review is to assess,

’What is the current state of knowledge for characterizing damage-induced acoustic emis-
sion during fatigue crack growth in metallic materials?’

Additionally, the study seeks to

• Identification of knowledge gaps within the current understanding of the AE monitoring during
FCG.

• Proposal of potential research directions to address identified gaps in using different AE param-
eters.

• Emphasis on enhancing understanding and application of fundamental concepts related to the
fatigue crack detection methods. as well as after failure.

• Integration of findings on selected material and load conditions to contribute to the advancement
of the AE testing.

1.4. Outline

Chapter 1 of this report provides background information and outlines the motivation behind the chosen
research topic. It also delineates the scope and structure of the report.

In Section 2.1, fundamental concepts regarding fatigue failure and relevant theories pertaining to struc-
tural health monitoring techniques such as ultrasound waves and acoustic emission are elucidated.
This foundational knowledge is essential for comprehending the subsequent sections, namely Sec-
tions 2.2 and 2.3.

Section 2.2 delves into the current state-of-the-art concerning the analysis of fatigue crack growth using
Acoustic Emission techniques.

Lastly, Section 2.3 deliberates on identified knowledge gaps and proposes potential research directions
to address these gaps effectively.



2
Literature Review

2.1. Preliminary knowledge

2.1.1. Fatigue Assessment Concepts

Fundamental Aspects of Fatigue analysis

In material science, fatigue is a failure mechanism that involves the cracking of materials and structural
components due to cyclic (or fluctuating) stress. One of the intriguing factors about fatigue development
is that fatigue cracks can be initiated and propagated at stresses well below the yield strength of the
material of construction [5].

There are three stages in which fatigue failure occurs - crack initiation, crack propagation and failure
(see Figure 2.1 for all of the stages of the fatigue lifetime and its factors) [38]. According to Schijve [38],
a crucial aspect to consider is that the fatigue life leading to failure comprises two distinct phases: the
crack initiation period and the crack growth period. It is essential to distinguish between these phases as
certain surface conditions significantly impact the initiation period, whereas they have minimal influence
on the subsequent crack growth phase [38]. These two phases are discussed in Section 2.1.1 and
Section 2.1.1 respectively.

Fatigue prediction methods differ between two periods, focusing on crack initiation and crack growth
[38]. Stress concentration factor (Kt) is crucial for predicting crack initiation, while stress intensity
factor (K) is used for predicting crack growth. Kt quantifies stress concentration in a material, while K

represents the ratio of maximum stress at the crack tip to the nominal applied tensile stress.

5
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Figure 2.1: Different phases of the fatigue life and relevant factors [38].

Fatigue cracks typically initiate on a component’s surface at points of stress concentration. The
region of a fracture surface that formed during the crack propagation phase can be distinguished by two
types of markings known as beachmarks and striations. Beachmarks form on components experiencing
stress interruptions, often visible to the naked eye, while fatigue striations are microscopic features,
each believed to represent the crack tip’s advance distance over a single load cycle, as shown in
Figure 2.2,[5].

Furthermore, fatigue failures can manifest in various forms, with mechanical fatigue and thermal
fatigue representing two primary categories, as outlined by Callister Jr and Rethwisch [5]. Corrosion
fatigue results from the combined effects of chemical attack andmechanical fatigue [5]. While corrosion
fatigue also holds significance in the offshore and marine industry, resource constraints necessitate a
focus on mechanical fatigue in this study. Therefore, this study specifically targets mechanical fatigue,
given its crucial role in the context of offshore structures subjected to severe marine conditions.

As per Callister Jr and Rethwisch [5], fatigue behaviors can be categorized into two distinct domains.
One domain is characterized by relatively high loads that induce both elastic and plastic strain during
each cycle. Consequently, fatigue life spans are relatively short within this domain, termed as low-cycle
fatigue, typically occurring at less than approximately 104 to 105 cycles. Conversely, at lower stress
levels where deformations remain entirely elastic, longer life spans are observed. This phenomenon
is referred to as high-cycle fatigue, as it requires a relatively large number of cycles to induce fatigue
failure. High-cycle fatigue is distinguished by fatigue life spans exceeding approximately 104 to 105

cycles. This study zeroes in on High-Cycle Fatigue, which denotes failure occurring over millions of
cycles due to stresses lower than the yield strength of materials. Moreover, cyclic stresses are typically
categorized into three general stress-versus-time cycle modes: reversed, repeated, and random. Re-
versed and repeated modes are defined in terms of mean stress, range of stress, and stress amplitude
[5].
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Figure 2.2: Fracture surfaces [5].

Figure 2.3: S-N curve example [11].

The S-N curve, as shown in Figure 2.3, is a graphical representation of test data plotting stress
(usually stress amplitude) against the logarithm of the number of cycles to failure. For many metals
and alloys, stress decreases progressively with an increasing number of cycles until failure occurs, with
fatigue strength and fatigue life serving as parameters to characterize the fatigue behavior of these
materials. However, for certain metals like ferrous and titanium alloys, stress eventually stabilizes and
becomes independent of the number of cycles, leading to the concept of fatigue limit to express their
fatigue behavior [5, 38].
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In terms of definitions:

Table 2.1: Definitions

Fatigue limit the stress level below which fatigue failure will not occur.
Fatigue strength the stress level at which failure will occur for a specified number of cycles.

Fatigue life the number of cycles required to cause failure at a specified stress level.

Fatigue crack initiation in metallic materials

Crack initiation in metallic materials is a phenomenon intricately tied to cyclic slip and surface conditions.
Fatigue crack initiation and subsequent crack growth stem from cyclic slip, which involves cyclic plastic
deformation or dislocation activities. This process occurs at stress amplitudes below the yield stress,
primarily affecting a limited number of grains, particularly those at thematerial surface where constraints
on slip are lower. The cyclic shear stress responsible for slip is not uniformly distributed throughout the
material, varying between grains due to factors such as grain size, shape, crystallographic orientation,
and elastic anisotropy [38].

For example, Jesus et al. [21] conducted a comparison of fatigue performance between S355 and
S690 steel grades. Their findings underscore the superior fatigue resistance of S690 steel, attributed to
its finer grain structure. Grain boundaries serve as effective crack arrestors, as they impede slip band
development, thereby slowing down the progression of cracks. Consequently, materials with smaller
grain sizes exhibit more crack retardation [21].

At the material surface, conditions are conducive to cyclic slip, leading to the creation of slip steps,
or slip bands. These features, formed during cyclic loading, expose fresh material to the environment,
which often results in the immediate formation of an oxide layer. The cyclic loading and unloading
induce strain hardening in the slip band, which, upon unloading, results in a larger shear stress in the
reversed direction, promoting further slip in subsequent cycles, as shown in Figure 2.4. This process,
while seemingly reversible, is hindered by factors such as the adherence of oxide layers to the material
surface and the irreversibility of strain hardening [38].
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Figure 2.4: Cyclic slip [38].

Surface characteristics play a critical role in facilitating fatigue crack initiation. Inhomogeneous
stress distribution due to geometric discontinuities, surface roughness, corrosion pits, and fretting fa-
tigue damage contribute to stress concentration at the material surface. These factors create favorable
conditions for crack initiation, particularly along slip bands. Thus, fatigue crack initiation emerges as a
material surface phenomenon, influenced by both microstructural factors and surface conditions, ulti-
mately dictating the initiation and propagation of fatigue cracks in metallic materials.

Previous research has not reached a consensus regarding the transition from the initiation phase
to the crack growth phase. As noted by Schijve [38], a clear definition of this transition remains elusive.
While quantitative characterization poses difficulties, a qualitative description suggests that the initia-
tion period concludes when micro-crack growth becomes independent from surface conditions of the
material [38].

Fatigue crack growth

The growth of microcracks within an elastically anisotropic material with a crystalline structure triggers
an inhomogeneous stress distribution at the microscale, accentuating stress concentrations at the mi-
crocrack tip [38]. Consequently, activation of multiple slip systems may occur due to the complex
interplay of constraints on slip displacements within neighboring grains [38]. As microcracks propagate
into adjacent grains, the constraint on slip displacements intensifies, necessitating accommodation of
slip on multiple slip planes rather than a single plane. This deviation from the initial slip band orientation
often results in microcrack growth perpendicular to the loading direction, as depicted in Figure 2.5, [38].
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Figure 2.5: Microcrack growth [38].

The dependence of microcrack growth on cyclic plasticity implies the existence of barriers to slip,
which can act as thresholds for crack propagation. Observations, as illustrated in Figure 2.6, reveal
a fluctuating crack growth rate as the crack tip traverses grain boundaries. Notably, the crack growth
rate decreases upon approaching the first grain boundary, increases upon entering the next grain,
and then decreases again near the subsequent grain boundary. However, upon surpassing numerous
grain boundaries, as depicted in Figure 2.6, the crack front maintains coherence, preventing significant
variations in crack growth rate along its trajectory. Consequently, crack growth becomes a continuous
process along the entire crack front, resembling a semi-elliptical line. The rate of crack propagation is
contingent upon the material’s crack growth resistance, rendering surface-related factors irrelevant and
emphasizing the transition of crack growth from a surface phenomenon to a bulk property-dependent
process.
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Figure 2.6: Effect of grain boundary on crack growth in an Al-alloy [38, 4].

Several previous studies have established that during fatigue crack growth, the crack growth rate
can be described by the Paris-Erdogan equation (see Figure 2.7) [9, 31, 50, 13, 35, 34]:

da/dN = C(∆K)m (2.1)

where a is the crack length, da/dN is the crack growth rate, N is the number of load cycles, C and
m are material constants, and ∆K is the stress intensity factor range that is related to the applied load,
crack length and material geometry.

Equation (2.1) can also be expressed as [9, 35, 34]:

log(da/dN) = m log∆K + logC (2.2)

The Equation (2.2) can be used as a means to establish a relationship between the fatigue crack
growth rate and acoustic emission count rate (see Equation (2.13)), with a more comprehensive dis-
cussion provided in Section 2.2.1.
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Figure 2.7: Fatigue crack growth stages and typical relationship between log(da/dN) and log(∆K) [25].

2.1.2. Acoustic Emission

General aspects of AE

Acoustic Emission is an elastic wave generated by the rapid release of energy from sources when a
crack or deformation occurs within a material subjected to stress [16]. Consequently, when an irre-
versible phenomena or process occurs in the material, it triggers the release of these transient elastic
waves. These waves are then detected and monitored using the AE technique [16].

In other words as expressed by Carrasco et al. [7], when a solid material is exposed to operational
conditions surpassing its mechanical strength, its internal structure experiences dislocations and frac-
tures, releasing a specific amount of energy. This energy propagates through the medium in the form
of mechanical waves, recognized as acoustic emissions (AEs).

Given that AE is generated by stress waves within a material under stress, it may originate from
various sources which can be classified as either primary or secondary. Primary AE sources are gener-
ated in metal can be due to micro and macro cracks initiating and propagating, micro-dynamical events
such as twinning, movement of dislocations, fracture of brittle inclusions, chemical reaction like corro-
sion and phase transformation due to strain effects caused by change in volume [9, 16]. However, it is
important to note that there are also secondary AE sources, which are associated with crack closure
processes, leading to rubbing and fretting of fracture surfaces [52, 3, 42, 16, 14].

Stress waves propagation

AE monitoring involves the transmission of high-frequency stress waves inducing temporary deforma-
tions in the medium, characterized by their rapidly decaying amplitude, reflecting their transient nature.
According to Carrasco et al. [7], AE waves within materials manifest in four types. Among them, two
arise within the internal structure of thematerial, namely longitudinal P-waves and shear S-waves, while
the other two are surface waves, known as Rayleigh waves and Love waves, shown in Figure 2.8. A
single AE source may generate one or multiple of these waves, which can coexist and interact [16, 7].
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For instance, when reaching the surface of the material internal P-waves can produce Rayleigh waves
[7].

Figure 2.8: AE wave types [7].

The typical procedure for AE monitoring includes positioning a sensing element directly on the
surface. Most AE sensors utilize the piezoelectric effect, where certain materials generate a voltage
when subjected to mechanical stress [7].

