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Summary
This paper presents a novel approach for the estimation of conditional multivari-
ate cumulative distribution functions (CDFs) within a nonparametric framework.
To achieve this, we introduce a binary random variable that indirectly represents
conditional CDFs and construct a dataset by pairing input vectors with the bi-
nary variables. We developed a general approach compatible with various machine
learning methods.

We have also developed an R package that facilitates the application of ma-
chine learning methods. This package leverages a range of machine learning mod-
els, including decision trees, neural networks, random forests, and bagging neural
networks. Through systematic learning of the intricate relationships between the
covariates and the binary variables, we effectively estimate conditional CDFs.

To enhance the accuracy and reliability of the estimated CDFs, we incorporate a
rearrangement technique which transforms the estimated functions into monotonic
representations, aligning them more closely with the target CDFs and mitigating
potential inconsistencies [6].

Through simulations, we evaluate the performance of the estimation approach
under various scenarios and assess the impact of sample size and correlation on
estimation accuracy, using Mean Integrated Squared Error as a key performance
metric. The results demonstrate the effectiveness and robustness of the methodology
in estimating conditional CDFs, providing a valuable tool for capturing complex
dependencies in multivariate data, with potential applications in risk assessment,
finance, and environmental modeling.
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List of symbols
Random variables and related quantities

Y = (Y1, Y2, . . . , Yp) ∈ Rp, a vector of response variables.
X = (X1, X2, . . . , Xm) ∈ Rm, a vector of corresponding observations of covariates.
Yi = (Yi,1, . . . , Yi,p), the i-th observation of Y = (Y1, Y2, . . . , Yp).
Xi = (Xi,1, . . . , Xi,m), the i-th observation of X = (X1, X2, . . . , Xm).
D =

(
(X1, Y1), . . . , (Xn, Yn)

)
∈ Rn(m+p), a dataset of independent and identically

distributed observations
(
(X1, Y1), . . . , (Xn, Yn)

)
of (X, Y).

FY|X, the conditional multivariate cumulative distribution function (CDF) of the response
vector Y given the covariate vector X.

F̂Y|X, an estimator of the conditional multivariate CDF FY|X of Y given X.
y = (y1, y2, . . . , yp) ∈ Rp, a vector of threshold values.
x = (x1, x2, . . . , xm) ∈ Rm, a vector of values of interest of the covariates.
Wy = 1{Y ≤ y}, a binary random variable based on the indicator function of Y ≤ y.

W i
y = 1{Yi ≤ y}, the i-th binary random variable based on the i-th observation Yi

and the vector of threshold values y.
DW,y =

(
(X1, W 1

y), . . . , (Xn, W n
y )

)
∈ Rm × Rp, a dataset of independent and identically

distributed observations
(
(X1, W 1

y), . . . , (Xn, W n
y )

)
of (X, Wy).

Models
“Tree”, the model where a decision tree is fitted.
“NN”, the model where a neural network is fitted.
“RF”, the model where a random forest is fitted.
“NNForest”, the model where a bagging ensemble of neural networks is fitted.

Hyperparameters
mindev, the minimum improvement in deviance required for a node to split in a
decision tree.
minsize the minimum number of samples required in a leaf node in a decision tree.
maxiter, the maximum number of training iterations or epochs in a neural
network.
n_neurons, the number of neurons in one layer of a neural network.
n_bootstraps, the number of bootstrap samples for a random forest or bagging
neural network.
pctObsBootstrap, the percentage of data sampled from the original dataset when
creating bootstrap samples for a random forest or bagging neural network.
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1
Introduction

Conditional CDFs play a fundamental role in statistical modelling, providing a prob-
abilistic description of the relationship between a response variable and a set of
covariates allowing for predictive modelling, risk assessment, and decision-making
under uncertainty. In particular, the estimation of conditional CDFs has garnered
significant attention in various fields such as finance, economics, environmental sci-
ences, and engineering. For instance, in financial markets, accurate estimation of
conditional CDFs is vital for portfolio optimization and risk management [5]. In en-
vironmental sciences, estimating the conditional CDFs of weather variables assists in
predicting extreme events and designing resilient infrastructure [14]. Furthermore,
in engineering applications, such as structural reliability analysis, the estimation
of conditional CDFs enables the assessment of failure probabilities under different
conditions [23]. In this paper, we aim to develop a new method for estimating con-
ditional multivariate cumulative distribution functions (CDFs) in a nonparametric
framework.

Much of the earliest work on this topic focuses on the estimation of univari-
ate conditional CDFs. In the univariate case, the modeling of conditional CDF is
closely related to the modeling of the (conditional) quantile, often called quantile
regression. This concept has been known since the late 1970 [16] and provides a
valuable alternative to traditional least squares regression that only estimates the
conditional mean. By estimating the quantiles at various levels, the full conditional
distribution can be characterized.

Building upon this, [10] proposed a kernel-based method called Local Quantile
Regression for estimating conditional CDFs. Their paper introduced the concept of
local quantile regression, which estimates the quantiles of the conditional distribu-
tion function. By estimating multiple quantiles, the full conditional CDF can be
obtained.

However, estimating conditional multivariate CDFs poses several new challenges.
First, as the dimensionality of data increases, the curse of dimensionality arises [9].
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Higher data dimensionality leads to increased sparsity, posing challenges in pre-
cisely estimating and capturing the underlying distribution patterns, thereby hin-
dering reliable estimation. Additionally, the computational complexity and data
requirements grow exponentially with dimensionality, making the estimation pro-
cess computationally demanding. Besides the challenges posed by the curse of di-
mensionality, estimating conditional multivariate CDFs also encounters difficulties
in capturing nonlinear dependencies as the relationships between variables cannot
be adequately described by linear models. Accounting for nonlinear dependencies
often requires employing advanced modelling techniques, such as kernel methods,
nonparametric regression, or machine learning algorithms, to capture and represent
complex relationships accurately.

In recent years, multiple approaches have been researched for estimating condi-
tional multivariate CDFs. Building upon the foundation of Rosenblatt [21], Genest
and Favre proposed a methodology for estimating conditional CDFs based on copula
functions to model the dependence structure between variables [12]. By estimating
the conditional copula function, one can obtain the conditional multivariate CDF.

Another approach to estimating conditional CDFs presented by [4] uses Distri-
butional Random Forests (DRF). This method models the conditional distribution
of the response variables as a function of the predictors. DRF goes beyond standard
point estimates of the random forest algorithm [3] and aims to estimate the entire
distribution of the response variables. Instead of predicting a single value, each de-
cision tree in the DRF ensemble generates predictions that represent samples from
the conditional distribution. By combining the predictions from all the decision
trees, DRF obtains an estimate of the conditional distribution.

In the context of estimating conditional multivariate distributions, we aim to esti-
mate the conditional CDFs FY|X(y|x) of a response vector Y = (Y1, Y2, . . . , Yp) ∈ Rp

given corresponding observation of covariates X = (X1, X2, . . . , Xm) ∈ Rm without
imposing specific parametric assumptions on the underlying distribution. For this
purpose, we assume that we have a dataset

D =


X1,1 · · · X1,m Y1,1 · · · Y1,p

X2,1 · · · X2,m Y2,1 · · · Y2,p

... . . . ...
... . . . ...

Xn,1 · · · Xn,m Yn,1 · · · Yn,p

 (1.1)

of independent and identically distributed observations
(
(X1, Y1), . . . , (Xn, Yn)

)
of (X, Y). For example, X1 = (X1,1, . . . , X1,m) is the first observation of X =
(X1, X2, . . . , Xm). In this thesis, we focus on the case m = p = 2 even though
the methods we propose are valid for arbitrary positive integers m and p. In this
bivariate case, we define the conditional multivariate CDF

FY|X(y|x) := P
(
Y1 ≤ y1, Y2 ≤ y2|X1 = x1, X2 = x2

)
. (1.2)

for any x1, x2, y1, y2 ∈ R, where x = (x1, x2) is the value of interest of the covariates
and y = (y1, y2) are called the threshold values. Equivalently, we can remark that
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FY|X(y|x) is the expected value of the binary variable 1{Y1 ≤ y1, Y2 ≤ y2} given
X1 = x1 and X2 = x2, meaning that

FY|X(y|x) = E
[
1{Y1 ≤ y1, Y2 ≤ y2}|X1 = x1, X2 = x2

]
(1.3)

In order to estimate Equation (1.3) we propose a nonparametric approach based
on machine learning techniques. First, for a fixed value y ∈ R2, we introduce a
new binary random variable Wy := 1{Y ≤ y} and create a new dataset, DW,y =(
(X1, W 1

y), . . . , (Xn, W n
y )

)
, by combining the covariates X1, . . . , Xn with the vector

of binary random variables (W 1
y , . . . , W n

y ), where W i
y := 1{Yi ≤ y}. By training

a machine learning classifier on this new dataset, we can learn the relationships
between the covariates X and the binary random variables Wy for a fixed y, which
indirectly represent the conditional CDFs.

While the conditional CDF is inherently an increasing function in y, it is im-
portant to note that the estimator of the conditional CDF that we obtained in this
way might not be increasing in y itself. To address this, we therefore use the re-
arrangement method (see for example the textbook [13]) to construct a monotonic
function. This method systematically rearranges the values of a function in a way
that preserves the monotonicity and mass of the function by transforming a func-
tion to its quantile function. The resulting rearranged monotonic function exhibits
a closer alignment with the target function [6].

The contributions of this thesis are twofold. First, we propose a nonparamet-
ric approach for estimating conditional multivariate CDFs using machine learning
techniques. By avoiding specific parametric assumptions, we provide a method with
greater flexibility and adaptability to various data scenarios. Second, we introduce
a meta-algorithm that outlines the estimation process for conditional CDFs. The
meta-algorithm allows for the use of different machine learning models to train clas-
sifiers. Therefore other machine learning techniques not mentioned in this paper can
be applied as well. Additionally, to facilitate practical implementation, we have de-
veloped an R package named estimCondCDF enabling statisticians to readily apply
the meta-algorithm in their work.

The structure of this thesis is organized as follows: in Chapter 2, we provide
an overview of the fundamental theory underlying the various machine learning
methods, along with the rearrangement technique. We do this by first explaining
the concept of classification tasks. We then introduce the four machine learning
techniques we will use, namely, decision trees, neural networks, random forests and
bootstrap aggregation using a neural network as a classifier. Lastly, we elaborate on
the concept of rearrangement using examples for enhanced understanding. In Chap-
ter 3, we present the new approach to estimating conditional multivariate CDFs. We
start by introducing the general framework and the meta-algorithm model, which
uses the machine learning techniques discussed in Chapter 2 as classifiers for the
estimation process. Subsequently, we delve into the foundational computer science
concepts underpinning this approach. Following that, we examine the inner work-
ings of the constructed R package, addressing any computational challenges that
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arose and explaining the design choices made. We provide a detailed examination
of the modeling and prediction aspects of the R package and conclude by providing
instructions on the practical application of the methodology using the R package.
Chapter 4 presents the results of the simulation study, focusing on two main objec-
tives. First, we determine the optimal hyperparameters under the predefined refer-
ence setting. Then, we demonstrate the effectiveness of the introduced estimation
method in accurately predicting the conditional CDF for various types of datasets.
These datasets cover different degrees of dependency between predictor variables
X, varying distributions of response variables Y, and datasets of various sizes. To
assess the performance of the model, we utilize the Mean Integrated Squared Er-
ror (MISE) as the primary evaluation metric and consider the average computation
time. Finally, in Chapter 5, we summarize the results and draw conclusions based
on the outcomes of the research.



2
Preliminaries

In this chapter, we establish the groundwork for introducing the new estimating
method for conditional CDFs. We begin by introducing the concept of supervised
machine learning, with a particular focus on binary classification tasks. We then give
a detailed explanation of how the various machine learning techniques we apply as a
classifier work. Lastly, we elaborate on the concept of rearrangement using examples
for enhanced understanding. This will provide the necessary background knowledge
needed to understand the estimation method introduced in Chapter 3.

2.1. Classification tasks
Supervised machine learning is a form of machine learning where a program is taught
to predict or classify new examples using labelled data. The algorithm is given a
dataset comprised of labelled input-output pairs in order to find a function that
maps the input values to their respective labelled outputs. This function can then
be used to make predictions or classifications for new, unseen examples. An example
of this progress is illustrated in Figure 2.1.

One common task in supervised machine learning is binary classification, where
the goal is to find a function f : X → {0, 1} which maps the inputs X ∈ X to a
corresponding binary class label Y ∈ {0, 1}. The program is given a training dataset

DY =
(
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

)
,

consisting of input vectors Xi ∈ X and output values Yi ∈ {0, 1} where,

Xi =


Xi,1
Xi,2

...
Xi,m


7
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Figure 2.1: Supervised machine learn-
ing. Figure 2.2: Binary classification.

is the i-th input feature vector of dimension m. We adopt these notations commonly
used in classification techniques to illustrate this specific case within the general
framework where p = 1.

A classification task that aims to assign each input observation to more than two
possible classes is called a multi-class classification problem. In this case, the output
consists of more than two possible values while the input remains the same. However,
the function f(X) needs to be modified in order to accommodate multiple output
values. For the problem at hand, we are only interested in binary classification
problems.

The concept of classification tasks was first introduced by [11]. It proposed a
method for classifying objects into different classes based on multiple measurements
or features. Statistical methods are used to analyze the relationships between the
measurements and the classes to find a linear combination of the measurements that
maximally separates these classes. An example of this is shown in Figure 2.2.

The binary classification problem can be solved using various methods. In this
paper, we focus on decision trees, neural networks, and two bootstrap aggregat-
ing methods, namely, random forests and bagging neural networks. The following
sections will discuss these approaches in detail.

2.2. Decision trees
Decision trees are a non-parametric method for supervised machine learning, partic-
ularly for binary classification problems. They are based on a hierarchical structure
that recursively partitions the feature space into subsets that are increasingly ho-
mogeneous with respect to the response variable.

