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Preface

In 2016 I started my bachelors in mechanical engineering, unaware of the gradual change of direction from
everything physical, to the more theoretical. I always loved computers and software, but was hesitant to
learn how to program, let alone try to understand how computers work on a physical level. The program-
ming courses and mechatronics subjects gave me a nice and gentle introduction into the more abstract. My
minor finally swayed me as I was taught about the fundamentals of IC-chips and electronics. It made me
aware I wanted to understand how to build cyber-physical systems from the ground up.
When I started my masters in systems and control I wanted to specialise in real-time control systems. Through-
out the varying courses I noticed that I particularly enjoyed the mathematics behind all the different ways of
constructing control systems.
My thesis supervisor had conducted research into security and privacy preserving control as well as attacks
on these schemes. One aspect that my supervisor and his research team had not yet researched is homomor-
phic encryption and how it could be applied in feedback control. I was only aware of some cursory aspects
of encryption, but the mathematical problems that encryption poses intrigued me. Implementing this form
of encryption would also likely be a programming challenge, which is right up my alley. As homomorphic
encryption has only seen implementation in a few control schemes, it meant I would have to consider many
aspects of control in a new setting. A very daunting but exciting prospect and so I decided to make it the
research topic for my thesis.

As I suspected, to understand encryption I had to learn more about abstract algebra. This was mostly new to
me, which made it a real challenge, but learning to understand new aspects of abstract algebra was always
very rewarding. Even knowing the relevant mathematics, understanding how encryption schemes are con-
structed was quite a task. Underlying theory can differ wildly between schemes, making comparing them
very tricky.

Safe to say, the research I have done has opened my eyes to a whole host of interesting and exciting engineer-
ing problems that I believe will help shape our future.

I would like to thank my daily supervisor Twan Keijzer and my professor Riccardo Ferrari for all the help
and support and introducing me to a field of research I would not have sought out, but ended up fascinated
by.

P. Stobbe
Delft, January 2021
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Abstract

Currently, encryption is part of daily life, from commercial to industrial applications. Secure, long-distance
communication is vital to the safe and reliable operation of industrial feedback control. Utilising public net-
works as a medium is often cost-effective at the risk of a security breach. Current industrial feedback control
systems generally utilise end-to-end encryption to communicate control signals and gains securely. Data
has to be decrypted for processing. Homomorphic encryption allows for manipulation of encrypted data.
This eliminates the need for decryption to update controller states and calculating control effort. Partially
Homomorphic Encryption supports either multiplication or addition of encrypted values, whereas Fully Ho-
momorphic Encryption allows for both. Besides being flexible, Fully Homomorphic Encryption schemes are
thought to be quantum safe. Unfortunately, Fully Homomorphic Encryption schemes are computationally
expensive limiting practical applications. This thesis presents an enhanced version of the of the popular Fully
Homomorphic Encryption scheme by Gentry. The encryption scheme is enhanced through the introduction
of three alterations. New notation is introduced that streamlines its description. The main functions that
compose the encryption scheme are all replaced with analytical equivalents. The so called reduced cipher is
introduced. Rewriting the encryption scheme using the improved notation, analytical functions and reduced
cipher leads to a more computationally and memory efficient implementation. The alterations make the en-
cryption more suitable for implementation on Field Programmable Gate Arrays which decreases compute
time. Such an implementation is presented and used to demonstrate the efficacy of the enhanced encryption
scheme.
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1
Introduction

The modern technology that powers our world requires control, ranging from simple on-off control to highly
complex model driven control. To ensure correct operation and prevent sabotage or other interference, it
important to prevent malicious attacks. Attacks can range from physical attacks to hacking. The type of se-
curity that a technology requires depends on factors such as functionality, location of deployment as well as
how many times it is deployed. Take for example a vending machine. A vending machine is built to protect its
contents and the machine itself requires very little security. They are usually left unsupervised and so they are
built to withstand a certain amount of abuse. The contents are of relatively low cost. Even if some its contents
are stolen, the profit still outweighs the risk. The machine itself is a lot more expensive and so if the machine
would be broken or stolen, that would be much more of a problem. The likelihood of a vending machine
being stolen or taken away is very low however, because there is not much incentive to steal the whole ma-
chine. There is unlikely to be a large market for stolen vending machines. Therefore the profit that vending
machines produce outweighs the price of fixing or replacing them. When it comes to factory equipment, it
is usually kept in an enclosed and secured space, where it is also feasible to supervise the equipment with
security cameras and security staff. If different machines have to communicate, they are usually connected
through a local network, wired or wirelessly. These networks can usually only be accessed by authorised com-
puters that are on site. This means that it is impossible to perform a malicious attack using the internet. Such
a security measure is also known as an air gap.
What if a system requires the remote operation across large distances? One such example is a pipeline.
Pipelines can be tens of thousands of kilometres long [14] and so the majority of pipeline is usually unsu-
pervised. To operate pipelines remotely, controllers on the pipeline are usually connected to the internet.
Long distance cable networks cannot feasibly be monitored along the entire length and so it would be possi-
ble to physically connect to the network. It would be possible to connect a controller using a bespoke network
of cables, however this would be very costly and it would suffer the same problem as a public internet con-
nection. Without any security measures in place, any person could connect to the pipeline. To be able to send
and retrieve control and sensor data at these distances securely, the industry utilises encryption. Encryption
is the act of scrambling data, such that only those who have the corresponding key can unscramble the data.
This means that an insecure network can be used to share data whilst being inaccessible to eavesdroppers or
saboteurs.
Another way to secure such a system is by using security through obscurity. Security is derived from design-
ing a system to be deliberately obtuse and keeping the inner workings secret, so that potential attackers will
not understand the system well enough to attack it. An example of obscurity is Intel’s Converged Security
and Management Engine [48], CSME, which is part of many CPU’s that Intel produces. IT experts such as
Damian Zammit have pointed out that Intel’s CSME has parts that are not secured in any way which poses
a great security risk [55]. The technical specification of the CSME is kept secret, which is currently the only
measure that is keeping the CSME secure. Of course if such a system is reverse engineered, security through
obscurity is nullified. Hence encryption is the more robust security measure, making encryption the most
popular solution.
Currently, the most widely used type of encryption scheme is end-to-end encryption. This means that when
two devices want to exchange information, information is encrypted, sent and then decrypted. This type is

1



2 1. Introduction

very effective, however if some saboteur manages to get access to either device, they can breach security. This
is not usually a problem in situations such as that of two people sharing messages. When a control system is
concerned however, there might be rogue agents with insider access, or authorised personnel may acciden-
tally cause a security breach by leaking passwords. One such incident caused the Colonial Pipeline hack [50].
A password was leaked, which allowed hackers to shut down the entire 8850 kilometre long Colonial pipeline.
A type of encryption that could help prevent such a hack is homomorphic encrytion, HME.
HME is a type of encyption that allows mathematical operations to be performed on encypted data. This
makes it possible to design a system where only the device that performs the encryption is able to dencrypt
any data. Take the following example. A section of pipeline equipped with a controllable valve and a flow sen-
sor has to control its throughput, but to do so requires the coordination of a network of such sections. With
HME it is possible to perform calculations on encrypted data. Hence multiple sections of pipe can encrypt
data, send it of to a main controller which calculates how far the valves should be opened. The controller can
do this without decrypting any of the incoming signals. Even if a rogue agent has direct access to the incom-
ing and outgoing signals of controller, they would not be able to interfere because all data is encrypted. Only
when instructions are received at the controllable valve of the pipe sections, are they decrypted and read and
so the only way to gain access to the unencrypted data would be to physically breach the valve interface.
Encryption that secures against rogue agents with insider access is especially relevant currently. Applications
such as cloud based services and distributed computation have become more prevalent. A company that
stores data, or performs computations for clients will want to keep the data secure. If a client wants to alter
their data remotely, that data has to be decrypted on the server that the data is stored on. If encryption keys
have to be stored on a server, they could be stolen by a rogue agent with insider access. This has never been
more relevant, as in 2010 a google employee used his access to information to stalk and threaten minors [8].
Other than large events like these, there are many smaller insider misuse. Verizon has analysed more than
100,000 security incidents of which more than 10% was perpetrated by an insider [42].

1.1. Recent work
There are currently two types of encryption schemes that researchers have used in feedback control. Partially
homomorphic encryption (PHE) and fully homomorphic encryption (FHE). An HME scheme is considered
partially homomorphic if the scheme supports only one homomorphic operation, either addition or multi-
plication [53]. If an HME scheme supports both operations, it is considered fully homomorphic.
PHE schemes are schemes that derive their security from difficulty of computing discrete logarithms. Encryp-
tion schemes use so called trapdoor functions. A trapdoor function can easily be applied to a value, however
calculating the inverse is computationally hard. Trapdoor functions can be constructed such that it is easy
to calculate the inverse given some key that is only available to authorised parties. This is traditionally how
encryption schemes have functioned [18, 39, 41, 52]. Classically, encryption schemes have used modulus
functions and products of primes to construct trapdoor functions. As such they all derive their security from
difficulty of computing discrete logarithms. A relatively newer class of encryption schemes is that of lattice
based encryption schemes. Lattice problems are linear algebra problems that can be used to construct en-
cryption schemes that are fully homomorphic.
Currently the most prominent PHE schemes are the Rivest-Shamir-Adleman scheme known as RSA, the El
Gamal scheme [20] and the Paillier scheme [38]. The RSA scheme features homomorphic addition and the
El Gamal scheme features homomorphic multiplication. The Paillier scheme is partially homomorphic too,
but it offers an extra operation that makes the scheme more practical than previous schemes. The Paillier
scheme supports homomorphic addition and the multiplication of an encrypted value by an unencrypted
value. Both RSA [41], the El Gamal scheme [20] and Paillier scheme [38] have been implemented in feedback
control. The first implementation of homomorphic encryption in feedback control is that of Kiminao Kogiso
in Cyber-security enhancement of networked control systems using homomorphic encryption [28]. The func-
tionality of this control scheme was demonstrated with a simulation. The paper incorporates the El Gamal
scheme, but in combination with the RSA scheme, because the El Gamal scheme’s homomorphic addition is
not enough to make a functional scheme. The extra homomorphic property of the Paillier scheme [38] allows
for more streamlined designs. One such design is that from the paper Implementing Homomorphic Encryp-
tion Based Secure Feedback Control by Farhad Farokhi [49]. In this paper the authors stabilise an unstable
plant in real-time. The authors are the first to have tested their system in practice. The scheme incorpo-
rates state feedback control and an discrete time observer which requires the multiplication of states and a
state space matrices and gains. The Paillier supports homomorphic addition and the multiplication of an
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encrypted value by some unencrypted value. Therefore authors have elected to keep the state space matrices
and gain unencrypted so they can be used to update an observer of which the states, sensor data and control
effort are encrypted.
There are two main ways of representing real numbers that are used in computation, fixed point- and floating
point representation. Floating point numbers are by far the most popular representation due to its flexibility.
Currently, some homomorphic encryption schemes can be used in combination with floating point numbers
[34], however researchers commonly utilise fixed point representation due to its lower complexity. Section 2.6
will elaborate on Fixed Precision arithmetic. Homomorphic encryption imposes a limitation on fixed point
representation. When multiplying two fixed point numbers, the decimal point of the representation shifts.
Multiple multiplications would cause overflow. The exact cause will be explained in section 2.6.4. Normally
truncation would prevent this, however most schemes do not allow for the truncation of encrypted numbers.
Kiminao Kogiso [28] and Farhad Farokhi [49] each have a notable way of handling the issue of truncation.
Kiminao Kogiso proposes to simply send states back to the plant, so they can be decrypted, truncated, re-
encrypted and then sent back to the controller. Farhad Farokhi utilises a solution he has proposed in his
earlier work [35] which introduces a periodic reset. The fractional bit representation of the observer states
is allowed grow, until a certain point at which the observers are set to zero to prevent an overflow. This is
functional, but expectedly, this does decrease performance. A newer solution is one that has been proposed
by another recent paper by Junsoo Kim in Dynamic controller that operates over homomorphically encrypted
data for infinite time horizon [26]. Junsoo Kim proposes the transformation of a control system such that it
approximates the original system whist consisting of only integers, removing the need for fixed point num-
bers. This scheme too has an impact on performance, but much less than a periodic reset would. Authors
Jung Hee Cheon and Damien Stehlé have also proposed their own FHE scheme that allows of the truncation
of encrypted values, however this introduces noise to a degree that severely limits its practicality [10].
Besides the functionality FHE schemes offer, there is currently a consensus that lattice based schemes are
likely to be quantum safe. Take for example a widely used lattice problem called learning with errors [40],
LWE. In 2009 Odded Regev stated in his paper that one might conjecture that there is no quantum algorithm
that can solve the LWE problem in polynomial time [40]. He bases this on the fact that up until the release
of his paper, there had not yet been any quantum algorithms presented that could solve the LWE problem in
polynomial time. This is despite the fact that the existence or non-existence of such an algorithm could mean
lattice based encryption is the answer to quantum computers. Given its importance it would seem likely an
algorithm would be put forward if such an algorithm could be constructed. As of yet, this still holds true in
2022 lending credence to Odded Regev’s claim. This makes lattice based encyption attractive as compared
to schemes such a RSA and other schemes that derive their security from difficulty of computing discrete
logarithms. The RSA scheme can be cracked efficiently utilising a quantum algorithm [23]. Currently, PHE
shemes utilise mechanisms similar to RSA, meaning they are likely to be insecure, or have already been con-
firmed to be insecure with respect to quantum computation.
There are two main downsides to FHE schemes. The first issue is that of multiplicative depth. To make
FHE schemes secure, errors are injected into ciphers. This does not form a problem, unless homomorphic
multiplication is applied. When multiplying two ciphers, the error grows. If this error grows too much, the
message can no longer be retrieved correctly. The amount of homomorphic multiplications that can be per-
formed without the message becoming irretrievable is called multiplicative depth. So far, Gentry’s encryption
scheme has improved multiplicative depth, however it remains an issue.
Secondly, FHE schemes are very computationally complex. There are currently no industrial or commercial
applications that utilise FHE schemes. Currently there are simulations of FHE schemes [26] and the practical
application of FHE on control systems that run at a slow update rate such as demonstrated in Toward a secure
drone system: Flying with real-time homomorphic authenticated encryption [9] in which the authors provide
a path for a drone to follow, which is updated at a rate of 10Hz.Though there are papers that aim to speed up
the computations needed for FHE schemes such as Gentry’s scheme [22], there is currently no research that
implements the application of FHE in feedback control for the stabilisation of an unstable plant.

1.2. Research motivation
There is a clear lack in advancement in implementation of FHE in feedback control. One reason being the
fact that lattice based encryption schemes are computationally expensive. Most controllers are implemented
on conventional hardware, usually micro controllers equipped with a modern CPU. If operations can be per-
formed in parallel, it may be advantageous to equip the target platform with a GPU. GPU’s are set up to
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perform many calculations in parallel. To use a GPU, a CPU must supply the GPU with instructions and data
necessary for computation. The communication between CPU and GPU is commonly a bottleneck. For the
purposes of implementing FHE in feedback control, an ad hoc harware design would be preferable, as FHE
operations can be performed largely in parallel, but it also requires large data throughput, which would be
bottle-necked using a CPU and GPU. Hence, implementation on an FPGA would be a good avenue of re-
search. The acronym FPGA stands for Field Programmable Gate Array, which is a computer chip with logic
gates and other components that can be connected to form circuits.
Given these factors and the need for advancement in the area of FHE in feedback control, the topic of this
thesis will be: An FPGA implementation of a fully-homomorphic encryption scheme for real-time control ap-
plications.
Currently, the FHE scheme by Gentry [22] is still one the most versatile and robust FHE schemes available. All
lattice based encryption schemes allow for homomorphic multiplication, but so far all of them have limited
multiplicative depth. There are multiple schemes that have introduced methods to decrease this noise, but
currently Gentry’s scheme offers the least computationally expensive and simple way to decrease this noise.
Another notable advancement is a new FHE scheme proposed by Jung Hee Cheon in Homomorphic encryp-
tion for arithmetic of approximate numbers [11]. This scheme is however designed for the purpose of secure
machine learning, which is not the topic of this thesis. Therefore Gentry’s FHE scheme will be the encryption
scheme used to implement feedback control.
The optimal outcome of the research from this thesis would be to present an implementation and workflow
that would allow for the implementation of a wide range of feedback controllers secured with FHE. Therefore
the feedback controller that will be implemented for the purpose of the research will be discrete time state
feedback control, which is a common controller topology that utilises memory which is a requirement for
more complex feedback control. The plant that will be controlled for the purposes of demonstration will be
a simulation of a double pendulum in an upright position. The upright position of such a mechanism is an
unstable equilibrium and will require a sufficiently high sampling frequency to stabilise the plant around this
equilibrium. Such a control scenario is a good use-case as it requires either the optimisation of the encryption
scheme or the a computationally efficient hardware design, preferably both.

1.3. Research questions
The goal of this thesis is to adapt the Gentry scheme in tandem with an FPGA implementation to optimally
perform the required operations. Due to time constraints, the functionality of the feedback system will be
confirmed through a simulation of the hardware design of the system, of which the code will be provided in
appendix section B. To demonstrate viability of the system, hardware designs of critical subsystems will be
compiled and run in practice. The code of this demo can be found in the appendix section C.
To evaluate the performance of the resulting implementation, the following research question and sub-question
will be answered: given a novel adaptation and implementation of homomorphic feedback control, what level
of performance can currently be reached?

• What are the challenges of using fully homomorphic encryption in feedback control?

• How can the underlying mathematics of Gentry’s encryption scheme be rewritten to be suitable for digital
computation?

• What is the hardware utilisation of an implementation of feedback control using Gentry’s encryption
scheme on an FPGA?

1.4. Contributions
Gentry’s encryption scheme relies on a set of black box functions. In this thesis I propose replacing these
functions with analytical equivalents. This makes the scheme more intuitive and allows for easier manipula-
tion of the constituent parts. I also propose the so called reduced cipher. Rewriting the scheme using the new
notation and reduced cipher leads to more efficient computation of Homomorphic operations and reduced
memory usage. Using the improved scheme I have designed an FPGA implementation of feedback control
using state feedback control and Fully Homomorphic Encyrption. The improvements to Gentry’s encryption
scheme ensure that the sampling frequency can be high enough to allow for the stabilisation of an unsta-
ble plant which previous implementations of FHE in feedback control were unsuitable for. Fixed precision
representation is the most performant numbering system that is compatible with FHE. Using fixed precision
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representation representation and FHE poses two problems, decimal point shifts and limited multiplicative
depth. Both problems are handled using the solution presented in [28], by sending states back from the
controller to the plant. The states can then be truncated and re-encrypted. Preventing both overflow and
resetting multiplicative depth every time step. The combination of solutions allows for the implementation
of discrete-time feedback control with out requiring alteration to be compatible with FHE.

1.5. Structure
Finally, this section will conclude the introduction by giving an overview of the order of contents of this the-
sis. First chapter 3 will elaborate on the types of encryption mentioned in the introduction and will describe
the Gentry scheme [22] in detail. Chapter 3 will introduce new notation and adaptations made to the Gen-
try scheme [22] as well as implications on performance. Chapter 4 will describe the controller topology in
more detail followed by explaining how FPGA’s function and how they can be deployed. This is followed by
an overview of the implementation of the previously described feedback controller with FHE on an FPGA.
Chapter 5 will describe the research setup followed by the results. Chapter 6 concludes the thesis and will
give recommendations for further research.





2
Introduction to homomorphic encryption

To explain one of the main the contribution of thesis, it is important to cover the background of encryption
itself as well as the encryption scheme used for implementation. Section 2.1 will introduce and explain the
seminal Diffie-Hellman encryption scheme. Next section 2.2 discusses two categories that most encryption
schemes fall into. Section 2.3 covers lattice problems and homomorphic encryption in more detail. Sec-
tion 2.4 describes the LWE problem [40]. Section 2.5 discusses the Gentry encryption scheme, which is the
encryption scheme that will be adapted and implemented for this thesis. Finally section 2.6 introduces the
fixed point numbering system that can represent fractions and negative numbers, which is compatible with
HME.

2.1. Diffie-Hellman: The introduction of modern cryptography
Cryptography has been a topic of research for thousands of years if not more. The earliest recorded use
cryptography is by Egyptians 4000 years ago [39]. Encryption schemes from the past generally worked by
changing the meaning of letters, by changing the meaning of letters used or by changing letters with other
symbols. These methods were inventive, but flawed. The meaning of letters still leaves a pattern of words
with fixed lengths and there are only so many ways letters can be swapped around, meaning cracking such a
code by hand is still feasible. The advent of computer communication in the modern day changed this en-
tirely however.
When using computers, transmission of information is many orders of magnitudes faster than sending a mes-
sage on paper or via telephone.
This means that encryption can be more complex and secure, whilst still appearing instantaneous to its users.
Computers work with binary code and as such a message is first converted to binary according to a precon-
ceived standard and then encoded. All semblance of "human" structure (i.e. words and sentences) becomes
unrecognisable. This makes it impossible to crack such encryption schemes by hand.
The first practical encryption scheme to do this was posed in "New Directions in Cryptography" and is called
a Diffe-Hellman key exchange [18]. This work would become incredibly influential in the world of computer
science, marking the beginning of modern cryptography. Almost any work in the field references this work
and takes inspiration from it. Diffe-Hellman utilises the fact that given the right mathematical obfuscation,
it would take a rogue agent (a party not privy to the message) with a conventional computer an infeasible
amount of time to decode the message. Al the while, the two parties that have exchanged keys can decode
the messages very easily. As there is no semblance of structure in the messages sent, there is no clever way
to decode the messages and thus a rogue agent would be forced to decode through brute force. Hence it is
possible to quantify the security of the method as the amount of mathematical operations needed to decode
a message through brute force.

To explain the Diffe-Hellman key exchange, the concept of private keys and a public key must be introduced.
The private key is a set of two numbers and is publicly agreed upon. Each party has their own private key,
that they generate themselves and keep secret. The actual key exchange can be divided into 3 steps. Figure
2.1.1a shows a diagram of two computers, A and B , that wish to communicate through a public network, but
computer C is secretly listening in and would like to know what A and B are talking about.

7
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• Figure 2.1.1b: Computer A and B agree on a value g and p. p is a random prime number and g some
integer smaller than p.

• Figure 2.1.1c: Computer A and B generate private keys a and b respectively. a and b are chosen at
random, but smaller than p. Computer A sends (g a mod p) to computer B and computer B sends
(g b mod p) to computer A.

• Figure 2.1.1d: Now both computer A and B can calculate g a·b mod p, using their private keys. They can
do this due to the following mathematical property: (g b mod p)a = (g a mod p)b = g a·b mod p. Now
computer A can send a message m using the shared key g a·b mod p to encode the message. m̃ denotes
the encoded message. Computer B has the shared key and can reverse the encoding. Computer C
however, does not know what the a or b is and cannot generate g a·b mod p and thus cannot read the
message.

