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Abstract
To avoid collisions, Micro Air Vehicles (MAVs) flying in teams require estimates of their relative locations, preferably with
minimal mass and processing burden. We present a relative localization method where MAVs need only to communicate
with each other using their wireless transceiver. The MAVs exchange on-board states (velocity, height, orientation) while
the signal strength indicates range. Fusing these quantities provides a relative location estimate. We used this for collision
avoidance in tight areas, testing with up to three AR.Drones in a 4m × 4m area and with two miniature drones (≈ 50 g) in
a 2 m × 2 m area. The MAVs could localize each other and fly several minutes without collisions. In our implementation,
MAVs communicated using Bluetooth antennas. The results were robust to the high noise and disturbances in signal strength.
They could improve further by using transceivers with more accurate signal strength readings.

Keywords Relative localization · Collision avoidance · Micro Air Vehicles · Autonomous flight · Indoor exploration

1 Introduction

The agility and small scale of Micro Air Vehicles (MAVs)
make them ideal for indoor exploration (Kumar and Michael
2012). We imagine several autonomous MAVs navigating
through a building for mapping or inspection. The agents
could spread out and thus complete the exploration task in
a short time. This approach also brings robustness, scalabil-
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ity, and flexibility to the system, being no longer tied to the
success and abilities of one unit (Brambilla et al. 2013). Dur-
ing this scenario, however, it may happen that a few MAVs
end up flying together in a small area (e.g., an office, meet-
ing room, or hallway), leading to a high risk of inter-MAV
collisions (Szabo 2015). This is a failure condition to be
avoided to ensure mission success without the unwanted loss
of units.We have developed and tested amethod to tackle this
issue which uses only decentralized wireless communication
between MAVs. Two or more MAVs estimate their relative
location via the wireless connection and adjust their path
to avoid collisions. In this paper, we describe the details of
the algorithm and present real-world results on autonomous
MAVs.

The primary contribution in this article is an on-board
relative localization method for MAVs based on inter-MAV
wireless communication. The communication channel is
used as amethod for the exchange of own statemeasurements
and as a measure of relative range (based on signal strength),
providing eachMAVwith sufficient data to estimate the rela-
tive location of another. Our implementation uses Bluetooth,
which is readily available at a low mass, power, and cost
penalty even on smaller MAVs (McGuire et al. 2016). The
advantages of our solution are: (a) it provides direct MAV-
to-MAV relative location estimates at all relative bearings;
(b) it does not require any external system such as beacons;
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(c) it does not require knowledge of global positions; (d)
it does not depend on the lighting and sound conditions of
the environment; (e) it has low mass, battery, and processing
requirements; (f) it does not require dedicated sensors. Our
solution also applies to other indoor localization applications,
because it shows that only one access point is sufficient to
obtain a localization estimate, as opposed to multiple ones
as in current state of the art (Malyavej et al. 2013; Choudhry
et al. 2017). The system can also be implemented on teams
with more than two agents. This can be done by setting up
multiple MAV-to-MAV parallel instances of the estimator.

The secondary contribution in this article is a reactive col-
lision avoidance strategy that is designed to deal with the
localization estimator. The strategy is based on the concept of
collision cones (Fiorini and Shiller 1998), tailored to suit the
relative localization method and its expected performance.

The paper is organized as follows. First, we review related
literature in Sect. 2. Then, Sect. 3 introduces the rela-
tive localization method and Sect. 4 describes our collision
avoidance strategy. To assess the system,we developed a rep-
resentative room exploration task, explained in Sect. 5. We
startedwith simulation trials to test the systemunder different
conditions (Sect. 6). Then, the technology was implemented
on AR.Drones. Initially, the AR.Drones were aided by using
ego-motion data froman external tracking system, as detailed
in Sect. 7. This was done to isolate the performance of
the relative localization from other sensors. Next, this was
removed so that the AR.Drones were relying on on-board
sensors, for which the set-up and results can be found in
Sect. 8. Finally, the systemwas implemented onminiaturized
MAVs (Sect. 9). All results are further discussed in Sect. 10.
Concluding statements and future challenges are laid out in
Sect. 11.

2 Related work and research context

MAVs need to be as efficient as possible so as to decrease
mass and maximize flight time. This means that they are
often limited in sensing, computational power, and pay-
load capabilities (Remes et al. 2014; Mulgaonkar et al.
2015). Inter-MAV collision avoidance is important for mis-
sion success but it must not exhaust the already limited
resources, which should remain free to pursue the real mis-
sion. Arguably, the simplest method to avoid collisions is to
have theMAVsfly at different heights.However, experiments
by Powers et al. (2013) have shown that MAV multi-rotors
flying over each other experience and/or cause considerable
aerodynamic disturbances. Furthermore, height sensor (e.g.,
sonar) readings could be disturbed. Based on this limitation,
we conclude that lateral evasive maneuvers are needed, and
these require relative location estimates between MAVs.

One method to achieve relative localization is to provide
a shared reference frame in which each MAV knows its own
absolute location. The MAVs can share absolute position
data and infer a relative estimate. In outdoor tasks, Global
Navigation Satellite System (GNSS) receivers can be used
to obtain global position data to share. This has enabled
formation flying (Min et al. 2016) and large-scale flock-
ing (Vásárhelyi et al. 2014). In indoor tasks, where GNSS is
not available, absolute position data can be measured using
external sensors/beacons in a known configuration, such as:
motion tracking cameras (Michael et al. 2010), fixed wire-
less transmitters/receivers (Guo et al. 2016; Ledergerber et al.
2015), or visual markers (Faigl et al. 2013). However, these
solutions are unsuitable for exploration tasks of unknown
and unstructured environments. Simultaneous Localization
and Mapping (SLAM) methods circumvent this by gener-
ating a map on-board during flight, which then provides
position information that can be shared (Scaramuzza et al.
2014). However, if on-boardmap generation is not part of the
mission then this is a resource intensive practice to be dis-
couraged (Ho et al. 2015). Therefore, themore direct strategy
is for the MAVs to directly localize each other.

Vision has received significant attention as a method for
direct localization, where front-facing cameras are used to
detect and localize other MAVs. Current implementations
generally adopt mounted visual aids in the form of: colored
balls (Roelofsen et al. 2015), tags (Conroy et al. 2014), or
markers (Nägeli et al. 2014). However, experiments during
exploratory phases of this study have shown that the use
of vision without such aids, for very small drones, and at
low resolution [128 px × 96 px, as seen on a Lisa-S Lady-
bird (McGuire et al. 2016)], is prone to either false positives
or false negatives. Other disadvantages of using vision are:
dependence on lighting conditions, the need for a front-facing
camera, limited field-of-view, and high processing require-
ments (Alvarez et al. 2016).

Roberts et al. (2012) proposed using Infra-Red (IR)
sensors. If arranged in an array, this enables an accurate mea-
sure of relative bearing between two MAVs. Unfortunately,
because IR is uni-directional, several sensors are needed to
each face in a specific direction. This is not easily portable
to smaller MAVs.