The visual structure of decision trees makes them effective for understanding
complex problems as it allows for easy interpretation of the decision-making pro-
cess. Furthermore, the non-parametric nature of the algorithm allows it to handle
complex, non-linear relationships in the data. Lastly, the robustness to outliers and
scalability make them a dependable and efficient tool for large and complex datasets.

We aim to generate a decision tree T = {N ,L} that maps any input to a binary
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output. Using the formulation of the binary classification problem, each decision
node node ∈ N corresponds to a feature jnode ∈ {1, . . . , m} and a threshold value
tnode. Furthermore, each leaf node l ∈ L corresponds to a binary output value
yl ∈ {0, 1}, which represents the classification decision.

In order to create a decision tree we let S ⊂ DY be the subset of data points
that are assigned to a specific node node in the decision tree. The goal is to find the
best split for the current subset S. At each decision node, we partition the subset
S of data points as S = Sleft ∪ Sright, where Sleft := {(Xi, Yi) ∈ S : Xi,jnode ≤ tnode}
and Sright := {(Xi, Yi) ∈ S : Xi,jnode > tnode}.

Here tnode is chosen such that the impurity of the resulting partitions is min-
imised. This impurity is a measure of the non-homogeneity of the partition Sleft, Sright
of S. Before introducing the impurity formula, we define the Gini impurity of the
set S as:

Gini(S) := 1− (p2
1 + p2

0). (2.1)
Here p1 represents the proportion of points labelled as 1 within the set S and p0
the proportion labelled as 0 within the same set S. The impurity of the partition
{Sleft, Sright} is then calculated by

Impurity = Card(Sleft)
Card(S) ·Gini(Sleft) + Card(Sright)

Card(S) ·Gini(Sright), (2.2)

where Card(S) denotes the total number of points in the set S. This process is
recursively repeated for each subset S until one of the stopping criteria is met.

To construct a decision tree model, these stopping criteria are essential input
parameters for the function responsible for generating the decision tree. These
criteria are commonly referred to as the hyperparameters of the model. The two
hyperparameters dictating the stopping criteria in the decision tree model are the
minimum deviance of the tree, denoted as mindev, and the minimum number of
samples required in a leaf node, referred to as minsize.

The mindev parameter specifies the minimum improvement in the deviance re-
quired for a node to split in a decision tree. The deviance is a measure of the
goodness-of-fit of the model, and nodes with deviance improvements below the
mindev threshold will not be split.

The minsize parameter sets the minimum number of observations required in
a leaf node of the decision tree. Leaves with fewer observations than the minsize
threshold will not be split further and will become terminal nodes. Together these
two hyperparameters play an essential role in shaping the structure and complexity
of the decision tree. In R we generate a decision tree model using the function tree
from the package tree.

The decision tree model obtained from this process is used for classification
by traversing the decision tree from the root node to a leaf node. This leaf node
corresponds to a particular value of the binary label yl.

There are however drawbacks to classification using decision trees. One of the
main drawbacks of decision trees is their tendency to overfit the data if they are
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Algorithm 1: Decision tree algorithm.
Input : Training set DY , mindev, minsize
Output: Decision tree T = {N ,L}
Function CreateTree(DY , mindev, minsize ):

if minimum deviance > mindev OR
number of samples in leaf node > minsize

then
Compute yl = 1

{
Card({i ∈ S : Yi = 0}) < Card({i ∈ S : Yi = 1})

}
return leaf node {yl}

end
for all features j = 1, ..., m do

for all t ∈ R do
Determine the partition {Sleft, Sright}
Calculate Impurity using (2.2)

end
end
Choose split jnode, tnode with minimum impurity ;
Partition S into subsets Sleft and Sright ;
Create subtrees T1 := CreateTree(Sleft) and T2 := CreateTree(Sright);
return (jnode, tnode, T1, T2)

grown too deep and complex. To address this problem we can prune the decision
tree by deleting any branches that do not improve the accuracy of the model. This
however can be time-consuming and can lead to underfitting, if not done correctly.
To mediate this we will generate a multitude of decision tree models with different
node sizes, minsize, and within-node deviances, mindev.

Another limitation of decision trees is their inability to handle missing data.
Decision trees require complete data for each observation in order to make a pre-
diction. Therefore if a feature has missing data, the algorithm may either exclude
the observation or impute the missing value using mean imputation or regression
imputation which can lead to bias and reduce the accuracy of the model.

Lastly, decision trees are sensitive to minor changes in the data. A small change
in the input data can produce an entirely different decision tree, making the model
less stable and more difficult to interpret. This issue can be mitigated by imple-
menting ensemble methods, such as bagging, which combines multiple decision trees
to reduce model variability. This will be discussed in Section 2.4.

2.3. Neural networks
Neural networks are computational models inspired by the structure and function
of the human brain. The first computational model was introduced in 1943 [17]
when Warren McCulloch and Walter Pitts published their mathematical model of
a neuron. Later Frank Rosenblatt [20] worked on developing the perceptron, an
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early type of neural network capable of learning simple linear patterns. The first
multilayer neural network was published in 1965 by [15]. A significant advancement
occurred in 1986, when [22] introduced the backpropagation algorithm, allowing for
efficient training of multilayer neural networks.

A neural network consists of a large number of interconnected processing units
called neurons, which are organized into layers. The neurons in each layer receive
inputs from the neurons in the previous layer, perform a computation on these in-
puts and then pass the result to the neurons in the next layer. A feedforward neural
network is a specific type of neural network in which the neurons are organized into
layers that are connected such that the information flows from the input layer to the
output layer without any loops or feedback connections. The aforementioned back-
propagation algorithm is an iterative optimization algorithm used in training neural
networks, which calculates and adjusts the parameter gradients of the network in a
backward pass to minimize the error between predicted and actual output, enabling
effective learning and adaptation. The advantages of a feedforward neural network
are that it is simple to train using backpropagation and is computationally efficient
making it suitable for large-scale computations. We will therefore use a feedforward
neural network.

We will first examine a neural network with an input vector X = (X1, . . . , Xm)
of m features, a single neuron, and a single output value. To get a prediction from
a neural network we use two steps. First, we compute

z =
m∑

i=1
Xi · wi + b = X ·w + b (2.3)

where w = (w1, w2, . . . , wn) is the weight vector needed in order to obtain the
weighted sum of inputs, and b is an offset. The weights determine the strength
of the connection between neurons and dictate the magnitude of the influence of
each input on the output of the neuron, with larger weights resulting in greater
influence. We then find the final prediction of this single neuron by applying the
sigmoid activation function to z. This introduces non-linearity into the output of
the neurons. The sigmoid activation function is defined as:

sigmoid(z) = 1
1 + e−z

. (2.4)

This function is useful for binary classification problems as it maps any real-valued
number to a value between 0 and 1. Another benefit of the sigmoid activation
function is that the function is differentiable, meaning backpropagation algorithms
can be used to train the neural network.

A neural network can thus be represented as a function fσ that maps any input
vector X to a corresponding output Ŷ , where σ represents the set of learnable
parameters in the network. An example of a neural network consisting of one layer
with 4 neurons is visualised in Figure 2.3.

In Figure 2.3 each neuron f i
σ(X) is trained as described in the single neuron

single output case, using the sigmoid activation function described in Equation 2.4.
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X

Input
layer

f1
σ(X)

f2
σ(X)

f3
σ(X)

f4
σ(X)

Hidden
layer

Ŷ

Output
layer

Figure 2.3: Single layer neural network with 4 neurons.

This means each neuron f i
σ(X) in the layer provides one prediction. To form a

single prediction Ŷ , the outputs of each f i
σ(X) are combined using a weighted sum

method of the neuron outputs, in this case:

Ŷ =
4∑

i=1
wi · f i

σ(X). (2.5)

When training a neural network model, the network is presented with pairs
of data instances from a dataset denoted as DY . It then calculates the sigmoid
activation function 2.4 for each neuron f i

σ(X) in the hidden layer. Then a weighted
sum method is used in Equation 2.5 to calculate the prediction Ŷ . The weights of
the neural networks are continuously updated using the backpropagation algorithm.
The key component of this algorithm is to minimize the binary cross-entropy loss
function, which measures the difference between the predicted probabilities, Ŷ , of
the two classes and the true class labels, Y :

Loss(Y, Ŷ ) = −Y log(Ŷ )− (1− Y ) log(1− Ŷ ). (2.6)

Then the gradient of the loss function with respect to the weights in the neural
network is calculated, enabling the optimization of the weights through the use of
an optimization algorithm. The backpropagation algorithm performs the following
steps:

1. Forward pass: Calculate fσ(X) using Equations (2.3) and (2.4)

2. Calculation of error: Calculate Loss(Y, Ŷ ) using Equation (2.6)

3. Backward pass: Backpropagate the error through the network from the output
layer to the input layer, and calculate the gradient of the loss with respect to
each weight.
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4. Weight update: Update the weights using the BFGS optimization algorithm
[18]. The optimization algorithm adjusts the weights in the direction of the
negative gradient of the loss, with the learning rate determining the size of
the weight update.

We establish two stopping criteria for the model, firstly the hyperparameter,
maxiter, which represents the maximum number of epochs that the model will be
trained for. Secondly, we specify the hyperparameter n_neurons to indicate the
number of neurons in the one-layered neural network. In R we generate a neural
network using the function nnet from the package nnet.

The algorithm of the neural network is displayed in Algorithm 2.

Algorithm 2: Neural network algorithm.
Input: Training set DY , maxiter, n_neurons
Output: Ŷ
Function CreateNN( DY , maxiter, n_neurons ):

Initialize weights σ ;
for k ← 1 to maxiter do

for i← 1 to n_neurons do
Calculate f i

σ(X) using Equation (2.3) and (2.4) ;
end
Calculate Ŷ =

∑n_neurons
j=1 wj · f j

σ(X) ;
Calculate the error Loss(Y, Ŷ ) using Equation(2.6) ;
Calculate the gradient of Loss(Y, Ŷ ) using backpropagation ;
Update σ using a BFGS optimization algorithm ;

end
return Ŷ .

2.4. Bootstrap aggregation
Bootstrap aggregation (bagging) is an ensemble learning method that combines the
predictions of multiple models trained on different subsets of the training data to
improve the accuracy and stability of the overall prediction. In binary classification
problems, bagging can be used to improve classification accuracy by reducing the
variance of the prediction given by the model. The concept of bagging was initially
introduced by Breiman in 1996 [2], using it within the context of decision trees.

The basic idea of bagging is to create a set of training data subsets by randomly
sampling the original training data with replacement. Each subset is then used to
train a base classifier. This is typically a decision tree but other classifiers such
as neural networks can also be used for this. The predictions of all the individual
classifiers trained on each subset are combined to obtain the final prediction. The
key advantage of bagging is that it can reduce the prediction variance by averaging
over the predictions of multiple classifiers trained on different subsets of the data,
which is particularly effective for unstable models.
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The bagging algorithm for binary classification problems can be described as
follows. We randomly sample (with replacement) the set DY to create B bootstrap
samples D1

Y ,D2
Y , . . . ,DB

Y . For each bootstrap sample Di
Y , we train a binary classifier

fi(X) which is used to make predictions. Lastly, we use a majority vote to gain the
final prediction,

f(X) := 1
{

1
B

B∑
i=1

fi(X) >
1
2

}
. (2.7)

2.4.1. Random forests
A particular extension of the bagging algorithm for decision trees is called random
forest. Instead of using a single decision tree as the classifier, we use an ensemble
of decision trees. We first create B bootstrap samples from the dataset DY . Then
a new decision tree is generated for each bootstrap sample, creating an ensemble of
decision trees.

After a random forest model is constructed, consisting of an ensemble of decision
trees, a prediction for a new input vector x = (x1, . . . , xm) can be made. By
traversing each decision tree in the ensemble similar to the decision tree model, each
decision tree votes for the predicted label of x. The final prediction of a random
forest model is made by applying the majority vote scheme and can be written as:

f(x) = 1
{

1
B

B∑
i=1

Ti(x) >
1
2

}
, (2.8)

where Ti(x) is the prediction of the i-th decision tree in the forest for the new input
x, and n_bootstraps is the total number of trees in the forest.

The random forest algorithm takes in four hyperparameters. Because we need
to generate decision trees we need to specify the hyperparameters for the decision
tree algorithm, mindev and minsize. Besides these, we also need to specify the hy-
perparameters, pctObsBootstrap, indicating the percentage of data sampled from
the original dataset DY and n_bootstraps (called B before), indicating how many
bootstrap samples should be taken. The number of bootstraps, n_bootstraps, thus
directly influences the total count of decision trees in the ensemble as each bootstrap
sample serves as the basis for constructing an individual decision tree.

Since each decision tree in the ensemble is constructed from a different random
sample of the original dataset, the number of bootstraps, n_bootstraps, also de-
termines how many decision trees will be generated. The algorithm of the random
forest is displayed in Algorithm 3.
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Algorithm 3: Random forest algorithm.
Input : Training set DY , mindev, minsize, n_bootstraps,

pctObsBootstrap
Output: Random forest F = {T1, T2, . . . , Tn_bootstraps}
Function RandomForest(DY , mindev, minsize, n_bootstraps,
pctObsBootstrap ):

for b← 1 to n_bootstraps do
Generate a bootstrap sample Db

Y from DY , containing a specified
percentage pctObsBootstrap of the total data in DY .;

Train decision tree Tb = CreateTree(Db
Y , mindev, minsize ) using

Algorithm 1;
end
return {T1, T2, . . . , Tn_bootstraps}

2.4.2. Bagging neural network
There are multiple types of bagging algorithms besides random forests. As we have
already discussed the workings of a neural network we can construct the bagging
algorithm using a neural network as a classifier. This will work in a similar fashion
to the random forest ensemble technique but instead of using a decision tree as
a classifier, we use a neural network. We will call this method where a bagging
ensemble of neural networks is used the bagging neural network method.

