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Summary

The transition towards renewable energy in the Netherlands has significantly increased the share of
intermittent energy sources such as wind and solar power, amplifying electricity grid congestion. Grid
congestion occurs when energy generation and demand exceed network capacity, causing reliability
issues, renewable energy curtailment, and delays in connecting new consumers. To alleviate this,
the Dutch Authority for Consumers and Markets (ACM) introduced Alternative Transport Rights (ATR),
offering conditional grid access through Time-Duration-Based Transport Rights (TDTR) and Time-Block-
Based Transport Rights (TBTR). Thesemechanisms incentivize large energy consumers (LECs) to shift
their electricity consumption from peak to off-peak times, thereby optimizing grid capacity utilization.

Despite the promising nature of ATR, limited practical guidance exists on how large energy consumers
can adapt operational practices and integrate technological solutions to comply effectively with these
new regulatory instruments. This thesis aims to bridge this gap by exploring how LECs can optimize
operational and data-driven practices for ATR compliance and assessing the subsequent impacts on
grid congestion and the Dutch electricity system. The central research question guiding the thesis is:

”How can large energy consumers in the Dutch electricity market adapt their operational and
data-driven practices to effectively utilize new alternative transport rights, and what impact
will these adaptations have on grid congestion?”

To address this question, the research employed a mixed-methods approach. Initially, a qualitative
analysis comprising a systematic literature review and stakeholder interviews identified regulatory re-
quirements, flexibility potentials, and operational strategies. These insights informed scenario develop-
ment, defining sector-specific flexibility potentials under different ATR adoption levels. Subsequently,
an agent-based modeling (ABM) simulation using the ASSUME framework assessed the impact of
these scenarios on the Dutch national and regional electricity grids.

The qualitative analysis identified significant challenges facing ATR adoption, including upfront invest-
ment requirements for advanced metering and control technologies, organizational inertia, compliance
risks, and limited awareness of ATR benefits. A particularly critical barrier is the misalignment be-
tween existing tariff structures and the goals of demand flexibility; for instance, peak-based pricing
components can inadvertently penalize load-shifting behavior that supports grid stability. Interviews
highlighted the critical role of Enterprise Data Management (EDM) and digital infrastructure in opera-
tionalizing flexibility. High-resolution sub-metering, Energy Management Systems (EMS), automation,
and behavioral strategies emerged as key enablers of effective ATR compliance.

In the quantitative analysis, simulation results demonstrated that TDTR significantly reduced peak elec-
tricity loads at the national level, improving overall demand stability and grid congestion management.
However, shifting demand under TDTR also led to higher reliance on fossil-based generation during
off-peak hours, resulting in modest electricity price increases. At the regional level, TBTR effectively
redistributed peak demand into predetermined off-peak nighttime periods, substantially improving grid
congestion under partial adoption (Hybrid scenario). Nonetheless, rigid load-shifting in the Full TBTR
scenario led to unintended secondary peaks, suggesting a need for more adaptive implementation
strategies.

The thesis concludes by offering practical recommendations to support the effective implementation
of Alternative Transport Rights across the electricity system. For large energy consumers, it empha-
sizes the importance of investing in detailed sub-metering, automation technologies, and EDM systems.
These tools are essential for unlocking operational flexibility and ensuring compliance with ATR require-
ments.

System operators are advised to carefully monitor the impact of ATR-induced demand shifts, particularly
under full adoption of TBTR, where inflexible scheduling can lead to unintended secondary congestion

ii



iii

peaks. Furthermore, improving communication with large energy consumers about the structure, avail-
ability, and potential benefits of ATR contracts is essential to raise awareness and support effective
adoption.

For policy makers, the study highlights the need to revise existing tariff structures to better align with
the objectives of flexibility and congestion management. It also recommends providing financial incen-
tives to support investments in the necessary digital infrastructure and launching targeted awareness
campaigns to encourage wider adoption and understanding of ATR among potential participants.

Finally, the thesis emphasizes the need for ongoing research into dynamic market and behavioral adap-
tations, the inclusion of redispatch costs in economic evaluations, and further exploration of comple-
mentary technologies such as battery storage and demand-side resources. The thesis underscores
ATR’s potential to contribute significantly to grid stability and economic efficiency in the context of the
Dutch energy transition, provided that technical, organizational, and regulatory barriers are adequately
addressed.
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1
Introduction and Research Design

1.1. Introduction
The transition to renewable energy is a critical global priority, and the Netherlands is no exception. As
the country integrates sustainable energy sources like wind and solar power, the strain on the existing
electricity grid has intensified, revealing a critical issue: grid congestion. Grid congestion occurs when
the electricity grid is unable to accommodate all the energy generated or consumed at a given time.
This problem has become particularly acute in the Netherlands, where the rapid increase in renewable
energy production has created significant bottlenecks within the distribution network [1, 2]. As a result,
energy suppliers and consumers face challenges that include curtailment of renewable energy produc-
tion, inefficient energy utilization, and substantial delays in connecting new housing developments and
businesses to the grid. Currently, nearly 10,000 companies face grid connection delays ranging from
7 to 10 years [3, 4, 5], highlighting the need for scalable, short-term interventions.

Although long-term grid reinforcement remains essential, it is both capital-intensive and time-consuming,
often requiring multi-year permitting and construction timelines [6]. This makes it increasingly impor-
tant to pursue demand-side solutions, particularly flexible electricity use, that can be implemented more
rapidly. These interventions are not only crucial for relieving immediate congestion, but also for achiev-
ing broader policy objectives: reducing carbon emissions, phasing out fossil fuels by 2050 [7], and
promoting equitable access to clean energy across regions [8]. Enhanced grid reliability also under-
pins the electrification of transport and heating, thereby accelerating cross-sectoral decarbonization.

In response to these challenges, the Dutch regulatory authority (Autoriteit Consument &Markt, ACM) in-
troduced Alternative Transport Rights (ATR), comprising Time-Duration-Based Transport Rights (TDTR)
and Time-Block-Based Transport Rights (TBTR). These mechanisms offer reduced tariffs to large en-
ergy consumers (LECs), defined as organizations with a connection exceeding 3x80 ampère [9, 10],
in exchange for flexible electricity usage aligned with grid capacity constraints [9]. Despite this regu-
latory innovation, practical questions remain about their effectiveness and the operational adaptations
required by large energy consumers.

This thesis therefore explores how large energy consumers can redesign their energy management
processes to effectively leverage ATR, thereby alleviating grid congestion and contributing to the Dutch
energy transition goals.

1.2. Problem Statement
Existing research highlights various technical and regulatory approaches for managing grid conges-
tion, such as demand flexibility, energy storage, and demand response techniques [11, 12, 13]. While
technological solutions such as model predictive control [14, 15] and reinforcement learning [16] of-
fer promising results, these studies typically focus on technical innovations or market mechanisms in
isolation. They rarely provide integrated insights on how organizations can holistically redesign their
operational processes to comply effectively with regulatory instruments such as the newly introduced
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ATR [17, 18, 19].

The introduction of ATR by the ACM represents a significant advancement in congestion management,
yet current literature provides limited practical guidance for large-scale industrial and commercial con-
sumers on adapting their operations to these specific contractual obligations. While studies have ad-
dressed consumer engagement at the residential scale [20, 21], comprehensive approaches tailored
to large-scale energy consumers remain largely underexplored.

Moreover, while agent-based modeling (ABM) has been increasingly used to analyze decentralized
electricity markets, most prior studies have focused on wholesale market behavior, demand response
aggregation, and distributed energy resource (DER) adoption [22]. ABM has proven to be an effec-
tive tool for analyzing smart grids, dynamic market interactions, and prosumer behavior, but limited
applications exist for evaluating the compliance of large-scale consumers with newly introduced regu-
latory instruments. Existing ABM studies predominantly focus on price-based market responses, such
as wholesale market dynamics [22]. While these models offer valuable insights, they often overlook
the operational complexities of complying with regulatory instruments like ATR, which combine finan-
cial incentives with contractual and temporal constraints. Consequently, there is limited research on
how such compliance strategies affect not only firm-level operations but also system-wide outcomes,
particularly their impact on grid congestion patterns and transmission line utilization.

Thus, the central challenge addressed in this thesis involves bridging the gap between regulatory frame-
works, technical energy management strategies, and organizational process adaptations necessary for
large energy consumers to effectively utilize ATR, thereby reducing grid congestion.

1.3. Research Objectives and Questions
Based on the problem formulation and identified knowledge gaps, this thesis aims to answer the follow-
ing research question:

How can large energy consumers in the Dutch electricity market adapt their opera-
tional and data-driven practices to effectively utilize new alternative transport rights,
and what impact will these adaptations have on grid congestion?

To systematically address this central question, four sub-questions were formulated:

1. What are the regulatory requirements of Alternative Transport Rights, and how do they impact
the economic costs and benefits for large energy consumers?

2. How can large energy consumers leverage data and technology to optimize their operational
processes for Alternative Transport Rights compliance?

3. What are the impacts of adopting Time-Duration-Based Transport Rights by large energy con-
sumers on congestion management effectiveness and the overall stability of the Dutch national
grid?

4. What are the impacts of adopting Time-Block-Based Transport Rights by large energy consumers
on congestion management effectiveness and the overall stability of the regional grid?

These sub-questions structure the research by linking qualitative insights to quantitative modeling, al-
lowing comprehensive analysis and practical recommendations.

1.4. Research Design
In this research, a mixed-methods approach was employed, combining qualitative stakeholder insights
with quantitative simulations through agent-based modeling. Given the socio-technical complexity of
the Dutch electricity market, especially in the context of newly introduced ATR, this approach provides
a robust framework for capturing both organizational behavior and system-level dynamics.

The research is structured around four sub-questions, deliberately divided across the two methodolog-
ical components. The qualitative component addresses Sub-Questions 1 and 2, which examine the
regulatory design of ATR and the operational strategies large energy consumersmay adopt in response.
These were investigated through a systematic literature review and semi-structured stakeholder inter-
views. The quantitative component focuses on Sub-Questions 3 and 4, which evaluate the grid-level
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impacts of these adaptations under different ATR configurations. These were explored through the
development and simulation of an agent-based model using the ASSUME framework.

This dual approach enabled methodological triangulation [23], allowing qualitative insights to inform
scenario construction while simulation results validated and enriched the qualitative findings. The inte-
gration of these components strengthened the reliability and applicability of the research, offering both
depth and breadth in addressing the central research question.

The detailed implementation of this research methodology, including data sources, interview protocols,
scenario development, and the structure of the agent-based model, is presented in the next chapter.

1.5. Scientific and Societal Relevance
1.5.1. Scientific Relevance
This research contributes to the academic literature by addressing a notable gap concerning how large
energy consumers operationally adapt to newly introduced regulatory mechanisms, such as alterna-
tive transport rights. By integrating qualitative stakeholder insights with an ABM framework, this thesis
extends the scope of ABM toward evaluating the system-wide impact of contract-driven flexibility, par-
ticularly its effects on grid congestion. This interdisciplinary approach offers novel insights into how
regulatory instruments can be operationalized by firms and how such adaptations influence electricity
system performance.

1.5.2. Societal Relevance
The societal relevance of this research is significant, given the urgent need to alleviate grid congestion
in support of the Netherlands’ energy transition. As renewable energy integration accelerates, effective
use of existing grid infrastructure becomes essential for avoiding costly delays in new housing, busi-
ness development, and decarbonization initiatives. By demonstrating how large energy consumers
can operationalize flexibility under ATR frameworks, this study provides concrete strategies to reduce
peak demand and improve load distribution without requiring immediate grid expansion. In doing so,
it supports the broader public interest: increasing the reliability and affordability of electricity, enabling
cleaner production and electrified transport, and lowering the societal cost of energy infrastructure bot-
tlenecks.

Moreover, by translating policy design into practical adaptation strategies, this work empowers compa-
nies, grid operators, and policymakers to co-developmore effective and socially responsible congestion
management solutions.

1.5.3. Relevance to Master's Program
This thesis aligns closely with the aims of the MSc Complex Systems Engineering and Management
(CoSEM) program, which focuses on addressing complex, multi-actor challenges in socio-technical
systems (STS), defined as interconnected elements fulfilling societal functions [24]. The Dutch electric-
ity grid exemplifies such a system, where technical constraints, regulatory policies, market forces, and
organizational behavior are deeply intertwined.

By applying systems thinking, regulatory analysis, and simulation modeling to a real-world congestion
issue, this research exemplifies CoSEM’s core competencies. It demonstrates the ability to diagnose
system complexity, evaluate stakeholder behavior, and assess policy interventions using both quali-
tative and computational tools. Ultimately, the thesis contributes to a deeper understanding of how
systemic interventions, like ATR, can be embedded within organizational and infrastructural realities
to guide sustainable transitions, reflecting the interdisciplinary ambition and societal mission of the
CoSEM program.



2
Research Approach

This chapter provides a detailed explanation about the approach and methodology that guided this the-
sis. The chapter begins by outlining the qualitative research component (Section 2.1), which includes a
systematic literature review and stakeholder interviews. Next, the quantitative research component is
described (Section 2.2). Section 2.3 then explains how insights from both components were integrated.
Finally, Section 2.4 provides a visual summary of the research process and its contribution to the thesis
objectives.

2.1. Qualitative Research Component
The qualitative research component was structured around two complementary methodologies: a sys-
tematic literature review and stakeholder interviews. These methods provided robust qualitative in-
sights to answer Sub-Questions 1 and 2. Specifically, this qualitative phase aimed to understand reg-
ulatory contexts, technological adaptation strategies, and practical challenges faced by large energy
consumers regarding the newly introduced alternative transport rights.

2.1.1. Systematic Literature Review
The systematic literature review was conducted in two distinct phases. The first phase focused on iden-
tifying academic research relevant to defining the research gap, while the second phase supplemented
these findings with targeted grey literature and technical documentation to inform stakeholder analysis
and scenario development.

Phase 1: Academic Literature Review for Problem Framing
An initial systematic literature review was conducted to establish a solid theoretical and empirical foun-
dation for the research. This review focused explicitly on identifying existing academic studies related
to congestion management, demand response, and energy management practices of large energy con-
sumers. The primary aim was to uncover insights into organizational process redesign, and to assess
how flexible energy contracts could contribute to alleviating grid congestion and enhancing grid stability.
Relevant academic studies were retrieved from established scientific databases, specifically Scopus
and ScienceDirect. Structured search terms were formulated based on terms such as grid congestion,
alternative transport rights, demand flexibility, and energy management. The complete list of search
terms is provided in Table A.1. Articles were screened by reviewing abstracts and conclusions. Inclu-
sion criteria emphasized publication recency, citation count, and contextual relevance, with a focus on
the Dutch and European regulatory landscape.

This initial review revealed a strong body of work on technical solutions such as energy storage [11],
predictive power flow control [12], demand response with DERs [13], model predictive control [14, 15],
and reinforcement learning for energy optimization [16]. However, gaps were identified in the literature
regarding how regulatory frameworks like ATR could be operationalized by large-scale energy users.
In particular, few studies addressed how such users could redesign internal processes or leverage
technology to comply with new contractual requirements [20, 21]. An overview of the reviewed aca-
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demic literature, including the technical and regulatory focus of each study and its relevance to large
consumer adaptation, is provided in Table A.2. These insights informed the research problem, justified
the need for qualitative stakeholder engagement, and shaped the initial formulation of the research
questions.

Phase 2: Supplementary Literature Review
In the second phase of the review, the findings from academic sources were substantiated and ex-
tended through the inclusion of grey literature and additional studies identified via snowballing. This
phase aimed to deepen the contextual understanding of regulatory developments and industry-specific
challenges relevant to ATR implementation. Grey literature sources included government policy doc-
uments, regulatory guidelines, consultation reports, technical studies from energy agencies, and pub-
lications by consultancies active in the Dutch energy sector. These sources offered up-to-date and
practical perspectives on ongoing ATR pilot programs, expected implementation timelines, stakeholder
reactions, and anticipated barriers. Snowballing techniques were used to trace references cited in
core academic papers and to identify complementary studies that addressed emerging themes. This
approach allowed for the integration of niche or recently published materials not yet indexed in major
academic databases, ensuring the review remained current and practically grounded.

Together, the two phases of the systematic review provided both a theoretical framework and a prac-
tical evidence base for the qualitative analysis and scenario construction. While Phase 1 focused on
identifying conceptual and technical gaps in the academic literature, Phase 2 enriched the research
with real-world insights, policy context, and implementation details from grey literature. These com-
bined findings formed the foundation for addressing Sub-Questions 1 and 2, by clarifying the regulatory
requirements of alternative transport rights and identifying the technological and organizational strate-
gies large energy consumers could adopt for compliance. They were also essential for guiding the
stakeholder interviews and for designing realistic, context-informed scenario configurations used in the
agent-based simulations presented in the following sections.

2.1.2. Stakeholder Interviews
To supplement and validate findings from the literature review, semi-structured stakeholder interviews
were conducted as part of a thesis internship at Deloitte. These interviews provided context-specific
insights into the operational realities, organizational barriers, and adaptation strategies relevant to ATR.
The primary objective of these interviews was to address Sub-Questions 1 and 2, which concern the
regulatory design of ATR and the ways in which large energy consumers can adapt their operations to
comply with these new requirements.

Interviews were conducted with three industry professionals directly responsible for energy manage-
ment in large-scale energy-consuming organizations. The first interview (I1) engaged the Deputy En-
ergy Director of a major greenhouse farming enterprise; the second (I2) involved the Energy Manager
at a large flower auctioning company; and the third (I3) was conducted with a Product Manager spe-
cializing in energy management solutions at a firm in electrification and automation technologies. Inter-
viewees were selected to ensure sectoral diversity across key energy-intensive domains, agriculture,
commercial buildings, and industry, each with distinct operational constraints and flexibility potential.
Selection criteria included the relevance of their organization to ATR implementation, the interviewee’s
direct responsibility for energy-related decision-making, and their willingness to participate. This cross-
sectoral lens enabled a comprehensive exploration of how organizational context influences ATR com-
pliance feasibility.

All interviews were conducted via video call, lasting approximately 45–60 minutes each. This medium
facilitated convenience and flexibility for the interviewees, enabling detailed and thoughtful responses.
Each interview followed a structured yet flexible format divided into four distinct parts:

First, general introductory questions were posed to understand the business context and energy con-
sumption profile of each organization. This initial phase helped establish a baseline of operational
characteristics and provided context for interpreting subsequent responses.

Second, interviewees were asked questions regarding their awareness and perception of ATR, aimed
specifically at gaining insights into Sub-Question 1. These questions explored respondents’ under-
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standing of the regulatory framework, perceived challenges, and anticipated impacts of ATR on their
operations.

Third, questions related to energy management strategies were presented to inform Sub-Question 2.
This part focused on practical approaches to operational flexibility, demand response strategies, and
specific actions taken or planned to comply with ATR.

Finally, discussions centered around technology implementation and enterprise data management
were conducted. These questions aimed to provide further insights into Sub-Question 2, particularly
regarding technological readiness, the role of digital infrastructure, and the integration of advanced
data analytics in energy management practices. The complete list of interview questions used to guide
these conversations is provided in Appendix B.

All interviews were conducted in Dutch to enhance participant comfort and encourage detailed re-
sponses. Subsequently, interviews were transcribed for consistency and analytical clarity. A manual
thematic analysis was performed on the qualitative data, involving iterative reviews of transcripts to iden-
tify recurring themes related to operational flexibility, technological readiness, regulatory interpretation,
and internal coordination. This inductive approach ensured a systematic yet open-ended interpretation
of stakeholder perspectives. English summaries of each interview are included in Appendix C.

Insights gained from these interviewswere instrumental in formulating realistic and contextually grounded
operational scenarios, which are described in Chapter 5. These scenarios were subsequently used to
assess the system-level impact of ATR implementation in the quantitative agent-based modeling phase.

In summary, the combination of the systematic literature review and detailed stakeholder interviews
provided a robust qualitative foundation, instrumental for scenario design and the overall analytical
structure guiding this research, as visualized in Figure 2.1.

2.2. Quantitative Research Component
The quantitative component of this research employs an agent-based modeling approach using AS-
SUME [25], an open-source agent-based electricity markets simulation toolbox. ABM was chosen for
its ability to simulate system-level change emerging from the interactions of individual agents whose
behavior is shaped by external interventions. In this case, the introduction of ATR alters the economic
incentives and operational constraints faced by large energy consumers, prompting changes in their
energy management strategies. These behavioral responses, derived from qualitative stakeholder
insights, were implemented in the model to assess their aggregated impact on grid congestion and
system performance. This modeling approach is well-suited to analyzing complex socio-technical sys-
tems such as electricity markets [26, 22], where multiple heterogeneous actors interact dynamically
over time.

To ensure a systematic and transparent development of the agent-based model, this thesis adopted
the ten-step methodology for agent-based modeling in socio-technical systems as proposed by van
Dam et al. (2013) [27]:

1. Problem formulation and actor identification
2. System identification and decomposition
3. Concept formalization
4. Model formalization
5. Software implementation
6. Model verification
7. Experimentation
8. Data analysis
9. Model validation

10. Model use
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Each step supported the transition from problem framing to simulation and application, ensuring scien-
tific rigor and traceability. The steps were executed as follows:

Step 1: Problem Formulation and Actor Identification
The modeling process began by clearly defining the central research problem and identifying the key
actors involved in the system. The focus was on grid congestion in the Dutch electricity network and the
roles of large energy consumers, grid operators, and regulators. Understanding stakeholder objectives
and constraints was essential for developing a realistic and policy-relevant model.

Step 2: System Identification and Decomposition
The system boundaries were defined, relevant subsystems identified, and the model was decomposed
into key components. This included high-voltage transmission infrastructure, market mechanisms, de-
mand agents, generation units, and network tariffs. The model distinguished between regional and
national grid levels and incorporated spatial and temporal heterogeneity.

Step 3: Concept Formalization
A conceptual model was developed that specified the agents, their attributes, and their interaction
rules in qualitative terms. This included the roles of generation and demand agents, the structure of
market interactions, and behavioral responses to ATR incentives. This step laid the foundation for the
abstraction of real-world behavior.

Step 4: Model Formalization
The conceptual model was translated into mathematical and algorithmic form. Bidding strategies, grid
flow calculations, operational constraints, and pricing mechanisms were defined. Behavioral rules and
technical parameters were formalized for computational implementation.

Step 5: Software Implementation
The model was implemented using the ASSUME framework, an open-source simulation environment
for electricity market dynamics. Python was used for scenario configuration and simulation control,
while PostgreSQL and Docker facilitated structured data handling. This ensured the model was oper-
ational and reproducible for scenario testing.

Step 6: Model Verification
Verification activities ensured the model functioned as intended and was free of coding or logical errors.
This involved running test cases, checking output consistency, and validating internal relationships
such as power flow conservation. Upon successful verification, the model proceeded to full-scale ex-
perimentation.

Step 7: Experimentation
Multiple scenarios were designed and simulated to explore the effects of different ATR configurations.
Each scenario incorporated specific assumptions regarding demand flexibility and tariff design. The
model was executed iteratively over a one-year load profile to produce quantitative outputs for each
configuration.

Step 8: Data Analysis
Simulation results were analyzed to evaluate market behavior, grid loading, congestion incidence, and
agent performance. The output data were interpreted using descriptive statistics and visual tools to
extract meaningful insights into system behavior under various conditions.

Step 9: Model Validation
Themodel’s behavior was validated against historical data from the Dutch electricity system, enhancing
the credibility of the results.

Step 10: Model Use
The final model was used to derive actionable insights for both industry and policy. It informed recom-
mendations for large energy consumers on adapting to ATR and provided evidence-based guidance
for regulators on the broader system-level impacts of ATR implementation.
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These ten steps were not followed in a strictly linear sequence; instead, iterative refinements were
made as necessary throughout the modeling process. The integration of these steps across the thesis
chapters is further detailed in Table 2.1. A detailed description of the agent-based model development
process, including data collection, model structure, and scenario implementation, and agent interaction
is provided in Chapter 6.

Table 2.1: Integration of ABM Development Steps into thesis structure [27]

Step ABM Development Step Corresponding Section in Thesis
1 Problem formulation and actor

identification
Chapter 1 Problem Introduction, Section 1.2

2 System identification and de-
composition

Section 6.3 Grid Representation, Section 6.4 Spatial
Mapping of Generation and Demand

3 Concept formalization Section 6.1 Framework Overview, Development
ABM

4 Model formalization Section 6.6 Agent Behavior and Market Interaction
5 Software implementation Sections 6.1 and 6.2 (ASSUME Implementation and

Data Collection)
6 Model verification Section 6.7 Model Verification
7 Experimentation Section 5.6 Scenario Justification and Development,

Section 6.8.1 TDTR Implementation and Section
6.8.2 TBTR Implementation

8 Data analysis Chapter 7 Results and Chapter 8 Discussion
9 Model validation Section 7.1 Model Validation
10 Model use Chapter 9

The developed agent-based model generated several key outputs to evaluate the effects of alternative
transport rights on the electricity market, grid congestion, and energy management strategies. These
outputs provided a quantitative foundation for analyzing how large energy consumers adapted under
different ATR scenarios., which were developed based on stakeholder insights and literature findings
(see Section 5.6). Each scenario was simulated over a one-year horizon and systematically compared
to evaluate system-level effects. The results of this analysis are presented in Chapter 8.

2.3. Integration of Mixed-Methods
The final phase of this research synthesized findings from both the qualitative component and the quan-
titative scenario simulations conducted using the agent-based model. Stakeholder interviews provided
contextual understanding of regulatory barriers, operational constraints, and technological readiness,
which informed the development of realistic scenario assumptions. Conversely, the simulation results
validated and enriched the qualitative insights by demonstrating the system-level effects of ATR adop-
tion on load profiles, electricity prices, and grid congestion.

This methodological integration ensured that the proposed adaptation strategies were both technically
feasible and operationally grounded. It also enabled the formulation of actionable recommendations
for large energy consumers seeking to comply with ATR, as well as targeted policy suggestions for grid
operators and regulators aiming to enhance the effectiveness of congestion management. Ultimately,
this combined approach contributes to advancing a more flexible and resilient Dutch electricity system.

2.4. Research Flow Diagram
Having described the methodological choices and their implementation, a flow diagram which visually
illustrates the structured progression of these phases and how they collectively contributed to achieving
the research objectives is shown in Figure 2.1.

The next chapters build on this structure by first providing contextual background on the Dutch electricity
grid (Chapter 3), then presenting the qualitative findings from the literature review and stakeholder inter-
views (Chapters 4–5). Subsequently, the thesis details the development, validation, and outcomes of
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the agent-based model (Chapters 6–7). The findings are then interpreted in the discussion (Chapter 8)
and synthesized into final conclusions and recommendations (Chapter 9).

