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Abstract

The functioning of the brain depends on the interplay between a large number of neurons. To understand

the information processing in neuronal networks, we need tools to record the electrical activity of cells

at high resolution. Microelectrode arrays (MEAs) are predominantly used to measure neuronal activity

at high spatial and temporal resolution. With the advent of complementary metal-oxide-semiconductor

(CMOS) based MEAs, it has been possible to design high-density MEAs with electrode sizes comparable

to that of the individual neurons, allowing sub-cellular resolution. CMOS technology has also facilitated

the on-chip signal conditioning needed to record the low-amplitude bio-signals with superior signal

quality. In this thesis, a readout architecture for in-vitro MEAs has been proposed for a low-noise

extracellular action potential (AP) readout.

One of the challenges in MEA implementation is the design of thousands of low-noise readout

channels for simultaneously recording the signals. There is a need to design low-noise ADCs with optimal

power and area consumption. In this thesis, a unique low-noise oscillator based sigma-delta (ΣΔ) ADC

has been designed for MEA applications. With the advantages of oversampling and time-encoding

techniques, the in-band noise has been optimized, without increased hardware complexity. The simple

implementation of this proposed ADC makes it efficient in terms of area and power consumption.

The integrated circuit for this oscillator based ΣΔ ADC has been implemented in 0.18 𝜇m
CMOS technology to demonstrate the feasibility of high-order oscillator-based ADCs for low-noise

extracellular AP readout. It was possible to obtain a noise below 5 𝜇VRMS (simulations) and power

consumption under 3 𝜇W using this ADC, which approximately occupies an area of 0.002 mm2. The

action potential readout system implemented with this ADC has been taped-out for further analysis

through measurements.

v





Contents

Abstract v
List of Figures xi
List of Tables xv
List of Abbreviations xvii

1 Introduction 1
1.1 CMOS based in-vitro MEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 In-vitro MEA applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Challenges in MEA readout design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Time encoding based ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 In-vitro Microelectrode arrays 9
2.1 Signal flow in MEA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 MEA readout architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Switch matrix architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Active pixel architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Switch Matrix vs Active Pixel Sensor . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Improvement of readout architecture for APS MEAs . . . . . . . . . . . . . . . . . . 17
2.3.1 Target MEA specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 ΣΔ ADCs for MEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Time encoding ΣΔ ADCs 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1.1 Nyquist-Shannon sampling theorem . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Oversampling data converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Sigma-delta data converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1.1 First order ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1.2 Second order ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Time encoding ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



viii Contents

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 System-level design of VCO based ΣΔ ADC 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Implementation of ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 First order ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Oscillator based ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 VCO based ΣΔ ADC for MEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Circuit impairments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Transconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Current DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.4 VCO based quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.5 Clock jitter and metastability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Implementation of VCO based ΣΔ ADC 43
5.1 Circuit design of VCO based ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1.2 Corners and Monte Carlo analysis . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Feedback DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2.2 Corners and Monte Carlo analysis . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.4 Voltage controlled oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.5 Frequency to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.6 Schematic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Integration in the test chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Complete ADC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Pseudo-differential system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Post-layout simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Discussion 67

7 Conclusion and future work 71
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents ix

A SQNR of ADCs 73
A.1 Nyquist converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Oversampled converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 First order ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.4 Second order ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Noise 79
B.1 Flicker and thermal noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 kT/C noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.3 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 83





List of Figures

1.1 Spatial and temporal resolution of neuronal sensing techniques . . . . . . . . . . . . . . 1

1.2 Neuronal sensing techniques and their application . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Illustration of neurons on top of MEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Typical CMOS MEA sytem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Possible VCO based readout architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Illustration of cell-MEA interface and extracellular AP . . . . . . . . . . . . . . . . . . . 10

2.2 Parameters effecting the readout process in MEA . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Classification of MEAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Block diagram of switch matrix MEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Block diagram of APS MEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Comparison of noise vs. the number of readout channels of different MEAs . . . . . . . 17

3.1 Sampling and quantization in ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Example for Nyquist theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Resolution in a 2-bit and 3-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Quantization noise: nyquist vs oversampled ADCs . . . . . . . . . . . . . . . . . . . . . 24

3.5 Linear model of ΣΔ data converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Linear model of a first order ΣΔ data converter . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Linear model of a second order ΣΔ data converter . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Noise shaping in oversampled ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



xii List of Figures

3.9 Discrete- and continuous-time ΣΔ ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Frequency encoding based ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Linear model of VCO based ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 PSD obtained from the VCO quantizer model . . . . . . . . . . . . . . . . . . . . . . . . 31

3.13 Block diagram of VCO based ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Block diagram of first order ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 PSD of first order ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Block diagram of VCO based ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 System-level implementation of the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Variation of SNR with respect to the KVCO/cap ratio . . . . . . . . . . . . . . . . . . . 36

4.6 PSD of VCO based ΣΔ modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 SQNR vs input voltage of the readout channel . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 System level block diagram of the VCO based ΣΔ ADC . . . . . . . . . . . . . . . . . . . 39

5.1 Input stage of the readout channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Transfer function of HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 LPF to filter pseudoresistor noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Frequency response of HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Output noise of input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Monte Carlo analysis for input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Current DAC of ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Output noise of DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Monte Carlo analysis for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 Programmable capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.11 Schematic of the VCO along with the source follower and level-shifter . . . . . . . . . . 54



List of Figures xiii

5.12 VCO transfer: before and after distortion compensation . . . . . . . . . . . . . . . . . . 55

5.13 AND gate based F2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14 XOR gate based F2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15 3 flip-flop XOR based F2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16 PSD obtained from schematic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.17 Implemented ADC system for the test chip . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.18 Pseudo-differential implementation of the readout channels . . . . . . . . . . . . . . . . 62

5.19 Layout of the pseudo-differential readout channel . . . . . . . . . . . . . . . . . . . . . . 63

5.20 PSD obtained from post-layout simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Trade-offs in APS full-frame readout MEA . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Oscillator based ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 One-on-one routing of pixel and ΣΔ ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1 Probability density function of quantization error . . . . . . . . . . . . . . . . . . . . . . 74

A.2 Linear model and power spectral density of quantizer . . . . . . . . . . . . . . . . . . . . 75

A.3 Block diagram of the digital filter in oversampling converters . . . . . . . . . . . . . . . 76

A.4 Linear model of a first order ΣΔ data converter . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 Linear model of a second order ΣΔ data converter . . . . . . . . . . . . . . . . . . . . . . 77

B.1 Noise models of resistor and MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Noise spectral density in MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 Phase noise in the oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81





List of Tables

1.1 Desired specifications for the target MEA . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Different MEAs implemented with SM architecture . . . . . . . . . . . . . . . . . . . . . 14

2.2 Different MEA designs implemented with APS architecture . . . . . . . . . . . . . . . . 16

2.3 Target MEA specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Calculated SQNRmax of different ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Target readout channel specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Parameters of the VCO based ADC for different bias current conditions . . . . . . . . . 37

5.1 Parameters of input stage HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Results obtained for input stage HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Parameters in Gm stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Noise of input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Results obtained for noise of input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Corner analysis for input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Parameters for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Noise of DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Corner analysis for the current DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 Parameters of programmable integrator for different bias currents . . . . . . . . . . . . . 53

5.11 Design parameters of the VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xv



xvi List of Tables

5.12 Noise obtained from schematic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.13 Power consumed by different blocks in the ADC . . . . . . . . . . . . . . . . . . . . . . 60

5.14 Noise obtained from post-layout simulations . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Comparison with the state-of-the-art bio-signal readout channels . . . . . . . . . . . . . 69



List of Abbreviations

AAF . . . . . . . . . . . . . Anti-aliasing filter

AC . . . . . . . . . . . . . . . Alternating current

ADC . . . . . . . . . . . . . Analog-to-digital converter

AFE . . . . . . . . . . . . . Analog front-end

AP . . . . . . . . . . . . . . . Action potential

APS . . . . . . . . . . . . . . Active pixel sensor

CMOS . . . . . . . . . . . Complementary metal-oxide-semiconductor

CT . . . . . . . . . . . . . . . Continuous time

DAC . . . . . . . . . . . . . Digital-to-analog converter

DC . . . . . . . . . . . . . . . Direct current

DFF . . . . . . . . . . . . . D-flip flop

DPS . . . . . . . . . . . . . . Digital pixel sensor

DRC . . . . . . . . . . . . . Design rule check

DSP . . . . . . . . . . . . . . Digital signal processing

DT . . . . . . . . . . . . . . . Discrete time

EAP . . . . . . . . . . . . . Extracellular action potential

EEG . . . . . . . . . . . . . Electroencephalography

ENOB . . . . . . . . . . . . Effective number of bits

F2D . . . . . . . . . . . . . . Frequency-to-digital converter

FFT . . . . . . . . . . . . . . Fast Fourier transform

FPGA . . . . . . . . . . . . Field programmable gate array

HD . . . . . . . . . . . . . . . High-density

xvii



xviii List of Abbreviations

HPF . . . . . . . . . . . . . High pass filter

iPSC . . . . . . . . . . . . . Induced pluripotent stem cells

IRN . . . . . . . . . . . . . . Input referred noise

IS . . . . . . . . . . . . . . . . Input stage

LFP . . . . . . . . . . . . . . Local field potential

LPF . . . . . . . . . . . . . . Low pass filter

LSB . . . . . . . . . . . . . . Least significant bit

LVDS . . . . . . . . . . . . Low-voltage differential signaling

LVS . . . . . . . . . . . . . . Layout versus schematic

MEA . . . . . . . . . . . . . Microelectrode array

MOSFET . . . . . . . . Metal-oxide-semiconductor field-effect transistor

MPW . . . . . . . . . . . . Multi-project wafer

MRI . . . . . . . . . . . . . . Magnetic resonance imaging

MSB . . . . . . . . . . . . . Most significant bit

OSR . . . . . . . . . . . . . Oversampling ratio

PET . . . . . . . . . . . . . Positron emission tomography

PPS . . . . . . . . . . . . . . Passive pixel sensor

PSD . . . . . . . . . . . . . . Power spectral density

PSS . . . . . . . . . . . . . . Periodic steady-state analysis

QE . . . . . . . . . . . . . . . Quantization error

RMS . . . . . . . . . . . . . Root mean square

SAR . . . . . . . . . . . . . . Successive-approximation register

ΣΔ . . . . . . . . . . . . . . . . Sigma-delta

SM . . . . . . . . . . . . . . . Switch matrix

SNR . . . . . . . . . . . . . . Signal-to-noise ratio

SQNR . . . . . . . . . . . . Signal-to-quantization noise ratio

VCO . . . . . . . . . . . . . Voltage-controlled-oscillator

VLSI . . . . . . . . . . . . . Very-large-scale integration





1 Introduction

The brain is the most complex organ in our body, and understanding it has always been a challenge. It

is made up of billions of neurons massively interconnected at hundreds of trillions of junctions and thou-

sands of kilometer-long wiring, forming the world’s most complex network [1, 2]. The electrochemical

reactions between neurons are the core of the brain’s operation, some of which include memory, cogni-

tion, and sensory functions. Any abnormality in these interconnections and electrochemical reactions

translates into neurological disorders such as epilepsy, Alzheimer’s, Parkinson’s, dementia, etc. Study-

ing the neurons and neural networks is crucial to understand the functioning of the brain, the origin of

neurological disorders, and potential treatments. Many techniques have been developed to study this

neurophysiology. Figure 1.1 shows the spatial and temporal resolution of some of these techniques used

for neurophysiology studies. Spatial resolution is defined as the ability to discriminate two different

points in space, while the temporal resolution is the time-scale precision of the recording.

Figure 1.1: Spatial and temporal resolution of neuronal sensing techniques

At the macro-level, there are techniques such as electroencephalography (EEG), functional

magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, etc. which are non-

invasive brain imaging methods (figure 1.2c). However, these techniques are capable of sensing the

electrical changes of thousands of neurons that are signaling at the same time rather than detecting

the electrical activity of a single neuron, resulting in low spatial resolution. There are patch-clamp

techniques at the micro-level that can detect the electrical activity in single cells, ‘patch’-es of the cell

membrane, or even single ion channels for studying electrophysiology at a single-cell level. However,

1
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patch-clamp is invasive, where the cell membrane is punctured to record the intracellular signals (figure

1.2a). It is also limited by the number of cells that can be probed at the same time, and cell viability.

Figure 1.2: Neuronal sensing techniques and their application

High spatial- and temporal- resolution techniques are essential to record the electrical activity

of cells to monitor the electrophysiology at both single-cell and cellular network levels. Microelectrode

arrays (MEAs) can measure the extracellular signals, such as local field potentials (LFPs) and extracel-

lular action potentials (EAPs) (figure 1.2b), via electrodes to study the electrical activity of cells. MEAs

enable carrying out long-term measurements as they are non-invasive, while providing the necessary

spatial resolution required to quantify the electrical activity of neuronal networks or even single-cell

activity.

MEAs can be used in-vivo to study the brain using implantable probes (having electrodes)

and, in-vitro to study the neuronal activity in cell-cultures, brain slices, etc. Although in-vivo MEAs

can be used for the study of a fully functional brain giving a realistic understanding, they are invasive

and thereby can create tissue damage. In-vitro MEAs are used for fundamental research to investigate

the signal propagation, neuroplasticity, and drug screening and toxicological screening [3]. The focus

of this thesis is on in-vitro MEAs that are predominantly used to study individual neurons and small

networks in detail, detecting the small and fast action potentials.
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1.1 CMOS based in-vitro MEAs

MEAs should be able to detect the low-amplitude extracellular signals, typically in hundreds [4, 5] or

sometimes even tens [6] of 𝜇V range, with high signal quality. Also, since the signals being recorded

originate from the cells in close proximity to the electrodes, the MEA should be able to separate the

individual signal sources [7]. A low electrode pitch (figure 1.3) is required to resolve sub-cellular details

from single neurons. Complementary metal-oxide-semiconductor (CMOS) technology can provide the

possibility of integrating a large number of microelectrodes on a small chip. Using CMOS technology,

on-chip signal conditioning such as amplification and filtering can be performed to record the low am-

plitude bio-signals with maximum precision [4]. Also, the analog-to-digital converters (ADC) can be

integrated in the silicon closer to the electrodes to reduce the parasitics and interferences [8]. CMOS

MEAs offer electrodes with sizes comparable to that of a single cell, and minimally spaced as shown in

the figure 1.3b thereby providing access to the activity of individual cells at sub-cellular resolution.

Figure 1.3: Illustration of neurons on top of MEAs. a) In MEAs with large pitch, signals
from different neurons are captured by the same electrode. b) In CMOS based MEAs with
small pitch, each neuron can be measured by several electrodes.

1.2 In-vitro MEA applications

In-vitro MEAs can be used to carry out experiments on different biological preparations such as primary

neurons, brain slices, retina, cardiomyocytes, etc. MEA experiments with retina target the understand-

ing behind how the eye perceives visual information. MEAs are also being used to study the synchronous

neuronal activity using brain slices [9] to decipher the pathology of the brain [10]. MEA experiments
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with acute brain slices, which mimick the in-vivo environment, are being used to understand and model

neurological disorders such as epilepsy [11].

Induced pluripotent stem cell (iPSC) derived neuron cultures are human-derived stem cells that

have been found to generate spontaneous neuronal activity under the influence of different physiological,

toxicological, and pharmacological conditions [12]. However, the amplitude of extracellular AP in iPSCs

is as low as tens of 𝜇Volts, which is relatively lesser than the extracellular AP in primary cells [6, 13].

Ultra-low noise MEAs [8, 14] are now emphasizing on accurately detecting these low-amplitude iPSC

signals [6], which could allow MEAs to replace the in-vivo animal testing for drug- and toxicology-

screening, that is under ethical debate.

In contrast to the intracellular recording, which invasively picks up the signal (patch clamp), in

MEAs, the electrodes record the extracellular signals of all neurons in the vicinity. This makes it difficult

to assign each extracellular action potential (spike) to the individual neuron. High-density MEAs that

provide high-spatial resolution can efficiently separate individual neurons, and spike sorting algorithms

can be used to classify the spikes and identify which neuron is generating each spike [5]. Using the

combination of high-density MEA and patch-clamp techniques, it has been possible to understand how

the multiple input signals integrate and interact within a single-cell [15].