Each neural network is trained on a bootstrap sample, consisting of a percentage
of the dataset D. The final prediction is again determined by a majority vote scheme.
We need to specify four hyperparameters. These are the hyperparameters of the
neural network, maxiter and n_neurons, as we need to generate a neural network
for each bootstrap. We also need to specify, just as in the random forest algorithm,
Algorithm 3, the hyperparameter pctObsBootstrap, indicating the percentage of
data sampled from the original dataset, and n_bootstraps, the number of neural
networks we want to generate. The algorithm of the bagging neural network is
displayed in Algorithm 4.
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Algorithm 4: Bagging neural network algorithm.
Input : Training set DY , maxiter, n_neurons,n_bootstraps,

pctObsBootstrap
Output: Bagging neural network

NNBagging = {NN1, NN2, . . . , NNn_bootstraps}
Function BaggingNN(DY , maxiter, n_neurons, n_bootstraps,
pctObsBootstrap ):

for b← 1 to n_bootstraps do
Generate a bootstrap sample Db

Y from DY , containing a specified
percentage pctObsBootstrap of the total data in DY . ;

Train neural network NNb = CreateNN(Db
Y , maxiter, n_neurons )

using Algorithm 2.;
end
return {NN1, NN2, . . . , NNn_bootstraps}

2.5. Rearrangement
We aim to estimate conditional CDFs which are inherently increasing functions.
However, the estimator of the conditional CDF that we obtain this way might not
be increasing itself. To address this, we therefore use the rearrangement method
(see for example the textbook [13]) to construct a monotonic function that is closer
aligned with the target conditional CDF function [6]. The naive idea of rearranging
a function to make it monotonic is to simply swap the points of a function such that
the function appears to be monotonic. This, however, is not a valid approach be-
cause it only changes the visual appearance of the function, but does not preserve its
mathematical properties. This approach can result in a function that violates basic
mathematical properties such as continuity and differentiability. We will therefore
use a well-studied method of rearrangement which enjoys nice mathematical prop-
erties.

In the general case of this rearrangement method, we assume a target function
f0 : Rd → R to be monotonic, i.e. weakly increasing, and the existence of an initial,
not necessarily monotonic, estimate f̂ . It was shown in [13] that rearrangement
methods could be used to convert f̂ into a monotonic estimate f̂∗. As [6] demon-
strated, this rearranged estimate f̂∗ is invariably closer to the target function f0 in
standard metrics. In order to more accurately estimate conditional CDFs we thus
want to use rearrangement. The following sections elaborate on rearrangement in
the univariate and multivariate cases

2.5.1. Univariate rearrangement
First, we examine univariate rearrangement. We consider a univariate function
f : D 7→ R where D is a compact interval on [0, 1] and R is a bounded subset
of R. The rearrangement of a continuous function f can be defined as a sorting
operation. Specifically, we can obtain the rearranged function f∗ by sorting the
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values of f evaluated at a fine enough net of equidistant points in increasing order.
This sorting process results in a rearranged function f∗ that represents the quantile
function of the random variable f(X), where X ∼ U(0, 1). We can define this
quantile function as:

f∗(X) = inf
[
k ∈ R :

∫
D

1{f(u) ≤ k}du ≥ X
]

(2.9)

To illustrate the concept of rearrangement in the context of a univariate function f ,
we now present an example.

Example 2.1. Assume the univariate function

f(x) =
{

4x, if x ∈ [0, 1
2 ],

3− 2x, if x ∈ [ 1
2 , 1],

(2.10)

such that x ∈ [0, 1]. This function is shown in Figure 2.4. We can obtain the
rearranged function f∗ by calculating the quantile function in Equation (2.9). First,
we will evaluate the indicator function 1{f(x) ≤ k} for both cases.

1{f(x) ≤ k} =
{

1{4x ≤ k} for x ∈ [0, 1
2 ]

1{3− 2x ≤ k} for x ∈ [ 1
2 , 1]

=
{

1{x ≤ k
4} for x ∈ [0, 1

2 ]
1{x ≥ 3−k

2 } for x ∈ [ 1
2 , 1]

.

(2.11)
We can thus rewrite the integral in Equation 2.9 as:∫

D
1{f(u) ≤ k}du =

∫ 1
2

0
1{u ≤ k

4}du +
∫ 1

1
2

1{u ≥ 3− k

2 }du. (2.12)

We now assess all cases for the integral
∫ 1

2
0 1{u ≤ k

4}du.
Case 1: k ≤ 0
In this case, 1{u ≤ k

4} = 0 since u ∈ [0, 1
2 ] and thus we have∫ 1

2

0
1{u ≤ k

4}du =
∫ 1

2

0
0du = 0. (2.13)

Case 2: 0 < k < 2
In this case, 1{u ≤ k

4} = 1 for u ∈ [0, k
4 ] and 1{u ≤ k

4} = 0 for u ∈ [ k
4 , 1

2 ] thus we
have ∫ 1

2

0
1{u ≤ k

4}du =
∫ k

4

0
1du +

∫ 1
2

k
4

0du = k

4 . (2.14)

Case 3: k ≥ 2
In this case, 1{u ≤ k

4} = 1 since u ∈ [0, 1
2 ] and thus we have∫ 1

2

0
1{u ≤ k

4}du =
∫ 1

2

0
1du = 1

2 . (2.15)
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We can summarise these 3 cases by

∫ 1
2

0
1{u ≤ k

4}du =


0 If k ≤ 0
k
4 If 0 < k < 2
1
2 If k ≥ 2

. (2.16)

We also asses all cases for the integral
∫ 1

1
2

1{u ≥ 3−k
2 }du.

Case 1: k ≤ 1
In this case, 3−k

2 ≥ 1 thus 1{u ≤ 3−k
2 } = 0 since u ∈ [ 1

2 , 1]. We get that∫ 1

1
2

1{u ≥ 3− k

2 }du =
∫ 1

1
2

0du = 0. (2.17)

Case 2: 1 < k < 2
In this case, 1

2 < 3−k
2 < 1 thus 1{u ≤ 3−k

2 } = 0 for u ∈ [ 1
2 , 3−k

2 ] and 1{u ≤ 3−k
2 } = 1

for u ∈ [ 3−k
2 , 1] . We get∫ 1

1
2

1{u ≥ 3− k

2 }du =
∫ 3−k

2

1
2

0du +
∫ 1

3−k
2

1du = 1− 3− k

2 = k − 1
2 . (2.18)

Case 3: k ≥ 2
In this case, 3−k

2 ≤ 1
2 thus 1{u ≤ 3−k

2 } = 1 since u ∈ [ 1
2 , 1]. We thus get∫ 1

1
2

1{u ≥ 3− k

2 }du =
∫ 1

1
2

1du = 1
2 (2.19)

We can summarise these 3 cases by

∫ 1

1
2

1{u ≥ 3− k

2 }du =


0 If k ≤ 1
k−1

2 If 1 < k < 2
1
2 If k ≥ 2

. (2.20)

Combining Equations (2.16) and (2.20) into Equation (2.12) we get

∫
D

1{f(u) ≤ k}du =


0 If k ≤ 0
k
4 If 0 < k ≤ 1
k
4 + k−1

2 If 1 < k < 2
1
2 + 1

2 If k ≥ 2

(2.21)

As a consequence, solving k
4 = x gives k = 4x.

Solving k
4 + k−1

2 = x gives 3k
4 −

1
2 = x, and therefore k = 4

3
(
x + 1

2
)

= 4
3 x + 2

3 .
Therefore

f∗(x) =
{

4x if 0 ≤ x ≤ 1
4

4
3 x + 2

3 if 1
4 < x ≤ 1.

(2.22)

We confirm this by running:
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Rearrangement::rearrangement(x = list(c(0, 1/2, 1)),
y = c(0, 2, 1))

in R, which indeed gives f∗(0) = 0, f∗(1/2) = 4/3 ≈ 1.332 and f∗(1) = 2.

Figure 2.4: Visual representation of f Figure 2.5: Visual representation of f and f∗.

As illustrated in Figure 2.5, the proposed method of rearranging a function
results in a new function f∗ with the same area or mass under its graph as the
original function f . Intuitively we can see this as shifting the mass of the function f
such that it becomes the monotonic function f∗. Therefore the integral in Equation
(2.9) is important as it preserves the mass. We show that the areas underneath the
graph are equal and thus the mass is preserved:∫ 1

0
f(x)dx =

∫ 1
2

0
4x dx +

∫ 1

1
2

3− 2x dx = 1
2 + 3

4 = 5
4 (2.23)

and ∫ 1

0
f∗(x)dx =

∫ 1
4

0
4x dx +

∫ 1

1
4

4
3x + 2

3 dx = 1
8 + 9

8 = 5
4 . (2.24)

2.5.2. Multivariate rearrangement
For multivariate rearrangement, we consider the multivariate function f : Dd 7→ R,
where Dd = [0, 1]d and R is a bounded subset of R. The monotonicity that we
require from the function f is as follows: f is weakly increasing in the vector V ∈ D
if f(V′) ≤ f(V) whenever V′ ≥ V pointwise. We will define f(vj , V−j) as the
dependence of f on one of its arguments, vj , while holding all other arguments,
V−j , fixed. The definition of monotonicity given for f is equivalent to requiring
that ∀j ∈ {1, . . . , d} the mapping vj 7→ f(vj , V−j) is weakly increasing in V−j for
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all V−j ∈ Dd−1. We now define the function f∗ to be the rearranged function w.r.t.
vj as

f∗
j (V) = Rjf(V) = inf

[
k :

∫
D

1{f(v′
j , V−j) ≤ k}dv′

j ≥ vj

]
, (2.25)

where we define Rj to be the rearrangement operator. Here we have applied a
one-dimensional increasing rearrangement to the one-dimensional function vj 7→
f(vj , V−j) while holding all other arguments V−j fixed. Rj is then recursively
applied to every value v ∈ V−j .

Assume an ordering σ = (σ1, . . . , σd) of integers 1, . . . , d and define Rσ to be the
σ-rearrangement operator. Furthermore, define f∗

σ = Rσf = Rσ1 · · ·Rσd
f as the

σ-rearranged function. It is, however, possible for any two non-identical orderings
σ and τ on the same set of integers 1, . . . , d to have different rearranged functions
fσ and fτ . In order to mitigate this problem we want to take the average over all
orderings given by

f∗ = 1
|S|

∑
σ∈S

f∗
σ , (2.26)

where we assume S as any finite collection of orderings σ and |S| the number of
elements in the ordering set S

In practice, we can apply the rearrangement of a d-dimensional multivariate
function by first only focusing on rearranging a function over only one axis, holding
all other d − 1 axes. We then apply this process for each axis to get one of the
possible orderings. Since we do not want to rely on just one way of rearranging, the
goal is to average over all possible orderings. We thus repeat the process but change
the order in which we rearrange each axis for all d possible rearrangements. We then
average these rearrangements to find f∗. If the domain of the multivariate function
is outside [0, 1] we can always normalize it such that it will be inside this interval.
To further illustrate the concept of rearrangement in the context of a multivariate
function f , we now present an example.
Example 2.2. Assume the multivariate function f : [0, 1]2 7→ R defined by

f(V) = f(
[
v1
v2

]
) = (v1 −

1
2)(v2 −

1
2) (2.27)

We first choose to rearrange w.r.t v1 and hold v2. We evaluate the indicator function
in Equation (2.25)

1{f(v1, V−1) ≤ k} = 1
{

(v1 −
1
2)(v2 −

1
2) ≤ k

}
=

1
{

v1 ≥ k
v2− 1

2
+ 1

2

}
if 0 < v2 < 1

2

1
{

v1 ≤ k
v2− 1

2
+ 1

2

}
if 1

2 < v2 < 1

=

1
{

v1 ≥
2k+v2− 1

2
2v2−1

}
if 0 < v2 < 1

2

1
{

v1 ≤
2k+v2− 1

2
2v2−1

}
if 1

2 < v2 < 1
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We can thus rewrite the integral as follows:∫
D

1{f(v′
1, V−1) ≤ k}dv′

1

=


∫ 1

0
1

{
v′

1 ≥
2k + v2 − 1

2
2v2 − 1

}
dv′

1 if 0 < v2 <
1
2∫ 1

0
1

{
v′

1 ≤
2k + v2 − 1

2
2v2 − 1

}
dv′

1 if 1
2 < v2 < 1

(2.28)

We look at both integrals separately, if 0 < v2 < 1
2∫ 1

0
1

{
v′

1 ≥
2k + v2 − 1

2
2v2 − 1

}
dv′

1

=



1 if
2k + v2 − 1

2
2v2 − 1 ≤ 0

−2k + v2 − 1
2

2v2 − 1 if 0 <
2k + v2 − 1

2
2v2 − 1 < 1

0 if
2k + v2 − 1

2
2v2 − 1 > 1

(2.29)

Expressing 2k+v2− 1
2

2v2−1 in terms of k using 0 < v2 < 1
2 we get∫ 1

0
1

{
v′

1 ≥
2k + v2 − 1

2
2v2 − 1

}
dv′

1

=


1 if 0 < v2 <

1
2 , k ≥ 1

4 −
v2

2
−2k + v2 − 1

2
2v2 − 1 if 0 < v2 <

1
2 ,

v2

2 −
1
4 < k <

1
4 −

v2

2
0 if 0 < v2 <

1
2 , k ≤ v2

2 −
1
4

(2.30)

Doing the same for the case where 1
2 < v2 < 1 we get∫ 1

0
1

{
v′

1 ≤
2k + v2 − 1

2
2v2 − 1

}
dv′

1

=



0 if 1
2 < v2 < 1,

2k + v2 − 1
2

2v2 − 1 ≤ 0
2k + v2 − 1

2
2v2 − 1 if 1

2 < v2 < 1, 0 <
2k + v2 − 1

2
2v2 − 1 < 1

1 if 1
2 < v2 < 1,

2k + v2 − 1
2

2v2 − 1 ≥ 1

=


0 if 1

2 < v2 < 1, k ≤ 1
4 −

v2

2
2k + v2 − 1

2
2v2 − 1 if 1

2 < v2 < 1,
1
4 −

v2

2 < k <
v2

2 −
1
4

1 if 1
2 < v2 < 1, k ≥ v2

2 −
1
4

(2.31)
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Combining Equation (2.30) and (2.31) in Equation (2.28) we get