Figure 2.1: Research Flowchart with 10 steps of van Dam et al.(2013) [27]



3
Dutch Electricity Grid: Current State

This chapter outlines the structural and regulatory context of the Dutch electricity grid, focusing on the
rise of congestion due to renewable integration and electrification. It begins by describing the roles
of national and regional grid operators (Section 3.1), followed by an overview of current congestion
management strategies (Section 3.2), including market-based methods, dynamic tariffs, and direct
load control.

Section 3.3 then discusses the limitations of traditional tariff structures and introduces emerging ap-
proaches that incentivize flexible electricity use. This background provides the foundation for under-
standing alternative transport rights, explored in the next chapter.

3.1. Grid Structure and Operational Roles
The Dutch electricity grid operates through a two-tier system. The high-voltage transmission network
is managed by TenneT, the national Transmission System Operator (TSO), which balances electricity
supply and demand across voltage levels of 110, 150, 220, and 380 kV. TenneT ensures grid stability
and oversees interconnections with regional grids and large-scale consumers [28]. Medium- and low-
voltage networks (66 kV and below) are managed by seven regional Distribution System Operators
(DSOs), which distribute electricity to residential, commercial, and industrial users. Within this structure,
TenneT manages capacity allocation for high-voltage connections exceeding 100 MW, while DSOs
oversee smaller-scale connections. Each operator integrates new users according to the technical
and economic constraints of their respective networks, ensuring overall grid reliability.

Until April 1st, 2025, users were guaranteed continuous access to their contracted transport capacity,
regardless of grid congestion levels [9]. This model, which is based on unrestricted access, was ef-
fective when electricity demand and generation were relatively stable and predictable. However, the
rapid expansion of variable renewable energy sources, combined with rising electrification in transport
and industry, has placed increasing pressure on the grid. Congestion has become a critical bottleneck,
preventing new connections and occasionally forcing curtailment of renewable production to avoid over-
loads. The issue is particularly acute in areas with high solar PV concentrations or clustered industrial
activity, where local generation regularly exceeds grid capacity during peak hours. To visualize the ex-
tent of congestion, Dutch grid operators publish a real-time capacity map (see Figure 3.1). Projections
suggest that without corrective measures, more than 1.5 million users could face voltage or capacity
constraints by 2030 [29].

Under the conventional access model, all users are treated equally, regardless of their ability to shift
or reduce demand. This has led to inefficiencies: some users reserve excessive capacity without fully
utilizing it, while others face long delays in gaining access, hindering grid efficiency and slowing down
energy transition efforts.

10
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Figure 3.1: Congestion overview of the Netherlands [2]

3.2. Congestion Management
To mitigate this increasing risk of grid overload, policy makers and grid operators have been develop-
ing and implementing methods and strategies which balance electricity supply and demand to maintain
operational security. These methods, better known as Congestion Management, are mechanisms that
utilize flexible loads to remove grid congestion by limiting or shifting energy consumption away from pe-
riods or locations of high stress on the network [30]. Flexible loads refer to electricity consumption that
can be adjusted in time or intensity without significantly affecting end-user functionality [31]. By lever-
aging this flexibility, power transfer capabilities are increased and system reliability is enhanced [32].
Congestion management is increasingly vital due to the growing unpredictability of renewable genera-
tion and electrification-driven demand. These developments lead to fluctuating and often unpredictable
supply and demand patterns, placing considerable strain on grid stability and capacity [29]. Conges-
tion management methods can broadly be categorized into three main groups: market-based methods,
dynamic network tariffs, and direct load control [30]. Each approach has its own set of advantages and
limitations, influencing their practical implementation and effectiveness.

3.2.1. Market-Based Methods
Market-based methods rely on local flexibility markets (LFMs), where DSOs or TSOs procure flexible
capacity from consumers or aggregators to resolve local congestion. In this framework, Demand Re-
sponse (DR) plays a key role: participants adjust consumption patterns in response to price signals
or contractual incentives, effectively turning flexibility into a tradable service [30, 32]. However, LFMs
are susceptible to strategic bidding and potential market manipulation, such as withholding available
flexibility to inflate market prices, which can result in inflated costs and market inefficiencies [30, 32].
Moreover, LFMs are complex to manage due to the high granularity required for location and time-
specific bids, making them challenging to implement effectively at scale [29].

3.2.2. Dynamic Network Tariffs
Dynamic tariffs adjust network charges based on real-time or anticipated grid conditions. Commonly
implemented dynamic tariff mechanisms include Critical Peak Pricing (CPP), Network Coincident Peak
Charges (NCPC), and Distribution Locational Marginal Prices (DLMP) [30]. Further elaboration on the
structure, implementation and limitations of dynamic tariff mechanisms is provided in Section 3.3.
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3.2.3. Direct Load Control
Direct load control allows grid operators to remotely limit or control specific high-power flexible devices,
such as EV chargers or heat pumps, during congestion events. DLC is highly reliable and straightfor-
ward, offering the grid operator direct management of loads to quickly and effectively resolve congestion
issues [30]. However, direct load control can raise concerns about fairness and consumer autonomy,
particularly if curtailments are frequent or disproportionately affect certain geographical areas or con-
sumer segments. For example, repeated interventions may disrupt business operations or reduce
residential comfort, leading to dissatisfaction and potential resistance from affected users [33].

3.2.4. Demand Response
Demand Response refers to the ability of consumers to adjust their electricity usage in response to
economic incentives or grid signals. DR acts as a foundational mechanism across multiple congestion
management approaches: it underpins dynamic tariffs by encouraging time-shifting of consumption
and supports market-based methods by providing tradable flexibility. Effective DR implementation en-
hances grid reliability, supports renewable integration, and improves cost efficiency [34, 35].

However, widespread adoption of DR faces several barriers. These include implementation complexity,
uncertainty in consumer participation, upfront investment costs, and issues of fairness and data privacy.
These challenges can disproportionately affect users with limited flexibility capital, defined as the tech-
nical, organizational, and behavioral ability to adjust electricity usage in response to external signals,
including users such as low-income households or small businesses [31, 36]. Overcoming these chal-
lenges requires smart meters, automated control systems, and a supportive regulatory framework [33].

3.2.5. Congestion Management in the Netherlands
The strategy for congestion management in the Netherlands is currently twofold. On one hand, lo-
cal flexibility markets are coordinated through GOPACS (Grid Operators Platform for Congestion So-
lutions), a collaborative initiative by Dutch DSOs and the national TSO TenneT. GOPACS enables
flexibility providers to submit location-specific bids to relieve grid congestion, thereby addressing local
constraints rather than relying on system-wide price signals [37, 38]. This targeted approach ensures
that flexibility is activated only where and when it is most needed, improving grid efficiency while reduc-
ing the need for costly redispatch or grid reinforcement measures [30].

On the other hand, congestion management may also involve direct load curtailment agreements with
large industrial consumers. While these interventions are rarely activated, they remain an essential
component of the regulatory toolkit, particularly in cases where market-based flexibility is insufficient or
unavailable [30].

However, as these conventional strategies alone have proven insufficient, Dutch grid operators are
exploring innovative solutions like alternative transport rights, discussed in subsequent chapter.

3.3. Network Tariffs and Grid Flexibility
Effective congestion management increasingly depends on tariff structures that reflect real-time grid
conditions and incentivize flexible electricity use. This section outlines how traditional tariffs function,
why they fall short in today’s grid context, and what innovations, such as dynamic and non-firm tariffs,
are being introduced to improve congestion mitigation.

3.3.1. Limitations of Traditional Tariffs
Network tariffs are charges that electricity users pay for accessing and using the electrical grid. In
most European countries, including the Netherlands, these tariffs are defined by the national regula-
tory agency, in this case, the ACM, in consultation with grid operators and other stakeholders. This
includes utilities, consumer groups, and advocates for smart charging, battery storage, and solar en-
ergy technologies [39]. The regulator aims to create a tariff structure that fairly recovers network costs
while remaining acceptable to the public and market participants [39].

Traditional network tariffs were primarily designed to ensure cost recovery for grid operators, reflecting
long-term infrastructure investments. Typically structured as static charges, such as fixed capacity fees
or simple volumetric rates, these tariffs offer little incentive for consumers to adjust electricity usage in
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response to real-time grid conditions [40]. This static design presents several limitations in today’s
increasingly dynamic energy landscape.

First, static tariffs fail to encourage DR. Consumers face neither adequate financial rewards for shifting
consumption to off-peak times nor penalties for contributing to peak demand. As a result, there is little
motivation to engage in grid-friendly behavior, exacerbating congestion and driving up infrastructure
costs to maintain overcapacity [41, 33, 30, 40].

Second, these tariffs are poorly aligned with the fluctuating nature of renewable energy sources (RES).
As intermittent generation from solar and wind increases, so does the need for real-time flexibility. Yet
traditional tariffs remain unresponsive to local or temporal variations in supply and demand, which
raises operational and balancing costs [30].

Finally, the lack of responsive pricing signals can enable strategic behavior. Inflexible tariff schemes
and ill-designed market mechanisms allow grid users to exploit system vulnerabilities, such as by over-
booking capacity or shifting loads to inappropriate times, undermining overall efficiency, fairness, and
grid stability [40, 41].

To address these challenges, a transition toward more dynamic and cost-reflective tariff structures
is needed. These tariffs must incentivize flexible consumption while being supported by advanced
metering infrastructure (AMI) and automation technologies that enable real-time pricing, monitoring,
and control [36, 40, 33].

3.3.2. Smart Tariffs and Alternative Transport Rights
Smart network tariffs are an emerging concept at the intersection of traditional network tariff design and
congestion management mechanisms. They aim to incentivize grid-friendly behavior by incorporating
grid conditions into the tariff structure. Examples of smart tariffs include dynamic time-based pricing
(e.g. ToU or CPP), capacity subscriptions, critical peak charges, and non-firm or alternative trans-
port rights. These tariffs can adjust to grid conditions, incorporating varying pricing signals that reflect
grid congestion, renewable energy availability, and peak demand scenarios. Such tariffs incentivize
consumers to shift electricity usage to times when the grid is less congested and renewable energy
generation is abundant, optimizing both grid efficiency and sustainability [30, 33]. The relationship
between congestion management and these tariff types is illustrated in Figure 3.2.

Figure 3.2: Relation of congestion management and network tariffs [30]

3.3.3. Capacity Subscription
Capacity subscription is a smart network tariff model where consumers select a fixed capacity level
that defines their maximum contracted grid usage, with favorable rates applied as long as consumption
remains within this threshold. If users exceed their subscribed capacity, they face significantly higher
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volumetric charges, encouraging behavioral adjustments and demand flattening [42].

3.3.4. Dynamic Tariffs
Dynamic tariffs adjust electricity prices based on time-of-use or anticipated grid conditions, encouraging
consumers to shift demand away from peak periods or congested locations.

One common form is Time-of-Use (ToU) pricing, which assigns different rates to predefined time blocks,
typically distinguishing between peak and off-peak hours. This structure incentivizes consumers to shift
flexible loads to off-peak periods, helping flatten demand peaks and reduce grid stress [33, 30].

Critical Peak Pricing (CPP) builds on this by significantly increasing prices during a limited number of
pre-announced critical peak events each year. These events are selected based on anticipated grid
stress and typically occur a few times annually, providing strong but infrequent incentives to reduce
demand [33].

In contrast, Capacity Peak Pricing (CPC) applies higher charges based on actual usage during the high-
est annual system peak hours, rather than predefined events. This approach encourages consumers
to consistently monitor and manage demand throughout the year, as they are penalized based on real
grid conditions rather than scheduled notifications [30].

While dynamic tariffs offer strong price signals and can defer costly grid reinforcements, they also intro-
duce price uncertainty for consumers. This variability can disproportionately affect users with limited
flexibility capital. As a result, dynamic tariffs may raise concerns regarding fairness and equity in energy
access [33].

3.3.5. Non-firm tariffs
Non-firm tariffs are electricity access agreements in which users pay reduced rates in exchange for
limited reliability or service priority. Under such arrangements, TSOs or DSOs may curtail access
during periods of congestion, maintenance, or grid stress. These mechanisms provide cost-reflective
pricing signals and are increasingly used to improve congestion management and capacity allocation
in constrained networks [33, 30].

A notable recent development in this area is the introduction of alternative transport rights in the Nether-
lands. ATR represent a new category of non-firm tariff that differs from conventional approaches in
important ways. While traditional non-firm or dynamic tariffs rely on real-time pricing or discretionary
operator decisions, ATR are based on predefined contractual conditions. Users accept reduced tar-
iffs in return for fixed limitations on the timing or capacity of grid access [9]. This structure embeds
flexibility obligations into the contractual agreement itself, offering higher predictability for consumers
and improved enforceability for operators. Unlike more reactive mechanisms, ATR enable targeted,
cost-reflective demand response without requiring continuous market participation. This hybrid model
combines the stability of firm contracts with the system benefits of flexible consumption.

Although a comprehensive discussion of ATR design and regulatory implementation follows in the next
chapter, it is worth briefly highlighting their functional role in congestion mitigation. ATR incentivize
large energy consumers to adopt demand response strategies, particularly peak clipping and load
shifting, which reduce pressure on the grid during high-stress periods. These strategies are illustrated
in Figure 3.3, which shows how demand can either be clipped during peak hours or shifted to off-peak
periods.

Figure 3.3: Demand Response types as associated with TDTR and TBTR [33]

Through these mechanisms, ATR support more efficient use of existing infrastructure and reduce the
need for costly grid expansions, while rewarding operational flexibility in a structured and transparent
way [30, 41].



3.4. Conclusion 15

Table 3.1: Overview of Network Tariff Types and Their Mechanisms

Tariff Type Mechanism Target Behavior Pros Cons
Capacity
Subscription

Consumers contract a fixed
capacity limit. Favorable
rates apply if they stay
within this limit; steep
charges apply if exceeded.

Encourages flattening
of peak loads and
predictability in
usage.

Simple to implement;
provides upfront cost
certainty.

Penalizes small
overruns harshly; may
incentivize
over-subscription.

Time-of-Use
(ToU) Tariffs

Prices vary depending on
predefined time blocks (e.g.,
day/night or peak/off-peak
hours).

Shifts flexible demand
to off-peak periods.

Intuitive and
predictable for
consumers.

Fixed blocks may not
align with real-time
congestion; limited
responsiveness to
local grid conditions.

Critical Peak
Pricing (CPP)

Significantly higher prices
during a few pre-announced
critical peak periods per
year.

Reduces demand
during peak grid
stress events.

Strong signal; high
reduction impact in
few hours.

Requires advance
warning and smart
metering;
unpredictability may
affect consumer
acceptance.

Capacity Peak
Pricing (CPC)

Consumers are charged
based on usage during the
few highest system peak
hours of the year.

Encourages
year-round peak
awareness and
consumption shifting.

Targets true peak
hours; high
cost-reflectiveness.

Requires smart
metering and
forecasting;
consumers may not
know peak hours in
real time.

Non-Firm
Tariffs (e.g.,
ATR)

Discounted transport rights
in exchange for reduced
priority or curtailment.
Includes TDTR and TBTR.

Encourages demand
reduction during
constrained times or
locations.

Cost-effective
congestion relief
without infrastructure
expansion.

May create
uncertainty
(especially for TDTR);
depends on
operational flexibility
and planning
systems.

3.4. Conclusion
The Dutch electricity grid is under increasing structural pressure due to the growth of decentralized
renewable generation and widespread electrification. Traditional models of network access and tariff
design are no longer sufficient to ensure efficient and reliable grid usage. In response, grid operators
and policymakers have introduced a range of congestion management strategies, such as market-
based methods, dynamic network tariffs, and direct load control, each offering distinct advantages and
challenges. Among the most promising developments are emerging mechanisms like smart tariffs
and non-firm access agreements, of which an overview can be found in Table 3.1. In particular, the
recently introduced ATR provide new opportunities for incentivizing flexible grid usage among large
energy consumers. These mechanisms aim to better align user behavior with grid capacity, offering
potential relief from congestion without the immediate need for infrastructure expansion.

The next chapter explores the regulatory foundation and design of ATR in more detail, outlining their
structure, conditions, and implications for system efficiency and consumer participation.



4
Regulatory Background

This chapter examines the design and implementation of Alternative Transport Rights. It addresses
the first sub-question of this thesis:

What are the regulatory requirements of Alternative Transport Rights, and how do they impact the
economic costs and benefits for large energy consumers?

Section 4.1 outlines the structure and purpose of ATR, including the two variants: Time-Duration-Based
(TDTR) and Time-Block-Based (TBTR). Section 4.2 explains how these mechanisms affect tariff struc-
tures and cost outcomes. Finally, Section 4.3 explores adoption challenges from both regulatory and
operational perspectives, drawing on literature and stakeholder interviews. Together, these elements
provide the regulatory foundation for the operational strategies discussed in the next chapter.

4.1. Alternative Transport Rights
In July 2024, the Dutch authority of consumer and market introduced alternative transport rights as a
regulatory intervention. This intervention aims to optimize grid usage and alleviate congestion without
requiring immediate large-scale infrastructure expansion. ATR represent a shift from the traditional
model of unrestricted transport rights to a more flexible, demand-responsive system. Instead of guar-
anteeing continuous grid access, ATR defines conditions under which users can adjust their energy
consumption or production patterns to support grid stability. A request for ATR can be made for en-
ergy consumption, energy supply, or both. This regulatory shift encourages large energy consumers
to optimize their electricity use, making better use of available capacity while maintaining fairness and
efficiency in the energy market. ATR introduces flexibility in two dimensions: temporally, by requir-
ing users to adapt their electricity usage to specific time windows, and spatially, by targeting areas
where grid congestion limits capacity availability. To operationalize this flexibility, the ACM introduced
a framework for allocating residual grid capacity to users with adjustable demand profiles [9].

This available residual capacity is indicated in Figure 4.1 as the green area labeled ”A”. ATR can ex-
clusively utilize this residual capacity in both congested and non-congested areas. In non-congested
areas, additional unused capacity exists, represented by the blue area labeled ”B” in Figure 4.1. How-
ever, this capacity is not available for ATR, as its use would effectively increase peak time transport
demand, contradicting the purpose of ATR to reduce rather than increase peak congestion [9]. A combi-
nation of conventional transport rights and ATR on the same grid connection is possible, allowing users
to balance fixed capacity needs with flexible energy consumption strategies. ATR are implemented in
two distinct forms, each with its own operational logic and applicability, which will be examined in the
following sections.

4.1.1. Time-Duration-Based Transport Rights
TDTR were introduced on the national high-voltage grid as of April 2025. With TDTR, a connected
party has the right to the connected transport capacity for at least 85% of the hours per year, making
it suitable for users who can accommodate occasional flexibility in their electricity demand. For the

16



4.2. Financial Compensation 17

Figure 4.1: Grid Capacity [9]

remainder of the year, the connected party has no certainty about the availability of the contracted
transport capacity. To compensate this, the network tariff will be reduced. The connected LEC does
not know exactly at what times of the year the transport capacity will be limited. If the situation on
the grid requires a limitation of transport capacity, the grid operator informs the connected party the
day before. Depending on the available residual capacity, the actual limitation can also in practice be
less than 15% per year, but never more. The grid operator (TenneT) will only disconnect the TDTR
connected party if, based on daily forecasts, it expects that no residual capacity will be available for the
next day [9].

Currently, one party has already entered into a TDTR contract with TenneT. This contract was signed
by a large-scale battery storage company, categorized as a large energy consumer, which is well-
positioned to offer additional grid flexibility and stability. The contract is scheduled to take effect in
October 2025 [43]. According to TenneT’s most recent analysis, the nationwide implementation of
TDTR contracts could unlock up to 9 gigawatts of additional transmission capacity on the high-voltage
grid, equivalent to approximately 40% of the current Dutch peak electricity demand [44].

4.1.2. Time-Block-Based Transport Rights
TBTR were initially scheduled to become available in April 2025; however, this timeline has been post-
poned due to implementation delays by DSOs, who were unable to operationalize these alternative
transport rights within the intended time frame [45]. Initially, TBTR will be introduced exclusively on
regional electricity grids and will grant users access to the grid during predefined time blocks. Outside
of these contracted periods, the connected party holds no transport rights. Similar to TDTR, TBTR is
based on residual grid capacity, meaning that the available time blocks are scheduled outside of typical
system peak hours. The definition of peak moments and the extent of available residual capacity vary
by location and depend on local grid conditions. As a result, TBTR allows for tailored contracting of
time blocks that align with the operational needs of large energy consumers and the capacity limits of
the local grid. This mechanism incentivizes electricity consumption during off-peak periods.

The structure of TBTR time blocks can vary, ranging from fixed nightly hours to more flexible weekly or
monthly schedules. However, in the current roll out, DSOs have limited TBTR offerings to a nighttime
time block, between 00:00 and 06:00 [46, 47, 48].

Together, TDTR and TBTR offer flexible access to grid capacity in exchange for a reduced level of
certainty. To reflect this reduced guarantee of service, both mechanisms are accompanied by a revised
tariff structure designed to incentivize participation while maintaining cost reflectiveness. The following
section outlines how these financial compensations are structured and compares them to traditional
access arrangements.

4.2. Financial Compensation
The Dutch network tariff structure for both regional and national grids consists of three components
[40]:
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• Fixed Component: An annual fee charged to recover fixed infrastructure and administrative
costs.

• kW Contracted: A fee based on the maximum transport capacity that a large energy consumer
expects to require at any point during the year. This capacity must be pre-contracted, and the
consumer is not permitted to exceed this limit during normal operation [49, 50].

• kW Max: A variable monthly fee determined by the actual peak electricity consumption recorded
within each calendar month [49, 50].

To incentivize flexible electricity usage, the network tariffs associated with alternative transport rights
are deliberately set lower than those of conventional transport rights. As stated in the ACM decision
[9], the discount structure is based on the following principles:

Time-Duration-Based Transport Rights
Consumers temporarily forego access to their contracted capacity for up to 15% of the year. To compen-
sate for this limitation, grid operators provide a discount on the consumption-dependent transport tariff.
This discount effectively reduces the kW Contracted tariff component to zero, as TDTR users are not
considered in long-term grid capacity planning. According to grid operators, current insights suggest
that a consumer whose transport capacity is limited by a maximum of 15% is unlikely to cause a higher
peak in the total load of the national high-voltage grid [9]. Consequently, TDTR consumers do not con-
tribute to expansion investments necessary to guarantee unrestricted access, as fixed transport rights
users do. Instead, TDTR consumers only pay based on their actual peak consumption, represented
by the kW Max tariff, which remains identical to that of users with a fixed transport right.

Time-Block-Based Transport Rights
Consumers have access to the grid only during predefined time blocks. In exchange, they receive a
discount on the kW contracted tariff, paying only for the hours they have contracted. In the future, if
time blocks vary throughout the week or month, a monthly average is applied to determine the tariff.
The discount is calculated using the formula:

kWcontracted, timeblockbased = t/24 ∗ kWcontracted, fixed (4.1)

where t represents the (average) number of contracted hours per day. However, the kW max tariff
remains unchanged, as it reflects actual grid usage. Within their contracted time blocks, TBTR con-
sumers have the same rights as those with fixed transport rights.

4.2.1. Example TDTR
To illustrate the economic benefits of ATR, the case of the first TDTR contract is reviewed. The adopting
party, a large-scale battery storage company, has a peak demand of 300 MW. The 2025 transport tariffs,
established by the ACM, are shown in Figure 4.2. This company is connected to the high-voltage grid,
which means the relevant tariff components are €73.46 per kW per year for kW Contracted and €8.50
per kW per month for kW Max.

Assuming the company utilizes its full contracted capacity of 300 MW each month, the total variable
annual cost of conventional transport rights is calculated as follows:

kWContracted = AC73,46 ∗ 300.000kW = AC22.038.000 (4.2)

kWMax = AC8,50 ∗ 300.000kW ∗ 12months = AC30.600.000 (4.3)

Under a TDTR contract, the kW Contracted component is waived, resulting in an immediate annual
cost reduction of €22.04 million. The remaining charge is based solely on the kW Max component,
totaling €30.6 million. This equates to a variable cost reduction of approximately 41.8% compared to a
conventional contract. In reality, most companies do not operate at full peak load throughout the year,
which would lead to an even higher discount. According to TenneT, TDTR can reduce transport costs
by up to 65% in practice compared to conventional transport rights [43].
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Figure 4.2: Established rates and calculation volumes 2025 Dutch High-Voltage grid [39]

4.3. Adoption Risks and Challenges for Large Energy Consumers
While alternative transport rights offer the potential to reduce cost and increase grid efficiency, their
adoption presents several technical, economic and behavioral challenges. Drawing on stakeholder
interviews and academic literature, this section identifies and elaborates on six core categories of bar-
riers.

4.3.1. Uncertainty About Capacity Availability
A key concern for potential ATR users is the uncertainty surrounding grid capacity availability. Under
TDTR, users receive only a one-day advance notice when curtailment of their contracted capacity is
required. This short notice significantly hampers forward operational planning, particularly in sectors
with tightly scheduled processes. As the energy manager of a large flower auctioning hub (I2) noted:
“We simply don’t have the systems in place to change our load with 24-hour notice. It affects cooling
cycles, lighting, everything.”

In contrast, TBTR provides access during pre-defined time blocks, offering greater predictability. Yet in
practice, these time windows may not align with users’ operational demands or production peaks. As
explained by the energy management product manager (I3): “The blocks offered don’t match when they
really need electricity,” highlighting a mismatch between contractual design and real-world consumption
patterns.

4.3.2. High Upfront Investments in Metering and Control Infrastructure
Not all LECs have the infrastructure required to participate in ATR contracts effectively. Smart meters,
sub-metering at process level, and control systems such as Energy Management Systems (EMS) are
prerequisites. This need is echoed in multiple interviews: “You can’t control what you can’t measure.
Our first advice is always: invest in good metering.” (I3) This aligns with the broader academic con-
sensus that initial technology investments hinder demand response uptake [33]. Moreover, network
tariffs that are fixed on a peak-demand basis can make the business case for these investments less
attractive, especially if flexibility increases peak usage temporarily [41].

4.3.3. Organizational and Behavioral Adaptation
Adopting ATR requires not only technical adjustments but also behavioral and organizational changes.
Employees need to be trained and educated to operate under flexible power availability, which is a chal-
lenge. The flower auction company energy manager (I2) stated: “It’s difficult to ensure that the entire
organization understands why we have to do the things we need to do.” In addition, changing deeply
ingrained production routines, for example, dimming lighting or rescheduling refrigeration, can face
internal resistance, particularly when it potentially impacts product quality or employee convenience.