1.3 Challenges in MEA readout design

A typical CMOS MEA system with on-chip signal-conditioning circuitry is shown in figure 1.4. The

signals recorded by the electrode array are filtered, amplified, and digitized by the ‘readout blocks’

shown in figure 1.4b. Two of the widely used readout architectures in MEAs are the switch matrix

(SM) and active pixel sensor (APS). In SM MEAs, a flexible routing scheme is used to record only

from a subset of electrodes simultaneously. In this architecture, the readout circuitry is entirely placed

outside the array area, leaving sufficient area to implement large low-noise analog front-end amplifiers,

resulting in a high signal-to-noise ratio (SNR). SM MEAs can detect very low-amplitude signals, such

as iPSC AP (tens of 𝜇Volts) [6], owing to their high SNR. However, typically only 10% of the total

available electrodes are used during simultaneous readout, resulting in complexity during experiments.

APS MEAs, on the other hand, can record from all the electrode simultaneously, which is referred to

as ‘full-frame readout’. In these MEAs, the front-end amplifiers are integrated beneath the electrode

in the pixel. Due to the limitations in the available area to implement the active circuitry, APS-based

MEAs have relatively higher noise. APS MEAs are hence more suitable for recording large-amplitude

signals, such as action potentials (APs) of primary neurons and local field potentials (LFPs) [16].



1.3. Challenges in MEA readout design 5

Figure 1.4: Typical CMOS MEA system showing the (a) packaged device used for exper-
iments, (b) chip micrograph showing the electrode array, readout and stimulation blocks,
and (c) micrograph of primary neurons cultured atop the MEA [16].

This thesis aims to overcome the limitations of the existing SM and APS MEAs, by designing

a low-noise readout architecture for APS MEAs, targeting simultaneous readout from thousands of

electrodes, without compromising the spatial resolution of the MEA. The target MEA implemented

with this readout channel should have the combined benefits offered by the SM and MEA topologies,

as shown in table 1.1.

SM MEA APS MEA Target APS MEA

Parallel readout channels <10% 100% 100%

Noise per readout channel <5 uV >10uV <5 uV

Most useful application Single-cell studies Cell-network studies Both

Table 1.1: Desired specifications for the target APS MEA in comparison to the existing SM
and APS MEAs.

The two key features that should be preserved while implementing APS MEAs are spatial

resolution and signal quality. To achieve the target spatial resolution, simple AFE architecture should

be used, and for superior signal quality, the noise from the readout circuitry should be minimized.

However, the typical readout blocks in MEAs include multi-stage AFEs and SAR ADCs, both of which

use complex hardware that is undesirable for the target MEA. To overcome these limitations, a simple

in-pixel AFE architecture should be implemented, and compact ADCs should be implemented outside

the array with optimized noise and area.

Sigma-delta (ΣΔ) data converters are known for their efficient analog-to-digital conversion

for low-bandwidth applications making them a suitable choice for MEAs. Time encoding based ΣΔ
ADCs have been reported to have improved SNR and potential advantages in terms of area and power

consumption [17, 18], making them the significant design choice in this thesis.
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1.4 Time encoding based ADCs

The task of implementing MEAs in deep-submicron process environment comes with its challenges.

Although CMOS technology scaling is seen as efficient in terms of area and power consumption, which

favors the MEA applications, analog circuitry design gets intensively complex. This is because analog

circuits are driven by process parameters such as voltage supply, transistor gains, voltage thresholds,

etc. These parameters significantly vary with each technology node [19]. On the other hand, an

upside to shifting towards smaller technology nodes is the fast switching of the MOSFETs offering

excellent accuracy in timing at high frequencies. So, as an alternative to amplitude quantization in

data converters, time encoding can be used due to its feasibility of implementation in low-voltage

CMOS technology nodes [18–21]. The advantage of time-encoding systems is that most of the design

can be implemented using digital circuitry, which benefits from CMOS scaling.

One example of this time-encoding approach is a voltage controlled oscillator (VCO), in which

the input voltage is encoded into the frequency of the oscillator (frequency encoding). There are two

possible ways [22] of integrating the VCO in the MEA readout circuitry, which are shown in figure 1.5.

In both cases, the filtered and amplified (by AFE) electrode voltage variations modulate the frequency

of the VCO, whose output is digitized using a frequency-to-digital modulator. In the first architecture

(figure 1.5a), the VCO is integrated in the pixel area itself along with the AFE circuitry. However,

realizing this architecture is complicated, given the size restriction on the pixel area. In the second

architecture (figure 1.5b), the VCO is integrated outside the pixel and designed as a VCO based ΣΔ
modulator. In this thesis, the second architecture, ‘VCO based ΣΔ ADC,’ is considered for implementing

the MEA readout, and the AFE is integrated as an input stage in the ADC while designing the readout

channel (figure 1.5b).

Figure 1.5: Possible VCO based readout architectures. (a) The VCO is integrated in the
AFE and the off-pixel area is used for frequency to digital modulation (b) The VCO is
integrated in a classical modulator outside the pixel area.
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1.5 Thesis objectives

This thesis aims to bridge the gap between SM and APS MEA architectures, which are known for their

high electrode density with low-noise, and full-frame readout, respectively. A low-noise oscillator based

ΣΔ ADC for APS MEAs has been proposed in this thesis to read out the signals from all the electrodes

simultaneously. The MEA implemented using this architecture should offer low-noise readout sufficient

to detect signals as low as tens of 𝜇Volts, with high spatial resolution.

The thesis goals are further broken down as follows:

• Review the existing MEA readout architectures and design trade-offs to understand the specifi-

cations for different applications of MEAs.

• Design a compact low-noise oscillator based ADC for APS MEAs. The aim is to optimize the

readout channel noise to 5 𝜇VRMS in the 300 Hz - 7 kHz AP band using second-order noise

shaping.

• Implement the proposed system in a test chip in 0.18 𝜇m technology node, including all the

necessary auxiliary circuits for testing and debugging the ADC.

1.6 Structure of the thesis

Chapter 2 introduces the terminology and signal flow in MEAs, followed by a discussion on the different

readout architectures that can be used for implementing the MEAs. The two predominantly used MEA

topologies, SM and APS, have been explained with a focus on the challenges, drawbacks, and design

trade-offs faced by them. Taking support from this background knowledge, the problem statement of

the thesis has been introduced, which is to ‘design a compact low-noise ADC for APS MEA readout.’

The MEA that can be implemented using this ADC has been benchmarked against state-of-the-art SM

and APS MEAs to show the value of our design. The chapter ends with some findings on ΣΔ ADCs

that have been deemed to be the right fit to achieve low-noise MEA readout requirements.

Chapter 3 starts with a brief introduction to the analog-to-digital conversion and the parame-

ters that define the performance of the ADC, such as SNR and quantization noise. The chapter focuses

on the theory and advantage behind oversampling, noise shaping, and time encoding, the conceptual

pillars that support the design choice of an oscillator based ADC for APS MEAs. Chapter 4 focuses

on the system-level design and implementation of the oscillator based ΣΔ ADC, which can be used for

MEA readout. The train of thought behind the design of the VCO based ΣΔ ADC has been given in

this section.
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The circuit-level implementation of this readout architecture and the results obtained in the

simulations are discussed in chapter 5. The design choices, layout design, and post-layout simulations

are also reported here. Chapter 6 overviews and critically describes the entire process of the thesis and

design implementation. The final results have been reiterated here and compared with the state-of-

the-art bio-potential readout architectures. Some of the possible limitations of the design have been

pointed out, and the dissertation finally ends with the conclusions and prospective work for the readout

architecture that has been implemented in this thesis.



2 In-vitro Microelectrode arrays

To understand complex biological systems like the brain, we need to understand the connectivity and

coordinated cell activity of electrogenic cells such as neurons. Microelectrode arrays are used to study

the electrophysiology of cells, such as neurons, heart cells, and retina cells at a sub-cellular spatial

resolution and a sub-millisecond time scale. Since they detect the extracellular signal generated by the

cell population at interest, they can provide long-term measurements owing to their non-invasive nature.

The electrodes are tightly packed to achieve sub-cellular spatial resolution, reducing the area allotted for

wiring the electrodes to readout circuitry. Thanks to the CMOS technology, it is possible to integrate

thousands of electrodes in a small area. It has also made the integration of on-chip amplification and

digitization circuitry feasible, improving the signal quality.

The critical trade-off to make while implementing MEAs is between the spatial resolution

and signal-to-noise ratio (SNR) that can be attained. High-spatial resolution requires small electrodes,

increasing the electrode impedance, resulting in high thermal noise. The size of the transistors used for

amplification and filtering should also be small, which again results in high flicker noise. For optimum

performance of an MEA, these design trade-offs should be considered during the MEA design. The

MEA signal flow and the different architectures used for realizing MEAs are discussed in this chapter

to provide a rationale behind the objective of this thesis.

2.1 Signal flow in MEA system

Any electrical activity in a cell results in the flow of ions via ion channels. This, in turn, causes a

change in the electric field in the extracellular space, acting as a volume conductor [4]. This change in

the electric field is detected by the electrodes in the microelectrode array (figure 2.1). These signals are

then filtered and amplified by the analog-front-end (AFE) circuitry and transduced to a digital readout

by the analog-to-digital converter. Owing to the advances in the CMOS technology, it has been possible

to integrate the AFE and ADC on the MEA chip itself. Having the AFE and ADC close to the sensing

area results in reduced parasitics and interferences, thereby resulting in better SNR.

9
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Figure 2.1: (a) Cell-MEA interface and (b) magnitude of extracellular action potential (AP)
in comparison with the intracellular AP, modified from [4].

There can be interference from different noise sources, which can alter the SNR of the recorded

signal. These noise sources include the thermal noise at the electrode-electrolyte interface, due to the

size and hence the impedance of the electrode, and the noise from the hardware (AFE and ADC blocks)

[5]. The noise from these sources must be minimized by optimizing the electrode size and reducing the

intrinsic hardware noise for efficient MEAs. Also, the typical amplitude of the extracellular signal is

in tens [6] and hundreds of 𝜇Volts range (figure 2.1b) [4], which manifests the criticality of designing

low-noise circuitry with intrinsic noise much lesser than the amplitude of the recorded signal itself. The

signal flow of the readout process in an MEA is shown in figure 2.2. In this thesis, the AFE and ADC

blocks of the readout architecture are designed for optimum noise performance. The parameters that

determine the fate of these readout blocks are the gain, bandwidth, and noise for the AFE, and the

resolution and sampling rate for the ADC.

Figure 2.2: The readout process flow in an MEA and different parameters that effect the
readout signal [5].

The standard CMOS fabrication process only allows the production of electrodes of certain

materials, usually Aluminium alloy, which is unstable in contact with physiological solutions that are

used during the experiments. Due to the toxicity and poor bio-compatibility of the contact material

and to protect the CMOS circuitry from corrosion, a post-processing protocol is mandatory to seal the
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CMOS part from the biological samples [23]. During this post-processing step, the CMOS chip is coated

with a passivation layer (SiO2/Si3N4)[23] and a suitable electrode material such as platinum [24], gold

[23] or chloridized silver [25] is deposited on top of the contact material through the openings in the

passivation layer (figure 2.1a) to ensure compatibility as well as decrease of the electrode impedance

for better SNR [23–26]. Pt-black is often used as a coating on top of the electrodes [4] (figure 2.1a) for

increasing the surface area, thereby further reducing the electrode impedance. The post-processed chip

is mounted and wire-bonded, followed by encapsulation using epoxy resin [25, 27]. A glass ring that

surrounds the MEA is mounted for culturing the biological samples after which, the MEA can be used

for the experiments.

Different readout design strategies have been used over the past years in the attempt to

realize high-density, low-noise, or full-frame readout MEAs. Some of these readout architectures will

be described here to show their advantages, limitations, and potential improvement.

2.2 MEA readout architectures

Before starting the discussion on MEA topologies, some of the commonly used MEA terminologies

are introduced here. ‘Pixel’ is the sensor element that picks up the signal, such as the extracellular

potential, in MEAs. These MEA pixels can be passive, active, or digital based on the inclusion of the

active elements beneath the electrode area, which picks up the signal. Passive pixel usually comprises

just an electrode, and maybe some switches used to address and select the electrodes. On the other

hand, the active pixel has an electrode and some active elements underneath the electrode area to

buffer or amplify the detected signal. Recent advances in CMOS imagers show the possibility of using

digital pixel, which consists of the electrode and an in-pixel ADC and memory, integrated beneath the

sensing area. The digital pixels are grouped under the active pixel category here (figure 2.3), due to

their in-pixel active elements.

MEAs can be implemented using different topologies based on the placement of signal con-

ditioning circuitry with respect to the electrodes. The simplest way to design an MEA is to connect

the electrodes to signal pads through fixed wiring, as shown in figure 2.3a with the signal conditioning

circuitry implemented off-chip. This is a classic example of passive pixel topology. However, this results

in long metal lines needed for routing the electrodes with the signal conditional blocks increasing the

parasitic capacitance [28]. Also, due to the lack of active circuitry or multiplexing in the electrode array,

the number of electrodes is limited by the number of signal pads that can be implemented. Figure 2.3b

shows another approach with a passive pixel sensor (PPS) where the limitations of parasitic capacitance

and number of pads have been handled by including active circuitry, for amplification and multiplexing,

on-chip. However, since there is a one-on-one routing of the electrode and AFE, this approach still

does not allow achieving high-density implementation of the microelectrodes due to the limitations on



12 2. In-vitro Microelectrode arrays

interconnections within the array and inefficient usage of electrode array area [5].

Figure 2.3: Classification of MEAs based on the type of pixel and placement of signal
conditioning blocks (a) fixed wiring scheme with off-chip circuitry, (b) fixed wiring scheme
with on-chip circuitry, (c) switch-matrix (SM) that allows flexible selection of electrodes, (d)
active pixel sensor (APS) with in-pixel analog front-end, and (e) digital pixel sensor (DPS)
with in-pixel ADC. Inspired from [5].

The MEA readout architecture, which is popularly known as ‘switch matrix’ (SM), is shown

in figure 2.3c. In this topology, the electrode array is decoupled from the readout channels, and a

subset of ‘interesting’ electrodes (selected electrode in figure 2.3c) can be flexibly chosen for readout

[29]. The routing pathways are implemented such that the selected subset of electrodes is rewired

flexibly to the available readout channels, outside the actual electrode array. An in-pixel local memory

is used to set the state of the control signals needed for switching the respective electrodes. The main

advantage of this topology is that, since the number of channels implemented for signal readout can

be reduced depending on the designer’s choice, the available area to implement the circuitry is high,

allowing low-noise CMOS circuitry. However, it requires complex experimental protocols to identify the

interesting electrodes, since not all electrodes can be chosen to detect the biological sample activity.

MEAs implemented with this topology are often used for low-noise signal acquisition and when there is

no need to record signals from all electrodes. Their low-noise operation also makes them advantageous

in low-amplitude spike detection applications.

Another prevalent architecture used for the MEA implementation is the ‘active pixel sensor’

(APS) (figure 2.3d), which is similar to the image sensors in CMOS cameras. In this topology, the pixel
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consists of an electrode along with a dedicated AFE block. Every pixel is sampled once within each

frame resulting in a full-frame readout. The challenge lies in designing a low-noise AFE since the size

requirements are quite restrictive for implementing high-density pixel array. Also, since the electrodes

and biological medium themselves give out wide-band noise [5], a low-pass filter should be included

inside the pixel to make sure this noise is not aliased into the signal band during sampling, further

constraining the pixel area.

The digital pixel sensor (DPS) topology is shown in figure 2.3e with an in-pixel ADC, which

can result in higher signal quality. However, the implementation of in-pixel ADC further increases the

pixel area resulting in lower spatial resolution. This is why although they have not been prevalent in

the consumer electronics market, they are used for image sensors [30]. However, there is a scope for

implementing DPS based MEAs in the future, given the advances in the development of low-area and

low-noise ADCs. In this section, an overview of the frequently used topologies for implementing MEAs,

SM and APS, is given.

2.2.1 Switch matrix architecture

The most desirable features in high-density MEAs are low-noise readout and high-spatial resolution. It

is not feasible to have ultra-low-noise readout circuits designed for each of the thousands of electrodes,

given the area constraints. Sometimes, it is not essential to record from every single electrode because

only a few electrodes provide most of the relevant information. So, less number of ultra-low noise

readout channels can be implemented in the area outside the electrode array, and the space below the

electrode array can be used for implementing the switches needed for the interconnection of the selected

electrode with the readout channel, as shown in the figure 2.4 and local memory that can set the state

of the electrode.

