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Linearisation of a Ship Propulsion System Model

D. Stapersmaa,1, A. Vrijdaga,2,∗

aDelft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Mekelweg 2, 2628CD, Delft, the Netherlands

Abstract

The understanding, modelling and analysis of the behaviour of a non-linear ship propulsion plant are of great importance
for conceptual system design, component selection, selection of control strategy and for propulsion control system tuning.
Conceptual propulsion system design activities, such as deciding the combinator curve, require a relatively simple steady
state simulation model, while propulsion controller design and tuning requires a non-linear time domain simulation
model which captures the intricacies of the propulsion plant. In this paper a linearised model of the uncontrolled ship
propulsion system is derived which can be used for analysis of propulsion system behaviour in waves and for initial
controller design and tuning. Furthermore a thorough analysis is made of the conditions under which local instability of
the system can occur. In a follow up paper the linearised model is extended and verified by means of comparison with
a non-linear model. There it is furthermore used to investigate the effect of engine governor settings on a propulsion
plant when sailing in waves at different encounter frequencies. The authors believe that, due to its transparency and
clear link to well known parameters and variables, the linearised core propulsion system model as derived in this paper
should appeal to marine system engineers, control engineers and hydrodynamicists alike. The linearised model should
however not be seen as the replacement for a non-linear model, but rather as an additional tool that can be used.

Keywords: Ship Propulsion System, Propulsion System Dynamics, Propulsion System Stability, Linear Ship
Propulsion Model

1. Introduction

The use of linearised models is common practise in many
fields of engineering because they have some favourable
properties over non-linear models. Linear models are of-
ten more simple and require less parameter and system5

knowledge compared to non-linear models, although this
advantage reduces as soon as linear models are to be gen-
erated for multiple operating regions. The main reason to
derive a linear model in this paper is that linear models
can be used to predict system behaviour in the frequency10

domain. Linearisation does however come at a price: a lin-
earised model is only valid in the neighbourhood of equi-
librium (Franklin et al. (1986)). The size of the region in
which a linearised model is valid can be small or can be
large, but should remain a point of attention while using15

such a model. This is the reason why the linearised ship
propulsion model should not be seen as the replacement
for a non-linear model, but rather as an additional tool
that can be used. In this paper the behaviour of the ship
propulsion system in the frequency domain is investigated20

by derivation and analysis of the transfer functions. The
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transparent derivation of the linearised system reveals the
main parameters and variables that govern the dynamic
performance of the core ship propulsion system. These
main parameters and variables are shown to be four deriva-25

tives in the open water propeller diagram and one deriva-
tive of the ship resistance curve. Inertia of the propulsion
system is introduced by two (operating point dependent)
time constants which among other variables respectively
include the polar moment of inertia of the rotating shaft30

system and the mass of the ship. These seven parame-
ters are well known to marine system engineers who use
their respective values for all sorts of calculations, ranging
from torsional shaft vibration analysis to the calculation
of maximum ship speed.35

There are various examples where engineers and scientists
coming from all sorts of disciplines have attempted to get a
grip on ship propulsion system dynamics and behaviour in
the frequency domain. Two examples of a theoretical ap-
proach coming from a control perspective are reported by40

van Spronsen and Tousain (2001) and Xiros (2004), where
in both cases a linearised model is used to apply H∞ con-
troller techniques aiming at prevention of diesel engine
overloading. Although the work is highly valuable, the
drawback is that the used plant models are not directly45

related to the commonly used parameters and therefore
have less appeal to marine system engineers and hydro-
dynamicists. An example coming from a hydrodynamic
perspective, involving research into dynamic behaviour of
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propellers in waves is given in van Terwisga et al. (2004).50

In that case it was concluded that the propulsion control
system and its parameters plays an important role in the
behaviour of the propeller in waves. The analysis of the ef-
fect of the propulsion control system settings on the prime
mover was however strongly simplified. An early exam-55

ple of linearization is given by Clarke (1980). He includes
ship inertia but ignores shaft speed dynamics and implic-
itly controls either shaft speed or engine power or engine
torque or even ship speed, but all for fixed pitch propeller.
Added resistance due to manoevring is taken into account60

but disturbances of wake speed are not. He does not nor-
malize his equations and the derivation in general lacks
clarity. Another example related to the linearisation of
the ship propulsion plant is reported by Blanke (1981) and
repeated in Fossen (1994). There a linearised model was65

derived from a manoeuvring/motion control point of view.
This model has many of the features that will be used in
the present paper as well, i.e. the dynamics of ship and
shaft speed, engine torque as the input of the linearized
model, added ship resistance as a result of sway and dis-70

turbance of wake speed caused by waves. The model is
restricted to fixed pitch propellers. Also the coefficients
that were used to describe the propeller performance were
only implicitly related to derivatives in the open water
propeller diagram. The linearized model and in particular75

the main differential equations are not normalized which
makes the derivation from the linearised model equations
to the the final transfer functions unnecessary complicated
and not transparent and therefore made it hard for others
to use the model. Also the linearized model is not fully80

linear as some products of perturbations are still present.
A notable effort to linearise a gas turbine driven ship
propulsion system is reported by Kidd et al. (1985). The
work there is similar to the work reported in this paper,
in the sense that it is an attempt to derive linear relation-85

ships between inputs and outputs. However, the deriva-
tion there does not take into account the system inputs
related to ship resistance and propeller wakefield distur-
bances. The most important shortcoming is however the
non-transparent linearised propeller model, which does not90

match the generally available propeller data from open wa-
ter diagrams. Finally a simulation model is described but
no results are shown, which makes it hard to assess the
model.
It may be concluded that linearized models were devel-95

oped in the eighties of the last century but for several
reasons did not appeal to the maritime industry and seem
not to be used frequently anymore. This paper intents to
revive linear models and indicate when and where they
could have some use. The authors believe that, due to100

its transparency and clear link to well known parameters
and variables, the linearised propulsion system model as
derived in this paper should appeal to marine system en-
gineers, control engineers and hydrodynamicists alike. Its
transparency allows for modular expansion of which an105

example is already given by Shi (2013) where an early ver-
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Figure 1: General core ship propulsion block diagram.

sion of the theory as reported in this paper is used to anal-
yse the dynamic performance of a trailing suction hopper
dredger. Moreover, the linearised model of the propul-
sion system was extended with a linearised model of the110

dredging system including engine driven dredging pump
and suction pipe. Other extensions related to drag head
resistance and non-symmetric propeller load between the
shaft lines were also made.
This paper is structured as follows: In the first part the115

linearised core model is reported and Bode plots of the sys-
tem are discussed. In the second part of the paper the sta-
bility of the system is analysed and particular cases under
which the system might become locally unstable are inves-
tigated. Finally conclusions are drawn and recommenda-120

tions for further research are given. For transparency the
main derivations are included in the appendices.