Alternatively, recent work by Basiri (2015) uses on-board
sound-based localization. A microphone array and a chirp
generator are mounted on-board of the MAVs, and the dif-
ference between arrival times of the chirp at the different
microphones is used to estimate the relative bearing (Basiri
et al. 2014, 2016). This method requires dedicated hardware,
which for smaller MAVs can account for an increase in mass
of even 10–20% (Basiri et al. 2016; Remes et al. 2014).

To truly minimize the footprint, we focused on a compo-
nent that is mounted by necessity on all MAVs: a wireless
transceiver. This is typically used for communication with
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a ground station (Lehnert and Corke 2013; McGuire et al.
2016), but it may also be used for communication between
the MAVs. The signal strength of a wireless communication
decreases with distance from the antenna, and can be used as
a measure for range between MAVs. Signal strength ranging
has been used to obtain relative localization between mod-
ules usingMulti-Dimensional Scaling (MDS) (Li et al. 2007).
Unfortunately, these methods need more than two agents to
function,whereaswe are equally interested in avoiding a sim-
ple collision between two MAVs. In previous work by our
group at the Micro Air Vehicle Laboratory, we first exploited
signal strength on-boardof realMAVs for collision avoidance
(Szabo 2015). However, range-only measurements, coupled
with significant noise and disturbances, were found insuf-
ficient to guarantee safe flight of two or more MAVs in a
confined area despite using a complex evolved avoidance
behavior. Lijina and Nippun Kumaar (2016) recently also
explored wireless-range avoidance onWeBot robots (in sim-
ulation only), but rangemeasurementswere aided by an array
of proximity sensors.

Transceivers can be exploited for both ranging and data
exchange. Based on this, we developed a fusion filter to esti-
mate relative location using range and the communicated
states between the MAVs. To the best of our knowledge, the
only instance of on-board relative localization using a wire-
less transceiver was recently brought forward by Guo et al.
(2017) with Ultra Wide-Band (UWB) technology. However,
they make use of one of the MAVs as a beacon and their
method relies on highly accurate distance measurements.
Instead, we propose a method that complements possibly
noisy distance measurements by communicating on-board
states between moving MAVs. We then show how it can
be used for indoor collision avoidance. We extensively vali-
date this on real platforms as light as 50g that communicate
between each other using Bluetooth, which is highly prone
to noise and disturbances.

3 Communication-based relative localization

Relative localization is achieved via wireless communication
between the MAVs. The MAVs communicate the following
states to each other: planar velocity in the body frame, ori-
entation with respect to North, and height from the ground.
When communicating, the MAVs can also measure the sig-
nal strength; this acts as a measure of distance. For Bluetooth
Low Energy (BLE), the technology chosen in our imple-
mentation, signal strength measurements are referred to as
Received Signal Strength Indication (RSSI). Each MAV
fuses the received states, the RSSI, and its own on-board
states to estimate the relative position of anotherMAV.When
multiple MAVs are present, each MAV can run multiple par-
allel instances of the fusion filter so as to keep track of all

Fig. 1 Top view of the relative localization framework (xB and yB are
the planar axis of FB , while zB is positive down)

others. This section details the design and implementation of
the relative localization scheme and presents some prelimi-
nary localization results that were obtained in early stages of
the research.

3.1 Framework definition for relative localization

Consider two MAVsRi andR j with body-fixed framesFBi
andFBj , respectively.We define the relative pose ofR j with
respect toRi as the set Pji = {ρ j i , β j i , z ji , ψ j i }, where ρ j i

represents the range between the origins of FBi and FBj ,
β j i is the horizontal planar bearing of the origin of FBj with
respect toFBi , z ji is the height ofR j with respect toRi and
ψ j i is the yaw of F j with respect to Fi . See Fig. 1 for an
illustration.Note thatρ j i andβ j i are related to theirCartesian
counterparts via:

ρ j i =
√
x2j i + y2j i + z2j i , (1)

β j i = atan2(y ji , x ji ). (2)

x ji , y ji , and z ji are the Cartesian coordinates of the origin
of R j in FBi .

3.2 Signal strength as a rangemeasurement

Let S ji be the RSSI measurement in dB. It is correlated with
ρ j i by a function L(ρ j i ). We define this function based on
the Log-Distance (LD) model (Seybold 2005):

S ji = L(ρ j i ) = Pn − 10 ∗ γl ∗ log10(ρ j i ). (3)

Pn is the RSSI at a nominal distance of 1 m. γl is the space-
loss parameter, which dictates how much the signal strength
decays with distance (for free-space: γl = 2.0).1 The LD
model is assumed subject to Gaussian noise (Svečko et al.
2015).

1 Experimentally, it has been found that office buildings can feature
2 ≤ γl ≤ 6 (Kushki et al. 2008). Performing a sensitivity analysis of the
LD model shows that an accurate identification of γl has a low impact
on the distance estimate at small distances.
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(a) (b) (c)

Fig. 2 Results of RSSI measurements during an experiment whereby a
Ladybird MAVwas carried in circles around a fixed Bluetooth antenna.
a RSSI measurements with respect to distance and fitted LD model,

b error about LD model with respect to relative bearing fitted with a
second order Fourier series, c noise distribution about the LD model
without and with lobe effects

In preliminary tests, we analyzed the LD model with a
Ladybird MAV (Remes et al. 2014) connected via Bluetooth
to a fixed W1049B omni-directional antenna (Pulse 2008).
The MAV was carried in concentric circles at different dis-
tances around the antenna whilst RSSI was being recorded
with the antenna. The orientation of the MAVwith respect to
North was kept constant, thus varying the relative bearing to
the antenna. Ground-Truth (GT) data was recorded with an
Optitrack Motion Capture System (MCS). The results from
a representative data sample are shown in Fig. 2, to which
the LDmodel was fitted using a non-linear least squares esti-
mator as in Fig. 2a. Among a set of similar experiments,
the Standard Deviation (SD) of the error about the fitted LD
model was found to be between 3 and 6 dB. This is in line
with literature (Szabo 2015; Nguyen and Luo 2013).

We also observed a change of the error with the rela-
tive bearing. This is shown in Fig. 2b, and accounts for the
skew in error distributions, see Fig. 2c. The disturbances that
can this are uneven directional propagation lobes, interfer-
ence by the reflection of the signal in the environment, the
presence of other signals in the 2.4 GHz spectrum, or other
objects that obstruct the signal (Seybold 2005; Svečko et al.
2015; Szabo 2015; Kushki et al. 2008; Caron et al. 2008).
Such disturbances could be dependent on the environment
or on the relative bearing between antennas, both of which
are unknown during an exploration task. For this reason, the
LD model was not expanded to include this dependency on
bearing.

3.3 Localization via fusion of range and on-board
states

Achieving a relative pose estimate requires measuring or
inferring all four variables in Pji . We can directly measure
or observe the following three:

– ρ j i (range), available via RSSI as in Sect. 3.2.
– z ji (relative height). Each MAV is expected to measure

its height above the ground. This could be done with

a pressure sensor (Beard 2007; Sabatini and Genovese
2013; Shilov 2014), sonar, or a downward-facing camera
(Kendoul et al. 2009a, b). Two MAVs Ri and R j can
share their altitude data, such that: z ji = z j − zi .