I(k, v1) =
∫

D
1{f(v′

1, V−1) ≤ k}dv′
1

=



1 if 0 < v2 <
1
2 , k ≥ 1

4 −
v2

2
−2k + v2 − 1

2
2v2 − 1 if 0 < v2 <

1
2 ,

v2

2 −
1
4 < k <

1
4 −

v2

2
0 if 0 < v2 <

1
2 , k ≤ v2

2 −
1
4

0 if 1
2 < v2 < 1, k ≤ 1

4 −
v2

2
2k + v2 − 1

2
2v2 − 1 if 1

2 < v2 < 1,
1
4 −

v2

2 < k <
v2

2 −
1
4

1 if 1
2 < v2 < 1, k ≥ v2

2 −
1
4

(2.32)

Using Equation (2.25) we thus get

f∗
1 (V) = R1f(V) = inf

[
k : I(k, v1) ≥ v1

]

=


inf

[−2k + v2 − 1
2

2v2 − 1 ≥ v1
]

if 0 < v2 <
1
2

inf
[2k + v2 − 1

2
2v2 − 1 ≥ v1

]
if 1

2 < v2 < 1

=

 inf
[
k : k ≥ −v1v2 + 1

2v1 + 1
2v2 + 1

4
]

if 0 < v2 <
1
2

inf
[
k : k ≥ v1v2 −

1
2v1 −

1
2v2 + 1

4
]

if 1
2 < v2 < 1

(2.33)

Finally, we obtain the explicit expression

f∗
1 (V) =


(1
2 − v1)(v2 −

1
2) if 0 < v2 <

1
2

(v1 −
1
2)(v2 −

1
2) if 1

2 < v2 < 1
(2.34)

We now rearrange this newly found function w.r.t v2. Again we evaluate the
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indicator function in Equation (2.25)

1{f∗
1 (v2, V−2) ≤ k} =

1
{

(1
2 − v1)(v2 −

1
2) ≤ k

}
if 0 < v2 <

1
2

1
{

(v1 −
1
2)(v2 −

1
2) ≤ k

}
if 1

2 < v2 < 1

=



1
{

v2 ≤
k

1
2 − v1

+ 1
2

}
if 0 < v1 <

1
2 , 0 < v2 <

1
2

1
{

v2 ≥
k

1
2 − v1

+ 1
2

}
if 1

2 < v1 < 1, 0 < v2 <
1
2

1
{

v2 ≥
k

v1 − 1
2

+ 1
2

}
if 0 < v1 <

1
2 ,

1
2 < v2 < 1

1
{

v2 ≤
k

v1 − 1
2

+ 1
2

}
if 1

2 < v1 < 1, 0 < v2 <
1
2
(2.35)

We can furthermore rewrite the integral in Equation (2.25) as∫
D

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2

=
∫ 1

2

v2=0
1{f∗

1 (v′
2, V−2) ≤ k}dv′

2 +
∫ 1

v2= 1
2

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2

(2.36)

We evaluate the integral
∫

D 1{f∗
1 (v′

2, V−2) ≤ k}dv′
2 for each case in Equation (2.35).

First if 0 < v1 < 1
2 and 0 < v2 < 1

2 we get

∫
D

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2 =

∫ 1
2

v2=0
1

{
v2 ≤

k
1
2 − v1

+ 1
2

}
dv′

2

=


0, if 0 < v1 < 1

2 , k ≤ v1
2 −

1
4 ,

k
1
2 −v1

+ 1
2 , if 0 < v1 < 1

2 , 1
4 −

v1
2 < k < 0,

1
2 , if 0 < v1 < 1

2 , k ≥ 0.

(2.37)

If 1
2 < v1 < 1 and 0 < v2 < 1

2 we get

∫
D

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2 =

∫ 1
2

v2=0
1

{
v2 ≥

k
1
2 − v1

+ 1
2

}
dv′

2

=


0 if 1

2 < v1 < 1, k ≤ 0
−k

1
2 −v1

if 1
2 < v1 < 1, 0 < k < v1

2 −
1
4

1
2 if 1

2 < v1 < 1, k ≥ v1
2 −

1
4

(2.38)

If 0 < v1 < 1
2 and 1

2 < v2 < 1
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∫
D

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2 =

∫ 1

v2= 1
2

1
{

v2 ≥
k

v1 − 1
2

+ 1
2

}
dv′

2

=


0 if 0 < v1 < 1

2 , k ≤ v1
2 −

1
4

1
2 −

k
v1− 1

2
if 0 < v1 < 1

2 , v1
2 −

1
4 < k < 0

1
2 if 0 < v1 < 1

2 , k ≥ 0

(2.39)

And lastly if 1
2 < v1 < 1 and 1

2 < v2 < 1∫
D

1{f∗
1 (v′

2, V−2) ≤ k}dv′
2 =

∫ 1

v2= 1
2

1
{

v2 ≤
k

1
2 − v1

+ 1
2

}
dv′

2

=


0 if 1

2 < v1 < 1, k ≤ 0
k

v1− 1
2

if 1
2 < v1 < 1, 0 < k < v1

2 −
1
4

1
2 if 1

2 < v1 < 1, k ≥ v1
2 −

1
4

(2.40)

We can now use the integral in Equation (2.36) and combine Equation (2.37)
and (2.39) for the case 0 < v1 < 1

2 and Equation (2.38) and (2.40) for the case
1
2 < v1 < 1. We then get

I(k, v2) =
∫

D
1{f∗

1 (v′
2, V−2) ≤ k}dv′

2

=



0 if 0 < v1 < 1
2 , k ≤ v1

2 −
1
4

1 + 2k
1
2 −v1

if 0 < v1 < 1
2 , v1

2 −
1
4 < k < 0

1 if 0 < v1 < 1
2 , k ≥ 0

0 if 1
2 < v1 < 1, k ≤ 0

2k
v1− 1

2
if 1

2 < v1 < 1, 0 < k < v1
2 −

1
4

1 if 1
2 < v1 < 1, k ≥ v1

2 −
1
4

(2.41)

Using Equation (2.25) we thus get

f∗
1,2(V) = R2f∗

1 (V) = inf
[
k : I(k, v2) ≥ v1

]
=

{
inf

[
1 + 2k

1
2 −v1

≥ v2
]

if 0 < v1 < 1
2

inf
[ 2k

v1− 1
2
≥ v2

]
if 1

2 < v1 < 1

=
{

inf
[
k ≥ 1

2 (v2 − 1)( 1
2 − v1)

]
if 0 < v1 < 1

2
inf

[
k ≥ v2

2 (v1 − 1
2 )

]
if 1

2 < v1 < 1

(2.42)

Therefore, we obtain

f∗
1,2(V) =


1
2(v2 − 1)(1

2 − v1) if 0 < v1 <
1
2

v2

2 (v1 −
1
2) if 1

2 < v1 < 1
(2.43)
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However, this is the result if we first rearrange w.r.t v1 and then rearrange w.r.t
v2. We will get a different result if we first rearrange w.r.t v2 and then w.r.t v1. We,
therefore, determine the function for this rearrangement as well and take the average
over the two orderings as described in Equation (2.26). Due to the symmetry of the
function in Equation (2.27), we know that rearranging w.r.t v2 and then v1 will give
us the function

f∗
2,1(V) =


1
2(v1 − 1)(1

2 − v2) if 0 < v2 <
1
2

v1

2 (v2 −
1
2) if 1

2 < v2 < 1
(2.44)

Combining Equation (2.43) and (2.44) in Equation (2.26) we thus get

f∗ = 1
|S|

∑
σ∈S

f∗
σ = 1

2

(
f∗

1,2(V) + f∗
2,1(V)

)

=


1
8 (−4v1v2 + 3v1 + 3v2 − 2) if 0 < v1 < 1

2 , 0 < v2 < 1
2

1
8 (v1 + v2 − 1) if 1

2 < v1 < 1, 0 < v2 < 1
2

1
8 (v1 + v2 − 1) if 0 < v1 < 1

2 , 1
2 < v2 < 1

1
8 (4v1v2 − v1 − v2) if 1

2 < v1 < 1, 1
2 < v2 < 1

(2.45)

As illustrated in Figures 2.6 to 2.9, we first rearrange the function f(V) of Equa-
tion (2.27) to the function f∗

1,2(V) of Equation (2.43) conserving the mass under
the graph. By symmetry, we obtain the function f∗

2,1(V) of Equation (2.43). Then
by averaging over both rearrangements f∗

1,2(V) and f∗
2,1(V), we find the function

f∗(V) of Equation (2.45), with the same mass under its graph as the original func-
tion f(V).
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Figure 2.6: The original function f(V) as
given by Equation (2.27).

Figure 2.7: The function f∗
1,2(V) obtained

by rearranging f(V).

Figure 2.8: The function f∗
2,1(V) obtained

by rearranging f(V).

Figure 2.9: The function f∗(V) obtained by
averaging over both rearrangements f∗

1,2(V)
and f∗

2,1(V).



3
ML methods for conditional

CDFs

3.1. General framework
In this section, we introduce a method of estimating conditional multivariate CDFs
using different forms of machine learning and present the different models used.
In this setting, we are interested in two random vectors (X, Y) ∈ Rm × Rp. We
will denote by X = (X1, . . . , Xm) and Y = (Y1, . . . , Yp). We observe a dataset
D =

(
(X1, Y1), . . . , (Xn, Yn)

)
of n i.i.d. replications of (X, Y). We define the

conditional multivariate CDF of Y given X by

FY|X(y|x) := P(Y ≤ y|X = x), (3.1)

for a given vector of threshold values y ∈ Rp and a vector of values of interest
x ∈ Rm. Observe that the conditional CDF can be expressed as

FY|X(y|x) = E
[
1{Y ≤ y}|X = x

]
. (3.2)

To estimate this expectation, we introduce the new random variable Wy = 1{Y ≤
y}, yielding the equation:

FY|X(y|x) = E
[
Wy|X = x

]
. (3.3)

In order to estimate FY|X(y|x) we now create a new dataset by combining the vec-
tors X with corresponding Wy and use this dataset to train the classifiers described
in Chapter 2. In this dataset, X represents the input feature vector and Wy the
corresponding binary random variables that serve as the label. This transforms the
problem into a binary classification problem. It is important to note that as each
new threshold value y is introduced, a new binary random variable Wy is created.
As a result, it is necessary to train a new classifier for each new y. To further
illustrate this, we present an example

27
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Example 3.1. As an example, we can consider the case where n = 8 such that D =(
(X1, Y1), . . . , (X8, Y8)

)
and m = p = 2 such that Xi =

[
Xi,1
Xi,2

]
and Yi =

[
Yi,1
Yi,2

]
.

The dataset is illustrated as a matrix in Equation (3.4)
X1,1 X1,2 Y1,1 Y1,2
X2,1 X2,2 Y2,1 Y2,2

...
...

...
...

X8,1 X8,2 Y8,1 Y8,2

 (3.4)

Since we want to estimate the conditional CDF

FY|X(y|x) = P(Y ≤ y|X = x)
= E

[
1{Y ≤ y}|X = x

]
= E

[
Wy|X = x

] (3.5)

we need to determine Wy = 1{Y ≤ y} for a given y:

W i
y = 1{Yi ≤ y} = 1

{[
Yi,1
Yi,2

]
≤

[
y1
y2

]}
. (3.6)

This provides the new dataset DW,y,

DW,y =


X1,1 X1,2 W 1

y
X2,1 X2,2 W 2

y
...

...
...

X8,1 X8,2 W 8
y

 . (3.7)

We then use this dataset to train a classifier to estimate the probability that Wy is
0 or 1 given X.

To estimate the conditional CDF FY|X(y|x), we train a classifier using the
dataset containing pairs of X and corresponding Wy values. This classifier aims
to capture the relationship between the input vector x and the binary random vari-
able Wy for a vector of threshold values y.

One important aspect to consider is that each new vector of threshold values
y corresponds to a new binary random variable Wy, which necessitates training
a separate classifier for each unique value of y. Theoretically, to estimate FY|X
accurately, we would need to train an infinite number of classifiers, one for every
possible value of y ∈ Rd. In practice, it is impossible to train an infinite number of
classifiers. However, we can train classifiers for a carefully chosen set of threshold
values y. Doing so we obtain predictions that relate x to Wy for a predefined set of
y values. These predictions cover a grid-like structure, as we have a prediction for
every combination of x = (x1, . . . , xr) and the selected y = (y1, . . . , ys) values. Note
that these predictions are thus available only for the selected values of y and not
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for every possible y. The reason behind the asymmetry between x and y lies in the
nature of the problem: the relationship between x and Wy is explicitly learned and
modelled, while the relationship between x and the full range of Y is not directly
captured.

We use interpolation in order to find predictions for y values that are not on the
specified grid. By leveraging the trained classifiers and the available predictions on
the grid, we can estimate the conditional CDF F̂Y|X(y|x) for y values that were not
part of the selected set.

The estimator is denoted as F̂Y|X(y|x) and is computed for all yi within the
grid y1, . . . , ys, and all x within the grid x1, . . . , xr. The true function FY|X(y|x)
is increasing in y for every value of y ∈ Rp and x ∈ Rm. However, due to the
limitations of the training data and the model, this estimator might exhibit an
inconsistency as it is possible that for certain x values, F̂Y|X(yi|x) < F̂Y|X(yj |x)
even when yi > yj . This discrepancy between the true behaviour of FY|X(y|x)
and the estimator F̂Y|X(y|x) is problematic as the inconsistency in the estimated
probabilities for different y values also extends to the interpolated regions. As a
result, the estimator fails to accurately capture the increasing nature of the true
conditional CDF FY|X(y|x), resulting in an invalid representation of the underlying
distribution.

To address the issue of inconsistencies in the estimated conditional CDF, we
apply rearrangement, as introduced in Section 2.5, to the estimated function. Rear-
rangement involves transforming the estimated function into a monotonic function,
which provides a more accurate and reliable estimate of the underlying conditional
CDF.