AE senors

Carrasco et al. [7] mentions two groups of piezoelectric AE sensors: BAW sensors (bulk acoustic
waves) that detect all AE wave types. For instance, the resonant type relies on the natural frequency
of the piezoelectric sensor [7]. Additionally, SAW sensors (surface acoustic waves) are mentioned,
primarily used to measure surface Rayleigh waves [7]. Typically, the AE signals obtained are pre-
amplified and subsequently sampled using high-speed analog-to-digital converters, ideally operating
above 1 MHz [7].

In the present research, resonant type sensors will be employed to detect and monitor AE waves.
Therefore, any stress wave emitted within the operating frequency range will be recorded as AE signals.

Characteristics of AE signal

AE signals can be classified into two different types: continuous and burst. These two basic types cover
wide range of energy levels and frequencies. Continuous emission is measured by root mean square
(RMS) voltage, in other words, it is a sustained signal from rapidly occurring emission events. In burst
type, signal burst in a field of continuous emission and come from individual emission events, as shown
in Figure 2.9. For characterizing burst type AE signals, several threshold-dependent parameters are
used. Threshold is the voltage level set in the instrument to minimize low-amplitude noise from AE
signals [27, 7, 16].
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Figure 2.9: An illustration of burst signals contrasted with a continuous emission of acoustic waves [16].

Analysis of AE signals

There are two fundamental types of analysis for AE signals, namely, waveform-based analysis and
parameter-based analysis.

Analysis of acoustic emission (AE) signals is crucial for understanding the underlying processes in
materials and structures. There are two fundamental approaches to analyzing AE signals: parameter-
based analysis and signal-based analysis [41, 16].

Parameter-based analysis involves extracting a set of characteristic parameters or features from
the AE signal and storing them, rather than storing the entire waveform [16]. These parameters, such
as arrival time, maximum signal amplitude, rise time, and signal duration, provide essential information
about the AE events [16]. This approach is cost-effective, can be performed with as few as one sen-
sor, and is suitable for real-time monitoring [16]. However, it offers only a limited view of the physics
of AE sources and may be influenced by recording settings, making comparisons between datasets
challenging [16].

On the other hand, signal-based analysis involves recording and storing the complete AE wave-
forms [16]. This approach allows for more comprehensive analysis but is typically performed in a
post-processing environment, not in real-time [16]. Signal-based analysis includes waveform analysis,
where entire waveforms are analyzed and compared over time, and quantitative AE analysis, which
aims to accurately describe the nature of each AE source [16]. While quantitative AE analysis offers
high accuracy, it requires sophisticated equipment and computation, limiting its practical application
mostly to laboratory settings [16].
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Figure 2.10: Commonly used AE parameter [41].

To delve deeper into parameter-based analysis, some commonly utilized AE parameters and their
definitions, as provided by various research sources [16, 7, 9, 41], are illustrated in the table below
(see Table 2.2). The choice between parameter-based and signal-based analysis depends on the
specific application and requirements. In the context of this research study, parameter-based analysis
is suitable for simple monitoring tasks and real-time applications.

Table 2.2: Definitions of some commonly used AE parameters [7, 9, 41]

AE Parameters Explanation
Counts (η) Number of excursions above the threshold. It is a function of the threshold and

frequency. It is influenced by the magnitude of the AE source, as well as on the
acoustic properties of the sample and the sensor.

Peak amplitude Highest measured voltage or amplitude, expressed in decibels (dB). It is
directly related to the energy in the AE signal.

Duration (D) Time elapsed above the threshold i.e. time difference between first and last
threshold crossing. The duration is dependent on the magnitude and frequency
of the AE source. It can be utilized to identify different types of emission source,
thereby facilitating the filtration of noise.

Rise time Time interval between first threshold crossing and the signal peak. It is related
to the propagation of the wave between the source and the sensor. Rise time is
employed to assess and filter out noise.

MARSE Measured Area under the Rectified Signal Envelope. Tells us about the energy
levels. This is a measure of the signal strength. Sensitive to duration and the
amplitude. But does not take into account the user defined threshold and
operating frequency.

Based on the above mentioned features, some additional useful parameters can be deduced, see
Table 2.3.
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Table 2.3: Definitions of other useful AE parameters [7, 9, 41, 53]

AE Parameters Explanation

Average Frequency
(AF)

Computed in time domain, and is derived as the ratio of the total number
of counts over the duration of the waveform, measured in kHz.

Peak Frequency (PF) This waveform-based feature is determined in real-time through the fast
Fourier transform (FFT) of recorded waveforms. It denotes the frequency
exhibiting the highest magnitude in the FFT.

Centroid Frequency
(CF)

Also, a waveform-based feature which denotes the centroid of the FFT.

Root mean square
(RMS)

The square root of the average of the squared values of the signal.

Rise Angle (RA) Quotient between rise time and amplitude
True energy The integral of the squared signal envelope.
Absolute energy (U) It accurately represents the energy of the AE impact signal, indicating the

extent of internal damage. It is measured in attoJoules (aJ), where 1 aJ
equals 10−18 J.

Information entropy Also known as Shannon’s entropy of AE waveform. It measures the
disorder or uncertainty of the probability amplitude distribution.

Kurtosis It refers to the measure of the ”tailedness” of the AE signal.
Crest factor It refers to the ratio of the peak value to the RMS value.

Calculation

Crack growth rate [9]:
da

dN
=

(ai+1 − ai)

(Ni+1 −Ni)
(2.3)

where, ai represents the ith crack length, and Ni denotes the ith fatigue cycle. The calculated
da/dN signifies an average rate, determined by dividing the increment in crack size (ai+1 − ai) by the
increment in fatigue cycles (Ni+1 −Ni).

Average Frequency [7, 16]:
AF =

η

D
(2.4)

Here, η is counts and D is duration.

Peak Frequency [16]:
PF = max(H(f)) (2.5)

PF represents the frequency with the highest magnitude in the FFT, and H(f) the magnitude of the
FFT.

Centroid Frequency [16]:

CF =

∫ f

0
fH(f)df∫ f

0
H(f)df

(2.6)

where f represents the frequency, and H(f) is the magnitude of the FFT.
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MARSE energy [7]:

MARSE =

D∫
0

e(t)dt (2.7)

where e(t) is the envelope of the AE signal and t is time.

True energy [7]:

True energy =

D∫
0

e2(t)dt (2.8)

where e(t) is the envelope of the AE signal and t is time.

Root Mean Square value [7]:

RMS =

√∑n
i=1 y

2
i

n
(2.9)

here, yi is the amplitude of the AE in an amplitude vector.

Rise Angle [7, 16]:
RA =

RT

A
(2.10)

where RT is rise time and A is the amplitude.

Absolute Energy rate [1]:
dU

dN
=

B · t ·K2
max

E′ · da

dN
(2.11)

where B represents a proportional constant specific to the material, N denotes the number of load
cycles, and Kmax is defined as ∆K/(1 − R), where ∆K stands for the stress intensity range and R

represents the load ratio [1]. Additionally, E′ is equivalent to Young’s modulus E under plane stress
conditions and to E/(1 − ν)2 under plane strain conditions, where ν stands for Poisson’s ratio [1].
Furthermore, dU/dN and da/dN correspond to the rates of AE absolute energy and crack growth,
respectively [1].

Shannon’s entropy or Information entropy [40, 23]:

I = −c

n∑
i=0

P (Xi) ln 1/P (Xi) (2.12)

where Xi = x1, x2, ..., xn represents a random variable, P (Xi) denotes the probability distribution
of the random variable, I stands for information entropy, and c is a constant considered to be unity in
the study by Karimian, Modarres, and Bruck [23]. Additionally, the unit of AE information entropy used
is ‘nats’ since in Equation (2.12) the natural logarithm is used.
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2.1.3. Section highlights

Based on the preliminary understanding, we have acquired a foundational understanding of fatigue
crack initiation and propagation. Furthermore, we have gained proficiency in the fundamental principles
of the acoustic emission (AE) technique, notable for its non-contact nature and capability for real-time
monitoring. Equipped with this knowledge, we may now explore approaches designed to establish
relationships between fatigue crack propagation and AE signals. Additionally, by leveraging different
AE parameters, the transition between various stages of fatigue damage can be tracked. Thus, in
order to provide more insight, Section 2.2 will provide an in-depth exploration of the state-of-the-art in
AE monitoring.

2.2. State-of-the-art

2.2.1. Acoustic Emission monitoring of fatigue

AE-FCG correlation

According to Roberts and Talebzadeh [35], filtering acoustic emission data for a narrow band containing
the fatigue crack using source locating software allows just emissions from the crack’s vicinity to be
recorded. These separated AE events increase consistently with number of cycles, however for small
percentages of the fatigue load range which is close to the peak load. The results show that log (dη/dn)
and log K have an almost linear connection for all steel specimens and welded steel girders. This
relationship can be expressed by an equation resembling the Paris–Erdogan Equation (2.2):

log(dη/dN) = p log∆K + logB (2.13)

where η is the number of counts and, B and p are constants for particular material. This is worth noting
because this relation, based on the use of AE count rate parameter, has been used by several authors
[35, 34, 9, 24].

The study by Chai et al. [9], Roberts and Talebzadeh [35], and Keshtgar, Sauerbrunn, and Modarres
[24], has shown that by eliminating log∆K from Equation (2.2) and Equation (2.13), the following
relationship can be obtained between log(da/dN) and log(dη/dN):

log(da/dN) =
m

p
log(dη/dN) + logC − m

p
logB (2.14)

By substituting equations,
m

p
= q, (2.15)

logC − m

p
logB = logD, (2.16)
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Equation (2.14) can be simplified to yield:

log(da/dN) = q log(dη/dN) + logD (2.17)

The results of study [9] found an approximate linear correlation which can be expressed similarly
as Equation (2.17),

log(da/dN) = q logX + logD (2.18)

where q andD are constants which can be determined by experiments, while X indicates the growth
rate of AE data within a certain number of fatigue cycles N. According to Chai et al. [9], X represents
the rate of various AE parameters such as amplitude rate, count rate, energy rate, rise angle (RA) rate
and root mean square (RMS) rate [9]. This approach enables the correlation of crack growth rate with
the rates of different AE parameters.

AE generated during crack growth

In 1987, Scruby also showed that the acoustic emission due to the elastic fracture at the crack tip is
much more detectable than the other sources Scruby, Baldwin, and Stacey [39] conducted a research
aiming to characterise AE generated from crack extension during fatigue crack growth in 7010 alu-
minium alloy [14]. The research found that crack extension is not the dominant source of AE in fatigue
crack formation [14]. This is due to ductile tearing of the material occurs in every loading cycle, resulting
in a much lower rate of recorded AE, averaging about 1 AE signal in 20 cycles [39, 14].

However, Morton, Harrington, and Bjeletich [29] found that the correlation between AE count rate
and the stress intensity range (∆K) was better than the correlation between AE count rate (dη/dN ) and
crack growth rate (da/dN ) or correlation of crack growth rate (da/dN ) with the stress intensity range
(∆K). This implies that the observed AE signals were more closely associated with the plastic volume
near the crack tip [29].

Several studies have explored the sources of AE during plastic deformation [26, 39, 37, 6, 14].
In Table 2.4, various sources of AE observed in these studies are illustrated. For instance, a study
conducted by McBride, MacLachlan, and Paradis [26] aimed to quantitatively explore the connection
between acoustic emission (AE) and fatigue crack growth in 7075 aluminum. The study revealed that
burst emissions resulted from brittle fracture of inter-metallic inclusions in 7075-T6 aluminum, aligned
with prior findings. AE signal amplitude correlated quantitatively with inter-metallic inclusion size distri-
bution, aiding in predicting AE signals from crack growth [26]. Additionally, the study revealed that a
reduction in material strength eliminated burst AE activity, emphasizing the role of surrounding material
strength in generating localized stresses [26].

Fretting of crack surfaces can occur during fatigue crack propagation and may be influenced by
crack closure [14]. According to McBride, MacLachlan, and Paradis [26] and Yu et al. [53], AE signals
from this source are often considered to be of the continuous type. Furthermore, Han et al. [17] con-
ducted an investigation into the AE behaviors and source mechanisms during fatigue crack growth in
both the base metal and weld of Q345 steel. The study also examined fatigue properties and acoustic
emission characteristics based on microstructural and fractographic observations [17]. A comprehen-
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sive analysis was provided on the source mechanisms of acoustic emission throughout three distinct
stages of fatigue, namely crack initiation, plastic activities ahead of the crack tip, and shearing of liga-
ments between micro-voids and micro-cracks.