– ψ j i (relative orientation). It is assumed that all MAVs
acknowledge a commonplanar axis [e.g.,magneticNorth
(No et al. 2015; Afzal et al. 2011)]. Through communi-
cation, the MAVs exchange their orientation data.

Relative bearing is the only unknown variable. It becomes
observable when fusing the three measurements above with
velocity measurements (Martinelli and Siegwart 2005; Mar-
tinelli et al. 2005).2 We chose to perform sensor fusion with
a discrete-time Extended Kalman Filter (EKF) due to its effi-
cient processing and memory requirements (De Silva et al.
2014). The filter uses Cartesian coordinates so that it can
directly take the difference between velocities in each axis.
The state transition model from time-step k to k + 1 was
defined as in Eq. (4).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p j i

ṗi
ṗ j Ri
ψ j

ψi

z j
zi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p j i + (
ṗ j Ri − ṗi

)
Δt

ṗi
ṗ j Ri
ψ j

ψi

z j
zi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

+ vk (4)

p j i = [ x ji y ji ] T holds Cartesian equivalents of relative
bearing and range. ṗi = [ ẋi ẏi ]T is a vector of the velocity
ofRi inFBi (see Fig. 1). ṗ j Ri is ṗ j rotated fromFBj toFBi .
Δt is a discrete time-step between updates, equal to the time
between k and k + 1. vk represents the noise in the process
at time-step k. This model assumes that all current velocities

2 An intuitive explanation of the observability is as follows: if robot
Ri is moving towards North with 1 m/s and its distance to R j (which,
in this example, remains stationary) increases by 1 m each second, then
R j could infer that Ri is to its North. Similarly, Ri would know that
R j is to its South. This logic can be extended for all directions.
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and orientations remain constant between time-steps. The
observation model for the EKF is given by Eq. (5).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S ji

ṗi
ṗ j
ψ j

ψi

z j
zi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(ρ j i )

ṗi
R2D(ψ ji) ∗ ṗ j Ri

ψ j

ψi

z j
zi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

+ wk (5)

R2D(·) is a 2D rotation matrix that uses the relative heading
ψ j i to rotate the state estimate ṗ j Ri from FBi to FBj . wk

represents the noise in the measurements at time-step k. Note
that ρ j i is expanded as per Eq. (1) so as to observe x ji and
y ji . The EKF cannot be initialized with a correct relative
location estimate, since this is not known; it must converge
towards the correct value during flight. Appropriate tuning of
the EKF noise covariance matrices is key to achieving this.
In the EKF, the measurement noise matrix R is a diagonal
matrix with the form shown in Eq. (6).

R =

⎡
⎢⎢⎣

σ 2
m

σ 2
v ∗ I4×4

σ 2
ψ ∗ I2×2

σ 2
z ∗ I2×2

⎤
⎥⎥⎦ (6)

σm is the assumed SD of S ji . σv is the assumed SD of ṗi and
ṗ j . σψ is the assumed SD of the magnetic orientation mea-
surements. σz is the assumed SD of the heightmeasurements.
In×n is an×n identitymatrix. Based on our preliminaryRSSI
noise analysis, σm is tuned to 5 dB. Throughout this paper,
all other SDs were tuned to 0.2, unless otherwise stated. This
was based on the measurement noise, either simulated or
expected from the sensors.

The process noise matrix Q is the diagonal matrix pre-
sented in Eq. (7).

Q =

⎡
⎢⎢⎢⎣

σ 2
Qp

∗ I2×2

σ 2
Qv

∗ I4×4

σ 2
Qψ

∗ I2×2

σ 2
Qz

∗ I2×2

⎤
⎥⎥⎥⎦

(7)

σQp is the SD of the process noise on the relative position
update. σQv , σQψ , and σQz are SDs for the expected updates
in velocity, orientation, and height, respectively. By tuningQ
we can define the validity of the process equations (Malyavej
et al. 2013). In this paper, unless otherwise stated:σQp = 0.1,
while σQv = σQψ = σQz = 0.5. We tuned σQp to 0.1 so as
to have a relatively low process noise on the relative position
update. This forces the filter to rely less on the (noisy) range
measurements and more on other data, which encourages

convergence and helps discard the high noise and disturbance
in the RSSI measurements. σQv , σQψ , and σQz were then
tuned higher (to 0.5) to enhance the difference, while stay-
ing within the order of magnitude of the expected standard
deviations of the measurements.

This filter is limited by flip and rotation ambiguity as
defined by Cornejo and Nagpal (2015). When the motion of
R j perfectly matches themotion ofRi , range-onlymeasure-
ments remain constant and are not informative for bearing
estimation. Unless the MAVs are flying in formation, the
probability of this event will be low (Cornejo and Nagpal
2015). The same ambiguity takes place when both Ri and
R j are static. Motion by at least one MAV is required, as
the filter operates by taking the difference in velocity. The
performance of the filter thus increases as the average dif-
ference in velocity between the MAVs increases (and/or the
accompanying measurement noise decreases).

3.4 Implementation details

We used BLE to enable communication between the MAVs.
The data is sent and received by means of advertising
messages scheduled using a Self-Organized Time Divi-
sion Multiple Access (STDMA) algorithm, as described by
Gaugel et al. (2013). This enables ad-hoc communication and
circumvents the Master-Slave paradigm otherwise enforced
by the BLE standard (Townsend et al. 2014), as each antenna
alternates between advertising and listening. The messag-
ing rate is tuned to 5 Hz, which is a compromise between
the amount of STDMA communication slots (8 slots) and
an acceptable communication rate. 5 Hz keeps the conges-
tion low. Nevertheless, the messaging rate can be affected
by differences in clock rates and possible packet losses. Fig-
ure 3 shows the interval between received messages rate over
approximately 3min of recording from the point of view of a
single antenna in a group of two or three participating anten-
nas.Approximately 80%ofmessages are received and parsed
within 0.25 s and 95% within 0.45 s. A slight increase in
packet loss was observed when increasing the number of
antennas to three, with 128 missed messages as opposed to

(a) (b)

Fig. 3 Messaging rate over a test flight. a Message intervals, b distri-
bution
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120 when two antennas were used. This corresponds to an
increase in packet loss from 13.4 to 14.2%.

3.5 Preliminary relative localization tests

We performed preliminary localization tests with a Lady-
bird MAV flying around a fixed BluetoothW1049B antenna.
The objective was to determine how well the antenna could
localize the MAV. An Optitrack MCS was used to guide the
MAV in circular flights and record its GT velocity, orienta-
tion, and height. The antennameasured the RSSI to theMAV.
The recorded GT data was altered with Gaussian noise with
σv = 0.2 m/s, σz = 0.2 m, and σψ = 0.2 rad, and then used
as measurements for the EKF. In the LD model of the EKF:
Pn = − 63 dB and γl = 2.0. The EKF was initialized with a
null guess position of x ji = y ji = 1 m. In these preliminary
tests, the localization filter was applied off-board.