2. General ship propulsion block diagram

Fig. 1 shows a general ship propulsion block diagram.
It contains the (non-linear) dynamics of a ship propulsion
plant, excluding the propulsion machine and the propul-
sion control system. On the right hand side the ship trans-
lation dynamics are included, based on a force balance be-
tween propeller thrust and ship resistance. When those
two forces are out of balance, a net force will result in a
change of momentum via:

d(mship · vs)

dt
= Fprop − Fship (1)

in whichmship is the total ship mass including added water
mass. The exact definition of Fprop and Fship including
their relation with propeller thrust T and ship resistance
R are given later. On the left hand side the shaft rotation
dynamics are included, dealing with the balance between
propeller and shaft torque. In the same way as in the
translation dynamics a net torque will cause a change of
angular momentum via:

2π
d(Ip · n)

dt
= Ms −Mprop (2)

in which Ip is the total polar moment of inertia of the rotat-
ing shaft system including propeller and entrained water.125

Note that for clarity no gearbox is included in the block
diagram. Further note that for now no choice is made with
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Figure 2: Detailed core ship propulsion block diagram.

regard to the type of propulsion machine: the choice for a
diesel engine, gas turbine, electric motor or any other de-
vice in principle is open. This selection is made in a follow130

up paper which deals with the extension and application
of the core linearised propulsion systems model.
In the middle of the block diagram the propeller thrust
and torque are modelled based on the open water diagram
of the propeller under consideration:135

T = ρ · n2 ·D4 ·KT (J, θ)

Q = ρ · n2 ·D5 ·KQ(J, θ)

J =
va

n ·D
(3)

The instantaneous values of thrust coefficient KT and
torque coefficient KQ as a function of advance ratio J and
propeller pitch θ are based on lookup tables of the open wa-
ter diagram of the propeller(s) under consideration. Note
that this approach inherently neglects any hydrodynamic140

propeller dynamics. The relation between T and Fprop

and between Q and Mprop and between va and vs is given
later.
The core propulsion system as shown in Fig. 1 is linearised
in the following sections. However, before this is done, a145

more detailed overview of the system is given in Fig. 2.
This block diagram, as modified from Stapersma (2000)
shows the ship and shaft dynamics under the assumption
of constant ship mass and constant shaft inertia as well
as Eq. (3). Besides the two input variables propeller pitch150

θ and shaft torque Ms it shows two disturbance inputs
acting on the ship resistance and on the wakefield. Re-
sistance disturbances can for instance be caused by wind,
waves, shallow water, or changes in ship draft or trim and
act on the ship speed loop. Wakefield disturbances can be155

caused by for instance ship motions, orbital wave veloci-
ties in the propeller plane or manoeuvres and act directly
on the shaft speed loop, and indirectly on the ship speed
loop.

3. Linearisation160

The ship propulsion system shown in Fig. 2 is non-linear.
The non-linearities can be classified into 3 categories:

1. Non-linearity due to curvature in the characteristics
of component models. Clear examples are the cur-
vature of the KT and KQ lines in the propeller open165

water diagram as well as the non-linearity in the P/D-
direction.

2. Non-linearity due to multiplicative action in the
mathematical model of the system. This includes
multiplication (e.g. T = ρ · n2 · D4 · KT (J, θ)), di-170

vision (e.g. J = va
nD

) and general power operations
(e.g. R = α · ves).

3. Non-linearity due to a hard limit in the model. Exam-
ples are: saturation of actuators (mechanical end-stop
of a fuel rack, or minimum and maximum pitch of a175

hydraulic CPP system) or limits due to protective fea-
tures in the engine governor.

The goal of this section is to find a linear representation of
the core propulsion system, so that the frequency domain
behaviour of a ship propulsion plant can be determined.180

The effect of neglecting the mentioned three types of non-
linearities is investigated in the follow up paper, in which
a comparison of system behaviour is made with a non-
linear model. In particular the fact that non-linearities of
the third category are completely neglected by a linearised185

model, is an important limitation. The linearisation of
the uncontrolled core system has been done by Stapersma
(2016), and the notation as well as the basic derivation are
given in Appendix B and Appendix C. A summary of the
results from those appendices is given below.190

3.1. Normalisation and Linearisation

As shown in Appendix B, a variable that is the product
of powers of other variables:

Z = c · Y e ·X (4)

can be linearised and normalised. By using the shorthand
notation for differential increment as given by:

δZ∗ ≡
δZ

Z0
, δY ∗ ≡

δY

Y0
, δX∗ ≡

δX

X0
(5)

Eq. (4) can be approximated by:

δZ∗ = δX∗ + e · δY ∗ (6)

The latter equation relates the relative change in output Z
to the relative change in inputs X and Y , where the con-
stant e, which was present as an exponent in the original
Eq. (4) has changed to a constant multiplication factor.
Secondly the multiplication of X and Y has turned into a
summation.
Under the assumption of constant mship and Ip, Eqs. (1)
and (2) can be written as:

2π · Ip ·
dn

dt
= Ms −Mprop (7)
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and

mship ·
dvs
dt

= Fprop − Fship (8)

As derived in Appendix C, the normalised and linearised
version of Eq. (7) is:

τn
dn∗

dt
= δM∗

b − (2− b)δn∗ − bδv∗s + bδw∗ − qδθ∗ (9)

which gives the relation between shaft acceleration, the
two state variables δn∗ and δv∗s and the inputs brake
engine torque δM∗

b , wake disturbance δw∗ and propeller
pitch δθ∗. Likewise the normalised and linearised version
of Eq. (8) is:

τv
dv∗s
dt

= (2−a)δn∗− (e−a)δv∗s −δα∗−aδw∗+pδθ∗ (10)

which gives the relation between ship acceleration, the two
system states and resistance disturbance δα∗, wake distur-
bance δw∗ and propeller pitch δθ∗.
In these two equations 7 parameters are used. The nor-195

malised propeller derivatives a, b, p and q are defined as:

a ≡
J0

KT,0
·
δKT

δJ

∣

∣

∣

∣

θ

, p ≡
θ0

KT,0
·
δKT

δθ

∣

∣

∣

∣

J

(11)

b ≡
J0

KQ,0
·
δKQ

δJ

∣

∣

∣

∣

θ

, q ≡
θ0

KQ,0
·
δKQ

δθ

∣

∣

∣

∣

J

(12)