The encoding process is usually very simple. Take for example XOR-encoding. If the shared key g a·b mod p
would be the 4-bit long code s = {1,0,1,0} in binary and the message to be encoded {1,0,1,1,0,0,1,0}, then
the encoded message would be the result of the XOR (exclusive or) operation on each section of 4 bits of the
message and the key as follows:

m is split up into m = {m1,m2}, each 4-bits long

m1 = {1,0,1,1}

m2 = {0,0,1,0}

m̃1 = XOR(m1, s) = XOR({1,0,1,1}, {1,0,1,0}) = {0,0,0,1}

m̃2 = XOR(m2, s) = XOR({0,0,1,0}, {1,0,1,0}) = {1,0,0,0}

m̃ = {m1,m2} = {0,0,0,1,1,0,0,0}

This can be reversed with the same process:

m = {XOR(m̃1, s),XOR(m̃2, s)}

(a) Computer A and B want to communicate securely,
computer C is able to intercept all the data
A and B send to one another.

(b) Computer A and B agree on values for g and p

(c) Computer A and B can now send each other their
private key mixed with the public key.

(d) Now computer A sends B a message encoded with the shared key.
Computer C has all the information that A sends B have shared, but
not their private keys and is unable to read the message.

Figure 2.1.1: This series of diagrams is a visualisation how the Diffie-Hellman key exchange is performed and subsequently used to send
a message
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Unfortunately the Diffe-Helman scheme is flawed. The scheme is sensitive to so called man in the middle at-
tacks. The algorithm does not specify that any authentication needs to take place. Computer C could act like
they are computer A or B and gather more information on the private keys by intercepting the key exchange
and mixing in their own private key. There are ways to protect against these attacks by implementing authen-
tication. Luckily there are other trapdoor function based schemes that use the same concept, but different
trapdoor function. These alternatives are not at risk of a man in the middle attack. One of the most impor-
tant (if not the most important) variation is so called Elliptic-curve cryptography. It is a kind of encryption
that utilises a series of function evaluations on the curve y2 = x3 +ax +b with a special rule of succession to
generate keys [54].
These schemes are much more efficient, in the sense that it takes smaller keys than other schemes to reach
the same security (i.e. it is much harder to guess private keys from the information that needs to be shared).
This means that information can be shared at the same level of security, whilst encoding takes less time (due
to the smaller key size). 384-bit Eliptic curve cryptography is actually the cryptography the American National
Security Agency, NSA, has used for transmitting top secret information [36] (however, they are likely going to
switch to a cryptographic scheme that is also safe against quantum computing [37]).

2.2. Symmetric-key and public-key encryption
Diffie-Hellman requires both sender and recipient to generate a private key and share it with one another, this
means that Diffie-Hellman is called symmetric-key encryption. In the case of symmetric-key-encryption,
the public key is used to safely generate a shared key. There are schemes very similar to Diffie-Hellman,
but where the public and private keys play a different role. Schemes that do not cooperation from other
computers to generate keys.
These schemes are called public-key encryption schemes, which allow for encryption with only the public
key. This means anyone can send an encrypted message to someone who makes their public key available.
This decreases the amount of data that needs to be shared to share messages and eliminates the threat of man
in the middle attacks. One of the most (probably the most) influential public key encryption schemes is the
RSA [41]. RSA is mentioned in many papers regarding cryptography ([38, 49, 53, 54] to name a few). Currently,
public-key encryption schemes rely on a mechanism where a private key is generated after which the public
key is generated from the private key through a trapdoor function. This means that a public-key encryption
scheme could be cracked by recovering the private key from the public key. Most public key encryption
schemes that derive their security from difficulty of computing discrete logarithms over finite fields rely on
the same mechanism as that of the RSA scheme. Generating a public-private key pair according to the RSA
scheme requires the selection of two large prime numbers, which together form the private key. The result of
the multiplication of these two prime numbers is then the public key. The public key is a factor of two primes.
The process of recovering the two primes from such a number is called prime factorisation. If the primes are
large enough, this process would take years if not decades to compute on conventional computers. According
to the authors of Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-digit Experiment
[3], it would take a 1000 core-years worth of computation to crack 240-bit RSA which is a common key size. It
would take an computer with an 8-core cpu (the same as used in [3]) roughly 250 years to crack the scheme.
One of the concerns with classical encryption schemes is that the introduction of quantum computers might
pose a significant security threat. This is with good reason as in 1994 P.W. Shor [43] proposed a quantum
algorithm that could be used to efficiently crack RSA and in 2019 Craig Gidney and Martin Ekerå presented
their implementation of the algorithm [23]. Having run simulations of quantum computing, they estimate
that it would take 8 hours to break 2048-bit RSA (2048 bit refers to the key size and is a widely used standard).
The work is based on current knowledge of quantum computers with the assumption that it would be possible
to construct a system consisting of 20 million qubits. The issue with that assumption is that one of the major
issues with quantum computers is noise. The noise scales with the amount of qubits in a system. In the
paper they simulate noise and implement appropriate error correction. Unfortunately, the largest quantum
computer that is available right now only contains 65 qubits. It is not known yet if it is possible to construct
a quantum computer with millions of qubits and so many are still sceptical of whether quantum computing
is actually viable. IBM does promise to produce a quantum computer with 1000-qubits by the year 2023
[12].
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2.3. Homomorphic encryption
After the introduction of the RSA scheme, researchers found that the scheme had a so called homomorphic
property. When data is encrypted, this is called a cipher. For ease of legibility let C = E(α) be the encryption of
some unsigned integerα to produce a cipher C . Given two valuesα and β, encrypted using RSA, it is possible
to use the two ciphers to generate a third which is the encrypted value of the multiplication the original two
values:

α,β ∈Z
E(α)⊙E(β) = E(α ·β)

(2.3.1)

⊙denotes homomorphic multiplication. These operations can be performed without decryption at any stage.
This is called a homomorphic property, an operation on ciphers which is the equivalence of some mathemat-
ical operation on the underlying numbers. In the case of the RSA scheme, this was a flaw, as it was an un-
intended property which might pose a security risk [2]. However researchers realised that homomorphisms
could be useful for applications such as electronic vote counting [1] and dubbed in homomorphic encryp-
tion. Homomorphism refers to the homomorphic operations that such a scheme allows for. The two most
important operations are homomorphic addition and multiplication. The homomorphic operations are op-
erations that hold for encrypted values. As discussed earlier, homomorphic encryption is an incredibly useful
type of encryption to feedback control, as it allows for the encryption of all the sensor data and control sig-
nals and its all around holistic approach to ensuring security. As discussed earlier in the introduction (section
1.1), besides using discrete logarithms problems as trapdoor functions (such as demonstrated in section 2.1),
lattice problems too, can be used to construct fully homomorphic encryption schemes. A lattice is defined as
follows: given a basis B ∈Rn×n for some dimension n ∈N, a lattice constructed with B yields L (B) =BZn .
In other words, a lattice is a type of grid (see figure 2.3.1). A lattice is the collection of all integer linear combi-
nations of a given basis (see figure 2.3.1b)

(a) Basis in red (b) The set of all integer multiples of the basis vectors form a lattice

Figure 2.3.1: Visual representation of a lattice in 2D

With such a lattice, it is possible to encrypt a number by constructing a lattice problem, the solution of which
is the value that one wants to encrypt. Take for instance the lattice problem that Miklós Ajtai has used in his
paper, the shortest vector problem, SVP [51].
Given a basis B ∈ Zn×n , find u ∈ L (B) \ {0} s.t. ||u|| = λ1. The goal is to find the find the smallest integer
linear combination of a given bases. Or in other words, what is the lattice point that is closest to the origin
(not including lattice point in the origin itself), find these lattice for every dimension of the lattice. Figure
2.3.2a shows a graphical representation of the problem. It is possible to find the graphically by drawing the
lattice. It is however tricky to draw the lattice, because it requires drawing a random selection of lattice points,
because the basis vectors are quite a bit longer than the lattice point that is closest. Although there are many
situations with trivial solutions, when a basis is generated randomly it leads to cases that are non trivial. There
is currently no efficient way of solving SVP problems efficiently
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(a) Example of the SVP problem (b) Example of a 3D-Lattice

Figure 2.3.2

Of course a two dimensional version of a lattice problem would be too easy to solve for a computer, since
it could find a solution through brute force. Luckily all lattice problems can be extended to any dimension,
generating higher dimensional lattice problems leads to better security (see figure 2.3.2b). Some encryption
schemes would be proposed that used lattice problems, however they did not catch on. In 2009 however,
Craig Gentry proposed an encryption scheme in his thesis [21] and subsequent paper Homomorphic En-
cryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based [22], which
inspired a wide range of works and implementations [7, 10, 25–27, 35].

2.4. Learning with errors
The Learning With Errors problem is a generalisation of another lattice based problem, the Learning From
Parity With Error problem, LPWE[40]. LPWE is defined as follows:

To generate an LPWE problem, randomly sample a set of vectors a1, a2, · · · ∈ Zn
2 . Zn

2 denotes a vector of di-
mension n, with modulus 2 (i.e. all entries are either 0 or 1). Next, randomly generate a vector s ∈ Zn

2 . Let
〈·, ·〉 be the inner product of two vectors. Set values bi are set to equal 〈s, ai 〉 with probability 1− ϵ. In other
words, the chance of 〈s, ai 〉 being equal to bi mod 2 is 1− ϵ. Now discard s. The goal is to find a vector such
that:

〈s, a1〉 ≈ϵb1( mod 2)

〈s, a2〉 ≈ϵb2( mod 2)

〈s, a3〉 ≈ϵb3( mod 2)

...

〈s, an〉 ≈ϵbn( mod 2)

(2.4.1)

Learning With Errors, LWE, is a natural extension of LPWE where ai ,bi ∈Zn
q , s ∈Zn

q and q ∈N. In other words,
all vectors can contain integer values up to and including q −1. find a vector s such that [40]:

〈s, a1〉 ≈χb1( mod q)

〈s, a2〉 ≈χb2( mod q)

〈s, a3〉 ≈χb3( mod q)

...

〈s, an〉 ≈χbn( mod q)

(2.4.2)

where values bi = 〈s, ai 〉 + ei and e1 is sampled from the χ distribution. The χ distribution is defined as
χ : Zq −→R+, the mapping of the Ψα distribution onto Zn

q . α and Ψα are defined as:

α ∈ (0,1)s.t.α≤
√

logn

∀r [0,1),Ψα(r ) =
∞∑

k=−∞

1

α
·exp

(
−π

(
r −k

α

)2) (2.4.3)
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There are many ways of generating α. The way the author of [40] calculates α is through:

α= 1p
n · lnn2

(2.4.4)

Next, Ψα is mapped to Zp as:

χ(i ) =
∫ (i+ 1

2 )/p

(i− 1
2 )/p

Ψα(r )dr (2.4.5)

To sample the χ distribution, one can sample a normal distribution x ←N (0, αp
2π

), reducing the result mod

1, multiply it by modulo q and finally round the result (the derivation can be found in [40]). The mathematical
discription of the sampling procedure is as follows:

x ←N (0,
αp
2π

)

e = ⌈q · (x mod 1)⌋
(2.4.6)

With equality bi = 〈s, ai 〉+ei , there is now a chance of χ(0) of bi = 〈s, ai 〉 being correct.

2.5. Gentry’s FHE scheme
This section will formally introduce Gentry’s encryption scheme [22]. Section 2.5.1 introduces functions that
are necessary to construct the scheme, followed by section 2.5.2 and 2.5.3 detailing how scheme functions.
Finally section 2.5.4 discusses the homomorphic properties and details how the error injection inherent to
the scheme limits multiplicative depth.

2.5.1. Gentry functions
Gentry’s encryption scheme [22] requires the manipulation of individual bits that make up integers. This ma-
nipulation only applies to positive integers and will generally regard numbers contained in some multiplica-
tive group. For some number a ∈ Zq for some q ∈ N, then a[i ] denotes the i -th bit in the binary representation
of number a. The convention that will be adhered to in this thesis is to let the 0th bit be the least significant
bit. ℓ denotes the maximum amount of bits that are represented. Using this, in his paper [22], Gentry in-
troduces four functions that are used to describe and prove the functionality of his Encryption scheme. The
functions are defined as follows:

a ∈ Zn
q , a = [a0, a1, · · · , an−1]

BitDecomp(a) =
[

a[0]
0 , a[1]

0 , . . . , a[ℓ−1]
0 , a[0]

1 , a[1]
1 , . . . , a[ℓ−1]

1 , . . . , a[0]
n−1, a[1]

n−1, . . . , a[ℓ−1]
n−1

]
= b

BitDecomp−1(b) =
[

a[0]
0 +2 ·a[1]

0 +·· ·+2ℓ−1 ·a[ℓ−1]
0 , . . . , a[0]

n−1 +2 ·a[1]
n−1 +·· ·+2ℓ−1 ·a[ℓ−1]

n−1

]
= a

Flatten(b) = BitDecomp(BitDecomp−1(b))

Powersof2−1(a) =
[

a0,2 ·a0, . . . ,2ℓ−1 ·a0, . . . , an−1,2 ·an−1, . . . ,2n−1 ·an−1

]
(2.5.1)

Note: given a = BitDecomp−1(BitDecomp(a)) functions as the identity if the input a is smaller than q, however
the opposite order is not the identity a ̸= BitDecomp(BitDecomp−1(a)).

Every function also applies to matrices, where the operations as described in (2.5.1) are performed per row.
In Gentry’s encryption scheme [22] plain text messages are stored as the solution to LWE problems. These
LWE problems are represented by matrices. The functions mentioned above are utilised to construct the
encryption scheme. Gentry points out the following properties of the previously introduced functions:

〈BitDecomp(a),Powersof2(b)〉 = 〈a,b〉 (2.5.2)

〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′),b〉 = 〈Flatten(a′),Powersof2(b)〉 (2.5.3)

2.5.2. Encryption
In Gentry’s encryption scheme, the LWE problem is formulated as a matrix vector problem. Vector s from
equation 2.4.2 is renamed to t and vectors ai from equation 2.4.2 are stored as a matrix that represents a
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basis B (ai form the span of B):

t ∈ Zn ,B ∈ Zm×n ,e ∈χm
q

b = B · t +e
(2.5.4)

m and n positive integers that represent dimensions which influence security. The larger m and n are,
the more equations have to be solved to find s. The public key is constructed from vector b and matrix B
as:

A = [b,B ] (2.5.5)

It is possible to recover error vector e through:

A · [1,−t⊤]⊤ = [b,B ] · [1,−t⊤]⊤ = b −B · t = B · t +e −B · t = e (2.5.6)

This property is what Gentry uses to encrypt messages. Take some value for n and set m = n + 1, let C
be:

C = In+1 ·µ+ A (2.5.7)

where µ is some number we would like to encrypt and In+1 is an identity matrix of size (n+1)×(n+1). Matrix
C has the following property, let s = [1,−t⊤]⊤, then:

C · s = (In+1 ·µ+ A) · s = s ·µ+ A · [1,−t⊤]⊤ = s ·µ+e (2.5.8)

This is relationship is almost suitable as an encryption scheme, because e can be chosen such that it is large
enough to make it computationally hard to recover secret key t from A, but small enough such that µ can be
recovered from C . The actual way that numbers are encrypted in Gentry’s scheme is as follows:

C = Flatten(IN ·µ+BitDecomp(R · A)) (2.5.9)

Randomly sample a uniform matrix R ∈ {0,1}N×m to ensure that each message is unique, otherwise anyone
who knows the public key could decrypt encrypted message. The Cipher becomes a matrix of size N × N ,
where N = (n +1) ·ℓ. Gentry has introduced the Flattening function to constrain the size of ciphers, which is
more efficient than the method used in previous work called relinearisation [5]. Using the relationships from
equations 2.5.2 and 2.5.3, the following demonstrates that message µ can still be recovered:

C ·Powersof2(s) = Flatten(IN ·µ+BitDecomp(R · A)) ·Powersof2(s) =
IN ·µ ·Powersof2(s)+BitDecomp(R · A) ·Powersof2(s) =
IN ·µ ·Powersof2(s)+R · A · s =
IN ·µ ·Powersof2(s)+R ·e

(2.5.10)

2.5.3. Scheme summary
To summarise the Gentry encryption scheme [22], the encryption scheme can be divided into three algo-
rithms. An algorithm for key generation, encryption and decryption.

Algorithm 1 Public and private key generation for the Gentry scheme

1: procedure KeyGen
2: draw a random column vector t ∈Zn

q

3: calculate s = [
1,−t⊤

]⊤
4: calculate v = Powersof2(s) ▷ Vector v is the private key
5: draw a random matrix B ∈Zm×n

q
6: draw a row vector e of m entries from the χ distribution
7: calculate b = B · t +e
8: calculate A = [b, B ] ▷ Matrix A is the public key
9: return A, v

10: end procedure
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Algorithm 2 Message encryption with the Gentry scheme

1: procedure Enc(µ, A)
2: draw a random matrix R ∈ {0,1}N×m

3: calculate cipher matrix C = Flatten(µ · IN +BitDecomp(R · A))
4: discard R
5: return C
6: end procedure

Algorithm 3 Cipher decryption Gentry scheme

1: procedure MPDec(C , A)
2: calculate η=C · v ▷ Note that according to equation 2.5.10, η=C · v =µ · v +R ·e
3: set µ̄= 0
4: for i ← 0 to ℓ−1 do
5: check= ηℓ−i−1 −shift_left(µ,ℓ− i −1)
6: if checkℓ−1 ∧checkℓ−2 = 1 then
7: µ̄i ← 1
8: end if
9: end for

10: set µ← µ̄

11: return µ

12: end procedure

Algorithm 3 is called MPDec as it was proposed by Micciancio and Peikert [32], which works for messages
µ ∈ Zq . Previous algorithms only allowed for the recovery of messages the size of a single bit.

2.5.4. Homomorphic properties
Gentry has pointed out 4 homomorphic properties. The homomorphic properties relevant to this thesis are
the following three:

• MultConst(C ,α)
Given a cipher C = Enc(µ) and a number α, where µ,α ∈Zq , then

MPDec(MultConst(C ,α)) =µ ·α+���:0
R ·e (2.5.11)

To perform the MultConst(C ,α) operation, set Mα = Flatten(I ·α), then MultConst(C ,α) = Flatten(Mα ·C ).
This relationship can be confirmed as follows:

MultConst(C ,α) = Flatten(Mα ·C ) = Flatten(Flatten(I ·α) ·Flatten(I ·µ+BitDecomp(R · A))) =
Flatten(I ·µ ·α+Mα ·BitDecomp(R · A)) · v =α ·µ · v +Mα ·R ·e

Note that the error increases by at most N ·m. Both matrices Mα and R contain only binary elements
and Mα ·R ∈Z(n+1)×m

N , therefore e is at most scaled by N times by m elements.

• Add(C1,C2)
Given two ciphers C1,C2 corresponding to the encryption of µ1 and µ2 respectively where µ1,µ2 ∈Zq , if
Add(C1,C2) = Flatten(C1 +C2), then MPDec(Add(C1,C2)) =µ1 +µ2. Gentry states that this relationship
is obvious, but for the sake of completeness, the following proves the relationship:

Add(C1,C2) = Flatten(C1 +C2) =
Flatten(Flatten(I ·µ1 +BitDecomp(R1 · A))+Flatten(I ·µ2 +BitDecomp(R2 · A))) =
Flatten(I · (µ1 +µ2)+BitDecomp(R1 · A)+BitDecomp(R2 · A)) =
Flatten(I · (µ1 +µ2)+BitDecomp(R3 · A))

Flatten(I · (µ1 +µ2)+BitDecomp(R3 · A)) · v = (µ1 +µ2) · v +R3 ·e
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R3 ∈ ZN×m
2 is equivalent to the addition of matrices R1 and R2 after flattening. When performing ho-

momorphic addition, the error does not grow.

• Mult(C1,C2)
Given two ciphers C1,C2 corresponding to the encryption of µ1 and µ2 respectively where µ1,µ2 ∈ Zq ,
take Mult(C1,C2) = Flatten(C1 ·C2), then MPDec(Mult(C1,C2)) =µ1 ·µ2. This relationship can be proven
through:

Mult(C1,C2) · v = Flatten(C1 ·C2) · v =C1 ·C2 · v =C1 · (µ2 · v +R2 ·e) =
C1 ·µ2 · v +C1 ·R2 ·e =µ2 · (C1 · v)+C1 ·R2 ·e =µ2 · (µ1 · v +R1 ·e)+C1 ·R2 ·e =
µ1 ·µ2 · v +µ2 ·R1 ·e +C1 ·R2 ·e

Though matrix multiplication is not commutative, homomorphic multiplication is commutative with
respect to decryption (C1 ·C2 ̸= C2 ·C1, but MPDec(Mult(C1,C2)) = Mult(C2,C1) if the error vector re-
mains small). Observe that the error of this operation scales with both N as well as the size of µ2 (or
µ1 depending on the order of the matrix multiplication of C1 and C2). This means that with succes-
sive multiplications, the error will grow exponentially. This property is defined as multiplicative depth
which limits the scheme and requires a solution or workaround. The solution to address multiplicative
depth selected in this thesis will be discussed in section 4.2.

2.5.5. Security
Gentry’s encryption scheme derives it security from the computational complexity of the LWE problem.
Hence security of the Gentry scheme follows from an implicit lemma from the paper by Odded Regev which
introduces the LWE problem On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
[40]:

Lemma 1. Let params = (n, q,χ,m) be such that the LWEn,q,χ hardness assumption holds [40]. Then, for
m =O(n log q) and A,R as generated according to algorithms 1 and 2, the joint distribution (A,R ·A) is compu-
tationally indistinguishable from uniform over Zm×(n+1)

q ×ZN×(n+1)
q

Odded Regev clarifies that the condition m > 2n log q is sufficient to ensure security [40].

2.6. Numbering system
Currently, it is only possible to store unsigned integers using current homomorphic encryption schemes. It is
possible to store numbers in floating point format, but doing so would require the implementation of some
logic scheme to perform necessary steps such re-normalisation [34]. Luckily, there is Q-notation, also known
as fixed point representation. With this format it is possible to store negative numbers and fractions. The
notation consists of two components, 2’s complement and fractional bit representation.