Daniel et al. [12] also conducted a similar investigation to analyze AE generation in aluminum and
steel coupons across different phases of the fatigue loading cycle. They identified several distinct
categories of AE signals, associating them with plasticity, crack closure, and the transition from plain
strain to plain stress during crack propagation [14].

Table 2.4: Summary of frequency content across various AE sources of metallic materials [51].

Authors Metallic Material Specimen Type Sources Loading
Frequency

Han et al. [18] AZ31
magnesium alloy

6*CT Twinning
Crack extension

2 Hz, 10 Hz, and
20 Hz.

Roberts and
Talebzadeh [34]
and Roberts and
Talebzadeh [35]

S275JR grade
steel

CT, T-section
girders

Crack extension 1 Hz

Chai et al. [9] 2.25Cr1Mo0.25V
steel

CT Fatigue crack
growth

15 Hz

Yu et al. [53] ASTM A572G50 CT Crack extension 1 Hz
Yao et al. [51] Al2024-T3 4*coupon Crack opening,

Crack extension,
Crack surface

closure

4 Hz

Chai et al. [10] 316LN stainless
steel

6* single edge
notch (SEN)

Crack growth –

Keshtgar,
Sauerbrunn, and
Modarres [24]

Al7075-T6 and
Ti-6Al-4V

15 * CT Crack growth 2 Hz, 5 Hz, 7 Hz
and 10 Hz

Gagar, Foote,
and Irving [14]
and Gagar,

Foote, and Irving
[15]

2014 T6
aluminium alloy

11*SEN and 1
*Mid-crack

Tension (MT)

Crack initiation,
Crack growth

2 Hz

McBride,
MacLachlan, and

Paradis [26]

7075-T6
aluminium

SEN Crack growth,
Brittle fracture of
inter-metallic
inclusions

1 Hz

AE behaviour in various fatigue stages

The study by Han et al. [17] examined the characteristics of AE during fatigue crack growth revealed
three distinct AE stages across all specimens, as depicted in Figure 2.11, [17]. In Stage 1, AE counts
showed rapid growth at the onset of tests, followed by a noticeable decline in growth rate during Stage
2, where AE activities were sporadic and weak over an extended period, encompassing 80% of the
total fatigue life. Stage 3 saw an increase in AE counts until the completion of tests. Investigations
into AE source mechanisms for these stages in micro-alloyed steel and its welds revealed that Stage
1 corresponded to fatigue crack initiation, while Stage 2 primarily involved plastic activities within the
plastic zone ahead of the crack tip. Stage 3 was attributed to the shearing of ligaments between micro-
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voids and micro-cracks, indicative of fatigue crack growth.

Figure 2.11: Normalized AE counts C versus Normalized fatigue cycles N for the base metal and weld under the peak loads of
16 kN and 20 kN [17].

Han et al. [17] further associated the transition from Stage 2 to Stage 3 with a fracture mode tran-
sition, characterized by facets and striations observed on fracture surfaces. This transition suggests a
shift in AE source mechanisms from plastic activities to ligaments shearing between micro-voids and
micro-cracks. While the transition from stable to unstable crack growth defined by linear elastic frac-
ture mechanics (LEFM) also involves a change in fracture mode, the AE method appears to be more
sensitive to this fracture mode transition [17].

2.2.2. Characterization of AE from fatigue

Quantitative correlation

According to Grosse et al. [16], the objective of quantitative AE analysis is to provide an accurate
description of each AE source’s characteristics, rather than making conclusions based solely on the
effects observed at sensor locations distant from the source.

Chai et al. [9] demonstrated that analyzing multiple AE parameters effectively characterized FCG
behavior. This study emphasized the importance of calculating various time domain parameters (such
as amplitude, count, energy, information entropy, RA, RMS, kurtosis, and crest factor) and frequency
domain parameters (such as centroid frequency) for qualitatively assessing crack growth and quantita-
tively correlating it with AE data.

Furthermore, Shi et al. [41] proposed the use of the fitted power law distribution of AE parameters
for monitoring FCG in Hadfield steel, unlike existing AE fatigue monitoring methodology, which relies
solely on the analysis of AE parameter trends. However, in this study, AE absolute energy and duration
values were not fitted well with the power law.

Keshtgar, Sauerbrunn, and Modarres [24] investigated the effectiveness of acoustic emission (AE)
techniques in detecting crack growth during high cycle fatigue tests on aluminum alloy. They introduced
an AE intensity index, which showed a linear relationship with crack growth. The study demonstrated
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a method for detecting crack initiation using AE monitoring, employing filtering techniques to reduce
noise. The AE intensity index considered factors like count, amplitude, and rise time, showing promising
results for detecting crack initiation and small crack growth. Further research is needed to explore
different weighting features for intensity calculation and establish a probabilistic estimate of crack length
probability density function at crack initiation.

The diverse AE parameters and loading conditions utilized in several studies are displayed in Ta-
ble 2.5.

Table 2.5: Summary of various AE parameters and loading conditions used in experiments.

Authors AE Sensors AE Parameters Load range /
Peak load

Load ratio

Han et al. [18] 2*R15 Count 3 kN 0.1
Roberts and

Talebzadeh [34]
and Roberts and
Talebzadeh [35]

4 * miniature
Nano 30 sensors,
with 280 kHz
resonant
frequency

Count 1 ≤ xmin ≤ 24 –
10 ≤ xmax ≤ 80

kN

0.1, 0.3, 0.5 and
0.7

Chai et al. [9] 1 * R15a Amplitude,
Count, Energy,
Information
entropy, Rise
time, Duration,
Rise Angle (RA),

Root mean
square (RMS),
Kurtosis, Crest
factor, Centroid

frequency

26 kN 0.5

Yu et al. [53] 5 * R151-AST Absolute energy,
Count

- 0.02 and 0.1

Yao et al. [51] 4 * wideband
PKWDI

Count 6.7-53.3 MPa,
and 26.7-53.3

MPa

0.125 and 0.5

Chai et al. [10] 1* R15a Count, Energy,
Entropy,

Amplitude, Peak
frequency,
Centroid
frequency

4 kN 0.1, 0.3, and 0.5

Keshtgar,
Sauerbrunn, and
Modarres [24]

1* 100–900 kHz
wideband

Count 2.22 kN and 4 kN 0.1, 0.3, and 0.5

Gagar, Foote,
and Irving [14]
and Gagar,

Foote, and Irving
[15]

2*Guard Sensors Number of hits,
Count, Absolute

energy

52.2 MPa and 27
MPa

0.1 and 0.5

McBride,
MacLachlan, and

Paradis [26]

Dunegan
Endevco S9201

transducer

Amplitude 30.18 – 60.36
MPa

1 Hz
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Qualitative correlation

When AE events are captured using one or more sensors, and a set of parameters is extracted from
the signal and stored without retaining the signal itself, this process is commonly known as qualitative
AE analysis or parameter-based AE analysis [16].

Aggelis, Kordatos, and Matikas [1] introduced a method utilizing the rise angle (RA) of AE wave-
forms to assess damage accumulation and fracture mode changes in metal plates. They observed a
significant increase in RA value before final fracture, as shown in Figure 2.12, signaling the transition
from tensile to shear fracture modes [9].

Figure 2.12: Time plot of crack growth and RA [1].

Chai, Zhang, and Duan [8] introduced AE entropy, a new qualitative parameter derived from Shan-
non’s entropy or information entropy, for damage monitoring in AE non-destructive testing. Unlike
traditional parameters, AE entropy is independent of threshold settings, providing a more accurate re-
flection of original AE waveforms. Tests on different materials validated its effectiveness in distinguish-
ing damage stages and identifying critical damage, particularly through sudden increases indicating
crack initiation and rapid crack growth. Further research is required to fully understand and integrate
AE entropy into AE data acquisition systems.

Tanvir et al. [46] conducted a comparison between AE entropy and count, confirming that the thresh-
old independence of AE entropy is due to its computation method, which considers all possible discrete
voltage values in each waveform [46].

Additionally, Karimian, Modarres, and Bruck [23] investigated using information entropy of acoustic
emission (AE) signals to detect fatigue crack initiation in AA7075-T6 aluminum alloy. They found that
information entropy providedmore accurate and earlier identification of fatigue crack initiation compared
to traditional AE parameters like count and energy. The study demonstrated that minimum information
entropy values preceded macrocrack formation, and a rapid increase in cumulative information entropy
reliably indicated fatigue crack initiation. Furthermore, they observed that the amplitude of signals
associated with minimum information entropy values fell within a consistent range, independent of
loading conditions.

Yu et al. [53] conducted a study for predicting crack growth behavior in steel bridges using acoustic
emission (AE) signals, particularly focusing on the correlation between AE absolute energy rate and
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crack growth rate. Furthermore, the study suggests that AE absolute energy rate may be a more
suitable predictor than count rate for estimating fatigue life and predicting crack length in steel bridge
structures.

2.2.3. Validation of AE crack detection

According to Zhao et al. [54], a range of advantages and drawbacks exist within the popular fatigue crack
length measurement methods found in literature. These methods encompass various approaches,
including visual observation, acoustic emission, compliance, potential difference, eddy current, strain-
based, and image processing methods. While some methods are restricted to metallic specimens or
offer limited accuracy, certain techniques like digital image correlation, potential drop, acoustic emission,
and ultrasound methods enable real-time measurements. For example, Vanlanduit et al. [47] employed
a hybrid digital image correlation (DIC) technique to detect edge characteristics of metal fatigue cracks.

Considering the DIC technique has advantages over foil crack gauges and traditional crack mouth
opening displacement (CMOD) gauges, Pullin et al. [32] tested monitoring of crack growth to allow a
comparison with the detected and located AE signals. However, monitoring crack had to be non-contact
with the specimen to avoid frictional sources of AE in the crack region, preventing the use of CMOD
gauges. Due to the fact that these traditional methods can introduce AE sources into the experiment
either through frictional noises from the CMOD contact point with the specimen or glue cracking in foil
gauges [32].

DIC represents a non-contact optical method utilized for strain and displacement measurement.
Through DIC, high-speed, full-field experimental data regarding structural deformations can be ac-
quired. This technique, which doesn’t require physical contact, is particularly advantageous for an-
alyzing flexible materials. Its implementation entails employing digital cameras to capture a sequence
of images depicting a surface adorned with a randomized speckle pattern [28].

The potential drop method is an electrical technique that involves passing an electric current through
a material or component and then measuring the resulting potentials at designated locations relative to
a crack. This method is frequently employed for the continuous or instantaneous monitoring of cracks
in conductive materials [3]. Based on the understanding that a crack, which interrupts the continuity
of the conductive material, will induce significant alterations in the electrical potential field within the
component. Therefore, crack growth can be monitored by establishing calibration curves for different
crack scenarios [33].

2.2.4. Section highlights

This section has assessed the current state-of-the-art in detecting cracks within materials using AE
method. Efforts have been made to establish a correlation between AE parameters and FCG rates, re-
vealing a better understanding of interpretation of AE data. Similarly, the AE generated from different
sources was also observed during FCG, to characterize AE sources related to various mechanisms
such as crack growth, crack closure, fretting of the surface, etc. Nonetheless, examining the character-
istics of AE during FCG revealed eminent changes in AE activities in across different stages of fatigue
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life. Quantitative and qualitative correlation of few AE parameters helped in defining a transition in
different fatigue stages. Furthermore, some AE parameters were found to be more suitable for estimat-
ing fatigue life and predicting crack length. Moreover, the use of monitoring techniques, such as digital
image correlation (DIC), and potential drop method, for measuring fatigue crack length and validating
results without affecting AE method were discussed. Section 2.3 will delve into the knowledge gaps
and outline potential research directions aimed at achieving the objectives of the present study.

2.3. Research Overview

2.3.1. Discussion and knowledge gap

The previous section examined the state-of-the-art of AE monitoring of FCG.

Fatigue monitoring using AE method

In the context of FCG, the AE method emerges as a notably effective non-contact approach offering
real-time monitoring capabilities, applicable across various specimen types. Nevertheless, it has limita-
tions, particularly with certain metals which are highly attenuative and may not yield reliable outcomes.
Despite this, its sensitivity to minor defects offers qualitative insights into defect presence, yet quantita-
tive data on crack growth mechanisms may not be precise. Moreover, mitigating noise and accurately
distinguishing AE signals from crack growth remains an ongoing challenge.