4.3.4. Operational Risk and Compliance Burden
For large energy consumers, the adoption of ATR brings with it a new set of operational responsibili-
ties and risks. Under both TDTR and TBTR arrangements, consumers must strictly comply with the
time windows or curtailment instructions communicated by the grid operator. Deviations, referred to as
overruns, can pose a threat to grid stability and are met with escalating enforcement measures. After
multiple violations, the grid operator may suspend access under the ATR agreement, with reinstate-
ment only possible after corrective steps, such as the installation of automated load control systems.
Persistent non-compliance may lead to permanent contract termination [9]. While these safeguards
are necessary to maintain grid reliability, they also raise the perceived risk of participation. Several
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interviewees noted that unforeseen scheduling conflicts, forecasting inaccuracies, or delays in internal
communication could lead to unintentional breaches. For organizations lacking real-time monitoring or
advanced energy management systems, this introduces considerable uncertainty and administrative
strain, especially when adapting to short-notice curtailments under TDTR.

In addition to compliance risk, companies face operational challenges in estimating how much of their
demand can be made reliably flexible. If flexibility is overestimated and contracted capacity is scaled
back too far, the risk of peak-time overruns increases. This may result in steep penalties or force firms
to repurchase capacity at a premium. As one interviewee (I3) remarked: “You don’t want to cut your
contracted volume too much and then find yourself paying huge penalties during a peak.”

Together, these issues contribute to a cautious approach among large energy users. Without the right
forecasting tools, automation, and internal processes, the perceived risks of non-compliance may out-
weigh the financial incentives of ATR participation.

4.3.5. Tariff Design and Misaligned Incentives
Even when technical and organizational readiness is in place, the structure of existing network tariffs
can undermine the intended flexibility incentives of ATR. A central issue is the kW Max component, a
monthly peak demand charge based on the single highest hourly consumption within each calendar
month. As highlighted by Richstein and Hosseinioun (2020) [41], this pricing model fails to account for
short-term flexibility actions that benefit the grid, yet may inadvertently trigger higher costs for users.

Consider a TDTR user who receives a one-day curtailment notice. To preemptively shift demand,
the user advances flexible operations such as battery charging or production cycles to earlier hours.
Although this action helps avoid congestion during peak hours, it may result in a sharp spike in electricity
usage that defines themonth’s peak and therefore increases the kWMax charge. In this way, a behavior
that supports grid stability paradoxically reduces the financial benefit of participating in ATR, weakening
the incentive for flexible consumption.

Uncertainty about such outcomes also drives conservative contracting strategies. Under TDTR, com-
panies may over-contract capacity to hedge against unplanned disconnections. Under TBTR, they may
secure excess capacity to avoid exceeding limits during narrow access windows. While these practices
reduce perceived risk, they also contribute to inefficient grid usage and underutilized capacity, under-
mining the very congestion relief ATR aims to achieve. These issues underscore a fundamental design
misalignment: when cost signals do not accurately reflect system benefits, rational users may adopt
behaviors counterproductive to grid efficiency. Addressing this requires thoughtful tariff reform.

4.3.6. Limited Awareness and Regulatory Complexity
ATR is still a relatively new mechanism and lacks broad market familiarity. Many businesses remain
unclear about its operational requirements, eligibility conditions, and potential benefits. As the green-
house energy director (I1) noted: “I haven’t seen any company in our sector sign one of these ATR
contracts yet. There’s too little guidance.” This highlights a wider issue of informational and institu-
tional barriers. Eid et al. (2016) [33] similarly point to regulatory fragmentation and the absence of
standardized practices as major obstacles to the broader adoption of demand-side flexibility initiatives.

In summary, while ATR offer considerable potential for improving grid efficiency and reducing energy
costs, their adoption is constrained by a range of operational, technical, economic, and institutional
barriers. These include short-notice curtailments, high upfront investments in monitoring and control
infrastructure, organizational inertia, compliance risks, and tariff structures that may inadvertently dis-
courage flexible behavior. Additionally, limited awareness and regulatory complexity further hinder
large-scale implementation.

The subsequent chapter builds upon this regulatory foundation by examining how large energy con-
sumers can operationalize ATR compliance. It explores the role of data-driven energy monitoring,
digital control systems, and organizational adaptation in enabling effective and scalable adoption of
ATR mechanisms.



5
Operational Adaptation and Scenario

Development for ATR Compliance

This chapter explores how large energy consumers can adapt their operational and data-driven prac-
tices to meet the requirements of ATR, drawing on qualitative insights from stakeholder interviews. It
addresses the second sub-question of this thesis:

How can large energy consumers leverage data and technology to optimize their operational
processes to achieve compliance with Alternative Transport Rights?

Section 5.1 highlights the importance of high-resolution monitoring and data visibility. Section 5.2 dis-
cusses the role of energy management systems, automation, and enterprise data governance. Sec-
tion 5.3 identifies sector-specific flexibility strategies and their alignment with ATR requirements. Sec-
tion 5.4 evaluates the potential and limitations of battery storage. Section 5.5 examines organizational
routines and behavioral adaptations that support flexible energy use. Finally, Section 5.6 synthesizes
these insights into sectoral flexibility assumptions that serve as model input for the agent-based simu-
lations presented in the following chapters.

5.1. Leveraging Data for Operational Optimization
A central theme emerging from all conducted interviews was the foundational importance of detailed
energy data visibility for ATR compliance. The product manager (I3) emphasized the necessity of
high-resolution sub-metering, recommending measurement intervals as granular as 30 seconds. He
stated explicitly: ”Start by measuring. Know where your energy is going, and when. Only then can
you start looking for solutions” (I3). Such detailed monitoring is crucial for accurately identifying peak
demands and determining load-shifting potentials in compliance with both Time-Duration-Based and
Time-Block-Based ATR.

Similarly, the energy manager of a greenhouse company (I1) leverages centralized application pro-
gramming interface (API) driven systems and Power BI analytics to visualize daily consumption data.
This enables proactive adjustment of operations, such as modifying heating and lighting schedules in
response to predicted energy costs and market signals. The energy manager at a flower auction facility
reinforced this point, stressing the importance of high-resolution insights into energy consumption to
identify and target peak consumption periods effectively (I2).

5.2. Digital Infrastructure and Automation
Effective ATR implementation relies heavily on advanced digital infrastructures capable of real-time
energy management and automated control. The product manager (I3) highlighted the availability of
compact, low-cost current measurement sensors, termed ”sugar cube” sensors, which can quickly pro-
vide real-time data at the individual group level. He explained how such sensors feed into energy
management systems, enabling automated load management: ”Using simple logic, you can, for exam-
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ple, control based on time (think of time-bound contracts) or based on power levels” (I3). Moreover,
multiple interviewees emphasized that achieving high-resolution energy visibility is not only a technical
challenge but also an organizational one. Effective energy data utilization requires robust Enterprise
Data Management (EDM) systems that ensure the consistent collection, integration, governance, and
accessibility of energy-related data across business units. Without structured EDM, sub-metering ef-
forts risk producing siloed or fragmented insights, limiting their strategic value for ATR optimization.

In practice, the greenhouse company already employs automated climate computers integrated into
an EMS, actively managing power consumption in response to energy prices and peak constraints. Ac-
cording to their deputy energy director (I1), ”There are continuous measurements running, integrated
with the climate control system we use. The software ensures we don’t exceed the peak; as soon as
it detects that the limit is being approached or exceeded, it immediately shuts things down, for exam-
ple, the LED lights are turned off instantly”. However, despite substantial automation, some manual
oversight remains necessary, particularly to align energy management decisions with crop production
cycles controlled separately. These systems are most effective when embedded within a broader EDM
framework that standardizes data flows between operational technologies (OT) and corporate informa-
tion systems (IT). For example, ensuring that climate automation data flows consistently into centralized
dashboards and historical analytics systems requires robust data warehousing, quality assurance pro-
cesses, and metadata management, core elements of effective EDM.

Additionally, advanced automation examples were provided by the product manager (I3), illustrating
their manufacturing facility where fully automated production lines and self-driving forklifts strategi-
cally operate overnight. He noted: ”Machines run during nighttime not to produce continuously, but
to smooth peak energy consumption during daytime operations.” Their automation platform further
supports robust load management by executing predefined load-shifting rules independent of external
cloud connections.

In contrast, the flower auction currently lacks real-time monitoring but has implemented integrated
building management systems capable of dynamically controlling heating, ventilation, air conditioning
(HVAC) and lighting loads. Their Energy Manager (I2) believes such systems will be vital for future
compliance with ATR scenarios by automatically responding to grid signals, thus effectively managing
peak demand conditions.

5.3. Identifying and Utilizing Flexible Loads
Effectively adapting to ATR conditions requires a systematic classification of electricity loads into critical
and flexible categories (I3). Flexible loads can then be strategically shifted in time, intensity, or location
in response to electricity price signals or ATR-related capacity constraints. Figure 5.1 conceptually illus-
trates load flexibility. The horizontal axis indicates time or space, and the vertical axis shows electricity
intensity. The solid rectangle represents the original, fixed load. The dashed area illustrates how this
load could be shifted in timing, duration, or intensity to better align with available grid capacity.

Common examples of flexible loads are HVAC systems, as well as electric vehicle charging infras-
tructure, which can typically be rescheduled without disrupting core operations. The product manager
(I3) emphasized that identifying and managing non-essential loads, such as pre-heating or pre-cooling
buildings during off-peak hours, is a key strategy for optimizing energy use and ensuring ATR compli-
ance.

Figure 5.1: Simplistic representation of flexible energy use in time, space or intensity [31]

Importantly, the degree of flexibility differs substantially across sectors due to variations in operational
processes, infrastructure maturity, and energy management capabilities (I3). The remainder of this
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section summarizes the sector-specific insights shared by interviewees.

Agriculture (I1): Greenhouse operations demonstrate high inherent flexibility. Lighting and heating
loads can be dynamically scheduled based on grid constraints, and thermal buffering is already widely
employed. The Deputy Energy Director noted that CO2 dosing can also be staggered to smooth de-
mand. Their systems already react to real-time electricity prices, making the sector well-positioned for
ATR compliance.

Buildings (I2): At the flower auction facility, HVAC is the primary source of flexibility. The facility has
begun investing in refrigeration overcapacity to create thermal buffers that enable nighttime load shifting.
However, flexibility remains limited due to aging infrastructure and the absence of real-time monitoring.
As the Energy Manager explained: ”I have three major electricity consumers in our company, which
spans two million square meters. The first is lighting, but I can’t do much with that, since the lights
need to be on during auction operations. The second is heating, and the third is cooling. Heating will
likely become the largest source of flexibility once we’ve fully electrified.” These remarks suggest that
substantial latent flexibility could be unlocked through electrification and digital upgrades, especially in
thermal systems.

Industry (I3): In industrial settings, flexibility is generally constrained by the need for continuous produc-
tion processes. However, the product manager (I3) emphasized that auxiliary loads, such as electric
vehicle charging stations and facility lighting, can be scheduled without affecting core operations. He
characterized these non-critical loads as “low-hanging fruit” for achieving ATR compliance with minimal
disruption (I3), particularly when automated via EMS platforms.

Transport: Flexibility in the transport sector primarily stems from the timing of EV charging. Commer-
cial fleet operators, particularly those with predictable usage patterns and overnight parking availability,
are well-positioned to shift charging activities outside of constrained periods. Given the alignment
between TBTR time blocks and vehicle idle hours, this sector holds significant potential for low-cost
flexibility through smart charging infrastructure and basic scheduling algorithms, as corroborated by
existing literature on transport electrification and demand response [31].

In addition to leveraging sector-specific flexibility through scheduling and automation, many organiza-
tions are also exploring technological solutions that can further decouple electricity consumption from
grid availability. Among these, battery storage is often highlighted as a key enabler of operational flex-
ibility under ATR constraints. The following section critically examines the role of battery systems in
supporting ATR compliance across different sectors.

5.4. The Role of Battery Storage in ATR Compliance
Battery storage systems are frequently cited in both academic and industry literature as promising tools
for enabling demand flexibility under constrained grid conditions [13, 11, 51, 52]. In principle, batteries
could allow large energy consumers to temporally decouple electricity procurement from consumption,
storing energy during periods of low demand or low prices and discharging during times of congestion
or limited grid access. This aligns well with the requirements of ATR, which restrict grid access during
specific hours or time blocks.

Despite widespread recognition in literature of the flexibility potential of batteries, all three interviewees
emphasized that while technically attractive, battery storage is currently too expensive to serve as a
viable standalone solution for ATR compliance. The Energy Manager at the flower auction facility (I2)
remarked: “Even if ATR contracts were available, our energy consumption profiles are not yet flexible
enough, and the investment in batteries would be too large to be justified.” Instead, the organization
prioritizes thermal buffering strategies in its refrigeration systems to achieve flexibility at lower cost.

The product manager for energy management systems (I3) echoed this sentiment, warning that many
companies incorrectly oversize battery systems due to poor data resolution: “A lot of times you see
companies calculate their battery needs based on rough assumptions, just adding 10% for degradation
and calling it a day. But the real load profile, the true simultaneity of peak demands, is rarely that
simple.” He advocated for detailed sub-metering and high-resolution monitoring as a prerequisite for
any meaningful battery sizing or return-on-investment analysis.
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Similarly, the greenhouse company (I1) viewed batteries as unnecessary in the short term due to its
extensive operational flexibility. As the deputy energy director explained: “Why spend millions on a
battery when I can just schedule my lighting and heating differently? The grid pays me to be flexible,
not to store.” Their strategy prioritizes control automation and smart scheduling over energy storage
infrastructure.

While battery prices may decline in the coming years and their role in system-level flexibility may grow,
current consensus among the interviewed experts is that most large consumers can achieve more
cost-effective ATR compliance through digital infrastructure upgrades and process flexibility, with bat-
tery storage serving only as a potential long-term complement. However, the practical effectiveness
of any flexibility strategy ultimately depends on how well it is embedded in organizational routines and
decision-making structures. The next section therefore turns to the organizational and behavioral di-
mensions of ATR compliance, focusing on how companies foster internal alignment, staff awareness,
and operational responsiveness to grid constraints.

5.5. Organizational Integration and Behavioral Strategies
Effective operational optimization extends beyond technical capabilities to organizational practices.
Centralized energy management teams, as observed in the agriculture sector, facilitate rapid decision-
making informed by real-time data and direct communication with operational staff. These capabilities
are significantly enhanced by robust enterprise data management systems.

One example of how EDM enables actionable behavior change is the use of visual alerting systems,
such as “stoplight systems,” which enhance situational awareness on the work floor without requiring
full automation (I3). According to the product manager, such a system was implemented at one of
their clients using color-coded visual signals connected to the facility’s EMS. Wall-mounted displays or
LED indicators in production areas change color based on real-time electricity consumption relative to
predefined thresholds. Green indicates acceptable usage, orange signals that consumption is nearing
the peak threshold, and red alerts staff that the threshold has been exceeded, prompting immediate
curtailment actions. As the interviewee stated: ”That is how you can use visual signals to influence
behavior and tackle a congestion problem, without automation.”

This form of direct visual feedback fosters shared responsibility across operational levels. It helps
bridge the gap between centralized energy management goals and day-to-day production behavior,
especially in facilities that may not yet support full automation. As the Energy Manager of the flower
auction facility (I2) observed: “I notice it’s difficult to make the entire organization understand why
we need to do the things we do.” By making invisible energy flows visibly actionable, these systems
serve as a low-cost but effective tool for promoting ATR-compliant behavior in real time. Importantly,
the accuracy and reliability of these systems depend on EDM processes that standardize how data is
collected, interpreted, and displayed across departments. Without such structure, sub-metered insights
risk becoming fragmented or misaligned with operational decision-making.

The flower auction facility also reported success with organizational measures, including regular energy
awareness training sessions for operational staff and clear communication of energy management
goals. These behavioral interventions complemented technical solutions and EDM-enabled insights,
ensuring broader staff engagement and consistent adherence to energy reduction strategies. As the
Energy Manager explained: “No one wastes energy for fun. If you just show how much is being used
and where the opportunities lie, that awareness will come naturally.”

5.6. Scenario Justification and Development
Building on the qualitative insights developed in the preceding sections, this part of the chapter trans-
lates interview-based findings into quantified, sector-specific flexibility assumptions that serve as input
for the agent-based modeling of ATR scenarios. Since ATR are designed exclusively for large energy
consumers, the model focuses solely on this group. Households and small to medium-sized enter-
prises (SMEs) are excluded from the flexibility modeling. Household electricity demand is held constant
across all scenarios, while SMEs are not modeled explicitly. This decision stems from two factors: (1)
the absence of detailed, disaggregated consumption data for SMEs, and (2) the fact that SMEs are not
eligible for ATR contracts in the current regulatory framework. Instead, the sectoral demand profiles in
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the model are assumed to represent only the LEC portion of electricity consumption within each sector.

This assumption is supported by national statistics: LECs account for at least two-thirds of total elec-
tricity consumption in the Netherlands [53, 54], and since households comprise approximately 21% of
demand, LECs are estimated to cover at least 85% of non-household electricity use. By excluding
SMEs, the model simplifies the demand-side representation while still capturing the majority of flexible
consumption relevant for ATR policy analysis. As such, the flexibility assumptions presented below
reflect only the realistically adjustable share of demand attributed to LECs.

As highlighted throughout the chapter, flexibility potential also varies significantly between sectors due
to differences in technological infrastructure, operational processes, and organizational capabilities.
Capturing these sector-specific nuances enables the use of flexibility percentages that reflect not only
feasible load adjustments but also the proportion of demand eligible for ATR. Since ATR can be com-
bined with or (partially) substitute conventional transport rights, these percentages effectively represent
the maximum shiftable share of demand per sector under different adoption scenarios.

For both TDTR and TBTR, two levels of adoption were modeled: a Full Adoption scenario and a Hybrid
Adoption scenario. The Full scenario assumes that all technically feasible flexibility identified in each
sector is fully activated in response to ATR requirements. This represents a theoretical upper bound in
which energy consumers are fully equipped, both technologically and organizationally, to shift or curtail
demand in alignment with contractual constraints.

In contrast, the Hybrid scenario reflects a more transitional and realistic near-term outlook, where only
a subset of consumers has implemented the necessary systems, automation, or behavioral routines
to respond effectively to ATR conditions. To operationalize this intermediate stage, the flexibility po-
tential for each sector was conservatively set at 50% of the full values. This approach accounts for
both technological readiness and varying levels of participation across the consumer base. Modeling
both adoption levels enables a comparative assessment of best-case flexibility outcomes versus more
realistic near-term responses, supporting robust policy and investment recommendations.

Table 5.1 summarizes the share of each sector’s demand that is assumed to be shiftable under the
four ATR scenarios. For each scenario, TDTR Full, TDTR Hybrid, TBTR Full, and TBTR Hybrid, the
table lists the percentage of flexible load that is assumed as model input. For instance, in the TDTR
Full case, 70% of agricultural demand is assumed to be shiftable, whereas under TBTR Hybrid only
25% is assumed. These values reflect stakeholder interview insights and the operational constraints
presented earlier.

Table 5.1: Sectoral Flexibility Assumptions per Scenario

Sector TDTR Full TDTR Hybrid TBTR Full TBTR Hybrid
Agriculture 70% 35% 50% 25%
Buildings 50% 25% 25% 12.5%
Transport 30% 15% 50% 25%
Industry 20% 10% 15% 7.5%

While these percentages are grounded in qualitative insights from expert interviews and supported by
sector-specific operational characteristics, they should be interpreted as informed estimates rather than
precise measurements. This approximation is appropriate given the scope of this thesis, which does
not aim to determine the exact share of flexible electricity demand in each sector. Instead, the primary
objective is to evaluate how different levels of ATR adoption, under plausible flexibility conditions, affect
electricity system dynamics, particularly in terms of grid loading, demand shifts, and congestion man-
agement outcomes. The following sections detail the rationale and derivation of these sector-specific
flexibility assumptions.

5.6.1. Time-Duration-Based Transport Rights
Time-Duration-Based Transport Rights involve dynamic grid access constraints imposed by the grid
operator during anticipated peak-demand periods. Such constraints are communicated 24 hours in
advance. As indicated by all interviewees, accurate demand forecasting, detailed load monitoring, and
responsive automated systems are essential for leveraging flexibility within this scenario.
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Based on expert assessments from the conducted interviews, the following sectoral flexibility percent-
ages were established for the TDTR Full Adoption scenario:

• Agriculture Sector (70% flexibility): Greenhouse operations already exhibit substantial flexibil-
ity through thermal buffering and adaptive lighting control. As described by the Deputy Energy
Director of the greenhouse company (I1), ”We actively manage energy use in response to real-
time price signals and constraints”. He emphasized that their company could immediately comply
with TDTR without major infrastructural changes. However, he also acknowledged that their com-
pany is more advanced than others in the sector.

• Buildings Sector (50% flexibility): The building sector, represented by the flower auction facil-
ity (I2), manages its energy use primarily through HVAC and refrigeration systems. Given their
significant energy usage and ability to pre-cool or buffer cooling demand when communicated 24
hours in advance, a realistic flexibility of 50% is assumed.

• Transport Sector (30% flexibility): Although electric vehicle fleet charging schedules can be
adapted, the share of load from this sector remains moderate. key limiting factor in the transport
sector is the uncertainty surrounding the timing of disconnections, which reduces the practical
applicability of flexibility (I3). Therefore, 30% flexibility is adopted.

• Industry Sector (20% flexibility): Continuous processes dominate industrial operations, with
limited capacity for short-notice adjustment. However, the product manager (I3) indicated that
auxiliary activities such as lighting and internal logistics can provide limited flexibility. A 20%
maximum is deemed realistic.

5.6.2. Time-Block-Based Transport Rights
Time-Block-Based Transport Rights restrict grid access to predefined time blocks. As Dutch DSOs
currently only offer TBTR contracts in nighttime blocks (00:00–06:00) [48, 47], this time frame will also
be adopted in these scenarios. This scenario leverages predictable, recurring windows of lower grid
utilization. While sectors can plan around fixed TBTR blocks more easily than TDTR, the short six-
hour window inherently limits the volume of shiftable demand. This shorter window reduces the usable
load-shifting potential in sectors with daytime-centric operations or limited night-shift infrastructure.

The following assumptions were made for the TBTR Full Adoption scenario:

• Agriculture Sector (50% flexibility): As in the TDTR case, the sector’s ability to buffer heating
and lighting makes it well-suited to shift load into the night, especially during summer, as there is
enough light during the day (I1). However, nighttime-only limits reduce total flexibility compared
to TDTR.

• Buildings Sector (25% flexibility): The same HVAC and refrigeration flexibility applies, though
limited operating hours and occupancy reduce shift potential to 25%, especially as the buildings
sector is most active during the day.

• Transport Sector (50% flexibility): The fixed nighttime window aligns well with the idle time of
electric fleets. This enables a high share of charging to be scheduled during TBTR blocks.

• Industry Sector (15% flexibility): Even with the ability to prepare in advance, the share of non-
critical processes that can operate solely between 00:00 and 06:00 remains limited and slightly
lower than in the TDTR scenario, reflecting the fact that most industrial flexibility is tied to pro-
cesses that operate outside of the fixed nighttime TBTR window.

These sector-specific flexibility assumptions were operationalized by modifying hourly demand profiles
within the simulation environment. A detailed description of how these scenarios were technically im-
plemented in the agent-based model is provided in Section 6.8. The following chapter introduces the
modeling framework, data sources, and simulation structure used to assess the system-level impact of
ATR adoption under these scenarios.
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Modeling Approach

This chapter describes the development and structure of the agent-based model used to simulate the
impact of ATR on the Dutch electricity grid. Based on the assumptions from the previous chapter,
the model captures how large energy consumers adapt their electricity use under TDTR and TBTR
scenarios, and how these adaptations affect grid congestion and market dynamics.

The chapter introduces the modeling framework (Section 6.1), outlines data sources and integration
steps (Section 6.2), explains how the grid, generation, and demand are represented spatially (Sec-
tions 6.3–6.4), and details agent behavior and market interaction (Section 6.6). It concludes with model
verification (Section 6.7) and a description of how the ATR scenarios were implemented (Section 6.8).

6.1. Framework Overview
The agent-based model developed in this study is built on the ASSUME framework [25], a modular
simulation architecture designed for analyzing electricity markets and grid interactions.

As visualized in Figure 6.1, the framework consists of a set of interacting classes and components
that together structure the behavior of the simulation environment. These interacting units (agents)
collectively produce emergent system behavior, a hallmark of agent-based modeling approaches [26].

At the core of the framework lies the World class, which manages the overall simulation context, includ-
ing registered market configurations (Market Config) and actors (UnitsOperator). Each UnitsOperator
contains one or more units, either generation or demand resources, characterized by techno-economic
attributes and operational behavior. These units adopt specific BiddingStrategy objects that determine
how and when they participate in the market, generating Order objects that are submitted to the Mar-
ketRole for processing.

The MarketRole handles the orchestration of market activities: collecting orders, clearing the market,
and generating dispatch outcomes. It interacts with the market-clearing mechanisms, which defines
the approach to demand handling, pricing, and power flow resolution.

The model distinguishes between two core agent types:

• Generation Agents, which represent power producers submitting bids to the electricity market.
• DemandAgents, which represent consumers with sector-specific load profiles and flexibility char-
acteristics.

These agents interact through market-clearing processes and physical grid constraints, making the
framework well-suited for studying the effects of regulatory interventions such as ATR. To represent
the Dutch electricity system with sufficient realism, a structured modeling approach was adopted, com-
bining geospatial, economic, and technical datasets to calibrate agent behavior and grid dynamics.

27



6.2. Data Sources and Integration 28

Figure 6.1: Architecture of used part of ASSUME Framework [25]

6.2. Data Sources and Integration
To operationalize the ASSUME framework and enable realistic agent interactions, the model requires
detailed input data. These data sources define the physical grid, characterize generation and demand
behavior, and inform market and policy conditions. Table 6.1 provides an overview of the key datasets
used to initialize and calibrate the model, categorized by their relevance to infrastructure, consumption,
production, and pricing dynamics.

After compiling these datasets, several preprocessing steps were required to align them with the struc-
tural and temporal needs of the simulation environment. These steps included unit conversion, spatial
mapping, and temporal alignment. For example, quarter-hour load data from DSO Liander was ag-
gregated to hourly values, and fuel prices were converted from USD to EUR using the average 2022
exchange rate. These steps ensured alignment with the hourly resolution and geospatial structure
required by the ASSUME simulation framework.

The following sections explain how this collected data was implemented within the simulation frame-
work, starting with the modeling of the Dutch electricity grid.

6.3. Grid Representation
To effectively incorporate the spatial and technical components of the Dutch electricity grid, the PYPSA
(Python for Power System Analysis) package was integrated into the agent-based model. PYPSA
utilizes two primary components for grid modeling: buses and lines.

Buses
Buses represent network nodes or substations within the electricity grid, acting as points where power
is injected or extracted. These buses can be either AC (Alternating Current) or DC (Direct Current),
reflecting the type of electrical current used for transmission at that node.