Estimates for x ji and y ji are shown in Fig. 4a, b, the EKF
converges towards GT in the first few seconds, after which
it tracks successfully. The small oscillations in the GT are
induced by the fact that theMAV did not travel continuously,
but via way-point navigation. Figure 4c shows the estimated
range, where we can observe a significant improvement in
error with respect to an inverted LD model. Note that the
range error increases with distance, this is due to the log-
arithmic nature of RSSI propagation. Figure 4d shows the
bearing error, which is small throughout most of the flight.
A noticeable exception is a spike about the 55 s mark. This

is because, at very small distances, a small error in x ji or
y ji can translate into a large error in β j i . It can reach ±π if
x ji or y ji estimates are both of the wrong sign, as it briefly
happens at around 55 s.

4 Collision avoidance behavior

The avoidance algorithm is based on theCollisionCone (CC)
framework (Fiorini and Shiller 1998; Wilkie et al. 2009). A
collision cone is a set of all velocities of an agent that are
expected to lead to a collision with an obstacle at a given
point in time. Its name derives from the fact that it is geo-
metrically cone-shaped. In our work, we scale the collision
cones according to the expected relative localization errors
and implement a clockwise search to find escape directions
not covered by cones. Using this framework bears thesemain
advantages: (a) the MAVs are not encouraged to vary their
speed (slow down), as motion is beneficial to the perfor-
mance of the relative localization filter (see Sect. 3.3), and
also select a predictable escape direction. This is different to
Velocity Obstacle (VO) approaches (Wilkie et al. 2009); (b)
there can be an explicit relationship between the size of the
cone and the expected localization error; (c) distance, which
has a low estimation accuracy, is not used to make decisions.
This differentiates it from distance-based methods such as
repulsion forces (Virágh et al. 2016). This section details our
implementation of collision cones and how they are used to
determine a collision-free trajectory.

(a) (b)

(c) (d)

Fig. 4 Preliminary localization trial based on circular flights of a Lady-
bird MAV around a fixed antenna (with artificial noise added to the
velocity, height, and orientation measurements). a Ground-truth ver-
sus estimated location of the MAV along the xB axis of the antenna.

b Ground-truth versus estimated location of the MAV along the yB
axis of the antenna. c Comparison of EKF estimated range com-
pared to ground-truth and estimate from inverting the LD model.
d Error in β j i over time
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Fig. 5 Depiction of CC ji that Ri holds with respect to the estimated
location of R j

4.1 Collision cones and avoidance strategy

Take two MAVs Ri and R j . The collision cone CC ji ,
depicted in Fig. 5, would include all velocities of Ri which
could lead to a collision with R j . It is constructed in three
steps.

1. A cone CC ji is defined as in Eq. (8). α is an arbitrary
angle. x and y are points on xBi and yBi , respectively.
The cone is characterized by an expansion angle αCC ji ,
subject to 0 < αCC ji < π .

CC ji

=
{
(x, y) ∈ R

2; α ∈ R; |α|≤ |αCC ji |
2

: tan(α)x = y

}

(8)

2. CC ji is rotated so as to be centered around the estimated
bearing to the obstacleR j as in Eq. (9), where: β̄ j i is the
estimated β j i from the EKF, ← is an update operator,
and R(·) is a rotation operator for the set.

CC ji ← (
R(β̄ j i ) ∗ CC ji

)
(9)

3. The cone is translated by the estimated velocity of R j

expressed in FBi , as per Eq. (10). This accounts for the
fact that the obstacle ismoving. ṗ j Ri is the estimated ṗ j Ri
from the EKF. The operator ⊕ denotes the translation of
a set by a vector.

CC ji ← CC ji ⊕ ṗ j Ri (10)

In a team of m MAVs, each member Ri holds m − 1
collision cones that it can superimpose into a single set CCi .

CCi =
m−1⋃
j=1

CC ji (11)

If, during flight, ṗi ∈ CCi , then a clockwise search about
the zBi axis (starting with the current desired velocity) is
used to determine the desired escape velocity. If no solu-
tion is found, then the search is repeated for a higher escape
speed.3

A clockwise search encourages a preference for right-
sided maneuvers with respect to the current flight direction.
This differentiates it from the VO avoidance method, which
selects a flight direction that minimizes the required change
in velocity. Although effective, when an agent opts for the
minimum change in velocity without considering that the
other might also change its motion, this may lead to an
issue known as “reciprocal dances”. These happen when
two entities heading towards each other repeatedly select the
same escape direction. The situation is analogous to when
two people try to avoid each other in a corridor and both
select the same direction, leading to a left–right dance by
each person. In other literature, solutions to VO’s recipro-
cal dances rely on the reciprocity assumption, meaning that
each agent assumes that the other agent will also take a pre-
defined evasive action (Snape et al. 2009, 2011; Van Den
Berg et al. 2011). In our case, however, due to the poten-
tial for large relative localization errors, MAVs cannot safely
assume that the others will participate in a suitable and recip-
rocal escape maneuver. Enforcing right sided maneuvers
is a solution to limit oscillations without assuming reci-
procity. It should be noted, however, that oscillations may
still occur when the MAVs have to coordinate between mul-
tiple obstacles, such as a wall and another MAV, or multiple
MAVs.

4.2 Tuning the expansion angle of the collision cone

The expansion angle of a collision cone is dependent on the
distance between the MAVs (the MAV radii becomes more
significant as distance decreases) and the relative estimation
errors (Conroy et al. 2014). Based on this knowledge, we
formulated Eq. (12) to calculate the expansion angle,

αCC ji = 2 ∗ tan−1
(
2r + ρ̄ j i + εα

κα ∗ ρ̄ j i

)
, (12)

where r is the radius of aMAV(modeled as a circle); ρ̄ j i is the
estimated range betweenRi andR j ; εα is an additional mar-
gin, the properties of which are discussed in Sect. 4.3; κα is a

3 Note that, equivalently, the search could be anticlockwise, as long as
this is equal for all agents.
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Fig. 6 Effect of κα on αCCasymptote (r = 0.1 m, ε = 0.5)

coefficient describing the quality of the estimate. The expan-
sion angle has a lower bound αCCasymptote which is dependent
on κα:

αCCasymptote = lim
ρ̄ j i→∞ αCC ji = 2 ∗ tan−1

(
1

κα

)
. (13)

The impact ofκα maybe appreciated inFig. 6. In thiswork,
unless otherwise stated, we use κα = 1, so αCCasymptote =
π
2 . This generally encompasses the expected bearing errors
during flight based on our preliminary results.

4.3 Preserving behavior in rooms of different size

The expansion angle of the collision cone widens towards π

as the distance between two MAVs decreases. This implies
that in smaller rooms the collision cones would always
feature wide expansion angles, leading to most of the envi-
ronment becoming out of bounds. This restriction in freedom
of movement creates oscillations in MAV trajectories. To
limit the issue, we propose using εα as a tuning parameter.
The effect of varying εα is shown in Fig. 7; as εα decreases,
the decay of the expansion angle with distance increases. A
faster decay is suitable for smaller rooms so that motion is
less restricted.