This approach is motivated by the fact that the inconsistency in the estimated
probabilities for different y values is a common problem in the context of increasing
monotone functions. It has been proven, as shown in Chernozuhkov et al. [6], that
rearranging the function reduces the estimation error as the rearranged estimate
is invariably closer to the target function than the estimate before rearrangement
is. However, it is important to note that performing the rearrangement for every
value of x is not feasible in practice due to computational limitations. Therefore, a
grid for x needs to be defined, similar to the grid for y values. Once the grids for
both x and y are established, the rearrangement can be applied to the interpolated
function. By rearranging the function, we mitigate the inconsistencies and improve
the accuracy of the estimated conditional CDF

We present a “meta-algorithm” in Alorithm 5, in which we elaborate on the
process described. Since many classifiers can be used for estimating Equation (3.3)
this meta-algorithm will not specify a classifier. In practice, we will apply the ML
algorithms discussed in Chapter 2 in the meta-algorithm:

• “Tree”: this is the model where a decision tree is fitted;

• “NN”: this is the model where a neural network is fitted

• “RF”: this is the model where a random forest is fitted
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• “NNForest”: this is the model where a bagging ensemble of neural networks
is fitted

Algorithm 5: Meta-algorithm for estimating conditional CDF using ML
techniques.

Input: Training dataset D
Input: A grid of threshold values y1, . . . , ys

Input: A grid of x values x1, . . . , xr

Input: ML specific parameters
Output: Estimate F̂ ∗

Y|X
for i← 1 to s do

Calculate W j
yi = 1{Y ≤ yi} for every j = 1, . . . , n;

Create new dataset DW,yi
=

(
(X1, W 1

yi
), . . . , (Xn, W n

yi
)
)

;
Train ML algorithm using Algorithm from Chapter 2 using DW,yi

and
ML specific parameters ;

for xi on the grid x1, . . . , xr do
Calculate the estimated conditional CDF F̂Y|X(yi|xj) using ML
model ;

end
end
Rearrange F̂Y|X(yi|x) on the grid of x1, . . . , xr and y1, . . . , ys values as
detailed in Chapter 2.5 ;

return F̂ ∗
Y|X
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3.2. Background on computer science concepts
In this section, we delve into three key programming approaches that underpin the
research: meta-programming, functional programming, and object-oriented pro-
gramming (OOP). Each of these approaches plays a crucial role in the problem-
solving methodology, ensuring code functionality, eliminating redundancy, and pro-
moting readability.

3.2.1. Meta-programming
Meta-programming can be defined as the art of programming that revolves around
the intricate world of programs themselves. In conventional programming, code exe-
cution follows a linear path, adhering to a predefined set of instructions. In contrast,
metaprogramming represents a higher-level approach, focusing on the manipulation
and generation of code within the programming environment itself. It revolves
around the concept of programming with the aim of creating, modifying, or gener-
ating code dynamically and then executing this generated code. The key distinction
between conventional programming and metaprogramming lies in the source of the
executed code: while traditional programming involves the explicit writing of code
by the programmer, metaprogramming entails code generation and customization in
response to specific requirements and contextual factors. This distinction empowers
developers to craft more adaptable and context-aware systems by allowing code to
be dynamically generated and executed based on varying conditions and needs.

Meta-programming, furthermore, provides dynamic control over code execution
during runtime. This capability offers a wide range of possibilities, enabling the
development of functions and scripts for code generation, enhancement, and analy-
sis, particularly beneficial for tasks like automation, code abstraction, and dynamic
code manipulation. Notably, meta-programming excels in abstracting recurring pat-
terns into reusable functions, promoting code abstraction and streamlining data
manipulation across diverse datasets. Furthermore, it automates code generation
based on specific criteria or data, reducing manual coding efforts and enhancing effi-
ciency while minimizing errors. Moreover, the dynamic code manipulation feature of
meta-programming empowers real-time modification of code and objects, enhancing
adaptability and flexibility, making it a valuable tool for code quality improvement.

We primarily employ meta-programming for code optimization, dynamically gen-
erating more efficient and cleaner code while considering data characteristics. This
approach enhances code performance and readability, emphasizing the primary focus
on improving code efficiency and quality.

Meta-programming relies on three core components: expression manipulation,
quoting, and evaluation. Expressions, representing code as data in R, form the foun-
dation of this technique, enabling dynamic alterations to their structure, selective
evaluation, or even the creation of entirely new expressions during runtime, facil-
itating code adaptation to evolving requirements. Quoting temporarily suspends
expression evaluation, preserving them for later execution, while unquoting selec-
tively and dynamically evaluates specific components within an expression. This
interplay grants developers precise control over the timing and manner of code ex-
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ecution, fostering adaptable and responsive program behaviour. Lastly, evaluation,
facilitated by functions like eval and substitute, executes expressions within spec-
ified environments, enabling the runtime execution of generated or altered code.

To illustrate this further, we provide a snippet of the algorithm in Figure 3.1,
which dynamically constructs R code for decision tree generation.

totalXnames = paste0 ("X", 1: dim_x, collapse = "+")
tree_ controls = paste0 (" minsize =", ML_ param $ minsize ,

", mindev =", ML_ param $ mindev )
my_code = paste0 (" theTree = tree :: tree(X", ncol( dataframe ),

"~", totalXnames ,
", data = dataframe , " ,tree_ controls ,")")

eval(parse(text = my_code))

Figure 3.1: An example of meta-programming as used in the development of the R package
estimCondCDF.

In this snippet, the string my_code is constructed using expression manipula-
tion. Here various components, including the data source, control parameters, and
formula, are programmatically assembled, allowing for code adaptation to diverse
datasets. Quoting subtly suspends the immediate evaluation of the my_code ex-
pression, holding it for deferred execution. Finally, the evaluation aspect comes
into play with eval(parse(text = my_code)), where the dynamically generated
code is executed within the R environment, translating the meta-coded string into
executable instructions.

3.2.2. Functional programming
Functional programming is a programming paradigm centred on the evaluation of
functions, prioritising the avoidance of mutable data and state changes. Key con-
cepts include first-class functions, which treat functions as first-class citizens, allow-
ing them to be assigned to variables, passed as arguments, and returned as values
from other functions, as well as higher-order functions, which either take functions
as arguments or return functions. This approach revolves around the creation and
application of functions to data, emphasizing immutability, referential transparency,
and functional constructs.

Unlike conventional imperative programming reliant on sequential statements
for state alteration, functional programming underscores expressing the desired be-
haviour of the program through interactions through functions. This foundational
contrast results in concise, predictable, and less error-prone code, favouring declar-
ative and functional constructs over detailed step-by-step directives.

One of its primary advantages is immutability, which means that once a data
structure or variable is created, it cannot be changed. This immutability reduces
the likelihood of bugs, simplifies debugging, and makes code more predictable. Ad-
ditionally, functional programming emphasizes purity, where functions produce the
same output for the same input without any side effects. This predictability makes
it easier to reason about code behaviour and test individual functions in isolation,
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leading to more robust and maintainable code. Moreover, functional programming
encourages a declarative style of programming, where developers specify what should
be done rather than how to do it, making code more self-explanatory and easier to
understand.

Since we propose a general procedure for estimating a conditional CDF we need
functional programming. This allows for a more readable code as well as the ability
to easily add more machine learning methods later on.

For illustrative purposes, we show a simplified version of the code in Figure 3.2
showcasing how the estimate_condCDF_general function employs the concepts of
higher-order functions and first-class functions to create a list of ML models.

estimate _ condCDF _ general = function ( FitMLmodel , ML_param , (other arguments ) )
{

# ... ( P r e v i o u s c o d e )

fittedModel = FitMLmodel ( dataframe = dataframe , ML_ param = ML_ param )

listOfMLmodels [[i]] = list(y = y, model = fittedModel )
}
result = list( listOfMLmodels = listOfMLmodels ,

dim = c(dimx = ncol(datax ), dimy = ncol(datay )))
}

estimate _ condCDF = function ( MLmodelName , (other arguments ))
{

switch (

MLmodelname ,

"Tree" = {

FitMLmodel = Fit_ treeModel

if (is.null(ML_param)){
ML_param = list( minsize = 10, mindev = 0.01)
}

}
# ... ( O t h e r ML m e t h o d s )
)

result = estimate _ condCDF _ general (
FitMLmodel = FitMLmodel , ML_param = ML_param , (other arguments ) )

return ( result )
}

Figure 3.2: An example of functional programming as used in the development of the R package
estimCondCDF.

In this snippet, we have the known first-class function fit_treeModel, the vari-
able FitMLmodel and the higher-order function estimate_condCDF_general. First
the function fit_treeModel is assigned to the variable FitMLmodel. FitMLmodel
is then passed on to the higher-order function estimate_condCDF_general as an
argument. The function fit_treeModel is then executed in the line fittedModel
= FitMLmodel(dataframe = dataframe, ML_param = ML_param). This example
demonstrates the workings of functional programming, offering code that is not only
more self-explanatory but also aligns with the principles of purity.
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3.2.3. Object-Oriented Programming (OOP)
Object-Oriented Programming (OOP) is a paradigm that structures code around the
concept of objects, which represent real-world entities or abstract concepts. OOP
promotes code organization and reusability by encapsulating data and behaviour
within objects. One of its primary advantages is encapsulation, which means that
the internal state of an object is hidden from external access, promoting data in-
tegrity and reducing the risk of unintended modifications. OOP also emphasizes
inheritance, allowing new classes (objects) to inherit properties and methods from
existing ones, facilitating code reuse and promoting the creation of hierarchical re-
lationships. Moreover, OOP encourages polymorphism, where different objects can
respond to the same method call in a way that is appropriate for their specific types,
enhancing flexibility and extensibility.

OOP is guided by several key principles. Encapsulation ensures that the internal
state of an object is accessed and modified through well-defined interfaces, promoting
data security and reducing code coupling. Inheritance enables the creation of a
hierarchy of classes, where child classes inherit attributes and behaviours from parent
classes, fostering code reuse and maintenance.

Lastly, polymorphism allows different objects, often belonging to various sub-
classes, to respond to the same method or message in a way that is contextually
relevant to the specific implementation of each object. This means that, even though
objects may have different underlying structures and behaviours, they can be treated
uniformly when they share a common interface or superclass. Polymorphism pro-
motes code flexibility, extensibility, and reusability by allowing objects of various
types to seamlessly interact with shared methods.

Together, these principles in OOP provide a powerful framework for organizing,
modeling, and managing complex systems, making code more modular, comprehen-
sible, and maintainable.

To illustrate how OOP is used in the estimCondCDF package, a snippet of the
prediction method is presented in Figure 3.3. This code provides a unified and
consistent interface (predict) for making predictions across different types of machine
learning models.

predict . estimCondCDFTree = function ( object , newdata ,
Rearrange = TRUE , ...)

{
return ( predictCommon ( object , newdata , predictTreeModel , Rearrange ))

}

Figure 3.3: An example of OOP as used in the development of the R package estimCondCDF.

In the snippet, polymorphism is used to interact with the predict function
through the predict.estimCondCDFTree method. During the modeling phase,
each specific model instance is assigned a class. For instance, when generating
a “Tree” model using the estimCondCDF package, the resulting model is given the
class estimCondCDFTree. The predict.estimCondCDFTree method is defined with
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a method signature that adheres to the conventions of the standard predict method
in R. This uniformity in method signature enables it to be seamlessly interchange-
able with the typical predict function in R.

Inside predict.estimCondCDFTree, it calls predict_common and passes the
object, newdata, and other arguments. predict_common is responsible for han-
dling the actual prediction process. The key here is that predict_common is a
generic function that can work with different types of machine learning models. It
uses dynamic dispatch to determine the appropriate behaviour based on the type of
object.

This makes it easier to work with various models interchangeably and ensures
that the predict function behaves appropriately based on the specific model type,
enhancing code flexibility and maintainability.

3.3. Internals of the package
When applying the estimation methodology the statistician will first create a model
based on one of the four ML methods. This model is then used to make predictions
for estimating the conditional CDF. Lastly, these predictions are rearranged to more
accurately estimate the conditional CDF. The created estimCondCDF package is thus
split up into two parts, the modeling and the prediction part. In this section, we will
discuss the challenges encountered during the package development and explain the
design choices made. We will then provide insights into the inner workings of the
modeling and prediction components of the package. Lastly, we will offer practical
guidance on using the package effectively.

3.3.1. Challenges and design decisions
During the development of the estimation method and the construction of the R
package, we encountered numerous challenges necessitating design decisions. In this
subsection, we will elaborate on the problems that arose and the solutions we came
up with.

The first decision we had to make was the way to save the build models. As seen
in Algorithm 5, a new model, based on the specified machine learning method, is
trained for each threshold value yi. This results in one model consisting of multiple
models. These multiple models are based on the specified machine learning method
and the number of models on the number of threshold values. We thus need to save
each model in combination with the threshold values it was trained on. Besides
this, the dimensions of the vector of threshold values y and the vector containing
the values of interest x should be saved in order to be easily accessed during the
prediction phase. In the case of the “Tree” and “NN” models, the model, corre-
sponding threshold values and dimensions are saved as a list of lists as visualised in
Figure 3.4.

To create a model for the bagging methods, “RF” and “NNorest” we again
need to think about the way we store the models. There are multiple packages
in R that generate a random forest model. However, there is no package for a
“NNForest” model and we already have the existing code for the decision tree and



3

36 3. ML methods for conditional CDFs

neural network methods. We thus take a number of B bootstrap samples from the
data and build a decision tree or neural network for each bootstrap sample. To
save these B models, one extra list is added containing the B corresponding trained
models. This is illustrated by the nested list in Figure 3.5. For the prediction of the
bagging methods, we take the mean over the individual predictions of these trees or
neural networks.

Now that we have established a method for saving the model, we need to dy-
namically fit each model based on the dimension of the predictor values x. As we
do not want to just estimate the conditional CDF for x1 and x2 but want to be
able to do this for multiple dimensions, we use meta-programming as described in
subsection 3.2.1 to dynamically fit the machine learning models based on the input
of the statistician.