2.6.1. Binary addition and multiplication
Modern computation is currently dominated by digital computation which utilises binary representation
of numbers and states. The standard way of representing numbers in binary is called 1-complement (pro-
nounced one’s-complement). 1-complement is easy to understand as counting works much the same as in
base-10. Addition and multiplication are also easy to perform. Addition of two numbers x and y can be
performed by counting up from x up to each 1 digit in y (see table 2.6.1a). Multiplication is slightly more
involved. Multiplication is performed through the following procedure: take the first digit in y , if it is 1, then
add x to the result. For the next digit in y add x ·2, then x ·22, x ·23 and so forth (see table 2.6.1b). Computers
are limited to a fixed number of digits that can be represented. If the result of an addition or multiplication
consists of more digits than a computer can represent, this is called overflow (see figure2.6.1c). Sections of
binary that exceed the computers capacity, these are usually discarded and ignored (though most computers
are able to detect if overflow occurs).
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0011
0010 +
0101

(a) Addition: 3+2

0101
0011 ×
0101
1010 +
1111

(b) Multiplication 5×3

1100
0100+
1000
1000+

10000

(c) 12+4 causing Overflow

Table 2.6.1: Binary addition and multiplication

2.6.2. Negative numbers
When introducing negative numbers, 1-complement alone is not enough to perform all operations we might
want to carry out. Of course, on paper we can simply use negative sign notation we would with decimal. The
goal is to run these calculations on a computer and a computer is not as flexible as the human mind.
We could simply add an extra bit to indicate sign and change the way addition is performed. However, there
is a smarter solution to this.
Another way of representing binary numbers is using so called 2-complement (pronounced Two’s comple-
ment). The most significant bit of a number is reserved for sign. When the sign bit is zero, the other bits
represent positive numbers the same as in 1-complement. When the sign bit is 1, the other bits represent
2ℓ−|x|, where ℓ is the number of bits reserved to represent decimal number x (see table 2.6.2).

2-complement decimal
0 1 1 1 1 = 15
0 0 0 1 0 = 2
0 0 0 0 1 = 1
0 0 0 0 0 = 0
1 1 1 1 1 = -1
1 1 1 1 0 = -2
1 0 0 0 0 = -16

Table 2.6.2: Two’s complement for numbers stored in 5-bit large container

This way of representing numbers has the benefit that addition and multiplication logic used for 1-complement
can be used for both positive and negative numbers and any combination (see 2.6.3). Bits that carry out side
of the container are simply ignored, therefore the overflow condition is now slightly different. Overflow is
now when an illegal sign change occurs (see table 2.6.3c). In other words the following must hold:

• negative + negative = negative

• positive + positive = positive

Otherwise overflow has occurred.

1101
0100 +
0001

(a) Addition: −3+4

1110
1110 ×
0100

(b) Multiplication −2×−2

0111
0010+
1001

(c) 7+2 causing Overflow

Table 2.6.3: Binary addition and multiplication

2.6.3. Q-notation
Lastly, we can adapt the representation even further to represent fixed precision fractions. Define ℓ the total
length of a binary number, m the amount of bits designated to represent the integer portion of a number and
n the fractional portion of a number. Then we know ℓ= m +n +1. A fraction is the result of a division of two
integers, which extends to binary. The most common format to store binary fractions is by using Q-notation,
which relates to base-10 through the relation:
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d =−bℓ2ℓ−n−1 +
ℓ−1∑
i=1

2i−n−1bi

where d is a decimal number, b binary and bi refers to the i − th digit in b ordered from least to most signifi-
cant. This notation is also called the Q-notation (see table 2.6.4 for examples). Fixed point number represen-
tation will be denoted as Q(m,n), where m denotes the amount of integer bits and n denotes the amount of
fractional bits.
Fractions in decimal can be converted to Q-notation by multiplying the number by 2n rounding it and con-
verting the resulting number to 2-complement. These binary numbers can be converted back to base-10 by
dividing the integer value by 2n .

A more intuitive interpretation of Q-notation is that where normally each bit represents a power of two, Q-
notation extends to negative exponents. Equation 2.6.1 illustrates this with an example.

24 23 22 21 20

0 1 1 0 12 = 1310

22 21 20 2−1 2−2

0 1 1 0 12 = 3.2510

(2.6.1)

Q-notation decimal

0 1 1 1 1 = 15
4

0 0 0 1 0 = 1
2

0 0 0 0 1 = 1
4

0 0 0 0 0 = 0

1 1 1 1 1 = - 1
4

1 1 1 1 0 = - 1
2

1 0 0 0 0 = -4

Table 2.6.4: Q-notation stored in 5-bit large container with m = 2

The useful property of Q-notation is that arithmetic is fully compatible with for 1-complement (aside from
overflow handling of course).

2.6.4. Fixed precision addition and multiplication
Adding two fixed precision values is similar to the addition of two 2’s complement values, in fact, when two
values with the same amount of fractional bits are added, the binary values can be added as two one’s com-
plement numbers. It is also possible to add two fractional numbers with different amounts of fractional bits,
but this will not be elaborated on as it is not necessary in the context of this thesis.
When multiplying two fractions in decimal, the denominator grows. Something similar happens to fixed pre-
cision numbers. When multiplying two fixed precision numbers, the decimal point shifts by the number of
fractional bits of each number combined. To demonstrate this property, take the following theorem:

Theorem 2. When multiplying two fixed precision numbers representing Q(m1,n1) and Q(m2,n2) where
m1 +n1 = m2 +n2 = ℓ (i.e. ℓ is the register size), if the output register is the same size as the input registers and
the operation does not cause overflow, the result represents Q(ℓ− (n1 +n2),n1 +n2).

Proof. Take two fixed point numbers, afp = a′ ·2−n1 and bfp = b′ ·2−n2 , where a′ = ⌊a ·2n1⌉ and b′ = ⌊b ·2n2⌉. If

|a′| · |b′| < 2ℓ, then the following will compute without overflow:

afp ·bfp = a′ ·2−n1 ·b′ ·2−n1 = (a′ ·b′) ·2−(n1+n2) (2.6.2)
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To ensure that a multiplication is performed successfully, ensure that for Q(m1,n1) and Q(m2,n2), n1 and
n2 are chosen based on necessary precision. Set the integer portion to what is left of register size ℓ, then
m1 = ℓ−n1 and m2 = ℓ−n2. So long as the integer portion of the result is smaller than 2ℓ−(n1+n2) an output
of representation Q(ℓ− (n1 +n2),n1 +n2) =Q(m3,n3) will always fit the output register.
Of course, after multiple computations, the size of the Q-notation will exceed available register size. In other
words, overflow occurs. To prevent this from happening, numbers are right shifted to shift the decimal point
to a desired position, which is called truncation. Unfortunately, this is not yet possible to do with encrypted
numbers, thus alternate solutions are needed. The chosen solution will be discussed in section 4.7 and chap-
ter 5 will elaborate with a numerical example.



3
Gentry’s Encryption scheme revisited

As it stands, the encryption using Gentry’s scheme as well as the homomorphic operations are computation-
ally expensive. Ciphers consist of binary elements. Hence when multiplying or adding two ciphers, such an
operation consists of many bit-wise operations. A naive approach to an implementation leads to large ineffi-
ciencies. This chapter will introduce notation that improves legibility and simplifies manipulation of Gentry’s
encryption scheme. All functions are replaced with analytical equivalents utilising the new notation. These
improvements lay bare avenues of potential simplification which will be followed to their natural conclusion
in this chapter.
Section 3.1 starts off the chapter by introducing new notation and how it can be used to replace functions
proposed by Gentry’s with analytical equivalents. Section 3.2 introduces the concept of reduced ciphers and
how they can be applied. Finally section 3.3 discusses the benefits of using reduced ciphers.

3.1. New notation
Legibility of the description and proofs that will follow in later sections can be significantly simplified by
introducing the following notation: Take some positive integer a. The relationship between its binary repre-
sentation and representation in decimal can be characterised through:

a =
∞∑

i=0
2i a[i ] (3.1.1)

In Gentry’s scheme [22] cipher space has to be constrained and on top of that, using physical hardware means
representation of integers will be limited in precision. Usually, this means that following mathematical oper-
ations, if the result exceeds the size which the available registers can represent, the bits that exceed this size,
or overflow, are ignored. This behaviour will be made explicit through the following notation:

(a)ℓ =
ℓ−1∑
i=0

2i a[i ] (3.1.2)

This means that if a ≤ q where q = 2ℓ−1, then (a)ℓ = a, if a > q , then (a)ℓ ̸= a. This operation has a useful
property, given two numbers a,b ∈N, then

(b + (a)ℓ)ℓ = ((b)ℓ+ (a)ℓ)ℓ = ((b)ℓ+a)ℓ = (b +a)ℓ (3.1.3)

Although this property is not used explicitly in Gentry’s encryption scheme, it is integral to its functionality
as many derived properties depend on this property.
To further improve legibility, for some positive integer a ∈N, let

[a]ℓ = BitDecomp(a) (3.1.4)

19
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This notation makes the dependency on parameter ℓmore explicit. Finally, note that given a vector, contain-
ing the ℓ bits of some number a, number a can be recovered through:

BitDecomp−1([a]ℓ) =
[

a[0], a[1], a[2], · · · , a[ℓ−1]
]


1

2

4

...
2ℓ−1

= [a]ℓ · g⊤ = a (3.1.5)

Vector g = [
1,2,4, · · ·2ℓ−1

]
is commonly called the gadget vector. The BitDecomp−1 function can be gener-

alised for matrices. Let ⊗ be the Kronecker product, then:

A ∈Zn1×n2·ℓ
q

BitDecomp−1([A]ℓ) = [A]ℓ⊗ g⊤ = [A]ℓ · In2 ⊗ g⊤ = [A]ℓ ·Gn2

(3.1.6)

where In2 is the identity matrix of size n2×n2 and Gn2 is a matrix called the gadget matrix. This matrix will be
used in presenting proofs, but will not actually be used in practical application.
Using the new notation and the gadget matrix, the functions proposed by Gentry can reconstructed:

Definition 1. For any matrix A ∈Zn1×n2
q

BitDecomp(A) = [A]ℓ

BitDecomp−1([A]ℓ) = [A]ℓ ·Gn2 = A

Flatten(A) = [A ·Gn2 ]ℓ

Powersof2−1(A) = A ·G⊤
n2

(3.1.7)

Note: recall that if any entries in A are larger than q −1, i.e. A ̸⊂Zn1×n2
q , then [A]ℓ ·Gn2 ̸= A.

With the newly introduced notation, the relationships from equations (2.5.2) and (2.5.3) can be rewritten.
From the original description it is not immediately clear why these relationships hold. Utilising the new
notation it can easily be confirmed algebraically:

〈BitDecomp(a),Powersof2(b)〉 = 〈[a]ℓ,b ·G⊤〉 = [a]ℓ · (b ·G⊤)⊤ = [a]ℓ ·G ·b⊤ = a ·b⊤ = 〈a,b〉 (3.1.8)

Note that the last step in the derivation only holds in case a ≤ q . If the size of a is unknown, the following
relationship holds for any a:

〈[a]ℓ,b ·G⊤〉 = 〈(a)ℓ,b〉 (3.1.9)

Next, take 〈a′,Powersof2(b)〉. Substitute a′ for [a]ℓ and rewrite the equation using the new notation, then the
relationship from 2.5.3 follows naturally:

〈a′,Powersof2(b)〉 = 〈[a]ℓ,b ·G⊤〉 = [a]ℓ ·G ·b⊤ = 〈[a]ℓ ·G ,b〉 = 〈BitDecomp(a′),b〉 (3.1.10)

〈[a]ℓ,b ·G⊤〉 = 〈[[a]ℓ ·G]ℓ,b ·G⊤〉 = 〈Flatten(a′),Powersof2(b)〉 (3.1.11)

Next, we can rewrite the homomorphic properties using the new notation.

MultConst(C ,α) = Flatten(Flatten(I ·α) ·C ) =
[

[α · IN ·Gn+1]ℓ ·C ·Gn+1

]ℓ
Add(C1,C2) = Flatten(C1 +C2) = [(C1 +C2)Gn+1]ℓ

Mult(C1,C2) = Flatten(C1 ·C2) = [(C1 ·C2)Gn+1]ℓ

(3.1.12)

3.2. Reduced cipher
Having introduced the new notation, I now propose the so called Reduced cipher:

C̃ ∈Z(n+1)·ℓ×(n+1)
q

C̃ =C ·G
(3.2.1)



3.2. Reduced cipher 21

The reduced cipher removes many calculation steps and simplifies all aspects of Gentry’s encryption scheme.
Reduced ciphers largely reduces the computational complexity and memory footprint of encryption and all
homomorphic operations. Note the pattern of how the message µ is incorporated in a cipher:

C = Flatten(IN ·µ+BitDecomp(R · A))

Before the Flatten function is applied, message µ is added to the diagonal of matrix BitDecomp(R ·A). Matrix
BitDecomp(R ·A) is already a matrix with values between 0 and 1. Large parts of the message is then discarded
when Flatten is applied. This regularity can be exploited. Rewriting the generation of cipher C with the new
notation yields:

C = [(IN ·µ+ [R · A]ℓ) ·G]ℓ

Note the following property that follows from the new notation:

Lemma 3. For any matrix Λ ∈Nn1×n2 , we have [Λ]ℓGn2 = (Λ)ℓ.

Proof. First consider α ∈N. for any α it holds

(α)ℓ =
ℓ−1∑
i=0

2iα[i ] =
[
α[0], . . . ,α[ℓ−1]

]
· g = [α]ℓ · g .

Then apply this relation on each element ofΛ, giving

(Λ)ℓ = [Λ]ℓ · In2 ⊗ g = [Λ]ℓ ·Gn2

Using lemma 3, the generation of a reduced cipher can be performed as follows:

C̃ =[(IN ·µ+ [R · A]ℓ) ·G]ℓ ·G =
((IN ·µ+ [R · A]ℓ) ·G)ℓ =
(G ·µ+ [R · A]ℓ ·G)ℓ =
(G ·µ+ (R · A)ℓ)ℓ =
(G ·µ+R · A)ℓ

Furthermore, the gadget matrix G has a very simple structure and can be implemented without performing a
matrix multiplication. Take some matrix Λ ∈ZN×N

2 and some number α, then let γ(α,Λ) be:

Γ= γ(α,Λ) =
{
Γi , j = (Λ̃i , j + (α≪ i mod ℓ)ℓ)ℓ if j = ⌊i /ℓ⌋ ,

Γi , j = Λ̃i , j otherwise .
(3.2.2)

A reduced cipher C̃ can then be efficiently generated through C̃ = γ(µ,R · A). Given the definition of reduced
ciphers, take the following theorem:

Theorem 4. Given ciphers C1,C2 ∈ZN×N
2 and scalar α ∈Zq the existing homomorphic operations can equiva-

lently be written using the reduced ciphers as

C3 = [(C1 +C2)Gn+1]ℓ⇐⇒ C̃3 =
(
C̃1 + C̃2

)ℓ
(3.2.3)

C4 = [(C1 ·C2)Gn+1]ℓ⇐⇒ C̃4 =
(
C1 · C̃2

)ℓ
(3.2.4)

C5 = [[αGn+1]ℓ ·C1Gn+1]ℓ⇐⇒ C̃5 = ([αGn+1]ℓ C̃1)ℓ (3.2.5)

Proof. Each equivalence will be proven separately below. To do so the notation from Definition 1, as well as
the result from Lemma 3 will be used.

C̃3 = [(C1 +C2)Gn+1]ℓGn+1

= (C1Gn+1 +C2Gn+1)ℓ = (
C̃1 + C̃2

)ℓ
C̃4 = [(C1 ·C2)Gn+1]ℓGn+1 =

(
C1 · C̃2

)ℓ
C̃5 =

[
[αIN Gn+1]ℓ ·C1Gn+1

]ℓ
Gn+1

=
(
[αGn+1]ℓ · C̃1

)ℓ
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Finally, decryption can be rewritten using the novel notation as follows:

µ= MPDec((CGn+1s)ℓ) = MPDec((C̃ s)ℓ) (3.2.6)

3.3. Computational complexity
Performance of the Gentry scheme is improved using the new notation in combination with the reduced ci-
pher. This will be called the reduced cipher approach. This section will highlight the differences between the
naive approach and the reduced cipher approach in terms of computational complexity and memory usage.
The naive approach to computation of homomorphic multiplications can be broken up into the following
three stages:

Given some plain text message µ ∈Zq where q ∈N, which requires ℓ bits of storage and some security param-
eter n and N = (n +1) ·ℓ. Homomorphic multiplication then becomes

C1+2 = C1 +C2 C1+2 ∈ZN×N
3

C̃3 = (C1+2 ·G(n+1))
ℓ C̃3 ∈ZN×(n+1)

q

C3 = [
C̃3

]ℓ
C3 ∈ZN×N

2

Addition of two ciphers would require the generation and storage of an intermediate matrix which can con-
tain values 0,1 and 2 which would require unconventional storage conventions. Producing the final result
requires the flattening operation. Multiplication of two ciphers is even worse as its intermediate product can
contain values between 0 and q even though the result contains only binary elements:

C1×2 = C1 ·C2 C1×2 ∈ZN×N
(N+1)

C̃4 = (C1×2 ·G(n+1))
ℓ C̃3 ∈ZN×(n+1)

(N+1)·q

C4 = [
C̃4

]ℓ
C3 ∈ZN×N

2

Using reduced ciphers, addition and multiplication can be performed in one step (see equations 3.3.1 and
3.3.2). The result can be produced directly, as the Flattening operation is incorporated through discarding
overflow. Given that any target platform will have limited precision, the (·)ℓ operation is an inherent quality
of the addition process.

C̃3 =
(
C̃1 + C̃2

)ℓ
(3.3.1)

C̃4 =
(
C1 · C̃2

)ℓ = (
C̃⊤

1 ·C2
)ℓ

(3.3.2)

Cipher multiplication as described in equation 3.3.2 can directly be implemented on an FPGA, however on a
CPU it is important which form the reduced cipher equivalent takes. Take note of how in equation 3.3.2, only
one of the ciphers can be in reduced form. Take the operation

C1 · C̃2 (3.3.3)

Two ensure optimal performance, it important to take into account how data is loaded from memory into
the CPU. To perform the matrix multiplication from equation 3.3.3, individual bits of the reduced cipher C̃1

have to accessed. In conventional computing, data is stored one dimensionally, the only dimension being
a single address at which a 64 bit chunk of memory is located. To store matrices, they have to be stored
either one row at a time, or one column at a time. These conventions are called row-major order and column
major order respectively. Which convention is used depends on the programming language used (see figures
3.3.1). Conventional CPU’s have different types of memory, mass storage memory, work memory and cache
memory. Mass storage is relatively cheap, but slow. Work memory is faster, but more expensive and smaller.
Cache is memory that is located within the CPU, this is the fastest memory. Currently most CPU’s have a
memory interface that support either single channel or dual channel mode, which utilise a 64 bit and 128 bit
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bus width respectively [29]. Therefore data can be moved between different memory devices in 64 bit or 128
bit chunks.

(a) Row major order storage of matrix (b) Column major order storage of matrix

Figure 3.3.1: Matrix storage in conventional computing

The loading operation necessary for evaluating equation 3.3.3 will be efficient so long as C̃1 stored in row
major order.

Figure 3.3.2: Due to the matrix being stored in column-major order, more memory has to be loaded in to perform the matrix multiplica-
tion

If the matrix is stored with the column major order convention, for one multiplication of a row and col-
umn, only the first bit of each element loaded would be used. Figure 3.3.2 illustrates storage convention can
lead to data being loaded into cache unnecessarily (with 4 bits instead of 64 for clarity). Conventional CPU’s
only have a limited amount of cache memory, which is the memory that can directly be used in computa-
tion. Ciphers tend to be rather large, in which case large parts of memory have to be loaded in and out of
cache memory which takes time. If matrices are stored in column major order the alternative form should be
used:

C̃⊤
1 ·C2 (3.3.4)

The benefits of the adaptations can be demonstrated by comparing the amount of elements that have to be
evaluated to perform each operation using the naive approach as compared to the adapted notation. The
result of such a comparison can be seen in table 3.3.1.
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Table 3.3.1: Number of operations required to perform homomorphic operations.

Cipher&Cipher
Homomorphic addition Homomorphic multiplication

Cipher Red. Cipher Cipher Red. Cipher

Bit Operation 0 0 O (n3ℓ3) O (n3ℓ2)

Addition O (n3ℓ2) O (n2ℓ) O (n3ℓ3) O (n3ℓ2)

Multiplication O (n3ℓ2) 0 O (n3ℓ2) 0

Memory O (n2ℓ2) O (n2ℓ2) O (n2ℓ2 log(nℓ)) O (n2ℓ2)

Cipher&Known

Bit Operation O (n3ℓ2) O (ℓ) O (n2ℓ3) O (n2ℓ2)

Addition O (n3ℓ2) O (nℓ) O (n3ℓ3) O (n2ℓ2)

Multiplication O (n2ℓ) 0 O (n3ℓ2) 0

Memory O (n2ℓ2) O (n2ℓ2) O (n2ℓ2 log(ℓ)) O (n2ℓ2)

Table 3.3.1 consists of two parts: the top portion "Cipher&Cipher" which are the homomorphic operations
between two ciphers and the second "Cipher&Known" which are the homomorphic operations between a
Cipher and an unencrypted value. The two main columns "Homomorphic addition" and "Homomorphic
multiplication" are both split in two columns for the cipher and reduced cipher equivalent of each type of
homomorphic operation. Each homomorphic operation can be broken down into bit operations, additions
and multiplication of individual elements. As a final note, the memory footprint is also given. The amount
of memory that has to be handled is significantly reduced. Also, note that a need multiplication of individual
elements is entirely removed. Homomorphic addition and multiplication can be computed all or mostly
with addition and bit operations. With respect to an FPGA design, this makes homomorphic multiplication,
the most computationally expensive operation, much more space efficient, reducing compute time. The
importance of space efficiency will be elaborated on in the next chapter, section 4.3.2.
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Hardware implementation

The practical implementation of a feedback controller requires the design and application on a hardware
platform. This chapter will start with the introduction of the controller topology that will be implemented
with FHE in section 4.1. Section 4.2 will broadly discus how the controller will be integrated with a physical
plant. Section 4.3 will go into detail as to what an FPGA is, its functionality and how it is deployed. The gen-
eration of random numbers is non-trivial, especially given the tight constraints on both time and quality that
encryption requires. Hence, section 4.4 will describe in detail, the decisions that have been made in the design
of the random number generation. Sections 4.5 discusses the subsystems that performs arithmetic, followed
by section 4.6 which covers the timing mechanisms used for coordination of the various subsystems. The
chapter ends section 4.7 with a detailed explanation of how the plant interface and controller are designed,
which summarises how all the subsystems are connected to make up larger subsystem that combine to form
system as a whole.

4.1. controller topology
As mentioned in section 1.2, one of the goals of this research is to facilitate the implementation of a wide
range of feedback controllers. A discrete time state feedback controller is a common controller topology
that utilises memory which is a requirement for more complex feedback control. Such a controller could be
expanded with disturbance observers or Kalman filtering and more.
The observer that will be implemented for the purposes of this research will be a Luenberg observer (see [45]
for more information). The controller topology then becomes:

{
x̂(k +1) = Ad x̂(k)+Bd u(k)+L(y(k)−C x̂(k))

u(k +1) =−K x̂(k +1)
(4.1.1)

Note that the future control effort u is calculated. The control effort of the next time step is calculated ahead
of time. This is because the computation of the control effort takes time, which would introduce a delay.
In some systems this delay might be negligible, but in the case of most real time control systems this is not
the case. This is especially the case for the system that is the goal of this thesis. The transfer of data alone
is likely to introduce large delays, hence the choice of this design. The control effort for the next time step
is calculated and held for application at the correct time. Figure 4.1.2 illustrates the mechanism (see figure
4.1.1 for the convention of the diagram). The dimensionless actuator state has to be switched from 0.0 to
0.56, followed by 0.94. If the current control effort is calculated, the calculation time causes the update of the
actuation state to be delayed (see figure 4.1.2a). If the calculation of the control effort is non-deterministic,
delay would also vary in length, exacerbating the issue. Calculating the future control effort allows for the
controller to actuate at regular intervals (see figure 4.1.2b).