Numerous studies have endeavored to establish a robust correlation between AE and FCG. How-
ever, the majority of experimental investigations have been restricted to individual materials or similar
specimen types, further constrained by specific loading frequencies, load ratios, peak loads, and en-
vironmental conditions. Notably, materials commonly employed in offshore industries, such as S355
and S690, have not yet been comprehensively studied in conjunction with the AE method. Therefore,
further investigation is required to explore the applicability of the AE method to these materials.

2.3.2. Research direction

Considering the current state of the art and identified gaps in the literature, the following main research
question arises:

’Is the Acoustic Emission method capable of accurately measuring fatigue crack growth
rates in the material?’

The main research question can be answered with the help of the following sub-questions,

• What are the specific limitations of the AE method that hinder its direct monitoring of crack growth,
and how can these limitations be overcome?
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• What strategies can be implemented to mitigate noise and accurately distinguish AE signals from
crack growth in the monitoring process?

• What AE parameters demonstrate superior efficacy for quantitative characterization of fatigue
crack growth in the material?



3
Experimental

This chapter details the materials, equipment, experimental setup, and procedures employed to eval-
uate the feasibility of Acoustic Emission (AE) monitoring for detecting fatigue crack growth in metallic
materials. It includes a description of the materials and equipment, the experimental design, data
acquisition, and analysis methods.

3.1. Materials and Experimental Equipment

This section introduces the properties of the specimen used. Additionally, it provides a comprehensive
overview of the testing machine used, the servo-hydraulic fatigue testing system (Instron 8801), and
the advanced AE Monitoring equipment employed to collect AE signals during testing.

3.1.1. Material

The testing material investigated in the experiment is X65 steel, which is a high yield material used for
transportation of liquids over distance like pipe lines [30]. The main chemical composition (in wt.%) of
the X65 steel is presented in Table 3.1, [44]. The compact tension (CT) specimen, as shown in Fig-
ures 3.1 and 3.7 is used to perform the fatigue crack growth test at room temperature. The dimensions
of the CT specimen are in accordance with ASTM [43] standards.

Table 3.1: Chemical composition of the X65 steel (wt.%).

Composition C Mn P S
X65 0.28 1.40 0.03 0.03

27
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Figure 3.1: Depiction of a CT specimen [2].

3.1.2. The Instron 8801

The Instron 8801 is a compact servo-hydraulic fatigue testing system designed for both static and
dynamic testing requirements. It is suitable for advanced materials and component testing, particularly
in fatigue testing and fracture mechanics. Its key features include a force capacity of up to ±100 kN (±22
kip), a usable stroke length of 150 mm (6 in), a high-stiffness load frame equipped with twin columns,
and the utilization of patented Dynacell load cell technology, ensuring precise load measurements [20].

Moreover, the Instron 8801 system provides a range of accessories, including grips, fixtures, cham-
bers, and customization options for hydraulic configuration, allowing users to adapt the system to di-
verse testing scenarios. The CT specimen grips used in the experiment are shown in Figures 3.2
and 3.7. Its design also caters to dynamic performance needs tailored to specific applications, ensur-
ing accuracy and reliability in testing processes [20].
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Figure 3.2: Specimen installed in Instron 8801.

3.1.3. AE measurement system

AE sensor

The R15α sensor (see Figure 3.3) offers exceptional performance with its high sensitivity and narrow
band resonant capabilities, making it a versatile solution for various operational needs. It operates
within a frequency range of 50-400 kHz and is optimized for resonant frequencies.

Figure 3.3: R15α sensor.
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Placement of AE Sensors

AE sensors were placed using a 3D-printed sensor holder and a small plate was screwed at the back
of each sensor to provide additional support during the experiment test, see Figure 3.4.

Figure 3.4: An example of AE sensor holder placement.

Pre-amplifier and Data Acquisition (DAQ) system

The AEP5H pre-amplifier (see Figure 3.5), with a gain of 40 dB, was used to amplify the AE waveform.
The data acquisition (DAQ) system (see Figure 3.9) then converted these amplified waveforms into
digital signals for further storage and analysis.

Figure 3.5: Pre-amplifier.

3.2. Methodology

This methodology chapter outlines the experimental procedures and analytical approaches used to
investigate the correlation between fatigue damage and AE data in metallic materials under cyclic
loading conditions. A parametric analysis of AE data was conducted to identify specific AE parameters
that serve as reliable indicators of crack growth stages, thereby enhancing the accuracy of fatigue
damage monitoring.

Under cyclic loading, the specimen emits elastic waves due to the sudden release of energy from
processes such as crack initiation and propagation. These elastic waves, captured as AE signals,
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provide real-time data on crack dynamics, allowing for early detection andmonitoring of fatigue damage.

Crack growth is categorized into three stages—initiation, propagation, and fracture—based on the
methodology of Ma et al. [25]. During the initiation stage, micro-cracks form, resulting in low-amplitude
AE signals. The propagation stage is characterized by the growth of these cracks, producing more
frequent and higher-amplitude AE signals. Finally, the fracture stage involves rapid crack acceleration,
leading to a peak in AE activity. This categorization enables the correlation of various AE parameters,
such as energy, amplitude, and hit count, with specific stages of crack growth. For instance, an in-
creased number of AE hits typically signifies heightened crack activity, suggesting that the crack has
progressed from the initiation stage to the propagation stage.

To optimize the detection of meaningful AE signals while minimizing background noise, SNR levels
of 2, 5, 10, and 20 were selected for observation, and an amplitude filter was also applied.

This approach enables a detailed understanding of AE parameters’ behavior across different crack
growth stages, providing critical insights for improving fatigue damage detection and monitoring.

3.3. Experimental Setup and Design

The AE sensors were strategically placed at predefined locations on the specimen’s surface, as shown
in Figure 3.11, to ensure optimal detection of AE signals. The testing was conducted at room tempera-
ture, with a sinusoidal cyclic load applied at a frequency of 15 Hz, as specified in Table 3.2. Calibration
of the sensors was performed using pencil lead break (PLB) tests to ensure accurate AE data collection.

3.3.1. Introduction

In this experiment, a comprehensive setup (see Figure 3.6) was established to monitor the mechanical
behavior and acoustic emissions of the tested specimen under applied loads. The specimen, before in-
stalled in the testing machine, was equipped with a potential drop sensor and several acoustic emission
(AE) sensors strategically fixed on its surface to capture relevant data during the testing process.

A servo-hydraulic testing machine, integrated with a control system, was utilized to apply and regu-
late the load on the specimen accurately. This setup ensured precise load application and operational
control throughout the experiment.

The AE sensors, crucial for detecting acoustic emissions generated by the specimen, were con-
nected to pre-amplifiers. These pre-amplifiers served to enhance the signals received from the AE
sensors, ensuring clarity of the signal waveform. Subsequently, the amplified signals were relayed to
a data acquisition (DAQ) system. The DAQ system, in turn, interfaced with an AE monitoring system
designed to record and analyze the acoustic emissions in real time.

This arranged experimental setup provided a robust framework for capturing and analyzing the
mechanical and acoustic responses of the specimen under load, facilitating a detailed understanding
of its behavior and properties.
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Figure 3.6: Schematic diagram of Experimental Setup.

3.3.2. Small Scale Fatigue test

The CT specimen was fitted in the testing machine using the grips, as shown in Figure 3.7. Additionally,
direct current potential drop (DCPD) was installed on the CT specimen to measure crack growth during
the test because of its valid measurement stability.

Table 3.2: Loading Condition.

Specimen Maximum peak load [kN] Load Ratio Loading Frequency [Hz]
S1 10 & 21 0.1 15
S2 10 0.1 15
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Figure 3.7: Specimen installed in testing machine and placement of AE sensor.

3.3.3. AE Monitoring Setup

Four AE sensors are installed on the specimen using hot glue as a couplant. Additional support for fixing
the AE sensors is provided by a 3D-printed sensor holder, as shown in Figure 3.7. Pencil lead break
(PLB) tests were performed at different locations on the specimen’s surface to confirm the operational
integrity of the AE monitoring system.

These four AE sensors were connected to pre-amplifiers using cables (see Figure 3.8), and the pre-
amplifiers were then connected to the DAQ system, as shown in Figure 3.9. The converted waveforms
to digital signals were further stored and analysed using Data acquisition program (Vallen Systeme),
see Figure 3.10).

Figure 3.8: Cables connected through Pre-amplifier.
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Figure 3.9: Data acquisition (DAQ) system.
Figure 3.10: Monitoring and storage using DAQ program.

Position of AE sensors

The positions of the AE sensors on the specimens were as follows:

For specimen 1, the distance from the right edge and the top/bottom edge was 2 cm. For specimen
2, the distances varied slightly for all four sensors due to the placement of strain gauges, as mentioned
earlier Section 3.3.2. The exact locations for each sensor are shown in the following tables:

Table 3.3: Location of AE sensors in Specimen 1

Channel Surface of Plate x [cm] y [cm]
1 Front 2 2
2 Back 2 2
3 Front 2 2
4 Back 2 2

Table 3.4: Location of AE sensors in Specimen 2

Channel Surface of Plate x [cm] y [cm]
1 Front 2.4 1.9
2 Back 2.3 1.2
3 Front 2.5 2.3
4 Back 2.5 2.3

The x and y are distances from the edges to the center of the sensor, as shown in Figure 3.11.

3.4. Experimental Procedure

This section outlines the procedures for conducting fatigue crack growth tests using AE monitoring.
Metallic specimens were subjected to sinusoidal cyclic loading, and crack growth was tracked using
both AE data and the direct current potential drop (DCPD) method. Details of the fatigue testing and
AE data acquisition setup are provided below.
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Figure 3.11: Schematic diagram of Sensor Locations

3.4.1. Fatigue Test Procedure

The fatigue crack growth test was conducted on a servo-hydraulic testing machine (see Figure 3.7)
and the specimen were subjected to a sinusoidal cyclic load (see Table 3.2) at the room temperature.
Direct current potential drop (DCPD) is used to have an additional measurement of crack growth during
fatigue loading. Direct Current Potential Drop (DCPD) was used for additional measurement of crack
growth monitoring during fatigue loading. After positioning the sensors on the specimen, pencil lead
break (PLB) tests were performed to ensure proper sensor operation.

The AEmonitoring systemwas started through auto-manager program before loading the specimen.
The test continued until the specimen fractured, providing continuous AE data for the duration of the
fatigue process.

3.4.2. Acoustic Emission Data Acquisition

The AE data were collected using the Vallen System AMSY-6 DAQ, configured with a sampling rate of
10 MHz to ensure high-resolution detection of AE signals. The filter frequency ranges were set at 50-
500 kHz for the first experiment and 95-400 kHz for the second, based on initial tests indicating optimal
signal detection within these ranges. The pre-trigger times were set to 400 µs and 500 µs, respectively,
to capture the complete waveform of each AE signal. Additionally, the sample rate of transient data was
reduced from 5 MHz to 2.5 MHz. The samples per set were also different: 8192 for the first experiment
and 4096 for the second. For specimen 1, the threshold levels were set at 35 dB for two sensors and
45 dB for the other two. For specimen 2, the threshold was uniformly set at 40.1 dB. The system was
configured to switch files every 10 minutes, a setting adjusted in the Auto Manager.

3.5. Data analysis method

The collected AE data were decompressed and converted into MATLAB files for further analysis. Key
AE parameters such as amplitude, energy, rise time, and counts were extracted for each channel.
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Statistical analysis, including linear regression, was conducted to assess the correlation between AE
parameters and fatigue crack growth rates. The coefficient of variance (CV) was calculated to evaluate
the reliability and consistency of each AE parameter across different datasets.

3.6. Experiment Notes

The fatigue test on Specimen 1 initially began with a peak load of 10 kN and a load ratio of 0.1, and it
was conducted over the course of three days. However, the specimen exhibited unusual behavior, as
it did not fracture as expected. Consequently, the test was halted and subsequently restarted with an
increased peak load of 21 kN, maintaining the same load ratio of 0.1. After this adjustment, Specimen
1 fractured within an hour. The AE data corresponding to the 21 kN peak load includes six datasets,
which are analyzed later in Chapters 4 and 5.

For Specimen 2, the experiment proceeded smoothly, resulting in AE data being recorded across
83 database files.