AC buses form the majority of the modeled network and represent the standard infrastructure for most
of the Dutch high-voltage transmission system. These are used to model typical inter-regional power
flows across 220 kV and 380 kV lines, and they are connected via Line components that define AC
transmission lines, characterized by resistance, reactance, and thermal limits.
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Table 6.1: Data and Sources

Subject Data Object Data Type Data Source
Grid infrastructure • Transmission line capacity,

resistance, location
• Nominal voltages
• Locations of Buses

CSV and
numerical
parameters

TenneT [55], Liander [56],
PDOK [57]

Generation • Power plant or generator
characteristics (Fuel type, max
power, efficiency, etc.)

• Time series and Generation profiles

CSV ENTSOE [58],
Klimaatmonitor [59],
OPSD [60]

Electricity Demand • Load profiles of residential areas
• Load profiles of LEC
• Demand unit details (location, max
demand)

CSV and
numerical
parameters

CBS [61], TNO[62],
Liander [56]

Market and
Forecast data

• Fuel prices
• Weather data

CSV ACM [9], ENTSOE [58],
OPSD [60], Epexspot
[63], Investing.com [64],
Energy Transition Model
[65]

DC buses by contrast, are used to model nodes associated with High Voltage Direct Current (HVDC)
systems. These are typically found in two main cases:

• Offshore substations, such as converter platforms for offshore wind farms (e.g., Hollandse Kust),
where power generated at sea is transmitted to shore via HVDC cables.

• Cross-border inter-connectors, such as connections to the UK, Germany, or Belgium, which often
use HVDC technology to facilitate controlled long-distance electricity exchange between coun-
tries.

In the model developed for this study, AC buses were used for all inland grid nodes and substations
connected by conventional AC lines, which dominate the Dutch onshore transmission system. DC
buses were specifically assigned to offshore locations or international border points, where they act as
endpoints of HVDC links.

Additionally, each bus is georeferenced using x and y coordinates obtained from TenneT’s high-voltage
grid dataset [66]. This geographic information enables accurate spatial mapping and supports detailed
analysis of the grid’s structural topology.

Lines
Lines serve as transmission connections linking pairs of buses and are crucial for modeling electricity
flow between different grid points. Each line in PYPSA is characterized by specific technical parame-
ters:

• Reactance (X): Represents the opposition to the change in electric current, significantly influenc-
ing power flow patterns.

• Resistance (R): Indicates the opposition to the direct flow of current, contributing to energy losses
within the grid.

• Nominal Capacity (S_nom): Specifies the maximum power transmission capability of a line, criti-
cal for assessing potential congestion and ensuring system reliability.

These parameters enable the model to calculate line loadings, identify potential bottlenecks, and de-
termine congestion levels accurately.
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The power flow through these lines is modeled through a DC power flow approximation, implemented
via PyPSA’s lpf() function. This method assumes fixed voltage magnitudes and small angle differences
between buses, allowing for a linearization of the full AC power flow equations. As a result, only active
power flows are modeled, while reactive power and voltage magnitude variations are excluded. De-
spite these simplifications, DC power flow is widely accepted in strategic transmission modeling and
congestion studies due to its computational efficiency and sufficient accuracy for high-voltage grid anal-
ysis [67, 68, 69]. It is particularly suited for agent-based modeling where iterative market dispatch and
power flow calculations must be executed thousands of times. Therefore, the DC approximation en-
ables tractable and reliable congestion evaluation under varying ATR scenarios without compromising
on interpretability or scalability.

With the technical modeling structure established, the following subsections describe how it was applied
to represent the Dutch electricity system. The first focus is on the national high-voltage transmission
grid, which is especially relevant for simulating Time-Duration-Based Transport Rights.

6.3.1. National Grid
The Dutch high-voltage grid consists of lines with voltage levels of 110, 150, 220, and 380 kV. The
spatial allocation of these lines and their voltage levels can be seen in Figure 6.2.
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Figure 6.2: On-shore high-voltage electricity grid in the Netherlands [66]

In line with Step 2 of van Dam et al.’s modeling methodology, system identification and decomposition,
this study limits its scope to Dutch high-voltage transmission lines operating at 220 kV and 380 kV,
as illustrated by the red and green lines in Figure 6.2. These voltage levels constitute the backbone
of the national electricity system, enabling long-distance power transport and inter-regional balanc-
ing [70]. Concentrating on this segment allows the model to capture the main transmission corridors
and congestion hotspots, which are critical for assessing system-wide dynamics. By abstracting from
the lower-voltage distribution networks, which are typically omitted in strategic analyses due to their
localized effects, the model avoids unnecessary computational complexity while retaining relevance
for national congestion studies. Large-scale power plants and aggregated demand from major indus-
trial consumers are therefore mapped directly onto this high-voltage grid. This approach aligns with
standard practice in power system modeling and mirrors how grid congestion is typically analyzed by
system operators [70, 71, 72]. A visual representation of the modeled grid is shown in Figure 6.3.
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Figure 6.3: Visualization of modeled Dutch National HV Grid

6.3.2. Regional Grid
To complement the national-level analysis and enable simulation of Time-Block-Based Transport Rights,
the province of Noord-Holland was selected as a regional case study. This region was chosen primarily
because of the availability of open geospatial substation data from the Distribution System Operator
Liander [56], which provides a solid foundation for spatially explicit modeling. However, while the list
of substations was complete, the associated 50–100kV feeder data was fragmented, consisting of,
disconnected cable segments lacking circuit identifiers and capacity ratings. As a result, the dataset
was unsuitable for direct use in power-flow simulations and required a simplified representation of the
regional grid.

To address this data gap, the equivalent feeder method was applied. This is an abstraction technique
commonly used when detailed distribution network topology is unavailable. In this method, each re-
gional substation is connected to its nearest transmission-level bus via a single synthetic line, known
as an equivalent feeder. This creates a simplified radial (star-shaped) network that mirrors the struc-
ture of typical DSO–TSO interconnections. While it omits internal feeder topology, it retains the key
electrical and spatial relationships necessary for analyzing grid flows and congestion.

This approach was well suited for the case of Noord-Holland. Although the detailed cable infrastructure
was not usable, the available substation data enabled construction of a synthetic regional grid. Each
equivalent feeder was defined by:

• a length equal to the Euclidean distance to the nearest 220/380 kV transmission-level bus,
• a standard voltage level of 110 kV, reflecting common regional infrastructure [66],
• and a nominal line capacity of 100 MVA, consistent with DSO planning norms.

The method ensures that spatial demand distribution and transmission interface constraints are main-
tained, critical for congestion analysis. Comparablemethods have been employed in previousmodeling
studies that lacked access to detailed feeder data, such as [73] and [74].

Figure 6.4 shows the regional high-voltage network of Noord-Holland as modeled using the equivalent
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feeder method. In this abstraction, the synthetic connections between regional substations (from Lian-
der data) and the nearest national transmission substations (from TenneT) are visualized, forming a
star-like topology. This spatial layout captures the interface between DSO and TSO infrastructure and
illustrates how regional demand centers are linked to the transmission grid. The geographic spread of
nodes reflects the actual locations of substations, enabling a geographically informed simulation of con-
gestion dynamics. By simplifying the feeder structure while preserving spatial relationships, the model
supports a realistic yet computationally efficient simulation of Time-Block-Based Transport Rights.

Figure 6.4: Visualization of modeled Regional HV Grid with equivalent feeder method

With the regional grid structure established, the next step is to spatially distribute generation and de-
mand across this infrastructure.

6.4. Spatial Mapping of Generation and Demand
This section describes how electricity generation and demand agents are geographically and technically
mapped onto the modeled grid, forming the operational basis for system behavior under both baseline
and ATR scenarios.

6.4.1. Generation Agents
Electricity generation within the Netherlands comprises both centralized and distributed resources, in-
cluding natural gas, hard coal, biomass, waste-to-energy, solar photovoltaic (PV), and wind power facil-
ities. In this modeling approach, centralized power plants with capacities exceeding 50 MW, including
significant fossil-fuel-based plants and large onshore and offshore wind farms, are represented individ-
ually as discrete Generation Agents. Each Generation Agent is assigned to the closest geographically
proximate node. Locations for these power plants were sourced from datasets provided by ENTSO-E
(the European Network of Transmission System Operators for Electricity) [75] or derived directly from
publicly available information on power plant operator websites.

Conversely, generation technologies like solar PV and biomass exhibit more distributed characteristics
and are therefore aggregated at a provincial level. Solar generation data were acquired from CBS Stat-
Line [61], and biomass generation was treated similarly. Each provincial aggregate was represented
by a singular Generation Agent, subsequently linked to the node with the highest connectivity within
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that province. This strategy ensures that the distributed nature of these technologies is adequately
represented without unnecessary complexity, following the example of [70].

6.4.2. Availability and Technical Characteristics
Power plants inherently possess specific technical characteristics that significantly influence their op-
erational performance and economic competitiveness. Relevant characteristics, such as maximum
generation capacity, efficiency, ramp rates, and minimum operational levels, were primarily sourced
from the databases provided by ENTSO-E [75] and FLEXNET [76], or directly gathered from the offi-
cial web pages of the power plants.

Emission factors for conventional power plants were derived from the International Energy Agency (IEA)
[77], ensuring consistency with recognized international standards. For renewable energy sources
such as solar and wind power, operational availability profiles were based on actual 2022 weather data
forecasts provided by ENTSO-E [75]. Given their renewable nature, the emission factors for solar,
wind, and biomass were set to zero, reflecting their minimal environmental impact relative to fossil fuel
sources. A comprehensive overview of all Generation Agents, detailing their technical characteristics,
operational constraints, and geographic node assignments, is provided in Appendix E.

6.4.3. Demand Agents
For modeling clarity and to manage complexity effectively, the total electricity demand in the Nether-
lands was classified into five distinct sectors, following the categorization proposed by Zomerdijk et al.
[70]:

• Households (A)
• Buildings Sector (B)
• Transport Sector (C)
• Agriculture Sector (D)
• Industry Sector (E)

Households Demand
The total Dutch electricity demand data used in this model was sourced from CBS [61]. The reference
year chosen for this analysis is 2022, as it represents the latest year with fully available data from
CBS. Initially, household electricity demand was collected specifically for the four largest Dutch cities:
Amsterdam, Rotterdam, The Hague, and Utrecht. Each sector within these cities was assigned a
dedicated demand agent at the respective nodes. In cases where cities contain multiple nodes, the
electricity demand was proportionally distributed across these nodes, creating one demand agent per
node. Subsequently, provincial household electricity demand was gathered, and the demand attributed
to the large cities was subtracted from their corresponding provincial totals. The remaining provincial
demand was then distributed across all nodes within each province based on weighted averages, with
a demand agent assigned to each node.

Non-residential Demand
The CBS categorizes non-residential electricity demand according to standard business categories
(SBI). Table 6.2 provides the mapping of these SBI categories to the five demand sectors introduced
earlier.

Demand allocation methods varied by sector, reflecting differences in spatial distribution and opera-
tional characteristics. For the buildings sector, demand was processed similarly to household electricity
consumption. Provincial consumption figures were distributed across all nodes within each province,
assigning one demand agent per node. The transport and agriculture sectors, typically associated with
more spatially dispersed infrastructure, followed a comparable method: their provincial electricity de-
mand was evenly allocated across all nodes in the province, again resulting in one agent per node per
sector. In contrast, the industry sector, known for its high energy intensity and spatial concentration in
large industrial clusters, required a more targeted approach. For each province, the most prominent
industrial site was identified (see Table 6.3), and the entire provincial industrial demand was assigned
to the node(s) geographically closest to that location. This ensured realistic modeling of localized grid
load and reflected the dominant role of large-scale industrial facilities in electricity consumption.
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Table 6.2: Allocation of Standard Business Categories to main modeling categories

Code Sector description Main category

A Landbouw, bosbouw en visserij Agriculture Sector
B Delfstofwinning Industry Sector
C Industrie Industry Sector
D Energievoorziening Industry Sector
E Waterbedrijven en afvalbeheer Industry Sector
F Bouwnijverheid Industry Sector
G Handel Buildings Sector
H Vervoer en opslag Transport Sector
I Horeca Buildings Sector
J Informatie en communicatie Buildings Sector
K Financiële dienstverlening Buildings Sector
L Verhuur en handel van onroerend goed Buildings Sector
M Specialistische zakelijke diensten Buildings Sector
N Verhuur en overige zakelijke diensten Buildings Sector
O Openbaar bestuur en overheidsdiensten Buildings Sector
P Onderwijs Buildings Sector
Q Gezondheids- en welzijnszorg Buildings Sector
R Cultuur, sport en recreatie Buildings Sector
S Overige dienstverlening Buildings Sector
U Extraterritoriale organisaties Buildings Sector

Table 6.3: The largest industrial sites per Dutch province

Province Largest industrial site

Groningen Delfzijl & Eemshaven [78]
Friesland De Zwette [79]
Drenthe Bargermeer [80]
Overijssel Marslanden-Zuid [81]
Gelderland Bijsterhuizen [82]
Utrecht Lage Weide [83]
Noord-Holland Westpoort Port [84]
Zuid-Holland Port of Rotterdam [85]
Zeeland Vlissingen-Oost [86]
Noord-Brabant Port of Moerdijk [87]
Limburg Chemelot [88]
Flevoland Flevokust Port [89]

6.4.4. Load Profiles of Demand Agents
To accurately capture variations in electricity demand over time, realistic load profiles are essential.
These load profiles illustrate electricity consumption patterns throughout a given timeframe. In this
model, K&O profiles provided by Liander [56], a prominent Dutch DSO, were utilized. The significance
of this choice lies in the fact that Liander itself employs these profiles for internal network modeling,
thereby enhancing the realism and reliability of this approach. Although the primary dataset for this
model is based on 2022 demand data from CBS, the K&O profiles from Liander were sourced from
2023, which is the first year they were publicly available, making them the only available option for load
shape modeling.

The K&O profiles represent aggregated annual demand curves specific to broad business categories.
These profiles indicate relative consumption patterns, assigning a normalized value to each quarter-
hour segment throughout the year. Each relative value denotes the consumption level as a fraction of
a company’s peak quarterly-hour electricity usage. Every profile reaches a maximum normalized value
of 1, signifying the quarter-hour interval during which peak consumption occurs.

To adapt these profiles for the model, quarter-hourly data were aggregated into hourly intervals, after
which the data underwent renormalization as described below:
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Given that only total annual energy consumption per sector is known Eannual, first, the raw hourly shape
values hi were converted into weights wi that sum to one over the full year:

wi =
hi∑8760

j=1 hj

,

8760∑
i=1

wi = 1. (6.1)

These weights wi represent the fraction of the year’s energy allocated to hour i. The hourly energy
consumption Ei (in MWh) is then obtained by

Ei = wi Eannual, (6.2)

ensuring that the sum of hourly consumption values aligns exactly with the known annual total:

8760∑
i=1

Ei = Eannual. (6.3)

The household demand load profile was constructed using a typical residential consumption pattern,
generated using [90]. Household demand load profiles are characterized by peak energy use during
morning hours and notably higher demand between 17:00 and 19:00 [91].

Regional Demand Allocation
The distinction between the national and regional grid configurations in the model lies in the treatment
of buses and lines within the province of Noord-Holland. Since the regional grid is embedded within the
national grid, the underlying network structure remains consistent; however, the spatial allocation of
demand is adjusted to ensure that regional loads flow through the modeled equivalent feeders. Specif-
ically, demand originally assigned to national high-voltage buses within Noord-Holland is set to zero.
Instead, electricity demand in this region is redistributed across regional grid buses using the spatial al-
location procedures detailed earlier in this chapter. This adjustment enables a more granular simulation
of localized congestion dynamics while preserving the integrity of the overall system topology.

With the spatial and sectoral mapping of generation and demand agents complete, the next step in-
volves calibrating their economic behavior. This requires accurate parameterization of input costs,
particularly for fuels and emissions, which directly influence market bids and dispatch decisions in the
simulation.

6.5. Fuel and Emission parameters
Fuel data prices were received from sources as: investing.com [64] and Epexspot [63]. Marginal costs
of the nuclear plant were retrieved from the Energy Transition Model [65].

To parameterize fuel and emission costs in themodel, historical price data for natural gas, coal, uranium,
and CO2 emission allowances were collected from publicly available and reputable sources. Natural
gas prices were obtained from the Title Transfer Facility (TTF), the leading European gas trading hub,
using daily futures price data for 2022 from Investing.com [64]. Coal price data for 2022 were sourced
from Ycharts [92] and Investing.com, based on Newcastle coal futures, which serve as a benchmark
for European and Asian markets.

Uranium prices were based on the 2022 average spot price as reported by the Federal Reserve Eco-
nomic Data (FRED) [93] and converted accordingly. For CO2 prices, daily historical EU ETS allowance
prices (EUAs) were retrieved from Investing.com, capturing the significant price volatility during 2022.
Where applicable, average prices were used to ensure temporal consistency with the model’s annual
time resolution, and all monetary values were converted to euros using the annual average exchange
rate.

These fuel and emission cost parameters form the economic foundation for agent decision-making in
the model. In particular, they shape the market bids submitted by Generation Agents and influence the
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broader price formation dynamics. The following section describes how agents use this information to
interact within the simulated electricity market, and how their behavior, both fixed and scenario-driven,
can shape emergent system outcomes under ATR.

6.6. Agent Behavior and Market Interaction
The ASSUME framework enables a detailed and realistic simulation of how agents interact within elec-
tricity markets and physical grid systems. These agents operate under evolving economic incentives
and technical constraints, especially in light of regulatory interventions like Alternative Transport Rights.
ABM is particularly suited to study such decentralized, socio-technical systems, as it captures how indi-
vidual behavioral adaptations accumulate into emergent system-level outcomes. In this model, agents
interact through iterative, market-based mechanisms that simulate the operational and economic dy-
namics of real-world electricity systems. Each simulation time step of one hour follows a sequence in
which agents submit market bids, the market is cleared, and grid flows are updated accordingly. This
tightly coupled simulation loop integrates economic decision-making with physical system constraints,
allowing grid congestion and market prices to emerge from localized, time-dependent choices. As
Deadman [94] notes, “ABM is a bottom-up approach; rather than explicitly defining overall behavior,
system-level behaviors emerge from the actions and interactions of individual agents.” This feature
makes ABM particularly effective for evaluating how policies like ATR reshape bidding behavior, load
shifting, and long-term system performance in a grid increasingly characterized by distributed energy
resources [95].

6.6.1. Generation Agents and Merit Order Dispatch
Generation Agents in this model represent power producers that submit generation capacity offers
into the electricity market. These agents follow a naive economic order-of-merit (naive eom) strategy,
whereby each agent bids its marginal cost of production. These marginal costs are derived from input
parameters such as fuel prices, plant efficiency, and CO2 emission costs.

The submitted bids are sorted into a merit order, with generation units dispatched in ascending order
of marginal cost. Renewable sources, such as wind and solar, are prioritized due to their near-zero
marginal costs, followed by fossil-fuel-based generators such as gas and coal plants. The marginal
cost of the last generator needed to meet demand in a given hour determines the market-clearing
electricity price for that hour. This dispatch mechanism is illustrated in Figure 6.5, which provides a
visual representation of how generation units are selected based on their relative marginal costs.

Figure 6.5: Merit-order dispatch visualization, as by [96]

This merit-order dispatch approach ensures electricity is produced at the lowest possible system-wide
cost and mirrors the price formation mechanisms used in European day-ahead electricity markets [97].
Moreover, it enables the simulation to capture the effects of external factors, such as fluctuations in fuel
prices or CO2 allowance costs, on generator competitiveness, dispatch frequency, and hourly electricity
prices.
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6.6.2. Demand Agents and Scenario-Driven Behavior
Unlike Generation Agents, Demand Agents in this study do not submit price-elastic bids. Instead,
their consumption behavior is defined through input data derived from the demand_df dataset, which
aggregates sectoral demand profiles and assigns them to geographic nodes across the modeled grid,
as described in the earlier sections of this chapter. These demand values are treated as fixed hourly
quantities during each simulation run. However, these demand levels vary across different simulation
scenarios, which have been determined in Chapter 5. These scenario-based modifications introduce
system-wide effects by altering the load duration curve and triggering different congestion patterns and
grid flows.

6.6.3. Simulation Loop and Agent Interplay
At each simulation time step, the following sequence occurs within the agent-based model:

1. Input Initialization: Hour-specific demand and generation availability (e.g., RES profiles) are
loaded from the input datasets.

2. Bidding: Generation Agents submit marginal-cost-based bids. Demand Agents provide fixed
demand values based on their scenario based demand input.

3. Market Clearing: A central market-clearing algorithm matches supply and demand, setting a
market price (uniform pricing) and dispatching generators in merit order.

4. Grid Dispatch: Using the PyPSA power flow engine, the electricity is dispatched through the
modeled power lines.

5. Data Logging: Results on generator dispatch, line loadings, grid flows and market prices are
stored.

This integrated simulation structure enables themodel to reflect not only economic interactions between
agents but also their physical consequences on the electricity grid. As parameters such as demand,
availability, or fuel prices change, so does the interplay between agents, altering merit order outcomes,
triggering different congestion patterns, and ultimately affecting the system-wide operational efficiency
and cost.

6.6.4. Software Implementation
In line with Step 5 of van Dam et al.’s modeling methodology [27], the conceptual model was translated
into a working simulation using Python. The software implementation integrates the ASSUME agent-
basedmodeling framework with the PyPSA power system analysis library, enabling dynamic interaction
between economic behavior and physical grid constraints.

The model was implemented as a modular Python codebase consisting of the following components:

• Data preprocessing scripts, responsible for cleaning, transforming, and aligning input datasets,
such as generation profiles, demand patterns, grid topology, and fuel prices, into model-ready
formats.

• Scenario input folders, containing structured input files for each scenario, including demand
and generation agents, load profiles, renewable availability (wind and solar), fuel prices, and grid
topology (buses and lines).

• Market dispatch modules, implementing the bidding behavior of Generation Agents based on
marginal cost and executing the merit-order dispatch logic, in line with the ASSUME framework.

• Grid simulation loop, which integrates PyPSA’s linear power flow function (lpf()) to compute
hourly line flows, grid utilization, and potential congestion.

• Main simulation script, which initializes all agents, loads scenario parameters, and executes
the full hourly simulation loop across the modeled year.

• Logging and output utilities, which record key simulation results, such as prices, dispatch levels,
and line flows, and export them for post-processing and visualization.

The model architecture is designed for flexibility, allowing rapid scenario testing while maintaining com-
putational efficiency. Version control (Git) was used to track all development steps, ensuring repro-
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ducibility. The full project repository can be found on: https://github.com/jardzwaan/Thesis.git.

This implementation forms the technical backbone for all scenario experiments, integrating agent be-
havior with grid dynamics in a transparent and reproducible way. The following section details how
the model was systematically verified to ensure that the code faithfully reflects the intended conceptual
design.

6.7. Model Verification
Model verification, corresponding to Step 6 of van Dam et al.’s ABM development process [27], was
undertaken to ensure that the implemented agent-based model faithfully reproduces the conceptual
framework described in Step 3. Unlike model validation, which evaluates alignment with empirical
reality (see Section 7.1), verification focuses on the correctness of the internal logic, computational
implementation, and technical consistency of the model.

To verify the model’s structure and behavior, the following strategies were employed:

• CodeReview andDebugging: The entire Python codebasewas systematically inspected through
iterative manual reviews and debugging sessions. Special attention was paid to the instantiation
of agents, the configuration of network topologies, and the logic governing the hourly simulation
loop.

• Unit and Integration Testing: Isolated functions, such as those for demand allocation, agent
dispatch, and power flow computation, were tested with controlled inputs to confirm expected
outputs. These unit tests were complemented by integration tests across multiple simulation
steps to ensure proper interaction between model components.

• Agent Behavior Monitoring: Key output variables, including generation bids, nodal demand
levels, and transmission line flows, were monitored during runtime. Logs and intermediate out-
put files were analyzed to confirm consistency with theoretical expectations, such as merit-order
behavior and spatial demand distributions.

• Extreme Scenario Testing: The model was subjected to small-scale simulations under artificial
boundary conditions, e.g. extremely high generation capacity or peak demand levels. These
stress tests were used to verify that agents respond appropriately under edge conditions, and
that the system remains stable and physically interpretable.

• Sanity Checks with Reduced Input Sets: Simplified simulations with a limited number of agents
and nodes were conducted to trace model logic step by step. These controlled experiments
allowed direct comparison between expected and actual model behavior, improving traceability
and debugging efficiency.

Together, these verification procedures provided confidence that the agent-based model accurately im-
plements the intended conceptual design. No inconsistencies, programming errors, or illogical behav-
iors were detected. With the technical integrity of the model established, the next step is to operational-
ize the research scenarios. The following section details how the TDTR and TBTR were implemented
to simulate their effects on the systems behavior.

6.8. Scenario Implementation
6.8.1. Implementation of TDTR Scenarios
To model the Time-Duration based Transport Rights scenarios, identified in Chapter 5. The following
steps were taken:

1. Baseline Simulation The baseline scenario uses the unaltered demand profile Dorig(t, s), where t
indexes hourly time steps and s denotes sector–province combinations (e.g., buildings in Zuid-Holland).
This baseline serves as a reference scenario to assess market outcomes prior to the application of any
TDTR measures.
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2. Identification of Peak Hours National The 15% busiest hours were identified based on total
national demand:

Dtotal(t) =
∑
s

Dorig(t, s) (6.4)

The set of peak hours Thigh was determined by selecting the top 15% of hours with the highest Dtotal(t):

|Thigh| = ⌊0.15× 8760⌋ = 1314 (6.5)

3. Sector-Specific Flexibility Constraints Each sector s was assigned a flexibility coefficient αs ∈
[0, 1], representing the proportion of demand that can be shifted away from peak hours. For example:

αindustry = 0.15 (6.6)

4. Load Reduction During Peak Hours For each s and t ∈ Thigh, the demand reduction is given by:

∆D(t, s) = αs ·Dorig(t, s) (6.7)

The interim adjusted demand becomes:

Dinterim(t, s) = Dorig(t, s)−∆D(t, s) (6.8)

5. Load Redistribution to Off-Peak Hours The total removed demand per sector is:

Ms =
∑

t∈Thigh

∆D(t, s) (6.9)

This amount is redistributed uniformly over the remaining R = 7446 off-peak hours:

δD(t, s) =
Ms

R
, ∀t /∈ Thigh (6.10)

The final adjusted demand profile is:

DTDTR(t, s) =

{
Dorig(t, s)−∆D(t, s), if t ∈ Thigh
Dorig(t, s) + δD(t, s), if t /∈ Thigh

(6.11)

6. Python Implementation This transformation was implemented in Python using Pandas:

• The original demand data was loaded into a DataFrame.
• National total demand was computed to identify Thigh.
• For each sector–province column, demand in peak hours was reduced by αs, and the removed
energy was redistributed uniformly to the off-peak hours.

• The adjusted demand profiles were exported as new CSV files for integration into the ASSUME
simulation.