Furthermore the 2 integration constants τn and τv are de-
fined as:

τn ≡
2π · Ip · n0

Ms,0
, τv ≡

mship · vs,0
Fship,0

(13)

Finally the normalised resistance curve steepness e is de-
fined as:

e ≡
vs,0
R0

·
δR

δvs

∣

∣

∣

∣

α

(14)

Contour plots of a, b, p and q for a particular propeller200

are shown in Figs. 3, 4, 5 and 6. Note that the actual J −
KT −KQ relations for multiple pitch values are not shown
to avoid confusion. Further note that alternatively to the
J − KT − KQ approach as shown here, the linearisation
of the propeller performance can also be modelled via the205

four quadrant β−C∗

T −C∗

Q approach, which is elaborated
in Appendix D.
An example of the normalised steepness parameter e is
shown in Fig. 7. Note that the humps and hollows in the
resistance curve are magnified when plotted in this way.210

The block diagram shown in Fig. 8, which is equivalent
with Fig. C.11, is the visual representation of Eqs. (9)
and (10). Note that this presentation, aside from a weak
coupling via the returning b path, shows two first order
systems in series. This aligns with the fact that, in case215

of a water jet driven system, b is close to zero and the
shaft system behaviour is almost uncoupled from the ship
speed.
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4. Laplace Transfer Functions

The derivation of the transfer functions of the system220

described by Eqs. (9) and (10) is given in Appendix E. The
transfer functions from the 4 inputs to the state variable
δn∗ are given by:

δn∗

δM∗

b

=
1

2−b
· (τ1 · s+ 1)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(15)

δn∗

δα∗
=

b
2−b

· 1
e−a

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(16)

225

δn∗

δw∗
=

b
2−b

· (τ1 · s+
e

e−a
)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(17)

δn∗

δθ∗
= −

q
2−b

·
(

τ1 · s+ 1 + b
q
· p
e−a

)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(18)

Likewise the transfer functions from the inputs to the state
variable δv∗s are given by:

δv∗s
δM∗

b

=
1

2−b
· 2−a
e−a

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(19)

δv∗s
δα∗

= −
1

e−a
· (τ2 · s+ 1)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(20)

230

δv∗s
δw∗

= −

a
e−a

·
(

τ2 · s+ 1− b
2−b

· 2−a
a

)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(21)

δv∗s
δθ∗

=

p
e−a

·
(

τ2 · s+ 1− q
2−b

· 2−a
p

)

τ1 · τ2 · s2 + (τ1 + τ2) · s+ 1 + b
2−b

· 2−a
e−a

(22)

Note that in these 8 transfer functions, 2 additional pa-
rameters are introduced. The first is the effective time
constant of the shaft speed loop:

τ2 ≡
τn

2− b
(23)

The second parameter is the effective time constant of the
ship speed loop:

τ1 ≡
τv

e− a
(24)

4.1. Poles, DC-gains and zeros

Analytical derivation of the poles of the transfer func-
tions helps to understand the conditions under which the
system is stable or unstable. The derivation of these poles
is given in Appendix E. Under the assumptions mentioned
there, the first pole can be approximated by:

s1 ∼= −
2− bf

2− b
·
1

τ1
(25)

5



in which f is defined as:

f ≡
e− 2

e− a
(26)

Note that for a square resistance law e = 2 ⇒ f = 0. The
second pole can be approximated by:

s2 ∼= −
1

τ2
(27)

This shows that, under normal conditions where τ2 << τ1,
the first pole (in absolute sense) is smaller than the inverse
of the ship speed time constant while the second pole cor-235

responds to the inverse of the shaft speed time constant. In
normal conditions both poles of the system lie in the left-
hand half plane and the core propulsion system is a stable
system. The conditions under which the core propulsion
system becomes locally unstable can however be derived240

by determining the circumstances under which the poles
of the system (or at least one of the two) lie in the right-
hand half plane. This analysis is carried out further on in
this paper.
An analytic derivation of all zeros and zero frequency (DC)245

gains (indicating the gain as ω approaches 0 rad/s) of the
8 transfer functions would lead too far for this paper. An
overview of the results of a complete analysis is however
given in Table 1. Closer inspection shows that for reason-
able values of a, b, p and q, the zero related to the transfer250

function
δv∗

s

δθ∗
can lie in the right hand half plane, which

indicates a non-minimum phase system. In the follow up
paper it is shown that the non-minimum phase behaviour
quickly disappears after extension of the linearised model
with a diesel engine.255

The DC-gains of the transfer functions are relevant since
they are the sensitivity of the system states to steady state
variations in the four inputs. Note that these gains sim-
plify significantly for quadratic resistance curves, where
e = 2 and as a result f = 0.260

5. Core system frequency domain behaviour

To get a feeling for the relevance of the transfer func-
tions of the core propulsion system, as given by Eqs. (15)
to (22), they are implemented in MATLAB. Realistic val-
ues of the parameters a, b, p, q, e, τn and τv have been265

determined for a frigate at low cruising speed and are given
in Table 2, which also includes some other (derived) pa-
rameters which are used in the derivation of the Laplace
transfer functions.
The eight Bode plots related to the two system states δn∗

270

and δv∗s of the core system are shown in Fig. 9, where the
response of shaft speed is shown in the left column and the
response of ship speed is shown in the right column. An
example of how to interpret the Bode plots is given here:
The gain of the Bode plot δn∗