25
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Figure 4.1.1: Timing diagram convention

(a) Delay in control effort application (b) Control effort applied at the moment of sensor measurement

Figure 4.1.2: Comparison of the calculation of control effort of current time step vs calculation of the control effort one step ahead

To flip the sign of a value would normally happen negligibly fast. This is not the case when using FHE. Nega-
tion would mean a multiplication by −1, because bit operations are not available. Luckily this can be cir-
cumvented by making a slight change to the controller topology. Take matrices L̄ = −L and K̄ = −K and let
ȳ(k) = −y(k). Matrices L and K can easily be negated apriori and the sensor data can be negated before
encryption, which yields the following controller:

{
x̂(k +1) = Ad ⊙ x̂(k)+Bd u(k)+ L̄(ȳ(k)+C x̂(k))

u(k +1) = K̄ x̂(k +1)
(4.1.2)

Finally, with encryption, the controller becomes:

{
x̂(k +1) = Adx̂(k)⊕Bd ⊙u(k)+ L̄⊙ (ȳ(k)⊕C⊙ x̂(k))

u(k +1) = K̄⊙ x̂(k +1)
(4.1.3)

Here, the bold print denotes that the signal or matrix is encrypted and ⊙ and ⊕ denote homomorphic mul-
tiplication and addition respectively. The exact plant definition and modelling as well as the tuning of the
control parameters will be discussed in chapter 5.

4.2. System overview
To design the feedback system, there are of course two problems have to be addressed as described in sections
2.5 and 1.1, FHE schemes have limited multiplicative depth. The other issue is that of truncation as discussed
in section 2.6.4. The main goal of this thesis is to improve the performance of FHE in feedback control.
Therefore the solution propose by [28] be used. The plant interface takes sensor data and encrypts it to be
sent to the controller. The controller updates its observer states and computes the control effort. When
the observer is updated, the decimal point of the observer states shifts. When the controller has finished
computation, it sends the control effort as well as the observer states back to the plant interface. This is
so that the plant interface can decrypt the observer states and control effort. This resets the multaplicative
depth. Control effort is stored to be applied at the right time. Next, the plant interface can then truncate the
observer states and control effort after which it re-encrypts the signals to be sent to the controller along with
new sensor data for the calculation of the next observer states and control effort.
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Physically, the entire system consists of two Field Programmable Gate Arrays, FPGA’s. In a broad sense, an
FPGA is a platform that allows for the programming of circuits. Section 4.3 will elaborate on how FPGA’s
function. Figure 4.2.1 shows an overview of the entire system.

Figure 4.2.1: Diagram showing an overview of the control loop consisting of the plant, plant interface and controller

FPGA 1 functions as the plant interface and FPGA 2 functions as a controller. The interface and plant are
connected physically in a shared container that prevents physical tampering. At boot up, the plant inter-
face generates a public-private key pair and encrypts the state space data (state space matrices as well as
controller- and observer gains), SS-data. After the state space data has been set to the controller, the regular
control loop is started. This loop is then repeated to stabilise the plant.

4.3. FPGA design
A micro-controller is designed to run machine code, whereas an FPGA is collection of electronics that can be
rewired. This means an FPGA is not programmed with programming language, instead a hardware design
can be flashed to the chip. FPGA’s and conventional CPU’s are able to perform all the same computations,
however a CPU requires large amount of abstraction. An FPGA is much more flexible and so they can be
used to design bespoke solutions. Conventional CPU’s also perform instruction largely sequentially, whereas
FPGA designs can be made to perform most or all instructions in parallel.

4.3.1. Logic Gates
At the basis of every computer are logic gates. The most simple logic gate is the NOT-gate. It takes one input
that can either be true or false. If the input is true, the NOT-gate returns false and if the input it false, the gate
returns true. Another important gate is the is the AND-gate. An AND-gate takes two inputs and only if both
inputs are true, does the and-gate return true. Connecting an AND gate to a NOT-gate, is called a NAND-gate
4.3.1b. Table 4.3.1a shows the truth table of a NAND-gate where a and b denote the two inputs, c denotes the
output and 0 denotes false and 1 denotes true. The NAND-gate is the logic gate that can be built as a circuit
with the least amount of transistors. A NAND-gate is on its own completely Turing-complete, which means
one can build a computer solely using NAND-gates (a machine that can solve any computational problem).
For a NAND-gate to be Turing complete, one needs to be able to build an entire Turing complete operation
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set. A Turing complete set includes a read, write and comparison function [15]. A NAND-gate can be used to
construct any type of logic-gate (there are other gates such as OR and XOR, see figure 4.3.2a), but that leaves
the question of how to build memory to write and read values.

input output
a b c
0 0 1
1 0 1
0 1 1
1 1 0

(a) Truth table of a NAND gate (b) AND gate and NAND gate

Figure 4.3.1: NAND gate truth table and depiction

Not only can NAND gates be used to construct all possible logic gates, they can also be constructed a so called
SR-flipflop (see figure 4.3.2b).

(a) Other gates constructed with NAND gates (b) SR-flipflop

Figure 4.3.2: NAND gate configurations

As can be seen from the truth table 4.3.1, an SR-flipflop functions as a form of memory, as when the inputs
S and R are false, its output will be their previous values (Q̄ is defined as NOT Q, so if Q is true, Q̄ is false
and vice versa). It must be noted that S and R should never both be set to true, because then the flipflop will
behave unexpectedly (as can be seen from the illegal output).

input output
S R Q Q̄
0 0 Q Q̄
0 1 0 1
1 0 1 0
1 1 × ×

Table 4.3.1: Truth table of an SR-flipflop

By adding two additional NAND-gates, a so called SR-flipflop can be created. This is shown in figure 4.3.3b.
The truth table of an SR-flipflop can be seen in figure 4.3.3a. The input clk denotes the clock, an internal
oscillator that switches between true and false at a set period. A flipflop only accepts input when the clk is
true (and again all inputs at true would yields an invalid state). In reality the flipflop is further changed to
ensure the flipflop can only change its value when a rising edge of the clock signal is detected too ensure only
one operation per clock tick can be made. This ensures the behaviour of the flipflop is entirely predictable
(the underlying electronics could otherwise behave unexpectedly).
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input output
clk S R Q Q̄
0 Na Na Q Q̄
1 0 0 Q Q̄
1 0 1 0 1
1 1 0 1 0
1 1 1 × ×

(a) Truth table of a gated SR flipflop, (Na = ’not applicable’, i.e. the
input is ignored) (b) Gated SR-flipflop

Figure 4.3.3: Gated SR-flipflop thruth table and depiction

With a way of storing singular bits and all logic gates to perform read, write and compare bit, we have a
Turing complete operation set and as such it is possible to build any type of classic computer with NAND-
gates.

4.3.2. FPGA components
Rather than individual gates an memory cells, FPGA’s contain a collection of generic digital components. The
majority of components on an FPGA is usually the Adaptive Logic Module, ALM. ALM’s commonly consist of
a look up table, LUT, Full Adders, multiplexers and Flip-Flops. Full adders are circuits that can add up two
bits. A Full adder has two outputs, the result and a carry out. If both inputs are 0, then the result is 0. If one
of the two inputs is 1, then the result is 1. If both inputs are 1 then the the result is zero, because the result
is carried on to the next digit and so the carry out is 1. A Multiplexer is a circuit which has multiple regular
inputs, selection inputs and one output. A multiplexer has one or more selection inputs that can be used to
select which of the regular inputs to pass through to the output. Take the ALM design from intel’s Aria 10
FPGA [47] in figure 4.3.4.
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Reg
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4 Registers for ALM

Full
Adder

Full
Adder

Adaptive
LUT

Figure 4.3.4: ALM design by Intel [47]

The LUT (dark blue, on the left) in this ALM can be pre-loaded with data. If the external input of the top Full
Adder is unconnected, both Full Adders simply pass through the signal from the LUT. The Full Adders can
be connected to other ALM’s or they can be connected to the output of the ALM itself to produce counter
and other such logic. The Multiplexers can be configured to manipulate the LUT output before the signal
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reaches the Flip-Flops where output is captured (Reg, in light blue, to the right). This combination of logic
units allows ALM’s to be connected to one another to form a wide range of logical circuits. FPGA’s also contain
larger lookup tables, large registers of Flip-Flops and slower but more space efficient Block Random Access
Memory, BRAM.
Finally, whilst ALM’s can be used to perform addition, performing multiplication with these modules would
be incredibly space inefficient. Therefore most FPGA’s are equiped with Digital Signal Processing units, DSP’s.
These are circuits that can perform multiplication relatively efficiently. These modules are usually in short
supply compared to other components on FPGA’s. FPGA’s usually have ALM’s in the order of thousands to
tens of thousands, whereas there are usually only tens to hundreds of DSP’s available. To improve perfor-
mance of any FPGA design, it is important to minimise or eliminate the use for DSP’s. Note in table 3.3.1, that
after adaptation of the Gentry scheme [22], using reduced ciphers, to perform homomorphic multiplication,
the need for multiplication of individual components has been eliminated. This means that DSP’s are not
necessary for the generation of circuits to perform homomorphic multiplication (however they can of course
still be used as to not waste them). This should allow for more efficient utilisation of hardware resources
available on an FPGA, which should improve performance.

4.3.3. FPGA design language
An FPGA can be configured by an external computer using software. The international standard that is used
to describe a hardware design (gate/flipflip routing) is called Very High Speed Integrated Circuit Hardware
Description Language, VHSICHDL, which is shortened to VHDL. VHDL is a design language, not a program-
ming language. VHDL can be interpreted to produce an actual physical computer chip. VHDL only describes
what kind of binary logic to perform and needs to be interpreted as transistor networks to be implemented.
To write and test VHDL there are programs such as Vivado and Quaternion. They allow to test the logic as
well as generate a physical design and a bitstream that can be used to flash an FPGA.
The modern VHDL language standard allows for fundamental bit operations as well as defining signed or un-
signed values, that will be interpreted as a register of the size that is specified. The size of the container can
be non-standard (such as 7 or 13). VHDL allows for if-statements as well as switch-case statements (state ma-
chines). These will be interpreted as a state registers with accompanying bit logic. FPGA’s offer great freedom
as well as speed, as the logic does not run in software but directly on the hardware. To illustrate, micro con-
trollers usually allow for the calculation with variables of some fixed size in bits (usually 16, 32, or 64), whereas
with an FPGA one could design circuit to perform calculations on variables consisting of 13 bits along side
of variables of 20 bits. An FPGA also allows for complete concurrency, as all processes can run in parallel as
long as timing constraints are taken into consideration. Some processes will be faster that others depending
on how many logic gates are used, which needs to be accounted for.

4.4. Random number generation for encryption
To implement any modern encryption scheme, random number generation is vital to ensuring adequate se-
curity. There are two kinds of random number generation that are required for a functional design, uniform
number generation and normal number generation. In many stages of Gentry’s encryption scheme, some
form of uniform number generation is utilised, only the generation of numbers from the χ-distribution to
generate an error vector requires normally distributed random numbers. This is a key component in ensur-
ing security and should therefore be handled with care. Section 4.4.1 will discuss the generation of uniform
numbers and section 4.4.3 will discuss the generation of normally distributed random numbers. However, it
is important to first discuss the generation of random numbers in practice.
Generating truly random numbers at high speed is generally infeasible. Hence, in cryptography, a common
solution is to generate a smaller selection of truly random bits, which are then used to generate a seed that is
fed to a pseudo-random number generator [19]. A psuedo-random number generator is a chaotic system that
has some initial state from which it can generate non-repeating patterns for a long time before it returns to
the initial state. This creates a seemingly random stream of uniformly distributed numbers. Psuedo-random
number generators are generally very efficient and therefore very useful for testing. Luckily, the initial state,
which is called the seed, can be periodically updated using truly random bits. This provides an efficient way
of generating uniformly distributed numbers that are sufficiently random for the use of encryption.
Randomness is measured by the amount of entropy that sets of numbers exhibit. If a set of generated num-
bers exhibit high entropy, numbers are highly random, if entropy is low, there is a discernible pattern. Pseudo-
random numbers are numbers that are statistically random, but that have been generated utilising some logic
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or function and some initial state. Of course solely using pseudo-random numbers for encryption would be
a security risk as it would be potentially possible to predict the generated numbers. To handle this issue, the
inclusion of truly random bits solves this issue, assuming the logic or functions used are sufficiently chaotic.
Such a generator is called a cryptographically secure pseudo-random number generator, CSPNRG. For more
information on the topic, consult the book Research Methods for Cyber Security [19].
For the purposes of the research question of this thesis, psuedo-random number generation will suffice, as it
will be enough to demonstrate the functionality of a control setup. Further research could delve into includ-
ing additional logic to produce functionally true random number generation.

4.4.1. Uniform number generation
To determine the best way to generate pseudo-random numbers, it is important to consider the target plat-
form. An FPGA has an abundance of simple logic and registers. This makes the platform well suited for the
use of linear feedback shift registers, LFSR’s [13]. LFSR’s consist of a register, and some simple logic gates. In
general, an LFSR has a register that is loaded with some begin state, which is called the seed. Then a few of the
most significant bits are used to generate a new bit using some simple logic gates, which is called the feed-
back. This bit will be used as the output. Next the register is shifted to left and the first bit is set to the feedback
bit. This concludes one cycle. By running an LFSR for multiple cycles an entire sequence of random bits can
be generated, with which one could for instance construct random integers. The architecture that will be
used is a simple XNOR-LFSR as specified by Xilinx [46]. The LFSR will follow the following procedure:

Algorithm 4 Basic LFSR

1: procedure LFSR(clk, enable)
2: if rising_edge(clk) AND enable = 1 then
3: feedback← register[ℓ−1] XOR register[ℓ−2] XOR register[ℓ−3] XOR register[ℓ−4]
4: register[ℓ−2 : 1] ← register[ℓ−2 : 0]
5: register[0] ← feedback
6: return feedback
7: end if
8: end procedure

At initialisation, register will be set to some preprogrammed random binary string (seed). Variables clk
and enable are signal lines that can either be high or low. clk will be connected to the internal clock of the
hardware platform. By ensuring the LFSR can only be updated on a rising edge of the hardware clock ensures
correct timing and thus synchronisation with the other parts of the hardware design. The enable line is used
to turn the LFSR on only when needed. As in previous chapter ℓ is defined as the size of the internal register
register. Due to the chaotic nature of the algorithm, there is no repetition for 2ℓ cycles. This means that an
LFSR with a 64-bits register, operating continuously at 400Mhz, there would be no repetition of the contents
of the register for at least 1500 years.
Of course, to generate larger random sequences would require either concatenation of multiple LFSR sub-
circuits or running a singe LFSR circuit for multiple cycles. The final design utilises a hybrid solution. A circuit
combines 256 LFSR’s, with 64-bit internal registers, each with their own seed for a random 256-bit output.
This output is then read for multiple cycles. Such a solution allows for high speed generation of random data
whilst remaining small in footprint. Assuming the generation of random integers is allowed 1ms, at 400Mhz,
the circuit can generate approximately 1.3 gigabytes of random data. If the random data is used to encrypt
some message to be sent utilising an internet connection, this speed should be more adequate, given that
the highest available internet download speeds are advertised at 10,000Mbps, which is 1.25 gigabytes per
second [24]. The highest average speed in the world is more around 0.0375 gigabytes per second. Given these
speeds, transmission is more likely to form a bottleneck rather than random number generation. As such, the
aforementioned solution should offer adequate performance.

4.4.2. Random normally distributed numbers
The generation of random normally generated numbers is a more complex matter. There are a few popular
solutions. They differ considerably, however, in essence they are all a mapping of uniformly generated num-
bers to normally distributed numbers.
The most simple but straight forward method is to use the Box-Muller transform [4]. Given two uniformly
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random numbers U1,U2 ∈ (0,1), two normally distributed numbers can be generated through:

Z1 =
√

−2lnU2 cos(2πU1)

Z2 =
√

−2lnU1 sin(2πU2)
(4.4.1)

Two issues should be immediately clear. The previous section discussed how to generate randomly generated
integers from random bits. This means that the generated integers will always range from (0,2ℓ−1 −1) in case
output is interpreted as unsigned integers or (1−2ℓ−1,2ℓ−1 −2,) if signed. Therefore the output will have to
be interpreted either as floating point numbers or fixed point numbers. Not only that, this algorithm would
also require the implementation of a sine and cosine function, natural logarithm and a square root function.
These functions could be implemented using either polynomials approximations, series expansions or by
implementing more involved algorithms such as the CORDIC algorithm. The CORDIC algorithm requires
iteration, which would complicate timing, as it would require analysis of execution time. The other options
do not fair much better as in the case of utilising fixed point representation, such implementation would
introduce distortion on top of the distortion that the Box-Muller transformation introduces inherently. On
top of that, polynomial approximation requires multiplication. To get an approximation that is somewhat
serviceable requires a polynomial of an order of at least 3 or 4, if not more which is already require many
DSP-slices. Take the following example: The natural log can be split up into two polynomials and the cosine
can be approximated with one. Choosing two 3rd order polynomials for the natural log and a single 4th
order polynomial for the cosine yields disastrous results (see figure 4.4.1a). Picking orders of 5th, 9th and 6th
respectively yields good results, but the order is far to high to be practical (see figure 4.4.1b).

(a) Box-muller method, utilising low order
polynomial approximation

(b) Box-muller method, utilising polynomial approximation of appro-
priate order

Figure 4.4.1: Box-muller method example

Another more complex algorithm is the Ziggurat algorithm [30]. A newer more efficient version of the algo-
rithm as proposed by Christopher McFarland [31], offers good performance, but still does not have a deter-
ministic execution time.

The best solution for hardware implementation is the algorithm as proposed in A New Hardware Efficient
Inversion Based Random Number Generator for Non-uniform Distributions [16]. Note that the authors have
since published a version of their algorithm in [17] which allows for arbitrary precision. The precision that
their previous algorithm offers is more than high enough, given that the normally distributed random num-
bers are scaled and rounded down (see equation 2.4.6). The algorithm from [16] is most well suited to hard-
ware implementation, because instead of using only a single or a few high order polynomials, the algorithm
instead elects to chop into many first or second order polynomials. On conventional hardware, such an ap-
proach would require the use of many if-statements to check which polynomial to use, which would make
for a slow algorithm on conventional hardware. However, the simple nature of the type of check, an FPGA
can perform all these checks instantly at a low hardware cost.

4.4.3. Normal distribution generation
The method described in [16] makes clever use of the properties of binary representation to construct a piece-
wise approximation of the inverse cumulative density function. Take normal distribution Z and uniform
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distribution U and a value x, we want to find a transformation such that:

T (U ) = Z (4.4.2)

If such a transformation exists, it is possible to transform values from U to values in Z . Take the probability
that value Z ≤ x and substitute T (U ) for Z .

Pr(Z ≤ x) = Pr(T (U ) ≤ x) = Pr(U ≤ T −1(x)) (4.4.3)

Assume distribution U is uniform on the interval (0,1), then we can define the so called cumulative probabil-
ity function Pr(U ≤ x) (i.e the chance that a number from U is equal to or smaller than x) as:

Pr(U ≤ x) =


x if 0 ≤ x ≤ 1

1 if 1 < x

0 otherwise .

(4.4.4)

This means that if 0 ≤ x ≤ 1, then we can write equation 4.4.3 as:

Pr(Z ≤ x) = Pr(U ≤ T −1(x)) = Pr(U ≤ T −1(x)) = T −1(x) (4.4.5)

Equation 4.4.5 shows that the probability density function of a normal distribution is the inverse of the trans-
formation we seek. Thus if we can find the inverse of the probability function of Z , we can generate normally
generated numbers from uniformly distributed numbers.

To find this function, we need to take the probability density function of a normal distribution:

Pr(Z = x) = f (x) = 1

σ
p

2π
e−

1
2

( x−µ
σ

)2

(4.4.6)

Here, µ and σ are real valued numbers defined as the mean and standard deviation respectively.
The cumulative density function can be found by integrating the probability density function on the domain
(−∞, x)

Pr(Z ≤ x) =
∫ x

−∞
f (x) = 1

σ
p

2π

∫ x

−∞
e−

1
2

( x−µ
σ

)2

(4.4.7)

There is no (known) analytical solution for the integral, however the target is to find and approximation,
hence this should pose no problem. Finally, the inverse is the following:

Pr(Z ≤ x)−1 =σ ·p2 erf−1(x −µ)

erf(x) = 2p
π

∫ x

∞
e−t 2

d t
(4.4.8)

The erf−1(x) function too cannot be evaluated analytically. Numerical evaluation of Pr(Z ≤ x)−1 yields the
following plot:
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Figure 4.4.2: Inverse CDF
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This function is an inverse cumulative density function, ICDF. By applying the ICDF to uniformly distributed
numbers on the domain (0,1) yields normally distributed numbers.
Note the symmetry around x = 0.5. To approximate the ICDF on the domain (0,1), one can use an approxi-
mation on (0,0.5) or (0.5,1) and change the sign of the output based on the sign of the input. The next step is
to choose a numbering system. The system that requires the least amount of computation would be to sim-
ply use fixed point numbers. Besides this, it is also a good choice since this makes it straight forward to use
binary data supplied by LFSR’s. Producing random uniformly distributed numbers on the domain (0,1), is a
simple question of adjusting the representation accordingly. Finally, fixed point numbers have an inherent
property that makes them suitable to piece-wise approximation. Note that as x tends to 0,

p
2erf−1(x) tends

to minus infinity (or to minus infinity as x tends to 1). Trying to fit polynomials that tend to infinity would fail
to be accurate enough even when using higher order polynomials. This would lead to significant distortion
around the tail ends of the distribution. The authors of [16] propose to approximate the ICDF on (0,0.5) and
split the function into sections logarithmically, each with their own polynomial, such that the approximation
becomes more detailed for input closer to 0. Fixed point numbers are perfect to this end. Each bit in a fixed
point number represents a power of 2. Given a 64-bit input, assuming unsigned fixed point numbers with
representation Q(0,64), the ICDF can be split into 64 sections. The first domain spans [0,2−64〉, followed by
domains spanning [2−i ,21−i 〉 where i = 1,2, · · ·64.
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Figure 4.4.3: Inverse CDF slicing

When using fixed precision numbers, to find in which part of the interval an input falls is very simple. Take
some value x where the leading bit is in the i -th position, then we know that 2i ≤ x < 21+i and so we know
which polynomial to pick, by counting the number of leading zeros (see 4.4.9). There are efficient ways of
utilising hardware to perform the count of leading zeros, such as proposed in Modular Design Of Fast Lead-
ing Zeros Counting Circuit [33]. However, this aspect is unlikely to need optimal implementation given the
available hardware, thus the use of a simple lookup table should suffice.