7. Validation

(a) Energy Conservation: Total annual demand per column is preserved.
(b) Controlled Intervention: Peak-hour demand never falls below (1− αs) ·Dorig(t, s).
(c) Temporal Smoothing: Redistribution avoids creation of new artificial peaks.
(d) Heterogeneity: Sector-specific flexibility values allow realistic behavioral modeling.
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6.8.2. Implementation of TBTR Scenarios
The Time-Block-Based Transport Rights scenario imposes fixed grid access constraints during prede-
fined nighttime hours (00:00–06:00). To simulate this in the model, a fixed portion of sector-specific
demand is shifted into these TBTR block hours, while maintaining the original annual energy consump-
tion for each sector–province pair.

1. Definition of TBTR Block The TBTR block consists of a six-hour interval from midnight to 06:00:

TTBTR = {t ∈ [1, 8760] | t mod 24 ∈ [0, 1, 2, 3, 4, 5]} (6.12)

2. Sectoral Flexibility Inputs Two scenario configurations were modeled:

• Full Adoption: Buildings (25%), Transport (50%), Agriculture (50%), Industry (15%)
• Hybrid Adoption: Buildings (12.5%), Transport (25%), Agriculture (25%), Industry (7.5%)

3. Load Reduction Outside TBTR Hours For each demand column:

Dadj(t, s) =

{
Dorig(t, s), if t ∈ TTBTR
(1− αs) ·Dorig(t, s), if t /∈ TTBTR

(6.13)

4. Redistribution Into TBTR Block Hours Total removed demand:

Ms =
∑

t/∈TTBTR

[αs ·Dorig(t, s)] (6.14)

Redistributed evenly over all TBTR block hours:

δD(t, s) =
Ms

|TTBTR|
, ∀t ∈ TTBTR (6.15)

Final TBTR-adjusted demand profile:

DTBTR(t, s) =

{
Dadj(t, s) + δD(t, s), if t ∈ TTBTR
Dadj(t, s), otherwise

(6.16)

5. Python Implementation The implementation was done using a Python function apply_tbtr_-
shift():

• Accepts a Pandas DataFrame with sector–province demand profiles.
• Reduces a fixed percentage of each column’s demand outside TBTR hours.
• Evenly redistributes the removed load across all TBTR block hours.
• Returns a new demand DataFrame with TBTR adjustments.

6. Validation

(a) Energy Conservation: Total annual demand per column is preserved.
(b) Temporal Integrity: Shifted load is confined strictly to 00:00–06:00 hours.
(c) Controlled Implementation: Redistribution matches sectoral flexibility assumptions.
(d) No Overcompensation: TBTR block hours receive only the shifted load, avoiding unrealistic

peaks.
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Results

This chapter presents the outcomes of the agent-based modeling simulations and answers the third
and fourth sub-questions of this research:

What are the expected effects of Time-Duration-Based Transport Rights on electricity demand
profiles, grid congestion, and electricity prices?

What are the expected effects of Time-Block-Based Transport Rights on electricity demand profiles,
grid congestion, and electricity prices?

Section 7.1 outlines the validation of the agent-based model, followed by a comprehensive analysis
of the TDTR (Section 7.2) and TBTR scenarios (Section 7.3). Finally, Section 7.4 investigates the
underlying drivers of electricity price increases observed in both scenarios.

7.1. Model Validation
To ensure the robustness, credibility, and applicability of the developed agent-basedmodel, a structured
validation procedure was conducted, adhering to Step 9 of the methodology described by van Dam et
al. [27], and following established validation principles from Sargent [98] and Zomerdijk et al. [70].

7.1.1. Conceptual Validation
Conceptual validation verified the correctness and suitability of the underlying assumptions and theo-
retical framework representing the Dutch electricity system. Specifically, this included confirming the
accuracy of hourly demand and generation distributions, spatial allocations of generation and demand
entities, and linear network flow approximations. These elements were cross-referenced with publicly
available methods and reports from TenneT [71, 76], ensuring the conceptual integrity of the model.

7.1.2. Computerized Model Verification
Computerized model verification involved systematic debugging and consistency checks across core
computational processes. As previously described in Section 6.7, this included verifying the correct spa-
tial mapping of demand agents, the accurate instantiation of generation agents, and the enforcement
of operational constraints such as load balance, capacity limits, and dispatch logic. These procedures
were carried out through controlled test runs, diagnostic logging, and cross-validation of simulation out-
puts. No computational discrepancies were identified, confirming the model’s technical accuracy and
internal consistency.

7.1.3. Operational Validation
Operational validation was conducted using the Baseline simulation for the representative scenario year
(2022). Key performance metrics, including load profiles, electricity prices, and generation by technol-
ogy type, were compared against historical data sourced from the ENTSO-E Transparency Platform
[75] and the database of the International Energy Agency [99].

41
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Load Profile Validation
Figure 7.1 presents a comparison between themodel-generated hourly electricity load and the historical
ENTSO-E data for the Netherlands in 2022. The top panel shows the modeled electricity demand, while
the bottom panel displays the historical reference data. Both plots reflect the hourly system-wide load
in gigawatts (GW) over the full calendar year.

The simulated total annual electricity consumption amounts to 91.4 TWh, whereas the historical value is
100.4 TWh. The primary reason for this discrepancy lies in inherent model simplifications. Specifically,
sectoral and provincial electricity use were derived from CBS end-use data (see Section 6.4), which
accurately reflects the distribution of electricity consumption across sectors and regions. However, this
dataset does not account for transmission and distribution losses (approximately 4.9 TWh) [99], nor for
net import and export balances (approximately 4.3 TWh) [99]. Collectively, these factors account for
the observed variance.

Minor deviations in the hourly load curve are largely explained by the use of aggregated demand profiles
as input data. Despite these simplifications, the temporal pattern of the modeled demand corresponds
with historical data, confirming the model’s suitability for scenario analyses.

Figure 7.1: Hourly total Dutch electricity demand (Load in GW) in model output (above) and ENTSO-E Data [75] (below)

Price Validation
Figure 7.2 provides further operational validation by comparing simulated electricity prices to historical
ENTSO-E day-ahead market data for 2022. The simulated average electricity price (€221/MWh) is
slightly lower than the historical average (€241/MWh). This difference is primarily due to the slightly
reduced overall demand modeled. Nonetheless, the model successfully captures key price volatility
episodes, such as significant price spikes in February/March and August/September. These episodes
are traceable to geopolitical events, specifically the invasion of Ukraine and the sabotage of the Nord
Stream pipelines [100].

The strong alignment between simulated and historical price trajectories proves the model’s capabil-
ity to replicate realistic market dynamics and price fluctuations, thereby validating its applicability for
assessing the effectiveness of ATR contracts in managing grid congestion.
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Figure 7.2: Hourly electricity price (€/MWh) in model output (above) and ENTSO-E historical data Day-Ahead prices [75]
(below)
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Generation Mix Validation
The final metric for operational validation is the breakdown of electricity generation by technology type,
as depicted in Figure 7.3. The figure shows, for each month in 2022, two stacked bars: the left column
represents the simulated generation mix, and the right column shows the corresponding historical data
from IEA statistics [99]. Each bar is segmented by generation technology, with consistent coloring
across months to aid comparison.

While the model slightly underestimates total monthly generation volumes, consistent with earlier dis-
cussed simplifications, the relative shares of generation technologies are largely preserved. For in-
stance, the dominance of fossil gas and wind in the Dutch energy mix is clearly reflected, as is the
seasonal increase in solar output during summer months.

This visual comparison confirms that, despite simplifications in plant-level dispatch and fuel pricing,
the model accurately captures the technology composition and seasonal variation of the Dutch power
system. This supports its validity for scenario analysis focused on system-level behavior and generation
trends.

Figure 7.3: Simulated (left column) and historical [99] (right column) monthly generation stacks for 2022.

Regional Grid Validation
Since the regional model retains the same generation agents, merit-order dispatchmechanism, and fuel
price assumptions as the validated national model, the generation component requires no additional
validation. Only the spatial allocation of demand and the grid topology differ through the inclusion of
regional substations and equivalent feeder lines. Therefore, the generation dispatch logic and market
dynamics can be considered validated by the operational validation results presented in Section 7.1.

7.1.4. Summary of Validation Results
Synthesizing the findings from load profile, electricity price, and generation technology validations, the
model demonstrates sufficient accuracy and reliability for its intended purpose. The close alignment be-
tween simulated outcomes and historical benchmarks establishes confidence in the model’s predictive
capability, supporting its use for evaluating the ATR scenarios outlined in Chapter 5. The subsequent
sections present the outcomes of these scenario analyses.

7.2. TDTR Scenarios
This section presents the simulation results for Time-Duration-Based Transport Rights , evaluating
their impact on electricity demand profiles, market prices, and grid congestion. The analysis compares
three adoption scenarios: baseline (no TDTR), hybrid (partial adoption), and full implementation, to
assess how TDTR contracts influence load volatility, generation dispatch, and transmission system
performance.
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7.2.1. Load Curve and Demand Volatility
The impact of Time-Duration-Based Transport Rights on electricity demand patterns becomes evident
by comparing yearly system load curves across baseline, hybrid, and full scenarios, as shown in Figure
7.4. This figure displays the hourly demand throughout the year for each scenario, where the baseline
(blue line) shows significantly sharper peaks and deeper valleys compared to the flatter load profiles
of the hybrid (green) and full TDTR (yellow) simulations. These visual differences illustrate TDTR’s
role in smoothing electricity demand by encouraging load shifting away from peak periods and toward
off-peak hours.

Table 7.1 summarizes the numerical differences in system behavior across these scenarios. In the
baseline case, the maximum system load reaches 17.6 GW and the minimum load drops to 5.5 GW,
indicating substantial daily and seasonal volatility. With partial TDTR adoption (hybrid), the maximum
load is reduced to 15.2 GW and the minimum load rises to 5.9 GW. Under full TDTR implementation,
the maximum and minimum loads are 15.6 GW and 6.3 GW, respectively. The average system load
remains stable across all scenarios at 10.5 GW, which confirms that total electricity use is conserved.

Figure 7.4: Load Curve (Year) for three TDTR simulations

Table 7.1: Comparison of TDTR Simulation Metrics

Simulation Average price Total cost Max Load Min Load Mean Load Total volume
TDTR_Baseline 219 €/MWh €20551397 956 17.6GW 5.5GW 10.5GW 91.4TWh
TDTR_Hybrid 225 €/MWh €20915985 693 15.2GW 5.9GW 10.5GW 91.4TWh
TDTR_Full 229 €/MWh €21141066 431 15.6GW 6.3GW 10.5GW 91.4TWh

Interestingly, peak loads under full TDTR (15.6 GW) slightly exceed those in the hybrid scenario (15.2
GW). This indicates nuanced interactions between extensive load shifting and network operations, sug-
gesting that higher TDTR adoption levels may redistribute demand in ways occasionally elevating cer-
tain peaks compared to intermediate adoption.

When focusing on a shorter time interval, such as the month of June (Figure 7.5), it is clearly illustrated
that TDTR is effective in clipping peak demands, redistributing load into traditionally lower-demand
intervals. This pattern confirms the intended function of TDTR in improving load management and
efficiency.

7.2.2. Electricity Prices
The simulation results reveal a modest yet consistent increase in average electricity prices across the
TDTR scenarios, as reported in Table 7.1. The baseline scenario yields an average price of €219/MWh,
which rises to €225/MWh under the hybrid TDTR scenario and further to €229/MWh in the full adoption
case.

This upward price trend is not extensively discussed in the reviewed academic or policy literature, re-
quiring a deeper investigation into its underlying causes. While TDTR contracts are primarily designed
to reduce system stress and enhance grid reliability by shifting demand away from peak periods, the
simulations indicate that this load redistribution can introduce unintended price effects. Specifically, the
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Figure 7.5: Load Curve (June) for three TDTR simulations

changes in temporal demand profiles influence which generators are dispatched in each hour, thereby
affecting market-clearing prices through the merit-order mechanism.

A detailed explanation of this dynamic, including how off-peak fossil generation and marginal pricing
behavior drive these increases, is provided in Section 7.4.

7.2.3. Grid Congestion and Transmission Utilization
Grid flow metrics are shown in Tables 7.2 and 7.3. Table 7.2 summarizes the main grid-level flow in-
dicators, including total absolute flow, peak hourly flow, and the exact timestamp of peak transmission.
These results corroborate TDTR’s benefits, showing that peak hourly flows are significantly reduced
from 62.2 GW in the baseline scenario to 59.1 GW (hybrid) and 59.6 GW (full). Notably, total abso-
lute flows slightly increase, from 252 TWh (baseline) to 253 TWh under both TDTR scenarios. This
marginal rise is attributable to altered generation dispatch patterns and slightly longer transmission
paths required by centralized plants compensating for local generation curtailed during shifted peak
hours. These values suggest that TDTR reshapes the temporal and spatial distribution of electricity
flows, relieving peak stress on the grid without reducing overall utilization.

Table 7.2: Grid Flow Metrics TDTR Simulations

Simulation Sum Absolute flow Peak Hourly Flow Peak Load Time
TDTR_Baseline 252 TW 62.2 GW 2022-03-06 09:00:00
TDTR_Hybrid 253 TW 59.1 GW 2022-10-10 10:00:00
TDTR_Full 253 TW 59.6 GW 2022-10-06 09:00:00

Detailed analysis of individual line loadings, fully documented in Appendix D.2, reveals only one line
exceeding capacity under baseline conditions: line 46, which reaches a peak loading of 101%. This
line is a 220 kV transmission link between the provinces of Groningen and Drenthe, an area identified
by TenneT as structurally congested in both its 2022 operational reports and subsequent 2024 research
[101]. Under the hybrid and full TDTR scenarios, peak loading on this critical line decreased to 95.8%
and 95.7%, respectively.

Table 7.3 complements the system-level metrics by showing the average and peak loading levels across
all transmission lines. Average line loading remains virtually unchanged across scenarios, staying close
to 17.4%, which confirms that the network is broadly utilized in a similar way regardless of TDTR imple-
mentation. In contrast, mean peak loading, which reflects the maximum utilization of the most stressed
lines, declines from 53.67% in the baseline to approximately 52.1% under both TDTR scenarios. While
modest in absolute terms, this reduction indicates that TDTR effectively relieves congestion pressure
on critical bottlenecks in the grid during high-demand periods, without significantly altering the overall
usage of transmission infrastructure.

Table 7.2 shows that the timing of peak system load differs across the baseline, hybrid, and full TDTR
scenarios. However, spatial analysis of grid flows during these respective peak hours reveals that the
same critical transmission lines consistently experience high loading, indicating persistent bottlenecks
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Table 7.3: Average & Peak line loading power lines per TDTR Scenario

Simulation Mean Average Loading Mean Peak Loading
TDTR_Baseline 17.37 % 53.67 %
TDTR_Hybrid 17.41 % 52.14 %
TDTR_Full 17.41 % 52.10 %

regardless of the TDTR adoption level. This is visualized in Figure 7.6, which presents congestionmaps
for each scenario at their respective peak moments. In these maps, green lines represent line loading
below 50%, orange lines indicate loading between 50% and 80%, and red lines show heavily loaded
lines exceeding 80%. Notably, a recurring cluster of red and orange lines appears in the northern
and northeastern part of the country across all three scenarios, confirming that certain transmission
corridors remain structurally congested despite temporal demand reshaping through TDTR.

(a) TDTR Baseline Simulation (b) TDTR Hybrid Simulation (c) TDTR Full Simulation

Figure 7.6: Congestion map most congested hour per simulation

7.2.4. Summary of TDTR Scenario Impacts
The TDTR simulations demonstrate that Time-Duration-Based Transport Rights can meaningfully im-
prove grid performance by smoothing electricity demand and reducing system-level peaks. Both hybrid
and full adoption scenarios show reductions in maximum load compared to the baseline, while mini-
mum load levels increase, resulting in a flatter load curve. These shifts confirm TDTR’s intended role
in promoting demand-side flexibility and mitigating load volatility, without altering overall electricity con-
sumption.

Electricity prices show amoderate but consistent increase across adoption levels, rising from €219/MWh
in the baseline to €229/MWh under full implementation. This suggests that while TDTR improves phys-
ical system performance, the resulting demand redistribution affects the merit-order dispatch.

From a grid congestion perspective, TDTR proves effective in reducing peak hourly flows and slightly
alleviating stress on critical transmission lines. Total transmission volumes remain stable, while peak
flows decline by up to 3.1 GW. Congestion maps and line-level metrics indicate a modest reduction in
peak loading on structurally congested lines, although persistent bottlenecks, especially in the north and
northeast, remain visible across all scenarios. These results highlight the structural nature of certain
grid constraints, which TDTR alone cannot resolve. A consolidated overview of the TDTR scenario
outcomes, highlighting the advantages and disadvantages, is provided in Table 7.4.

7.3. TBTR Scenarios
Having evaluated the impact of TDTR on the national high-voltage grid, this section analyzes the effects
of Time-Block-Based Transport Rights on the regional grid. Evaluating electricity demand patterns, load
volatility, and grid use based on the three simulated scenarios: baseline, hybrid, and full implementa-
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Table 7.4: Summary of TDTR Scenario Outcomes

Scenario Advantages Disadvantages
TDTR Hybrid

• Peak load reduced: 17.6 → 15.2 GW
• Load volatility lowered
• Peak grid flow decreased
• Critical line loading improved

• Average price increases: €219 →
€225/MWh

• Slight increase in total grid flow (252 →
253 TWh)

TDTR Full
• Peak load reduced: 17.6 → 15.6 GW
• Grid stress reduced during peak hours
• Further critical line relief

• Average price increases: €219 →
€229/MWh

• Secondary peak emerges due to demand
rebound

• Local congestion patterns may shift

tion.

7.3.1. Load Curve and Demand Volatility
TBTR contracts incentivize electricity consumers to shift flexible demand into a designated off-peak time
window, specifically from 00:00 to 06:00. This structured temporal incentive alters regional demand
patterns and affects system-wide load volatility.

A full-year comparison of system load curves under the baseline, hybrid, and full TBTR scenarios is
provided in Appendix D.1, which illustrates the broader temporal effects of TBTR across the year. To
improve readability, Figure 7.7 focuses on the month of June, offering a clearer view of daily load shifts
induced by TBTR adoption.

Figure 7.7: Load Curve (June) for three TBTR simulations

In the hybrid scenario (blue line), TBTR leads to moderate reductions in peak demand compared to the
baseline (green line). The maximum load decreases from 3.36 GW to 3.07 GW, reflecting a successful
redistribution of demand into underutilized nighttime hours. Similarly, the minimum load rises from
1.08 GW to 1.12 GW, demonstrating that TBTR, like TDTR, effectively reduces load curve volatility by
clipping peaks and filling valleys.

However, the full TBTR scenario (yellow line) reveals a counter-intuitive outcome: the system peak
actually increases to 3.55 GW. As shown in D.2, this excess peak emerges between mid-March and
mid-October, following the spring clock change. By shifting all flexible demand into the fixed block
00:00 -06:00, a slight increase in the load of each sector at 05:00 (the last hour of the block) becomes
amplified. While each sector individually contributes only a modest increase, the cumulative effect is a
sharp increase in total system load.

This effect is further illustrated in Figure 7.8, which shows a seasonal increase in peak electricity de-
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mand under the full TBTR scenario following the spring clock change in March. Figure 7.9 breaks
down this pattern by sector, revealing how synchronized ramping of flexible loads across different sec-
tors amplifies the morning peak. Rather than resolving the issue of peak demand, this shift effectively
relocates the problem to a new time interval. While the early-night hours are better utilized, the fixed
nature of the TBTR time block introduces a secondary peak shortly after 05:00, reducing the overall
effectiveness of load shifting. This highlights a key insight: in the absence of demand staggering or
intelligent control mechanisms, rigid block-based flexibility schemes may alleviate traditional peaks but
simultaneously create new temporal bottlenecks, undermining system-wide efficiency gains.

Figure 7.8: TBTR Simulations Load during clock change (March 27th)

Figure 7.9: TBTR Sectoral Load during clock change (March 27th)

7.3.2. System Load Metrics and Electricity Prices
Table 7.5 presents a comparative overview of key performance metrics for the three TBTR simulation
scenarios, including average electricity price, total system cost, and minimum, maximum, and mean
system load. These metrics provide insight into how TBTR affects overall demand profiles and financial
outcomes at the system level.

Despite the rise in peak load in the full scenario, the mean load remains constant across all simulations
at 2.01 GW, showing that overall energy consumption is preserved and the increase in peak is purely
a temporal shift. On the pricing side, the average electricity price remains stable at €221/MWh in both
hybrid and full scenarios, compared to €219/MWh in the baseline. Similarly, total system costs remain
within a narrow range, despite minor shifts in dispatch and load concentration. These minimal price
differences reflect the fact that TBTR adjustments are applied only to the regional grid, while financial
values in the model are determined at national level. The small increase in price compared to the
baseline scenario suggest that the financial impact of TBTR follows the same logic as that of TDTR,
which will be further analyzed in Section 7.4.
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Table 7.5: Comparison of TBTR Simulation Metrics
*Please note that the financial values are set at national-level, while TBTR is only implemented on the regional grid

Simulation Average price* Total cost* Max Load Min Load Mean Load
TBTR_Baseline 219 €/MWh €20547770 666 3.36GW 1.08GW 2.01GW
TBTR_Hybrid 221 €/MWh €20639348 251 3.07GW 1.12GW 2.01GW
TBTR_Full 221 €/MWh €20613863 865 3.55GW 0.97GW 2.01GW

7.3.3. Grid Flow Metrics and Line Loading Impacts
While the previous subsection assessed how TBTR reshapes temporal demand patterns and system-
wide load dynamics, this section explores the corresponding impacts on spatial grid flows and trans-
mission line loading. After all, changes in when electricity is consumed also affect where and how it
moves across the network.

As established in the previous subsections, full TBTR implementation introduces a pronounced sec-
ondary peak around 05:00 due to synchronized demand rebound at the end of the time block. Table 7.6
supports this observation, presenting key system-widemetrics, which compare total flow volumes, peak
hourly flows, and the temporal occurrence of those peaks. The hybrid scenario demonstrates reduced
peak flows and load volatility, while the full scenario exhibits a temporal shift in congestion, peaking at
05:00 rather than the typical morning period.

Table 7.6: Grid Flow Metrics TBTR Simulations

Simulation Sum Absolute Flow Peak Hourly Flow Peak Load Time
TBTR_Baseline 17.5 TW 3.4 GW 2022-01-17 08:00:00
TBTR_Hybrid 17.5 TW 3.0 GW 2022-01-17 08:00:00
TBTR_Full 17.0 TW 3.2 GW 2022-04-04 05:00:00

To complement the system-level results, Table 7.7 reports line-level congestion indicators. It summa-
rizes peak loadings across all transmission lines per scenario, including the highest observed value
(Max Peak Line Loading) and the average across all lines (Mean Peak Line Loading). In the hybrid
scenario, the maximum peak loading drops from 199.0 MW to 180.2 MW, confirming that partial TBTR
adoption alleviates pressure on the most heavily used lines. The mean also decreases to 112.3 MW.
However, in the full TBTR case, the Max Peak Line Loading increases to 209.1 MW, and the Mean
Peak Line Loading rises to 131.4 MW. This confirms that excessive uniform load-shifting leads to new
localized bottlenecks, particularly near the tail end of the block period. Full line loading results for TBTR
simulations can be found in the Appendix D.3.

Table 7.7: Summary of Line Loading Metrics Across TBTR Scenarios

Metric TBTR Baseline TBTR Hybrid TBTR Full
Max Peak Line Loading [MW] 199.0 180.2 209.1
Min Peak Line Loading [MW] 107.7 98.1 100.1
Mean Peak Line Loading [MW] 124.7 112.3 131.4

These findings highlight the delicate balance required when implementing fixed time-block mechanisms
such as TBTR. While hybrid adoption yields measurable grid benefits, full-scale application without
granular demand controls risks generating unintended congestion peaks, both temporally and spatially.

7.3.4. Summary of TBTR Scenario Impacts
The TBTR simulations reveal that while Time-Block-Based Transport Rights can effectively redistribute
flexible demand to off-peak hours, their rigid temporal structure introduces important trade-offs. In the
hybrid scenario, TBTR successfully reduces peak demand and raises minimum load, confirming its role
in mitigating load volatility. However, the full TBTR implementation produces a system-wide morning
peak due to synchronized demand recovery at the end of the block, which offsets some of the intended
congestion relief benefits.
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Grid metrics confirm that overall electricity consumption and transmission volumes remain stable, in-
dicating that TBTR primarily affects when electricity is consumed rather than how much. Peak hourly
flows and critical line loading are modestly reduced, though some bottlenecks persist due to structural
grid constraints. Financial outcomes remain largely unaffected at the national level, with electricity
prices and total system costs showing minimal variation across scenarios.

These results underline a key insight: the effectiveness of TBTR is highly sensitive to adoption levels
and temporal design. Without demand staggering or smarter control mechanisms, rigid block-based
flexibility schemes risk creating new temporal bottlenecks, even as they relieve traditional ones. To
consolidate these findings, Table 7.8 summarizes the main outcomes of the TBTR scenarios, indicating
their advantages and disadvantages.

Table 7.8 provides an overview of the TBTR scenario outcomes.

Table 7.8: Summary of TBTR Scenario Outcomes

Scenario Advantages Disadvantages
TBTR Hybrid

• Peak load reduced: 3.36 → 3.07 GW
• Load volatility lowered (Min Load: 1.08
→ 1.12 GW)

• Peak grid flow decreased: 3.4→ 3.0 GW
• Line loading reduced (Max: 199.0 →
180.2 MW)

• Average price increase: €219 →
€221/MWh

• Effects localized to regional grid only

TBTR Full
• Load smoothing during early night hours
• Effective redistribution of demand into
off-peak

• System peak increased: 3.36 → 3.55
GW

• New congestion peak at 05:00 due to de-
mand bunching

• Line loading worsened (Max: 199.0 →
209.1 MW)

7.4. Electricity Price Increase Analysis
The electricity price increases identified in the simulation results for both the TDTR and TBTR scenarios
can be explained by examining shifts in generation dispatch dynamics under the merit-order principle.
Given that electricity prices are determined at the national level, the TDTR scenarios, which encompass
broader system-level adjustments, will be the primary focus for this analysis.

Under the merit-order principle (as described previously in Section 6.6.1), electricity generation units
are dispatched sequentially based on ascending marginal costs. Renewable energy sources, such as
wind and solar, are prioritized due to their near-zero marginal costs, followed by progressively costlier
fossil-based generation units, typically coal and natural gas plants. With the implementation of TDTR, a
substantial proportion of electricity demand is shifted from peak to off-peak periods, significantly altering
the temporal distribution of generation dispatch.

Although shifting demand away from peak hours reduces the use of the highest-cost peak-time gen-
erators, it simultaneously introduces new demand peaks during traditionally lower-demand periods,
especially during nighttime when solar generation is unavailable. As a result, this shifted load increas-
ingly relies on fossil-fuel-based generation units situated further down the merit order, notably natural
gas plants, thereby shifting the price-setting mechanism toward more expensive sources.