In summary, the methodology outlined in this chapter was designed to rigorously evaluate the fea-
sibility of AE monitoring for detecting fatigue crack growth in metallic materials. By employing a multi-
parametric approach, strategically positioning AE sensors, and using robust data acquisition and anal-
ysis techniques, the study aimed to establish a comprehensive understanding of AE signal behavior
and its correlation with crack growth dynamics.



4
Results and Analysis

This chapter presents the results of the Acoustic Emission (AE) monitoring experiments conducted to
evaluate fatigue crack growth (FCG) in metallic materials. The findings are analyzed to understand
the correlation between various AE parameters and crack growth rates across different stages of crack
propagation. Key results are highlighted, followed by a detailed discussion of their implications.

4.1. Introduction

This chapter addresses the research problem centered on assessing the capability of the Acoustic
Emission (AE) method in accurately measuring fatigue crack growth rates in materials. The study
explores the limitations of the AE method, strategies to mitigate noise, and the efficacy of various AE
parameters in characterizing fatigue crack growth. To achieve these objectives, a parametric analysis
of AE data was conducted, correlating AE signals with the stages of crack growth under cyclic loading,
as described in the methodology, Chapter 3.

The purpose of this chapter is to present the experimental results and observations obtained dur-
ing the study. The chapter is structured as follows: the behavior of fatigue crack growth is analyzed
first, followed by a multi-parameter analysis of AE data. The chapter then discusses fatigue damage
identification before concluding with a summary of key findings.

4.2. Fatigue crack growth measurement

Figure 4.1 depicts the variation in fatigue crack length as a function of the number of fatigue cyclesN for
two specimens. The final crack lengths are approximately 30 mm, with the fatigue lifespans reaching
around 663,000 cycles. After determining the crack length, the fatigue crack growth was calculated by

37
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using secant method, Equation (2.3):

da

dN
=

(ai+1 − ai)

(Ni+1 −Ni)

The following results are from test on Specimen 2 (S2).

Figure 4.1: Fatigue crack length versus fatigue cycles.

As shown in Figure 4.2, fatigue crack growth rate
(

da
dN

)
is plotted against stress intensity factor range

(∆K). The behavior of the computed crack growth rate will be further correlated with the analyzed AE
parameters to characterize the different stages of fatigue crack growth.

Figure 4.2: Fatigue crack growth rate versus stress intensity factor range.

Figure 4.3 illustrates the linear regression analysis of the fatigue crack growth rate as a function of
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the stress intensity factor range, from which the material constants m and C were determined. The
resulting values for m and logC were 4.47 and -17.9, respectively.

Figure 4.3: Linear fit of fatigue crack growth rate data.

4.3. Multi-Parameter Analysis

4.3.1. Time domain AE parameters

This section examines the AE parameters obtained in the time domain, such as amplitude, counts,
energy, rise angle, entropy, RMS, kurtosis, and crest factor, to characterize fatigue crack growth. AE
data from Specimen 2 is primarily used for analysis, focusing on how these parameters change over
time and fatigue cycles.

Impact of SNR Levels on Signal Clarity

The signal-to-noise ratio (SNR) gauges the clarity of a signal relative to background noise. Conse-
quently, comparing hit rates across various SNRs (see Figures 4.4 and 4.6) for dependable processing
of Acoustic Emission (AE) data.
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(a) (b)

Figure 4.5: (a) Number of AE signals detected for Specimen 1 over time. (b) Number of AE signals detected for Specimen 1
after changing the peak load to 21 kN.

Figure 4.4: AE Hit-rate for Specimen 1 on each datasets at SNR 2
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(a) (b)

Figure 4.7: (a) Number of AE signals detected for Specimen 2 over time. (b) Number of AE signals detected for Specimen 2
after applying a filtering process to remove noise and irrelevant data.

(a) SNR 2 (b) SNR 5

(c) SNR 10 (d) SNR 20

Figure 4.6: AE hit rate for Specimen 2 as a function of each dataset at SNR levels of 2, 5, 10, and 20.

Figure 4.8 represents various AE parameters, filtered using a SNR of 2, to characterize FCG. These
figures specifically incorporate data from Specimen 2. To maintain clarity and avoid excessive complex-
ity, only the data from one channel is presented in this chapter. Additional data from other channels
are available for review in the Appendix A.
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Correlation Between AE Parameters and Crack Growth Stages

To present and analyze the correlation between different AE parameters (like amplitude, energy, counts)
and the stages of crack growth (initiation, propagation, fracture).

(a) Amplitude (b) Counts

(c) Energy (d) Rise Angle

Figure 4.8: Various AE parameters as a function of fatigue cycles, segmented into three stages.

Effectiveness of Amplitude Filtering Techniques

To assess the impact of amplitude filtering on the accuracy and reliability of AE data for monitoring
crack growth.

Frequency information is commonly utilized to distinguish effectively between background noise
and AE signals resulting from micro- and macro-crack damage. A subset of AE signals was selected
at different stages of fatigue life, and their waveform were extracted to obtain frequency data. A Fast
Fourier Transform (FFT) was then conducted to analyze these signals and differentiate them from
background noise (see Appendix D).

Figure 4.9 shows the stages of waveform extraction from high amplitude signals.
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Figure 4.9: Locations of certain AE signals at higher amplitude which have been extracted for waveform visualization.

Figure 4.10: Locations of certain AE signals at low amplitude which have been extracted for waveform visualization.

The application of an SNR filter can result in the loss of a significant number of AE signals, which
may be crucial for correlation. To mitigate this issue, an amplitude filter of 50 dB was employed to
better isolate relevant signals. Figures 4.11 and 4.12 show the employed filter on variations of eight
time-domain AE parameters as a function of fatigue cycles for Specimen 2.
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(a) Amplitude (b) Counts

(c) Energy (d) Rise Angle

Figure 4.11: Various AE parameters as a function of fatigue cycles after Amplitude Filter.

(a) Entropy (b) RMS

(c) Kurtosis (d) Crest Factor

Figure 4.12: Other AE parameters as a function of fatigue cycles after Amplitude Filter.
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4.3.2. Normalized cumulative AE parameters

Figure 4.13 shows the variation of normalized cumulative parameters against fatigue cycles for the data
from each channel of Specimen 2. Figure 4.13 show the variation of normalized cumulative parameters
versus fatigue cycles for each channel data of Specimen 2.

(a) (b)

(c) (d)

Figure 4.13: Variation of normalized cumulative AE parameters (amplitude, energy, counts, etc.) across different channels as
a function of fatigue cycles, showing the correlation with crack growth rate.

4.3.3. Frequency domain AE parameters

This section analyzes AE data in the frequency domain, focusing on parameters like centroid frequency
and peak frequency to differentiate between background noise and crack-related signals.

The AE sensor used in this study functions within a frequency range of 50 to 400 kHz, enabling the
detection of AE signals over a wide frequency spectrum. The Figures 4.14 and 4.15 demonstrates that
the majority of AE signals captured fall within the narrow frequency bands of [200-300 kHz].
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Figure 4.14: Centroid Frequency after Amplitude filter (50 dB).

Figure 4.15: Peak Frequency after Amplitude filter (50 dB).
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4.3.4. Coefficient of Variance of AE data

The coefficient of variance was calculated of each AE parameter for both specimens (see Appendix C).
Table 4.1 presents the six datasets for Specimen 1, as explained in Section 3.6, along with amplitude-
filtered data for Specimen 2. The rationale for selecting these specific datasets is discussed in detail
in Chapter 5.

Table 4.1: Coefficient of Variance of AE parameters for filtered AE data

Specimen 1 2

Channel 1 2 3 4 1 2 3 4
Amplitude 0.920 0.686 0.687 0.745 0.539 0.567 0.478 0.598
Count 0.856 1.358 0.753 1.448 0.351 0.389 0.358 0.446
Energy 4.110 2.133 2.812 4.536 8.429 5.501 6.850 6.571
Entropy 0.084 0.092 0.058 0.096 0.060 0.053 0.066 0.048
RA 1.205 1.045 0.579 0.950 0.547 0.551 0.551 0.555
RMS 0.639 0.547 0.502 0.678 0.710 0.926 0.862 0.683
Kurtosis 0.256 0.328 0.245 0.263 0.535 0.631 0.513 0.666
Crest
Factor

0.115 0.137 0.134 0.132 0.216 0.227 0.216 0.220

4.4. Quantitative correlations

The counts were used to calculate the count rate, which was then plotted against the stress intensity
factor range (∆K), as shown in Figure 4.16. To facilitate direct comparison, the count rate and fatigue
crack growth (FCG) rate data were resampled and plotted together against the stress intensity factor
range. Similarly, the energy rate, entropy rate, and kurtosis rate were calculated and plotted against
the stress intensity factor range (∆K). Additionally, the bin width used to calculate the rate was 10.

Table 4.2 presents the calculated values of p and logB for the growth rates of various AE parameters,
which were determined through linear regression analysis. Figures 4.16 and 4.17 shows the linear fitting
of p and logB values.

Table 4.2: Experimental constants for AE count rate, energy rate, entropy rate and kurtosis rate

Count rate Energy rate Entropy rate Kurtosis rate
Channel p log B p log B p log B p log B

1 2.319 -5.129 2.941 -5.277 -0.381 4.540 -3.342 13.904
2 2.685 -6.189 3.703 -7.354 1.056 1.841 -3.197 15.190
3 2.422 -5.290 2.903 -5.015 0.070 4.716 -4.831 20.582
4 2.894 -6.784 4.084 -8.591 2.682 -3.602 -0.952 7.287
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(a) Count rate (b) Energy rate

(c) Count rate (filtered) (d) Energy rate (filtered)

Figure 4.16: Fitting of p and log B constants on count rate and energy rate with fatigue crack growth rate versus stress
intensity factor range (∆K), (a,b) before and (c,d) after amplitude filter.

Table 4.3 presents the calculated values of p and logB for filtered AE count rate and AE energy
rate.

Table 4.3: Experimental constants for filtered AE count rate and AE energy rate

Count rate (filtered) Energy rate (filtered)
Channel p log B p log B

1 1.00581 -0.85914 2.597909 -4.14523
2 0.878116 -0.24597 2.417456 -3.08484
3 0.917158 -0.36502 2.345849 -3.17528
4 1.244092 -1.35192 2.80041 -4.34569
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(a) Entropy rate (b) Kurtosis rate

Figure 4.17: Fitting of p and log B constants on (a) Entropy rate and, (b) Kurtosis rate with fatigue crack growth rate versus
stress intensity factor range (∆K)

The prediction of fatigue crack growth was calculated using the Equations (2.17) and (2.18) and
the values of the experimental constants m, C, p, and D for fatigue crack growth rate and the acoustic
emission, as illustrated in Figure 4.18.

(a) Count rate (b) Energy rate

(c) Entropy rate (d) Kurtosis rate

Figure 4.18: Prediction of fatigue crack growth rate using various AE parameter growth rate.
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4.5. Summary of Results and Analysis

This chapter has presented the key results from the fatigue crack growth experiments, focusing on the
effectiveness of the AE method in monitoring and characterizing fatigue crack growth in materials. The
findings reveal that the AE parameters, when analyzed in conjunction with the stages of crack growth,
provide valuable insights into the behavior of the material under cyclic loading. Notably, the application
of amplitude and SNR filters allowed for the isolation of relevant signals, although the trade-off between
signal clarity and data loss was evident. The quantitative correlations between AE parameters and the
stress intensity factor range further underscore the potential of AE methods in accurately predicting
fatigue crack growth rates.

These results lay a solid foundation for the subsequent discussion Chapter 5, where the implications
of these findings will be explored in greater depth. The discussion will delve into the limitations observed,
the efficacy of different AE parameters, and the broader impact of these findings on the understanding
and application of AE methods in material testing.



5
Discussion

5.1. Introduction

This chapter addresses the central research problem of evaluating the capability of the Acoustic Emis-
sion (AE) method in accurately measuring fatigue crack growth rates in materials. The study aimed
to identify the limitations of the AE method, develop strategies to mitigate noise, and determine the
most effective AE parameters for characterizing fatigue crack growth. To achieve these objectives, a
parametric analysis of AE data was conducted, correlating AE signals with the stages of crack growth
under cyclic loading.

The purpose of this chapter is to interpret and discuss the findings presented in the previous Chap-
ter 4, examining their implications in the context of the research questions and objectives. The chapter
is structured as follows: first, we will analyze the key findings in relation to the research objective,
followed by a discussion of the limitations and challenges encountered.