Q(0,64)

x = 00000000000010110101010111101. . .

12 leading zeros

2−11 ≤ x < 2−12

(4.4.9)

Finally, the authors also add that the sections closer to x = 0.5 might be too low resolution. To improve
resolution in these sections, they can be split up into sections evenly. Set the amount of sections N to be a
power of 2, N = 2n , then selection of the evenly spaced sections can be done by simply reading the n bits,
following the leading bit, as an index for selection. To implement this in hardware design, one can connect
a multiplexer to the input register, using the output of the leading zero count as a selector, such that the
first n-bits that follow the leading bit are piped to the input of a lookup table which select the corresponding
polynomial. The selection procedure, can be summed up in algorithm 5.
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Algorithm 5 Selection of a polynomial

1: procedure PolySel(clk, enable, x)
2: if rising_edge(clk) AND enable = 1 then
3: Nlz ← number of leading zeros of x
4: β←β≪ (Nlz +1) ▷ Removing the leading bit
5: Nlin ←β≫ (ℓ−n) ▷ Isolating bits for linear segment indexing
6: θ← LUT_pl(Nlz, Nlin) ▷ Reading lookup table to select polynomial coefficients
7: return θ

8: end if
9: end procedure

Here θ is an array of length p which contains the polynomial coefficients according to the convention:

y = θp xp +θp−1xp−1 +·· ·θ1x1 +θ0 (4.4.10)

The following diagram shows the entire circuit:

Figure 4.4.4: Circuit diagram for the generation of normally distributed random numbers

This diagram shows an example where entire range of the input of 64-bits is split up into 64 parts logarithmi-
cally (powers of two). It takes 6-bits to represent 64 leading zeros. Each logarithmic section is divided into 4
linear sections and so it takes 2 bits to represent these sections. This is reflected in diagram 4.4.4, the lead-
ing zeros counter LUT feeds the result of the count to a multiplexer which selects the two bits following the
leading one. These bits as well as the amount of leading zeros is interpreted using LUT which outputs the cor-
responding polynomial. Finally a DSP or a set of DSP-slices evaluates the polynomial using the polynomial
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coefficients and the value generated by the LFSR. In case the value of the x is larger than 0.5, x is set to 1− x
and a flag is set to turn the output of the DSP negative.

4.4.4. LWE error vector generation
To produce an error vector requires the sampling of the χ distribution, which can be done by generating
normally distributed numbers and mapping those to Zq . To generate a single entry, take equation 2.4.6 from
section 2.4:

e = ⌈q · (x mod 1)⌋
Where x is a normally distributed random number. Using an actual modulo function would be problematic
as it wouldn’t have a deterministic execution time. Luckily, the second operand is a power of 2. This means
the operation can be simplified. Take a first operand x which is either an integer of fixed point number and
second operand y = 2n . Then if z = x mod y , z can be determined by taking the first (n−1)-bits and interpret
the value as unsigned.

−1310 = 111100112

−1310 mod 2 = 110 = 000000012 → 111100112

−1310 mod 4 = 310 = 000000112 → 111100112

(4.4.11)

Note that a/2n can be rewritten as a ≫ n, given:

a/2n =
( ∞∑

i=0
2i a[i ]

)
/2n =

∞∑
i=0

2−n ·2i a[i ] =
∞∑

i=0
2i−n a[i ] (4.4.12)

Now take an integer a ∈Z and b = 2n where n ∈N and a ≥ 0, then

a mod b = a −
(
b ·

⌊ a

b

⌋)
= a −

(
2n ·

⌊
a

2b

⌋)
= a − (2n · (a ≪ n)) = a − ((a ≪ n) ≫ n) (4.4.13)

The operation ((a ≪ n) ≫ n) leaves the number a′, which is a where the first n bits are set to zero. Subtracting
a′ from a leaves the first n-bits of a. This means that a mod b can be performed by selecting the first n-bits
of a and setting the rest to zero.
Of course, 2’s complement will be used to represent negative numbers. To prove the modulus operator can
be reduced to a selection even in the case a < 0, take ā =−a:

a −
(
b ·

⌊ a

b

⌋)
=−ā −

(
b ·

⌊−ā

b

⌋)
=−ā +b ·

(
1+

⌊
ā

b

⌋)
=

− ā +b +b ·
⌊

ā

b

⌋
= b −b ·

(
ā −

⌊
ā

b

⌋)
= b − ā mod b

(4.4.14)

Given the absolute value of a negative number, a mod b can be equivalently calculated of the selection of the
first (n −1)-bits, and taking the (n −1)-bit 2’s complement equivalent of the result. This is the equivalent of
the selection of the first (n −1)-bits of a negative number stored in ℓ-bit 2’s complement format.
The calculation of the error vector requires x mod 1. To figure out how exactly to perform this operation, a
choice of representation must be made. Firstly, we need −1 ≤ x ≤ 1. Secondly, the DSP-slices that will be
necessary for the evaluation will have output registers that are double the size of the input registers.
Take an LFSR size of 64-bits, then we can pose that the output represents Q(2,63). The integer part is one
bit larger than than in reality, this last bit is implied as it would be the sign bit, but the input of the LFSR will
always be interpreted as a positive number since the input of the ICDF transformation must be between 0
and 1. Given enough segments, the approximation of the ICDF will be precise enough when the polynomials
are chosen to be linear.
To get an idea of the accuracy, take the following example (performed using MATLAB): Given a linear approx-
imation of the ICDF, split into 64 logarithmic segments (base 2) and each of those into 4 linear segments,
using 64-bit floating point numbers yields an average error of 1.0642 ·10−5 when compared with the built in
functions from MATLAB.

The largest coefficient is around 2600 and the coefficients can also be negative. Keeping to within 64-bits
of storage per coefficient, reserving one bit to represent sign, the coefficients should be stored in Q(13,51)
format. The largest positive and negative values that can be stored are 212 − 1 = 4095 and −212 = −4096



4.5. Matrix and vector arithmetic 37

respectively. Evaluating a polynomial results in a number representing Q(13,114). The result will be between
-1 and 1 and the error vector should contain values between −q and q . Though the chance of any value
reaching this bound should be exceedingly small, therefore we can convert the ICDF result to Q(0,64) by
selecting only the relevant portion.
The final step is to multiply the ICDF result by q and rounding the result. Value q is an integer of size 264 −
1, therefore the result of the multiplication represents Q(64,64). The rounding step can be performed by
checking the first fractional bit. If it it 1, the the first digit is 2−1 = 0.5, thus following the tie to even convention,
add 110 to the result and then trim it to Q(64,0). Otherwise trim the result to Q(64,0) with no alteration.

4.5. Matrix and vector arithmetic
Matrix-Matrix multiplication and matrix vector multiplication is relatively straight forward. Theoretically, all
matrix vector operations could be performed in parallel, in practice however, a mid range FPGA would not
have enough DSP’s to do this. A fair amount of parallelisation is possible. It is possible to design parametricly.
The design chosen for matrix and vector arithmetic has two parameters that can be changed to suit the target
platform, the amount of row and partitions that are processed at a time. The parameters can be set such
that multiple rows and/or columns are processed at a time (see eq. 4.5.1), or a single row can be split into
partitions that are handled one each at a time (see eq. 4.5.2).

0 9 3 3

8 4 0 8

10 2 4 8

1 6 0 8




5 10 8 4

3 7 10 4

8 3 9 8

9 3 1 1

→


78 81

124 132

 (4.5.1)

4.1: Illustration of matrix multiplication where multiple rows and columns are evaluated per clock cycle


0 9 3 3

8 4 0 8

10 2 4 8

1 6 0 8




5 10 8 4

3 7 10 4

8 3 9 8

9 3 1 1

→


27


↓

0 9 3 3

8 4 0 8

10 2 4 8

1 6 0 8




5 10 8 4

3 7 10 4

8 3 9 8

9 3 1 1

→


78



(4.5.2)

4.2: Illustration of matrix multiplication where half of a row is evaluated per clock cycle

When given the start signal, the circuit will start incrementing counters for each row, column and partition,
performing the corresponding multiplications and additions corresponding to the current count. When the
final count is reached for each counter, the circuit will set its "done flag" to high for a single clock cycle to
signal it is done and the result has been prepared to be read out. At any time, when the start signal is set to
high the counters will be set to 0 and the process will start again. Even when already in operation, the start
signal will reset the process. Only when the final count is reached will the output of the arithmetic unit be
updated.

4.6. Timing
All the different circuits that make up the entire system have to communicate when to start and when they
are done. Some systems only take one clock cycle to complete, which mean they do not need to signal when
they are done. However circuits such as the matrix/vector arithmetic circuits require multiple cycles to com-
plete. To ensure proper timing, all circuits that require multiple cycles have an internal counter and an oper-
ation flag which is wired into a comparator type circuit. This circuit is called the state debounce comparitor.
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The debounce comparator takes an input and sets the output to high only if the input has been low previ-
ously.

Figure 4.6.1: Timing diagram showing the input-output relation of a comparator type circuit

The operation flag should be set to low when in operation and high when it is not. The debounce comparator
output is used to operate the done flag. The done flag will only be high for a single clock cycle ensuring
predictable behaviour. As stated in the previous section, if the start signal of the matrix-vector arithmetic is
set to high, circuit will reset. If the start signal is set to high for more than a single clock cycle, the arithmetic
circuit will reset until the signal is set to low. The circuit supplying the input might switch to another task
when it is done with the previous. This may mean that the input can only be read for a few cycles or just one
before changing. In that case the input will be read incorrectly, which will lead to unpredictable behaviour if
there is some timing mismatch.
A circuit such as matrix-vector a arithmetic circuit keeps track of its state with counters. An alternative way
to track progress might be a state machine. In that case the mode of operation can be anything. So long as it
has some final state where a done signal is set to high which is read by a debounce comparitor, correct timing
can be ensured.

4.7. Plant interface and controller implementation
Having established the implementation of all fundamental elements of the final system, the plant interface
and controller implementation as shown in figure 4.2.1 can now be explored in more detail.
Firstly, to prevent the diagrams from becoming cluttered some functionality table 4.7.1.

symbol name description

task manager port Every circuit that requires careful timing is connected
to the task manager through this port. Instead of a line,
this symbol indicates that the circuit is connected to
the task manager.

right hand bit shift These circuits bit shift the incoming signal by a pre-
programmed amount.

Hold circuit This circuit receives the control effort for the next time
step and holds the control effort to be released at the
right time.

Table 4.7.1: Table of all symbols used in the plant interface and controller diagrams

During operation, the plant interface utilises counters to time when to measure sensor data and when to push
control effort. As stated earlier in section 4.6, calculation of the control effort takes time and thus the future
control effort is calculated at each current time step. The control effort is applied at the same clock tick that
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the sensor data is read, encrypted and then sent to the controller. The controller calculates the next observer
states and control effort utilising the encrypted control effort and observer state from previous time steps.
The calculated control effort and observer states are then sent back to the plant interface for decryption,
application and re-encryption.
The inner workings of the pant interface is shown in detail in figure 4.7.1.

Figure 4.7.1: Detailed view of the plant interface circuit. The blue lines represent data lines. The green line and red line represent the
public-key and private-key signal lines respectively. The black line is the 256-bit line which transmit uniformly distributed numbers. The
SS-data line is the bus connection transmitting all state-space matrices, observer gains and controller gains.

The task manager turns on the key generator at boot up. The done flag signal line is connected to the State-
space encryption circuit. The circuit encrypts the state-space matrices, controller gains and observer gains.
These signals are summarised by thick blue dashed arrow with the label "SS-data". When the SS-data has
been encrypted and transmitted, the Task manager starts the timer for nominal operation. At a set interval
the decryption circuits are triggered. Note that the controller assumes that the new observer states and con-
trol effort are supplied before the end of one controller time-step. The decryption and encryption circuits
are connected such that the first decryption triggers a cascade. First one decryption circuit is given the start
signal by the task manager. The done flag of this decryption unit is connected to the start signal input of
the encryption circuit that follows. When an Encryption circuit is encrypting the input it requests random
numbers from the LFSR-circuit. When enough random numbers have been supplied, the encryption circuit
signals the next decryption unit, to start decrypting and encrypting the next oberver state or control effort.
This is repeated until all inputs have been decrypted and encrypted again. When all re-encryption has been
performed, the data is sent.
As discussed earlier in section 4.2, multiplication using fixed point numbers causes the number of fractional
bits to grow and on top of that, FHE has limited multiplicative depth. To deal with this issue, a solution is to
send the observer state and control effort back to the plant, where they can be decrypted, truncated and then
re-encrypted, after which they are sent to the controller along with the new measurements. Besides this, it
is necessary to perform sign extension of the state space and gain matrices to ensure validity of all computa-
tions.
When the controller is done calculating, it sends the plant interface the control effort of the next time step
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and so the control effort is held until the current control cycle ends (see the -symbol).
Finally, figure 4.7.2 shows the controller circuit. When the controller unit has received the SS-data at boot
up, the controller is ready for operation. When it receives the encrypted observer states and control-effort
the calculation of the following observer state and control effort commences. Not all calculations can be
performed in parallel, therefore the controller has two arithmetic circuits available to for matrix vector arith-
metic. Each multiplication or addition of two values is performed through matrix multiplication and addition
of the corresponding ciphers. A memory unit contains all SS-data and the calculation results. The memory
unit supplies the inputs to the addition and multiplication unit to cycle through all the necessary calculations
to perform the matrix vector multiplications of the underlying values. When the memory unit receives a start
signal, the matrix multiplication unit start too for the first calculation. The initial instruction is performed
as the counter is set to 0. When a calculation is done, the counter is incremented and the flag signal is car-
ried to either the multiplication circuit or the addition unit depending on the counter state. Depending on
the counter state, the memory unit will pass the signal to either arithmetic circuit. After the final value of the
counter, the counter will reset to zero and the new observer states and control effort are sent back to the plant
interface.

Figure 4.7.2: Detailed view of the controller circuit. Blue lines represent data lines. The black lines coming from the matrix multiplication
and addition circuits are flags that signal that a matrix multiplication or addition has completed. The OR-block drives a counter so that
when either matrix multiplication or addition has completed, the counter is incremented. The count is read by the memory unit so that
it passes the correct matrices to the matrix multiplication and addition units.
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Results

This chapter will present an implementation of the control system as discussed in previous examples, pro-
viding all design parameters. This chapter will start of with section 5.1 which will go into detail on the model
that will be used as a use-case as well as the configuration of the controller. Section 5.1.1 describes the phys-
ical model of a double pendulum followed by section 5.1.2 which demonstrates tests the observability and
controllability of the system. Section 5.1.3 discusses the selection of a suitable sampling frequency for con-
trol. Section 5.1.4 describes the requirements on the fixed point representation derived from the controller
topology as introduced earlier in section 4.1. Section 5.1.5 covers the tuning of the controller parameters.
Section 5.2 presents plots to show the performance of the system for a couple different sampling times. The
final section of the chapter, section 5.3 will discuss the hardware requirements for given security parameters,
sampling times and the amount mathematical operations necessary for the operation of a controller. This
will enable the reader to determine the hardware requirements for their controller of choice. Section 5.3 will
also provide the reader with an example, specifying the hardware requirements for a given implementation
of the controller setup as discussed in section 5.1.

5.1. Pendulum
The system that will be used to implement the control system on will be an inverted double pendulum. A
double pendulum is a nonlinear system that requires a controller that operates at a high sampling rate. This
makes it a good system to analyse whether the encryption is fast enough to enable real-time control. The
following section will describe the model of the double pendulum.

5.1.1. Model
The pendulum consists of two links, each a length of ℓ1 and ℓ2. The position of each link is described by two
angles, θ1 and θ2, see figure 5.1.1.

41
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Figure 5.1.1: Drawing of pendulum model

Angles θ1 and θ2 can be measured with sensors in the joints. The dynamics of the system are the follow-
ing:

θ =
[
θ1

θ2

]
{

M(θ)θ̈+C (θ, θ̇)θ̇+G(θ) = [T 0]⊤ ,

T +τe Ṫ = kmu

M(θ) =
[

P1 +P2 +2P3 cosθ2 P2 +P3 cosθ2

P2 +P3 cosθ2 P2

]
C (θ, θ̇) =

[
b1 −P3θ̇2 sinθ2 −P3(θ̇1 + θ̇2)sinθ2

P3θ̇1 sinθ2 b2

]
G(θ) =

[−g1 sinθ1 − g2 sin(θ1 +θ2)
−g2 sin(θ1 +θ2)

]
P1 =m1c2

1 +m2l 2
1 + I1 P2 = m2c2

2 + I2

P3 =m2l1c2

g1 =(m1c1 +m2l1)g g2 = m2c2g

(5.1.1)

In this model, g is the gravitational constant on earth, c is the centre of mass of a link, I is the inertia of a
link and b the damping coefficients in the two joints. Control effort u can range between −1 and 1 and the
maximum torque of the motor is km . Finally, τe is the time constant of the motor. See the following table for
the values of each parameter that reflect a real setup (double pendulums found in the TU Delft, 3me, DCSC
lab):
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Parameter Value Parameter Value
m1 0.125 kg m2 0.05 kg
l1 0.1 m l2 0.1 m
c1 −0.04 m c2 0.06 m
I1 0.074 kg m2 I2 0.00012 kg m2

b1 4.8 kg s−1 b2 0.0002 kg s−1

km 50 N m τe 0.03 s
g 9.81ms−2

Table 5.1.1: Model and encryption parameters

5.1.2. Stability
The upright position of the pendulum is unstable, but is stabilisable with appropriate control. A viable ap-
proach is discrete time control. To do so, the system must first be linearised around the target equilibrium,
which is at θ1 = 0, θ2 = 0. First, isolate θ̈1 and θ̈2 from equation 5.1.1:

θ̈1 =− 1

P 2
3 cos(θ2)2 −P1P2

(cos(θ2)sin(θ2)P 2
3 θ̇

2
1 +P2 ∗ sin(θ2)P3θ̇

2
1 +2P2 sin(θ2)P3 ∗ θ̇1θ̇2+

P2 ∗ sin(θ2)P3θ̇
2
2 +b2 cos(θ2)P3θ̇2 − g2 sin(θ1 +θ2)cos(θ2)P3−

P2b1θ̇1 +P2b2θ̇2 +P2T +P2g1 sin(θ1))

(5.1.2)

θ̈2 = 1

P 2
3 cos(θ2)2 −P1 ∗P2

(P2T −P2b1θ̇1 +P1b2θ̇2 +P2b2θ̇2 −P1g2 sin(θ1 +θ2)+

P3T cos(θ2)+P2g1 sin(θ1)−P3b1θ̇1 cos(θ2)+2P3b2θ̇2 cos(θ2)+

2P 2
3 θ̇

2
1 cos(θ2)sin(θ2)+P 2

3 θ̇
2
2 cos(θ2)sin(θ2)−P3g2 sin(θ1 +θ2)cos(θ2)+

P1P3θ̇
2
1 sin(θ2)+P2P3θ̇

2
1 sin(θ2)+P2P3θ̇

2
2 sin(θ2)+P3g1 cos(θ2)sin(θ1)+

2P 2
3 θ̇1θ̇2 cos(θ2)sin(θ2)+2P2P3θ̇1θ̇2sin(θ2))

(5.1.3)

Define a state vector x and a nonlinear function which calculates the derivative of x:

x =



θ1

θ̇1

θ2

θ̇2

T

 ẋ = f (θ1, θ̇1,θ2, θ̇2,T,u) = f (x,u) =



θ̇1

θ̈1

θ̇2

θ̈2

Ṫ

 (5.1.4)

We can then derive state space matrices by determining the jacobian of function f (x) with respect to x and
u:
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ẋ = Ax +Bu

y =C x +Du
(5.1.5)

C =
[

1 0 0 0 0

0 0 1 0 0

]
D = 0

∂ f (x,u)

∂x
=A =



0 1 0 0 0

a1 a2 a3 a4 a5

0 0 0 1 0

a6 a7 a8 a9 a10

0 0 0 0 − 1
τ2


∂ f (x,u)

∂u
=B =



0

0

0

0
km
τe


(5.1.6)

a1 = P3g2 −P2g1

(P 2
3 −P1P2

a2 = P2b1

P 2
3 −P1P2

a3 = P3g2

P 2
3 −P1P2

a4 =−P2b2 +P3b2

P 2
3 −P1P2

a5 = P2

P 2
3 −P1P2

a6 =−P1g2 −P2g1 −P3g1 +P3g2

P 2
3 −P1P2

a7 =−P2b1 +P3b1

P 2
3 −P1P2

a8 =−P1g2 +P3g2

P 2
3 −P1P2

a9 = P1b2 +P2b2 +2P3b2

P 2
3 −P1P2

a10 = P2 +P3

P 2
3 −P1P2

(5.1.7)

Now we must investigate controlability and observability of the system. The linearisation of the sytem is LTI,
therefore controlability and observability can be tested using the Hautus tests (see Feedback systems: An in-
troduction for scientists and Engineers[45] for more information). The linearised has five unique eigenvalues
and eigenvetors. Two modes of the system are unstable (two positive eigenvalues). Now take matrices:

[λI − A,B ]

[λI − A;C ]
(5.1.8)

Both matrices are full rank for each eigen value λ of A, therefore the system is both controllable an observ-
able (See section A.1 in the appendix for the numerical calculations). Given that the nonlinear is continuously
differentiable and time independent, the nonlinear system is locally controllable and locally observable. We
know now that the system can be stabilised given the control input and sensor data that is available. However
there is one last complication. Discrete control will be used, which means that the criteria mentioned above
may not hold if sampling times are not small enough. given infinite sampling time.
Firstly, take the discretisation of matrices A and B (see Computer controlled systems [44] for more informa-
tion):

Ad = e Ah

Bd =
∫ h

0
e As d s ·B

(5.1.9)

where h denotes sampling time. Matrix C does not have to be discretised. To determine the controlability of
the system take the controllability matrix (Wc ) and observability matrix (Wo) [44]:

Wc =
[
Bd Ad Bd Ad

2Bd Ad
3Bd Ad

4Bd
]

Wo =



C

C Ad

C Ad
2

C Ad
3

C Ad
4


(5.1.10)

Both are full rank, which means that the discrete system too, is controllable and observable.
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5.1.3. Sampling time
Before moving on to the controller design, sampling time has to be selected to ensure that the controller
is able to stabilise the system successfully. To reconstruct a continuous time signal correctly, according to
Nyquist’s sampling theorem, the sampling frequency has to be at least twice the highest frequency that the
system exhibits [44]. This is necessary, but not sufficient condition. A rule of thumb that is commonly used is
to set the sampling time to be at least 30 times the bandwidth of the target system [6].

Figure 5.1.2: Bode diagram of θ1 and θ2

The bode diagram in figure 5.1.2 shows that the fastest frequency in the measurement data (crossover fre-
quency) is that of θ2 at around 16 rad/s which is a frequency of 2.55Hz. According to the rule of thumb as
stated earlier, the sampling frequency should be at least 2.55 · 30 ≈ 76Hz. For good measure, the sampling
frequency is chosen to be 100Hz.