In this SM architecture, the number of electrodes can be much higher than the number of

channels as only a set of electrodes are chosen for readout, which allows the implementation of MEAs

with high spatial resolution. The electrodes are initially scanned in successive recordings to identify the

electrodes that will be used for continuous readout during the experiment protocol. The area available

to implement the amplifiers is large since they are placed outside the electrode array, allowing the im-

plementation of low-noise large amplifiers. The reduced flicker noise due to the large transistors used in

the realization of amplifiers results in increased SNR. Several MEAs that have been implemented using

the SM architecture over the last decade are summarized in table 2.1.
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Figure 2.4: Switch matrix block diagram showing the reduced and interesting subset of the
array (red = electrodes of interest, pink = inactive electrodes). Two out of the sixteen
electrodes picking up the neural signals are connected through a matrix of switches and
wires to two readout channels by closing the respective switches.

Technology
No. of

electrodes

No. of channels

(AP)

Electrode

pitch

Noise/

channel

Power/

channel
Year Ref.

0.18 𝜇m 455 52 35 𝜇m 3.08 𝜇V - 2014 [31]

0.6 𝜇m 752 32 40 𝜇m - 57.5 𝜇W 2011 [32]

0.13 𝜇m 966 276 20 𝜇m 6.36 𝜇V 49.06 𝜇W 2017 [33]

0.6 𝜇m 11011 126 18 𝜇m 7 - 9 𝜇V 160 𝜇W 2010 [14]

0.13 𝜇m 16384 1024 15 𝜇m 7.5 𝜇V 19.8 𝜇W 2018 [34]

0.18 𝜇m 19584 246 18 𝜇m 3.1 𝜇V 39.1 𝜇W 2018 [35]

0.35 𝜇m 26400 1024 17.5 𝜇m 2.4 𝜇V 45 𝜇W 2014 [8]

0.18 𝜇m 59760 2048 13.5 𝜇m 2.4 𝜇V 16 𝜇W 2017 [36]

Table 2.1: Different MEAs implemented with SM architecture

Table 2.1 shows that MEAs with noise as low as 2.4 𝜇VRMS can be implemented using SM

architecture [8, 14]. The noise band chosen for the ‘Noise/channel’ values in the table 2.1, for AP

readout, is slightly different in each citation. Since the power consumption due to the readout blocks

with complex hardware (AFE and ADC) is high, the power budget should be kept in mind while

designing these MEAs.
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2.2.2 Active pixel architecture

The APS architecture is used to obtain a full-frame readout for recording signals from all the electrodes.

In the APS architecture, the AFE is included inside the pixel along with the electrode as shown in figure

2.5. The output from AFE is individually routed to the ADC in the ADC array. The limitation on the

size of the pixel and power consumption results in designing front-end circuitry with small transistors.

Since small transistors generate higher flicker noise, a trade-off with noise is made here for full-frame

readout.

Figure 2.5: The block diagram of an APS based MEA with each pixel, including an electrode
along with the AFE. The output from the AFE is routed to the ADCs depicted here as an
ADC array.

Routing of the pixel to its corresponding ADC would get more complex as the number of

electrodes increases. So, it is crucial to optimize the noise and the number of electrodes and channels

while using APS architecture. Since the transistors used in implementing the front-end in APS MEAs

are small in size, power consumption per channel is mainly dependent on ADC complexity. Some of

the APS architecture based MEAs developed over the last years are shown in the table [2.2]. It can

be seen that the noise obtained per channel for action potential band is higher compared to the SM

MEAs, which were shown in the previous section.
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Technology No. of electrodes Pixel pitch
Noise/

channel

Power/

channel
Year Ref.

0.6 𝜇m 128 250 𝜇m 11.7 𝜇V - 2006 [37]

0.35 𝜇m 128 200 𝜇m 6.08 𝜇V 15.5 𝜇W 2010 [38]

0.35 𝜇m 256 200 𝜇m 7 𝜇V 15 𝜇W 2009 [39]

0.13 𝜇m 384 20 𝜇m 6.36 𝜇V 49.06 𝜇W 2017 [33]

0.18 𝜇m 512 25 𝜇m 20.6 𝜇V 2.7 𝜇W 2018 [40]

0.18 𝜇m 1120 50 𝜇m - 12.6 𝜇W 2013 [41]

0.35 𝜇m 4096 42 𝜇m 26 𝜇V - 2008 [42]

0.35 𝜇m 4096 60 𝜇m 21.2 𝜇V - 2013 [43]

0.18 𝜇m 4225 16 𝜇m >44 𝜇V - 2014 [44]

0.5 𝜇m 16384 17.5 𝜇m - - 2011 [45]

0.18 𝜇m 19584 18 𝜇m 10.9 𝜇V 5.9 𝜇W 2018 [35]

0.14 𝜇m 27684 24 𝜇m 15.3 𝜇V - 2017 [46]

0.18 𝜇m 65536 25.5 𝜇m 10.02 𝜇V - 2017 [47]

Table 2.2: Different MEA designs implemented with APS architecture

2.2.3 Switch Matrix vs Active Pixel Sensor

Using SM topology, it is possible to implement MEAs with high electrode density and with high spatial

resolution owing to the absence of amplification or buffering elements included in the pixel along with the

electrode. For experiments needing full-frame readout and high-density recordings, APS implementation

of MEAs is used. To further compare these traits, the noise and the number of readout channels in

the listed architectures (2.1 and 2.2), are plotted in figure 2.6. The low-noise of the SM architecture

(blue in figure 2.6) makes it perfect for spike-sorting, as it is easy to effectively detect the spike when

the background noise is less than 10 𝜇VRMS [29]. This can be comprehended from the three blocks

showing the amplitude of noise with respect to the spike on the left side of the graph. On the other

hand, using APS MEAs can offer a higher number of parallel readout channels, providing simultaneous

readout from a higher number of electrodes compared to SM MEAs.
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Figure 2.6: The comparison of output noise of MEAs with respect to the number of parallel
readout channels. However, the noise reported for these MEAs has a slightly different choice
of noise bandwidth, making this graph a rough comparison. The last name of the first author,
type of readout topology and year are given next to the listed MEA. Inspired from [5].

2.3 Improvement of readout architecture for APS MEAs

For APS MEAs, the number of readout channels is relatively high, and the noise due to in-pixel circuitry

deteriorates the signal quality. This calls for the need for low-noise readout strategies, which can reduce

the noise caused by the readout circuitry without compromising the spatial resolution and high-density

recordings (full-frame readout). In this thesis, a low-noise readout architecture designed using compact

ADC will be proposed and evaluated. The designed ADC has an input stage that will be integrated

into the pixel of the target MEA, making it the AFE. This readout architecture targets to bridge the

gap between SM and APS readout topologies that have been discussed so far, by providing a low-noise,

full-frame readout.

2.3.1 Target MEA specifications

The mentioned target specifications of MEA with respect to existing state-of-the-art SM and APS ar-

chitectures (with on-chip ADCs) are shown in the table 2.3. Since thousands of electrodes are adequate

for most MEA experiments, the specification for the number of parallel readout channels in target MEA

has been set to approximately ten thousand. To achieve sub-cellular resolution, the pitch specification
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is chosen to be nearly 17 𝜇 m, which allows capturing the signal from the same neuron from different

electrodes. For precisely capturing signals with amplitudes as low as tens of 𝜇V (iPSC neurons [6, 13]),

the noise specification per channel in the AP band has been set to < 5 𝜇VRMS. A compact low-noise

ADC for APS MEAs is designed in this thesis to achieve these specifications.

SM [36] Target MEA APS [35]

Technology 0.18 𝜇m 0.18 𝜇m 0.18 𝜇m
Readout channels 2048 ∼10000 19584

Noise/channel 2.4 𝜇VRMS < 5 𝜇VRMS 10.9 𝜇VRMS

Pitch 13.5 𝜇m 17 𝜇m 18 𝜇m
Signal bandwidth 1 Hz - 10 kHz 300 Hz - 7 kHz 300 Hz - 5 kHz

Power 16 𝜇W 5 𝜇W 5.9 𝜇W
Output data rate 40.96 Mbps ∼10 Gbps 2.4 Gbps

Table 2.3: Target MEA specification in comparison with the existing state-of-the-art SM
[36] and APS [35] MEAs

Most reported MEAs typically use the AFE implemented using multiple gain stages to provide

high amplification before digitizing the signal. The amplified signal is then digitized, typically using

SAR ADCs with good resolution. This might not be a problem for SM MEAs where the AFE and ADC

are entirely outside the sensing area, and given the reduced number of readout channels, it is practical

to implement these readout blocks with low-noise performance. However, due to the size constraints

in APS MEAs, the amplifiers and filters are implemented using small transistors, increasing the noise

in the readout channel. Moreover, it is not practical to implement thousands of SAR ADCs (which

are typically being used for MEAs) outside the pixel array, forcing the designer towards multiplexing

options, which again requires additional circuitry in the pixel. Although SAR ADCs are primarily being

used for MEAs [31, 33, 35, 36], the design of low-noise SAR ADC demands complicated circuit blocks

increasing the area consumption.

Due to these limitations, in this thesis, an oscillator based sigma-delta (ΣΔ) ADC has been used

for the action potential readout in MEAs. ΣΔ ADC trades-off bandwidth for low-noise, which makes

it an excellent choice for low-bandwidth applications. The signal-bandwidth of the neuronal signals

such as extracellular AP is below 7 kHz [8]. This makes ΣΔ ADCs have an edge over SAR ADCs for

digitizing low-frequency signals. ΣΔ ADCs can provide high precision resulting in low quantization noise

in the signal band because of their oversampling and noise shaping properties. To further corroborate

the choice of ΣΔ ADCs for MEAs, similar applications that benefited from this ADC are discussed here

to show the performance attributes in terms of area and power for low-bandwidth applications. A new

approach that has been chosen for implementing a compact low-noise ΣΔ ADC will then be introduced
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and explained in detail in the next chapters.

2.3.2 ΣΔ ADCs for MEAs

ΣΔ modulators have gained popularity in the implementation of biomedical electronics such as wearable

and implantable devices and bio-acquisition systems. Several ultra-low-power ΣΔ based ADCs with high

accuracy and large dynamic range have been implemented in [48–52]. This ultra-low-power (𝜇W range)

operation of the ADCs ensures the long battery life in the case of implantable and portable devices, and

this could be especially beneficial in MEA applications targetting a large number of readout channels.

The operational amplifiers, usually used to implement the integrator block in the ΣΔ modulators, are the

most power-consuming blocks in the ADC. To optimize the power consumption to a range of nanowatts,

large scale neural recording implants have implemented ADCs with passive integrators to integrate the

error signal [53]. These are only some of the many design variants and choices made in ΣΔ ADCs based

on the specific bio-acquisition application.

ΣΔ ADCs are being widely used in active neural probes which are in-vivo MEAs used for

deep brain recordings [54, 55]. Active neural probes imply including the signal conditioning circuitry

on the probe shaft to reduce parasitics due to routing from the electrode to readout electronics, and

increase the signal quality. Hence, the design of high-density active neural probes is highly limited

by the available area on the probe shaft for the electronic integration. Low noise and low power ΣΔ
ADCs that can be integrated along the neural shaft to avoid routing of sensitive input bio-signal, would

improve the readout quality of the signal. Neural probe with a pitch of 60 𝜇m accommodating in-pixel

digitization using ΣΔ ADC has been reported [55] showing the promising future of ΣΔ ADCs for MEA

applications.

Another interesting application of the ΣΔ ADCs is in CMOS image sensors. Pixel-level data

conversion [56–59] where the ΣΔ ADC is in-built in the pixel itself shows the scope of using in-pixel ΣΔ
modulators in DPS based MEAs which are functionally similar to these CMOS based image sensors.

However, this would be a trade-off with achieving a high spatial resolution that the designer has to

make, which again depends on the type of experiments and biological signal that is at the interest of

acquiring.

The quantization noise in ΣΔ ADCs decreases with higher-order noise shaping, which will be

explained in chapter 3. However, the hardware complexity of the ΣΔ ADCs increases with the order

of noise shaping. Since a compact ADC with minimum hardware complexity is ideal for implementing

thousands of readout channels, a time-encoding approach has been chosen to implement the proposed

ADC. The theory behind oversampling, noise-shaping, and time-encoding will be discussed in the next

chapter to explain and support the design choice made for the readout architecture for target APS

MEAs.
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2.4 Conclusion

In this chapter, the different MEA terminologies and the signal flow in an MEA system have been

introduced. The different readout architectures used to implement the in-vitro MEAs have been stated,

focusing on the widely used SM and APS architectures. Their advantages, limitations, and trade-offs

have been compared after which, the goal of the thesis has been introduced. The thesis targets to design

a low-noise readout for APS MEAs. The candidature of ΣΔ ADCs for MEAs has been spotlighted and

its promising application has been validated by different examples which benefited from ΣΔ ADCs. The

theory behind the ΣΔ ADCs and the time-encoding approach chosen to optimize the quantization noise

in the ΣΔ ADCs will be explained in the next chapter.
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3.1 Introduction

Most electronic devices deal with both analog and digital signals. Although the real-world signals are

analog, analog signals are neither robust to noise nor efficient and versatile for signal processing. Digital

signals, on the other hand, are very resilient to noise and easily understandable and manipulable by the

microprocessors and the signal processing circuitry. So, the analog-to-digital conversion is very crucial

in data acquisition systems. The analog-to-digital conversion takes place in two steps: ‘sampling’ and

‘quantization.’ The discretization of the analog signal in the time domain is called sampling, and the

discretization of the amplitude range is called quantization. During sampling, the continuous-time

signal is converted to a discrete-time signal. Quantization is the process where the analog signal is

discretized into a finite set of values. Figure 3.1 illustrates the concepts of sampling and quantization

steps. The two factors that determine the accuracy of the analog-to-digital conversion, resolution, and

sampling rate, will be briefed.

Figure 3.1: Illustration of sampling and quantization steps during analog to digital conver-
sion of signal (a) Input signal (b) Sampling and (c) Quantization

3.1.1 Sampling

The sampling rate is given by how fast the analog signal is sampled by the rising or falling edge of the

clock. The Nyquist-Shannon theorem gives the sampling condition for the accurate reconstruction of

the digitized signal without an error.

21
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3.1.1.1 Nyquist-Shannon sampling theorem

The Nyquist-Shannon theorem states that the signal should be sampled at a rate of at least twice the

highest frequency component of the signal for its accurate reconstruction (figure 3.2b,c). If f0 is the

highest frequency value in the input signal which is also the signal bandwidth, then the sampling rate

should be, fs > 2f0. During sampling, the signal band spectrum can be overlapped by its periodic

mirrored replicas (alias) when the signal is sampled at a frequency less than 2f0, as shown in the figure

3.2d, resulting in artifacts (aliasing). An anti-aliasing filter (AAF) that is a low-pass filter is used to

restrict the signal bandwidth before sampling, to satisfy the Nyquist criterion.

Figure 3.2: Example for Nyquist theorem showing reconstruction of sampled signal at fs in
(i) time-domain and (ii) frequency domain (double-sided spectrum). (a) Input signal with
frequency fo,max, where fo,max is the signal bandwidth. (b) Signal sampled at a frequency (fs
= 8fo,max showing relaxed anti-aliasing filter requirements (dotted lines). (c) Signal sampled
at Nyquist frequency with AAF designed to remove out-of-band spectra. (d) Signal sampled
at frequency less than Nyquist resulting in inaccurate reconstruction due to ‘aliasing’.

Designing an AAF is quite challenging as it trades-off between the bandwidth and aliasing,
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meaning that either some aliasing is still present or some frequencies in the bandwidth close to the

Nyquist limit are attenuated. One of the advantages of sampling at very high frequencies (oversampling)

is that the design requirements for AAF are rather relaxed since the replicas are far away from the signal

band.

3.1.2 Quantization

The sampled signal can be reconstructed under suitable conditions, as previously discussed. However,

quantization replaces each analog value with a value from the set of discrete values, making it irreversible

with loss of information (quantization error). The value of this quantization error depends on the number

of discrete quantization levels and can be modeled as an additive random signal called quantization noise

because of its stochastic behavior. When the quantizer uses a higher number of quantization levels, the

quantization noise reduces, resulting in better resolution. This is demonstrated in figure 3.3, where the

analog signal is quantized by a 2- and 3-bit quantizer. It can be seen that the 3-bit resolution offers a

closer resemblance of the digitized signal with the analog signal compared to the 2-bit resolution.