5.2. Interpretation of Fatigue Crack Growth Measurements

5.2.1. Correlation with AE Parameters

Figure 4.11 is divided into three stages based on the results of the crack growth rate to characterize
the correlation between AE parameters and fatigue crack growth. The three stages—Stage 1, Stage
2, and Stage 3—are delineated by red dashed lines, as shown in Figure 4.8.

In Stage 1, The initiation of the crack was observed at approximately 3,953 fatigue cycles, according
to potential drop data, corresponding to around 420 seconds of testing. Around this point, there was a
noticeable increase in the amplitude of AE signals, indicating the onset of crack formation. This early

51
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rise in amplitude aligns with Chai et al. [9], as the specimen experiences plastic deformation and the
initiation of micro-cracks at the notch, as AE signals become more prominent during the initial stages
of crack development.

As the experiment transitioned into Stage 2, the amplitude, counts, and energy of the AE signals
initially increased, reflecting the progressive growth of the crack. However, after reaching a peak,
these parameters began to decline until around 450,000 cycles. Beyond this point, the peak amplitudes
stabilized within the range of 65–70 dB, and the Rise Angle also exhibited an upward trend. Both energy
and counts remained stable, suggesting that the crack was undergoing a period of steady propagation.
Notably, at the end of Stage 2, the crack growth rate showed a marked increase after 500,000 cycles,
indicating a transition to a more accelerated crack propagation phase. This pattern of stable crack
growth during Stage 2 is consistent with findings from previous studies [9, 10].

In Stage 3, the crack growth rate escalated exponentially, accompanied by a significant increase in
the amplitude of AE signals, reaching up to 90 dB. This sharp rise in amplitude signals corresponds
to the onset of unstable crack growth, which typically precedes the ultimate failure of the specimen.
The data suggest that during Stage 3, the material enters a critical phase where the crack propagates
rapidly, leading to eventual fracture. This correlation between AE parameters and crack growth stages
provides valuable insights into the behavior of materials under cyclic loading, particularly in identifying
the transitions from stable to unstable crack growth.

5.2.2. Experimental Constants of FCG and AE parameters

The material constantsm, C, p, and logB were determined through regression analysis of the test data.
These constants are crucial for predicting the fatigue crack growth rate, as demonstrated in previous
studies such as Roberts and Talebzadeh [34]. Using these constants, the predicted crack growth rate
was calculated based on the growth rates of various AE parameters, as shown in Figure 4.18. Among
the AE parameters analyzed, the predicted crack growth from count rate and energy rate showed the
closest alignment with the actual crack growth rate, indicating its superior predictive capability.

As illustrated in Figure 4.16, the count rate and energy rate exhibited a stronger increasing trend
with crack growth rate compared to other AE parameters such as entropy rate and kurtosis rate. The
corresponding mean values of p and logB for the count rate and energy rate were found to be 2.580
and -5.848, & 2.94 and -5.28, respectively. These values suggest a more robust quantitative corre-
lation between (count rate & energy rate) and crack growth rate than those observed with other AE
parameters, in line with the findings of Roberts and Talebzadeh [35] and Chai et al. [10], reinforcing the
(count & energy) rate’s reliability as an indicator of fatigue crack propagation. This analysis highlights
the importance of selecting appropriate AE parameters for accurate fatigue crack growth prediction.

5.3. Multi-Parameter Analysis

To effectively correlate AE parameters with fatigue crack growth, a multi-parameter analysis was con-
ducted, focusing on the impact of the Signal-to-Noise Ratio (SNR) and the use of amplitude filtering
techniques.
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5.3.1. Signal-to-Noise Ratio (SNR) Impact

As illustrated in Figure 4.6, increasing the SNR level from 2 to 5 results in the filtering out of a significant
number of AE signals. While this filtering reduces background noise, it also risks eliminating AE signals
that could be crucial for accurately correlating AE parameters with fatigue crack growth. To address
this challenge and minimize the loss of potentially significant data, an amplitude filter was employed.
The method aims to balance noise reduction with the retention of key AE signals, which might enhance
the data’s reliability in detecting crack growth, as observed with specimen 1, where several AE signals
around 50 dB were detected prior to crack initiation.

5.3.2. Amplitude Filtering

As discussed in Chapter 4, frequency information is a key tool for distinguishing between background
noise and AE signals associated with micro- and macro-crack damage. During the analysis, it was
observed that low-amplitude AE signals exhibited a continuous waveform, while high-amplitude AE
signals, despite having similar frequencies, displayed burst-type characteristics likely related to fatigue
crack damage.

To enhance the clarity and reliability of the AE data, an amplitude filter with a threshold of 50 dB was
applied. This filtering process resulted in a 68.64% reduction in the total AE data, effectively removing
noise while retaining significant signals associated with crack growth.

Furthermore, the reduction in the AE data helped in calculating other AE parameters which are
based on transient data (such as Entropy, RMS, Kurtosis, crest factor) and have large data size.

5.3.3. Time Domain Parameters

Time domain parameters provide crucial insights into the nature and progression of fatigue crack growth
by capturing various aspects of AE signals. The eight time-domain parameters analyzed in this study
include amplitude, counts, energy, rise angle, entropy, RMS (root mean square), kurtosis, and crest
factor.

Amplitude

Amplitude reflects the intensity of AE events, with higher values typically corresponding to significant
crack growth, such as sudden fractures or rapid propagation. During the initial crack initiation phase
(Stage 1), amplitude values increased and remained elevated throughout periods of active crack growth.
As the crack approached a critical state, amplitude spikes frequently occurred, signaling imminent
failure, consistent with previous studies [9, 26, 10].

Counts

Counts, which represent the total number of AE events, steadily increased during the crack initiation
phase (Stage 1), indicating ongoing damage accumulation. This trend reversed during the crack prop-
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agation stage (Stage 2), where counts gradually declined until just before fracture. At the final stage of
failure, a sudden increase in counts was observed, coinciding with specimen failure.

Energy

Energy levels, which reflect the total energy released during AE events, correlated with different stages
of crack growth. Similar to counts, energy increased during the rapid crack initiation phase (Stage 1)
and gradually decreased during the crack propagation stage (Stage 2). This steady decline continued
until just before the fracture, at which point there was a sudden surge in energy levels as the specimen
failed. These findings highlight energy as an effective parameter for identifying stages of crack growth
and detecting critical events.

Rise Angle

Rise angle, which measures the slope of the initial AE waveform, increased during the crack initiation
phase (Stage 1) and then dropped sharply following the transition to the crack propagation stage (Stage
2). After a brief period of fluctuation, it remained stable during the latter periods of stable crack growth
but increased sharply during the transition to unstable growth (Stage 3). This behavior suggests that
the rise angle is useful for detecting critical changes in crack dynamics.

Entropy

Entropy, which measures the complexity or disorder of AE signals, provides additional context for un-
derstanding crack growth. During the crack initiation phase, entropy increased, while during stable
crack growth, entropy values remained relatively constant, indicating predictable AE events.

Root Mean Square

The RMS (Root Mean Square) value quantifies the overall power of AE signals. It increased during
the initial crack initiation phase and decreased after transitioning to stable crack growth, with a sudden
rise during the final stage of failure. This pattern points to heightened AE activity and energy release,
suggesting that RMS serves as a complementary measure to amplitude and energy, offering a broader
perspective on the material’s response to cyclic loading.

Kurtosis

Kurtosis, a measure of the peakedness of AE signal distributions, identified periods dominated by high-
intensity events, particularly during the crack initiation and the transition from stable to unstable crack
growth. High kurtosis values aligned with significant crack propagation, making kurtosis a valuable
parameter for detecting critical crack activity.
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Crest Factor

The crest factor, which indicates the ratio of peak amplitude to the RMS value, was observed to increase
during the crack initiation phase and periods of unstable crack growth. This parameter is particularly
useful for detecting sudden changes in crack growth behavior, especially in noisy environments where
transient high-amplitude events are significant.

In summary, each time-domain parameter offers unique insights into the crack growth process, and
their combined analysis provides a comprehensive understanding of fatigue behavior. Utilizing multiple
parameters enhances the accuracy of crack growth monitoring and supports more reliable predictions
of material failure, highlighting the value of a multi-parametric approach in Acoustic Emission analysis.

5.3.4. Normalized cumulative AE parameters

In this section, the variation of normalized cumulative AE parameters as a function of fatigue cycles is
analyzed across four different channels (Channel 1, Channel 2, Channel 3, and Channel 4), as shown
in Figure 4.13. The AE parameters examined include crack length, amplitude, energy, counts, RA
(rise time/amplitude ratio), RMS (root mean square), kurtosis, and crest factor. This analysis aims to
understand the behavior of these parameters in relation to FCG rate and to evaluate their effectiveness
in detecting and monitoring crack propagation.

General Observations

The analysis reveals a consistent upward trend in normalized cumulative AE parameters across all
channels with increasing fatigue cycles, indicating the cumulative accumulation of AE activity as fatigue
loading progresses. A correlation between the rise in AE parameters (such as energy, counts, and
amplitude) and the crack growth rate is evident, suggesting that as the crack propagates, AE activity
intensifies and is captured by these parameters.

Detailed Analysis of Each Channel

Across all four channels, the crack growth rate shows a consistent pattern: it starts relatively low and
gradually increases, becoming more pronounced around 4× 105 fatigue cycles. This consistent trend
indicates a phase of accelerated crack propagation that occurs across all monitored areas, providing
a reference point against which the variation in AE parameters can be analyzed.

In Figure 4.13a, several AE parameters, such as amplitude, energy, counts, RMS, and kurtosis,
exhibit a steep upward trend as fatigue cycles increase, reflecting a strong AE response that correlates
with the observed crack growth. The cumulative crack length also shows a similar increase, highlighting
a clear relationship between AE signals and physical crack propagation in this channel. The consistent
increase in these parameters suggests that AE monitoring is effectively capturing crack-related activity.

In Figure 4.13b, the AE parameters—particularly amplitude, energy, and counts—demonstrate a



5.3. Multi-Parameter Analysis 56

closely clustered and rising trend with the number of fatigue cycles. This indicates a strong correlation
between these parameters and crack growth activity. While RA and crest factor also show upward
trends, their slopes are less steep, suggesting they might be less sensitive to certain aspects of crack
growth or respond differently to the AE signals compared to the more prominent parameters.

In Figure 4.13c, the cumulative AE parameters such as energy, counts, and amplitude continue to
rise steadily with increasing fatigue cycles, reinforcing their role as effective indicators of crack propa-
gation. Additionally, RMS and kurtosis display notable increases in alignment with crack growth, while
parameters like RA show relatively moderate changes. This suggests variability in how different AE
parameters respond to crack progression, with some being more reliable indicators than others.

Figure 4.13d shows the most pronounced increases in amplitude, energy, and counts as the fatigue
cycles progress, indicating a strong AE response. Despite the consistent crack growth rate, this chan-
nel’s data reveal a more intense AE activity, particularly for kurtosis and RMS, which show sharp upward
trends. This could point to higher noise levels or more burst-type AE events, potentially associated with
a specific local response to crack growth dynamics.

Interpretation of Observed Trends

• The consistent increase in AE parameters with fatigue cycles across all channels indicates that
AE monitoring is effective in detecting the initiation and propagation of cracks. Parameters such
as amplitude, energy, and counts are particularly responsive, demonstrating significant increases
that correlate well with the crack growth rate.

• The variations in trends across the four channels may reflect differences in sensor placement,
material properties, or local stress fields. For instance, the delayed but abrupt increase in crack
growth rate and AE parameters in Channel 4 suggests that the sensor is in a region experiencing
different crack growth dynamics.

• The clustering of parameters such as amplitude, energy, and counts suggests that these are
robust indicators of crack growth, showing clear correlations with the observed growth rate. Other
parameters like RA, RMS, kurtosis, and crest factor provide supplementary information but exhibit
varying levels of sensitivity.

• The variability in trends across different parameters underscores the need for a multi-parameter
approach to AE monitoring. Relying on a single parameter may not provide a comprehensive
understanding of crack growth behavior, while combining multiple parameters can enhance the
reliability and accuracy of detection.

• The consistent increase in AE parameters preceding a marked rise in crack growth rate suggests
the potential for using AE data for predictive maintenance. Monitoring these parameters could
enable the anticipation of critical stages of crack growth, allowing for timely preventive actions.