5.1.4. Encrypted state space computation
This section will demonstrate how to determine what fractional bit representation will have to be chosen for
each signal, gain and state-space matrix. Take the controller from 4.1.3. It is optimised to require the least
amount of multiplications.

{
x̂(k +1) = Ad ⊙ x̂(k)⊕Bd ⊙u(k)+ L̄⊙ (ȳ(k)⊕C⊙ x̂(k))

u(k +1) = K̄⊙ x̂(k +1)
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To provide consistency, all state space constants are set to represent the same amount of fractional bits ε and
integer bits δ. In short, the state-state matrices and gains are represented as Q(δ,ε). As an exception, only
state-space matrix C should be set to Q(δ,0). The reason for this will become clear shortly.
The observer requires are two homomorphic multiplications to evaluate

L̄⊙ (ȳ(k)⊕C⊙ x̂(k)) (5.1.11)

And one homomorphic multiplication to evaluate each partial product

Ad ⊙ x̂(k) (5.1.12)

and

Bd ⊙u(k) (5.1.13)

If partial products ȳ(k) and C⊙ x̂(k) were to have different amounts of fractional bits, it would not be possible
to correctly add them up without manipulating them first. Matrix C contains no fractional bits and only
contains ones and zeros and so C⊙ x̂(k) does not change the representation of x̂(k). If signals x̂(k) and ȳ(k)
are represented as Q(δ,ε), then partial product 5.1.11 is represented as Q(δ,2 ·ε). Signal u(k) should also be
set to Q(δ,ε) during re-encryption so that 5.1.13 is represented as Q(δ,2 ·ε). The addition of products 5.1.11,
5.1.12 and 5.1.13 will then be represented as Q(δ,2 ·ε) (addition does not induce a shift of the decimal point).
The next control effort u(k +1) will then be represented as Q(δ,3 ·ε). To ensure that Q(δ,3 ·ε) is supported by
the Gentry scheme [22], the register size should be set to

ℓ= δ+3 ·ε (5.1.14)

Whereδ and ε should be set such that the observer is precise enough whilst allowing for large enough integers.
Note that only signal u(k+1) has 3·ε fractional bits. If the control effort is smaller in size than any of the other
signals, one could opt for a smaller register size. In the case of the system presented in 5.1, the control effort
remains between 0 and 1, whereas the observer states can take on values at around 3/4. From testing, it
appears the control effort requires around 22 fractional bits to for the system to run smoothly. The control
effort remains between 0 and 1 and so requires only one integer bit. Therefore the register size can be set
to be ℓ = 2 + 3 · ε = 2 + 3 · 22 = 68 bits. This means that x̂(k + 1) will be represented as Q(ℓ− 2 · ε,2 · ε) =
Q(24,44) which should provide more than enough precision and space for the integer part. Finally, fractional
bit representation utilises 2’s complement convention to represent sign. After multiplication, the decimal
point shifts and therefore the sign bit does too. To ensure correct sign changes, sign extension of the state-
space matrices and gains is required. To perform sign extension, simply take the sign bit of a given value with
representation Q(δ,ε) and convert it to Q(ℓ,ε) by setting the remaining most significant bit to the value of the
sign bit.

5.1.5. Tuning
To place the poles of the closed loop system, the gains can be generated using discrete LQ-optimal control
(see Computer controlled systems [44] for more information). The poles of the observer can be hand tuned, as
it is less sensitive.
Given the state space discription of the linear system:

x(k +1) = Ad x(k)+Bd u(k)u(k) =−K x(k)

Take the cost function:

J =
∞∑

k=0
(x(k)⊤x(k)+u(k)⊤Ru(k)+2x(k)⊤Nu(k)) (5.1.15)

Using the control law u(k) =−K x(k), the optimal trajectory can be reached by setting gain matrix K to:

K = (R +B⊤
d PBd )−1(B⊤

d PAd +N⊤) (5.1.16)

where P is the solution to the algebraic Riccati equation:

P = A⊤
d PAd − (A⊤

d Bd +N )(R +B⊤
d PBd )−1(B⊤

d PAd +N⊤)+Q (5.1.17)
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To find the optimal gain, matrix Q has been set to:

Q = 1

10



0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

 (5.1.18)

and R = 1 and N = 0. Matrix Q only affects θ1 and θ2 as those are the only state variables that should be
prioritised in terms of returning to zero. Variable R has been made larger in proportion to ensure that the
pendulum is operated smoothly. Variable N has been set to zero as control effort, as there is no desire for two
way-coupling.

The observer gains have been tuned by hand. The poles of the observer gain have to be within the unit circle,
but have been chosen to be close to one, to ensure that the observer is fast enough, but such that it converges
gradually. The error dynamics e(k) of the observer can be derived as follows:

x̂(k +1) =Ad x̂(k)+Bd u(k)+L(y(k)−C x̂(k))

e(k +1) =x(k +1)− x̂(k +1) =
Ad x(k)+Bd u(k)− (Ad x̂(k)+Bd u(k)+L(y(k)−C x̂(k))) =
Ad (x(k)− x̂(k))−L(C x(k)−C x̂(k)) =
Ad e(k)−LC (x(k)− x̂(k)) = Ad e(k)−LCe(k) =
(Ad −LC )e(k)

(5.1.19)

Matrix L has been set such that the poles of (Ad−LC ) are [0.8,−0.8,0.6,−0.6,0.5]. These gains have been tuned
by hand (by comparing results) results in an observer that reacts quickly. The poles have been placed as such
to ensure that the observer operates smoothly. If the poles would be chosen to be too fast, the controller
would respond erratically. The performance of the tuning will be discussed in the next section.
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5.2. Performance
A major benefit of using a fully homomorphic encrytion scheme is that it can be used to implement discrete
time feedback controllers without the need for alteration. The resulting hardware simulation then yields
exactly the same results as compared with the MATLAB simulation which does not apply any encryption.
Figure 5.2.1 shows both simulation results in one set of plots (MATLAB simulation in red and FPGA hardware
simulation in blue).
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Figure 5.2.1: Simulation results of both the MATLAB simulation (no encryption) and FPGA hardware simulation

The controller gains and observer gains from section 5.1.5 result in a smoothly operating feedback controller.
Figure 5.2.2 shows the FPGA hardware simulation. Both the system states and observer states are visible. Note
that the observer quickly and smoothly track the actual states.
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Figure 5.2.2: Plot FPGA hardware simulation showing the system states and observer states

The reliable observer allows for swift operation of the controller, bringing the pendulum in equilibrium posi-
tion with only a few direction changes. Finally, figure 5.2.3 shows a difference plot of all states, the L1 norm of
the difference of the states from the FPGA hardware simulation and the MATLAB simulation.
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Figure 5.2.3: Plots that show the difference between the MATLAB simulation and FPGA harware simulation

The difference plots closely track scaled versions of the respective derivatives. This demonstrates that the two
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simulations are almost exactly the same. Note that at some time steps there is some high frequency noise,
this is likely due to rounding errors which are expected when using limited precision (which is inherent to
digital computation).

5.3. Hardware utilisation
To understand the limitations of the feedback system (as illustrated in chapter 4) it is important to record the
hardware utilisation of a given implementation on an FPGA. Unfortunately, recording the hardware utilisa-
tion of the entire system (both FPGA’s) would be infeasible given the amount of parameters that can be tuned
and the amount of modules that make up the system. To narrow down the scope, this section will consider
the most critical part of the system. The plant interface is considerably less demanding with respect to hard-
ware utilisation than the controller. The plant interface has to encrypt and decrypt the sensor data, observer
states and control effort. The controller has to take the same data and perform an amount of computations
that is many orders of magnitude larger than the computations performed by plant interface. Furthermore,
DSP units are not needed due to the alterations made to the Gentry scheme. The hardware resource that is
the limiting factor in the hardware design are Slice registers. Slice registers can store ciphers and interme-
diate results. Slice registers are the resource that is depleted first when synthesising a design and so slice
register utilisation will be the measure used to measure the size of a given design. The utilisation of a cipher
multiplication circuit and a cipher addition circuit will be explored in the following subsections.

5.3.1. Homomorphic multiplication and addition circuits
As discussed earlier in section 4.5, the calculation of the matrix multiplication of two matrices can be divided
up in multiple ways (see figure 5.3.1). The user can specify how many elements in the output cipher should
be calculated at a time (per clock tick).

0 9 3 3

8 4 0 8

10 2 4 8

1 6 0 8




5 10 8 4

3 7 10 4

8 3 9 8

9 3 1 1

→


78 81

124 132

 (5.3.1)

5.1: Illustration of a matrix multiplication where multiple elements of the result are calculated at a time.

It stands to reason that calculating more elements per clock tick requires more hardware. As discussed in
section 3.2, a reduced cipher consists of (n+1)·ℓ×(n+1) elements that are stored in ℓ sized containers. Hence
the total amount of bits that a cipher contains is (n +1) ·ℓ · (n +1) ·ℓ= ((n +1)ℓ)2. To illustrate the hardware
utilisation for different configurations of parallelism, figures 5.3.1 and 5.3.2 compile data from synthesised
designs in two plots, one of a homomorphic multiplication circuit and the other of a homomorphic addition
circuit. The blue lines represent the hardware utilisation for a given size of a cipher in bits. A cipher contains
((n +1)ℓ)2 bits, multiple configurations of security parameter n and register size ℓ. For example, a security
parameter n = 3 and ℓ= 16 results in a cipher containing ((n+1)ℓ)2 = 4096 bits. Choosing n = 7 and ℓ= 8 also
results in a cipher consisting ((n +1)ℓ)2 = 4096 bits. These two configurations have the same utilisation and
so figures 5.3.1 and 5.3.2 can be used to determine the utilisation of a configuration of choice. These diagrams
have been generated by synthesising hardware designs on a Nexys 4 FPGA for a selection of parameter. This
data has then been used to fit curves. Exact hardware utilisation will be different on different FPGA’s, because
the exact lay-out of hardware components will influence how a hardware design is synthesised. The green
line that follows the green vertical axis on the right, is a plot of the amount of clock ticks it takes to completely
compute a cipher multiplication.
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Figure 5.3.1: Utilisation plot of multiplication unit
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Figure 5.3.2: Utilisation plot of multiplication unit

There are many cipher sizes that could be considered that are not shown in the diagram. It is however possible
to use figure 5.3.1 by interpolating between two existing utilisation lines. How to do this will be described in
more detail in the next section.

5.3.2. Using utilisation plots
There are a couple ways that figures 5.3.1 and 5.3.2 can be used. A design use case could be that the size of the
cipher is known. If an FPGA is already selected and the maximum allowable utilisation is known, one could
use the plot to determine how long it would take to perform homomorphic multiplications.
Take figure 5.3.3. Given is that there a maximum of 104 slice registers are available for the multiplication
circuit and security parameter is set to n = 7 and register size is set to ℓ = 8 and so the cipher will consist of
4096 bits. To find the highest possible performance level, first find the intersection with the utilisation line
(read the utilisation on the blue axis on the left) that matches 4096 bits (step 1). Then move down along a
vertical line to find the height of the green line at that horizontal position (step 2). Now read the amount of
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clock ticks it would take from the green axis on the right. Rounding up, computing the cipher multiplication
would take 200 clock ticks (the cipher would be broken up in 200 blocks).

Figure 5.3.3: Utilisation plot of multiplication unit

An alternative scenario could be that the size of the ciphers is known and the necessary level of performance is
known and one would like to decide what platform would be needed to meet the requirements. It is given that
the cipher will be 16384 bits in size. The target sampling frequency of the system is 100Hz and the amount
of cipher multiplications that have to be computed is 1217. To reach the target performance, an FPGA would
have 1/(100Hz ·6000) = 1.6667µs to compute one matrix multiplication. Assuming that the FPGA a clock rate
of 400MHz (a common clock rate) then the FPGA should not need more than 1/(100Hz · 6000) · 400MHz =
666.667 clock ticks to calculate the result. Figure 5.3.4 illustrates how to find the minimum amount of slice
registers needed for a hardware design that meets the requirements. To make the search easier, take the
maximum amount of clock tick to be 640. To find the minimum utilisation in figure 5.3.4, find the 640 clock
tick point on the green line (step 1). Next draw a vertical line and find the intersection of this line with the
blue 16384-bits line (step 2). Finally read the utilisation at the point of intersection on the blue axis on the
left hand side (step 3). A hardware design would require around 104 slice registers. This can then be used to
determine what FPGA would have the required amount of slice registers.

Figure 5.3.4: Utilisation plot of multiplication unit



6
Conclusion

The goal of this thesis has been to answer the research question given a novel adaptation and implementa-
tion of homomorphic feedback control, what level of performance can currently be reached? To answer this
question, the following research sub-questions have to be answered:

• What are the challenges of using fully homomorphic encryption in feedback control?

• How can the underlying mathematics of Gentry’s encryption scheme be rewritten to be suitable for digital
computation?

• What is the hardware utilisation of an implementation of feedback control using Gentry’s encryption
scheme on an FPGA?

In the search of answering these research questions it has become clear that using fully homomorphic en-
cryption in feedback control is very challenging. Both in its implementation and it computational complexity.
Large problems to be overcome are limited multiplicative depth and truncation of encrypted values. Send-
ing observer states back to the plant for re-encryption solves both problems, which requires no alteration of
the controller topology. Even so, implementing feedback control using FHE is very challenging due to the
many considerations. Every multiplication must be taken into account due limitations of fixed point repre-
sentation. Other solutions to circumvent the problem of truncation require large alterations to the controller
topology. FHE also complicates the programming of an implementation of discrete-time feedback control.
Encrypted values become cipher matrices and so any single matrix or vector multiplication becomes a series
of matrix-vector operations when handling encrypted data. Computational complexity of FHE, the complex-
ity of describing systems using FHE, truncation of encrypted data and limited multiplicative depth are the
main cahllenges in implementing fully homomorphic encryption in feedback control. This answers the first
research sub-question

What are the challenges of using fully homomorphic encryption in feedback control?

Rewriting the Gentry encryption scheme utilising the novel notation, analytical function descriptions and
the introduction of reduced ciphers has made it possible to strip encryption and homomorphic operation to
their core. The rewritten encryption scheme makes it clear how the scheme can be implemented such that it
suits the target hardware platform. This answers the second research sub-question.

How can the underlying mathematics of Gentry’s encryption scheme be rewritten to be suitable for digital com-
putation?

The last research sub-question to be answered is

What is the hardware utilisation of an implementation of feedback control using Gentry’s encryption scheme
on an FPGA?

The plots presented in section 5.3 provide an estimate for a range of parameter choices. Unfortunately syn-
thesising hardware designs takes a long time (multiple hours to a full day for larger designs). Synthesis of a
practical implementation would likely require more powerful hardware than was available during the run of
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this thesis.
The adaptation of Gentry’s scheme by introducing new notation and reduced ciphers simplifies the descrip-
tion and proofs. Analytical descriptions of the functions at the basis of the scheme paved the way towards
implementing each operation using a minimal amount of computation and memory. Due to the computa-
tional complexity of FHE, previous work on FHE in feedback control has focused on systems that only require
control at lower sampling rates, usually in the order of 10 Hz. If the feedback control system as proposed in
this thesis is practically implementable, the resulting system would operate at 100 Hz. Unfortunately due to
time constraints it has not been possible to confirm that the system can be synthesised. The software that was
used to synthesise hardware, Vivado, has exhibited many bugs, which further slowed down the development.
Given the data that has been collected it is possible to estimate whether a full scale hardware design can be
realised using currently available harware. The Nexys 4, the FPGA used for the purpose this thesis, can run at
a clock speed of 450 MHz. The controller design as proposed in section 5.1.4 requires 55 homomorphic multi-
plications and 12 homomorphic additions. This means that the Nexys 4, would have 1/(450MHz ·55) = 81818
clock ticks to finish multiplication and 1/(450MHz ·12) = 375000 for multiplication. This means that figures
5.3.2 and5.3.2 suggest the operations could be computed in very small blocks keeping utilisation low, whilst
still finishing computation in time. This can however only be concluded for the smaller ciphers represented
in these graphs.
Unfortunately this means that the final research sub-question and main research question cannot yet be an-
swered conclusively. My main recommendation for followup research is therefore the synthesis of a full scale
design. The hardware designs that have been generated for this thesis, have been synthesised automatically.
Manually invoking hardware components for the some of the circuits would likely speed up synthesis and
would allow the design to more fully utilise the capabilities of an FPGA.
An other avenue of research could be a more thorough exploration of the rewritten gentry scheme. This might
reveal further optimisations that would decrease hardware utilisation, which would speed up compute time.
Also, the rewritten scheme has been tested on an FPGA, however the implementation on a conventional com-
puter may also feasible given the improvements.
Another important issue that requires more research is that of truncation of ciphers. Though there is an FHE
scheme that allows for truncation of ciphers, it decreases the chance of successful decryption of truncated
ciphers. The novel notation could potentially be used to find a more effective way of truncating ciphers. If
truncation on ciphers is feasible, that would still leave the issue of multiplicative depth. Works such as [26]
have suggested modelling the error introduced by FHE and incorporating it into the controller topology. In-
corporating such solutions remove the need for truncation at the plant which would lower the computational
burden on the plant interface.
In conclusion, the improvements made to the Gentry encryption scheme have improved performance and
the implementation on a feedback controller have laid the foundation for practical implementation. This is
however only the beginning. Hopefully this work will help to take a step toward the design of a viable type
homomorphic encryption in feedback control.
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A
Numerical tests of feedback controller and

system

A.1. Hautus tests
Using the data from tabel 5.1.1, the eigenvalues and corresponding eigenvectors of A are

λ=[
9.58 0 −10.24 −64.53 −33.33

]

V =





5.03E −05

4.82E −4

−1.04E −1

−9.95E −1

0

 ,



7.07E −1

0

−7.07E −1

−3.65E −15

0

 ,



−7.89E −05

8.08E −4

−9.72E −2

9.95E −1

0

 ,



−6.80E −3

4.39E −1

1.39E −1

−8.98E −1

0

 ,



−9.05E −3

3.02E −1

1.94E −2

−6.47E −1

7.00E −1




(A.1.1)

λ1 to λ5 represent the eigenvalues from high to low and V1 to V5 are the corresponding eigenvectors. The
system has 3 stable modes and 2 unstable modes. Now take [Iλi − A,B ] for all eigenvalues:
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[λ1I − A,B ] =



9.58 −1 0 0 0 0

0.40 74.10 0.40 −0.0054 −13.44 0

0 0 9.58 −1 0 0

−98.89 −129.03 −98.89 10.26 26.88 0

0 0 0 0 42.91 1666.67



[λ2I − A,B ] =



0 −1 0 0 0 0

0.40 64.52 0.40 −0.0054 −13.44 0

0 0 0 −1 0 0

−98.89 −129.03 −98.89 0.68 26.880

0 0 0 0 33.33 1666.67



[λ3I − A,B ] =



−10.24 −1 0 0 0 0

0.40 54.28 0.40 −0.0054 −13.44 0

0 0 −10.24 −1 0 0

−98.89 −129.03 −98.89 −9.56 26.880

0 0 0 0 23.09 1666.67



[λ4I − A,B ] =



−64.53 −1 0 0 0 0

0.40 −0.017 0.40 −0.0054 −13.44 0

0 0 −64.53 −1 0 0

−98.89 −129.03 −98.89 −63.85 26.880

0 0 0 0 −31.20 1666.67



[λ4I − A,B ] =



−33.33 −1 0 0 0 0

0.40 31.18 0.40 −0.0054 −13.44 0

0 0 −33.33 −1 0 0

−98.89 −129.03 −98.89 −32.65 26.880

0 0 0 0 0 1666.67



(A.1.2)
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They can be row reduced to the following reduced echelon forms:

[λ1I − A,B ] →



1 0 0 5.06E −5 0 0

0 1 0 4.8E −4 0 0

0 0 1 −0.10 0 0

0 0 0 0 1 0

0 0 0 0 0 1



[λ2I − A,B ] →



1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



[λ3I − A,B ] →



1 0 0 7.92E −5 0 0

0 1 0 8.11E −4 0 0

0 0 1 0.10 0 0

0 0 0 0 1 0

0 0 0 0 0 1



[λ4I − A,B ] →



1 0 0 7.57E −3 0 0

0 1 0 0.489 0 0

0 0 1 0.015 0 0

0 0 0 0 1 0

0 0 0 0 0 1



[λ4I − A,B ] →



1 0 0 0 0.013 0

0 1 0 0 −0.43 0

0 0 1 0 −0.028 0

0 0 0 1 0.92 0

0 0 0 0 0 1



(A.1.3)

All matrices are full rank, thus the linearised system is controllable. Next investigate observability, take [Iλi −
A,C ] for all eigenvalues:
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[λ1I − A;C ] =



9.58 −1 0 0 0

0.40 74.10 0.40 −0.0054 −13.44

0 0 9.58 −1 0

−98.89 −129.03 −98.89 10.26 26.88

0 0 0 0 42.91

1 0 0 0 0

0 0 1 0 0



[λ2I − A;C ] =



0 −1 0 0 0

0.40 64.52 0.40 −0.0054 −13.44

0 0 0 −1 0

−98.89 −129.03 −98.89 0.68 26.88

0 0 0 0 33.33

1 0 0 0 0

0 0 1 0 0



[λ3I − A;C ] =



−10.24 −1 0 0 0

0.40 54.28 0.40 −0.0054 −13.44

0 0 −10.24 −1 0

−98.89 −129.03 −98.89 −9.56 26.88

0 0 0 0 23.09

1 0 0 0 0

0 0 1 0 0



[λ4I − A;C ] =



−64.53 −1 0 0 0

0.40 −0.017 0.40 −0.0054 −13.44

0 0 −64.53 −1 0

−98.89 −129.03 −98.89 −63.85 26.88

0 0 0 0 −31.20

1 0 0 0 0

0 0 1 0 0



[λ4I − A;C ] =



−33.33 −1 0 0 0

0.40 31.18 0.40 −0.0054 −13.44

0 0 −33.33 −1 0

−98.89 −129.03 −98.89 −32.65 26.88

0 0 0 0 0

1 0 0 0 0

0 0 1 0 0



(A.1.4)

They can be row reduced to the same reduced echelon form:

[λI − A;C ] =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


(A.1.5)

All matrices [Iλ− A;C ] are full rank, hence the linearised system is observable.
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A.2. Discrete system controllability and observability tests
The controllabilty matrix of the system is:

Wc =



0.0029 0.0159 0.0326 0.0486 0.0621

0.8154 1.6003 1.6797 1.4832 1.2095

−0.0059 −0.03169 −0.0651 −0.0969 −0.1241

−1.6276 −3.1889 −3.3489 −2.9745 −2.4633

14.1734 10.1557 7.2769 5.2141 3.7361

 (A.2.1)

The controllability matrix can be row reduced to:

Wc →



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (A.2.2)

The observability matrix of the system is:

Wo =



1 0 0 0 0

0 0 1 0 0

1.0000 0.0074 −1.6070E −5 1.6246E −7 0.0005

0.0049 0.0053 1.0049 0.0010 −0.0010

1.0000 0.0112 −5.34213e −05 3.3693e −070.0014

0.0197 0.0176 1.0197 0.0199 −0.0028

1.0000 0.0133 −0.0001 2.2883E −07 0.0025

0.0444 0.0338 1.0444 0.0301 −0.0049

1.0 0.0143 −0.0002 −3.1643E −07 0.0033

0.0791 0.0523 1.0791 0.0405 −0.0067


(A.2.3)

The observability matrix can be row reduced to:

Wo →



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(A.2.4)

Both matrices Wc and Wo are full rank, which means the discrete time system is controllable and observ-
able.