Figure 3.3: (a) Quantization with 2-bit and (b) 3-bit resolutions

The performance of an ADC is characterized by the signal-to-quantization noise ratio (SQNR)

and the bandwidth. The SQNR of the ADC is affected by the quantization error while the sampling

rate characterizes the bandwidth. For a Nyquist data converter, the maximum SQNR (at "full-scale")

obtained for the sine input (see Appendix section A.1) is given by,
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𝑆𝑄𝑁𝑅max = 6.02𝑁 + 1.76𝑑𝐵

where N is the resolution of the ADC, given by the number of quantizer bits. One way to improve

the SQNR is by increasing the number of resolution bits, which increases the hardware complexity of

the design. For the target APS MEA, we want to keep the hardware complexity minimum, to have

thousands of parallel readout channels. To improve the SQNR of the ADC for the same number of

quantizer bits, oversampling and noise shaping techniques can be used, which will be discussed next.

3.2 Oversampling data converters

Oversampling data converters are mainly used for implementing applications where high resolution is

needed. The sampling frequency in oversampling data converters (fS) is much higher compared to the

traditional Nyquist data converters (fN = 2f0). The quantization noise is spread over a wide frequency

range, as shown in figure 3.4, and out-of-band noise is filtered using a digital filter during post-processing.

Oversampling converters relax the complexity of analog circuitry while adding extra bits of resolution,

at the cost of increased digital circuit complexity. It is easier to implement complex digital circuitry

in less area in deep sub-micron CMOS technology nodes compared to high-resolution analog circuitry,

which is limited by low voltage supply and short-channel effects. The SQNR of an oversampled data

converter for a sine input (see Appendix section A.2) is given by,

𝑆𝑄𝑁𝑅max = 6.02𝑁 + 1.76 + 10𝑙𝑜𝑔10(𝑂𝑆𝑅)

where OSR is the oversampling ratio given by fS/fN.

Figure 3.4: Comparison of the quantization noise present in a (a) nyquist data converter
and a (b) oversampled data converter
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Comparing the SQNR with and without oversampling, it can be seen that there is an improve-

ment in SQNR by a value of 10log10(OSR) when a signal is oversampled at OSR times the Nyquist rate.

This enhancement also takes place for other types of noise like the thermal noise in circuits, improving

the overall SNR by 10log10(OSR) [60].

3.2.1 Sigma-delta data converters

Although oversampling increases the SQNR, the linearity is not improved [60]. Since a 1-bit DAC has

only two output values, which can be defined by a straight line, it is inherently linear [60]. Using the

1-bit DAC to provide negative feedback, we can further improve the SQNR by spectral shaping the

quantization noise (noise shaping). The noise shaping applied to oversampled signals is also referred to

as sigma-delta modulation.

Figure 3.5: Linear model of data converter

Figure 3.5 shows the linear model of the block diagram of a simple ΣΔ where H(z) is the transfer

function of the loop-filter. The input (x(n)) and error signals (e(n)) are assumed to be independent

from each other while calculating the the transfer function of the output which can be expressed as,

𝑌(𝑧) = 𝑆(𝑧)𝑋(𝑧) + 𝑁(𝑧)𝐸(𝑧)

where S(z) and N(z) are the signal and noise transfer functions respectively, which in this case are,

𝑆(𝑧) = 𝑌(𝑧)
𝑋(𝑧) =

𝐻(𝑧)
1 + 𝐻(𝑧) 𝑁(𝑧) = 𝑌(𝑧)

𝐸(𝑧) =
1

1 + 𝐻(𝑧)

It can be seen from the above equations that the poles of H(z) are the same as the zeroes of

N(z), meaning that N(z) approaches zero when H(z) approaches infinity. When H(z) is chosen such

that its magnitude is large in the band of interest, the signal transfer function approaches unity while

the noise transfer function will be minimized [60]. This is how the noise is shaped by being pushed
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towards higher frequencies, thereby reducing quantization noise in the signal band. The high-frequency

quantization noise outside the signal band is filtered during post-processing using a digital filter.

3.2.1.1 First order ΣΔ modulator

We want to high-pass filter the quantization noise for which N(z) should be zero when H(z) reaches

infinity since the poles of H(z) are the same as the zeros of N(z). For a first-order function having a

pole at say z = 1, H(z) will be 1/(z-1), making the loop filter an integrator.

Figure 3.6: Linear model of a first order data converter

The block diagram of the first-order ΣΔ modulator is shown in the figure 3.6 from which the

output transfer function can be calculated as,

𝑌(𝑧) = 𝐸(𝑧) + (𝑋(𝑧) − 𝑧 𝑌(𝑧)) ( 1
1 − 𝑧 )

𝑌(𝑧) = 𝑋(𝑧) + 𝐸(𝑧)(1 − 𝑧 )

showing N(z) as a high-pass filter. The SQNRmax of a first order ΣΔ modulator (see section A.3) can

be calculated to be,

𝑆𝑄𝑁𝑅max = 6.02𝑁 + 1.76 − 5.17 + 30𝑙𝑜𝑔10(𝑂𝑆𝑅)

which shows that the SQNR of a first-order ΣΔ modulator is much higher than the SQNR of Nyquist and

oversampled (without noise shaping) ADCs. The SQNR value can be further increased by increasing

the order of the ΣΔ converter.
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3.2.1.2 Second order ΣΔ modulator

Figure 3.7: Linear model of a second order data converter

The block diagram of a second order ΣΔ modulator obtained by replacing the quantizer in first order

ΣΔ modulator by the modulator itself, is shown in the figure A.5. The transfer function for this system

can be calculated as,

𝑌(𝑧) = 𝐸(𝑧) + ((𝑋(𝑧) − 𝑧 𝑌(𝑧)) ( 1
1 − 𝑧 ) − 𝑧 𝑌(𝑧)) ( 1

1 − 𝑧 )

(1 − 𝑧 ) 𝑌(𝑧) = (1 − 𝑧 ) 𝐸(𝑧) + (𝑋(𝑧) − 𝑧 𝑌(𝑧)) − (1 − 𝑧 )𝑧 𝑌(𝑧)

𝑌(𝑧) = (1 − 𝑧 ) 𝐸(𝑧) + 𝑋(𝑧)

showing that while the system transfer remains the same, the noise transfer shows a second-order

high-pass filtering. Calculating the SQNRmax for a second-order ΣΔ modulator (see section A.4) we get,

𝑆𝑄𝑁𝑅max = 6.02𝑁 + 1.76 − 12.9 + 50𝑙𝑜𝑔10(𝑂𝑆𝑅)

showing the improvement in SQNR due to the increase in the order of the ΣΔ modulation. Table 3.1

summarizes the SQNRmax comparison among the different types of ADCs that have been explained so

far.

Type of ADC SQNRmax (in dB)

Nyquist 6.02N+1.76

Oversampled 6.02N+1.76+10log10(OSR)

1st order ΣΔ 6.02N+1.76-5.17+30log10(OSR)

2nd order ΣΔ 6.02N+1.76-12.9+50log10(OSR)

Table 3.1: Calculated SQNRmax of different ADCs
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The noise transfer functions for oversampled ADCs without noise shaping and with first and

second-order noise shaping are compared in the figure 3.8. It can be seen that the magnitude of noise

in signal-band (0 to f0) decreases with higher-order ΣΔ modulators. The slope of the noise shaping is 20

dB/decade for a first-order ΣΔ modulator and 40 dB/decade for a second-order ΣΔ modulator. Higher-

order ΣΔ modulators (m > 2) increase the SQNR further. Although these are possible to construct using

different feedback and feed-forward connections, they cannot be made by just adding further stages, as

shown in the case of the second-order modulator because of the system instability caused due to phase

turn by more than two integrators [60].

Figure 3.8: Noise shaping in oversampled ADCs

ΣΔ modulators can either be implemented using discrete time(DT) [48, 49] approach or con-

tinuous time(CT) [50–52] approach which are illustrated in figure 3.9. DTΣΔ converters are typically

implemented using switched capacitors and require operational amplifiers increasing the power con-

sumption of the system [61]. The lack of switching elements in CTΣΔ modulators reduces the power

consumption but there could be problems increased sensitivity to clock jitter [18, 62]. This however is

not a problem in MEA applications, since MEA is a lab instrument and stable off-chip clock generators

can be used. Also, unlike in the DTΣΔ converters, the sampling is done after the loop filter (H(z)) in

CTΣΔ converters which eliminates the need to include a dedicated anti-aliasing filter in the system as

the filter acts as one [63].
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Figure 3.9: Block diagram of (a) discrete-time and (b) continuous-time

However, relatively fewer higher order CTΣΔ modulators have been reported so far compared

to the higher-order DTΣΔ modulators that are implemented for bio-acquisition due to the increased

complexity in designing the loop filter and digital filter in CTΣΔ ADCs [51]. Time encoding of the

signals can be used for implementing higher order CTΣΔ to overcome these limitations [17–19, 21].

3.3 Time encoding ADCs

CMOS process scaling reduces the performance of analog circuitry as the transistor gains and available

voltage headroom are reduced, and several non-idealities such as short channel effect, gate leakage, and

dopant fluctuation kick-in. Digital circuits, on the other hand, greatly benefit from technology scaling,

and the fast switching of the small transistors offers excellent temporal accuracy. Taking advantage of

this, we can encode the analog signals into time-domain signals such as frequency, delay, or duty cycle

and handle this temporal signal using digital circuitry [17–19, 21]. The time-encoding data converter,

which encodes the input signal into the frequency of a carrier signal to implement a compact low-noise

ADC, is the focus of this thesis.

The block diagram of a frequency encoding based data converter is shown in figure 3.10a. The

frequency encoder generates an oscillation whose frequency depends on the input signal, for example,

voltage or current. Considering a voltage input, a voltage-controlled oscillator (VCO) oscillates with a

frequency dependent on the voltage, acting as a frequency encoder. The frequency output is converted
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into a digital signal (Y in figure 3.10) by using a frequency to digital converter (F2D) that can be

implemented using a counter, sampler, and a first difference. The VCO block converts the voltage to

frequency, and the counter value increases by a single unit for each rising edge of the oscillation. The

digital signal will have the total number of 1’s that are counted by the counter in a clock period set by

the sampler (figure 3.10c). The first difference resets the value of the counter after each clock period.

The VCO frequency should be designed such that it remains less than half the sampling frequency (clk)

[17] to make sure all the rising edges are detected.

Figure 3.10: (a) Block diagram of an ADC based on frequency encoding (b) Simplified block
diagram of a VCO based ADC (c) Illustration of the frequency encoding process

The VCO can be seen as a phase integrator with a gain of KVCO with an oscillation frequency

depending on the input voltage (f(t) = KVCO x Vin(t)). The simplified linear model of the VCO

quantizer [17] takes into consideration two non-idealities: VCO phase noise and quantization noise.

The VCO phase noise occurs due to the fluctuations in the phase (or frequency) caused by electronic

perturbations such as flicker and thermal noise. For the linear model, the phase noise is considered to
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have -20 dB/decade, which in reality is steeper for frequencies where flicker noise dominates, and for

very high frequencies where there is noise floor (0 dB/decade) [64, 65] (see Appendix B).

The quantization noise occurs due to the finite sampling frequency, limiting the time resolution

of the F2D [17, 18]. This quantization noise is modeled as white noise in this case, similar to the quan-

tization noise considered in the previous ADC models. The errors due to phase noise and quantization

noise are high pass filtered by the first-order difference, which shapes the quantization noise to high

frequencies providing first-order noise shaping [17]. This shows that the VCO itself acts as a first-order

ΣΔ modulator without a feedback loop [66].

Figure 3.11: Linear model of VCO based ADC [17]

The VCO based quantizer model, shown in figure 3.10b, has been implemented in Simulink

for a quick evaluation of its behavior. The center frequency and sensitivity of the VCO are set to 100

kHz and 10 MHz/V, respectively. The PSD obtained for a sinusoidal input with 0.1 V amplitude and

1 kHz frequency, and a clock frequency of 1 MHz shows a noise shaping with a slope of 20 dB/decade,

explaining the first-order noise shaping in a VCO quantizer model.

Figure 3.12: PSD obtained from the VCO quantizer model

The SQNRmax of the first order oscillator based ΣΔ ADC ADC, where Vin,FS is the input
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magnitude at full-scale, can be approximately estimated [22] to be,

𝑆𝑄𝑁𝑅max = 20𝑙𝑜𝑔 (
2𝐾VCO𝑉in,FS

𝑓s
) + 1.76 − 5.17 + 30𝑙𝑜𝑔10(𝑂𝑆𝑅)

showing that the VCO quantizer can improve the SQNR of the ADC [18]. VCO based quantizer can

be used within a continuous-time sigma-delta ADC to provide higher-order noise shaping instead of

increased feedback loops [17, 67]. Figure 3.13 shows the VCO based ΣΔ ADC where the first-order noise

shaping of the quantizer is added to the noise shaping achieved from the closed-loop filtering, which

will be designed in the next chapter.

Figure 3.13: Block diagram of VCO based ADC

3.4 Conclusion

In this chapter, analog-to-digital conversion and the theory behind the performance of over-sampled

data converters have been discussed. The contribution of oversampling and noise-shaping for reduced

noise in the signal bandwidth has been explained. To further improve the performance of the ΣΔ ADCs

without exerting hardware complexity, a time-encoding approach has been introduced and explained.

The next chapter focuses on translating this theory into a system-level implementation of a VCO based

ΣΔ ADC, which is targeted to provide second-order noise-shaping for optimum quantization noise.
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4.1 Introduction

The VCO based ADC designed in this thesis is a proof of concept to show the low-noise readout, that in

future can be implemented for an MEA with target specifications shown in table 2.3. So, the designed

ADC is implemented in a test chip and taped-out to evaluate the performance of the readout system

that could be used in an APS MEA. The specifications for the ADC implemented for MEA readout

are given in table 4.1. A reasonable range for the input signal has been chosen between ± 2 mV, which

covers the signals in most of the experiments [4]. The frequency bandwidth of the neuronal action

potential is chosen as 300 Hz to 7 kHz [8] while reporting the noise performance.

The maximum total noise is targeted at 5 𝜇VRMS to allow the readout of signals with tens

of 𝜇Volts. The specification for the quantization noise has been set to 1.5 𝜇VRMS to leave enough

noise margin for thermal and flicker noises, which will arise from the circuit implementation of the

readout channel. The specifications for the SQNR and ENOB of the ADC have been evaluated from

the full-scale and quantization noise specifications. The specification for maximum power consumption

per channel is set to 5 𝜇W [68], to ensure the safety of the biological sample during experiments.

Parameter Specification

Input signal range ±2 mV

Signal band 300 Hz - 7 kHz

Total noise 5 𝜇VRMS

Quantization noise 1.5 𝜇VRMS

SQNRmax 60 dB

ENOB 10-bit

Supply 1.8 V

Power 5 𝜇W

Table 4.1: Target readout channel specifications

33
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4.2 Implementation of ADC

4.2.1 First order ΣΔ ADC

To see how far the noise obtained from first-order noise shaping is, with respect to the quantization

noise specification, a first-order ΣΔ ADC has been designed as the first step. The block diagram of the

implemented first order ΣΔ ADC with 1-bit quantizer is shown in figure 4.1. The DAC gain is chosen as

2 mV (full-scale), and the integrator gain as 106. Dithering has been used, by adding a random noise

source before the quantizer, to randomize and spread the quantization error, modeling the quantization

noise as white noise [69]. The clock frequency is chosen to be 1 MHz for achieving a high SNR due to

the oversampling ratio.

Figure 4.1: Block diagram of first order modulator

Figure 4.2: PSD of first order ADC yielding an SQNRmax of 47 dB.

The PSD obtained for a sinusoidal input with 100 𝜇V amplitude and 1 kHz frequency is given

in the figure 4.2, showing 20 dB/decade noise shaping. A noise of 8.68 𝜇VRMS was obtained with a

first-order ΣΔ ADC using a 1-bit quantizer. This first-order noise shaping yields an SQNRmax of 47 dB,

which would only meet the SQNRmax requirement for a 3-bit quantizer (6.02 dB increment for each

additional bit). To implement multi-bit quantizers would mean increased circuit complexity, which we
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want to avoid by using a VCO quantizer instead.