Importantly, the upward pressure on prices is not confined solely to off-peak hours. The adjusted
demand profile also raises consumption levels during hours that previously were largely met by low-
cost renewable or baseload generation in the baseline scenario. These slight increments in demand
can push total system load marginally above thresholds where additional fossil-fueled generation units
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must be dispatched, even in periods of moderate overall consumption. Given the exceptionally high
fossil fuel prices in 2022, largely resulting from geopolitical disruptions caused by the war in Ukraine
and associated energy supply challenges [102, 103], these incremental shifts in generation dispatch
result in disproportionately large increases in electricity prices.

Thus, the combination of increased fossil-fuel-based dispatch during both traditionally off-peak and
moderately loaded hours contributes to more frequent and higher price-setting by expensive generation
units. This mechanism clearly explains the observed elevation in average electricity prices across the
TDTR scenarios. Figure 7.10 illustrates this phenomenon: the hybrid (blue) and full (yellow) TDTR
scenarios exhibit consistently elevated prices relative to the baseline (green), remaining at higher price
levels for extended periods or experiencing fewer low-price intervals.

Figure 7.10: Electricity prices under TDTR scenarios during the period of exceptionally high fuel prices (August/September
2022)

7.4.1. Fuel Price Sensitivity Analysis
To further assess whether the electricity price increases observed in the 2022 simulations were driven
primarily by ATR-induced demand shifts or by the exceptionally volatile fossil fuel prices of that year,
the TDTR scenarios were re-simulated using coal and natural gas prices from 2023, a period marked
by significantly lower and more stable fuel markets [104]. The results, presented in Table 7.9, show a
substantial drop in absolute electricity prices across all scenarios, with the baseline falling to €142/MWh
and the full TDTR scenario to €145/MWh.

Despite the lower overall price level, the same upward trend persists: average prices increase incre-
mentally with greater TDTR adoption. This confirms that the observed price elevation is not solely an
artifact of 2022’s fuel market volatility, but is partially endogenous to the temporal load shifting intro-
duced by TDTR. Shifting demand to previously off-peak hours structurally alters the dispatch profile in
a way that increases reliance on more expensive marginal units, even under calmer market conditions.

This finding reinforces the conclusion that while TDTR improves system flexibility and grid performance,
it may introduce systematic upward pressure on prices, especially in contexts with limited low-cost off-
peak generation.

Table 7.9: Electricity Prices in TDTR Scenarios Using 2023 Coal and Gas Prices

Metric TDTR Baseline TDTR Hybrid TDTR Full
Electricity price [€/MWh] 142 144 145



8
Discussion

This chapter critically reflects on the research outcomes by connecting insights from stakeholder in-
terviews with results from the agent-based simulations. Section 8.1 summarizes the main findings,
while Section 8.2 interprets their broader implications for policy, regulation, and system-level behavior.
Section 8.3 discusses the academic contribution and methodology, followed by Section 8.4, which out-
lines key limitations. Section 8.5 presents targeted recommendations for stakeholders, and Section 8.6
identifies directions for future research.

8.1. Summary of Results
The qualitative research highlighted critical factors influencing the adoption and effective implementa-
tion of alternative transport rights among large energy consumers. Stakeholder interviews underscored
the foundational importance of accurately identifying and leveraging operational flexibility. Effective
ATR compliance requires detailed, high-resolution sub-metering to accurately pinpoint flexible loads
and real-time control capabilities through advanced digital infrastructures and enterprise data manage-
ment. Additionally, it became evident that successful adoption hinges on significant organizational and
behavioral adjustments, including fostering staff awareness and embedding energy flexibility strategies
within operational routines. While battery storage was frequently discussed, interviewees emphasized
that digital infrastructure upgrades and process flexibility are currently more cost-effective for achieving
ATR compliance.

The qualitative insights informed the quantitative scenario modeling, wherein different sector-specific
flexibility potentials were translated into agent-based model parameters. In analyzing the TDTR sce-
narios, the simulations demonstrated clear effectiveness in reducing peak electricity demand, with max-
imum system loads decreasing notably from 17.6 GW in the baseline scenario to approximately 15.2
GW and 15.6 GW in the hybrid and full adoption scenarios, respectively. TDTR scenarios consistently
demonstrated their intended functionality in smoothing electricity demand curves and reducing peak
congestion on the grid. Nevertheless, these positive impacts were accompanied bymoderate increases
in average electricity prices, rising from €219/MWh in the baseline scenario to €225/MWh (hybrid) and
€229/MWh (full). This unexpected effect is attributed to the redistribution of demand into off-peak pe-
riods characterized by lower renewable generation, consequently triggering dispatch of costlier fossil-
based generation plants. Notably, re-simulations conducted with 2023 fossil-fuel prices confirmed that
these price increases persisted irrespective of fuel price volatility, highlighting a structural and signifi-
cant insight.

The evaluation of TBTR, implemented at the regional level, yielded nuanced outcomes. Partial (hybrid)
adoption effectively reduced peak demand from 3.36 GW to 3.07 GW, improving grid utilization and
mitigating congestion in line with policy intentions. However, the full-scale TBTR scenario generated an
unexpected secondary peak demand of 3.55 GW around 05:00, primarily due to synchronized demand
increase within the fixed off-peak time block.

Additionally, the simulations provided detailed insights into the spatial impacts on grid congestion and

53
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line loading, confirming reductions in critical line loadings under hybrid adoption scenarios. However,
they also indicated persistent congestion points, suggesting that ATR alone might not fully resolve
structural grid bottlenecks without coordinated investments in infrastructure or supplementary flexibility
measures.

8.2. Interpretation of Results
The simulation results and stakeholder interviews underline that while technical potential for demand-
side flexibility exists across multiple sectors, it remains largely underutilized. Many large energy con-
sumers have yet to develop the internal capacity or awareness needed to actively engage with regula-
tory tools such as ATR. Interviewees noted that their organizations often lack clear internal ownership
of grid-related adaptation, and in some cases, awareness of new transport rights was still limited. This
lack of preparedness undermines the effectiveness of well-intentioned regulatory mechanisms and rep-
resents a missed opportunity to reduce congestion in a cost-effective and equitable manner.

From an organizational perspective, this points to a need for increased capacity building, not only in
terms of technological capabilities, but also in governance, communication, and data management.
Organizations must be empowered to identify their own flexibility potential, and equipped with the
tools, data, and regulatory clarity to act on it. Enhanced transparency and knowledge sharing, whether
through grid operators, regulatory bodies, or sectoral associations, could help bridge this gap between
potential and practice.

Moreover, the research illustrates how regulatory interventions can have broad ripple effects on so-
cietal actors beyond their direct economic incentives. For instance, even when ATR contracts offer
cost savings, their adoption may be hindered by operational uncertainty, unclear responsibilities, or
mismatched planning cycles between businesses and regulatory frameworks. These barriers highlight
that societal readiness is not just about technical feasibility, but also about institutional alignment and
behavioral change.

When integrated into a wider systems perspective, the findings of this research offer significant practi-
cal insights into how regulatory mechanisms like TDTR and TBTR can be leveraged to manage energy
demand and enhance grid stability. These insights are particularly relevant in light of the fundamental
transition in the electricity system from stable, fossil-based generation to a more variable and weather-
dependent renewable supply. Historically, electricity systems have favored rigid consumption patterns
that align with the constant output of fossil fuel power plants. In contrast, the rapid growth of renewable
energy sources introduces substantial volatility and uncertainty into electricity supply. Ideally, flexible
demand and energy storage solutions would immediately respond to periods of abundant renewable
generation, optimizing efficiency and reducing costs. However, the existing electricity infrastructure
and regulatory framework, initially designed for stable, predictable consumption, often cannot accom-
modate such dynamic shifts.

This transition creates a central paradox: while renewable generation requires flexibility, the existing
system incentivizes rigidity. Two insights from this thesis illustrate this paradox.

First, there is an inconsistency in flexibility incentives embedded in current tariff structures. ATR are
explicitly designed to encourage flexible energy use, yet mechanisms like the capacity-based charge
(”kWmax”) penalize consumers for short-term peak demand. This can disproportionately affect flexible
users, whose attempts to shift or consolidate their load may unintentionally lead to higher peak charges,
discouraging the very behavior ATR aims to promote.

Second, simulation results reveal that shifting demand to off-peak hours can paradoxically result in
higher electricity prices. Off-peak periods often coincide with low renewable output, requiring the dis-
patch of costlier fossil-fuel plants. Thus, while congestion may be alleviated, the economic benefits of
flexibility are not always realized.

These findings highlight a core tension in the energy transition: the structural misalignment between
the technical needs of a renewable-based system and the economic signals provided by existing infras-
tructure and regulation. Addressing this contradiction is essential for designing effective policies and
market mechanisms that genuinely support a sustainable and flexible electricity system.
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In the context of the Netherlands, where grid congestion has become a critical bottleneck for decar-
bonization and electrification goals, this research reinforces the view that demand-side interventions
such as ATR can play an important, yet partial, role. While ATR offer a promising regulatory mechanism
to stimulate more conscious and flexible electricity use, they cannot resolve structural grid limitations
in isolation. Physical constraints on the grid, especially in regions facing persistent transport capacity
shortages, require complementary solutions to improve alignment of demand with renewable supply.

Nonetheless, ATR can be viewed as a step in the right direction. Beyond their immediate functional
value, they represent a shift in regulatory thinking: from unconditional access and static pricing to-
ward conditional, dynamic, and time-sensitive frameworks that better reflect the operational realities
of a renewables-based power system. Fully embracing this transition will require more than isolated
instruments. A broader re-evaluation of electricity pricing mechanisms, tariff structures, and market
incentives is essential. Aligning these structural elements with the flexibility needs of a decarbonized
system is a prerequisite for addressing congestion challenges, ensuring system reliability, and unlock-
ing the full potential of clean energy technologies.

8.3. Reflection
8.3.1. Academic Contribution
This thesis contributes to three interrelated academic fields: regulatory economics in liberalized electric-
ity markets, agent-based modeling for congestion management, and organizational behavior in energy
system transitions. As ATR are a recent development, this study fills a notable gap in academic lit-
erature by examining their design, implementation, and systemic effects through both qualitative and
quantitative methods.

A key academic contribution of this thesis lies in highlighting a structural misalignment between the
operational needs of renewable-dominated electricity systems and the regulatory incentives currently
in place. While the demand for system flexibility is well established in energy transition literature, this
study adds empirical and simulated evidence showing that existing tariff structures can inadvertently
discourage adaptive behavior. By examining how ATRmechanisms interact with legacy pricing models,
the research surfaces underexplored tensions that may limit the real-world impact of flexibility-oriented
policies. This insight contributes to a growing body of work that calls for the co-evolution of technical
systems and institutional design, and underscores the need for more holistic policy evaluation frame-
works that account for behavioral and systemic feedbacks.

Moreover, the agent-based model developed in this research offers a replicable tool for future academic
work. Its modular design allows for adjustment and extension of sector-specific flexibility assumptions,
supporting studies exploring varying adoption scenarios, dynamic behavioral responses, or spatially
explicit grid constraints. The findings regarding unintended consequences of both TDTR and TBTR
adoption highlight the need for regulatory frameworks that are adaptable, context-sensitive, and re-
sponsive to feedback from system actors.

The interdisciplinary methodology, integrating stakeholder insights with detailed grid simulations, repre-
sents another academic contribution. It provides a more holistic view of congestion management than
studies that treat flexibility either as a purely technical optimization problem or as a matter of behav-
ioral readiness. This blended approach enables more realistic assessments of policy feasibility and
implementation dynamics in complex socio-technical systems.

Finally, while the analysis is situated in the Dutch context, the challenges it surfaces are internationally
relevant. The study offers transferable insights for policymakers, researchers, and system operators
working in other countries where renewable integration, congestion, and demand-side flexibility are
converging issues.

8.3.2. Methodological Reflection
The mixed-methods approach employed in this study effectively combined qualitative insights from
expert interviews with quantitative agent-based modeling. This dual approach was essential given
the novelty ATR and the limited empirical foundation available in existing literature. By triangulating
conceptual understanding, stakeholder perspectives, and simulated system-level outcomes, the study
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produced a more context-sensitive and comprehensive analysis.

The selection of this approach was driven by the complex socio-technical nature of the research sub-
ject. Grid congestion, one of the most pressing challenges in the Dutch energy transition, intersects
with regulatory, behavioral, and technical dimensions. Exploring how ATR could alleviate congestion
required a framework capable of capturing both system-level consequences and stakeholder behavior.
A purely qualitative analysis would have fallen short in evaluating emergent and unintended effects of
ATR mechanisms, while a purely quantitative approach would have lacked the necessary insights into
organizational attitudes, data readiness, and operational practices of large energy consumers, factors
pivotal to regulatory success.

Nevertheless, several methodological challenges arose. The qualitative component was constrained
by the recency of ATR as a policy innovation, which meant that little academic or empirical material
was available to guide the interview design or thematic analysis. Moreover, collecting stakeholder
input proved difficult, as many large energy consumers were unfamiliar with ATR or lacked a clearly
designated employee responsible for grid-related decision-making. As a result, identifying appropriate
interviewees required extensive outreach, and the comprehensiveness of the insights was often limited
by the roles and expertise of respondents.

An added complexity was the translation of qualitative findings into quantitative model parameters.
Stakeholder narratives needed to be formalized into assumptions about sector-specific flexibility, which
introduced interpretative uncertainty. These transformations, while guided by interview input and aca-
demic benchmarks, highlight a general challenge in integrating human-centered insights into formal
simulation environments.

The quantitative component, executed through an agent-based modeling framework, offered notable
advantages. It enabled detailed simulation of decentralized decision-making processes and allowed for
sector-specific flexibility modeling under various ATR regimes. The modular structure of the model is a
particular strength, as it facilitates future adjustments and extensions, such as incorporating dynamic
behavioral learning or sector-specific adoption patterns. This adaptability positions the model as a
valuable tool for future researchers and policymakers seeking to explore how varying levels of demand-
side responsiveness influence outcomes like grid congestion and price volatility.

In summary, while the mixed-methods design introduced certain complexities, it proved indispensable
in addressing the multidimensional nature of the research question. The methodology enhanced the
validity and relevance of the findings, particularly by bridging theoretical modeling with real-world opera-
tional considerations. Nonetheless, despite efforts to mitigate methodological andmodeling challenges,
several limitations remain, both in the construction of the model and in the empirical scope of the study.
These are discussed in section 8.4.

8.3.3. Personal Reflection
This section reflects on the personal learning curve I experienced during the course of this thesis,
highlighting key developments in my perspective, skills, and methodological approach.

Embarking on this thesis project, I felt enthusiastic and motivated by the relevance and urgency of grid
congestion as a critical issue in today’s energy landscape. Initially, I was eager to explore this challenge
comprehensively, choosing a mixed-method approach to effectively capture both technical details and
social dimensions.

In the quantitative component, my original ambition was to construct a highly detailedmodel of the entire
Dutch electricity grid. However, I quickly recognized that fully capturing every aspect of such a complex
system was neither practically feasible nor efficient given the timeframe of the project. This realization
significantly shaped my research process and taught me valuable lessons in project scoping. I learned
to identify and prioritize the most critical elements of the electricity grid for modeling, define clear and
realistic assumptions, and substantiate these assumptions rigorously through previous research and
stakeholder consultations.

Similar lessons were echoed in the qualitative aspect of my research. Initially, my goal was to con-
duct extensive interviews, aiming to gather as many insights as possible. However, I encountered
challenges due to low awareness and limited availability of experts familiar with ATR. Consequently, I
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needed to strategically target specific individuals and carefully filter the gathered information to extract
the most relevant insights. This experience highlighted a crucial aspect of my learning journey: there
will always be more data, more perspectives, and more avenues to explore, but the essence of effec-
tive research lies in clearly defining the research scope and efficiently determining the most valuable
information within that scope.

Reflecting on my broader perspective regarding grid congestion and the energy transition, I initially
viewed these issues primarily as technological and financial challenges. Throughout the research pro-
cess, my viewpoint evolved substantially. As I engaged more deeply with policy frameworks and the
complexities of real-world applications, I came to appreciate the interconnectedness of technological
feasibility, regulatory maturity, stakeholder participation, and economic viability. It became clear that
these factors must progress in parallel, as delays in any single area can impede overall progress. Con-
sequently, I now perceive the challenge of grid congestion not as an isolated task but as a part of a
comprehensive system-wide transformation to a sustainable energy transition that demands synchro-
nized progress across multiple dimensions.

If I were to undertake my thesis again, equipped with the knowledge and experience gained, I would still
choose a mixed-method approach, but I would place greater emphasis on qualitative research. Specif-
ically, I would explore more deeply how ATR aligns with broader sustainability and energy transition
goals in the Netherlands. I believe this would strengthen the robustness of the modeling outcomes and
enhance their practical relevance.

Overall, this thesis experience has significantly enriched my academic and professional development,
profoundly influencing my approach to interdisciplinary research and complex system challenges.

8.4. Limitations
While this thesis provides meaningful insights into the design and implications of alternative transport
rights, its findings must be interpreted in light of several modeling and methodological limitations. Like
all simulation-based research, the results are contingent upon the assumptions, data quality, and scope
of the chosen framework.

First, the accuracy and predictive power of the agent-based model depend heavily on the quality and
granularity of input data. While significant effort was made to ensure realistic representation, uncertain-
ties and simplifications, such as aggregation of demand data and use of generic flexibility assumptions,
inevitably affect the precision of results.

Additionally, the linear power-flow approximation utilized in this model simplifies real-world grid opera-
tions by ignoring reactive power and voltage constraints. While widely accepted for strategic congestion
studies, this simplification may overlook localized operational constraints, potentially underestimating
congestion effects and necessary remedial actions.

Moreover, the scenario-based approach, while beneficial for comparative analysis, assumes static
behavioral responses and predefined flexibility levels. In reality, consumer behavior and market re-
sponses are dynamic and may evolve unpredictably due to changes in market conditions, technological
advancements, or policy interventions. These dynamic factors were not captured fully in the present
study.

Furthermore, the model does not include redispatch mechanisms or flexibility markets. As a result, it
cannot quantify the potential cost-saving effects of reduced redispatch interventions under ATR adop-
tion. This omission limits the ability to assess the full economic impact of ATR mechanisms, particularly
the trade-off between market price increases and reduced system operation costs.

The model also lacks a full sensitivity analysis of key parameters, particularly the sectoral flexibility coef-
ficients. Due to computational constraints, with each simulation taking approximately two hours, it was
not feasible to perform a sufficient number of runs to systematically test model robustness. Scenario-
based assumptions were instead prioritized, given the exploratory nature of the study. Nonetheless,
future work could enhance model rigor by including targeted sensitivity analysis where computational
resources allow.

Finally, the reliance on expert interviews introduces potential biases and limitations in generalizability.
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While valuable for practical insights, stakeholder responses reflect individual experiences and perspec-
tives, which may not universally represent all LECs.

While the limitations of this study warrant caution in interpreting specific quantitative outcomes, they
do not detract from the broader system-level insights gained through the integration of simulation re-
sults and stakeholder perspectives. These findings underline the urgency for coordinated action across
technical, institutional, and regulatory domains. The next section builds on this by outlining concrete
strategies to enhance the implementation of alternative transport rights and better align system opera-
tions with stakeholder capabilities.

8.5. Recommendations
This section offers targeted, actionable recommendations for large energy consumers, system opera-
tors, and policymakers. Drawing on the system-level insights developed in this study, the goal is to
support more effective deployment of alternative transport rights while addressing the persistent struc-
tural and operational misalignments that hinder their success.

Large Energy Consumers
LEC play a central role in unlocking demand-side flexibility and stand to benefit from ATR through
reduced grid tariffs and enhanced control over their energy costs. However, realizing these benefits
requires more than the adoption of new technologies; it calls for strategic foresight, robust data infras-
tructure, and organizational commitment.

A crucial first step is the identification and operationalization of flexible demand within their processes.
To achieve this, LECs should invest in advanced sub-metering and energy monitoring infrastructure.
Such systems provide the high-resolution data needed to identify flexible loads, track usage patterns,
and respond effectively to ATR signals. Enterprise data management plays a key role here by integrat-
ing operational data across systems, ensuring consistency, accessibility, and real-time visibility. This
data-driven foundation allows organizations to evaluate flexibility potential, monitor performance, and
demonstrate compliance with ATR conditions.

In parallel, integrating digital infrastructure is essential. Advanced energy management systems with
automated control capabilities enable real-time responsiveness to external triggers, such as grid con-
straints or dynamic price signals. These systems must be capable of orchestrating adjustments across
diverse operational components, including production equipment, HVAC systems, electric vehicle charg-
ing, and greenhouse climate controls, depending on the sector involved.

Yet technical capability alone is insufficient. Flexibility must also be embedded within the organization it-
self. This means establishing internal governance structures, appointing responsible energy managers,
and ensuring that operational protocols incorporate flexibility considerations. Behavioral strategies,
such as targeted training, visual alert systems, and performance monitoring, can promote a culture of
responsiveness, making flexibility a core operational principle rather than an ad hoc response.

In sum, for LECs to successfully participate in ATR schemes and support broader grid stability, they
must align people, processes, and technology around structured data management and operational
adaptability.

Grid Operators
Grid operators play a pivotal role in orchestrating ATR mechanisms to ensure they support rather than
compromise grid stability. This requires continuous monitoring and iterative refinement of ATR design.
As shown by the emergence of secondary peaks in the full TBTR scenario, operators must remain
vigilant to unintended system effects. Adjusting the temporal design of ATR, such as revising block
definitions, implementing rolling windows, or introducing stochastic flexibility periods, can help prevent
concentrated load and distribute demand more evenly across time.

A critical prerequisite for this role is the readiness of data infrastructure, especially at the distribution
level. Although TBTR contracts were scheduled to become available to large consumers as of April
1st, 2024, DSOs were unable to operationalize this product on time due to insufficient visibility into
local residual capacity. Enabling dynamic, conditional access to the grid requires daily, high-resolution
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insight into the evolving state of grid capacity. This is not yet fully in place. DSOs must therefore
accelerate investments in real-time data collection, monitoring tools, and internal IT systems to support
transparent and reliable ATR activation. The delay in implementation has forced grid operators to offer
ad hoc solutions to requesting companies, highlighting the urgency of improving the digital infrastructure
required to underpin these regulatory instruments.

In parallel, grid operators should enhance their communication and engagement with large energy
consumers. Beyond publishing technical documentation, they should proactively provide guidance,
dashboards, and accessible support services to clarify the structure of ATR contracts, explain participa-
tion procedures, and build trust. More tailored outreach and interactive communication platforms can
reduce informational asymmetries and foster broader engagement.

Lastly, operators can support LECs by offering scenario simulation tools and structured feedback.
When organizations can assess the potential implications of ATR under different operational strategies,
they are more likely to participate effectively. Performance reports, such as congestion impact sum-
maries or compliance evaluations, can create valuable feedback loops, reinforcing adaptive learning
and aligning participant behavior with broader system objectives

Policy Makers
This research underscores a core challenge for policymakers in the energy transition: the growing
disconnect between the technical needs of a renewables-based electricity system and the economic
signals embedded in existing tariff structures. While mechanisms like ATR aim to promote flexible
electricity use, they currently coexist with legacy tariffs that can inadvertently penalize the very behavior
ATR is intended to encourage. This tension risks undermining policy effectiveness and delaying the
adoption of demand-side solutions.

To address this structural misalignment, policymakers are encouraged to critically examine how exist-
ing pricing mechanisms and tariff structures can be made more supportive of flexibility. Rather than
prescribing a specific solution, this research highlights the importance of investigating how dynamic,
time-sensitive, or differentiated tariff models might better reflect the operational realities of a decar-
bonizing power system. Aligning economic incentives with system needs will be essential for unlocking
the full potential of ATR and similar mechanisms.

In parallel, addressing practical barriers to adoption remains vital. Many large energy consumers lack
the technological infrastructure or organizational readiness to fully engage with ATR. To support broader
participation, policymakers should consider expanding targeted funding schemes that lower the upfront
cost of critical enablers, such as sub-metering, automation systems, and local energy storage. These
instruments can help accelerate the diffusion of flexibility, enabling technologies, particularly in sectors
with high potential to alleviate local congestion.

Finally, building institutional capacity is a precondition for success. Awareness of ATR remains limited,
and many organizations require clearer guidance on how to interpret and implement these new contrac-
tual options. Coordinated outreach efforts, including sector-specific best, practice platforms, training
programs, and accessible implementation toolkits, can play a crucial role in closing this knowledge gap.

Ultimately, ATR should be viewed as part of a broader shift in regulatory thinking, away from static,
unconditional access and toward more dynamic, responsive models of grid participation. Realizing this
vision will require ongoing policy attention, not just to individual mechanisms, but to the coherence and
adaptability of the entire regulatory and economic framework underpinning the sustainable electricity
system of the future.

8.6. Further Research
This section outlines several directions for future research that build upon the modular agent-based
modeling framework developed and applied in this thesis. This framework offers a flexible and adapt-
able foundation, well-suited for integrating additional data sources, behavioral components, and evolv-
ing system configurations. Its modularity provides a robust platform for extending the current analysis
of congestion management strategies ATR.

Building on this foundation, future research could focus on several areas to enhance the accuracy,
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realism, and policy relevance of the model. To begin with, improving the granularity and quality of input
data, such as incorporating high-resolution consumption profiles and detailed local grid topology, would
increase model precision and contextual relevance. Furthermore, extending the modeling framework
to support full AC power-flow simulations, including reactive power and voltage constraints, would
offer deeper insights into voltage stability and allow for more accurate identification of localized grid
bottlenecks.

Moreover, there is substantial value in incorporating dynamic representations of consumer behavior
and market responses. Future studies could integrate adaptive learning algorithms and agent-based
decision-making processes to better reflect how large energy consumers andmarket participants adjust
over time in response to evolving market signals, regulatory changes, and technological innovations.
Such additions would improve the model’s capacity to reflect real-world dynamics and support more
robust policy evaluations.

Furthermore, future research would benefit from explicitly modeling redispatch mechanisms. Although
the current study demonstrated the effects of ATR on electricity prices and grid flows, it did not cap-
ture redispatch operations, their costs, or spatial constraints. Incorporating features such as security-
constrained economic dispatch or nodal pricing could enable a more comprehensive assessment of
total system costs and trade-offs between market dynamics and operational interventions.

In addition, integrated assessments of complementary technologies and practices, such as energy
storage, electric vehicles and distributed energy resources, would provide amore holistic understanding
of system-wide interactions. Evaluating the combined impact of these technologies on grid stability,
congestion relief, and market efficiency would enhance the applicability of model outcomes to long-
term energy transition strategies.