Furthermore, we want the code to interact with the general predict function
in R. To achieve this we assign a specific class to the model returned, determined
by the employed machine learning method. We then use OOP principles to en-
able this interaction. For instance, in the case of the “Tree” model with the class
estimCondCDFTree, we create a dedicated function predict.estimCondCDFTree.
This allows the statistician to input a model with class estimCondCDFTree in the
general predict function in R. Because the class of this model is estimCondCDFTree
the specified function predict.estimCondCDFTree is automatically invoked.

We use a range of different R packages for multiple different functions within
the estimCondCDF package. Specifically, we use the stats package to employ the
quantile function, which enables the calculation of the 10% and 90% quantiles of
the input variables y. Additionally, we rely on the predict function from the same
package to make predictions for each decision tree or neural network in the model.
To construct these decision trees and neural networks, we turn to the tree function
from the tree package and the nnet function from the nnet package, respectively.
For column selection based on specific character prefixes, we employ the select and
starts_with functions from the dplyr package. Lastly, to rearrange the predictions
effectively, we make use of the rearrangement function from the Rearrangement
package. Prior to this, we prepare the data using a combination of functions from
the tidyr package, including pivot_wider, pivot_longer, and all_of.
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• The main list

– The list of models and predictor values:
⋄ The first trained model:

· The threshold values y1.
· The corresponding trained decision tree or NN model.

⋄ The second trained model:
· The threshold values y2.
· The corresponding trained decision tree or NN model.

...
⋄ The s-th trained model:

· The threshold values ys.
· The corresponding trained decision tree or NN model.

– The dimensions of x and y

Figure 3.4: Visual representation of how the decision tree or neural network models are saved in
the main “Tree” or “NN” model.

• The main list

– The list of models and predictor values:
⋄ The first trained bagging model:

· The threshold values y1.
· a list of B corresponding trained decision tree or NN models

⋄ The second trained model:
· The threshold values y2.
· a list of B corresponding trained decision tree or NN models

...
⋄ The s-th trained model:

· The threshold values ys.
· a list of B corresponding trained decision tree or NN models

– The dimensions of x and y

Figure 3.5: Visual representation of how the decision tree or neural network models are saved in
the main “RF” or “NNForest” model.
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3.3.2. Modeling mechanics
We aim to construct a model for estimating the conditional CDF, denoted as
P (Y ≤ y|X = x), where the vector X corresponds to the vector of covariates, while
Y represents the dependent response vector with associated values. Furthermore,
y represents a vector of threshold values and x is the vector of values of interests
of the covariates. As seen in Algorithm 5 in Section 3.1, we train a new model for
each new y value. In order to build the model using one of the machine learning
techniques, the primary function, estimate_condCDF(), determines the suitable
machine learning model based on the MLmodelName given by the statistician. We
detail the internals of the function estimate_condCDF().

estimate _ condCDF = function ( datax , datay , MLmodelName ,
y_ values = NULL , ML_ param = NULL)

{
switch (

MLmodelName ,

"Tree" = {

FitMLmodel = Fit_ treeModel

if (is.null(ML_param)){
ML_param = list( minsize = 10 , mindev = 0.01)

}
},

...(The other ML techniques )
)
result = estimate _ condCDF _ general (

datax = datax , datay = datay ,
FitMLmodel = FitMLmodel ,
y_ values = y_ values ,
ML_param = ML_param ,
MLmodelName = MLmodelName )

return ( result )
}

Figure 3.6: The estimate_condCDF() function called by the statistician.

The function takes in a matrix or dataframe of X values and a matrix or
dataframe of corresponding Y values, denoted by datax and datay respectively, as
well as the specified machine learning technique to be used, denoted by MLmodelName.
Optionally a vector or list of threshold values y can be specified, denoted by
y_values. If no y vector is specified the 10th and 90th percentile of the dataset are
used as input vectors. Furthermore, a list of hyperparameters specific to the chosen
machine learning technique can be specified. If no such list is supplied the stan-
dard hyperparameters of the machine learning technique are used. The fitMLmodel
function is the function where the model is actually constructed.

The estimate_condCDF function, as shown in Figure 3.6, passes the chosen
fitMLmodel function to the estimate_condCDF_general() function, illustrated
in Figure 3.7. This function then cleans and prepares the data as input for the
fitMLmodel function.

As seen in Algorithm 5 we first calculate the Indicator function 1{Y ≤ yi}.
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estimate _ condCDF _ general = function (datax , datay , FitMLmodel ,
y_ values = NULL , ML_ param ,
MLmodelName )

{
...(Data prepping )

listOfMLmodels = list()
for (i in 1: nrow(y_ values )) {

y = y_ values [i, , drop = FALSE]
colnames (y) = c( paste0 ("y", 1:(dim_y)))
data_frame = as.data.frame(cbind( datax , Indicator (datay , y) ) )
colnames ( dataframe ) = c( paste0 ("X", 1:(dim_x+1)))

fittedModel = FitMLmodel ( dataframe = dataframe , ML_ param = ML_ param )

listOfMLmodels [[i]] = list(y = y, model = fittedModel )
}
result = list( listOfMLmodels = listOfMLmodels ,

dim = c(dimx = ncol(datax ), dimy = ncol(datay )))
class( result ) = paste0 (" estimCondCDF ", MLmodelName )
return ( result )

}

Figure 3.7: The estimate_condCDF_general() function, cleaning and preparing the data into a
dataframe, to pass into the fitMLmodel function.

For this, the function Indicator calculates 1{Y ≤ yi} for the dataset datay and
returns a binary value Wyi per row. These values are used to create the new
dataframe data_frame. This dataframe is passed into the fitMLmodel function
where the specified machine learning technique is used to create a model. We use a
for loop in order to make a model for each provided vector of threshold values.

As an example, we show how this works for the “Tree” model where the chosen
ML model is the decision tree. In this case, the variable fitMLmodel is assigned the
function Fit_treeModel, as shown in Figure 3.8. Inside this function, we use the
tree function from the R package tree to generate a decision tree.

Fit_ treeModel = function ( dataframe , ML_param = ML_param )
{

theTree = tree :: tree(X3 ~ X1+X2, data = dataframe ,
minsize = minsize , mindev = mindev )

return ( theTree )
}

Figure 3.8: The Fit_treeModel function.

In this example code a two-column matrix of X values is provided. The new
dataset DW,y is referred to by dataframe and consists of these two columns of X
values and the binary column Wyi

, here referred to as X3, created using the indicator
function. The function tree grows a decision tree using the variables X1 and X2 as
predictors to predict the variable X3. This will return a trained decision tree model
based on these provided y values.

The code used for the development of the R package estimCondCDf however,
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needs to be able to dynamically determine the number of columns of the dataframe
datax predictor X and adjust the tree function accordingly and automatically. We
therefore use meta programming as described in the code block of Figure 3.1

When switching from the “Tree” model to the “NN” model, the function assigned
to fitMLmodel becomes Fit_NNModel. Within this function, we construct a neural
network using the nnet function from the nnet package.

For the remaining two models, “RF” and “NNForest”, the corresponding func-
tions are Fit_RFModel and Fit_NNForestModel, respectively. The procedures for
both of these models closely resemble those of the ‘Tree” model and the “NN” model,
respectively, with the inclusion of an additional bagging step. The bagging step is
executed by introducing an extra for loop within the corresponding Fit functions,
iterating for a predetermined number of decision trees or neural networks to con-
struct. Within this loop, data is initially sampled, upon which the decision trees or
neural networks are generated.

In the final step, each model is assigned a distinct class, determined by the
applied machine learning method used, indicated by MLmodelName. For instance, in
the case of the “Tree” model, the class will be named estimConCDFTree. Assigning
different classes to each model is essential for seamless integration with the standard
predict function in R.

3.3.3. Prediction process
With the model in place, we can start the prediction process where we use OOP
for compatibility with the general predict function in R. When a model, trained
using the estim_condCDF function, is input into the predict function, it triggers
the execution of a designated predict.condCDF function. For instance, if the in-
put is a model of class estimcondCDFTree the function predict actually calls the
predict.condCDFTree function, illustrated in Figure 3.9

predict . estimCondCDFTree = function ( object , newdata ,
Rearrange = TRUE , ...)

{
return ( predictCommon ( object , newdata , predictTreeModel , Rearrange ))

}

Figure 3.9: The predict.estimCondCDFTree function called by entering a model with class
estimCondCDFTree into predict.

This function takes the trained model, of class estimcondCDFTree, denoted as
object, and a dataframe of new x values for which to make predictions, denoted
by newdata. It furthermore takes an optional boolean input variable Rearrange
to control the rearrangement of the resulting predictions. This design is consistent
with other machine learning methods to ensure that objects of the specified classes
can interact seamlessly with the predict function in R.

This data, in combination with the predict function specified by the object class,
is then passed to the predictCommon function illustrated in Figure 3.10. In the case
of the “Tree” model, this is the function predictTreeModel. The other models have
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their corresponding prediction functions passed to the predictCommon function in
a similar fashion as in the estimation step. In these respective prediction functions
the actual predictions for each model is executed using predict.

predictCommon <- function ( object , newdata , predictFunction ,
Rearrange = TRUE) {

result = predictCondCDF _ general (
trainedModel = object ,
newx = newdata ,
predictMLmodelName = predictFunction )

if ( Rearrange ) {
result = Rearranged _dim2( result )

}

return ( result )
}

Figure 3.10: The predictCommon function.

The predictCommon function acts as a common wrapper for making predictions.
It abstracts away details and provides a consistent interface for making predictions
using the different machine learning models. This modular design makes it easier
to extend the code to support future additional machine learning techniques.

The inputs are passed into the predictCondCDF_general function. Here the
position of the y values for which the model was trained on are determined in the
list of lists and general data cleaning and preparation is done to pass everything
into the specified predictFunction

In the predictCondCDF_general function a dataframe, denoted by dataframe,
is created to store the results of the predictions. This dataframe consists of the
columns from newx, indicating the vector of values of interests x, the columns from
newy indicating the threshold values y the model is trained on and a column for
predictions initialized with missing values (NA). The code then enters a for loop
that iterates through each row of the dataframe. For each row, a subset of newx is
extracted and then used in the predictMLmodel function to make predictions. The
results are stored in the prediction column of the dataframe.

Depending on the predictMLmodel which was determined by the class of the
object passed into the predict function the predictions are made. In case that
object was of class estimCondCDFTree the code would be

predict _ treeModel = function ( trainedModel , thePosition ,
newx)

{
output = stats :: predict ( trainedModel [[ thePosition ]]$ model ,

newdata = newx ,
type = " vector ")

return ( output )
}

Here the predict function from the R package stats is used to find a prediction.
Since we unpacked a decision tree, an object of class tree, from the list of lists the
actual function that R calls is the predict.tree function integrated into the predict
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predictCondCDF _ general = function ( trainedModel ,
newx ,
predictMLmodel )

{
....(Data prepping )

positions = rep( positions , times = nrep_ positions )
new_y = as.data.frame (newy)

dataframe <- data.frame(
dplyr :: select (newx , dplyr :: starts _with("X")),
dplyr :: select (newy , dplyr :: starts _with("y")),
prediction = NAreal ,
titles = NAcharacter

)
dataframe $ titles = apply (newx , 1, function (row) {

paste0 (paste (names (newx), " = ", row , collapse = ", "))
})

for (i in seq(nrow( dataframe ))) {
xnew = as.data.frame ( dataframe [i,c( paste0 ("X", 1: dimx))])
colnames (xnew) = c( paste0 ("X", 1: dimx))
dataframe [i," prediction "] =

predictMLmodel ( trainedModel = listOfMLmodels ,
thePosition = positions [i],
newx = xnew)

}
return ( dataframe )

}

Figure 3.11: The predictCondCDF_general function.

function just as the predict.estimateCondCDF function is.
In this code, the predict function from the R package stats is employed to carry

out predictions. Specifically, as we have previously unpacked an object of class tree
from the list of models, the actual function that R invokes is the predict.tree
function. This is seamlessly integrated into the predict function, much like the
custom predict.estimateCondCDF function. Similarly, for neural networks, the
prediction function would be predict.nnet.

At the end of the for loop in the predictCondCDF_general function, a dataframe
containing predictions is returned. If it was specified to use rearrangement on
these predictions the predictCommon function now passes this dataframe into the
Rearranged_dim2 function. Here the dataframe is again prepared to now work
with rearrangemnt function from the R package rearrangment and a dataframe
containing the x values, y values, predictions and rearranged predictions is returned.

3.3.4. Practical application
To use the estimateCondCDF package the first step is to install it. Next, the statis-
tician trains a model from a dataset. This model is used in the final step to make
predictions given new values of explanatory variables. An illustrative example of
this process using the package in R is provided in Figure 3.12:

Initially, the statistician creates a dataframe comprising the predictor variables,
denoted as X1 and X2, along with the response variables Y1 and Y2. In Algorithm
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X1 = runif(n = 100 , min = 0, max = 1)
X2 = runif(n = 100 , min = 0, max = 1)
Y1 = rnorm(n = 100 , X1, 1)
Y2 = rnorm(n = 100 , X2, 1)

dataframe = data.frame(X1, X2, Y1, Y2)

mymodel = estimCondCDF :: estimate _ condCDF ( datax = dataframe [,1:2] ,
datay = dataframe [,3:4] ,
MLmodelName = "tree")

newx = data.frame("x1" = c(1,2),"x2" = c(3,4))
predict ( mymodel , newdata = newx)

Figure 3.12: Practical example of fitting a model and making predictions using the estimCondCDF
package.

5, this dataframe corresponds to the training dataset D. In this simple example,
the data is generated using predefined distributions, whereas real-life applications
necessitate loading and cleaning a dataset of observations to adhere to this format.