4.2.2 Oscillator based ΣΔ ADC

To reduce the ADC noise, the quantizer in the first order ΣΔ ADC has been replaced with a VCO based

quantizer to achieve second-order noise shaping. The block diagram of this design is illustrated in figure

4.3, which has been realized using an integrator, a VCO based quantizer, and a 1-bit DAC.

Figure 4.3: Block diagram of VCO based modulator

An input stage has been added after the input signal (figure 4.4), representing the AFE in

the APS MEAs. The input stage can be implemented by a transconductor that injects the sum of

DC current (Ib,IS) and current due to input voltage (GIS*Input) as shown in figure 4.4. The feedback

DAC gives two different currents, greater or lesser than the input stage current, depending on the ADC

output, which is 1 or 0.

Figure 4.4: System-level implementation of the ADC

For the readout channel in the test chip, we want to test the ADC behavior for four different

bias currents, since we have a power budget of 5 𝜇 W. To test low-power operation, 200 nA and 400 nA

bias currents have been chosen. However, lower currents could result in higher thermal noise. To find

the optimum noise performance of the ADC, bias currents 800 nA and 1.2 𝜇A have been chosen. In the

system-level design, all the explanation is done for a nominal case of 200 nA, but table 4.2 demonstrates
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the different values for different bias currents for which the given explanation and results hold true.

The value of GIS has been chosen based on the gm/Id factor [70]. Since we want to design a low-

power transconductor, a gm/Id of 20 has been chosen as a reasonable maximum limit for weak-inversion

operation, resulting in a GIS of 4 𝜇Ω-1. This decision has been corroborated by the simultaneous

circuit-level implementation of the input stage. The full-scale of the ADC is limited by the relation

between the feedback current and transconductor current. The ADC will be saturated if the feedback

current cannot compensate the current from the input stage. If the readout channel input approaches

its maximum limits (±2 mV), the ADC system may not be stable because of non-idealities [71, 72],

increasing the in-band quantization noise. To reduce this, the full-scale of the DAC has been designed

to be ±5 mV after iterative simulations. For a full-scale input of ±2mV, the IIS will be varying between

±8 nA. IDAC should be increased by ±20 (8*5/2), giving a value of 40 nA for GDAC and 180 nA for

Ib,DAC.

The value of GIS*KVCO/cap plays a critical role while optimizing the quantization noise be-

cause of its direct relation to the signal transfer. The values of capacitor and KVCO are chosen such that

the quantization noise obtained for GIS*KVCO/cap product is minimum. Figure 4.5 shows the variation

of the quantization noise with respect to GIS*KVCO/cap for a signal amplitude of 100 𝜇V. The plot

shows that the quantization noise is minimum for the GIS*KVCO/cap ratio of 5.37 x 1013. The value

of KVCO is fixed for all bias currents, as it is the gain of the VCO. So, to maintain the GIS*KVCO/cap

ratio such that the quantization error stays minimum for all bias currents, the capacitor has been made

programmable.

Figure 4.5: Variation of SNR with respect to the KVCO/cap ratio

The center frequency of the VCO, f0 has been chosen to be half the clock frequency (fs) to

ensure a stable oscillation. After a preliminary circuit design of the VCO with a center frequency of f0,

a feasible value of 1.875 MHz/V has been chosen for KVCO, and the value of the capacitor is calculated
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to be 140 fF for minimum noise. The counter counts the number of rising edges in the oscillation for

each clock period (1/fs). All the parameter choices discussed so far are tabulated in table 4.2.

Parameter Value

Ib,IS 200 nA 400 nA 800 nA 1.2 𝜇A

GIS 4 𝜇Ω-1 8 𝜇Ω-1 16 𝜇Ω-1 24 𝜇Ω-1

Ib,DAC 180 nA 360 nA 720 nA 1.08 𝜇A
GDAC 40 nA 80 nA 160 nA 240 nA

cap 140 fF 280 fF 560 fF 840 fF

KVCO 1.875 MHz/V

f0 500 kHz

fs 1 MHz

Table 4.2: Parameters of the VCO based ADC for different bias current conditions

With these parameters, an optimized quantization noise of 1.02 𝜇VRMS has been attained.

This noise meets the set specification for the quantization noise, leaving enough margin to the main

noise contributors, thermal and flicker, which are still not taken into account. The PSD obtained for

the VCO based ΣΔ ADC for a sinusoidal input with 100 𝜇V amplitude and 1 kHz frequency is shown

in the figure 4.6, confirming the 40 dB/decade slope. The SQNRmax obtained for the ADC is 62.8 dB,

and the ENOB as calculated from (SQNR - 1.76)/6.02 is 10.1, qualifying the ADC specifications. The

variation of the ADC SQNR with respect to the different input voltages is plotted and shown in figure

4.7, which confirms the calculated SQNRmax to be close to 63 dB at a full-scale of 2mV.

Figure 4.6: PSD of VCO based modulator yielding an SQNRmax of 62.8 dB
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Figure 4.7: SQNR vs input voltage of the readout channel

4.3 VCO based ΣΔ ADC for MEA

The working principle of the VCO based ΣΔ ADC designed in this thesis, is shown in figure 4.8. The

input stage comprises a high-pass filter (HPF) that removes the low-frequency voltage drift, and a

transconductor that converts the extracellular AP voltage into the current. In the APS MEA imple-

mentation, this input stage is the AFE that will be integrated in the pixel. The difference in the

currents of the input stage and feedback DAC is integrated by the capacitor, modulating the frequency

of the VCO, which is converted to digital readout by the frequency-to-digital converter (F2D). The

output current of the feedback DAC is set based on the F2D output, making the whole system a classic

negative-feedback system.

For instance, when the feedback DAC current is higher than the input stage current, the volt-

age across the capacitor decreases, thereby reducing the frequency of the output signal from the VCO.

This results in a decrease in the average F2D output, which decreases the output current of the feedback

DAC to be less than the input stage current. The system operates such that the voltage at node X1 is

ensured to be oscillating stably around the DC point. The value of the center frequency of the VCO

depends on the average output of F2D that would make the DAC compensate the current from the

input stage. The digital output of the F2D, which is sampled at a clock frequency of 1 MHz, is then

sent off-chip where it is post-processed.
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Figure 4.8: System level block diagram of the VCO based ADC showing the DC point
operation at each node

The input stage current, DAC currents, and VCO properties will be designed to keep the

average voltage of X1 around 0.9V, leaving enough voltage headroom for both the input stage and

DAC. The triangular waveform at the node of the capacitor (figure 4.8a) shows the integration of

difference in the input stage and feedback DAC currents. The VCO is designed such that the center

frequency is 500 kHz when X1 voltage is 0.9 V (figure 4.8b). This also sets the average value of the

F2D output at 0.5 at the center frequency (figure 4.8c). The individual circuit level implementation of

each ADC block will be explained in detail in chapter 5.

4.4 Circuit impairments

Non-idealities can degrade the performance of the proposed ADC, which may appear in the different

building blocks. However, since the MEA is a laboratory system, most of these non-idealities can be

calibrated before the experiments, and necessary correction can be applied. During calibration, we can

inject a known sinusoidal input and measure the output. Since the distortion and offset obtained during

calibration are constantly there, they are always deterministic and compensated during post-processing.

For this ADC readout channel, we neglect the analysis of DC errors such as gain and offset errors,

because ideally, these should be filtered by the digital band-pass filter during post-processing. Also,

since this is a sigma-delta ADC, it is inherently monotonic, avoiding any problems due to monotonic

instability. Some of the important non-idealities that can appear during the circuit design of the ADC

blocks are listed here.
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4.4.1 Transconductor

The transconductor implemented in the input stage is one of the most sensitive blocks of the system

because it is the first stage without any amplification before. Any noise and distortion present in

the transconductor can directly affect the signal quality. During the system-level implementation, the

input stage (and hence, the transconductor) has been modeled as a block with linear gain. However, in

reality, no circuit implementation is linear, making the distortion inevitable. Techniques such as source

degeneration could be used for a wide linear input stage. However, there is very less available space for

designing a transconductor with such implementations. Fortunately, since the input signals we want to

readout are typically below 1 mV amplitude, the distortion for this narrow signal range should not be

a problem. In any case, the distortion can also be calibrated by applying a known input signal while

measuring the output. The shape of the distortion can be estimated this way, assuming it is repetitive.

This correction can be applied to the readout signal in the post-processing stage.

There can also be non-idealities arising due to the process, voltage, and temperature variations.

The variations due to temperature are not very important in the MEA application, because all the

experiments are carried out in a temperature-controlled environment, an incubator, to maintain the

biological sample. The voltage variations are also not critical because a regulated voltage supply is used

with an option to trim the supply if necessary. The effect of process variations will be present, which

will be simulated using corner analysis in the next chapter.

The current (Ib,IS) used to bias the transconductor can vary if the transconductor is placed

far from the reference generators. This could cause an offset error, which can be high-pass filtered using

the digital filter during post-processing. It is, however, advantageous to have an option to trim the bias

current so that we can compensate this offset error is needed.

4.4.2 Current DAC

The DAC used in this readout channel is a 1-bit DAC making it inherently linear. So, it usually does

not require any calibration or trimming [60]. The possible non-idealities in the DAC could be caused

due to the variations in bias currents that affect the output and gain of the DAC, and trimming could

be a possible solution. The variations due to the process variations have been simulated and analyzed

in the next chapter using corner analysis.

4.4.3 Capacitor

Although the capacitors fabricated are very accurate, there would be additional parasitic capacitance

that could change the effective value of the integrator capacitance. However, small changes in the
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value of capacitance should not increase the quantization noise a lot, given the ±10% tolerance of the

capacitance value (shown in figure 4.5). Nevertheless, it would be better to have trimming options for

the final MEA with one small capacitor that can be used for trimming.

4.4.4 VCO based quantizer

The two main non-idealities in the VCO are the phase noise and non-linear relationship between the

input voltage and output frequency (KVCO non-linearity). Ideally, the oscillation frequency would be a

deterministic value which only depends on circuit parameters and the input voltage. In reality, there is a

stochastic component due to circuit noise that randomly shifts the instantaneous oscillation frequency,

which is the phase noise (see Appendix B) [17, 64]. A non-linear VCO can degrade the system’s

performance, and it is not possible to apply a digital correction to overcome this. However, the VCO

placed inside the feedback loop reduces the effect of the non-idealities from KVCO non-linearity and

VCO phase noise as it is filtered out by the loop [17]. The VCO design with a rather linear KVCO will

be explained in chapter 5. The variation in KVCO value can affect the quantization noise of the ADC

(figure 4.5) which can be compensated if needed, by the trimming capacitor that has been mentioned

in subsection 4.4.3.

The F2D in the VCO quantizer should be designed to cover the full range of the oscillation

frequencies and provides a monotonically increasing average output, to avoid problems due to instability.

The architecture used to design the F2D with these features will be explained in the next chapter.

4.4.5 Clock jitter and metastability

Continuous-time ΣΔ modulators are more sensitive to random variations in the sampling period which

is the clock jitter. The errors introduced by clock jitter are visible on the output spectrum and may

limit the degrade the performance of the ADC. This would be a problem in other applications, where

the clocks are generated on-chip and are not very stable, such as consumer electronics. However, for an

MEA, very stable off-chip clock generators are implemented since the MEA is a lab instrument. Due to

non-synchronization between the oscillators and the sampling clock, there can be inevitable problems

due to metastability in digital circuitry. However, simulations can show if this error is frequent enough

to degrade the system’s performance.

4.5 Conclusion

The implementation of the system-level design of VCO based ΣΔ ADC has been demonstrated here,

focusing on the design choices made in building the ADC system. A noise optimum of 1.02 𝜇VRMS has
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been obtained from the system-level (ideal) implementation giving an SQNRmax of 62.8 dB. The circuit

impairments that should be taken care of while translating this system-level design to its transistor-

level counterpart are introduced in this chapter. In the next chapter, this design is translated into

transistor-level and then the layout-level design, which would mark the completion of the VCO based

ΣΔ ADC design flow will be shown.
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The ADC proposed in the chapter 4 has been implemented in 0.18 𝜇m CMOS technology node for

the test chip, to test the different design variants of the blocks in the ADC. To have a possibility

to characterize the ADC blocks, bidirectional probing has been used. In the MEA system, the noise

common to all the channels can be filtered during post-processing. This is a potential disadvantage of

implementing a single readout channel in the test chip. A pseudo-differential implementation of this

readout system has been chosen for this test chip to account for this. The chapter starts by explaining

the design choices made to implement each block in the ADC system, arriving at the ADC integration

in the test chip, and the results obtained.

5.1 Circuit design of VCO based ΣΔ ADC

5.1.1 Input stage

5.1.1.1 Architecture

The input stage has the components that are part of the pixel in an APS MEA, as shown in figure 5.1.

A high-pass filter (HPF), as mentioned, is designed to filter the low-frequency voltage drifts. So, the

voltage VX in figure 5.1 is the summation of the bias voltage and fast electrode voltage. The cut-off

frequency of the HPF should be designed to be less than at least 10 Hz to make sure this HPF does not

filter the signals in action potential band. A PMOS transconductor that converts the filtered electrode

voltage into the current is designed along with a cascode stage to increase the output impedance, thereby

making the current independent from the output node. PMOS transistors have been chosen for the

input stage design due to the low flicker noise in PMOS compared to the NMOS transistor with the

same size. This is due to the lesser value of hole mobility resulting in lesser collisions due to Brownian

motion. Due to the size constraints of the pixel, the size of the transistors in the transconductor block

(M1, M2), capacitor (CHPF), and the HPF resistor have been minimized for optimum area. For the low

cut-off frequency (f3dB) needed to implement the HPF, a pseudoresistor has been designed to provide

TΩ without consuming much of the pixel area.

An optimum noise from the input stage components is desired as this is the first stage, and the

noise in this stage would deteriorate the system performance. The three transistors in the input stage

43



44 5. Implementation of VCO based ΣΔ ADC

Figure 5.1: Input stage of the readout channel

mainly contribute to this noise as the capacitor does not generate noise (see Appendix B). The gain

of the input stage (GIS) is given by the product of the magnitude of the HPF transfer function (H(s))

and the value of transconductance of the transconductor stage (Gm). GIS (= |H(S)| . Gm) should

be maximum for amplifying the signal while having minimal noise for better signal quality. This gain

depends on the choice of model parameters such as capacitance of the HPF (CHPF), the resistance of the

pseudoresistor (given by WMPR
, LMPR

, VPR), and Gm. The gain of the HPF at 1 kHz (|H(S)|G1k), as

shown in figure 5.2 should be designed such that any attenuation due to the filter should be minimum.

Figure 5.2: Transfer function of HPF

In the HPF, the main noise component would be given by the kT/C noise, which is dependent

on the value of capacitance only. However, this noise is generated by the pseudoresistor and not the

capacitance itself (see Appendix B). The noise generated by the pseudoresistor should be low-pass

filtered to keep this noise out of the signal band. This will be done by the capacitor (CHPF) seen from

Vb,Gm node of the pseudoresistor (figure 5.3a) when the noise (Vn) is referred to the input. Figure 5.3b
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explains this concept, from which it can be seen that when a cut-off frequency of 10 Hz is chosen, some

on the pseudoresistor noise (Vn) can be present in the signal band. This behavior has been observed and

confirmed during simulations. With very low cut-off frequency, we can make sure that the noise from

the pseudoresistor does not disturb the signal band. After choosing the optimum value for capacitance,

depending on the pixel size restriction, the cut-off frequency depends only on the pseudoresistor. To

achieve a very low cut-off frequency, a pseudoresistor has been implemented with the parameters and

biasing, as shown in table 5.1 to get a cut-off frequency of 1.6 Hz, to minimize the pseudoresistor noise

in the signal band (figure 5.3b). The total noise (given by the area under the curve) remains the same,

while the cut-off frequency controls the amount of in-band (300 - 7 kHz) noise. Figure 5.4 shows the

HPF behavior obtained through AC analysis. The attenuation caused by the HPF has been minimized

to avoid the steep decrease in overall input stage gain. The results obtained for the designed HPF are

shown the table 5.2.

Figure 5.3: (a) LPF seen from the node of pseudoresistor, filters the noise from pseudoresistor
when being referred to the input, (b) Pseudoresistor noise after being low pass filtered
(Vn*HLPF) by LPF with cut-off frequencies 10 Hz (initial) and 1.6 Hz (optimized).