Conclusion

The trends observed across the four channels indicate that AE monitoring, utilizing a range of param-
eters, effectively tracks crack initiation and growth under fatigue loading. The correlation between AE
parameters and crack growth rate is evident, although channel-specific variations highlight the com-
plexity of crack growth dynamics and the importance of a comprehensive monitoring approach. The
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findings suggest that while AE parameters such as amplitude, energy, and counts are reliable indi-
cators, incorporating a broader set of parameters is crucial for achieving more accurate and robust
monitoring outcomes. Furthermore, the potential for predictive analysis based on AE data points to the
value of ongoing research and development in this area.

5.3.5. Frequency Domain Parameters

Centroid and Peak Frequencies

Frequency domain analysis is a crucial component of Acoustic Emission (AE) studies, offering valuable
insights into the energy distribution of AE signals. In this study, centroid and peak frequencies were
examined to better understand the characteristics of AE events associated with fatigue crack growth.

The centroid frequency, which represents the weighted average frequency of an AE signal, provides
a central measure of where most of the signal’s energy is concentrated. The AE sensor used in this
study, operating within a 50 to 400 kHz range, primarily captured signals with centroid frequencies within
the narrow bands of [200-300 kHz] and [400-500 kHz], as shown in Figure 4.14. These frequency bands
suggest a concentration of AE events that are likely linked to specific stages of crack growth, aligning
with findings in the literature that associate similar frequency ranges with crack-related activity. Notably,
the study by Chai et al. [9] identifies frequencies between [170-220 kHz] as predominantly associated
with crack growth, a finding that partially aligns with our observations.

Peak frequency, on the other hand, refers to the frequency at which themaximumamplitude of an AE
signal occurs. In this study, peak frequencies showed some variation compared to centroid frequencies,
with AE signals concentrated within the frequency ranges of [50-170 kHz] and [220-350 kHz]. This
discrepancy between centroid and peak frequencies suggests that peak frequency alone may not be
a reliable indicator for identifying crack growth events due to the subtle changes in frequency.

5.4. Quantitative Correlations

5.4.1. Count Rate and FCG Rate

In this study, a linear correlation was observed between the count rate and the FCG rate, particularly
during the phase of stable crack propagation. As the crack entered the second stage of growth, an
increase in count rate was evident, coinciding with a corresponding rise in FCG rate.

However, the application of SNR and amplitude filters, which aimed to refine the count rate data,
did not enhance this correlation. While the filtering process effectively reduced the overall count rate
by removing background noise, it also inadvertently eliminated signals essential for accurately repre-
senting crack activity. Consequently, the quality of the data did not improve as anticipated, revealing
the limitations of filtering in AE analysis for predicting fatigue crack growth.

A linear fit of the count rate data showed mean values of p = 2.580 and logB = −5.848 for all four
sensors before filtering, which degraded to p = 1.011 and logB = −0.706 after filtering. In comparison,
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for the energy rate, values of p = 2.94 and logB = −5.28 before filtering were reduced to p = 2.60

and logB = −4.14 after filtering. The deterioration in the correlation between count rate and FCG rate
suggests that the use of the amplitude filter may not be warranted, as the correlation between energy
rate and FCG rate was stronger before filtering, indicating that critical AE signal data might have been
lost due to the filtering process.

Moreover, when compared to other AE parameters, such as entropy rate and kurtosis rate, the
count rate proved to be a reliable indicator of FCG rate as demonstrated in Figures 4.16 and 4.17.
The observed patterns in count rate align with existing literature findings Roberts and Talebzadeh [35].
Nevertheless, the current AE data remains insufficient, underscoring the need for more comprehensive
testing on specimens equipped with AE sensors.

5.4.2. Other AE Parameters

In addition to the count rate, several other AE parameters—such as energy rate, entropy, and kurtosis—
offer valuable insights into the fatigue crack growth process. When analyzed together, these parame-
ters provide a more comprehensive understanding of the material’s response to cyclic loading.

Among these, the energy rate, which represents the energy released during AE events, showed a
particularly strong correlation with the FCG rate, especially during stages of rapid crack propagation.
The energy rate increased as the crack progressed, underscoring its effectiveness as an indicator
of significant crack growth. Compared to other AE parameters, the energy rate consistently aligned
with observed changes in crack growth rate, reinforcing its reliability as a metric for predicting fatigue
damage.

Entropy and kurtosis also contributemeaningful information, but their roles aremore complementary.
While entropy helps to capture the complexity of the AE signal, kurtosis highlights the frequency and
intensity of high-amplitude events. Together with count and energy rates, these parameters provide a
multi-faceted approach to characterizing fatigue damage, offering robust potential for more accurate
crack growth prediction.

5.5. Coefficient of Variance Analysis

The Coefficient of Variance (CV) is a crucial statistical measure can be used to assess the relative
variability of Acoustic Emission (AE) parameters, providing insights into the consistency and reliability
of these signals across different datasets or stages of fatigue crack growth. In this study, CV was
calculated for key AE parameters, including amplitude, energy, count, and entropy, to evaluate their
stability and predictability as indicators of crack growth. A higher CV is typically advantageous as it
indicates greater data dispersion, which can facilitate more precise damage identification.

The data presented in Table 4.1 reveal several important trends in the CV of AE parameters for
filtered AE data from Specimens 1 and 2.

For both specimens, entropy and crest factor exhibit relatively low CV values, indicating that these
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parameters are may not be reliable indicators of fatigue crack growth.

In Specimen 2, the CV values for amplitude and count are notably lower compared to those in
Specimen 1. This reduced variability indicates that, in Specimen 2, these parameters are not consistent
after applying an amplitude filter. As in Table C.2, CV values before filter are around 1.5 for both
amplitude and count, which high compared to the results after filter. This shows the demerits of using
an threshold to filter data and this may lead to large error in analyzing crack growth.

The CV values for Specimen 2 across all channels are generally similar, with the exception of energy
and RMS. Energy and rise angle exhibit significantly higher CV values compared to other AE param-
eters, indicating greater variability in these measures. This finding aligns with the results of the study
by Chai et al. [9], which also reported higher variability in energy-related AE parameters. The high CV
for energy suggests that it is sensitive to changes in crack growth dynamics, making it less stable but
potentially more informative in detecting specific crack events. The CV of entropy is the lowest among
all AE parameters for both specimens, suggesting that it may be less reliable for AE analysis.

In summary, the CV analysis highlights entropy and crest factor as the most stable AE parameters,
while energy and rise angle show greater variability, which reflect their sensitivity to different stages of
crack growth. The consistency of amplitude and count in Specimen 2 further suggests that these pa-
rameters are more reliable in certain experimental conditions. These findings provide valuable insights
into the selection of AE parameters for accurate and reliable fatigue crack growth monitoring.

5.6. Implications

The findings of this study have several important implications for the use of Acoustic Emission (AE)
methods in monitoring fatigue crack growth in metallic materials.

This research enhances the understanding of how different AE parameters correlate with fatigue
crack growth across various stages of crack propagation. The study confirms that energy and rise
angle are particularly effective in detecting specific stages of fatigue damage due to their sensitivity to
changes in crack growth dynamics. These parameters, along with amplitude and count, have shown
to provide reliable indications of crack initiation and progression. However, the variability observed in
some parameters, such as peak frequency, emphasizes the need for careful selection and combination
of AE parameters to improve accuracy in crack growth monitoring.

The study’s findings suggest that a multi-parametric approach, using a combination of time-domain
and frequency-domain parameters, can enhance the reliability of fatigue crack growth predictions. For
instance, the use of entropy, kurtosis, and crest factor alongside traditional parameters like amplitude
and count provides a more comprehensive view of crack growth behavior, particularly under cyclic
loading conditions. This approach can improve the identification of transitions from stable to unstable
crack growth, supporting more effective predictive maintenance strategies in critical structures, such
as offshore platforms and marine vessels.

The results highlight the importance of carefully managing data filtering processes. While applying
amplitude and SNR filters can help reduce background noise, the study also demonstrates that these
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methods can inadvertently remove important AE signals crucial for correlating AE parameters with
fatigue crack growth. The findings suggest that a balanced approach to filtering is necessary—one
that reduces noise while preserving key data to maintain the reliability of AE monitoring.

This study reinforces the need for selecting appropriate AE parameters that correspond to spe-
cific crack growth stages. For example, the robust quantitative correlation observed between energy
rate and crack growth rate suggests that energy rate is a particularly reliable indicator of fatigue crack
propagation, especially in the later stages of damage. Similarly, entropy and crest factor have been
identified as stable parameters, while others like energy and rise angle, though more variable, offer
significant insights into the dynamic aspects of crack growth. These findings are crucial for developing
more accurate and tailored AE monitoring protocols.

The research identifies gaps in the current understanding of AE’s applicability across diverse materi-
als and structural configurations. Existing studies are largely limited to specific materials and controlled
testing environments. This study suggests that further research is needed to validate the findings
across a wider range of materials, loading conditions, and real-world environments. Expanding the
dataset will help generalize the use of AE methods for fatigue monitoring in different contexts, such as
marine applications where harsh conditions prevail.

Given the variability observed in certain AE parameters and the limitations related to data filtering,
the study recommends further research to refine AE monitoring techniques. Future studies should
focus on expanding the scope of testing by including more specimens, applying advanced noise miti-
gation techniques, and integrating complementary methods such as digital image correlation (DIC) and
the potential drop method. Additionally, validating the AE parameters across different materials and
conditions will help to establish standardized protocols for using AE in structural health monitoring.

The findings have broader implications for the field of Structural Health Monitoring (SHM). By iden-
tifying effective AE parameters and refining monitoring techniques, this research contributes to the
development of more reliable and cost-effective SHM systems. This is particularly important for criti-
cal infrastructure where early detection of fatigue damage is essential to prevent catastrophic failures,
reduce maintenance costs, and enhance overall safety and operational efficiency.

In conclusion, this study provides valuable insights into the effective use of AE methods for fatigue
crack growth monitoring, while also highlighting the need for further research to address current lim-
itations and expand the applicability of these techniques across different environments and material
types.

5.7. Limitations and Assumptions

While this study provides some insights into the multi-parametric analysis of Acoustic Emission (AE) for
fatigue damage monitoring, several limitations must be acknowledged. The complexity of interpreting
mixed and attenuated AE signals presents a significant challenge. Overlapping signals from multiple
sources can obscure the identification of specific damage events, complicating the accurate correlation
of AE parameters with crack growth stages. Additionally, signal attenuation, particularly in thicker or
heterogeneous materials, may reduce the effectiveness of AE monitoring by weakening the signals as
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they propagate, potentially leading to underestimation of damage severity.

Environmental noise also poses a limitation, as external sources of interference can generate AE-
like signals, resulting in false positives. Despite the application of filtering techniques to mitigate this
noise, complete elimination is difficult, and there remains a risk of inadvertently filtering out genuine AE
signals, affecting the accuracy of the analysis.

The sensitivity of AE monitoring to varying loading conditions and material properties further com-
plicates the generalization of the results. Each material and loading scenario requires specific cali-
bration to ensure accurate AE signal interpretation, limiting the applicability of the findings to other
contexts. The study assumes that the relationships between AE parameters and fatigue damage are
linear, though in reality, these relationships may be more complex.

Moreover, the study’s assumptions, such as idealized experimental conditions and uniform material
properties, may not fully represent the complexities of real-world scenarios. While necessary for the
scope of this research, these simplifications suggest that caution should be exercised when extending
the findings beyond the specific conditions tested.

These limitations highlight the need for future research to develop more sophisticated signal pro-
cessing techniques, explore the non-linear relationships between AE parameters and fatigue damage,
and validate the methodology across a broader range of materials and environments.

5.8. Conclusion

In this discussion chapter, we have explored the key findings of our study, focusing on the capability of
AE parameters to monitor and predict fatigue crack growth.

The analysis revealed that energy and rise are particularly useful AE parameters, providing con-
sistent and reliable indicators of crack growth across different specimens. Because of more variability
energy and rise angle were found to be sensitive to changes in crack growth dynamics, making them
valuable for detecting specific stages of fatigue damage. The study also highlighted the limitations of
peak frequency as a predictor due to its variability and the challenges posed by filtering techniques that
could inadvertently eliminate significant AE signals.