Further research could also broaden the scope of stakeholder engagement. Expanding the empirical
base through larger-scale qualitative interviews or quantitative surveys across various sectors would
increase the generalizability and relevance of findings. Engaging a more diverse group of stakeholders,
including policymakers, system operators, technology providers, and industry associations, would also
help validate assumptions and refine implementation pathways.

Finally, targeted sensitivity analyses and scenario-based explorations should be incorporated to strengthen
model robustness. Testing the effects of variations in key parameters, such as sectoral flexibility, ATR
design specifications, and technology adoption rates, would allow for a better understanding of model
sensitivities and help inform more resilient and adaptive policy strategies.
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Conclusion

This chapter concludes the thesis by synthesizing the answers to the four sub-questions introduced in
Chapter 1, drawing from the findings presented in Chapter 4, Chapter 5, and Chapter 7. Section 9.1
addresses each sub-question in turn, followed by Section 9.2, which formulates an integrated answer
to the main research question guiding this study.

9.1. Answering the Sub-Questions
This section answers the sub-questions in the order in which they were introduced.

Sub-Question 1: What are the regulatory requirements of Alternative Transport Rights, and how
do they impact the economic costs and benefits for large energy consumers?

Alternative transport rights, introduced by the Dutch Authority for Consumers and Markets in 2024, rep-
resent a regulatory shift from guaranteed and unrestricted electricity transport rights to a model based
on conditional, flexible access. Designed to address growing grid congestion without necessitating
immediate infrastructure expansion, ATR encourage large energy consumers to adapt their electricity
use to the temporal and spatial realities of grid availability. By reallocating access based on residual
capacity, ATR provide a framework for aligning system efficiency with economic incentives.

ATR are implemented through two distinct contractual forms, each tied to a specific grid level. Time-
Duration-Based Transport Rights are currently available only on the national high-voltage grid, operated
by TenneT. Under TDTR, consumers are granted access to their contracted transport capacity for at
least 85% of the hours per year, with up to 15% potentially curtailed depending on system conditions.
Curtailment notifications are issued a day in advance, requiring consumers to respond to short-notice
limitations. In contrast, Time-Block-Based Transport Rights are introduced on the regional grids oper-
ated by DSOs. TBTR provide access to electricity only during predefined time blocks, currently limited
to nighttime hours (00:00–06:00), that fall outside local peak periods. These time blocks are determined
based on local congestion patterns and available residual capacity.

In both cases, participation in ATR requires that consumers possess the technical and organizational
capacity to adjust their electricity consumption in accordance with these limitations. Moreover, ATR
contracts are designed to be compatible with, conventional transport rights; users can combine fixed
and flexible rights across different portions of their load but must adhere strictly to the conditions of
each.

The financial structure accompanying ATR reflects the reduced certainty of access by offering lower
network tariffs. For TDTR users on the national grid, the ”kW Contracted” component of the tariff,
normally associated with long-term grid planning and infrastructure recovery, is waived entirely. Users
pay only the ”kWMax” charge, which reflects their highest actual monthly usage. This shift can result in
substantial cost savings, particularly for consumers with high contracted capacity and predictable usage
patterns. For TBTR users on regional grids, the ”kW Contracted” charge is reduced in proportion to the
average number of hours per day during which access is granted, while the ”kW Max” charge remains

61
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unchanged. These adjusted tariffs are intended to make flexible access financially attractive, especially
for consumers capable of rescheduling operations to off-peak periods.

However, the economic benefits of ATR are tempered by several operational, technical, and regulatory
barriers. One of the primary challenges is the uncertainty surrounding curtailment under TDTR. The
one-day advance notice complicates operational planning, particularly for sectors with tightly scheduled
or inflexible production processes. Even TBTR, while more predictable, may offer access windows that
are misaligned with real-world energy needs, reducing the practical value of participation.

Participation in ATR also requires significant upfront investments in digital infrastructure. Smart meters,
sub-metering at the process level, and automated control systems such as Energy Management Sys-
tems are necessary for real-time monitoring and compliance. For many firms, the business case for
such investments is not immediately favorable, especially when existing tariff structures impose penal-
ties for peak demand even when overall consumption behavior supports grid stability. The monthly
”kW Max” tariff, for instance, may inadvertently penalize consumers for advancing load in anticipation
of curtailments, behavior that technically supports the grid but raises costs due to short-term peaks.

Beyond the technical domain, organizational readiness plays a critical role. ATR participation often
requires shifts in internal routines, staff training, and cross-departmental coordination to ensure com-
pliance with flexible access conditions. Non-compliance can trigger enforcement actions, ranging from
warnings to suspension or termination of ATR agreements. This regulatory risk adds to the complexity
of adoption and discourages participation among risk-averse firms.

Finally, the novelty of ATR and limited market communication have hindered broad uptake. Many
LECs are still unfamiliar with the mechanisms and obligations associated with ATR contracts, and
sector-specific guidance remains scarce.

In sum, the regulatory requirements of ATR introduce a more dynamic and responsive model of grid
access that offers meaningful economic benefits to large energy consumers capable of adjusting their
operations. TDTR and TBTR provide targeted mechanisms for high-voltage and regional grids, respec-
tively, each offering tariff reductions in exchange for reduced certainty of access. While the financial
incentives are considerable, especially under TDTR, the full realization of ATR’s potential depends on
the ability of firms to overcome technical, behavioral, and institutional challenges. Addressing issues
such as curtailment uncertainty, misaligned tariff components, and limited awareness will be critical to
achieving the intended goals of congestion relief and efficient grid usage.

Sub-Question 2: How can large energy consumers leverage data and technology to optimize
their operational processes for Alternative Transport Rights compliance?

LECs can leverage data and technology to optimize their operations for compliance with ATR by embed-
ding high-resolution energy monitoring, digital automation, and structured data governance into their
operational and organizational routines. ATR compliance requires aligning electricity consumption with
dynamically constrained or predefined grid access windows, either through TDTR, which entail curtail-
ments with limited notice, or TBTR, which offer access during fixed off-peak periods. Meeting these
requirements demands an integrated approach that combines granular visibility, flexible infrastructure,
and responsive organizational practices.

Central to ATR compliance is the acquisition and real-time processing of detailed energy data. High-
frequency sub-metering, at intervals of 30 seconds or less, enables firms to identify peak consumption
moments, assess the flexibility of specific loads, and simulate curtailment scenarios. Interviewees
consistently stressed that operational optimization begins with measurement: without precise insight
into when and where energy is used, no effective flexibility strategy can be deployed. Visualization
platforms such as Power BI and centralized API-based dashboards allow energymanagers to track load
patterns and anticipate price or capacity signals, facilitating proactive adjustments to heating, lighting,
and process schedules.

Once energy visibility is established, digital infrastructure, EMS and automation, becomes critical.
These systems allow for real-time load control based on predefined rules, such as curtailing non-
essential systems when thresholds are approached or activating loads during TBTR access hours.
Advanced sensors and control logic can automate such decisions with minimal manual intervention,
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while ensuring that operational constraints (e.g., crop cycles in agriculture or thermal comfort in build-
ings) are respected. However, to realize the full potential of such systems, LECs must also invest
in Enterprise Data Management capabilities that ensure data integration across business units, main-
tain quality, and standardize interpretation. Without EDM, automation efforts may remain siloed or
misaligned with broader strategic objectives.

Sector-specific applications further illustrate how data and technology enable ATR compliance. In agri-
culture, greenhouse operators use climate control systems linked to EMS to dynamically manage heat-
ing and lighting loads based on grid signals and internal thresholds. In buildings, thermal buffering
through overcapacity in refrigeration or HVAC systems allows for nighttime load shifting, especially
when combined with electrification strategies. In transport, the timing of electric vehicle charging aligns
naturally with TBTR windows, and smart charging algorithms can optimize load without compromising
mobility needs. While industrial operations face more rigid process constraints, auxiliary loads like
lighting and internal logistics present lower-hanging opportunities for automation and scheduling.

Battery storage is frequently proposed as a technical solution for ATR compliance, offering the theoreti-
cal ability to decouple consumption from procurement. However, interviewees agreed that batteries are
currently often cost-prohibitive and inefficiently deployed without supporting data infrastructure. Instead,
most viewed batteries as a long-term complement rather than a near-term prerequisite, advocating in-
stead for flexible scheduling and process-level automation as more cost-effective pathways.

However, technical systems alone are not sufficient. For ATR participation to be effective and scalable,
energy flexibility must be embedded in the organization’s governance and operational culture. Appoint-
ing responsible energy managers, aligning cross-departmental workflows, and ensuring that flexibility
considerations are reflected in operational protocols are essential steps. Behavioral strategies, such
as visual alert systems, energy awareness programs, and structured performance monitoring, can re-
inforce responsiveness and foster a culture of shared responsibility. These organizational enablers
ensure that flexibility becomes an integrated operational capability, rather than a reactive or temporary
adjustment. While much of this must be driven internally, it is also supported by clear communication
from system operators and policymakers, who play a key role in creating the predictable and transpar-
ent conditions under which LECs can confidently invest in and implement flexibility strategies.

In sum, LECs can effectively optimize their operations for ATR compliance by deploying granular mon-
itoring tools, automating load control through EMS, and institutionalizing energy management within
a robust EDM framework. These technological and organizational adaptations enable firms to shift
demand intelligently in line with grid constraints, reduce transport tariffs, and support broader system
stability, while minimizing operational disruptions and compliance risks.

Sub-Question 3: What are the impacts of adopting Time-Duration-Based Transport Rights by
large energy consumers on congestion management effectiveness and the overall stability of
the Dutch national grid?

The adoption of TDTR by large energy consumers LECs has a demonstrably positive impact on con-
gestion management and the operational stability of the Dutch national electricity grid. By incentivizing
flexible demand behavior through tariff reductions, TDTR mechanisms enable a redistribution of elec-
tricity consumption away from high-stress intervals, thereby supporting grid efficiency without requiring
immediate infrastructure expansion.

Simulation results confirm that TDTR adoption reduces load volatility and peak system stress. In both
hybrid and full adoption scenarios, maximum hourly electricity demand declines substantially compared
to the baseline (from 17.6 GW to 15.2 GW and 15.6 GW, respectively), while minimum demand in-
creases, resulting in a flatter national load curve. These shifts reduce the incidence and severity of net-
work congestion, particularly during traditionally critical hours. Additionally, TDTR leads to a decrease
in peak hourly transmission flow by up to 3.1 GW and alleviates loading on structurally congested lines,
most notably a key 220 kV line in the Groningen-Drenthe corridor, without altering the total volume
of electricity transported. This demonstrates that TDTR improves temporal utilization of the grid and
eases pressure on known bottlenecks.

Despite these physical benefits, this thesis identifies nuanced trade-offs. At high adoption levels, syn-
chronized load shifting may inadvertently create new peaks during formerly off-peak hours, occasionally
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exceeding peak reductions observed under hybrid scenarios. This suggests the potential for rebound
effects when flexibility is concentrated without adequate staggering. Moreover, TDTR adoption consis-
tently raises average electricity prices, by approximately €6–10/MWh, due to altered dispatch patterns.
Load shifting into off-peak periods increases reliance on fossil-based generation (particularly natural
gas) during hours previously dominated by low-cost renewables or baseload plants. While the price in-
crease is modest relative to the system-level flexibility gains, it nonetheless persists even under calmer
fuel market conditions, as demonstrated by the 2023 sensitivity analyses. This finding presents a new
insight, revealing that TDTR-induced load shifting structurally alters dispatch patterns in ways that in-
troduce a consistent, albeit limited, upward pressure on electricity prices.

Overall, TDTR enhances congestion management effectiveness by lowering peak loads, smoothing de-
mand profiles, and reducing line loading on critical infrastructure. It contributes to greater operational
stability of the Dutch high-voltage grid by enabling more responsive and efficient use of residual capac-
ity. However, the magnitude of these benefits depends on adoption levels, demand-side coordination,
and the availability of off-peak low-cost generation. To maximize its stabilizing effect, TDTR should
be supported by granular control strategies, updated tariff models, and broader system planning that
accounts for the dynamic nature of rebound peaks and shifting congestion patterns.

Sub-Question 4: What are the impacts of adopting Time-Block-Based Transport Rights by large
energy consumers on congestion management effectiveness and the overall stability of the
regional grid?

The adoption of TBTR by large energy consumers introduces both beneficial and adverse effects on
congestion management and the overall stability of the Dutch regional grid. TBTR contracts provide
access to the grid during predefined off-peak time blocks, currently limited to the 00:00–06:00 window,
and aim to redistribute demand away from congested periods. By incentivizing load shifting into these
underutilized hours, TBTR offers a non-infrastructural tool for improving temporal load distribution and
relieving stress on the distribution network.

Simulation results confirm that hybrid TBTR adoption effectively reduces system peaks, lowers load
volatility, and improves grid utilization. Peak demand decreases from 3.36 GW to 3.07 GW, and line
loading on the most congested regional links is also alleviated, with maximum peak line loading de-
clining from 199.0 MW to 180.2 MW. These improvements occur without altering the total electricity
demand or transmission volumes, confirming that TBTR reshapes the temporal profile of electricity use
without increasing system strain.

However, full TBTR adoption introduces new challenges. When all flexible demand is shifted into the
same six-hour block, cumulative effects lead to a synchronized peak near the end of the block, partic-
ularly around 05:00, resulting in a new system-wide peak of 3.55 GW. This secondary peak emerges
due to the rigid structure of TBTR and the lack of load-staggering mechanisms across sectors. As a re-
sult, maximum line loading rises above baseline levels, creating localized bottlenecks and undermining
some of the intended congestion relief. These findings illustrate a core limitation: while TBTR reduces
traditional peaks, it risks creating new temporal concentrations of demand if adopted at scale without
sufficient control logic or automation.

Importantly, the average electricity price remains stable across scenarios, increasing only marginally
(from €219/MWh to €221/MWh), as TBTR operates on the regional grid and does not significantly affect
national merit-order dispatch outcomes. Nonetheless, the financial and operational efficiency of TBTR
depends on how well load shifting is coordinated across participating consumers.

In sum, TBTR can enhance regional grid stability and reduce peak congestion whenmoderately adopted
and supported by digital control infrastructure. However, its rigid temporal design poses significant
challenges at higher adoption levels, especially in the absence of demand staggering. To safeguard its
effectiveness, TBTR implementation must be paired with intelligent automation strategies and poten-
tially more dynamic or rolling block designs that avoid synchronized rebound effects and unintended
congestion shifts.
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9.2. Answering the Main Research Question
This thesis sought to answer themain research question: How can large energy consumers in the Dutch
electricity market adapt their operational and data-driven practices to effectively utilize new alternative
transport rights, and what impact will these adaptations have on grid congestion?

The findings demonstrate that meaningful adaptation requires a dual transformation, both technical and
organizational. Technically, large energy consumers must invest in high-resolution monitoring, automa-
tion, and enterprise-wide data integration to synchronize electricity use with the dynamic constraints
imposed by ATR. Organizationally, flexibility needs to be embedded in decision-making processes,
governance structures, and daily operations. Without this internal alignment, the full benefits of ATR
cannot be realized. When adopted in a moderately coordinated manner, ATR can substantially allevi-
ate grid congestion without the need for immediate infrastructure expansion. TDTR reduces national
peak loads and relieves stress on critical transmission corridors, while TBTR enhances regional load
distribution under hybrid adoption. Crucially, these improvements are achieved without increasing total
electricity consumption, reflecting a more efficient temporal use of grid capacity.

Yet, the research also reveals structural misalignments. Existing tariff structures often fail to incentivize
flexibility and, in some cases, penalize behavior that supports grid stability. Furthermore, shifting de-
mand into off-peak hours can increase system costs by relying more heavily on fossil-based generation
during periods of low renewable output. These effects underscore a disconnect between the technical
needs of a renewable-based system and the economic signals shaping consumer behavior. Addressing
this requires not only a more intelligent implementation of ATR, but also a fundamental reconsideration
of tariff design, electricity pricing, and regulatory coherence. While ATR cannot resolve deep-seated
grid constraints on their own, they mark a necessary shift toward more dynamic and responsive models
of grid access.

In this light, ATR represent a timely regulatory innovation that reflects the operational realities of a vari-
able, renewables-driven electricity system. But their success depends not just on consumer readiness,
but on broader system alignment, across market incentives, institutional frameworks, and grid operator
capabilities. Only through such alignment can ATR realize their full potential in mitigating congestion
and accelerating the transition toward a flexible, reliable, and sustainable electricity system.

9.3. Use of Artificial Intelligence
During the development of this thesis, artificial intelligence (AI) tools, including language models, were
used to support the writing process. These tools assisted in refining the structure, improving clarity and
readability, and enhancing formatting and layout consistency. At no point were AI tools used to gen-
erate original research content, perform data analysis, or replace critical thinking and domain-specific
judgment.

All substantive content, analysis, interpretations, and conclusions presented in this thesis are entirely
my own work and responsibility. AI-supported suggestions were reviewed, adapted, and integrated
thoughtfully to ensure academic integrity and alignment with the objectives of this research.
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A
Appendix: Literature Review

Table A.1: Initial Literature review: Search terms and results

Search Terms Hits Selected
”Grid congestion” AND ”contracts” 12 1
”Energy” AND (”Congestion” OR ”Grid Congestion”) AND ”Netherlands” 65 3
(”Large-scale energy users” OR ”Industrial energy consumers” OR
”Energy-intensive users” OR ”Industrial energy users”) AND ”Demand
Response”

7 1

”Energy Consumers” AND (”Load control” OR ”Demand Shifting” OR ”De-
mand Flexibility”)

26 2

”Load control” AND (”demand-side management” OR ”demand response
strategies”) AND ”Energy storage”

53 3

”Demand flexibility” s.AND (”renewable integration” OR ”energy storage
systems”)

45 2

”Grid congestion” AND (”energy storage technologies” OR ”battery sys-
tems”)

7 1

”Grid flexibility” AND (”distributed energy resources” OR ”renewable in-
tegration”)

62 1

”Demand-side management” AND (”grid flexibility technologies” OR ”en-
ergy efficiency”) AND ”Energy Storage”

31 1
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Case study on the value of
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Energy markets,
demand flexibility

Hubert, N.
D., Biely, K.,
Kamp, L. M.,
de Vries, G.

2024 Do laundry when the sun
shines: Factors that promote
load-shifting in Dutch
households with solar panels

0 https:
//doi.org/10.
1016/j.erss.
2024.103514

Loadshifting, solar
energy, behavior
change

Behrangrad,
M.

2015 A review of demand side
management business
models in the electricity
market

256 https:
//doi.org/10.
1016/j.rser.
2015.03.033

Demand side
management,
smart grid,
renewable
integration

Zhang, K.,
Prakash, A.,
Paul, L.,
Blum, D.,
Alstone, P.,
Brown, R.

2022 Model predictive control for
demand flexibility:
Real-world operation of a
commercial building with
photovoltaic and battery
systems

56 https:
//doi.org/10.
1016/j.adapen.
2022.100099

Model predictive
control,
photovoltaics

Continued on next page...

https://doi.org/10.1016/j.apenergy.2017.06.040
https://doi.org/10.1016/j.apenergy.2017.06.040
https://doi.org/10.1016/j.apenergy.2017.06.040
https://doi.org/10.1016/j.apenergy.2017.06.040
https://doi.org/10.1016/j.apenergy.2018.03.007
https://doi.org/10.1016/j.apenergy.2018.03.007
https://doi.org/10.1016/j.apenergy.2018.03.007
https://doi.org/10.1016/j.apenergy.2018.03.007
https://doi.org/10.1016/j.buildenv.2023.110435
https://doi.org/10.1016/j.buildenv.2023.110435
https://doi.org/10.1016/j.buildenv.2023.110435
https://doi.org/10.1016/j.buildenv.2023.110435
https://doi.org/10.1016/j.apenergy.2023.121430
https://doi.org/10.1016/j.apenergy.2023.121430
https://doi.org/10.1016/j.apenergy.2023.121430
https://doi.org/10.1016/j.apenergy.2023.121430
https://doi.org/10.1016/j.epsr.2019.105891
https://doi.org/10.1016/j.epsr.2019.105891
https://doi.org/10.1016/j.epsr.2019.105891
https://doi.org/10.1016/j.epsr.2019.105891
https://doi.org/10.1016/j.erss.2024.103514
https://doi.org/10.1016/j.erss.2024.103514
https://doi.org/10.1016/j.erss.2024.103514
https://doi.org/10.1016/j.erss.2024.103514
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1016/j.adapen.2022.100099
https://doi.org/10.1016/j.adapen.2022.100099
https://doi.org/10.1016/j.adapen.2022.100099
https://doi.org/10.1016/j.adapen.2022.100099


74

Authors Year Title Cited
by

DOI Subjects
(Keywords)

van der
Holst, B.,
Verhoeven,
G., van
Schooten,
L.,
Dukovska, I.,
Nguyen, P.,
Morren, J.

2025 On synergies between
congestion management
instruments: The Dutch
case-study

0 https:
//doi.org/10.
1016/j.segan.
2025.101623

Congestion
management, grid
tariffs

Zakeri, B.,
Syri, S.

2015 Electrical energy storage
systems: A comparative life
cycle cost analysis

1396 https:
//doi.org/10.
1016/j.rser.
2014.10.011

Energy storage,
comparative
analysis

Schulz, J.,
Rosenberg,
F.,
Scharmer, V.
M., Zaeh, M.
F.

2020 Characterization of Energy
Consumers in Production
Systems with Renewable
On-Site Power Generation

2 https://doi.
org/10.1007/
978-3-030-57993-7_
3

Energy
consumption,
micro-grid

Dronne, T.,
Roques, F.,
Saguan, M.

2021 Local flexibility markets for
distribution network
congestion-management in
center-western Europe:
Which design for which
needs?

14 https://doi.
org/10.3390/
en14144113

Flexibility markets,
congestion
management

Gholian, A.,
Mohsenian-
Rad, H.,
Hua, Y.

2016 Optimal industrial load
control in Smart Grid

85 https:
//doi.org/10.
1109/TSG.2015.
2468577

Industrial load
control, smart
pricing

https://doi.org/10.1016/j.segan.2025.101623
https://doi.org/10.1016/j.segan.2025.101623
https://doi.org/10.1016/j.segan.2025.101623
https://doi.org/10.1016/j.segan.2025.101623
https://doi.org/10.1016/j.rser.2014.10.011
https://doi.org/10.1016/j.rser.2014.10.011
https://doi.org/10.1016/j.rser.2014.10.011
https://doi.org/10.1016/j.rser.2014.10.011
https://doi.org/10.1007/978-3-030-57993-7_3
https://doi.org/10.1007/978-3-030-57993-7_3
https://doi.org/10.1007/978-3-030-57993-7_3
https://doi.org/10.1007/978-3-030-57993-7_3
https://doi.org/10.3390/en14144113
https://doi.org/10.3390/en14144113
https://doi.org/10.3390/en14144113
https://doi.org/10.1109/TSG.2015.2468577
https://doi.org/10.1109/TSG.2015.2468577
https://doi.org/10.1109/TSG.2015.2468577
https://doi.org/10.1109/TSG.2015.2468577


B
Interview Questions

A. General Business & Energy Profile (General)
1. In a few sentences, can you describe your company’s operations and its energy consumption

profile?
2. What are your primary sources of electricity (e.g., grid, on-site generation, renewables)?
3. Do you have a connection to the regional grid or the national grid?
4. How does electricity cost impact your business operations and strategic decision-making?
5. Does your company currently have enough connected capacity, or would an expansion be desir-

able?
→ If so, do you experience any problems getting this extra capacity because of grid congestion?

B. Awareness & Perception of Alternative Transport Rights (SQ1)
6. Are you familiar with the new ATR contracts (Time-Duration-Based and Time-Block-Based Trans-

port Rights)?
7. Have you considered adopting ATR (whichever is relevant based on your grid connection)? If so,

what were the deciding factors?
8. What benefits do you see in adopting ATR (e.g., cost savings, grid stability, sustainability goals)?
9. Do you foresee any challenges in adopting these contracts (e.g., operational adjustments, com-

pliance issues)?
10. [Only for TDTR] How does uncertainty in grid connection affect your willingness to adopt TDTR?

C. Impact on Energy Management Strategies (SQ2)
11. Do you currently manage electricity demand during peak and off-peak hours? If so, how?
12. What role do energy storage systems (e.g., batteries) or distributed energy resources (DERs) like

solar panels or windmills play in your operations?
13. If adopting ATR, which of your processes could realistically be shifted to off-peak hours without

affecting core operations?
14. What are the main challenges you foresee in aligning your operational planning with ATR condi-

tions?

D. Enterprise Data Management & Technology (SQ2)
15. What systems or tools does your company currently use to monitor and analyze electricity con-

sumption?
16. How is your electricity consumption data currently used in operational decision-making?

(E.g., does it inform production scheduling, cost allocation, or real-time system controls?)
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17. Who in your organization is responsible for managing and analyzing energy data, and how is this
information shared across departments?

18. Would implementing ATR require changes to your current IT infrastructure or energymanagement
systems?

19. What kind of data automation or system integration would help your organization fully leverage
ATR?



C
Interview Summaries

C.1. Interview Energy Director Glass House Farming Company
Energy Profile and Infrastructure
Each location typically uses a combined heat and power (CHP) unit (gas turbine), providing electricity,
heat, and CO2 for enhanced plant growth. Lighting is supplied by dimmable LED and SON-T lamps,
mainly during winter months. Most sites have direct or ring connections to medium voltage (MS) net-
works, with some connected to high-voltage (HS) substations.

Thermal buffers are widely used to store surplus heat, enabling temporal decoupling between heat
production and demand. Flexibility is embedded through smart switching between internal generation
and external grid imports, depending on real-time electricity prices.

Grid Congestion and Expansion Constraints
Some sites, especially in Dinteloord, face network expansion limitations due to congestion. Netbe-
heerders (DSOs) have paused new capacity approvals, forcing the company to delay further LED light-
ing installations at some locations.

Awareness and Readiness for Alternative Transport Rights (ATR)
While not initially familiar with the specific ATR terminology, the interviewee recognized that their com-
pany already operates in line with the principles of these contracts:

• Time-Duration-Based Transport Rights (TDTR): 85% guaranteed grid access, 24-hour ad-
vance notification for curtailment, and reduced transport tariffs.

• Time-Block-Based Transport Rights (TBTR): predefined usage blocks tied to lower network
charges.

They expressed strong readiness for such mechanisms due to their existing real-time responsiveness
to electricity market prices and their internal systems for import peak control and LED dimming.

Operational Flexibility and Control Systems
The company employs:

• Continuous metering and import limitation enforcement through automated control systems.
• Climate computers and internal software that shut off lighting or scale generation if import thresh-
olds are approached.

• Centralized energy management across all sites, coordinated with the director of cultivation.