Parameter Value

CHPF 300 fF

WMPR
1 𝜇m

LMPR
400 nm

Vb,MPR
1.8 V

Vb,Gm 1.492 V

Table 5.1: Parameters of input stage HPF
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HPF results

Parameter Value

-3dB frequency (f3dB) 1.6 Hz

Gain at 1kHz -1.8 dB

HPF attenuation -1.8 dB

Table 5.2: Results obtained for input stage HPF

Figure 5.4: Frequency response of HPF obtained from AC analysis

The gain, Gm can be approximated to the transconductance of the M1 transistor, since the

cascode transistor (M2) does not contribute much to the gain of the transconductor [73]. So the

parameters, that define the value of Gm are WM1
and LM1

. The M1 transistor is the main contributor

to the noise in Gm stage as the noise generated by the cascode transistor is comparatively negligible

due to degeneration [73]. The transistors M1 and M2 in the transconductor stage are modeled with the

model parameter values, as shown in table 5.3 to achieve optimum noise and area consumption while

keeping in mind the trade-off between transistor sizes and flicker noise (small transistors result in high

flicker noise). The gain obtained for different bias currents by the transconductor stage, and the input

stage is given in table 5.4, which also shows the slight attenuation due to the HPF.
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Parameter Value (𝜇m)

WM1
30

LM1
1.2

WM2
10

LM2
1.2

Table 5.3: Parameters in Gm stage

Current (Ibias) 200 nA 400 nA 800 nA 1.2 𝜇A

Gm (Ω ) 5.177𝜇 9.647𝜇 18.07𝜇 25.84𝜇
GIS (Ω ) 4.139𝜇 7.712𝜇 14.27𝜇 20.4𝜇

Table 5.4: Gain of the transconductor (Gm) and input stage (GIS)

The output noise power of the input stage has been plotted and shown in figure 5.5. The input-

referred noise (IRN) of the input stage, calculated for different bias currents, has been summarised in

the table 5.5. It can be seen that the total noise and thermal noise decreases with higher bias currents.

Figure 5.5: Output noise (in A2/Hz) of input stage for different bias currents
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Bias current 200nA 400nA 800nA 1.2 𝜇A

Total Noise (𝜇VRMS) 1.836 1.769 1.74 1.732

Flicker Noise (𝜇VRMS) 1.318 1.388 1.45 1.481

Thermal Noise (𝜇VRMS) 1.279 1.098 0.962 0.897

Table 5.5: Results obtained for total (input referred), flicker and thermal noise for different
bias currents

5.1.1.2 Corners and Monte Carlo analysis

The circuit performance under extreme variations in the manufacturing process can be measured

through the corner analysis in Cadence. The extreme variations in the process, temperature, and

voltage parameters are considered in this analysis. However, the temperature and supply variations are

not very critical in this case since the temperature will be maintained at 370C as all the experiments

will be carried out when MEA is placed in the incubator, and the power supply can be regulated at

1.8 V through voltage trimming. The corner analysis simulates extreme cases that typically never exist

during real fabrication, guaranteeing that the circuit will work under any circumstance.

The worst cases are ‘ws’ which is the worst speed, ‘wp’ which is the worst power, ‘wo’ which is

the worst one when NMOS is very fast compared to the PMOS, and ‘wz’ which is the worst zero where

PMOS is very fast compared to the NMOS. The table 5.6 shows the results obtained for the corner

analysis of the input stage for a bias current of 400 nA. The variation of the parameters obtained is

within a ±10% tolerance.

wp ws wo wz

Gm 9.918𝜇 9.370𝜇 9.463𝜇 9.817𝜇
GIS 7.821𝜇 7.366𝜇 7.442𝜇 7.741𝜇

Table 5.6: Corner analysis summary for input stage (Ibias = 400 nA)

The Monte Carlo analysis has been performed in Cadence to statistically analyze the VLSI

circuit under the effects of process variation and device mismatch in a single chip or wafer. It calculates

the randomness of the parameter according to a statistical distribution model during each simulation

run. With this analysis, the most frequent region at which the circuit operates can be observed. The

histogram obtained from the Monte Carlo analysis for the gain of the input stage performed in Cadence,

for a bias current of 400 nA, is shown in figure 5.6. It can be seen that the variation of the gain of the

input stage at 1 kHz is minimum, ensuring the robustness of the design.
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Figure 5.6: Monte Carlo analysis for the input stage (Ibias = 400 nA)

5.1.2 Feedback DAC

5.1.2.1 Architecture

A 1-bit current DAC has been implemented for the ADC as shown in figure 5.7. As explained in chapter

chapter 4, based on the output of the frequency-to-digital converter, the current DAC gives a current of

Ibias ± ΔI. The value of ΔI is modelled such that ΔI = (0.1*Ibias). The current mirror generates a current

of (0.9*Ibias) and (0.2*Ibias) in each of the two branches. The ADC output switches the transmission

gate in the (0.2*Ibias) branch ON or OFF deciding the total current that is generated by the DAC. This

can be related to the DAC behavioral model shown in figure 4.4 where GDAC is given by (0.2*Ibias).

To keep the transistors M5 and M6 biased all the time, a dummy transmission gate implemented using

Mdummy,P, and Mdummy,N is used. The value of Vdummy is set to 0.9 V, the DC operation point as

shown in the figure 4.8.

The transistors’ width and length have been chosen such that the thermal and flicker noise

generated by the DAC transistors is minimum (table 5.7). The value of the switching transmission gate

transistors is chosen to be as small as possible to achieve fast switching. The noise generated by the

transistors in the DAC varies with the biasing current. For biasing currents as low as 200 nA, it has

been observed that the parameters of the transistors in the DAC are slightly different, which is why

two design variants of the DAC were implemented for the test chip, whose parameters are given in the

table 5.7. The DAC1 can be used for small bias currents which are less than 200 nA, while the DAC2

is used for bias currents greater than 200 nA for optimum noise performance.



50 5. Implementation of VCO based ΣΔ ADC

Figure 5.7: Current DAC for feedback in the ADC

Parameters DAC1 DAC2

W L W L

M1, M2 10 * 1 𝜇m 5 𝜇m 10 * 0.7 𝜇m 10 𝜇m
M3, M4 9 * 1 𝜇m 5 𝜇m 9 * 0.7 𝜇m 10 𝜇m
M5, M6 2 * 1 𝜇m 5 𝜇m 2 * 0.7 𝜇m 10 𝜇m

MSW,P, Mdummy,P 0.42 𝜇m 0.18 𝜇m 0.42 𝜇m 0.18 𝜇m
MSW,N, Mdummy,N 0.29 𝜇m 0.18 𝜇m 0.29 𝜇m 0.18 𝜇m

Vdummy 0.9 V 0.9 V

Table 5.7: Parameters of transistors in DAC1 (Ibias = 200 nA) and DAC2 (Ibias = 400 nA,
800 nA and 1.2 A) for optimized noise. (m * k m) represents that m number of fingers
each with a width of k m has been used.

The output noise power of the DAC for different bias currents is plotted in figure 5.8.Most

of the noise is contributed by the transistors M4 and M6, and the cascode transistors almost generate

relatively negligible noise. This can be observed in the noise analysis performed for each bias current as

tabulated in table 5.8, which shows the major noise sources in the circuit and the type and percentage

of total noise it generates. The total DAC noise referred to the input of the IS stage, is also shown in

the table for respective bias currents.



5.1. Circuit design of VCO based ΣΔ ADC 51

Figure 5.8: Output noise (in A2/Hz) of the current DACs for different Ibias. Parameters for
DAC2 have been chosen to simulate the noise for Ibias = 400 nA, 800 nA and 1.2 A. DAC1
parameters have been used to simulate the noise when Ibias = 200 nA

Bias current

Device Noise type 200 nA 400 nA 800 nA 1.2 𝜇A
M4 flicker 13.74% 17.68% 25.33% 31.7%

M4 thermal 68.08% 64.14% 56.49% 50.12%

M6 flicker 3.05% 3.93% 5.63% 7.04%

M6 thermal 15.13% 14.25% 12.55% 11.14%

Total Noise (𝜇VRMS) 4.445 3.735 2.951 2.585

Table 5.8: The percentage contribution of noise (flicker and thermal) from each device. The
total noise given by the DAC is referred to the input.

5.1.2.2 Corners and Monte Carlo analysis

The results obtained from the corner analysis are shown in the table 5.9 for an Ibias of 200 nA and Dout

set to 1. The effect of process variations and device mismatch during semiconductor manufacturing

on the output current of the DAC and the input-referred noise (IRN) is shown in the histograms in

figure 5.9. It can be seen that the most values of Ibias and IRN are close to nominal values showing the

robustness of the DAC designed. As long as the variations in the currents are small enough, the ADC

gain and the average output value will not be substantially affected.
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wp ws wo wz

Iout (nA) 220 220 220 220

IRN (𝜇VRMS) 3.372 3.566 3.433 3.513

Table 5.9: Corner analysis for current DAC2

Figure 5.9: Monte Carlo analysis for DAC2 (Ibias = 200 nA)

5.1.3 Integrator

A capacitive integrator has been designed, considering the current output from the input stage and

feedback DAC. The value of the capacitor, which integrates the difference in transconductor and DAC

currents, depends on the bias current. Since the bias current changes the gain of the input stage and

ADC, the capacitor has to be modulated accordingly to keep the GIS*KVCO/cap value constant (figure

4.5) as discussed in chapter 4. A programmable capacitor (figure 5.10) to accommodate the different

choice of bias currents has been designed, and the values of the capacitance for different bias currents

and the control bits to get the respective effective capacitance from the integrator are shown in the

table 5.10. These values of the capacitors are the nominal values needed for each biasing. However,

there is a flexibility to trim these values depending on parasitics.
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Figure 5.10: Programmable capacitor

Ibias Capacitance EN4 EN3 EN2 EN1 EN0

200 nA 125 fF 0 0 1 0 1

400 nA 250 fF 0 1 0 1 0

800 nA 500 fF 1 0 1 0 0

1.2 𝜇A 750 fF 1 1 1 1 0

Table 5.10: Parameters of programmable integrator for different bias currents

5.1.4 Voltage controlled oscillator

5.1.4.1 Architecture

The key building block of the frequency-based encoding is the oscillator that can be controlled by the

magnitude of the input parameter, such as voltage, current, capacitance, or resistance. In this ADC

design, a voltage-controlled oscillator (VCO) has been designed, which converts the input voltage to

frequency. The VCO is sensitive to process and temperature variations, introducing distortion in the

system for large input voltages. A 3-stage ring oscillator based VCO design has been implemented for

this ADC, with source follower and level shifter (figure 5.11). The source follower has been used to alter

the DC point of the VCO from 0.9 V to a value needed to set the center frequency to 500 kHz.

The VCO has been characterized to achieve a linear relationship (‘Optimized VCO’) between

voltage and frequency. Table 5.11 gives the parameters of the two design cases, while figure 5.12 shows

the corresponding voltage to frequency transfer characteristic of the VCOs, for evaluating the non-

linearity. This transfer characteristic has been obtained by performing periodic steady-state (PSS)

analysis by sweeping the voltage between ±200 mV and plotting the corresponding frequency.
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Figure 5.11: Schematic of the VCO along with the source follower and level-shifter

Parameters Initial VCO Optimized VCO

W L W L

M1 600 nm 4 𝜇m 400 nm 20 𝜇m
MP1, MP2, MP3 5 𝜇m 6 𝜇m 5 𝜇m 6 𝜇m
MN1, MN2, MN3 2 𝜇m 6 𝜇m 2 𝜇m 6 𝜇m

MSF 4 𝜇m 600 nm 400 nm 2 𝜇m
MLS,P 400 nm 2 𝜇m 400 nm 2 𝜇m
MLS,N 4 𝜇m 400 nm 4 𝜇m 400 nm

C1, C2, C3 70 fF 70 fF

Ibias 20 nA 20 nA

VM1,DC 1.2 V 1.392 V

Table 5.11: Design parameters of the VCO before (Initial VCO) and after (Optimized VCO)
compensating the non-linearity

The voltage to frequency transfer obtained for the initial and optimized VCOs are,

𝑓(𝑉in)initial = (−3.06(𝑉in − 0.9)3 + 3.873(𝑉in − 0.9)2 + 2.573(𝑉in − 0.9) + 0.509) ∗ 106

𝑓(𝑉in)optimized = (−0.985(𝑉in − 0.9)3 + 0.88(𝑉in − 0.9)2 + 1.576(𝑉in − 0.9) + 0.523) ∗ 106

The coefficients of the second- and third-order terms have been reduced in the optimized VCO

to reduce non-linearity. The distortion due KVCO non-linearity has been quantified by the ratio of

the second-order term to the first-order term in the equations, which is 1.497 before, and 0.558 after

optimizing the VCO. The VCO output is connected to a level-shifter, which translates the output
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Figure 5.12: VCO transfer: (a) before (Initial VCO) and (b) after (Optimized VCO) mini-
mizing the non-linearity of the VCO

frequency signal to a square signal varying between 1.8 V and 0 V, to feed into the F2D converter.

The full schematic of this VCO, including the source follower and level-shifter, is shown in figure 5.11b.

The transistors’ parameters in level-shifter have been chosen to have a transition (high-to-low and low-

to-high) at half the maximum output peak of the VCO. The designed VCO has a KVCO gain of 1.576

MHz/V and a center frequency of 523.3 kHz. The difference in the value of KVCO from the system

level implementation (1.875 MHz/V) is due to the adaptation of the parameters for minimizing the

non-linearity (section 4.4).

5.1.5 Frequency to digital converter

The frequency-to-digital converter (F2D) block converts the frequency output from the VCO to digital

output by detecting the rising or falling edges of the VCO. Three different F2Ds have been designed

and evaluated to check their feasibility to implement in the readout channel, which are listed here.

5.1.5.1 Architecture

The first F2D design is a AND-gate based rising-edge detector which is illustrated in the figure 5.13a.

The operation of this circuit at f0 = fs/4, where f0 is the frequency of the oscillator and fs is the

sampling frequency, is shown in figure 5.13b. The output Y[n] is 1 only when a rising edge of the VCO

is detected when Q1[n] = Q2’[n] (NOT Q2[n]) = 1. The average output value, 𝑌 with respect to the

ratio of oscillator(f0) and sampling(fs) frequencies is plotted in figures 5.13.

Figure 5.13c shows that, when f0 = fs/2, the average output value reaches the maximum value

of 0.5. When f0 > fs/2, the average value decreases making this design valid only in 0 to 0.5 range (𝑌
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range). However, 0.5 is the middle point for 𝑌, in the proposed ADC system (figure 4.8), and we need

an F2D that can operate between 0 to 1 range. The second problem with this F2D is that there is more

than one frequency that would generate the same 𝑌 output, since the function is not monotonically

increasing, causing stability problems [74].

Figure 5.13: AND gate based F2D (a) Block diagram (b) Operation at f0 = fs/4 (c) Average
output vs 0

s

The second design of the F2D comprises a XOR-based modulator that detects both rising

and falling edges of the oscillation. This allows accurate capturing of all the edges in the signals for
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frequencies up to fs/2. Figure 5.14 shows the working of the F2D for f0 = fs/4. The average output

value, 𝑌 plotted against f0/fs can be seen the figure 5.14c. Although the signals are sampled properly

for frequencies up to fs/2, at oscillation frequencies beyond fs/2 the F2D has the same problem as

the previous design. So, although this F2D design solves the range problem (range of 𝑌 is 0 to 1),

the modulator function is still not monotonically increasing, which may cause stability problems as f0

approaches half the fs.

Figure 5.14: XOR gate based F2D (a) Block diagram (b) Operation at f0 = fs/4 (c) Average
output vs 0

s

To overcome the aforementioned limitations, a 3 flip-flop XOR-based DFF (figure 5.15) was
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implemented in the ADC as a frequency to digital converter. This F2D uses a frequency divider to slow

down the oscillation by f0/2 and then samples the signal. Figure 5.15b shows the working of the F2D

for f0 = fs/4. The average value of the output, Y[n], is maintained at 1 for frequencies above fs, as

seen in figure 5.15c saturating the upper limit of 𝑌 in case the signal oscillates faster than the fs. This

design solves both the range and non-monotonicity problems making it the best choice for this readout

channel. This F2D consumes a current of approximately 100 nA for a supply voltage of 1.8 V.