B
Feedback system code

Below, the code used to test the feedback system can be found. Note that large parts of "LFSR256.vhd" have
been omitted, because most of the code is repeated with slight only variation (different seeds and correspond-
ing module inference).

B.1. CipherAdd_core.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

entity CipherAdd_core is
port (

clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);
input_matB: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);

output_mat: out matrix_array(0 to FHE_CN-1, 0 to FHE_n);
calc_done: out std_logic

);
end CipherAdd_core;

architecture Behavioral of CipherAdd_core is

component debounce_comparator is
generic(init : std_logic := '0');
port(

clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_comparator;

-----------------------------------------------------------------------------------------------------------------------------
constant paralel_rows_cnt: natural := 1; --FHE_CN;
constant paralel_cols_cnt: natural := 1; --(FHE_n+1);

signal row, new_row: natural range 0 to FHE_CN-1 := FHE_CN-1;
signal col, new_col: natural range 0 to FHE_n := FHE_n;

signal done: std_logic := '1';
signal new_done: std_logic := '0';
signal mat_pipe: matrix_array(0 to FHE_CN-1, 0 to FHE_n) := (others => (others => (others => '0')));

signal calc_done_pipe: std_logic := '0';

--------------------------------------------------------------------------------------------------------------------------------------------------
begin

debounce_comparator_unit: debounce_comparator
generic map(init => '1')
port map(

clk=>clk,
db_in=>done,
pulse_out=>calc_done_pipe

);

row_counting: process(clk, calc, row, col)

procedure MatMul_fun(input_matA, input_matB: matrix_array(0 to FHE_CN-1, 0 to FHE_n); row, col: natural) is --matrix_array is
variable col_bit_cnt : natural range 0 to FHE_CN;

begin
if row <= FHE_CN-1 and col <= FHE_n then

for row_sub in 0 to paralel_rows_cnt-1 loop
for col_sub in 0 to paralel_cols_cnt-1 loop

63
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mat_pipe(row+row_sub, col+col_sub) <= input_matA(row+row_sub, col+col_sub) + input_matB(row+row_sub, col+col_sub);
end loop;

end loop;
end if;

end procedure;

begin
if rising_edge(clk) then

calc_done <= calc_done_pipe;

done <= new_done;

row <= new_row;
col <= new_col;

if done = '0' then
MatMul_fun(input_matA, input_matB, row, col);

end if;
end if;

if calc = '1' then
new_row <= 0;
new_col <= 0;

new_done <= '0';
else

if row >= FHE_CN-1 then
if col >= FHE_n then

new_row <= row;
new_col <= col;

new_done <= '1';
else

new_row <= 0;
new_col <= col + paralel_cols_cnt;

new_done <= '0';
end if;

else
new_row <= row + paralel_rows_cnt;
new_col <= col;

new_done <= '0';
end if;

end if;

end process;

output_print: process(done)
begin
if rising_edge(done) then

output_mat <= mat_pipe;
end if;
end process;
end Behavioral;

B.2. CipherMult_core.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

entity CipherMult_core is
port (

clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);
input_matB: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);

output_mat: out matrix_array(0 to FHE_CN-1, 0 to FHE_n);
calc_done: out std_logic

);
end CipherMult_core;

architecture Behavioral of CipherMult_core is

component debounce_comparator is
generic(init : std_logic := '0');
port(

clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_comparator;

-----------------------------------------------------------------------------------------------------------------------------
constant paralel_rows_cnt: natural := FHE_CN/4;
constant paralel_cols_cnt: natural := (FHE_n+1)/4;

signal row, new_row: natural range 0 to FHE_CN-1 := FHE_CN-1;
signal col, new_col: natural range 0 to FHE_n := FHE_n;

signal done: std_logic := '1';
signal new_done: std_logic := '0';
signal mat_pipe: matrix_array(0 to FHE_CN-1, 0 to FHE_n) := (others => (others => (others => '0')));

signal calc_done_pipe: std_logic := '0';

--------------------------------------------------------------------------------------------------------------------------------------------------
begin
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debounce_comparator_unit: debounce_comparator
generic map(init => '1')
port map(

clk=>clk,
db_in=>done,
pulse_out=>calc_done_pipe

);

row_counting: process(clk, calc, row, col)

procedure MatMul_fun(input_matA, input_matB: matrix_array(0 to FHE_CN-1, 0 to FHE_n); row, col: natural) is --matrix_array is
variable carry : signed(FHE_L-1 downto 0) := (others => '0');
variable col_bit_cnt : natural range 0 to FHE_CN;

begin
if row <= FHE_CN-1 and col <= FHE_n then

for row_sub in 0 to paralel_rows_cnt-1 loop
for col_sub in 0 to paralel_cols_cnt-1 loop

carry := (others => '0');
col_bit_cnt := 0;
for i in 0 to FHE_n loop

for k in 0 to FHE_L-1 loop
dbg0 := row_sub;
dbg1 := col_sub;
dbg2 := i;
dbg3 := k;
if (input_matA(row+row_sub, i)(k) = '1') then

carry := carry + input_matB(col_bit_cnt, col+col_sub);
else

carry := carry;
end if;
col_bit_cnt := col_bit_cnt+1;

end loop;
end loop;
mat_pipe(row+row_sub, col+col_sub) <= carry;

end loop;
end loop;

end if;
end procedure;

begin
if rising_edge(clk) then

calc_done <= calc_done_pipe;

done <= new_done;

row <= new_row;
col <= new_col;

if done = '0' then
MatMul_fun(input_matA, input_matB, row, col);

end if;
end if;

if calc = '1' then
new_row <= 0;
new_col <= 0;

new_done <= '0';
else

if row >= FHE_CN-1 then
if col >= FHE_n then

new_row <= row;
new_col <= col;

new_done <= '1';
else

new_row <= 0;
new_col <= col + paralel_cols_cnt;

new_done <= '0';
end if;

else
new_row <= row + paralel_rows_cnt;
new_col <= col;

new_done <= '0';
end if;

end if;

end process;

output_print: process(done)
begin
if rising_edge(done) then

output_mat <= mat_pipe;
end if;
end process;
end Behavioral;

B.3. Controller.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

entity Controller is
port (

clk : in std_logic;
calc : in std_logic;
reset : in std_logic;



66 B. Feedback system code

theta_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
theta_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

upd_u : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

out_u : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_00 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_10 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_20 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_30 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_40 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_01 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_11 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_21 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_31 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_41 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_02 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_12 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_22 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_32 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_42 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_03 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_13 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_23 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_33 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_43 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_04 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_14 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_24 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_34 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_44 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

B_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

K_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_00 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_10 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_20 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_30 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_40 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_01 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_11 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_21 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_31 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_41 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

neg_one : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

done_flag : out std_logic
);

end Controller;

---------------------------------------------------------------------------------------------------------

architecture Behavioral of Controller is

component debounce_comparator is
generic(init : std_logic := '0');
port(

clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_comparator;

component CipherAdd_core is
port (

clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
input_matB: in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

output_mat: out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
calc_done: out std_logic

);
end component;

component CipherMult_core is
port (

clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
input_matB: in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
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output_mat: out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
calc_done: out std_logic

);
end component;

---------------------------------------------------------------------------------------------------------
constant steps: natural := 85+1;
signal i, new_i: natural range 0 to steps := steps;

signal mult, mult_done, add, add_done, mult_flag, add_flag: std_logic;
signal done: std_logic := '1';
signal done_db, boot, boot_db: std_logic := '0';

signal xh_0, xh_1, xh_2, xh_3, xh_4, new_u, cur_u : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1) := (others => (others => '0'));
signal new_xh_0, new_xh_1, new_xh_2, new_xh_3, new_xh_4 : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal new_xh_tmp_0, new_xh_tmp_1, new_xh_tmp_2, new_xh_tmp_3, new_xh_tmp_4 : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal carry_0, carry_1, carry_2, carry_3, carry_4 : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal sum_of_elements : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal cur_mat1, cur_mat2, cur_mult_out, cur_add_out : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal start_delay: std_logic;

begin
-------------------------------------------------------------------------------------------
debounce_comparator_unit: debounce_comparator
generic map(init => '1')
port map(

clk=>clk,
db_in=>done,
pulse_out=>done_db

);

debounce_comparator_unit_boot: debounce_comparator
generic map(init => '1')
port map(

clk=>clk,
db_in=>boot,
pulse_out=>boot_db

);

done_flag <= done_db;

CipherMult_core_unit: CipherMult_core
port map(

clk=>clk,
calc=>mult,

input_matA=>cur_mat1,
input_matB=>cur_mat2,

output_mat=>cur_mult_out,
calc_done=>mult_done

);

CipherAdd_core_unit: CipherAdd_core
port map(

clk=>clk,
calc=>add,

input_matA=>cur_mat1,
input_matB=>cur_mat2,

output_mat=>cur_add_out,
calc_done=>add_done

);

calculation_flag_mux: process(clk)--process(mult_flag, add_flag, mult_done, add_done, done, boot_db, i)
begin

if rising_edge(clk) then
start_delay <= mult_done or add_done;

-- if (mult_flag = '1' and done = '0') or calc = '1' then
if mult_flag = '1' and done = '0' then

mult <= start_delay or calc;
else

mult <= '0';
end if;

-- if add_flag = '1' and done = '0' then
if (add_flag = '1' and done = '0') or calc = '1' then

add <= start_delay or calc;
else

add <= '0';
end if;

end if;
end process;

increment_logic: process(calc, i)
begin

if calc = '1' then
new_i <= 0;
done <= '0';

-- boot <= '0';
else

-- if i = 0 then
-- new_i <= i + 1;
-- done <= '0';
-- boot <= '1';

if i = steps then
new_i <= i;
done <= '1';

-- boot <= '0';
else

new_i <= i + 1;
done <= '0';

-- boot <= '0';
end if;

end if;
end process;
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sync: process(clk, reset)
begin
if rising_edge(clk) then
-- if mult = '1' or add = '1' then
-- i <= new_i;
-- end if;

if (mult_done = '1' or add_done = '1') and calc = '0' then
i <= new_i;

elsif calc = '1' then
i <= 0;

end if;

-- if done_db = '1' then
-- crtl_effort <= u;
-- end if;

end if;
end process;

----------------------------------------------------------------------------------------------------------------------------------
input_proc_0: process(i)
begin
-- if i = 0 then
-- cur_mat1 <= neg_one;
-- cur_mat2 <= upd_xh0;
-- mult_flag <= '1';
-- add_flag <= '0';
-- end if;
-- if i = 1 then
-- cur_mat1 <= neg_one;
-- cur_mat2 <= upd_xh2;
-- mult_flag <= '1';
-- add_flag <= '0';
-- end if;

if i = 0 then
cur_mat1 <= upd_xh0;
cur_mat2 <= theta_0;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 1 then

cur_mat1 <= upd_xh2;
cur_mat2 <= theta_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 2 then

cur_mat1 <= L_00;
cur_mat2 <= new_xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 3 then

cur_mat1 <= L_01;
cur_mat2 <= new_xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 4 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 5 then

cur_mat1 <= L_10;
cur_mat2 <= new_xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 6 then

cur_mat1 <= L_11;
cur_mat2 <= new_xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 7 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 8 then

cur_mat1 <= L_20;
cur_mat2 <= new_xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 9 then

cur_mat1 <= L_21;
cur_mat2 <= new_xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 10 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 11 then

cur_mat1 <= L_30;
cur_mat2 <= new_xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 12 then

cur_mat1 <= L_31;
cur_mat2 <= new_xh_1;
mult_flag <= '1';
add_flag <= '0';
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end if;
if i = 13 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 14 then

cur_mat1 <= L_40;
cur_mat2 <= new_xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 15 then

cur_mat1 <= L_41;
cur_mat2 <= new_xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 16 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 17 then

cur_mat1 <= B_0;
cur_mat2 <= upd_u;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 18 then

cur_mat1 <= new_xh_0; --!!!!!!!!!!!!!!!!!!!!! tm B4
cur_mat2 <= new_xh_tmp_0;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 19 then

cur_mat1 <= B_1;
cur_mat2 <= upd_u;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 20 then

cur_mat1 <= new_xh_1;
cur_mat2 <= new_xh_tmp_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 21 then

cur_mat1 <= B_2;
cur_mat2 <= upd_u;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 22 then

cur_mat1 <= new_xh_2;
cur_mat2 <= new_xh_tmp_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 23 then

cur_mat1 <= B_3;
cur_mat2 <= upd_u;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 24 then

cur_mat1 <= new_xh_3;
cur_mat2 <= new_xh_tmp_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 25 then

cur_mat1 <= B_4;
cur_mat2 <= upd_u;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 26 then

cur_mat1 <= new_xh_4;
cur_mat2 <= new_xh_tmp_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 27 then

cur_mat1 <= A_00;
cur_mat2 <= xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 28 then

cur_mat1 <= A_01;
cur_mat2 <= xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 29 then

cur_mat1 <= A_02;
cur_mat2 <= xh_2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 30 then

cur_mat1 <= A_03;
cur_mat2 <= xh_3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 31 then

cur_mat1 <= A_04;
cur_mat2 <= xh_4;
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mult_flag <= '1';
add_flag <= '0';

end if;
if i = 32 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 33 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 34 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 35 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 36 then

cur_mat1 <= A_10;
cur_mat2 <= xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 37 then

cur_mat1 <= A_11;
cur_mat2 <= xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 38 then

cur_mat1 <= A_12;
cur_mat2 <= xh_2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 39 then

cur_mat1 <= A_13;
cur_mat2 <= xh_3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 40 then

cur_mat1 <= A_14;
cur_mat2 <= xh_4;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 41 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 42 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 43 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 44 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 45 then

cur_mat1 <= A_20;
cur_mat2 <= xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 46 then

cur_mat1 <= A_21;
cur_mat2 <= xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 47 then

cur_mat1 <= A_22;
cur_mat2 <= xh_2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 48 then

cur_mat1 <= A_23;
cur_mat2 <= xh_3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 49 then

cur_mat1 <= A_24;
cur_mat2 <= xh_4;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 50 then
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cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 51 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 52 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 53 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 54 then

cur_mat1 <= A_30;
cur_mat2 <= xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 55 then

cur_mat1 <= A_31;
cur_mat2 <= xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 56 then

cur_mat1 <= A_32;
cur_mat2 <= xh_2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 57 then

cur_mat1 <= A_33;
cur_mat2 <= xh_3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 58 then

cur_mat1 <= A_34;
cur_mat2 <= xh_4;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 59 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 60 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 61 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 62 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 63 then

cur_mat1 <= A_40;
cur_mat2 <= xh_0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 64 then

cur_mat1 <= A_41;
cur_mat2 <= xh_1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 65 then

cur_mat1 <= A_42;
cur_mat2 <= xh_2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 66 then

cur_mat1 <= A_43;
cur_mat2 <= xh_3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 67 then

cur_mat1 <= A_44;
cur_mat2 <= xh_4;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 68 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';
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end if;
if i = 69 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 70 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 71 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 72 then

cur_mat1 <= new_xh_0; --!!!!!!!!!!!!!!!!!!!!! tm end
cur_mat2 <= new_xh_tmp_0;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 73 then

cur_mat1 <= new_xh_1;
cur_mat2 <= new_xh_tmp_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 74 then

cur_mat1 <= new_xh_2;
cur_mat2 <= new_xh_tmp_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 75 then

cur_mat1 <= new_xh_3;
cur_mat2 <= new_xh_tmp_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 76 then

cur_mat1 <= new_xh_4;
cur_mat2 <= new_xh_tmp_4;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 77 then

cur_mat1 <= K_0;
cur_mat2 <= xh_0; --upd_xh0;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 78 then

cur_mat1 <= K_1;
cur_mat2 <= xh_1; --upd_xh1;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 79 then

cur_mat1 <= K_2;
cur_mat2 <= xh_2; --upd_xh2;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 80 then

cur_mat1 <= K_3;
cur_mat2 <= xh_3; --upd_xh3;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 81 then

cur_mat1 <= K_4;
cur_mat2 <= xh_4; --upd_xh4;
mult_flag <= '1';
add_flag <= '0';

end if;
if i = 82 then

cur_mat1 <= carry_0;
cur_mat2 <= carry_1;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 83 then

cur_mat1 <= carry_1;
cur_mat2 <= carry_2;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 84 then

cur_mat1 <= carry_2;
cur_mat2 <= carry_3;
mult_flag <= '0';
add_flag <= '1';

end if;
if i = 85 then

cur_mat1 <= carry_3;
cur_mat2 <= carry_4;
mult_flag <= '0';
add_flag <= '1';

end if;
end process;

output_proc_1: process(clk)
begin

if rising_edge(clk) then
-- if i = 0 and mult_done = '1' then
-- new_xh_0 <= cur_mult_out;

-- xh_0 <= upd_xh0;
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-- xh_1 <= upd_xh1;
-- xh_2 <= upd_xh2;
-- xh_3 <= upd_xh3;
-- xh_4 <= upd_xh4;

-- end if;
-- if i = 1 and mult_done = '1' then
-- new_xh_1 <= cur_mult_out;
-- end if;

if i = 0 and add_done = '1' then
new_xh_0 <= cur_add_out;

-- cur_u <= new_u;
-- new_u <= upd_u;

xh_0 <= upd_xh0;
xh_1 <= upd_xh1;
xh_2 <= upd_xh2;
xh_3 <= upd_xh3;
xh_4 <= upd_xh4;

end if;
if i = 1 and add_done = '1' then

new_xh_1 <= cur_add_out;
end if;
if i = 2 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 3 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 4 and add_done = '1' then

new_xh_tmp_0 <= cur_add_out;
end if;
if i = 5 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 6 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 7 and add_done = '1' then

new_xh_tmp_1 <= cur_add_out;
end if;
if i = 8 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 9 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 10 and add_done = '1' then

new_xh_tmp_2 <= cur_add_out;
end if;
if i = 11 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 12 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 13 and add_done = '1' then

new_xh_tmp_3 <= cur_add_out;
end if;
if i = 14 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 15 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 16 and add_done = '1' then

new_xh_tmp_4 <= cur_add_out;
end if;
if i = 17 and mult_done = '1' then

new_xh_0 <= cur_mult_out;
end if;
if i = 18 and add_done = '1' then

new_xh_0 <= cur_add_out;
end if;
if i = 19 and mult_done = '1' then

new_xh_1 <= cur_mult_out;
end if;
if i = 20 and add_done = '1' then

new_xh_1 <= cur_add_out;
end if;
if i = 21 and mult_done = '1' then

new_xh_2 <= cur_mult_out;
end if;
if i = 22 and add_done = '1' then

new_xh_2 <= cur_add_out;
end if;
if i = 23 and mult_done = '1' then

new_xh_3 <= cur_mult_out;
end if;
if i = 24 and add_done = '1' then

new_xh_3 <= cur_add_out;
end if;
if i = 25 and mult_done = '1' then

new_xh_4 <= cur_mult_out;
end if;
if i = 26 and add_done = '1' then

new_xh_4 <= cur_add_out;
end if;
if i = 27 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 28 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 29 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 30 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 31 and mult_done = '1' then
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carry_4 <= cur_mult_out;
end if;
if i = 32 and add_done = '1' then

carry_1 <= cur_add_out;
end if;
if i = 33 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 34 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 35 and add_done = '1' then

new_xh_tmp_0 <= cur_add_out;
end if;
if i = 36 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 37 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 38 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 39 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 40 and mult_done = '1' then

carry_4 <= cur_mult_out;
end if;
if i = 41 and add_done = '1' then

carry_1 <= cur_add_out;
end if;
if i = 42 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 43 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 44 and add_done = '1' then

new_xh_tmp_1 <= cur_add_out;
end if;
if i = 45 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 46 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 47 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 48 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 49 and mult_done = '1' then

carry_4 <= cur_mult_out;
end if;
if i = 50 and add_done = '1' then

carry_1 <= cur_add_out;
end if;
if i = 51 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 52 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 53 and add_done = '1' then

new_xh_tmp_2 <= cur_add_out;
end if;
if i = 54 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 55 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 56 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 57 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 58 and mult_done = '1' then

carry_4 <= cur_mult_out;
end if;
if i = 59 and add_done = '1' then

carry_1 <= cur_add_out;
end if;
if i = 60 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 61 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 62 and add_done = '1' then

new_xh_tmp_3 <= cur_add_out;
end if;
if i = 63 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 64 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 65 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 66 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 67 and mult_done = '1' then

carry_4 <= cur_mult_out;
end if;
if i = 68 and add_done = '1' then

carry_1 <= cur_add_out;
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end if;
if i = 69 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 70 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 71 and add_done = '1' then

new_xh_tmp_4 <= cur_add_out;
end if;
if i = 72 and add_done = '1' then

xh_0 <= cur_add_out;
end if;
if i = 73 and add_done = '1' then

xh_1 <= cur_add_out;
end if;
if i = 74 and add_done = '1' then

xh_2 <= cur_add_out;
end if;
if i = 75 and add_done = '1' then

xh_3 <= cur_add_out;
end if;
if i = 76 and add_done = '1' then

xh_4 <= cur_add_out;
end if;
if i = 77 and mult_done = '1' then

carry_0 <= cur_mult_out;
end if;
if i = 78 and mult_done = '1' then

carry_1 <= cur_mult_out;
end if;
if i = 79 and mult_done = '1' then

carry_2 <= cur_mult_out;
end if;
if i = 80 and mult_done = '1' then

carry_3 <= cur_mult_out;
end if;
if i = 81 and mult_done = '1' then

carry_4 <= cur_mult_out;
end if;
if i = 82 and add_done = '1' then

carry_1 <= cur_add_out;
end if;
if i = 83 and add_done = '1' then

carry_2 <= cur_add_out;
end if;
if i = 84 and add_done = '1' then

carry_3 <= cur_add_out;
end if;
if i = 85 and add_done = '1' then

-- new_u <= cur_add_out;
out_u <= cur_add_out;

out_xh0 <= xh_0;
out_xh1 <= xh_1;
out_xh2 <= xh_2;
out_xh3 <= xh_3;
out_xh4 <= xh_4;

end if;
end if;

end process;

end Behavioral;

B.4. debounce_comparator.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural design of a circuit that generates a pulse when the input
--changes from low to high

--Every clock tick the input is stored. If the previous input was low and
--the new input is high, then the output is set to high for one clock tick.
--This adapter is a useful tool to ensure that when another circuit
--outputs a high signal, it can be converted to a single pulse (one clock tick).
--This can be necessary, as some circuitry accepts start signals that
--are expected to only take a single clock tick before returning to low.