Response times range from 10 minutes (CHP) to instantaneous (LED dimming). Quarter-hour granu-
larity is expected to become standard under ATR implementation.
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Storage and Renewable Integration
• Thermal storage is fully utilized across all sites.
• Battery storage is not used due to the high costs and short duration capacity relative to demand
(e.g., 8 MW of lighting per site).

• Solar PV is not widely adopted due to limited roof space and shading concerns, though it may
be used for thermal contributions in the future.

• Wind is unfeasible due to permitting barriers and uncertain generation profiles.

Strategic and Sectoral Challenges
The main challenge is sector-wide awareness and adoption. Few companies currently use ATRs,
though the interviewee believes that early adopters (like themselves) can trigger broader interest. He
noted the importance of industry webinars and the need for clearer communication by sector associa-
tions.

Data Use and Automation
Energy operations are highly automated:

• All metering data is centrally collected via APIs and analyzed using Power BI.
• Daily energy costs and profitability are monitored, with automated adjustments to CHP operations
and electricity bids.

• The next step is deploying AI-based strategies to optimize intraday trading and forecasting.

Conclusion
This greenhouse operation exemplifies a high level of technical preparedness and operational flexibility,
making it well-suited to adopt and benefit from ATRs. The sector’s embedded buffering capacity and
dynamic energy behavior position it as a valuable contributor to grid balancing, with significant potential
for scaling best practices across horticulture and other energy-intensive industries.

C.2. Interview Flower Auctioning Company
Energy Profile and Sources
The energy profile shows pronounced early morning peaks due to auction operations starting around
6:00 a.m., with significantly lower demand during nights and weekends. Primary sources of electricity
include:

• Grid connections (networks depending on site),
• Geothermal heat (Trias Naaldwijk project),
• Rooftop solar PV (notably in Eelde and Rijnsburg).

Operational and Strategic Energy Considerations
Historically, electricity costs did not significantly influence strategy, but price volatility has changed this.
The company now actively develops an energy strategy focused on:

• Electrification of heating systems (replacing gas-fired boilers),
• Improving energy flexibility,
• Integrating smart energy management systems (EMS).

Challenges Related to Grid Congestion
Grid congestion poses major constraints, especially in Aalsmeer and Rijnsburg, where capacity limits
prevent further site expansion. Aalsmeer East is currently being considered for alternative contracts,
though flexibility of tenant demand remains a challenge.
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View on Alternative Transport Rights (ATR)
The interviewee is aware of both Time-Block-Based (TBTR) and Time-Duration-Based (TDTR) trans-
port rights. However, current flexibility is insufficient to benefit from these mechanisms. Particularly
for TDTR, 24-hour notice from TenneT is only useful if adaptive capacity is already integrated. In the
long term, the company sees potential to shift heating and cooling loads, especially through thermal
buffering.

Flexibility Potential and Technological Outlook
Flexibility could eventually be developed in:

• Cooling and heating processes, by oversizing equipment and creating thermal buffers,
• Energy storage systems, which are under consideration, especially for winter operation.

Lighting, although a major consumer, offers limited flexibility due to operational constraints. An Energy
Management System with technical staff is already in place to optimize and monitor energy use daily.

Organizational and Cultural Barriers
Internal awareness and organizational change are key challenges. Translating high-level energy strat-
egy to operational behavior requires continuous communication and engagement with staff. Practical
examples include adjusting cooling temperatures during idle periods or using EMS tomonitor deviations
and spot opportunities for improvement.

Role of IT and Automation
Future improvements depend on IT systems capable of integrating:

• Contractual capacity constraints,
• Energy prices and weather forecasts,
• Real-time operational and sustainability data.

While many vendors claim to offer such solutions, none fully deliver on the complexity required.

Position on ATRs in Long-Term Strategy
The interviewee sees ATRs as a useful temporary solution but warns against treating them as a per-
manent end-state. In his view, over-reliance on ATRs could constrain economic development. They
should instead incentivize smart capacity use while structural grid investments continue.

Conclusion
The interview illustrates the complex interplay between energy strategy, technological potential, oper-
ational constraints, and organizational readiness. While ATRs offer a path toward optimized grid use,
meaningful adoption depends on enhancing internal flexibility, technological integration, and sector-
wide learning.

C.3. Interview Energy Management Company
Industry Challenges
The interviewee highlighted that grid congestion and electrification are growing concerns for industrial
consumers. Companies increasingly receive rejection notices from Dutch DSOs (e.g., Liander) for
additional capacity. Exceeding contractual demand limits can result in substantial fines, reinforcing the
need for better energy management.

Organizational Response
To address these challenges, the company offers flexible energy solutions, particularly through smart
monitoring and control technologies. A key insight was the importance of measuring before acting.
Many firms lack detailed consumption profiles, and implementing time- or load-based contracts without
these insights is ineffective. For example, the interviewee’s own factory resolved peak-load issues by
transitioning to 24/7 production, using automated systems to spread energy usage more evenly.
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Experience with Alternative Transport Rights
The interviewee was familiar with Time-Block-Based Transport Rights (TBTR) and emphasized that
such mechanisms only deliver value if firms can align their operational patterns with time-dependent
constraints. Without granular insight into power usage over time, adopting ATR contracts is risky.

Flexibility and Load Shifting
The company advises clients to distinguish between preferent (must-run) and non-preferent (flexible)
electrical loads. Examples of flexible processes include pre-heating buildings at night, deferring electric
vehicle charging, or shifting HVAC usage outside of peak hours. However, process-critical loads like
ovens or freezers must remain uninterrupted. Tailored advice is necessary depending on the sector
and use case.

Energy Management System (EMS)
The company’s InSite system is a vendor-agnostic, locally hosted EMS solution. It enables:

• Real-time energy monitoring using simple current sensors.
• Automation based on time schedules, power thresholds, or environmental conditions.
• Load shedding or behavioral nudging through visual cues (e.g., traffic lights) and alarms.

This flexibility enables cost-effective peak shaving without requiring full automation.

Battery Storage Considerations
The interviewee cautioned against relying on batteries as a default solution due to high costs and
frequent oversizing. Instead, batteries should be used as a last resort or supplementary tool after
maximizing flexibility and insight. Sizing should be based on high-resolution usage data rather than
estimated peak loads.

Optimal Strategy for ATR Adoption
The ideal setup combines:

• A robust EMS system,
• Granular energy monitoring,
• Behavioral interventions,
• Strategic deployment of battery storage.

The interviewee was skeptical of full-disconnection ATR contracts (TDTR) due to operational risks and
uncertainty but viewed TBTR as a more realistic interim solution. He also cited a promising project in
Stad aan ’t Haringvliet involving an energy hub with shared capacity, central EMS, short-term battery
storage, and long-term hydrogen storage—a scalable model applicable to industrial parks.

Conclusion
This interview reinforces the importance of data-driven, context-specific energymanagement strategies.
Firms can benefit from ATRs only if they possess detailed insight into their consumption patterns and
deploy flexible, automated solutions. One-size-fits-all approaches, such as default battery installations
or blind adoption of disconnection contracts, are unlikely to succeed without tailored planning.
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Appendix: Results Data

D.1. Appendix: Load Curve TBTR Simulations

Figure D.1: Load Curve (Year) for three TBTR simulations

D.2. Appendix: Line Loading Results TDTR Simulations
Table D.1: Line Loading Results TDTR Baseline Scenario

line simulation avg_loading% peak_-
loading%

line 46 TDTR_Congestion_Baseline_Final 37.80 101.00
line 38 TDTR_Congestion_Baseline_Final 37.70 97.80
line 40 TDTR_Congestion_Baseline_Final 34.50 96.90
line 47 TDTR_Congestion_Baseline_Final 27.30 93.10
line 22 TDTR_Congestion_Baseline_Final 31.30 92.90
line 11 TDTR_Congestion_Baseline_Final 29.00 87.30
line 10 TDTR_Congestion_Baseline_Final 22.90 86.40
line 3 TDTR_Congestion_Baseline_Final 28.00 83.90
line 4 TDTR_Congestion_Baseline_Final 26.60 82.10
line 37 TDTR_Congestion_Baseline_Final 24.30 81.20

Continued on next page
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Table D.1 – continued from previous page
line simulation avg_loading_-

pct
peak_loading_-

pct
line 2 TDTR_Congestion_Baseline_Final 21.00 81.10
line 36 TDTR_Congestion_Baseline_Final 29.70 79.50
line 58 TDTR_Congestion_Baseline_Final 27.80 78.10
line 24 TDTR_Congestion_Baseline_Final 25.40 75.00
line 32 TDTR_Congestion_Baseline_Final 22.20 74.80
line 31 TDTR_Congestion_Baseline_Final 22.60 74.80
line 44 TDTR_Congestion_Baseline_Final 34.50 74.20
line 5 TDTR_Congestion_Baseline_Final 32.90 73.40
line 45 TDTR_Congestion_Baseline_Final 19.20 71.30
line 0 TDTR_Congestion_Baseline_Final 19.40 69.80
line 39 TDTR_Congestion_Baseline_Final 26.20 68.10
line 55 TDTR_Congestion_Baseline_Final 12.40 66.90
line 56 TDTR_Congestion_Baseline_Final 22.80 66.40
line 7 TDTR_Congestion_Baseline_Final 27.90 66.40
line 42 TDTR_Congestion_Baseline_Final 23.70 60.30
line 57 TDTR_Congestion_Baseline_Final 18.50 57.60
line 41 TDTR_Congestion_Baseline_Final 23.90 54.50
line 48 TDTR_Congestion_Baseline_Final 14.70 52.90
line 27 TDTR_Congestion_Baseline_Final 19.60 51.10
line 8 TDTR_Congestion_Baseline_Final 17.90 50.90
line 14 TDTR_Congestion_Baseline_Final 19.70 48.70
line 12 TDTR_Congestion_Baseline_Final 15.80 48.50
line 52 TDTR_Congestion_Baseline_Final 11.30 45.10
line 16 TDTR_Congestion_Baseline_Final 9.61 44.50
line 9 TDTR_Congestion_Baseline_Final 11.20 42.60
line 1 TDTR_Congestion_Baseline_Final 9.93 41.90
line 50 TDTR_Congestion_Baseline_Final 15.80 41.30
line 49 TDTR_Congestion_Baseline_Final 8.99 39.40
line 13 TDTR_Congestion_Baseline_Final 14.80 38.70
line 28 TDTR_Congestion_Baseline_Final 7.40 36.50
line 51 TDTR_Congestion_Baseline_Final 9.73 35.90
line 20 TDTR_Congestion_Baseline_Final 7.37 35.90
line 26 TDTR_Congestion_Baseline_Final 15.50 35.70
line 29 TDTR_Congestion_Baseline_Final 8.24 35.20
line 18 TDTR_Congestion_Baseline_Final 9.96 34.90
line 19 TDTR_Congestion_Baseline_Final 9.06 34.00
line 35 TDTR_Congestion_Baseline_Final 8.70 32.60
line 30 TDTR_Congestion_Baseline_Final 7.61 32.00
line 25 TDTR_Congestion_Baseline_Final 14.00 31.10
line 21 TDTR_Congestion_Baseline_Final 7.51 30.60
line 23 TDTR_Congestion_Baseline_Final 6.51 28.20

Continued on next page
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Table D.1 – continued from previous page
line simulation avg_loading_-

pct
peak_loading_-

pct
line 15 TDTR_Congestion_Baseline_Final 6.83 27.20
line 34 TDTR_Congestion_Baseline_Final 4.67 25.30
line 53 TDTR_Congestion_Baseline_Final 6.56 24.70
line 54 TDTR_Congestion_Baseline_Final 3.41 19.40
line 33 TDTR_Congestion_Baseline_Final 6.08 14.30
line 43 TDTR_Congestion_Baseline_Final 4.20 6.43
line 17 TDTR_Congestion_Baseline_Final 1.71 4.44
line 6 TDTR_Congestion_Baseline_Final 1.23 1.86

Table D.2: Line Loading Results TDTR Hybrid Scenario

line simulation avg_loading_-
pct

peak_loading_-
pct

line 38 TDTR_Congestion_Hybrid_Final 37.70 97.80
line 46 TDTR_Congestion_Hybrid_Final 37.60 95.80
line 40 TDTR_Congestion_Hybrid_Final 34.40 92.00
line 47 TDTR_Congestion_Hybrid_Final 27.10 90.90
line 22 TDTR_Congestion_Hybrid_Final 31.10 88.30
line 10 TDTR_Congestion_Hybrid_Final 22.70 85.20
line 11 TDTR_Congestion_Hybrid_Final 28.90 81.80
line 3 TDTR_Congestion_Hybrid_Final 27.80 79.80
line 4 TDTR_Congestion_Hybrid_Final 26.40 78.20
line 2 TDTR_Congestion_Hybrid_Final 20.80 77.00
line 37 TDTR_Congestion_Hybrid_Final 24.20 76.20
line 36 TDTR_Congestion_Hybrid_Final 29.70 75.80
line 58 TDTR_Congestion_Hybrid_Final 27.70 75.40
line 44 TDTR_Congestion_Hybrid_Final 34.40 74.40
line 24 TDTR_Congestion_Hybrid_Final 25.20 72.50
line 32 TDTR_Congestion_Hybrid_Final 22.00 71.40
line 31 TDTR_Congestion_Hybrid_Final 22.40 70.90
line 0 TDTR_Congestion_Hybrid_Final 19.20 70.20
line 45 TDTR_Congestion_Hybrid_Final 19.20 69.10
line 39 TDTR_Congestion_Hybrid_Final 26.30 68.10
line 5 TDTR_Congestion_Hybrid_Final 32.70 66.60
line 55 TDTR_Congestion_Hybrid_Final 13.10 63.90
line 56 TDTR_Congestion_Hybrid_Final 22.70 63.10
line 7 TDTR_Congestion_Hybrid_Final 27.80 60.60
line 57 TDTR_Congestion_Hybrid_Final 18.60 57.80
line 42 TDTR_Congestion_Hybrid_Final 23.60 55.50
line 41 TDTR_Congestion_Hybrid_Final 23.90 52.40
line 27 TDTR_Congestion_Hybrid_Final 19.70 51.10

Continued on next page
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Table D.2 – continued from previous page
line simulation avg_loading% peak_-

loading%
line 8 TDTR_Congestion_Hybrid_Final 17.70 50.90
line 48 TDTR_Congestion_Hybrid_Final 14.60 50.90
line 14 TDTR_Congestion_Hybrid_Final 19.70 47.30
line 16 TDTR_Congestion_Hybrid_Final 10.10 46.00
line 12 TDTR_Congestion_Hybrid_Final 16.00 45.50
line 9 TDTR_Congestion_Hybrid_Final 11.20 43.70
line 50 TDTR_Congestion_Hybrid_Final 15.90 41.30
line 49 TDTR_Congestion_Hybrid_Final 9.56 40.70
line 1 TDTR_Congestion_Hybrid_Final 9.74 39.90
line 52 TDTR_Congestion_Hybrid_Final 11.40 39.00
line 29 TDTR_Congestion_Hybrid_Final 8.51 38.50
line 20 TDTR_Congestion_Hybrid_Final 7.57 37.20
line 26 TDTR_Congestion_Hybrid_Final 15.50 36.40
line 28 TDTR_Congestion_Hybrid_Final 7.36 36.30
line 13 TDTR_Congestion_Hybrid_Final 14.90 36.00
line 51 TDTR_Congestion_Hybrid_Final 10.10 35.90
line 18 TDTR_Congestion_Hybrid_Final 10.20 34.90
line 19 TDTR_Congestion_Hybrid_Final 9.10 34.00
line 30 TDTR_Congestion_Hybrid_Final 7.87 32.80
line 21 TDTR_Congestion_Hybrid_Final 7.81 32.70
line 35 TDTR_Congestion_Hybrid_Final 8.78 31.80
line 23 TDTR_Congestion_Hybrid_Final 6.70 31.60
line 25 TDTR_Congestion_Hybrid_Final 14.00 31.50
line 15 TDTR_Congestion_Hybrid_Final 7.01 28.10
line 53 TDTR_Congestion_Hybrid_Final 6.65 22.90
line 34 TDTR_Congestion_Hybrid_Final 4.85 22.30
line 54 TDTR_Congestion_Hybrid_Final 3.52 20.50
line 33 TDTR_Congestion_Hybrid_Final 6.54 13.30
line 43 TDTR_Congestion_Hybrid_Final 4.20 6.09
line 17 TDTR_Congestion_Hybrid_Final 1.71 4.44
line 6 TDTR_Congestion_Hybrid_Final 1.23 1.78

Table D.3: Line Loading Results TDTR Full Scenario

line simulation avg_loading% peak_-
loading%

line 38 TDTR_Congestion_Full_Final 37.80 97.80
line 46 TDTR_Congestion_Full_Final 37.50 95.70
line 40 TDTR_Congestion_Full_Final 34.30 91.60
line 47 TDTR_Congestion_Full_Final 26.90 91.10
line 22 TDTR_Congestion_Full_Final 31.00 87.60

Continued on next page
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Table D.3 – continued from previous page
line simulation avg_loading_-

pct
peak_loading_-

pct
line 10 TDTR_Congestion_Full_Final 22.50 84.50
line 11 TDTR_Congestion_Full_Final 28.70 82.50
line 36 TDTR_Congestion_Full_Final 29.60 81.30
line 3 TDTR_Congestion_Full_Final 27.70 77.90
line 37 TDTR_Congestion_Full_Final 24.10 76.30
line 4 TDTR_Congestion_Full_Final 26.30 76.00
line 58 TDTR_Congestion_Full_Final 27.60 75.60
line 44 TDTR_Congestion_Full_Final 34.40 75.50
line 2 TDTR_Congestion_Full_Final 20.80 72.80
line 24 TDTR_Congestion_Full_Final 25.10 72.60
line 0 TDTR_Congestion_Full_Final 19.10 70.30
line 45 TDTR_Congestion_Full_Final 19.20 69.60
line 32 TDTR_Congestion_Full_Final 21.90 69.60
line 31 TDTR_Congestion_Full_Final 22.30 68.60
line 39 TDTR_Congestion_Full_Final 26.30 68.10
line 55 TDTR_Congestion_Full_Final 13.30 65.70
line 5 TDTR_Congestion_Full_Final 32.70 65.40
line 56 TDTR_Congestion_Full_Final 22.60 61.90
line 7 TDTR_Congestion_Full_Final 27.70 59.20
line 57 TDTR_Congestion_Full_Final 18.70 55.60
line 41 TDTR_Congestion_Full_Final 23.90 53.90
line 42 TDTR_Congestion_Full_Final 23.60 53.80
line 8 TDTR_Congestion_Full_Final 17.60 53.50
line 27 TDTR_Congestion_Full_Final 19.70 51.10
line 48 TDTR_Congestion_Full_Final 14.50 50.20
line 14 TDTR_Congestion_Full_Final 19.70 48.90
line 12 TDTR_Congestion_Full_Final 16.00 47.70
line 16 TDTR_Congestion_Full_Final 10.50 47.40
line 9 TDTR_Congestion_Full_Final 11.10 44.30
line 49 TDTR_Congestion_Full_Final 9.84 42.30
line 52 TDTR_Congestion_Full_Final 11.40 42.20
line 50 TDTR_Congestion_Full_Final 16.00 41.30
line 1 TDTR_Congestion_Full_Final 9.70 38.90
line 13 TDTR_Congestion_Full_Final 14.80 38.20
line 20 TDTR_Congestion_Full_Final 7.74 37.80
line 26 TDTR_Congestion_Full_Final 15.50 36.70
line 19 TDTR_Congestion_Full_Final 9.15 36.40
line 51 TDTR_Congestion_Full_Final 10.30 35.90
line 28 TDTR_Congestion_Full_Final 7.42 35.30
line 18 TDTR_Congestion_Full_Final 10.30 33.90
line 30 TDTR_Congestion_Full_Final 7.87 33.30

Continued on next page
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Table D.3 – continued from previous page
line simulation avg_loading_-

pct
peak_loading_-

pct
line 29 TDTR_Congestion_Full_Final 8.57 33.20
line 35 TDTR_Congestion_Full_Final 8.81 32.90
line 21 TDTR_Congestion_Full_Final 7.89 32.50
line 25 TDTR_Congestion_Full_Final 14.00 31.50
line 23 TDTR_Congestion_Full_Final 6.74 28.30
line 15 TDTR_Congestion_Full_Final 7.12 27.60
line 53 TDTR_Congestion_Full_Final 6.72 23.80
line 34 TDTR_Congestion_Full_Final 4.97 23.30
line 54 TDTR_Congestion_Full_Final 3.65 19.10
line 33 TDTR_Congestion_Full_Final 6.78 13.60
line 43 TDTR_Congestion_Full_Final 4.20 6.25
line 17 TDTR_Congestion_Full_Final 1.72 4.44
line 6 TDTR_Congestion_Full_Final 1.23 1.82

D.3. Appendix: Line Loading Results TBTR Simulations
Table D.4: Line Loadings TBTR Baseline (MW)

line simulation min_loading_MW avg_loading_MW peak_loading_MW
line 79 TBTR_Congestion_Baseline_Final 58.7 113.0 199
line 65 TBTR_Congestion_Baseline_Final 58.7 113.0 199
line 83 TBTR_Congestion_Baseline_Final 58.7 113.0 199
line 87 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 62 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 73 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 74 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 76 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 78 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 80 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 81 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 82 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 84 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 85 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 86 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 68 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 69 TBTR_Congestion_Baseline_Final 39.3 72.9 120
line 66 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 67 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 61 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 77 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 70 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 71 TBTR_Congestion_Baseline_Final 35.2 65.0 109

Continued on next page
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Table D.4 – continued from previous page
line simulation min_loading_MW avg_loading_MW peak_loading_MW
line 72 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 63 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 64 TBTR_Congestion_Baseline_Final 35.2 65.0 109
line 75 TBTR_Congestion_Baseline_Final 35.2 65.0 109

Table D.5: Line Loadings TBTR Hybrid (MW)

line simulation min_loading_MW avg_loading_MW peak_loading_MW
line 79 TBTR_Congestion_Hybrid_Final 58.7 113.0 180.0
line 65 TBTR_Congestion_Hybrid_Final 58.7 113.0 180.0
line 83 TBTR_Congestion_Hybrid_Final 58.7 113.0 180.0
line 87 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 62 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 73 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 74 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 76 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 78 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 80 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 81 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 82 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 84 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 85 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 86 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 68 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 69 TBTR_Congestion_Hybrid_Final 40.7 72.7 108.0
line 66 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 67 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 61 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 77 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 70 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 71 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 72 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 63 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 64 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1
line 75 TBTR_Congestion_Hybrid_Final 35.2 64.8 98.1

Table D.6: Line Loadings TBTR Full (MW)

line simulation min_loading_MW avg_loading_MW peak_loading_MW
line 79 TBTR_Congestion_Full_Final 52.6 113.0 209
line 65 TBTR_Congestion_Full_Final 52.6 113.0 209
line 83 TBTR_Congestion_Full_Final 52.6 113.0 209

Continued on next page
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Table D.6 – continued from previous page
line simulation min_loading_MW avg_loading_MW peak_loading_MW
line 87 TBTR_Congestion_Full_Final 36.1 72.8 125
line 62 TBTR_Congestion_Full_Final 36.1 72.8 125
line 73 TBTR_Congestion_Full_Final 36.1 72.8 125
line 74 TBTR_Congestion_Full_Final 36.1 72.8 125
line 76 TBTR_Congestion_Full_Final 36.1 72.8 125
line 78 TBTR_Congestion_Full_Final 36.1 72.8 125
line 80 TBTR_Congestion_Full_Final 36.1 72.8 125
line 81 TBTR_Congestion_Full_Final 36.1 72.8 125
line 82 TBTR_Congestion_Full_Final 36.1 72.8 125
line 84 TBTR_Congestion_Full_Final 36.1 72.8 125
line 85 TBTR_Congestion_Full_Final 36.1 72.8 125
line 86 TBTR_Congestion_Full_Final 36.1 72.8 125
line 68 TBTR_Congestion_Full_Final 36.1 72.8 125
line 69 TBTR_Congestion_Full_Final 36.1 72.8 125
line 66 TBTR_Congestion_Full_Final 30.9 64.8 117
line 67 TBTR_Congestion_Full_Final 30.9 64.8 117
line 61 TBTR_Congestion_Full_Final 30.9 64.8 117
line 77 TBTR_Congestion_Full_Final 30.9 64.8 117
line 70 TBTR_Congestion_Full_Final 30.9 64.8 117
line 71 TBTR_Congestion_Full_Final 30.9 64.8 117
line 72 TBTR_Congestion_Full_Final 30.9 64.8 117
line 63 TBTR_Congestion_Full_Final 30.9 64.8 117
line 64 TBTR_Congestion_Full_Final 30.9 64.8 117
line 75 TBTR_Congestion_Full_Final 30.9 64.8 117



E
Example Input Files

This appendix contains examples of the files used as input for the agent-based model. Full input files
can be found at: https://github.com/jardzwaan/Thesis.git.

Table E.1: Generator Parameters Used in Simulation (powerplant_units.csv)

Name Technology Bidding Fuel EF Max P Min P Eff. Add. Cost Operator Node RU RD Hot Warm Cold Min. OT Min. DT
Eemshaven 1 Hard coal flexible_eom Hard coal 0.82 1580 711 0.40 1.30 RWE NL0 8 474 474 30.4 47.5 69.3 8 4
Hollandse Kust Zuid Wind offshore flexible_eom Renewable 0.00 1420 0 1.00 0.00 renewables_operator NL0 31 0 0 0 0 0 0 0
Eemshaven 2 Gas flexible_eom Natural gas 0.20 1410 141 0.60 3.50 RWE NL0 8 1269 1269 140 140 140 1 1
Claus Gas flexible_eom Natural gas 0.20 1304 130 0.60 3.50 RWE NL0 6 1174 1174 140 140 140 1 1
Maasvlakte Hard coal flexible_eom Hard coal 0.82 1070 482 0.40 1.65 Uniper NL0 15 321 321 30.4 47.5 69.3 8 4
Enecogen Gas flexible_eom Natural gas 0.20 928 93 0.60 3.50 Eneco NL0 15 835 835 140 140 140 1 1
Velsen Gas flexible_eom Natural gas 0.20 869 87 0.60 3.50 Vattenfall NL0 27 782 782 140 140 140 1 1
Moerdijk Gas flexible_eom Natural gas 0.20 766 77 0.60 3.50 RWE NL0 9 689 689 140 140 140 1 1

Table E.2: Explanation of Generator Parameter Abbreviations

Abbreviation Description
EF Emission Factor (ton CO2/MWh)
Max P / Min P Maximum / Minimum Power Output (MW)
Eff. Electrical Efficiency (%)
Add. Cost Additional Cost per MWh (AC/MWh)
RU / RD Ramp-Up / Ramp-Down Capacity (MW/hour)
Hot / Warm / Cold Start-up Costs depending on downtime category (AC)
Min. OT / DT Minimum Operating Time / Minimum Down Time (hours)
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