In summary, while AE monitoring shows significant promise for fatigue crack detection, its effec-
tiveness depends on selecting the most stable and relevant parameters, as well as accounting for the
limitations identified in this study. Future research should aim to refine these methods and explore their
application across a broader range of materials and conditions to enhance the reliability and applicability
of AE-based monitoring systems.



6
Conclusion

This study aimed to evaluate the effectiveness of the Acoustic Emission (AE) method in accurately
measuring fatigue crack growth rates in materials. The primary research question, ”Is the Acoustic
Emission method capable of accurately measuring fatigue crack growth rates in the material?” was
addressed through an investigation of AE parameters, noise mitigation strategies, and the inherent
limitations of AE methods.

Answering the Research Questions:

1. What are the specific limitations of the AEmethod that hinder its direct monitoring of crack
growth, and how can these limitations be overcome?

The study identified several limitations that hinder the direct monitoring of crack growth using
AE methods. These include challenges in obtaining high-quality AE signal data, coupling issues
between the AE sensors and the material, and concerns about the reliability of both the sensors
and the overall AE monitoring system. These limitations highlight the need for careful calibration,
maintenance, and selection of sensors, as well as the importance of understanding the material
properties and the testing environment.

2. What strategies can be implemented to mitigate noise and accurately distinguish AE sig-
nals from crack growth in the monitoring process?

The study explored various strategies for noise mitigation, such as analyzing AE signal wave-
forms and identifying burst-type signals, which were found to be effective in detecting fatigue
crack damage. A low Signal-to-Noise Ratio (SNR) and amplitude filter were also applied, demon-
strating effectiveness in noise reduction but with a risk of losing significant AE signals. The use of
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SNR and amplitude filters, including a 50 dB threshold, was intended to refine the count rate data
by reducing background noise. However, these filters did not improve the correlation between the
count rate and the fatigue crack growth (FCG) rate as expected. Although filtering reduced noise,
it also removed signals that were critical for accurately correlating crack activity, highlighting the
limitations of using such filters in AE analysis for correlation of fatigue crack growth.

3. What AE parameters demonstrate superior efficacy for quantitative characterization of fa-
tigue crack growth in the material?

Among the AE parameters studied, energy and rise angle were found to be particularly sensitive
to changes in crack growth dynamics, making them valuable indicators of crack growth across
different specimens. The quantitative analysis further revealed that count rate and energy rate
correlated well with fatigue crack growth, showing better trends compared to other AE parameters
and offering reliable metrics for predicting fatigue damage.

Main Research Question:

’Is the Acoustic Emission method capable of accurately measuring fatigue crack
growth rates in the material?’

The findings of this study suggest that the Acoustic Emission method has the potential to measure
fatigue crack growth rates in metallic materials, particularly when certain AE parameters, such as count
rate and energy rate, are carefully selected. These parameters demonstrated a reasonable correlation
with crack growth in this study, consistent with findings from previous research. However, the accuracy
of AEmethods can be influenced by several factors, including signal noise and the variability of different
parameters. Therefore, while AE methods show promise for fatigue monitoring, their effectiveness
depends on managing these limitations and applying appropriate noise mitigation strategies.

Key Contributions and Insights – This research has enhanced the understanding of how different
AE parameters correlate with various stages of fatigue crack growth. It shows that specific parame-
ters like energy and rise angle are particularly effective for detecting critical stages of fatigue damage.
Additionally, it highlights the necessity of using a multi-parametric approach that incorporates both time-
domain and frequency-domain parameters for a more reliable characterization of fatigue crack growth.

In conclusion, the AE method has been demonstrated as a viable tool for monitoring fatigue crack
growth, with the potential for further refinement and application across various materials and conditions.
The insights gained from this study contribute to the broader understanding of AE in fatigue monitoring
and offer a foundation for future research and practical applications.
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Recommendations

Building on the findings of this study, several areas are recommended for future research to enhance
the effectiveness of Acoustic Emission (AE) methods for monitoring fatigue crack growth and to address
the limitations identified. The following recommendations aim to improve data accuracy, broaden the
applicability of AE techniques, and refine monitoring protocols for a wider range of materials and con-
ditions.

Expand the Scope of Testing – Future research should expand the scope of testing by incorporat-
ing a larger and more diverse set of specimens equipped with AE sensors. A broader dataset would
allow for more comprehensive comparisons and validation of the findings presented in this thesis. Ad-
ditionally, tests using a negative load ratio should be considered to detect new AE sources beyond
fatigue damage signals. This would enrich the AE data and provide a deeper understanding of various
damage mechanisms.

Integrate AEmethodwith Complementary Techniques – Combining AEmethods with complemen-
tary techniques such as Digital Image Correlation (DIC) and the potential drop method could offer a
more holistic approach to fatigue monitoring. These integrated methods would provide cross-validation
of AE data, enhancing the reliability and accuracy of crack growth monitoring. Furthermore, validating
AE parameters across different materials and environmental conditions would help establish standard-
ized protocols for AE-based monitoring.

Explore Corrosion Fatigue and Stress Corrosion Cracking – Research should be extended to
investigate corrosion fatigue and stress corrosion cracking, especially in marine environments where
accurate AE data is essential. Understanding these phenomena would improve the applicability of
AE methods in environments that expose materials to corrosive conditions, ultimately enhancing the
predictive capabilities of AE monitoring techniques.
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Apply Advanced Analytical Techniques – Advanced analytical techniques, such as machine learn-
ing and neural networks, should be explored to improve the accuracy of fatigue crack growth moni-
toring. These techniques can analyze large datasets and recognize complex patterns in AE signals,
thereby enhancing the correlation between AE parameters and crack propagation. Implementing such
approaches could lead to more robust predictive models and monitoring strategies.

Refine Material Constants – The study highlighted the need for more extensive testing to improve
the calculation of material constants p and logB. Additional research should focus on gathering more
AE data and comparing these findings with existing literature to validate and refine these constants.
This effort will help ensure that AE monitoring techniques remain effective in predicting material failure
across a wide range of applications.

Investigate Additional AE Parameters – Future research should consider incorporating additional
AE parameters, such as absolute energy, to enhance both qualitative and quantitative correlation with
fatigue crack growth. To reduce dependency on user-defined thresholds and parameters, further stud-
ies should explore the processing of AE waveform signals using alternative entropy measures.

Examine AE Signal Clustering – Cluster analysis of AE signal data should be pursued to identify
different regimes of acoustic activity, which may correspond to various fracture mechanisms during
fatigue crack propagation. This analysis could improve the understanding of distinct crack growth
stages and enhance the predictive power of AE monitoring.
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Parametric analysis results

A.1. Specimen No. 1

A.1.1. SNR 2: All datasets

Counts

70



A.1. Specimen No. 1 71

Peak Amplitude



A.1. Specimen No. 1 72

Energy

Duration



A.1. Specimen No. 1 73

Rise Angle

Average Frequency and Rise Angle



A.1. Specimen No. 1 74

A.1.2. SNR 2: Last 6 datasets

Counts



A.1. Specimen No. 1 75

Peak Amplitude

Energy



A.1. Specimen No. 1 76

Duration

Rise Angle



A.1. Specimen No. 1 77

Average Frequency and Rise Angle

Entropy



A.1. Specimen No. 1 78

Root mean square (RMS)

Crest Factor



A.1. Specimen No. 1 79

Kurtosis

Centroid Frequency



A.1. Specimen No. 1 80

Peak Frequency



A.2. Specimen No. 2 81
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Quantitative analysis results

B.1. Growth Rate of AE Parameters

B.1.1. Count rate

Figure B.1: Count rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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Figure B.2: Count rate with fatigue crack growth rate versus stress intensity factor range (∆K) (Filtered)

B.1.2. Energy rate

Figure B.3: Energy rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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Figure B.4: Energy rate with fatigue crack growth rate versus stress intensity factor range (∆K) (Filtered)

B.1.3. Entropy rate

Figure B.5: Entropy rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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B.1.4. Kurtosis rate

Figure B.6: Kurtosis rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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B.2. Predicted Crack Growth Rate from AE Parameters

B.2.1. Count rate

Figure B.7: Count rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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B.2.2. Energy rate

Figure B.8: Energy rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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B.2.3. Entropy rate

Figure B.9: Entropy rate with fatigue crack growth rate versus stress intensity factor range (∆K)
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B.2.4. Kurtosis rate

Figure B.10: Kurtosis rate with fatigue crack growth rate versus stress intensity factor range (∆K)



C
Coefficient of Variance

Coefficient of Variance (CV) of AE data.

Table C.1: CV of AE parameters for all datasets of Specimen no. 1

Channel Counts Amplitude Energy Duration RiseAngle AvgFreq
1 8.38 0.63 12.53 6.49 18.69 2.39
2 9.14 0.43 5.48 11.69 23.67 1.64
3 4.41 0.58 6.73 5.55 16.42 3.38
4 10.43 0.27 3.68 5.44 15.04 2.58

Table C.2: CV of AE parameters for Specimen no. 2

Channel Counts Amplitude Energy Duration RiseAngle AvgFreq
1 1.48 1.44 14.67 1.27 1.04 3.67
2 1.60 1.61 10.06 1.41 1.16 3.42
3 1.53 1.39 12.26 1.27 1.01 4.03
4 1.61 1.58 11.81 1.42 1.15 3.40

99



100

Figure C.1: Visualization of CV of AE Parameters for all Specimen No. 1 Datasets

Figure C.2: Visualization of CV of AE Parameters for Specimen No. 2
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Table C.3: CV of AE parameters of Amplitude filtered data for Specimen no. 2

Channel Counts Amplitude Energy Duration RiseAngle AvgFreq
1 0.35 0.54 8.43 0.34 0.55 0.13
2 0.39 0.57 5.50 0.35 0.55 0.20
3 0.36 0.48 6.85 0.35 0.55 0.15
4 0.45 0.60 6.57 0.40 0.56 0.21

Table C.4: CV of AE parameters of Amplitude filtered data for Specimen no. 2

Channel RMS CrestFactor Kurtosis Entropy PeakFreq CentroidFreq
1 0.71 0.22 0.53 0.06 0.22 0.05
2 0.93 0.23 0.63 0.05 0.27 0.06
3 0.86 0.22 0.51 0.07 0.26 0.05
4 0.68 0.22 0.67 0.05 0.28 0.07

Figure C.3: Visualization of CV of AE Parameters of Amplitude filtered data for Specimen No. 2
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Figure C.4: Visualization of CV of AE Parameters of Amplitude filtered data for Specimen No. 2

Table C.5: CV of AE parameters for last 6 datasets of Specimen no. 1

Channel Counts Amplitude Energy Duration RiseAngle AvgFreq
1 0.86 0.92 4.11 0.73 1.20 3.83
2 1.36 0.69 2.13 0.85 1.04 4.31
3 0.75 0.69 2.81 0.62 0.58 4.00
4 1.45 0.74 4.54 0.93 0.95 4.29

Table C.6: CV of AE parameters for last 6 datasets of Specimen no. 1

Channel RMS CrestFactor Kurtosis Entropy PeakFreq CentroidFreq
1 0.64 0.11 0.26 0.08 0.62 0.09
2 0.55 0.14 0.33 0.09 0.19 0.06
3 0.50 0.13 0.24 0.06 0.51 0.10
4 0.68 0.13 0.26 0.10 0.15 0.06
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Figure C.5: Visualization of CV of AE Parameters for last 6 datasets of Specimen No. 1

Figure C.6: Visualization of CV of AE Parameters for last 6 datasets of Specimen No. 1
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AE signal waveforms

AE signals above 50 dB Amplitude

Figure D.1 and Figure D.2 have similar peak frequencies, whereas Figure D.3 exhibits higher frequency
peaks.

(a) (b) (c)

(d) (e) (f)

Figure D.1: AE signal waveforms - Early stage (around 28,000 cycles approx.)

104



105

(a) (b) (c)

(d) (e) (f)

Figure D.2: AE signal waveforms - Middle stage (around 275,000 cycles approx.)

(a) (b) (c)

(d) (e) (f)

Figure D.3: AE signal waveforms - Final stage (around 620,000 cycles approx.)
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AE signals below 50 dB Amplitude

(a) (b) (c)

(d) (e) (f)

Figure D.4: AE signal waveforms - at Early (a,d), Middle (b,e) and Final stage (c,f)
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