Figure 5.15: 3 flip-flop XOR based F2D (a) Block diagram (b) Operation of the F2D (c)
Average output vs 0

s
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5.1.6 Schematic simulations

The results obtained from the circuit-level implementation of the VCO based ΣΔ ADC in Cadence are

discussed in this section. The power spectral density plots obtained at different bias currents for an

input voltage of 100 𝜇V and frequency of 5 kHz are shown in figure 5.16, which confirm the second-order

noise shaping of the ADC. The noise obtained in the AP band (300 Hz - 7 kHz) for different bias currents

are reported in the table 5.12. The noise obtained from the schematic simulations, for the chosen bias

currents lies between 3 - 7 𝜇VRMS. The noise is less than 4.2 𝜇VRMS for bias currents higher than 800

nA, satisfying the set specifications. The power consumed by each sub-circuit of the designed ADC and

the total power consumed by the readout channel, for different bias currents, is shown in the table 5.13.

It can be observed from tables 5.12 and 5.13 that the main trade-off to make is between the noise and

power consumption of the ADC. However, since the power specifications are well within the set spec-

ifications, bias currents above 800 nA can be used for the final MEA since the noise per channel is lesser.

Figure 5.16: PSD obtained from schematic simulations when the bias current is (a) 200 nA
(b) 400 nA (c) 800 nA and (d) 1.2 A
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Bias current Noise (𝜇VRMS)

200 nA 6.64

400 nA 5.3

800 nA 4.22

1.2 𝜇A 3.17

Table 5.12: Noise obtained from schematic simulations for different bias currents

Power consumption (𝜇W)

Bias current Input stage DAC VCO F2D Full readout channel

200 nA 0.18 0.2 0.45 0.18 1.01

400 nA 0.36 0.4 0.45 0.18 1.39

800 nA 0.72 0.8 0.45 0.18 2.15

1.2 𝜇A 1.08 1.2 0.45 0.18 2.91

Table 5.13: Power consumed by different blocks in the ADC for different bias currents

5.2 Integration in the test chip

5.2.1 Complete ADC system

A test chip has been designed to evaluate the functionality and performance of the proposed VCO

based ΣΔ ADC. The goal of the test chip is to be able to debug and characterize the sub-circuits and

ADC. Thus, the ADC was implemented with different design variants for each functional sub-circuit, to

make sure there could be a selection between these variants. The blue blocks in the figure 5.17 are the

nominal blocks designed for the MEA that have been discussed so far. The red blocks in the 5.17 have

been designed with a similar specification but without any size restrictions. For example, ‘Gm 2’ and

‘HPF 2’ are too large to integrate in the pixel as it would deteriorate the spatial resolution. However,

we want to have these alternatives to see the extent of noise we can attenuate with larger AFE. This

could provide design insights about the performance of an SM MEA implemented using such readout

architecture.

A digital interface based on a shift register has been designed to control hundreds of digital

lines needed to enable and select these sub-circuit variants in the test chip. The relevant voltages

and currents needed for biasing can be trimmed using the current and voltage DACs in the biasing

block. The current trimming can be done with an accuracy of ±20%. Three bidirectional test-points,

to measure most of the relevant voltages and currents and characterize main sub-circuits, have been
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used.

Figure 5.17: Implemented ADC system including alternative designs for the key sub-circuits
and several test-points for characterization and debugging.

5.2.2 Pseudo-differential system

The proposed readout architecture has been optimized, area- and noise-wise, to be integrated as a part

of the MEA. However, we are not designing an MEA due to the limitations in the modules offered

by the foundry, in this run and time, for this test chip. Implementing a single readout channel in the

test chip has a potential disadvantage compared to the MEA configuration. For example, the input

stage will be very sensitive to power supply noise, since the current generated by the transconductor

depends on the VSG, which is VDD-Vin. In the MEA array, this noise would be common to all the input

stages, which can be compensated in the post-processing step. In the single readout channel, this noise is

indistinguishable from the intrinsic noise. Hence, to make sure the intrinsic noise of the readout channel

can be distinguished from the supply noise or other interferences, two identical ADC channels have been

included in the test chip, which can work independently or in a pseudo-differential configuration. With

the possibility to record both the readout channels simultaneously, the single-channel measurements

can be compared with the pseudo-differential measurement to evaluate the influence on common noise.

Figure 5.18 shows the pseudo-differential operation of the readout channels which pick-up the

noise from the common supply (VDD). The off-ship digital signal processor (DSP) post-processes and

reconstructs the digital output (Yp and Yref). The single-channel signals after reconstruction (Rp and

Rref) have the noise from VDD, while the difference (Rdiff) eliminates this common noise as shown in

figure 5.18.
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Figure 5.18: Pseudo-differential implementation of the readout channel in test chip showing
the noise picked-up from VDD (spikes), the post-processed signals for single-ended channels
(Rp, Rref) and signal after common noise compensation (Rdiff).

5.3 Layout

The layout of the individual ADC sub-blocks has been implemented abiding the design rule check (DRC)

and layout vs. schematic (LVS) check. The most sensitive blocks, such as VCO, have been simulated

in post-layout, and parasitic capacitances, have been compensated in layout. Since the foundry offered

a maximum of 6 metal layer stack for the implementation of this test chip on a multi-project wafer

(MPW), the highest (topmost) metal used to design the sub-blocks was limited to metal-2 or metal-3

in case of complex layouts. To avoid the complexity in integrating the layout of these sub-blocks in

the full ADC layout and test chip, the even metals (metal-2, metal-4) have been routed horizontally

while the odd metals (metal-3) have been routed vertically. The highest metal layer in the MPW, M6,

was not used till the last step of the ADC layout, which is to route the final local supplies (VDD) and

local ground(s) (GND) with the thick metal-6 metal. This metal is especially thick and has very low

resistance, making it perfect for supplies and inefficient for signal routing as it causes congestion.

Since this is a mixed-signal design with analog and digital sub-circuits, the layout should be

carefully designed to ensure the sensitive blocks are protected from the noisy ones. The analog blocks

are sensitive, while the digital blocks are noisy due to the constant switching of the transistors. Guard

rings have been used for all the sub-blocks in the design to prevent undesirable interaction between

the blocks. To further avoid the coupling between the analog and digital counterparts in the design,

the power supplies and ground signals have been separated for the analog (VDDA, GNDA) and digital

blocks (VDDD, GNDD). The analog blocks here which shared VDDA and GNDA are the input stage,



5.3. Layout 63

integrator, VCO (because it is a sensitive block), and the decoupling capacitors used in and near

these sub-circuits. The digital blocks, F2D and DAC, shared the digital supplies VDDD and GNDD.

Decoupling capacitors have been placed before the most sensitive and noisy circuits.

The layout of the implemented VCO based ADC system is shown in figure 5.19. The ‘T-shaped’

part is the biasing block, and the two readout channels (exact copies) have been placed symmetrically

on either side of the biasing block. The individual blocks of the ‘Readout channel P’ are labeled in the

figure. The digital inputs for the ADC system have been all routed, and the metal contacts are brought

to the left part to make connections to the output of the shift register easier. The metal contacts for

all the supply and ground signals (VDDA, VDDD, GNDA, GNDD) are routed to have contacts on the

top-side of the layout.

Figure 5.19: Layout of the pseudo-differential readout channels. The ADC blocks that have
been optimized for MEA implementation are marked, along with the current (iDAC) and
voltage DACs (vDAC) used for biasing.

The total area of this pseudo-differential readout system implemented in the test chip is 530

x 570 𝜇m2, including the biasing blocks, two readout channels, and the many switches and variants

implemented in the ADCs. The pixel dimensions are estimated to be 17 x 17 𝜇m2 based on the layout,

ensuring the possibility of implementing this ADC for a high-density MEA with sub-cellular spatial

resolution. The full ADC area, including the input stage, could be potentially shrunk down to 45 x 45

𝜇m2.
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5.3.1 Post-layout simulations

Post-layout simulations have been performed to ensure that the parasitic resistances and capacitances

present after designing the layout do not affect the functionality and performance of the actual design.

Simulations with the analog extracted view with the parasitic resistances and capacitances for a bias

current of 800 nA have been done. To observe the functionality of pseudo-differential implementation,

the REF-channel input is set to 0 V, while a sinusoidal input with a voltage of 100 𝜇V and a frequency

of 5 kHz has been given to P-channel. The PSD plots obtained for a post-layout are shown in figure

5.20. The noise obtained during these simulations is tabulated in table 5.14. However, the value of

differential noise obtained from post-layout simulations is pessimistic because the number of points in

the FFT (figure 5.20) for low frequencies is not sufficient, especially at the beginning of the signal band,

to evaluate the exact noise even after week-long simulations.

Figure 5.20: PSD obtained from one of the post-layout simulation for a bias current of 800
nA showing (a) the output of P-channel, (b) output of reference channel, and (c) differential
noise (post-processed)
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Noise (𝜇VRMS)

Simulation 1 Simulation 2

P channel 5.85 4.67

REF channel 5.58 5.37

Differntial 4.86 4.4

Table 5.14: Noise obtained from post-layout simulations

Nevertheless, the post-layout simulations show hopeful results and ensure that the functionality

and performance of the designed readout channel are not degraded after the implementation (layout)

phase. Short post-layout simulations were also run for sensitive sub-blocks such as VCO and input

stage, to ensure their performance.

5.4 Conclusion

In this chapter, the block-by-block circuit-level implementation of the VCO based ADC had been

discussed. The design concepts, considerations, and flow during the implementation were explained.

Each block implementation started off with the design and optimization in Cadence, followed by the

evaluation and analysis of results and then validating the robustness of the blocks through corners

and Monte Carlo analysis (where necessary). After all the blocks have been designed to meet the

specific requirements and functionality, they have been integrated into the full ADC system, according

to the system level implementation presented in the previous chapter. The results obtained for the

implemented ADC schematic was evaluated for different bias currents.

To characterize, debug, and test the validity of the designed ADC for MEA applications,

design variants, and test-points have been incorporated. The ADC has been implemented as a pseudo-

differential system (2 readout channels, P and REF) in this test chip, considering that when implemented

in an MEA, there will never be a single channel, but instead, there will be several channels making it

possible to remove the common noise picked up by the channels. After the schematic design, the layout

level implementation of each block has been done abiding by the DRC and LVS. The design rules adhered

to while implementing this mixed-signal design layout has been discussed. Post-layout simulations have

been performed to validate the functionality and performance of the layout-level implementation.

The second-order noise shaping that has been aimed for has been observed in both the

schematic and post-layout simulations. The noise obtained from each channel in the pseudo-differential

system and the noise after compensating the common noise component has been presented. The per-

formance of this ADC (single channel) is being gauged by the noise since the idea was to develop a

low-noise ADC for APS MEAs. A noise in the range of 3 to 7 𝜇VRMS has been obtained per channel
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depending on the choice of bias current during schematic-level simulations. For bias currents above 800

nA, the noise obtained is less than 4.2 𝜇VRMS. The post-layout simulation for a bias current of 800

nA revealed that the performance of the readout channel is preserved. The power consumption of the

readout channel is in the range of 1 to 3 𝜇W. The estimated pixel dimensions for an MEA implemented

with these channels are under 17 x 17 𝜇m2, showing the scope of high-resolution high-density MEA

implementation. The area of the readout channel is under 0.003 mm2 (45 x 45 𝜇m2), showing the

possibility of having thousands of parallel readout channels which can provide a full-frame readout.



6 Discussion

In this chapter, the research question and goal of this thesis is reiterated to center the discussion on

the results obtained, challenges faced, and future recommendations around this. The thesis aims to

design a low-noise readout system which can be used to implement full-frame APS MEAs with high

spatial resolution. The constraint on the pixel dimension forces the implementation of AFE using small

transistors. The problem with small transistors is that the flicker noise will be high, deteriorating the

signal quality of the recorded signal. The integration of AFE with large transistors deteriorates the

spatial resolution of the MEA. These design trade-offs are shown in figure 6.1. For this reason, most of

the APS MEAs implemented so far have a ‘dual-mode operation’ where low-noise readout is achieved

for selected electrodes due to the additional AFE stage in the readout channels implemented with the

large transistors.

Figure 6.1: Trade-offs in APS full-frame readout MEA

Most state-of-the-art APS MEAs use SAR ADC architecture because of their high accuracy

and low power consumption, making them perfect for data acquisition applications. However, the high

accuracy in SAR ADCs comes from the hardware complexity, which is undesirable for implementing

thousands of parallel readout channels. Time multiplexing approaches have been used to overcome the

limitation of the reduced number of ADCs, which in turn requires additional circuitry such as anti-

aliasing filters to be integrated in the pixel area [35]. The other candidate in the race is sigma-delta

ADC, which trades-off bandwidth for low quantization noise. The oversampling nature of these ADCs

resulting in ‘noise-shaping,’ which reduces the quantization noise in the signal bandwidth, which in our

case is less (300 Hz - 7 kHz), making the bandwidth-noise trade-off feasible. Another advantage of

67
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ΣΔ ADCs over SAR ADCs is that they do not need complicated anti-aliasing filters because of their

oversampling nature. Given these advantages, ΣΔ has been chosen to be the design choice in this thesis.

For higher-order noise shaping, higher-order implementation of the ΣΔ ADCs is required. How-

ever, the traditional way of increasing the order of the ΣΔ would mean complex hardware (circuitry) im-

plementation, which again increases power and area consumption. To bypass this issue, a time-encoding

approach has been chosen in this thesis for increasing the order of noise shaping with minimum circuit

complexity. The proposed readout system is shown in figure 6.3. Instead of having a multi-stage AFE,

a compact HPF and a simple PMOS transconductor have been designed with optimum noise and area

performance. The filtered electrode voltage is converted into current (Iout) by this transconductor,

which is sent to the VCO based ΣΔ modulator, which would be outside the array in the target MEA.

The VCO based quantizer used in the ΣΔ modulator improves the SQNR of the ADC by enhancing the

order of noise-shaping, thereby shifting the noise outside the signal band. This VCO quantizer has been

implemented using a 3-stage ring oscillator that modulates the voltage at the integrator to frequency

oscillation (wosc). The frequency-to-digital block converts this oscillation into a digital signal (Yout).

The 1-bit current DAC implemented for the negative feedback in the ΣΔ modulator is inherently linear

and rather compact. The system realized using these simple blocks has been designed and simulated to

evaluate its performance and application for APS MEAs.

Figure 6.2: Oscillator based ADC

This oscillator based ΣΔ ADC has been designed in three steps: the system-level implementa-

tion using Simulink, the circuit-level implementation in Cadence, and finally, the layout level implemen-

tation. The noise performance of these implementations has been analyzed using post-processing done

in MATLAB. The system-level simulations show that VCO based ΣΔ ADC provides a higher-order noise
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shaping, resulting in an SQNR of 63 dB using simple blocks such as 1-bit DAC and a VCO quantizer

instead of complex multi-bit DACs and quantizers, saving area and power consumption. A quantization

noise of 1.02 𝜇VRMS was attained with system-level optimization leaving enough margin for the thermal

and flicker noises that would appear during circuit-level implementation. Given the power budget of

the ADC, four different bias current variants (200 nA, 400 nA, 800 nA, 1.2 𝜇A) have been chosen for

the ADC implementation in the test chip. The next design step would be to translate this system-level

design into transistor-level, which has been explained in chapter chapter 5. A noise in the range of 3

𝜇VRMS to 7 𝜇VRMS has been obtained from the readout channel, in the AP band depending on the

bias currents chosen. Using bias currents above 800 nA for the final MEA implementation could result

in a noise that is less than 4.2 𝜇VRMS in the AP band. The power consumed by the readout channel is

in the range of 1 to 3 𝜇W.

The designed readout channel has been integrated on the test chip using different design vari-

ants, bidirectional test-points, and a digital block to handle the bits, to have an option to debug and

characterize each sub-circuit of the readout channel. A pseudo-differential implementation of this read-

out channel has been designed in this test chip to eliminate the common noise, which will not be an

issue during the multi-channel implementation in the actual MEA. Mixed-signal layout design for this

readout channel system for test chip has been designed, and post-layout simulations have been carried

out to confirm the validity of this low-noise ADC performance. These results ensure the functionality

and performance of the designed ADC. The comparison of this readout architecture, with the state-

of-the-art readout technologies used for bio-signal recordings, is shown in table 6.1. The schematic

simulation results obtained for 800 nA and 1.2 𝜇A have been used for this comparison.