Subsequently, the model is trained using the estimate_condCDF function from
the estimCondCDF package. This function requires five inputs: datax, datay,
MLmodelName, y_values, and ML_param. Specifically, datax and datay should be
dataframes, while MLmodelName should be a string indicating the chosen machine
learning method for classification. Optionally, y_values and ML_param can be pro-
vided, although they possess default values. y_values should consist of a list of
threshold values, represented by yi in Algorithm 5, and ML_param should be a list
containing the hyperparameters specific to the chosen machine learning method.

Then, a new dataframe containing the x values is constructed, referred to as the
grid of x values in Algorithm 5.

Finally, the process of making predictions begins by invoking the predict func-
tion. This function expects several inputs: an object, in this case, mymodel carrying
the class estimCondCDFTree, and a newdata dataframe on which predictions are to
be generated, here denoted as newx. Additionally, to obtain an increasing function,
that improves estimations closer to the true conditional CDF, we can apply a rear-
rangement process to the predicted values, as explained in Section 2.5. To indicate
this, a boolean input variable, Rearrange, which defaults to TRUE, signifies whether
the predicted values should be rearranged.

The predict function then returns a dataframe encompassing the following com-
ponents: the new data x for which predictions were computed, the corresponding
y values on which predictions were made, the estimations of the conditional CDF
FY|X evaluated at the new observations x and y and the rearrangement of these
estimations. This resulting dataframe is illustrated in Figure 3.13.
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Figure 3.13: Dataframe returned by predict.



4
Simulations

In this chapter, we aim to assess and enhance the precision of estimations of the
conditional CDF by investigating their relative performance through simulations,
as inspired by [8]. We use the four models specified in Section 3.1 to estimate the
conditional CDF

FY|X(y|x) = P(Y1 ≤ y1, Y2 ≤ y2|X1 = x1, X1 = x2) (4.1)

Specifically, each model consists of multiple distinct blocks that can be chosen in-
dependently:

(i) The hyperparameters of the ML method.

(ii) The bivariate distribution of X = (X1, X2).

(iii) The conditional distribution of Y = (Y1, Y2) given X.

(iv) The sample size n.

For these blocks, we chose the reference setting to be defined as:

(i) Specified hyperparameters chosen after the hyperparameter simulations.

(ii) Cor(X1, X2) = 0 where (X1, X2) ∼ N ((0, 0), I2).

(iii) Y1 ∼ N (X1, 1) and Y2 ∼ N (X2, 1).

(iv) Sample size n = 5000.

For each variation, we conduct 200 distinct replications where we estimate the
model based on generated data following the distributions defined in the reference
setting. We run the simulations using computational resources of the DelftBlue
supercomputer, provided by Delft High Performance Computing Centre [7].

45
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In order to define the reference setting for the hyperparameters of each machine
learning technique we will first find the optimal hyperparameters (i) for each ML
technique under this reference setting. We will assess the performance of each
machine learning technique using the Mean Integrated Squared Error (MISE) as an
evaluation metric. The MISE quantifies the average squared difference between the
estimated conditional CDF, F̂Y|X, and the true conditional CDF, FY|X, integrated
over x and y. We define the MISE as

MISE =E
[ ∫ (

F̂Y|X(y|x)− FY|X(y|x)
)2

dxdy
]

=E

[ ∫ (
P̂

(
Y1 ≤ y1, Y2 ≤ y2|X1 = x1, X1 = x2

)
−P

(
Y1 ≤ y1, Y2 ≤ y2|X1 = x1, X1 = x2

))2
dx1 dx2 dy1 dy2

] (4.2)

In addition to the MISE, we also assess the methods based on their average compu-
tation time measured in seconds. Since the number of simulations we run is finite,
we, however, approximate the MISE by taking points on the grid x, y and replacing
the integral and the expectation operators with finite averages.

We begin the simulation study by determining the optimal hyperparameters for
each machine learning technique. Subsequently, we will investigate the robustness
of the predictive models by altering key factors. First, we will explore the impact of
varying the correlation (ii) between the predictor variables X1 and X2. Next, we will
assess the adaptability of the model to different distributions (iii) of the response
variables, Y1 and Y2. Lastly, we will evaluate the performance of the model under
differing sample sizes n (iv). This comprehensive analysis will provide valuable
insights into the versatility and reliability of the prediction method demonstrated
through different machine learning techniques across various scenarios.

4.1. Optimizing hyperparameters for ML models
To determine the optimal hyperparameters for each machine learning technique,
we maintain the reference setting while systematically varying the hyperparameters
(i). For each combination of these hyperparameters, we compute the MISE to gauge
performance. The set of hyperparameters yielding the most favourable MISE results,
while also considering computation time, then becomes the updated reference setting
for each respective machine learning technique. This method allows us to identify
and fine-tune the hyperparameters that yield the best overall model performance.

4.1.1. Decision tree
In the context of decision trees, the analysis initiates with the assessment of the
influence of the two hyperparameters minsize and mindev. As previously discussed
in Section 2.2, within the “Tree” model, minsize denotes the minimum number
of observations required in a terminal node, and mindev represents the minimum
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deviation in response values for a split to occur. For minsize, five distinct values
are considered: 1, 25, 50, 75 and 100. In the case of mindev, a range of twelve
distinct values is examined: 0.0001, 0.0002, 0.0005, . . . , 0.1, 0.2, 0.5.

The simulation study reveals that for smaller values of the mindev parameter, es-
timations of the conditional CDF exhibit improvement, indicated by a lower MISE.
This observation aligns with the expectation that a reduced mindev allows for cap-
turing finer details within the training data since splits occur more frequently. Figure
4.1 visualises the improvement in estimation for lower values of mindev. Notably,
we observe that similar mindev values maintain a consistent relative order when
associated with different minsize values. This consistent relative relationship be-
tween minsize and mindev further underscores the robustness and interdependence
of these hyperparameters in optimizing model performance.

We furthermore find that for higher values of the minsize parameter, we have
a lower average computation time. This is in line with intubation since a larger
minsize value means that each leaf node of the decision tree must contain more
data points before it can be considered a valid, final prediction node, resulting in a
simpler tree structure with fewer nodes and less depth. The effect of the minsize
hyperparameter on the average computation time and MISE of the “Tree” model is
visualised in Figure 4.2.

Figure 4.1: MISE of the estimator of the conditional CDF FY|X using the ML model “Tree”, for
various combinations of the tuning parameters minsize and mindev.

Using both Figures 4.1 and 4.2, we identify the hyperparameters yielding the
most favourable MISE, approximately 0.0236, to be minsize = 100 and mindev
= 0.002. This combination of hyperparameters not only results in a favourable
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MISE but also exhibits a reasonable average computation time for estimating the
conditional CDF FY|X, as shown in Figure 4.2, averaging at approximately 3.2 sec-
onds. While this computation time is not the fastest, it is still efficient. Considering
the substantial improvement in MISE achieved with these hyperparameters, the
slight trade-off in computation time is justifiable and yields a worthwhile payoff.
Therefore, the reference setting for the hyperparameters of the “Tree” model will
be defined as minsize = 100 and mindev = 0.002.

Figure 4.2: MISE and average computation time of the estimator of the conditional CDF FY|X
using the ML model “Tree”, for various combinations of the tuning parameters minsize and mindev.

It is noteworthy that both figures, Figure 4.1 and Figure 4.2, do not encompass
certain hyperparameter combinations, particularly those involving mindev values of
0.0001 and 0.0002. The absence of these combinations in the visual representations
is due to the occurrence of specific errors, namely the Tree is too big or Maximum
depth reached errors, when such combinations are employed. These errors are
summarized in Table 4.1.

The emergence of both the Maximum depth reached and Tree is too big er-
rors with small mindev values can be attributed to the propensity of small mindev
values to promote finer and more intricate splits within the decision tree. This in-
clination towards finer partitioning has the potential to yield a tree structure with
numerous levels and nodes. The Maximum depth reached error occurs when the
ongoing node partitioning process extends the depth of a decision tree beyond a
predetermined threshold, serving as a protective measure against excessive com-
plexity and overfitting. Conversely, the Tree is too big error arises when the
decision tree becomes excessively large, demanding higher memory and computa-
tional resources. A decision tree characterized by a profusion of nodes and extensive
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Maximum depth reached Tree is too big
minsize \mindev 1e-04 2e-04 5e-04 0.001 1e-04 2e-04 5e-04
1 100 100 100 0.5 0 0 0
25 100 100 51 0 0 0 0
50 50.5 62 44 0 44.5 38 0
75 12.5 18.5 23.5 0 87.5 80.5 2
100 4 10.5 17.5 0 96 89.5 51.5

Table 4.1: Estimated probability (%) of obtaining an error when using Algorithm 5 with the ML
method “Tree” for extreme choices of tuning parameters minsize and mindev.

Example: when using the tuning parameters minsize = 100 and mindev = 1e-04, the probability
of obtaining the error Maximum depth reached is 4%.

depth necessitates substantial resources for efficient operation. Thus, small mindev
values, by fostering finer partitions, can contribute to this scenario by facilitating
the creation of a larger and more intricate tree structure.

4.1.2. Neural network
To determine the optimal hyperparameters for the neural network method, a range
of distinct values are considered for the hyperparameters n_neurons and maxiter
which are detailed in Table 4.2. As discussed in Section 2.3, the parameter n_neurons
signifies the number of neurons within each layer of the neural network. In this ap-
proach, we employ a one-layer neural network. Additionally, maxiter corresponds
to the maximum allowable number of iterations for the training process, determining
when the training algorithm should converge or terminate. It is worth noting that
selecting values exceeding 250 for n_neurons would result in the too many (1001)
weights error due to an excessive number of weights in a single layer.

maxiter 1 2 3 5 7 10
n_neurons 2 5 10 20 50 100

Table 4.2: Chosen hyperparameter combinations for neural network.

The simulation study shows that, in line with intuition, increasing the number
of neurons, n_neurons, leads to a smaller MISE, as illustrated in Figure 4.3. Addi-
tionally, as shown in Figure 4.4, increasing the number of neurons corresponds to an
increase in computation time. The trade-off observed in Figure 4.4 between average
computation time and MISE is intuitive, as one would expect that a longer average
computation time should result in more accurate estimations.

However, as demonstrated in Figures 4.3 and 4.4 increasing the maximum num-
ber of iterations maxiter leads to an increase in average computation time but
deterioration in the performance of the estimator, as indicated by the increase in
MISE. Therefore, having a reduced amount of iterations can actually improve the
performance of the estimator. This pattern is a well-established concept in machine
learning known as “early stopping” [19]. Early stopping involves monitoring the
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Figure 4.3: MISE of the estimator of the conditional CDF FY|X using the ML model “NN”, for
various combinations of the tuning parameters maxiter and n_neurons.

performance of a model during training and halting the training process once a cer-
tain criterion is met. The aim of early stopping is to prevent overfitting, where the
model becomes too specialized to the training data and fails to generalize well to
unseen data. Early stopping allows to terminate training when the performance of
the model starts to degrade on the validation set, rather than continuing until it
overfits the training data. This approach helps strike a balance between model com-
plexity and generalization, resulting in models that perform better on new, unseen
data.

We, therefore, choose the hyperparameters for the “NN” model to be maxiter
= 10 and n_neurons = 20. As depicted in Figure 4.3, the hyperparameters lead-
ing to the most favourable MISE of approximately 0.0315, are maxiter = 10 and
n_neurons = 200. However, it is important to consider the substantial computa-
tional time of 24 seconds required for this outcome. As a more balanced alternative,
maxiter = 10 and n_neurons = 20 produces a MISE of approximately 0.384 and
entails an average computation time of 5.98 seconds. The reference setting for the
hyperparameters of the “NN” model will thus be defined as maxiter = 10 and
n_neurons = 20.
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Figure 4.4: MISE and average computation time of the estimator of the conditional CDF FY|X us-
ing the ML model “NN”, for various combinations of the tuning parameters maxiter and n_neurons.

4.1.3. Random forest
To determine the best settings for the random forest method this analysis uses
the optimal hyperparameter values found in the decision tree experiments, namely
minsize = 100 and mindev = 0.002. In the evaluation, we focus on the two remain-
ing hyperparameters: n_bootstraps, which signifies how many decision trees will be
generated, evaluated at the values 5, 10, 20, 50, and 100, and the pctObsBootstrap
hyperparameter, denoting the percentage of observations (from the dataset) used in
each decision tree. The latter was assessed across a spectrum of percentages: 75%,
80%, 85%, 90%, and 95%.

The simulation study reveals that the MISE is approximately constant: the
MISEs for all combinations of hyperparameters lie very close together. Indeed,
we find that the improvement from the worst-performing combination to the best-
performing combination is only 5%. This can be seen in Figure 4.5, which displays
the MISE of the estimator using the ML model “RF” for various combinations of
hyperparameters.

Figure 4.5 does however show a trend indicating that the performance of the
“RF” model is better for smaller percentages of observations per bootstrap, as the
MISE slightly increases as the percentage of observations per bootstraps increases.
Additionally, Figure 4.6 confirms the intuition that a higher number of bootstraps
increases the mean computation time.
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Figure 4.5: MISE of the estimator of the conditional CDF FY|X using the ML model “RF”, for
various combinations of the hyperparameters n_bootstraps and pctObsBootstrap.

Figure 4.6: MISE and average computation time of the estimator of the conditional CDF FY|X
using the ML model “RF”, for various combinations of the hyperparameters n_bootstraps and
pctObsBootstrap.
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Given the similarity in MISE values across the hyperparameter combinations,
the choice we make is not critical. Therefore, we opt for a combination with a short
average computation time and low observation percentage per bootstrap. Specifi-
cally, we select n_bootstraps = 5 and pctObsBootstrap = 75%. These settings
yield a minimal MISE of 0.022, as shown in Figure 4.5, and boast one of the shortest
computation times, completing in only 9.2 seconds, as depicted in Figure 4.6. The
reference setting for the hyperparameters of the “RF” model will thus be defined as
n_bootstraps = 5 and pctObsBootstrap = 75%

4.1.4. Bagging neural network
To obtain the most effective hyperparameter configurations for the bagging neural
network method, we will draw upon the hyperparameter values derived from the
Neural Network model simulation, namely maxiter = 10 and n_neurons = 200. As
before we choose the same setting for the bagging neural network method as for the
random forest method, n_bootstraps evaluated at the values 5, 10, 20, 50, and 100,
and pctObsBootstrap evaluated at 75%, 80%, 85%, 90%, and 95%. This approach
enhances the comparability and robustness of the simulation results.