We devised a method to tune εα intuitively. Rearranging
Eq. (12), εα is expressed by:

εα = κα ∗ ρeq ∗ tan
(αCCeq

2

)
− 2r − ρeq . (14)

This translates tuning εα to tuning a pair {αCCeq , ρeq},
where αCCeq is the desired angle of expansion at a distance
ρeq . Note that αCCeq > αCCasymptote , and εα ≥ −(ri + r j ) if
κα ≥ 1. In all our tests, ρeq is set to half of the side length of
the room. αCCeq is kept at 1.7 rad.

Fig. 7 Effect of εα on αCC (r = 0.1 m, κα = 1)

5 Testingmethodology

An exploration task was developed where multipleMAVs fly
in a room at the same altitude and attempt to pass through
the center. This is designed to provoke collisions. The sample
task was used to test the performance of the relative localiza-
tion and collision avoidance, separately and combined. This
section describes the task in more detail and outlines how it
will be used for assessment.

5.1 Description of arbitrary task for performance
testing

Consider a team of m homogeneous MAVs. Each MAV Ri

can control its velocity. Let ṗicmd,k
be the desired velocity for

Ri expressed in its body-frame FBi at a given time-step k.
Let dwalli be the distance between Ri and the arena border
that is closest to it, with dsafe being a safety distance to the
arena’s borders. Note that each robotRi featuresm−1 EKF
instances to keep track of the other members and uses their
outputs to determine its collision cone set CCi , see Eq. (11).
At each time-step k, the EKF outputs are updated and CCi

is re-calculated. ṗicmd,k
is then chosen as follows: ṗicmd,k

=
ṗicmd,k−1

unless conditions M1 and M2 take place.

M1: dwalli < dsafe and ḋwalli < 0. This means that Ri is
close to the arena border and approaching it. Then,
ṗicmd,k

is rotated towards the center of the arena as seen
in Fig. 8.

M2: ṗi ∈ CCi . This means that the current velocity of Ri

could lead to a collision with one or more team mem-
bers. An escape velocity is sought according to the
strategy outlined in Sect. 4.

In all experiments performed in this paper, wall detection
is deemed outside of our scope and is therefore enforced
by using the global position of the agent within an arena
(provided by a MCS). Condition M1 holds priority over
M2 to ensure that the MAVs remain within the arena. At
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Fig. 8 Depiction of condition M1. Robot Ri is too close to the border
of the arena and receives a command to go towards the center

all time-steps, unless otherwise commanded by the collision
avoidance algorithm, |ṗicmd,k

|=vnominal, where vnominal is a
fixed speed magnitude.

5.2 Assessment strategy

Experiments were performed in stages with increasing real-
ism and autonomy:

1. Simulation This enabled assessing system performance
under different conditions.

2. External own-state measurements These tests used an
external MCS to control the drones (but not for relative
localization). This allowed to make the results indepen-
dent of the ability of the drones to fly autonomously.

3. On-board own-state measurements These tests rely on
on-board sensors to control the drones. They are used to
determine real-world performance. The external MCS is
only used to simulate wall detection. This type of test
is performed on AR.Drones and on miniaturized MAVs.
Note that for the miniaturized MAVs, the MCS was also
used to measure height from the ground. This was due to
the lack of a suitable height sensor on the MAVs.

The results of all tests are discussed in the next four chapters.
During the tests, the three items below were assessed.

Assessment of relative localization The performance of
the relative localization can be assessed by comparing the
estimated relative locations to ground-truth data obtained
cumulatively during all real-world experiments.

Assessment of collision avoidance This is partially depen-
dent on the performance of the relative localization, yet can
be assessed independently by identifying failure cases and
observing general behavior properties. In simulation, how-
ever, it is also possible to artificially improve the relative

localization estimates and establish how the collision avoid-
ance would fare under such circumstances.

Assessment of the full system The parameter of interest is
the mean flight time until collisions. An ideal system is one
with which, systematically, collisions do not take place. Such
a result may be dependent on how crowded the airspace is,
so we tested different configurations. By modeling MAVs as
circles, airspace density is calculated with:

Dm,c = m ∗ πr2c
s2c

(15)

Dm,c denotes the density for configuration c with m MAVs,
rc is the radius of aMAV in configuration c, and sc is the side
length of the squared arena at configuration c.

6 Simulation experiments

Simulations allow to assess the collision avoidance algorithm
and the full system. We can assess the performance of the
system for several airspace densities, noise scenarios, etc.,
and obtain statistical insights.

6.1 Simulation environment set-up

The simulation environment was developed using Robotics
Operating System (ROS) (Quigley et al. 2009), the Gazebo
physics engine (Koenig and Howard 2004), and the hector-
quadrotor model (Meyer et al. 2012). Multiple quad-rotor
MAVs can be simulated simultaneously. A ROS module (or
“node”) for each MAV simulates Bluetooth communication
and enforces the controller described in Sect. 5.1. A rendered
screenshot of a simulation is shown in Fig. 9a.

TheRSSI is simulated using theLDmodel (Pn = −63 dB,
γl = 2.0) with added Gaussian noise (SD of 5 dB) and
horizontal antenna lobes, unless otherwise stated. The lobes
were modeled using a third order Fourier series with unitary
weights, see Fig. 9b. The other measurements were altered

(a) (b)

Fig. 9 The simulation environment and the simulated lobes. a Screen-
shot of a simulation with 3 MAVs. b Simulated RSSI horizontal lobes
applied as a function of relative bearing between MAVs
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Fig. 10 The twelve configurations tested in simulation with configura-
tion numbers shown in the white circles. Dm,c is the airspace density
for configuration c with m MAVs from Eq. (15)

with the same standard deviations as in the preliminary local-
ization tests of Sect. 3.5. Furthermore: vnominal = 0.5 m/s,
dsafe = 0.25 m, and ψ = 0 rad for all MAVs. The MAVs
begin at different corners of the arena. The EKF is initialized
such that the initial position guess is towards their initial flight
direction (i.e. the center of the arena).

We investigated twelve configurations of arena size and
MAV diameter for teams of two MAVs and three MAVs.
The configurations will be referred to by the encircled num-
bers in Fig. 10. Each configuration was simulated 100 times.
Each simulation was automatically interrupted if a collision
occurred or after 500 s of collision-free flight.

6.2 Results

Mean flight time for each configuration is shown in Fig. 11.
Flights with three MAVs consistently show a lower perfor-
mance than with two MAVs. The performance drop is a
result of the team dynamics at play, namely: (1) increased
airspace density, and (2) decreased freedom of movement
due to superposition of collision cones. These two factors
are analyzed in the remainder of this section.