δw∗
of the core system is 0.60275

at a frequency of 0.1 rad/s, with a phase of -185 degrees
(Fig. 9g). This means that at that particular frequency

a sinusoidal wake variation of 10% results in a sinusoidal
variation of shaft speed of 6%, with a phase lag of 185 de-
grees. The resulting ship speed variation is much smaller:280

only 0.9% with a phase lag of 38 degrees. With this inter-
pretation in mind some general observations can be made
about these Bode plots:
For the response of shaft and ship speed to engine torque
(Figs. 9a and 9b) and resistance variations (Figs. 9e and 9f)285

the gain falls off gradually with the exception of shaft
speed responding to engine torque which remains high un-
til 1 rad/s and only then falls. This behaviour is caused
by a zero lying in the neighbourhood of the low frequency
pole which forces the amplitude ratio to remain high until290

the high frequency pole is passed.
The response of shaft speed to wake speed variations
(Fig. 9g) also remains quite straight, up to a frequency
of 1 rad/s. Its zero almost completely corresponds to the
lowest pole frequency. As a result, for wake speed varia-295

tions the system almost completely behaves as a first order
system with a time constant corresponding to the high fre-
quency pole.
The response of ship speed to wake variations (Fig. 9h) is
smaller to begin with and falls off much faster, although300

it also is held back somewhat by a zero lying between the
two poles.
The response of shaft speed to pitch variations (Fig. 9c) is
very sensitive up to a frequency of 0.5 rad/s, again because
its zero is located very close to the lowest pole. After this305

the transfer function drops of steeply again due to the pole
related to the shaft speed.
The response of ship speed to pitch (Fig. 9d) is much
smaller again, both static and at higher frequencies. The
final descent is initially held back again by a zero lying310

close to the low frequency pole. Around 0.5 rad/s the
transfer function drops steeply again.
Note that a comparison of the linear model behaviour and
non-linear model behaviour is given in the follow up paper.

6. Stability Analysis315

The stability of a linear system depends on the location
of the poles in the complex plane. Appendix E shows that
the two poles of the core propulsion system are:

s1,2 =
−(1 + ζ)±

√

(1 + ζ)2 − 2−bf
2−b

· 4 · ζ

2 · ζ · τ1
(28)

where
ζ ≡

τ2
τ1

(29)

Normally the two poles both are non-complex, have nega-
tive real part and thus the system is stable. In particular
cases the poles can however become complex with nega-
tive real parts. In the latter case the system is stable but
will show a decaying oscillatory behaviour following a step320

input. In case the poles have positive real parts the lin-
earised system is (locally) unstable. This does however
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Figure 9: Open loop Bode plots of shaft speed and ship speed. Poles are indicated by ”∗” and zeros are indicated by ”0”.
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Table 1: Core system zeros, poles and DC-gains.

Zero [s−1] Pole 1 [s−1] Pole 2 [s−1] DC-gain G(s)|s=0
δn∗

δM∗

b

− 1
τ1

≈ − 2−bf
2−b

· 1
τ1

≈ − 1
τ2

1
2−bf

δn∗

δα∗
none 1−f

2−bf
· b
2−a

δn∗

δw∗
− 2−af

2−a
· 1
τ1

2−af
2−bf

· b
2−a

δn∗

δθ∗
−
(

1 + p
q
· b(1−f)

2−a

)

· 1
τ1

− 1
2−bf

·
(

q + p · b(1−f)
2−a

)

δv∗

s

δM∗

b

none 1−f
2−bf

δv∗

s

δα∗
− 1

τ2
− 1−f

2−bf
· 2−b
2−a

δv∗

s

δw∗
− 2

2−b
· a−b

a
· 1
τ2

− 2(1−f)
2−bf

· a−b
2−a

δv∗

s

δθ∗
−
(

1− q
p
· 2−a
2−b

)

· 1
τ2

− 1
2−bf

·
(

q − p · 2−b
2−a

)

Table 2: Variables and parameters at operating point under consid-
eration.

X0 16.09 [mm]
Mb,0 9.10E+04 [Nm]
n0 1.67 [rps]
J0 0.93 [-]
F0 1.90E+05 [N]
vs,0 6.83 [m/s]
KT,0 0.115 [-]
KQ,0 0.0245 [-]
mship 3211000 [kg]
Ip 68000 [kgm2]

a -5.4036 [-]
b -3.499 [-]
p 6.58 [-]
q 5.0245 [-]
e 1.861 [-]
τn 7.83 [s]
τv 115.69 [s]

τ1 15.93 [s]
τ2 1.42 [s]
s1 approx -0.0233 [s−1]
s2 approx -0.7019 [s−1]
s1 exact -0.0208 [s−1]
s2 exact -0.7438 [s−1]

not automatically mean that the real (non-linear) system
is globally unstable. Further analysis of the importance of
such a local stability should be supported by a non-linear325

model, which shows whether and where a new equilibrium
exists. From an engineering perspective however local un-
stable behaviour normally is undesireable, even if the sys-
tem is globally stable and will find an equilibrium.
The conditions under which the core propulsion system330

has real or complex poles and is stable or unstable is a
multi-dimensional problem due to the 5 variables involved
in Eq. (28): a, b, e (because f is a combination of a and
e), and τv plus τn (because these together determine τ1,
τ2 and ζ). An analysis can be made by setting τv and τn335

to realistic values. Subsequently, for a given value of nor-
malised resistance curve steepness e, the pole locations can
be calculated in a domain spanned by propeller derivatives
a and b. A meaningful visualisation of the results can be
given by a complex phase plot which makes use of domain340

colouring such as given in Fig. 10. The figures present
the phase angle of the two poles of the system for 4 dif-
ferent resistance curve steepness values. The normal case
where a pole is negative and real is indicated by the white
area. Left hand plane complex poles are coloured light345

grey, while right hand plane complex poles are coloured
dark grey.
The reasoning behind the selected values of e is as follows:
a value of e = 4 (the two top figures) indicates a very
steep resistance curve while a value of e = 2 indicates a350

quadratic resistance curve. The range between these two
values is very typical for a large speed range of displace-
ment ships. A value of e = 0 reflects specific parts of the
typical resistance curve of planing vessels (see for instance
the resistance curve of the double chined planing monohull355

as studied by van Deyzen (2008). A value of e = −2 in-
dicates negative resistance steepness which can only occur
locally in the transition from a displacement regime to a
planing regime. To have some reference, note that in the
example case presented in this paper, e = 1.86 ≈ 2, and360

the propeller derivatives are a = −5.4 and b = −3.5.
Figs. 10a and 10b show that at e = 4 (much steeper than
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the example case) it is highly unlikely that instability will
occur. Even in case the propeller derivatives would for
some reason get close to or slightly above zero there is365

sufficient margin with respect to the dark grey or even
medium grey area.
Figs. 10c and 10d show a similar situation at e = 2, al-
though in this case the region of instability is increased
due to the first pole. It is however unlikely that, even un-370

der extreme cavitating conditions resulting in both torque
and thrust breakdown leading to positive a and positive
b, the operating point will come into the unstable region
a > 2.
Figs. 10e and 10f show the situation at e = 0, where the375