[75] [33] [47] [76] [35] [36] This work

Year 2019 2017 2017 2017 2018 2017

Technology (nm) 130 130 180 65 180 180 180

Input signal EAP, LFP EAP, LFP EAP EAP EAP, LFP EAP, LFP EAP

Pixel size ( m2) 16 x 16 12 x 12 25.5 x 25.5 - 18 x 18 13.5 x 13.5 17 x 17

Type of ADC SAR SAR off-chip ΣΔ SAR SAR ΣΔ

Channel size (mm2) *0.025 *0.09 - 0.006 *0.002 *0.026 0.0021

Noise ( VRMS) 3.7 6.36 10.02 3.8 10.9 2.4 4.221 3.172

Noise band (Hz) 401 - 2.3k 300 - 10k 300 - 3k 11k 300 - 5k 300 - 10k 300 - 7k

Power (uW) - 49.06 - 1.2 5.9 16 2.151 2.912

Table 6.1: Comparison with the state-of-the-art bio-signal readout channels.

*The readout channel size is a calculated estimation from the citation (Area occu-
pied by readout channels on die / No.of channels).
1: Bias current - 800 nA; 2: Bias current - 1.2 A
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The performance of the ADC designed, with the advantages inherited from oversampling and

time-encoding techniques, is within the desired requirements. However, the design constraints asso-

ciated with the implementation of this ADC in MEAs should be examined while designing the MEA

system. Since only two ADC channels are implemented in this test chip, the data rate can be handled

without complications for a sampling frequency of 1 MHz that has been chosen. However, in MEAs with

thousands of channels, the data rate would be very high, making it difficult to handle this data. How-

ever, using high-speed FPGAs and techniques such as LVDS, these problems can be resolved [77, 78].

Another challenge in implementing this system for HD-MEA would be the complications in routing

a large number of pixels to the large number of ADCs. Having thousands of channels would require

thousands of metal lines running parallel to each other, which may result in a complex routing scheme,

crosstalk, and increased parasitics.

Figure 6.3: Illustration of one-on-one routing of pixel with oscillator based ADC for a 4
x 4 MEA. The target MEA aims to scale up the number of channels to approximately ten
thousand.



7 Conclusion and future work

7.1 Conclusion

A VCO based ΣΔ ADC has been designed as a proof-of-concept to implement low-noise MEAs with full-

readout. To achieve a high-signal quality of the readout signal, we need the analog front-end circuitry

closer to the electrodes to amplify and filter the signal. Depending on the size of the AFE, the pixel

size increases, thereby reducing the spatial resolution of the system. In this thesis, we propose a simple

readout system that can offer low-noise performance, which does not require a large area to implement.

The input stage of the readout channel, integrated into the pixel, consists of a PMOS transistor which

converts the electrode voltage to current. The choice of the PMOS transistor has bee made owing to its

lower flicker noise. The HPF implemented by a pseudoresistor and capacitor with a reasonable size is

used in the input stage to remove the low-frequency voltage drift. Together, these components made up

the pixel within 17 x 17 𝜇m2 area, ensuring the possibility of implementing an MEA with high-spatial

resolution.

In order to implement a low-noise ADC in a small area, time-encoding based ΣΔ ADC has

been designed. The VCO based ΣΔ ADC has been implemented using simple blocks such as VCO,

F2D, and a 1-bit current DAC. A second-order noise-shaping has been obtained using the proposed

ADC without having to use complex circuitry that is typically used for higher-order ΣΔ ADCs. For

integration in test chip, a system where different designs variants of the sub-circuits and bidirectional

probes, to characterize some of the important blocks, has been implemented. To be able to remove the

common noise during post-processing similar to the MEA implementation scenario, a pseudo-differential

readout channel system has been implemented in the test chip. The noise obtained through simulations

shows promising results where a noise as low as 5 𝜇VRMS can be obtained (depending on the choice of

bias current).

7.2 Future work

With the simulated performances obtained for VCO based ΣΔ ADC, the following recommendations

can be made for future work.
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• The circuit impairments have taken into account the possible non-idealities from each sub-block,

which can be individually characterized using test-point in the test chip to measure these non-

idealities and improve the design of these blocks accordingly.

• The different design variants will be tested to find and evaluate the best possible design parameters

needed to implement this ADC in the MEA. The post-layout results did not provide enough points

on FFT to accurately analyze the exact noise even after very long simulations. So, the best bias

current need for optimum noise performance can be evaluated through measurements on the chip,

which yield results in less than a minute.

• The output data rate obtained from the calculated number of channels would probably be in Gbps

for a high-channel count (for example, ten thousand). An LVDS block which can allow handing

these high data rates should be designed. The data rate can be reduced if necessary, by reducing

the sampling frequency to an extent where the desired noise specifications are still met.



A SQNR of ADCs

For an N-bit ADC with Vin and Vref as the analog and reference signals respectively, the analog to

digital equivalence can be given by,

𝑉ref(𝑏12-1 + 𝑏22-2 + .... + 𝑏N2-N) = 𝑉in

where b1 is the most significant bit (MSB) and bN is the least significant bit (LSB) [60]. N is the

resolution of the ADC, given by the number of bits used to discretize the analog signal. An N-bit

resolution means that the data converter can resolve 2N analog values distinctly. However, it is not an

indicator of the accuracy of the converter but rather a value that defines the number of output bits.

The value of the coefficients b1, b2,...., bN is either 0 or 1 (binary). VLSB is defined as the change in

voltage when the lowest significant bit is changed.

𝑉LSB =
𝑉ref

2N

The performance of an ADC is characterized by the signal-to-quantization noise ratio (SQNR)

and the bandwidth. The SQNR of the ADC is affected by the quantization error while the sampling

rate characterizes the bandwidth.

A.1 Nyquist converters

To calculate the SQNR of Nyquist ADC, we first assume that the quantization noise is stochastic, and

the input signal is varying such that this noise is uniformly distributed between −VLSB/2 and +VLSB/2

[60]. The probability density function of the quantization error signal (fQE(x)) after this assumption,

is shown in the figure A.1.
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Figure A.1: Probability density function of quantization error

Since the total probability should be equal to 1, the height of the probability density function

between ± VLSB/2 will be equal to 1/VLSB. This makes the RMS value of the quantization error,

𝑉QE,RMS = √∫ 𝑥 𝑓QE(𝑥)𝑑𝑥 = √
1

𝑉LSB
(∫

LSB/2

LSB/2

𝑥 𝑑𝑥) = 𝑉LSB

√12

when the quantization noise is uniformly distributed in the interval of ±VLSB/2. Since VLSB = Vref/2 ,

where N is the number of bits of resolution of the ADC, for each additional bit there is a 6 dB decrease

of noise power. If the input signal (Vin) is sinusoidal in nature, the RMS value of the signal would be

Vref/2√2 resulting in an SQNR of,

𝑆𝑄𝑁𝑅 = 20𝑙𝑜𝑔 (
𝑉in,RMS

𝑉QE,RMS
) = 20𝑙𝑜𝑔 ( 𝑉ref/2√2

𝑉LSB/√12
) = 20𝑙𝑜𝑔(√322 )

= 6.02𝑁 + 1.76 𝑑𝐵

which shows that the SQNR improves with the increase in number of quantizer bits. However, this

equation shows the best possible value of SQNR for an N-bit ADC converter. The idealized SQNR is

less than this best possible value, and the input voltage where SQNR is maximum corresponds to the

full-scale value [60].

A.2 Oversampled converters

The quantizer can mathematically be modeled as shown in the figure A.2a, where x(n) is the input signal

value, y(n), is the output that is also the closest quantized value of x(n), and e(n) is the quantization

error [60].
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Figure A.2: (a) Linear model of a quantizer where e(n) is the error obtained during quanti-
zation (b) Power spectral density (SQE(f)) of quantization noise

As stated in the previous section, quantization noise can be assumed as white noise and the

two-sided noise power spectral density (SQE(f)) can be modelled as shown in the figure A.2b. It can

be seen from the previous section that the noise power of the quantization error is VLSB
2/12 and is

independent of the sampling frequency. The spectral density height value can be thus obtained from,

𝑃QE = ∫
s/

s/
𝑆QE2(𝑓)𝑑𝑓 = ∫

s/

s/
𝑘2𝑑𝑓 = 𝑘 𝑓s = 𝑉LSB

2/12

⟹ 𝑘 = (𝑉LSB

√12
)√ 1𝑓s

When the signals are sampled at a very high frequency (fs » f0), the oversampling ratio (OSR)

is given by,

𝑂𝑆𝑅 = 𝑓s

2𝑓0

where 2f0 is the Nyquist frequency. Assuming the input signal is a sine wave, the maximum peak value

without clipping is 2N(VLSB/2). The signal power Ps of the sinusoidal wave is given by,

𝑃S = (
2 𝑉LSB

2√2
)

After quantization, the output is filtered by a digital filter (DF) to eliminate the quantization

noise along with other signals greater than the outside the signal bandwidth (f0) as shown in the figure

A.3. This reduces the quantization noise power to,

𝑃QE = ∫
s/

s/
𝑆2

QE(𝑓)|𝐷F(𝑧)|2𝑑𝑓 = ∫
0

0
𝑘 𝑑𝑓 = 2𝑓0

𝑓s

(𝑉LSB)
12 = (𝑉LSB)

12 ( 1
𝑂𝑆𝑅)

improving the SQNR to,
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𝑆𝑄𝑁𝑅max = 10𝑙𝑜𝑔10 (
3
22 ) + 10𝑙𝑜𝑔10(𝑂𝑆𝑅)

= 6.02𝑁 + 1.76 + 10𝑙𝑜𝑔10(𝑂𝑆𝑅)

Figure A.3: (a) Block diagram with the digital filter implemented to eliminate quantization
noise outside the signal band (b) Transfer function of the digital filter

A.3 First order ΣΔ modulator

Figure A.4: Linear model of a first order data converter

The linear model of a first-order ΣΔ modulator is shown in figure A.4. The noise transfer (N(z)) for this

model is (1 − 𝑧 ), from which the quantization noise power can be calculated to be,

𝑁(𝑓) = 1 − 𝑧 = 1 − 𝑒 = 1 − 𝑒 / s

= 𝑒 / s − 𝑒 / s

2𝑗 × 2𝑗 × 𝑒 / s

= 𝑠𝑖𝑛 (𝜋𝑓𝑓s
) × 2𝑗 × 𝑒 / s

which gives a quantization noise power of
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𝑃QE = ∫
0

0
𝑆2

QE(𝑓)|𝑁(𝑓)|2𝑑𝑓 = ∫
0

0
((𝑉LSB)

12 ) 1𝑓s
[2𝑠𝑖𝑛 (𝜋𝑓𝑓s

)] 𝑑𝑓

which for OSR » 1 can be approximated as

𝑃QE ≈ (
(𝑉LSB)
12 )(𝜋3 )(

2𝑓0

𝑓s
) (∵ 𝑠𝑖𝑛(𝑥)𝑥 = 1 𝑤ℎ𝑒𝑛 𝑥 → 0)

giving a signal to noise ratio of

𝑆𝑄𝑁𝑅max = 10𝑙𝑜𝑔10 (
𝑃QE

𝑃S
) = 10𝑙𝑜𝑔10 (

3
22 ) + 10𝑙𝑜𝑔10 [

3
𝜋 (𝑂𝑆𝑅) ]

= 6.02𝑁 + 1.76 − 5.17 + 30𝑙𝑜𝑔10(𝑂𝑆𝑅)

showing the improvement in SNR by 30log10(OSR) due to the first-order noise shaping.

A.4 Second order ΣΔ modulator

Figure A.5: Linear model of a second order data converter

The block diagram of a second order ΣΔ modulator is shown in the figure A.5 for which the noise transfer

function is (1 − 𝑧 ) , from which the quantization noise power can be calculated as [60],

𝑃QE = ∫
0

0
𝑆2

QE(𝑓)|𝑁(𝑓)|2𝑑𝑓 = ∫
0

0
((𝑉LSB)

12 ) 1𝑓s
[2𝑠𝑖𝑛 (𝜋𝑓𝑓s

)] 𝑑𝑓

𝑃QE ≈ (
(𝑉LSB)
12 )(𝜋5 )(

2𝑓0

𝑓s
) ≈ (𝑉LSB) 𝜋

60 ( 1
𝑂𝑆𝑅)

The maximum signal to noise ratio of a second order ΣΔ modulator is given by,
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𝑆𝑄𝑁𝑅max = 10𝑙𝑜𝑔10 (
𝑃QE

𝑃S
) = 10𝑙𝑜𝑔10 (

3
22 ) + 10𝑙𝑜𝑔10 [

5
𝜋 (𝑂𝑆𝑅) ]

= 6.02𝑁 + 1.76 − 12.9 + 50𝑙𝑜𝑔10(𝑂𝑆𝑅)

showing the improvement in SNR due to the increase in the order of the ΣΔ modulation.



B Noise

B.1 Flicker and thermal noise

The most significant electronic noise sources are the thermal and flicker noise. Thermal noise which is

also called as the Johnson-Nyquist noise is generated by the thermally agitated charge carriers in an

electronic conductor at equilibrium and is present for any applied voltage. The spectral density of this

noise is typically constant over frequency like white noise and its power is proportional to the absolute

temperature. Thermal noise is the main source of noise in resistors and can be modelled as a voltage

source in series with an ideal noiseless resistor as shown in the figure B.1a. The power spectral density

of thermal noise is

𝑉n-R
2(𝑓) = 4𝑘𝑇𝑅

where k is the Boltzmann constant, T is the absolute temperature (in K) and R is the resistance

(in Ohms).

Figure B.1: (a) Noise model of a resistor (b) Noise model of a MOSFET

The thermal noise is also present in MOSFETs but is more prominent at high frequencies.

At low frequencies the flicker noise also known as 1/f noise dominates the thermal noise as shown in

the figure B.1b. Flicker noise is generated due to the interaction between the charged carriers moving

across the semiconductor. The charge carriers moving at the interface between the gate oxide and silicon

substrate are randomly trapped and later released by the energy states created by the dangling bonds

causing perturbations referred to as flicker noise. It varies from one technology node to another and

depends on the cleanliness of the oxide substrate interface. Unlike thermal noise, flicker noise depends

on the biasing conditions of the transistor. The noise in a transistor operative in the active region can
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be modelled by a voltage source connected to the gate as shown in the figure above. The power spectral

density calculated by combining the effects of flicker and thermal noise components is given by,

𝑉n-M
2(𝑓) = 𝑉tn-M

2(𝑓) + 𝑉fn-M
2(𝑓) = 4𝑘𝑇23𝑔m +

𝐾
𝑊𝐿𝐶ox𝑓

where gm is the transconductance of the MOSFET, W and L are the dimensions of the gate,

Cox is the gate oxide capacitance per unit area, 𝛼 is a constant which is usually approximated as 1 and

K is a process-dependent constant in the order of 10-25 V2F. One of the parameters that is used to

describe the noise is the corner frequency which is the frequency above which thermal noise dominates

flicker noise as shown in the figure B.2.

Figure B.2: Noise spectral density in MOSFETs

B.2 kT/C noise

The ideal capacitors are lossless devices which do not have thermal noise. However, when combined

with the resistors in an RC circuit, the combination gives rise to kT/C noise. This noise will be present

in the HPF in the input stage discussed above. The noise bandwidth of the RC circuit is given by Δf =

1/(4RC) which when substituted in thermal noise PSD equation gives,

𝑣n
2 = 4𝑘𝑇𝑅

4𝑅𝐶 = 𝑘𝑇
𝐶

Although it looks like the kT/C noise is independent of the value of resistance, this noise is only

contributed by the resistor and not the capacitor. However altering the value of capacitance we can

move this kT/C noise to the band that is outside our band of interest.



B.3. Phase noise 81

B.3 Phase noise

The phase noise in oscillator results in side bands in the spectrum around the fundamental oscillation

(figure B.3a). According to Leeson’s equation [64], the single-side band can be modelled as shown in

the figure B.3b. The zoomed-in version of the side band shows different slopes of the phase noise with

respect to the offset frequency. In the analysis for linear model of the VCO ADC we approximated

the phase noise to have -20 dB/decade, which is in reality steeper where the effect of flicker noise is

predominant and is 0 dB/decade for higher frequencies (which is debatable because the signal power

cannot be infinite).

Figure B.3: Phase noise in the oscillator [64]
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