Airspace density When theMAV diameter remains constant,
but the arena size increases, an increase in mean flight time is
observed. This is seen by comparing the configuration quar-
tets 1-2-3-4, 5-6-7-8, and 9-10-11-12. Furthermore, when
the arena side-length remains constant and the MAV diame-
ter increases, a decrease in mean flight time is observed. This
is seen by comparing within the configuration triads 4-7-11,
3-6-10, and 2-5-9, and the pair 8-12. This implies that a lower
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Fig. 11 Mean flight time to collision for all simulated configurations.
Average results without collision avoidance, not shown in this figure,
range between 3.9 and 14.3 s

(a) (b)

Fig. 12 Flight parameters with respect to airspace density based on
simulation results. a Mean flight time with respect to density. b Mean
area coverage with respect to density

density improves the probability of success, but this is found
to not strictly be the case. Figure 12a shows the flight time
to collision as a function of the airspace density. A portion
of configurations show low results despite the low airspace
density, and are outliers in the negative linear trend. These
correspond to configurations 1, 2, 5, and 9, which feature
smaller arena sizes. The conclusion is that room size affects
performance even when airspace density remains constant.
This is a remaining limitation of the current status of the sys-
temwhenoperating in smaller rooms. Its causes are discussed
in Sect. 10.2.

Freedom of movement Figure 12b shows the impact of
airspace density on area coverage for all flights with two
MAVs and three MAVs. Area coverage was measured as fol-
lows. The total area is divided in sections of 0.20m×0.20m.
A section ismarked “covered”when one of theMAVs crosses
it. Area coverage is the percentage of covered sections during
a trial. Here, two patterns arise.

1. A higher airspace density leads to a lower overall cover-
age. This is due to: (a) lower flight times, providing less
overall time to complete the mission, and (b) decreased
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Fig. 13 Heat maps of normalized area coverage over all simulations
(black crosses indicate collisions). a Two MAVs. b Three MAVs

freedom of movement due to larger portions of the arena
being covered by collision cones.

2. Three MAVs systematically achieve lower area cover-
age than only two MAVs in the same configuration. This
is explained by analyzing the flight trajectories in more
detail, from which an emergent circular behavior is dis-
cerned.4 See Fig. 13, which shows the normalized heat
map over all simulations for two (Fig. 13a) and three
(Fig. 13b) MAVs. When more than one MAV to avoid
is present, the superposition of multiple collision cones
pushes the MAVs towards the edges.

6.3 Impact of RSSI noise on performance

In simulation, we also tested all configuration with a clean
case, where each MAV perfectly knows the position of all
others. Our tests lasted 500 s (the maximum time) with no
collisions. This shows that, with perfect relative localization,
the collision avoidance should give perfect results. Two fur-
ther case studieswere explored. In thefirst case, the simulated
RSSI noise is reduced from 5 to 3 dB, but lobes are still simu-
lated. In the second case, RSSI noise is kept at 5 dB but sensor
lobes are removed.All other parameters remain the same as in
the primary simulations. The configurations tested are those
with the lowest performance: 1, 2, 5, 6, 9, 10. The results are
shown in Fig. 14, and show that removing the antenna lobes
provides the largest improvement in performance. A lower
noise also improves results, yet the impact is generally lower
than antenna lobes. The lower error in relative position esti-
mates translates into a more successful collision avoidance
system. For real-world systems, this shows that performance
can be improved by operating in cleaner environments, using
better antennas, or by better filtering of signal strength mea-
surements.

4 Interestingly, emergent circular behaviors of this kind have also been
observed in nature over a vast amount of organisms, ranging from bac-
teria to humans (Delcourt et al. 2016).
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Fig. 14 Improvements in system performance against nominal results
(“Orig.”) when noise is reduced from 5 to 3dB, or when lobes are
removed. a Two MAVs. b Three MAVs

Fig. 15 A flight with 3 AR.Drones, encircled in white

7 Experiments featuring external own-state
measurements

We implemented our system on AR.Drones. In the experi-
ments in this section, we used Optitrack to accurately inform
MAVs of their velocity, orientation, and height. This isolates
the impact of using real RSSI measurements and Bluetooth
communication on the relative localization system during
flight. It also shows the system performance in case of high
quality ego-motion estimates.

7.1 Experimental set-up

The experiments were performed using AR.Drones 2.0 (Par-
rot 2012). A BLED112 (Silicon Labs 2016) Bluetooth Smart
USB Dongle equipped them with Bluetooth. The controller
was developed using Paparazzi (Drouin and Muller 2007)
and was running entirely on-board. The experiments in this
section relied on Optitrack to provide each MAV with data
of its own velocity, orientation, and height via a Wi-Fi link.
Each AR.Drone then communicated this data via a Blue-
tooth broadcast to the other ones, using the implementation
described in Sect. 3.4. TheWi-Fi link was also used for take-
off/land commands and for data logging. Figure 15 shows a
picture of a flight with three AR.Drones.

All MAVs flew at 1.5 m from the ground, with a nom-
inal speed vnominal = 0.5 m/s and safety wall distance
dsafe = 0.5 m. The enforced arena size in all experiments

123



1798 Autonomous Robots (2018) 42:1787–1805

was 4 m × 4 m, making these tests analogous to configu-
ration 11 from the simulation runs (AR.Drones are slightly
larger in diameter than 0.5 m). The LD model in the EKF
filter was tuned with Pn = − 68 dB and γl = 2.0. Pn was
obtained via a brief hand-held measurement, γl was based
on the free-space assumption. The Optitrack measurements
inputted into the EKFs were altered with Gaussian noises
σv = 0.2 m/s and σψ = 0.2 rad.

7.2 Results

Four flightswere performedwith twoAR.Drones for a cumu-
lative time of 25.3 min. Only one collision took place, which
occurred in the second flight after 5.6 min. Six flights were
performed with three AR.Drones for a cumulative time of
15.3 min. Five flights ended in collisions. On average, this
happened after 160 s of flight.

All estimated range and bearing errors are presented in
Fig. 16. The estimated range features a Root Mean Squared
Error (RMSE) of 0.86 m with two MAVs and 1.14 m with
three MAVs. Figure 16c shows the error distribution, indi-
cating the lower performance with three MAVs. For bearing
estimates, the Root Mean Squared Error (RMSE) for flights
with two MAVs is 0.57 rad and with three MAVs it rises to

0.70 rad. Figure 16f shows the bearing error distribution. We
can see the slightly larger spread of the bearing error. There
is also an apparent positive bias in the error. This bias could
have been caused by the initial guess of the EKF, which was
unable to converge back to a zero mean. On occasion, we
observe that the bearing error temporarily diverges towards
±π . This error does not necessarily lead to collisions due to
the non-reciprocal nature of the avoidance behavior. Never-
theless, it introduces a temporary uncertainty in the system.
The error is more frequent with three AR.Drones. We also
observe that the convergence rate for bearing estimates over
flights with three AR.Drones appears worse than with two
AR.Drones. This may be seen in Fig. 17, which zooms into
the first 30 s of Fig. 16d, e. Convergence times for flights
with three MAVs reach up to 30 s prior to settling (Fig. 17b).
By comparison, the convergence time for flights with two
AR.Drones only (Fig. 17a) is within 10 s.