region of instability has increased even more due to pole
1. Instability could perhaps occur in case the propeller
thrust derivative a becomes less negative (due to for in-
stance cavitation), while at the same time the propeller
torque derivative b undergoes little change. Whether this380

is physically possible is questionable because it is expected
that torque and thrust breakdown go hand in hand, which
is confirmed by the open water diagrams including cavita-
tion as published by Kuiper (1992).
Figs. 10g and 10h show that the stable region becomes385

small, which is in line with what one would expect at
e = −2. However, in the real non-linear world such a
negative ship resistance steepness would only result in a
local temporary unstable condition, and with increase of
ship speed following the drop in resistance, a stable region390

with positive e will be found again. An example of lo-
cal instability related to a local negative steepness e of the
ship resistance curve is investigated by Figari and Altosole
(2007).
As was shown here, the stability of the core propulsion395

system in a specific operating point depends on the nor-
malised propeller derivatives a and b, the normalised re-
sistance curve steepness e and τn and τv. For normal
ships and propulsion systems occurrence of instability is
unlikely, especially because similar results were found for400

other combinations of realistic values of τn and τv. An
instability that could occur is related to a negative or zero
resistance curve steepness, even though such a situation is
only very local. One could for instance think of hydrofoils
or other vessels with very pronounced resistance humps.405

Other potentially (locally) unstable propulsion systems
might include propulsors such as supercavitating or sur-
face piercing propellers of which the open water diagrams
can show positive propeller derivatives at low advance ra-
tios.410

Although the above discussion on system stability is highly
academic, the linearised theory could help to identify po-
tential local instabilities of nonconventional ships or sys-
tems. It should however be noted that the stability anal-
ysis as carried out here only includes the core propulsion415

system, without actuators and control system. In future
work the stability analysis could be extended to controlled
propulsion systems. It should also be noted that the lin-
earised system only helps to identify potential stability is-

sues but to investigate the potential consequences for ship420

operation a non-linear model is to be used.

7. Conclusions and Recommendations

In this paper a linearised model of the core ship propul-
sion system was derived in a transparent step by step man-
ner, leading to Bode plots of the system. Verification of425

the linearised model by comparing its output with the out-
put from a non-linear model is not reported here, but is
included in a follow up paper. Furthermore, an analysis of
the stability of the core system was carried out, revealing
the regions where stability issues might occur. In case a430

local stability issue is indicated by the linear model it is
advised to use a non-linear model to investigate its conse-
quence.
The model derived in this paper provides a solid framework
for further work aiming at understanding and improving435

dynamic behaviour of ship propulsion plants, especially
sailing in waves. The linearised model can also be used to
determine initial settings of controller parameters, which
can subsequently be tested in a non-linear model. There
are a multitude of refinements, variations and extensions440

that can be made to the linearised model:
In this paper the core system is modelled, which means
that the static and dynamic characteristics of the relevant
actuators (the prime mover and the CPP actuation mech-
anism) are not included. It is therefore recommended to at445

least add a prime mover to the core model. The required
richness of such a prime mover sub-model depends on the
goal that one has with the overall model. For specific cases
a static fuel rack map might be sufficient, although a diesel
engine model could also be enriched by for instance includ-450

ing dynamics of the turbocharger if interest goes out to
other diesel related variables besides engine torque. Fur-
thermore a completely different type of prime mover (such
as an electric motor or gas turbine) could be selected and
modelled. Extension of the current core model with a CPP455

hydraulic system is required for model based development
of more intelligent multi-variable controllers.
With respect to the propeller the assumption is made that
it is a ”static” element which does not add dynamics to
the system. This in fact is not true for high frequency460

wakefield variations. To improve understanding of un-
steady propeller dynamics and to investigate whether this
dynamic effect is important for normal operations it is rec-
ommended to develop and implement a dynamic propeller
model into the core linearised model. Another recommen-465

dation is to model and include a ducted propeller and a
water jet into the model. Earlier work related to time
domain modelling of dynamic performance performance is
reported by Healey et al. (1995), Bachmayer et al. (2000),
Blanke et al. (2000) and Pivano et al. (2006). Non-linear470

time domain modelling of water jets is reported by
Altosole et al. (2012) and Campora et al. (2011).
The work regarding the stability analysis of the core sys-
tem can be extended by considering the stability of a con-
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Figure 10: Complex phase plot with domain colouring, τn = 8s, τv = 115s. The most dark area indicates instability (right hand plane
complex poles). The medium grey colour indicates damped oscillatory behaviour (left hand plane complex poles). The white area indicates
left hand plane poles without imaginary part.
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trolled propulsion system including actuators such that the475

effect of controller gain settings on stability margins can
be made explicit. Another aspect that can be taken up is
the systematic gathering and analysis of τv and τn for a
variety of ship types. A collection of their values and ratio
could perhaps give valuable insight into the differences and480

similarities between the behaviour of the propulsion plants
of for instance fast and slender lightweight ships compared
to slower full-bodied ships.
Besides all aforementioned aspects it is strongly recom-
mended to strengthen future development by, in parallel485

to the theoretical path, pursuing both a model-scale veri-
fication and a full-scale validation path.
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Appendix A. Nomenclature565

Appendix A.1. Notation

a normalised propeller derivative [-]
b normalised propeller derivative [-]
c constant
D propeller diameter [m]
e general exponent
e normalised resistance steepness [-]
F force [N]
f coefficient [-]
I moment of inertia [kgm2]
i gearbox ratio [-]
J advance ratio [-]
M torque [Nm]
m mass [kg]
n rotation speed [[rps]
P propeller pitch [m]
p normalised propeller derivative [-]
Q torque [Nm]
q normalised propeller derivative [-]
R resistance [N]
t time [s]
t thrust deduction factor [-]
v speed [m/s]
w wake fraction [-]

α resistance factor [-]
β hydrodynamic inflow angle
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ζ ratio of time constants [-]
η efficiency [-]
θ propeller pitch angle [deg]
ρ density [kg/m3]
τ time constant [s]
τ integration constant [s]
ω frequency [rad/s]

Appendix A.1.1. Subscripts

0 nominal
a advance
b brake
n shaft speed loop
p polar
prop propeller
Q torque
R relative rotative
r resultant
s ship
s shaft
T thrust
t tangential
trm transmission
v ship speed loop

Appendix B. Normalisation and Linearisation

Assume a variable that is the product of powers of other
variables:

Z = c · Y e ·X (B.1)

where c is a constant multiplier and e is a constant expo-
nent. In an equilibrium point the variable Z equals:

Z0 = c · Y e
0 ·X0 (B.2)

Normalisation of Eq. (B.1) by Eq. (B.2) results in:

Z

Z0
=

(

Y

Y0

)e

·
X

X0
(B.3)

If, by definition,

X∗ ≡
X

X0
, Y ∗ ≡

Y

Y0
, Z∗ ≡

Z

Z0
(B.4)

then:

Z∗ = Y ∗e ·X∗ (B.5)

Now that the constant value c has been removed by the
normalisation, the next step is to remove the non-linearity
from Eq. (B.5). Differentiation of Eq. (B.3) by using the
chain rule gives:

dZ

Z0
=

(

Y

Y0

)e

·
dX

X0
+ e ·

(

Y

Y0

)e−1

·
X

X0
·
dY

Y0
(B.6)

Near equilibrium dX , dY and dZ become small increments570

δX , δY and δZ. Division of X = X0 + δX by X0 delivers
X
X0

= 1 + δX
X0

and likewise Y
Y0

= 1 + δY
Y0

. Substitution of
this in Eq. (B.6) gives:

δZ

Z0
=

(

1 +
δY

Y0

)e

·
δX

X0

+e ·

(

1 +
δY

Y0

)e−1

·

(

1 +
δX

X0

)

·
δY

Y0
(B.7)

Taylor series expansion of Eq. (B.7) and neglecting the
second- and higher order terms leaves:

δZ

Z0
=

δX

X0
+ e ·

δY

Y0
(B.8)

which by introduction of the shorthand notation for dif-
ferential increment

δZ∗ ≡
δZ

Z0
≡

Z

Z0
− 1 (B.9)

this can be written as:

δZ∗ = δX∗ + e · δY ∗ (B.10)

The latter equation relates the relative change in output Z
to the relative change in inputs X and Y , where the con-575

stant e, which was present as an exponent in the original
Eq. (4) has changed to a constant multiplication factor.
Secondly the multiplication of X and Y has turned into a
summation. For further background on the linearisation
process reference is made to Dorf and Bishop (2001) and580

Franklin et al. (1986).
The demonstrated concepts of normalisation and linearisa-
tion are the basis for the following section where they will
be applied to the shaft and ship speed loop of the general
ship propulsion block diagram.585

Appendix C. Linearisation of shaft speed and ship

speed loop

Appendix C.1. The shaft speed loop

The shaft speed dynamics are described by:

2π · Ip ·
dn

dt
= Ms −Mprop (C.1)

in which shaft inertia is assumed constant implying that
change of mass of water, entrained by the propeller, is
neglected. Both shaft and propeller torque vary around
equilibrium:

Ms = Ms,0 + δMs (C.2)

Mprop = Mprop,0 + δMprop (C.3)

In a steady nominal condition the shaft and propeller
torque are equal. In that case:

Ms,0 = Mprop,0 (C.4)
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and only the small increments are of importance. This
is shown by substitution into Eq. (C.1) and division by
nominal torque:

2π · Ip
Ms,0

·
n0

n0
·
dn

dt
=

δMs

Ms,0
−

δMprop

Mprop,0
(C.5)

Note that this division is only valid for a nominal point
that is in equilibrium. Defining the integration constant
of the shaft system as:

τn ≡
2π · Ip · n0

Ms,0
(C.6)

and defining the normalised shaft speed time-derivative as:

1

n0
·
dn

dt
≡

dn∗

dt
(C.7)

delivers:

τn ·
dn∗

dt
= δM∗

s − δM∗

prop (C.8)

The variables at the right-hand side require further elab-
oration. The brake engine torque Mb is related to Ms via
the gearbox reduction i and the transmission efficiency
ηtrm:

Ms = i · ηtrm ·Mb (C.9)

Normalizing and assumption of constant transmission ef-
ficiency gives:

δM∗

s = δM∗

b (C.10)

Neglecting the change of relative rotative efficiency, the
propeller torque M∗

prop equals Q∗:

δM∗

prop = δQ∗ (C.11)

Open water torque Q is related to shaft speed n via the
torque coefficient KQ which comes from the open water
diagram: Q = ρ ·n2 ·D5 ·KQ. Following the mathematical
basis from the previous section this reduces to the follow-
ing linear equation:

δQ∗ = 2 · δn∗ + δK∗

Q (C.12)

KQ is a function of both the advance coefficient J and
the propeller pitch θ: KQ = f(J, θ). This relation can be
expressed as:

δKQ

KQ,0
= b ·

δJ

J0
+ q ·

δθ

θ0
(C.13)

with the normalised propeller derivatives b and q defined
as:590

b ≡
J0

KQ,0
·
δKQ

δJ

∣

∣

∣

∣

θ

, q ≡
θ0

KQ,0
·
δKQ

δθ

∣

∣

∣

∣

J

(C.14)

which can be determined using the open water diagram
and normalising with equilibrium conditions. Asterisk no-
tation gives:

δK∗

Q = b · δJ∗ + q · δθ∗ (C.15)

The normalisation and linearisation of advance ratio J ,
advance velocity va and wake fraction w is not fully written
out here, but given as:

J =
va

n ·D
⇒ δJ∗ = δv∗a − δn∗ (C.16)

va = (1− w) · vs ⇒
δva
va,0

=
δvs
vs,0

−
δw

1− w0
⇒

δv∗a = δv∗s − δw∗ (C.17)

Note that contrary to the transmission losses and the rela-
tive rotative efficiency the change of wakefraction is taken
into account:

δw∗ =
δw

1− w0
(C.18)

The mathematical description of the shaft speed loop
can be written down in short by substitution of Eqs.
(C.10), (C.11), (C.12), (C.15), (C.16) and (C.17) into Eq.
(C.8). The result gives the relation between shaft acceler-
ation, the two state variables δn∗ and δv∗s and the inputs
δM∗

b , δw
∗ and δθ∗:

τn
dn∗

dt
= δM∗

b − (2− b)δn∗ − bδv∗s + bδw∗ − qδθ∗ (C.19)

Appendix C.2. The ship speed loop

The dynamics of translational speed of the ship as a
differential equation is given by:

mship ·
dvs
dt

= Fprop − Fship (C.20)

Note that the ship mass is assumed constant, implying
that the change of mass of water, entrained by the hull, is
assumed constant.
In the nominal condition:

Fprop = Fprop,0 + δFprop (C.21)

Fship = Fship,0 + δFship (C.22)

assuming equilibrium:

Fprop,0 = Fship,0 (C.23)

so that:

mship ·
dvs
dt

= δFprop − δFship (C.24)

Division by the nominal force and introducing the integra-
tor constant of ship translation:

τv ≡
mship · vs,0
Fship,0

(C.25)

and
1

vs,0
·
dvs
dt

≡
dv∗s
dt

(C.26)

gives

τv ·
dv∗s
dt

= δF ∗

prop − δF ∗

ship (C.27)
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The forces on the right- hand side now require elaboration.
The ship force Fship is replaced by the resistance force R:

δFship

Fship,0
=

δR

R0
⇒ δF ∗

ship = δR∗ (C.28)

Note that this replacement is carried out to allow for in-
clusion of additional forces at a later stage, such as for
instance due to a fishing net or dredging suction head
dragging over the bottom. Assume the resistance curve
as:

R = α · ves ⇒
δR

R0
=

δα

α0
+ e ·

δvs
vs,0

(C.29)

In asterisk notation this gives:

δR∗ = δα∗ + e · δv∗s (C.30)

Obviously the normalised steepness e of the resistance
curve is formally defined as:

e ≡
vs,0
R0

·
δR

δvs

∣

∣

∣

∣

α

(C.31)

The force delivered by the number of propellers ”kp” is a
result of the open water thrust T and the thrust deduction
factor t:595

Fprop = kp · (1− t) · T ⇒
δFprop

Fprop,0
=

δT

T0
−

δt

1− t0
(C.32)

If the thrust deduction factor is assumed constant, then:

δF ∗

prop = δT ∗ (C.33)

The open water thrust T is obtained by:

T = ρ · n2 ·D4 ·KT ⇒
δT

T0
= 2 ·

δn

n0
+

δKT

KT,0
⇒

δT ∗ = 2 · δn∗ + δK∗

T(C.34)

The thrust coefficient is treated in the same way as the
torque coefficient: KT is a function of both the advance
ratio J and the propeller pitch: KT = g(J, θ). This rela-
tion can be expressed as:

δKT

KT,0
= a ·

δJ

J0
+ p ·

δθ

θ0
(C.35)

with the normalised propeller derivatives a and p defined
as:

a ≡
J0

KT,0
·
δKT

δJ

∣

∣

∣

∣

θ

, p ≡
θ0

KT,0
·
δKT

δθ

∣

∣

∣

∣

J

(C.36)

so that in asterisk notation:

δK∗

T = a · δJ∗ + p · δθ∗ (C.37)

The linearised differential equation for the ship speed loop
is obtained by substitution of Eqs. (C.16), (C.17), (C.28),
(C.30), (C.33), (C.34) and (C.37) into Eq. (C.27). The

+
+ -

Shaft

rotation

dynamics

∫ 

ττττN

δMprop
*

= δQ*

δMb
*

= δMS
*

δn*

2

+

δKQ
*

δn*

δJ*

δvA
*

δvS
*

δw*

δθ*

q

b2.δn*

+

+

+- +
-

-+

Ship 

translation

dynamics
2.δn*

p

a

δKT
*

δT*

= δFprop
*

δFship
*

= δR*

δvS
*δvS

*

∫ 

ττττV

e

e.δvS
*

δα*

+

+

+
+ +

+

δn*

Figure C.11: Vertically oriented linearised block diagram of the core
propulsion system.

result gives the relation between ship acceleration, the two
system states and δα∗, δw∗ and δθ∗.

τv
dv∗s
dt

= (2−a)δn∗−(e−a)δv∗s−δα∗−aδw∗+pδθ∗ (C.38)

Concatenation of Eqs. (C.8), (C.10), (C.11), (C.12),
(C.15), (C.16), (C.17), (C.27), (C.28), (C.30), (C.33),
(C.34) and (C.37) in block diagram form leads to Fig. C.11.
Note that many other equivalent block diagrams can be600

drawn and the version shown here not necessarily has the
simplest form. It does however clearly demonstrate the
relation with the non-linear block diagram as shown in
Fig. 2.

Appendix D. Linearisation of four quadrant pro-605

peller performance

Although in the main text only the one quadrant J −
KT −KQ diagram was considered, a system modelled with
a four quadrant β−C∗

T−C∗

Q diagram can also be linearised.
In the four quadrant framework the inflow angle β is de-610

fined as:

β = arctan
( va
0.7πnD

)

(D.1)

By application of the Taylor expansion of arctan(x) and
neglecting higher order terms we get :

β = arctan
( va
0.7πnD

)

≈
va

0.7πnD
(D.2)

Normalisation of the differential increment gives:

δβ∗ = δv∗a − δn∗ (D.3)

The four quadrant thrust and torque coefficients are de-
fined as:

C
′

T =
T

1/2ρv2rπ/4D
2
=

T

ρv2rπ/8D
2

(D.4)

C
′

Q =
Q

1/2ρv2rπ/4D
3
=

Q

ρv2rπ/8D
3

Note that by convention the four quadrant thrust and
torque coefficients C∗

T and C∗

Q are noted with an asterisk.
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In this paper this convention is not kept to avoid using
double asterisk notation. Instead the C

′

T and C
′

Q notation
is used to indicate the use of four quadrant coefficients.
Further note that vr is the resultant inflow speed, based
on axial inflow va and tangential inflow vt = 0.7πnD via:

v2r = v2a + v2t (D.5)

Therefore

(vr,0 + δvr)
2 = (va,0 + δva)

2 + (vt,0 + δvt)
2 (D.6)

which can be written out as:

v2r,0 + 2vr,0δvr + δv2r = (D.7)

v2a,0 + 2va,0δva + δv2a + v2t,0 + 2vt,0δvt + δv2t

Neglecting higher order terms and simplification gives:

vr,0δvr = va,0δva + vt,0δvt (D.8)

Normalisation with v2r,0 gives615

δvr
vr,0

=
va,0δva
v2r,0

+
vt,0δvt
v2r,0

(D.9)

which equals:

δvr
vr,0

=

(

va,0
vr,0

)2
δva
va,0

+

(

vt,0
vr,0

)2
δvt
vt,0

⇒ (D.10)

δv∗r = zδv∗a + (1− z)δv∗t = zδv∗a + (1− z)δn∗

in which

z =

(

va,0
vr,0

)2

= sin2 β0 (D.11)