We observe similar results as in Section 4.1.3 as there are indeed not many
differences between the MISEs with different combinations of the hyperparameters:
the improvement from the worst-performing combination to the best-performing
combination is only 2%. The MISE of the estimator using the ML model “NNForest”
for various combinations of hyperparameters is illustrated in Figure 4.7.

Figure 4.7: MISE and average computation time of the estimator of the conditional CDF FY|X
using the ML model “NNForest”, for various combinations of the hyperparameters n_bootstraps
and pctObsBootstrap.
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Figure 4.7 further illustrates a minor trend indicating that the performance of the
bagging neural network method improves when a higher percentage of the original
dataset is used for bootstrapping. Additionally, Figure 4.8 validates that computa-
tion time increases as the number of bootstraps rises. However, the computation
time does not appear to vary significantly for an increasing percentage of observa-
tions which might have to do with the size of the original observed data.

Figure 4.8: MISE and average computation time of the estimator of the conditional CDF FY|X
using the ML model “NNForest”, for various combinations of the hyperparameters n_bootstraps
and pctObsBootstrap.

Given the similarity in MISE values across the hyperparameter combinations,
the choice we make is not critical. Therefore, we opt for a combination with a
short average computation time and a high observation percentage per bootstrap.
Specifically, we select n_bootstraps = 10 and pctObsBootstrap = 95%. These
settings yield a minimal MISE of 0.032, as shown in Figure 4.7, and a relative short
average computation time, taking 26.6 seconds to complete, as depicted in Figure
4.8. The reference setting for the hyperparameters of the “NNForest” model will
thus be defined as n_bootstraps = 10 and pctObsBootstrap = 95%

4.2. Effect of the dependence between the pre-
dictor variables X1 and X2

In this section, we explore the impact of the correlations between the predictor vari-
ables. Understanding this connection is important for several reasons. Firstly, it
unveils how machine learning models react to varying degrees of predictor interde-
pendencies, aiding in model selection for datasets with distinct correlation patterns
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and enhancing overall performance. Additionally, this investigation offers insights
into model adaptability concerning intricate data relationships, such as those found
in financial forecasting. Understanding how models respond to these complex pat-
terns can lead to more precise predictions in such scenarios.

We, therefore, analyse the behaviour of the algorithm for each machine learning
technique under five different dependencies for the predictor variables, X1 and X2.
These dependencies are Cor(X1, X2) = −0.9, −0.7, −0.5, −0.25, 0, 0.25, ..., 0.9

We will furthermore use the updated reference setting using the hyperparameters
found in Section 4.1, only varying the bivariate distribution of X1 and X2 (ii).

The simulation results indicate that using random forests as an estimator pro-
vides the most accurate estimation of the conditional CDF for varying correlations
using the aforementioned reference setting and MISE as an evaluation metric, as il-
lustrated in Figure 4.9. Following closely is the decision tree estimator. In contrast,
the Neural Network estimator, while less accurate, still provides reliable estimates,
with MISE ranging from 0.024 to 0.026, underscoring its good statistical perfor-
mance.

Figure 4.9: MISE of the estimator of the conditional CDF FY|X for each ML model, for various
correlations of predictor variables X1 and X2.

It is worth noting that employing a bagging method for estimation enhances
model performance compared to using the individual base estimator. The bagging
neural network estimator demonstrates a significant improvement in estimation ac-
curacy compared to the standalone Neural Network estimator. The random forest
estimator also shows an improvement compared to decision trees, albeit to a lesser
extent. This enhanced accuracy, however, comes at the expense of increased compu-
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tational time, as depicted in Figure 4.10. Most notably, the bagging neural network
estimator incurs a substantial increase in computation time compared to the stan-
dalone Neural Network estimator.

Figure 4.10: MISE and average computation time of the estimator of the conditional CDF FY|X
for each ML model, for various correlations of predictor variables X1 and X2.

Finally, given that the estimators were trained on a dataset with Cor(X1, X2) =
0, they are expected to exhibit superior performance when applied to other datasets
featuring low correlations among predictor variables. This observation becomes
evident when examining Figure 4.9, where the curve exhibited by each estimator
illustrates that for reduced levels of correlation, the estimation of the conditional
CDF improves.

4.3. Effect of the conditional distribution of the
response variables Y1 and Y2

Conducting a simulation study with different distributions for the response variables
Y = (Y1, Y2) allows for assessing the robustness and generalizability of the estimator
of the conditional CDF. By testing the model under various distributions of Y, we
gain insights into how well it performs across different data scenarios, revealing its
sensitivity to deviations from the initially assumed normal distributed Y variables.
This exploration can help identify potential limitations or biases in your model,
provide a better understanding of its reliability in practical applications with diverse
data types, and guide adjustments or enhancements to ensure more accurate and
robust CDF estimations in real-world scenarios. It showcases how well we can
estimate a dataset if it resembles one of these distributions.
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We therefore keep the updated reference setting using the hyperparameters found
in section 4.1, only varying the conditional distribution of Y1 and Y2 (iii). We
consider the following distributions because of their use in [1]

1. Log-normal distribution

F (y) = Φ
(

ln(y)− µ

σ

)
using µ = X and σ = 1.

2. Exponential distribution

F (y; λ) =
{

1− e−λy y ≥ 0,

0 y < 0.

using λ = X.

3. Poison distribution

F (y; k; λ) = Γ(⌊k + 1⌋, λ)
⌊k⌋! ,

again using λ = X.

4. Uniform distribution

F (y) =


0 for y < a,

y−a
b−a for a ≤ y ≤ b,

1 for y > b.

where a := min(X1, X2) and b := max(X1, X2). Note that Y1 and Y2 are
generated independently from this distribution, conditionally on X.

5. Gamma distribution

F (y; k; θ) = 1
Γ(k)γ

(
k,

y

θ

)
Here we will again sample two X values for each Y value

From the simulations, it is apparent that all estimators perform best when the
Y variables are log-normally distributed, as illustrated in Figure 4.11. This figure
furthermore shows that estimating the uniform distribution and gamma distribution
is harder for the constructed model. This might be due to the fact that each random
variable in Y is now dependent on two random variables X instead of one. Optimis-
ing the hyperparameters of the estimators specifically for this type of dataset might
increase estimation accuracy.

An additional observation drawn from Figure 4.11 is that, with the exception of
the log-normal case, both the “RF” and “Tree” models exhibit superior performance
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Figure 4.11: Effect of distribution on estimation of conditional CDF per machine learning estima-
tor.

compared to the “NN” and “NNForest” models. To gain a comprehensive under-
standing of the Estimator that performs the best across all scenarios, we present
Table 4.3, where we calculate the mean MISE and average computation time for
each estimator by aggregating the values across all distributions.

Estimator Average MISE Average Computation Time (s)
“Tree” 0.0279 4.46
“NN” 0.0377 5.83
“RF” 0.0275 12.08

“NNForest” 0.0339 34.60

Table 4.3: The average MISE and average computation time compared over all distributions.

In Table 4.3, it is evident that both the “Tree” model and the “RF” model yield
the most accurate estimations of the conditional CDF FY|X as they exhibit nearly
identical MISE. However, it is worth noting that the “RF” model requires nearly
three times the average computation time compared to the “Tree” model, suggesting
that, for various distributions of the response variables Y, the “Tree” model is the
more optimal choice.

4.4. Influence of the sample size n
Estimating the model based on varying sample sizes is important for several reasons.
Firstly, it allows us to evaluate the robustness of the performance of the model, de-
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termining whether it consistently performs well across different sample sizes or if its
performance varies significantly. Secondly, assessing the performance of the model
with different sample sizes helps us understand its generalizability to unseen data,
indicating its ability to make accurate predictions on new and unseen observations.

Furthermore, examining the stability of the estimated model across different
sample sizes provides insights into the reliability of the estimated parameters and
relationships within the model. Lastly, understanding the influence of sample size on
model performance helps in resource allocation by determining a suitable sample size
that balances accurate estimation with the runtime of the algorithm, thus ensuring
efficient use of resources. To thus explore the influence of the sample size n on the
model estimation, a range of nine distinct values is examined: 100, 200, 500, ...,
10000, 20000, 50000.

Additionally, we will use the updated reference setting using the hyperparameters
found in section 4.1 only varying the sample size n (iv).

The simulation results indicate that, for most sample sizes random forests emerge
as the estimator that provides the most accurate estimation of the conditional CDF,
using the MISE as an evaluation metric. This observation is depicted in Figure 4.12.

Figure 4.12: MISE of the estimator of the conditional CDF FY|X for each ML model, for various
sample sizes n. Note that for the “Tree” and the “RF” estimators, MISE were computed using
only replications that did not produce an error (see Table 4.4).

However, for sample sizes of 2000 and below, random forest appears to be a
computationally unreliable estimator under the current reference setting. This in-
effectiveness stems from the fact that smaller sample sizes result in the previously
mentioned Tree is too big error. The same limitation applies when a decision
tree is used as an estimator. Due to this error, estimations could not be generated
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for certain sample sizes, and for others, the error occurred frequently, resulting in
a lack of data points, as can be clearly seen in Figure 4.12. For a more detailed
breakdown of this error concerning each estimator and sample size, we refer to Table
4.4.

Error: Tree is too big
Sample Size: 200 500 1000 2000

“RF” 97.5 100 100 87
“Tree” 79 100 100 0

Table 4.4: Estimated probability (%) of obtaining the error Tree is too big for different choices
of sample sizes.

It is worth noting that the hyperparameters used for these estimators were op-
timized based on a dataset with a sample size of 5000. The performance curve in
Figure 4.12 further highlights the superior performance for datasets approaching
the size of 5000. Therefore, a potential solution to address the observed error is
to select different hyperparameters tailored to smaller datasets. Implementing such
adjustments would require conducting additional simulations.

Furthermore, it can be argued that the Neural Network estimator, although less
accurate, consistently provides computationally reliable estimates, with MISE rang-
ing from 0.035 to 0.040, highlighting its good statistical performance. Importantly,
both the Neural Network and the superior-performing bagging neural network do
not encounter errors when applied to smaller datasets.

Similar to the correlation study, the use of a bagging method for estimation
proves to enhance model performance over employing the individual base estimators.
However, as depicted in Figure 4.13, this improved performance comes at the cost
of increased computational time. Particularly when employing a bagging neural
network as the estimator for large datasets the mean computation time extends
beyond one minute; for a sample size of 50, 000 its average computation time even
exceeds three minutes. To enhance the clarity of Figure 4.13, we limited the range
of the computation time to [0, 50 seconds] so these points do not appear.
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Figure 4.13: MISE and average computation time of the estimator of the conditional CDF FY|X
for each ML model, for various sample sizes n.





5
Conclusion

In this thesis, we have provided an alternative approach to estimating conditional
multivariate cumulative distribution functions using machine learning and rear-
rangement techniques. This method, outlined in the “meta-algorithm”, Algorithm
5, allows for flexible and adaptive estimation of conditional CDFs without imposing
specific parametric assumptions.

By introducing a new binary random variable, denoted as Wy = 1{Y ≤ y},
the estimation problem of estimating FY|X(y|x) has been transformed into the task
of estimating P

(
Wy = 1|X = x

)
. This transformation allowed the classifier to

capture the relation between the input feature vector x and the random variable Wy,
constructing an estimator of the conditional CDF. To capture the increasing nature
of the true conditional CDF we used rearrangement on the estimator function.

We have developed a dedicated R package estimCondCDF that encapsulates the
estimation method, making it accessible and user-friendly for statisticians and data
analysts. This package serves as a practical resource, enabling the usage of the
estimation method for different data analysis processes.

To assess the performance of the approach we conducted a simulation study.
We began by optimising the hyperparameters for the involved machine learning
methods used as classifiers. In these simulations, the estimation method exhibited
good statistical performance for a wide range of tuning parameters.

Subsequently, we evaluated how correlations between the predictor variables X1
and X2 affect estimation. We found that the estimation method effectively esti-
mates the conditional CDF across a range of predictor interdependencies, with the
"RF" and "Tree" models producing the most accurate estimations. These results
underscore the efficacy of the method in handling datasets with diverse correlation
patterns in predictor variables.

We furthermore explored how different distributions of the response variables
Y1 and Y2 influenced the estimation accuracy of the method. The results indicate
that even when response variables do not follow a normal distribution, the models
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generally performed well, giving confidence in their applicability to real-world situa-
tions with diverse data. However, in situations where two predictor variables jointly
influenced one response variable, estimation accuracy decreased.

Lastly, sample size plays a big role in practical consideration. We found that
smaller sample sizes could challenge the “Tree” and “RF” models due to compu-
tational constraints, emphasizing the need for customized parameters for different
data sizes. In contrast, the “NN” and “NNForest” models showed resilience, pro-
viding dependable estimates across various sample sizes indicating the effectiveness
of the estimation method when choosing the right machine learning technique as a
classifier with the right hyperparameters.

The estimation of conditional multivariate CDFs holds significant relevance across
a diverse range of data analyses. However, the computational intensity of nonpara-
metric methods and model selection are both challenges underscoring the complexity
of estimating.

Nevertheless, the methodology we have introduced not only addresses these chal-
lenges effectively but also invites the integration of new machine learning techniques
as classifiers. This flexible framework offers the potential for enhancing estimation
accuracy further by incorporating these new machine learning methods as well as
fine-tuning hyperparameters to suit specific dataset characteristics. This adapt-
ability enables the generation of even more precise estimations customized to the
distinct requirements of each analysis. Lastly, the demonstrated adaptability and
performance of the introduced estimation method suggest promising opportunities
for extending its applicability to higher dimensional estimation, an exciting avenue
for future research.
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