An analysis of the noise in RSSI showed that flights with
three MAVs experienced a marginally larger noise. This
can be evaluated in Fig. 18a. A two-sample Kolmogorov-
Smirnov test rejected that the two distributions could be the
same (with a p value of 6.9×10−22). We also ran a bootstrap
test with 10,000 repetitions, testing for the difference in sam-
ple mean and the ratio of variances as reference statistics. In

(a) (b) (c)

(d) (e) (f)

Fig. 16 Overview of all relative range a, b, c and relative bearing d, e,
f estimation errors for flights with external own-state measurements. a
Range estimate error with two AR.Drones (RMSE = 0.86m). b Range
estimate error with three AR.Drones (RMSE = 1.14m). c Range error

distribution for all flights. dBearing estimate error with twoAR.Drones
(RMSE = 0.57 rad). e Bearing estimate error with three AR.Drones
(RMSE = 0.70 rad). f Bearing error distribution for all flights
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Fig. 17 Comparison of bearing estimate errors in the first 30 s of flight
during flightswith external statemeasurements. aWith twoAR.Drones,
b with three AR.Drones

(a) (b)

Fig. 18 Distributions of RSSI error and distance measurements for all
flights. a RSSI error distribution, b distribution of distances between
MAVs based on ground-truth measurements

both cases, the bootstrap test rejected the null hypothesis over
the 95% confidence interval, and declared the distributions
different. If we model the distributions as normal distribu-
tions, the standard deviation increases from 4.65 dB with
two MAVs to 4.9 dB with three MAVs. Aside from this, we
also attribute the drop in relative localization performance
(and the slower convergence) with three MAVs to the factors
below.

– As also seen in the simulations from Sect. 6, flying with
three MAVs pushes them further apart. This also hap-
pened in the real-world experiments, as can be seen in
Fig. 18b. At larger distances, RSSI is less informative as
a distance measurement due to its logarithmic decline.

– With threeMAVs, theMAVsmove slower and with more
oscillations. This has a negative impact on the EKF’s per-
formance, which favors smooth trajectories with faster
velocities. Amore aggressiveMAVcontroller could have
lowered this effect.

– The bearing error appears to diverge towards ±π more
frequently with three MAVs. As already discussed in
Sect. 3.5, this happens at smaller distances because a
small error in x or y can translate into a large bearing
error. When flying with three MAVs, the MAVs were

also closer on more occasions than during flights with
two MAVs. This can be seen in Fig. 18b.

8 Experiments featuring on-board own-state
measurements

The experiments from the controlled flights were repeated
but with on-board state estimation by the MAVs. Therefore,
on-board MAV sensors measured velocity, orientation, and
height. This shows real-world relative localization perfor-
mance for collision avoidance.

8.1 Experimental set-up

Velocity was estimated using the bottom facing camera and
the EdgeFlow algorithm (McGuire et al. 2016). In the exper-
iments described in this section, this provided velocity with
a standard deviation between 0.10 and 0.35 m/s, as extracted
by comparison with ground-truth measurements. 5 The mag-
netometer could not be used due to large electro-magnetic
disturbances in the environment, so orientationwasmeasured
using gyroscope integration only (given an initial orientation
towards North). Height from the ground was measured using
sonar. Optitrack was only used to enforce conditionM1 (wall
detection) with dsafe = 0.5 m. This is because wall detection
is outside of the purpose of this research. To further stress-test
the system, a further change was that the EKFs initial relative
position assumption was x ji = y ji = 1 m for any MAV Ri

with respect to any otherR j , as opposed to the center of the
arena. The AR.Drones communicated with a ground-station
using a Wi-Fi link for logging and take-off/land control.

8.2 Results

Four flightswere performedwith twoAR.Drones for a cumu-
lative flight time of 17.3min. In this time, only two collisions
took place (after 3.9 and 1.0 min in the first and last flight).
Another flight saw a near-collision in the early stages, but
afterwards successfully continued until battery depletion.
Another four flights were conducted with three AR.Drones,
which lasted 8.3min cumulatively. In this time, the MAVs
experienced three collisions (after 1.2, 1.6, and 2.3 min of
flight).

The bearing estimation error is shown in Fig. 19. The error
has increased with comparison to the previous results. With
twoAR.Drones, the mean RMSE over the first three flights is
0.85 rad. This is sufficient for a long collision-free flight time.
In the last flight, however, the RMSE was 1.3 rad, possibly

5 The differences arise from the fact that the noise is partially dependent
onwhat theMAVsees during a flight, which depends on its chosen flight
path.
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(a) (b) (c)

Fig. 19 Overview of relative bearing estimation errors for flightswith twoAR.Drones and threeAR.Drones featuring on-board own-state estimation.
a With two AR.Drones, b with three AR.Drones, c bearing error distribution for all flights

due to a large disturbances in RSSI by the environment. This
is held responsible for the early collision after 1.0 min. With
three drones, the bearingRMSEover all flights is 1.0 rad. Fig-
ure 19c shows the distribution. There is an apparent negative
bias. We can note how this bias increases in magnitude over
timewhen observingFig. 19a, b. This is due to the accumulat-
ing gyroscope bias during the flights. This could be corrected
in future implementations by using a magnetometer.

9 Implementing the technology on
miniature drones

To show that the proposed solution scales to smaller MAVs,
we ported the technology to a pocket-sized MAV. A test-
ready MAV and its components are shown in Fig. 20. The
platform is as used by McGuire et al. (2017).

9.1 Experimental set-up

The set-up is equivalent to the one for the AR.Drones in
Sect. 8, with a few minor differences. In the LD model, fol-
lowing a short hand-held calibration, Pn = − 55 dB. Also,
given the smaller size of the drones, the enforced flight arena
was reduced to 2m×2mwith dsafe = 0.5m. This scenario is
similar to configuration 2 fromFig. 10. As for theAR.Drones
in Sect. 8, a bottom facing camera and a gyroscope mea-
sured velocity and orientation, respectively. However, given
the lack of an accurate height sensor on these small drones,
the height was measured using Optitrack. Because of their
fragility, the two drones also flew at different heights (1.0
and 1.5 m) so as to limit damages in case of failure.

9.2 Results

Three flights were performed with this set up lasting 2.8,
3.7, and 3.1 min. The first flight saw no collision cases. The
second flight saw near collisions at 1.35 and 3.7 min. The

Fig. 20 Miniature drone used in the experiments

latter came in light of low-batteries by one of the drones.
As it lowered its height, the two MAVs also actually col-
lided. The third flight saw a near collisions after ≈ 60 s and
≈ 90 s. Both took place in the corner when condition M1
takes over the drones, and are thus regarded more as a failure
of the behavior than the relative localization. This shows the
importance of implementing a method that keeps taking into
account other drones while also avoiding the walls, which
was not implemented in our controller.