Analogue to the derivation of propeller derivatives in the
one quadrant open water diagram, the propeller deriva-
tives in the four quadrant diagram are defined as:

a′ ≡
β0

C′

T,0

·
δC′

T

δβ
, p′ ≡

θ0
C′

T,0

·
δC′

T

δθ
(D.12)

b′ ≡
β0

C′

Q,0

·
δC′

Q

δβ
, q′ ≡

θ0
C′

Q,0

·
δC′

Q

δθ

where again the ′ notation is used to indicate use of the620

four quadrant diagram. The thrust and torque coefficients
are now given by:

δC
′
∗

T = a′ · δβ∗ + p′ · δθ∗ (D.13)

δC
′
∗

Q = b′ · δβ∗ + q′ · δθ∗

The thrust and torque are defined by:

T = C
′

T ·
ρv2rπD

2

8
(D.14)

Q = C
′

Q ·
ρv2rπD

3

8

which in asterisk form gives:

δT ∗ = δC
′
∗

T + 2δv∗r (D.15)

δQ∗ = δC
′
∗

Q + 2δv∗r

Finally the four quadrant equivalent version of Eqs. (9)625

and (10) can now be written as:

τn
dn∗

dt
= δM∗

b − (2 − b′ − 2z)δn∗ (D.16)

−(b′ + 2z)δv∗s + (b′ + 2z)δw∗ − q′δθ∗

τv
dv∗s
dt

= (2− a′ − 2z)δn∗ − (e− a′ − 2z)δv∗s (D.17)

−δα∗ − (a′ + 2z)δw∗ + p′δθ∗

Appendix E. Laplace Transfer Functions

The derivation and analysis of the Laplace transfer func-
tions of the core propulsion system based on Stapersma
(2016) is presented in this Appendix. Starting with the
differential Eq. (C.19) for shaft speed, the Laplace opera-
tor is introduced which gives:

(τns+ (2− b)) δn∗ = δM∗

b − bδv∗s + bδw∗ − qδθ∗ (E.1)

which is a first order equation with 4 inputs on the right
hand side. Written in canonical form:630

(τ2s+ 1) δn∗ =

1

2− b
δM∗

b −
b

2− b
δv∗s +

b

2− b
δw∗ −

q

2− b
δθ∗ (E.2)

where the effective time constant of the shaft speed loop
is:

τ2 ≡
τn

2− b
(E.3)

On the right hand side the ship speed appears, for which
another differential equation can be derived analogously.
Starting from Eq. (C.38) this gives:

(τ1s+ 1) δv∗s =

2− a

e − a
δn∗ −

1

e− a
δα∗ −

a

e− a
δw∗ +

p

e− a
δθ∗ (E.4)

where the effective time constant of the ship speed loop is:

τ1 ≡
τv

e− a
(E.5)

Substitution of Eq. (E.4) into Eq. (E.2) and grouping
together gives:635

(

τ1τ2s
2 + (τ1 + τ2)s+ 1 +

b

2− b
·
2− a

e− a

)

δn∗ =

+
1

2− b
(τ1s+ 1) δM∗

b

+
b

2− b
·

1

e− a
δα∗

+
b

2− b

(

τ1s+ 1 +
a

e− a

)

δw∗

−
q

2− b

(

τ1s+ 1 +
b

q
·

p

e− a

)

δθ∗(E.6)
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which is a second order system with 4 inputs on the right
hand side. This results in four transfer functions for shaft
speed, which are given in Section 4. The transfer func-
tions for ship speed can be derived by substitution of Eq.
(E.2) into (E.4) in order to eliminate shaft speed. With-
out giving the full derivation this leads to the 4 transfer
functions also given in Section 4.
Analytical derivation of the poles of these 8 transfer func-
tions helps to understand the conditions under which the
system is stable or unstable. The derivation of these poles
starts with the characteristic equation by setting the de-
nominator of the transfer functions to zero:

τ1τ2s
2 + (τ1 + τ2)s+ 1 +

b

2− b
·
2− a

e − a
= 0 (E.7)

Introduce:

1− f ≡
2− a

e− a
(E.8)

or

f ≡
e− 2

e− a
(E.9)

Note that for a square resistance law e = 2 ⇒ f = 0.
Reshuffle the constant part of the characteristic equation
such that:

1 +
b

2− b
(1 − f) =

2− bf

2− b
(E.10)

Also introduce the ratio of the two effective time constants:

ζ ≡
τ2
τ1

(E.11)

Normally the shaft speed loop is much faster than the ship
speed loop meaning that its time constant is much shorter:
τ2 < τ1, in which case ζ < 1. By replacing the effective
time constant of the shaft speed loop by its ratio with the
ship speed time constant τ2 = ζ · τ1, the characteristic
equation becomes:

ζ · τ21 · s2 + (1 + ζ)τ1s+
2− bf

2− b
= 0 (E.12)

Division by τ1 gives:

ζ · τ1 · s
2 + (1 + ζ)s+

2− bf

2− b

1

τ1
= 0 (E.13)

The poles of the characteristic equation are obtained with
the ABC formula and are given by:

s1,2 =
−(1 + ζ)±

√

(1 + ζ)2 − 2−bf
2−b

· 4 · ζ

2 · ζ · τ1
(E.14)

These poles can be calculated directly or can be approxi-
mated in case τ2 << τ1 ⇒ ζ << 1. In that case:

s1,2 =
−(1 + ζ)± (1 + ζ)

√

1− 2−bf
2−b

· 4·ζ
(1+ζ)2

2 · ζ · τ1

∼=
−(1 + ζ) ± (1 + ζ)

(

1− 1
2
2−bf
2−b

· 4·ζ
(1+ζ)2 . . .

)

2 · ζ · τ1

∼=
−(1 + ζ)± (1 + ζ)

(

1− 2−bf
2−b

· 2 · ζ(1− 2ζ . . .) . . .
)

2 · ζ · τ1

∼=
−(1 + ζ)±

(

1 + ζ − 2−bf
2−b

· 2 · ζ . . .
)

2 · ζ · τ1
(E.15)

The first pole is approximated by:

s1 ∼=
−(1 + ζ) +

(

1 + ζ − 2−bf
2−b

· 2 · ζ
)

2 · ζ · τ1

∼= −
2− bf

2− b
·
1

τ1
(E.16)

and the second pole is approximated by:

s2 ∼=
−(1 + ζ)−

(

1 + ζ − 2−bf
2−b

· 2 · ζ
)

2 · ζ · τ1

∼= −
1

ζ · τ1
+

b(1− f)

2− b
·
1

τ1

∼= −
1

τ2
(E.17)
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