It is noted that a slightly lower performance than previ-
ous experiments was expected due to the smaller arena size,
an effect which was also observed in simulation and is dis-
cussed further in Sect. 10.2. Nevertheless, we also note a
decrease in accuracy for relative localization as RMSE per
flight ranges from 0.8 to 1.37 rad. Inspecting the data in
more detail shows that this is the result of larger errors in
both RSSI noise (standard deviation 5.4–6.5 dB with mean
error 2.1–4 dB) as well as lower quality of on-board velocity
estimates (standard deviation of ≈ 0.8 m/s with mean error
of up to 0.2 m/s). The former is explained by the fact that the
Bluetooth module was placed right next to the Wi-Fi mod-
ule, creating larger disturbances. The latter is explained by
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the lower resolution of the camera and the fact that it is sub-
ject to larger vibrations (McGuire et al. 2016). Furthermore,
as the MAVs were flying closer to each other in a smaller
arena, errors in relative x and y estimates are amplified when
translated into relative bearing estimates.

10 Discussion

10.1 Performance of relative localization

In all AR.Drone tests, a loss in relative localization perfor-
mance was measured when introducing a third MAV. The
effects were longer convergence times as well as higher rela-
tive bearing/range errors.Adecrease in performancewas also
observed when using on-board velocity estimates. This was
due to a combination of over/under-estimation of velocity or
occasional spikes in the measurements.

The relative localization scheme was implemented with
an EKF. This may be criticized for its reliance on a Gaussian
noise model. Robust (Kallapur et al. 2009) or adaptive (Sasi-
adek and Wang 1999) variants of Kalman filters, or particle
filters (Svečko et al. 2015), might be better suited. However,
a change in filter could increase computational costs without
bringing a higher quality estimate. This is because there are
a number of other limitations:

– The logarithmic decrease in RSSI makes it intrinsically
insufficient to measure changes in range at larger dis-
tances.

– RSSI disturbances in the environment cannot be fully
modeled unless the environment is known a-priori.

– The proposed process update equation makes the null
assumption that all velocities remain constant between
time-steps. Improvements may come from including
more complex dynamic properties in the process equa-
tion, such as acceleration and/or jerk.

– As seen throughout our tests, improvements can come by
improving the quality of on-board state estimates.

Further investigations are encouraged to define a filter that
lowers the expected error.

We expect the main improvement to come from a change
in communication hardware. In this work, we have achieved
promising results using Bluetooth, which was selected due to
its prompt availability on several MAVs. The noise and dis-
turbances with Bluetooth ranging, however, are large. Other
hardware, such as UWB, would offer a significant reduction
in noise, leading to better overall relative localization results.
Based on our simulations from Sect. 6.3, this should result
in improved collision avoidance.

10.2 Performance of collision avoidance

The aim is to achieve a solutionwhere no collisionswill occur
between the MAVs. In simulation, all twelve configurations
have also been testedwithout active collision avoidance. The
obtained mean flight times ranged between 3.9 and 14.3 s, as
opposed to the results from Fig. 11. A z-test with 95% confi-
dence level (Dekking 2005) shows a statistically significant
improvement in flight time for all configurations when using
our method.

Figure 12a showed that smaller rooms lead to poorer per-
formance than larger rooms despite similar airspace density.
Reasons for this are:

– The ratio of arena size to vnominal decreases in smaller
rooms.

– The communication rate is constant, which limits the
decision rate of the collision avoidance controller.

– In smaller rooms, M1 is called more frequently, in which
case collision cones are ignored according to the task in
this article.

It was observed that collisions for flights with threeMAVs
likely occur along the edges of the area. In the simulations of
configuration 11,which is the one testedwith theAR.Drones,
81% of the collided simulated flights with threeMAVs ended
within 0.5 m of the arena borders. By comparison, only 35%
of collisions with twoMAVs occurred within this space. This
difference can also be appreciated visually in Fig. 13. An
example of a collision extracted from an AR.Drone flight is
recounted by the three events below (depicted in Fig. 21).

1. One MAV is at the corner and reluctant to make move-
ments towards the center, gathering an oscillatory behav-
ior. At time t = 180 s (Fig. 21a), we see this for the
bottom right AR.Drone (blue). Its slow speed causes the
red MAV to mistaken its estimate of the blue drone.
In normal conditions, collision avoidance could still be
achieved by the blue MAV, but it cannot react as it is
trapped in the corner.

2. Another MAV turns towards the same side. In time t =
182 s (Fig. 21b), the central AR.Drone (red) avoids the
blackAR.Drone (on left) but in doing so goes to the right.

3. The secondMAV also ends along the border and is reluc-
tant to make movements. At time t = 188 s (Fig. 21c),
the two oscillate along the border until a collision occurs.

This scenario is less likely with two MAVs due to the larger
freedom ofmovement and the generally higher relative local-
ization accuracy. Onemethod to limit this would be to reduce
the angle of the collision cones for further away MAVs,
increasing mobility. In the extreme, each MAV could only
consider other MAVs within a close range. This could also
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Fig. 21 Chronological depiction (left to right) of a collision case in a flight with 3 AR.Drones (large circles indicate the ground-truth position in
the arena, the triangles are the collision cones that each AR.Drone holds). a Time = 180 s, b time = 182 s, c time = 188 s

help to increase the scalability of the method, so that only
a small amount of parallel filters need to run even for large
team sizes. Furthermore, it is also necessary to create an
avoidance scheme that takes into account the wall and the
drones together. This shall be tackled in future work.

11 Conclusion and future work

We have shown that it is possible to use wireless commu-
nication as a relative localization sensor that can be used
on-board of MAVs operating in a team. This leads to a large
reduction in collisionswithout the need of a dedicated sensor.
With the solution proposed in this paper, teams of two and
three AR.Drones could fly in a 4 m × 4 m area for minutes
without collisions, despite being prompted to fly towards the
center of the arena. This extreme test condition shows the
high potential of our solution. The technology was also used
with miniature drones, showing its portability. With respect
to the scenario in mind (i.e. the exploration of indoor spaces
by MAV teams), this is an efficient method to limit collision
risks in the event that MAVs end up flying in the same room.

The combined relative localization/collision avoidance
system as presented and tested in this paper will be further
improved in future work. Importantly, we will investigate
UWB modules instead of Bluetooth modules. Using UWB
is expected to considerably improve the distance measure-
ments used by the filter. The increase in accuracy could
enable more complex group behaviors, such as formation
flight, and accommodate larger teams of MAVs. This can
extend the use of the system beyond the scope of this paper.
Larger teams intrinsically occupy larger areas, and UWB can
provide range measurements at larger distances without the
degradation of Bluetooth RSSI. For true scalability to larger
teams, there also needs to be a more detailed assessment
of the communication algorithm. Our STDMA implemen-

tation has shown that it can work for small teams, but we
cannot say whether it is the best solution as the size of the
team grows. Furthermore, the introduction of an avoidance
strategy that makes a more informed decision near walls
or when multiple MAVs are present is needed. This could
resolve the more complex collision scenarios, especially in
smaller rooms. There is also on-going work to improve the
miniaturized platforms to feature a front-facing camera, as
in (McGuire et al. 2017), and active wall-sensors, so as to
achieve fully autonomous teams of MAVs capable of explor-
ing an unknown environment safely.

Videos

Videos of experiments are available at: https://www.youtube.
com/playlist?list=PL_KSX9GOn2P9f0qyWQNBMj7xpe1
HARSpc.
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