library IEEE;
use IEEE.std_logic_1164.all;

--entity declaration----------------------------------------------------------------------
entity debounce_comparator is
generic(init: std_logic := '0');
port(

clk : in std_logic;
db_in : in std_logic;
pulse_out : out std_logic

);
end;

------------------------------------------------------------------------------------------
architecture Behavioural of debounce_comparator is

--signal declaration----------------------------------------------------------------------
signal db_out : std_logic := init;

begin
button_press_pacing: process(clk, db_out, db_in)

begin
if rising_edge(clk) then

db_out <= db_in;
end if;
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if db_in = '1' and db_in /= db_out then
pulse_out <= '1';

else
pulse_out <= '0';

end if;
end process;

end architecture Behavioural;

B.5. Decoder.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity Decoder is
port(

clk : in std_logic;
calc : in std_logic;
reset : in std_logic;
cipher : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
private_key : in vector_array(0 to FHE_n-1);
decoded_mu : out signed(FHE_L-1 downto 0);

done_flag : out std_logic
);

end Decoder;

architecture Behavioral of Decoder is

component BitMatVectMul_core is
generic(row_countA, col_countA, row_countB : natural);

Port (
clk: in std_logic;
calc: in std_logic;

input_mat: in matrix_bit_array(0 to row_countA-1, 0 to col_countA-1);
input_vect: in vector_array(0 to row_countB-1);

output_vect: out vector_array(0 to row_countB-1) := (others => (others => '0'));
calc_done: out std_logic

);
end component;

------------------------------------------------------------------------------------------------------------------------
signal po2_sk, mug : vector_array(0 to FHE_CN-1);
signal calc_done : std_logic;
signal mu_pipe : signed(FHE_L-1 downto 0) := (others=>'0');

------------------------------------------------------------------------------------------------------------------------

function PowersOf2(t: vector_array(0 to FHE_n-1)) return vector_array is
variable sk: vector_array(0 to FHE_n);
variable po2: vector_array(0 to FHE_CN-1);
begin
sk(0) := to_signed(1, FHE_L);
for i in 1 to FHE_n loop

sk(i) := t(i-1);
end loop;

for i in 0 to FHE_n loop
for j in 0 to FHE_L-1 loop

if (i = 0) then
po2(i*FHE_L+j) := shift_left(sk(i),j);

else
po2(i*FHE_L+j) := -shift_left(sk(i),j);

end if;
end loop;

end loop;
return po2;
end function;

--function MPDec(mug: vector_array(0 to FHE_CN-1)) return signed is
--variable mu, tmp: signed(FHE_L-1 downto 0) := (others => '0');
--begin
--for i in 0 to FHE_L-1 loop
-- if (mu(i) = '1') then
-- tmp := mug(FHE_L - i - 1) + 1;
-- tmp := shift_right(tmp,FHE_L-i-1);
-- mu(i) := tmp(i);
-- else
-- tmp := mug(FHE_L - i - 1);
-- tmp := shift_right(tmp,FHE_L-i-1);
-- mu(i) := tmp(i);
-- end if;
--end loop;
--mu(L-1) := '0';

--return mu;
--end function;

function MPDec(mug: vector_array(0 to FHE_CN-1)) return signed is
variable mu, tmp: signed(FHE_L-1 downto 0) := (others => '0');
variable xor_check: std_logic;
constant bit_one: signed(FHE_L-1 downto 0) := (0 => '1', others => '0');
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begin

mu(0) := mug(FHE_L - 1)(FHE_L - 1);

for i in 1 to FHE_L-1 loop
tmp := mug(FHE_L - i - 1) - shift_left(mu, FHE_L - i - 1);

xor_check := tmp(FHE_L-1) xor tmp(FHE_L-2);
if xor_check = '1' then

mu := mu + shift_left(bit_one, i);
end if;

end loop;

return mu;
end function;

begin

BitMatVectMul_unit: BitMatVectMul_core
generic map(row_countA=>(FHE_n+1)*FHE_L, col_countA=>(FHE_n+1)*FHE_L, row_countB=>(FHE_n+1)*FHE_L)
port map(

clk=>clk,
calc=>calc,

input_mat=>cipher,
input_vect=>po2_sk,

output_vect=>mug,
calc_done=>calc_done
);

operation: process(clk, calc, calc_done)
begin

done_flag <= calc_done;

if rising_edge(clk) then
if (calc = '1') then

po2_sk <= PowersOf2(private_key);
end if;

if (calc_done = '1') then
mu_pipe <= MPDec(mug);

end if;
end if;
end process;

decoded_mu <= mu_pipe;

end Behavioral;

B.6. error_vect_gen.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity error_vect_gen is
port(

clk : in std_logic;
input_vect : in vector_array_e(0 to FHE_m-1);
calc : in std_logic;

output_vect : out vector_array(0 to FHE_m-1);
done_flag : out std_logic := '0'
);

end error_vect_gen;

architecture Behavioral of error_vect_gen is

---------------------------------------------------------------------

type LZ_list_type is array (FHE_m-1 downto 0) of natural range 0 to L;
constant one_sub: signed(L-1 downto 0) := ('1', others => '0');
constant padding: signed(FHE_L-L-1 downto 0) := (others => '0');
---------------------------------------------------------------------

--This modulo operator works only when the second operand is a power of 2
function mod_powerof2(a: signed(L-1 downto 0); b: integer) return signed is
variable c : signed(L-1 downto 0) := (others => '0');
begin

c(b-2 downto 0) := a(b-2 downto 0);
return c;
end function;

function LZ_count(vect: vector_array_e(0 to FHE_m-1)) return LZ_list_type is
variable tmp : signed(L-1 downto 0) := (others => '0');
variable LZp_list : LZ_list_type := (others => 0);
variable done : std_logic := '0';
variable check : std_logic := '0';
begin

for i in 0 to FHE_m-1 loop
tmp := vect(i);
done := '0';
for j in 1 to L loop

check := tmp(L-j);
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if (tmp(L-j) = '0') then
if (done = '0') then

LZp_list(i) := LZp_list(i) + 1;
else

LZp_list(i) := LZp_list(i);
end if;

else
done := '1';

end if;
end loop;

end loop;
return LZp_list;
end function;

--Paper: A Hardware Efficient Random Number Generator for Nonuniform Distributions with Arbitrary Precision
function polyfit(input_vect: vector_array_e(0 to FHE_m-1)) return vector_array_e is

variable output_vect : vector_array_e(0 to FHE_m-1);
variable x : vector_array_e(0 to FHE_m-1);
variable x_tmp : signed(L-1 downto 0) := (others => '0');
variable x_out_tmp : signed(L-1 downto 0) := (others => '0');
variable level_1 : signed(L-1 downto 0) := (others => '0');
variable level_2 : natural range 0 to lin_segs_pow := 0;
variable level_tmp : natural range 0 to lin_segs*log_segs := 0;
variable level_sel : natural range 0 to lin_segs*log_segs := 0;
variable LZ_list : LZ_list_type := (others => 0);
variable half_way_flag : std_logic_vector(FHE_m-1 downto 0) := (others => '0');
variable mult_tmp0 : signed(2*L-1 downto 0) := (others => '0');
variable mult_tmp1 : signed(2*L-1 downto 0) := (others => '0');
variable mult_tmp2 : signed(L-1 downto 0) := (others => '0');

begin
for i in 0 to FHE_m-1 loop

half_way_flag(i) := input_vect(i)(L-1);
if (half_way_flag(i) = '1') then

x_tmp := input_vect(i)(L-1 downto 0);
x_tmp(L-1) := '0';
x_out_tmp := one_sub - x_tmp;
x(i) := padding & x_out_tmp;

else
x(i) := input_vect(i);

end if;
end loop;

LZ_list := LZ_count(x);
for i in 0 to FHE_m-1 loop

level_1 := shift_left(x(i)(L-1 downto 0),(LZ_list(i) + 1));
level_2 := to_integer(unsigned(level_1(L-1 downto L-lin_segs_pow)));

level_tmp := p_vect_size - LZ_list(i)*log_segs + level_2;
if level_tmp < 0 then

level_sel := 0;
elsif level_tmp > p_vect_size-1 then

level_sel := p_vect_size-1;
else

level_sel := level_tmp;
end if;

mult_tmp0 := p0(level_sel)*x(i)(L-1 downto 0);
mult_tmp1 := shift_right(mult_tmp0, L); --See documentation for elaboration for the use of the Qmn format on this line
mult_tmp2 := mult_tmp1(L-1 downto 0) + p1(level_sel);

if (half_way_flag(i) = '1') then
output_vect(i) := padding & (-mult_tmp2);

else
output_vect(i) := padding & mult_tmp2;

end if;
end loop;

return output_vect;
end function;

function psi_transform(input_vect: vector_array_e(0 to FHE_m-1)) return vector_array is

variable output_vect : vector_array(0 to FHE_m-1);
variable tmp0 : signed(2*L - 1 downto 0) := (others => '0');
variable tmp1 : signed(2*L - 1 downto 0) := (others => '0');
variable tmp2 : signed(L - 1 downto 0) := (others => '0');
variable tmp3 : signed(L - 1 downto 0) := (others => '0');

variable debug: signed(L - 1 downto 0) := (others => '0');
begin

for i in 0 to FHE_m-1 loop
debug := mod_powerof2(input_vect(i)(L-1 downto 0), Qmn_norm_one);
tmp0 := FHE_q_bitvect * (mod_powerof2(input_vect(i)(L-1 downto 0), Qmn_norm_one));
tmp1 := shift_right(tmp0, Qn_norm);
tmp2 := tmp1(L-1 downto 0);

--the next procedure rounds the result
--rule: round to the nearest -> ties to even
if (tmp2(L-1) = '1') then

if (tmp2(Qn_norm-1) = '0') then
tmp3 := shift_right(tmp2, Qn_norm) - 1;

else
tmp3 := shift_right(tmp2, Qn_norm);

end if;
else

if (tmp2(Qn_norm-1) = '1') then
tmp3 := shift_right(tmp2, Qn_norm) + 1;

else
tmp3 := shift_right(tmp2, Qn_norm);

end if;
end if;

output_vect(i) := resize(tmp3, FHE_L);
end loop;

return output_vect;
end function;
------------------------------------------------------------------------------------------------------------

begin
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rand_gen: process(clk, calc, input_vect)
begin
if rising_edge(clk) then

done_flag <= calc;

if calc = '1' then
output_vect <= psi_transform(polyfit(input_vect));

end if;
end if;
end process;

end architecture Behavioral;

B.7. FHE_controller_types.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use IEEE.MATH_REAL.ALL;

package types_package is

--Normal distribution generation parameters-------------------------------------------------------------------------------------
constant L: natural := 64;
constant Qm_norm: natural:= 13;
constant Qn_norm: natural:= 51;

type p_vect_type is array (240-1 downto 0) of signed(L-1 downto 0);

constant p0_0: signed(L-1 downto 0):= "0101000111000110011001110100101000101000011010000000000000000000";
constant p0_1: signed(L-1 downto 0):= "0100110101010011101000100100110100011100000111000000000000000000";
constant p0_2: signed(L-1 downto 0):= "0100100101011001011100100100110001101101100100000000000000000000";
constant p0_3: signed(L-1 downto 0):= "0100010111000101100001001011010111010101111010000000000000000000";
constant p0_4: signed(L-1 downto 0):= "0100001010001001000100101000101110010011011111000000000000000000";
constant p0_5: signed(L-1 downto 0):= "0011111110011000000011101001100111000010110011000000000000000000";
constant p0_6: signed(L-1 downto 0):= "0011110011101000100010110101110100001000111000000000000000000000";
constant p0_7: signed(L-1 downto 0):= "0011101001110010010010000001001000110011010110000000000000000000";
constant p0_8: signed(L-1 downto 0):= "0011100000101110010110011100100011010111110100000000000000000000";
constant p0_9: signed(L-1 downto 0):= "0011011000010110111010001100111111010111111101000000000000000000";
constant p0_10: signed(L-1 downto 0):= "0011010000100110111111010010000011111000101011000000000000000000";
constant p0_11: signed(L-1 downto 0):= "0011001001011010010101011111111001001000010101000000000000000000";
constant p0_12: signed(L-1 downto 0):= "0011000010101101010010100000010001011111011101000000000000000000";
constant p0_13: signed(L-1 downto 0):= "0010111100011100101011011011000111111100100000000000000000000000";
constant p0_14: signed(L-1 downto 0):= "0010110110100101101111101110101100101110000010000000000000000000";
constant p0_15: signed(L-1 downto 0):= "0010110001000110000101000101110111011010001101000000000000000000";
constant p0_16: signed(L-1 downto 0):= "0010101001011111111100011100110101010100110001000000000000000000";
constant p0_17: signed(L-1 downto 0):= "0010100000010011111111110011100101100100010100100000000000000000";
constant p0_18: signed(L-1 downto 0):= "0010011000000110001110001001100110000000101000000000000000000000";
constant p0_19: signed(L-1 downto 0):= "0010010000101101001011010110111010100011110010100000000000000000";
constant p0_20: signed(L-1 downto 0):= "0010001010000001010000001000100010100101100000000000000000000000";
constant p0_21: signed(L-1 downto 0):= "0010000011111100001111000000110010001101100010000000000000000000";
constant p0_22: signed(L-1 downto 0):= "0001111110011001000000100010001001100111110100100000000000000000";
constant p0_23: signed(L-1 downto 0):= "0001111001010011010100011100100110011100111001000000000000000000";
constant p0_24: signed(L-1 downto 0):= "0001110100100111100110100001011110100111101010100000000000000000";
constant p0_25: signed(L-1 downto 0):= "0001110000010010110101111111000000110110011100100000000000000000";
constant p0_26: signed(L-1 downto 0):= "0001101100010010011110110111010101100010011111100000000000000000";
constant p0_27: signed(L-1 downto 0):= "0001101000100100010100110011101100101010101101100000000000000000";
constant p0_28: signed(L-1 downto 0):= "0001100101000110011110111101010101110110000011000000000000000000";
constant p0_29: signed(L-1 downto 0):= "0001100001110111010100101011100101011011110110000000000000000000";
constant p0_30: signed(L-1 downto 0):= "0001011110110101011010111010111100111011111101000000000000000000";
constant p0_31: signed(L-1 downto 0):= "0001011011111111100010000100010001100011001011000000000000000000";
constant p0_32: signed(L-1 downto 0):= "0001011000000100000011111011111001001000010100100000000000000000";
constant p0_33: signed(L-1 downto 0):= "0001010011010011111000000111110011000101001110000000000000000000";
constant p0_34: signed(L-1 downto 0):= "0001001111000011110011101111001101000100011011010000000000000000";
constant p0_35: signed(L-1 downto 0):= "0001001011001110111110111111011111110010001111000000000000000000";
constant p0_36: signed(L-1 downto 0):= "0001000111110001011110010110100001110101100000000000000000000000";
constant p0_37: signed(L-1 downto 0):= "0001000100101000000100100111111110000100010000100000000000000000";
constant p0_38: signed(L-1 downto 0):= "0001000001110000001000101110111011010011110011000000000000000000";
constant p0_39: signed(L-1 downto 0):= "0000111111000111011110000101101111010001001100100000000000000000";
constant p0_40: signed(L-1 downto 0):= "0000111100101100001110110100101010101000101001110000000000000000";
constant p0_41: signed(L-1 downto 0):= "0000111010011100110111010110111110101101011101000000000000000000";
constant p0_42: signed(L-1 downto 0):= "0000111000011000000010111111101110100000010110000000000000000000";
constant p0_43: signed(L-1 downto 0):= "0000110110011100101001001110000010101111010100010000000000000000";
constant p0_44: signed(L-1 downto 0):= "0000110100101001101011100101011000111011011101010000000000000000";
constant p0_45: signed(L-1 downto 0):= "0000110010111110010100000001001110101100011000110000000000000000";
constant p0_46: signed(L-1 downto 0):= "0000110001011001110011011101111000001110001101010000000000000000";
constant p0_47: signed(L-1 downto 0):= "0000101111111011100000110001110110010010110100100000000000000000";
constant p0_48: signed(L-1 downto 0):= "0000101101111001001000010000100000100111100010001000000000000000";
constant p0_49: signed(L-1 downto 0):= "0000101011011011011000110000001000111110101011100000000000000000";
constant p0_50: signed(L-1 downto 0):= "0000101001001110010001010001101110000010000001101000000000000000";
constant p0_51: signed(L-1 downto 0):= "0000100111001111010000100101111010110101010000001000000000000000";
constant p0_52: signed(L-1 downto 0):= "0000100101011100010100100110010110001110101111111000000000000000";
constant p0_53: signed(L-1 downto 0):= "0000100011110011110011001001100001001010111111110000000000000000";
constant p0_54: signed(L-1 downto 0):= "0000100010010100010100110000110100000100010001111000000000000000";
constant p0_55: signed(L-1 downto 0):= "0000100000111100110000101100001111110010000011110000000000000000";
constant p0_56: signed(L-1 downto 0):= "0000011111101100001001111011101000010011111011101000000000000000";
constant p0_57: signed(L-1 downto 0):= "0000011110100001101100111100010111011101110001011000000000000000";
constant p0_58: signed(L-1 downto 0):= "0000011101011100101101111000001000110100110100100000000000000000";
constant p0_59: signed(L-1 downto 0):= "0000011100011100100111001100001001110000101111011000000000000000";
constant p0_60: signed(L-1 downto 0):= "0000011011100000111000100010111101010111111110001000000000000000";
constant p0_61: signed(L-1 downto 0):= "0000011010101001000101111100011011111101110101111000000000000000";
constant p0_62: signed(L-1 downto 0):= "0000011001110100110111000000101110110111110111100000000000000000";
constant p0_63: signed(L-1 downto 0):= "0000011001000011110110011011101101110111111111010000000000000000";
constant p0_64: signed(L-1 downto 0):= "0000011000000000000100100100101000101001000101110000000000000000";
constant p0_65: signed(L-1 downto 0):= "0000010110101110000011011010001010010000011101111000000000000000";
constant p0_66: signed(L-1 downto 0):= "0000010101100100101010011000100001001000011111101000000000000000";
constant p0_67: signed(L-1 downto 0):= "0000010100100010100101111011000110000000101011010000000000000000";
constant p0_68: signed(L-1 downto 0):= "0000010011100110110010100101011010011110000111000000000000000000";
constant p0_69: signed(L-1 downto 0):= "0000010010110000011001010101000010001001110010111000000000000000";
constant p0_70: signed(L-1 downto 0):= "0000010001111110101100110010100010111110000110001100000000000000";
constant p0_71: signed(L-1 downto 0):= "0000010001010001000111001110111110110111000010101100000000000000";
constant p0_72: signed(L-1 downto 0):= "0000010000100111001001000000111111001101000001000100000000000000";
constant p0_73: signed(L-1 downto 0):= "0000010000000000010111011001000110011111000101010000000000000000";
constant p0_74: signed(L-1 downto 0):= "0000001111011100011011100111000011110001101100100100000000000000";
constant p0_75: signed(L-1 downto 0):= "0000001110111011000010001011110100000111110001001100000000000000";
constant p0_76: signed(L-1 downto 0):= "0000001110011011111010010101001011000010110110111000000000000000";
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constant p0_77: signed(L-1 downto 0):= "0000001101111110110101100000110001000010001100011000000000000000";
constant p0_78: signed(L-1 downto 0):= "0000001101100011100111000100101100110001001010000000000000000000";
constant p0_79: signed(L-1 downto 0):= "0000001101001010000011111100100110111100101000001000000000000000";
constant p0_80: signed(L-1 downto 0):= "0000001100100110101110001001010101101100101101011110000000000000";
constant p0_81: signed(L-1 downto 0):= "0000001011111011111100100011000001101101000110000100000000000000";
constant p0_82: signed(L-1 downto 0):= "0000001011010101101010001111100100010011001111100100000000000000";
constant p0_83: signed(L-1 downto 0):= "0000001010110011001011110011100110011101010111001000000000000000";
constant p0_84: signed(L-1 downto 0):= "0000001010010011111110001011100111111100101011001100000000000000";
constant p0_85: signed(L-1 downto 0):= "0000001001110111100100110000011101001000100111011010000000000000";
constant p0_86: signed(L-1 downto 0):= "0000001001011101100111111100011011001011101101011010000000000000";
constant p0_87: signed(L-1 downto 0):= "0000001001000101110100000111100101111111111001110100000000000000";
constant p0_88: signed(L-1 downto 0):= "0000001000101111111000110100011101000110000001100010000000000000";
constant p0_89: signed(L-1 downto 0):= "0000001000011011101000001000100111011001011100001100000000000000";
constant p0_90: signed(L-1 downto 0):= "0000001000001000110110001110010100100100010100111010000000000000";
constant p0_91: signed(L-1 downto 0):= "0000000111110111011000111100100100101101111011001100000000000000";
constant p0_92: signed(L-1 downto 0):= "0000000111100111000111100100001111011010110010000110000000000000";
constant p0_93: signed(L-1 downto 0):= "0000000111010111111010100000111110101100000001001100000000000000";
constant p0_94: signed(L-1 downto 0):= "0000000111001001101011001101000110010100010011000100000000000000";
constant p0_95: signed(L-1 downto 0):= "0000000110111100010011110111101101111100111111000110000000000000";
constant p0_96: signed(L-1 downto 0):= "0000000110101001110100011101011100110011101011011010000000000000";
constant p0_97: signed(L-1 downto 0):= "0000000110010011011011101110000111100111000000011100000000000000";
constant p0_98: signed(L-1 downto 0):= "0000000101111111011000111100000001101101001101111101000000000000";
constant p0_99: signed(L-1 downto 0):= "0000000101101101010101011110101010110001100001001111000000000000";
constant p0_100: signed(L-1 downto 0):= "0000000101011100111111000100100001001011110101100010000000000000";
constant p0_101: signed(L-1 downto 0):= "0000000101001110000110110010110001000001101111010000000000000000";
constant p0_102: signed(L-1 downto 0):= "0000000101000000100000010110000100000000101111101011000000000000";
constant p0_103: signed(L-1 downto 0):= "0000000100110100000001011111001111110000001111010111000000000000";
constant p0_104: signed(L-1 downto 0):= "0000000100101000100001101000101000101111010101011111000000000000";
constant p0_105: signed(L-1 downto 0):= "0000000100011101111001100001100100010001010000011110000000000000";
constant p0_106: signed(L-1 downto 0):= "0000000100010100000010111110100000101001010010111000000000000000";
constant p0_107: signed(L-1 downto 0):= "0000000100001010111000101100101001001011011100000111000000000000";
constant p0_108: signed(L-1 downto 0):= "0000000100000010010110001000000000011000110110100110000000000000";
constant p0_109: signed(L-1 downto 0):= "0000000011111010010111010011101001001101010001000101000000000000";
constant p0_110: signed(L-1 downto 0):= "0000000011110010111000110011010010010000010110101001000000000000";
constant p0_111: signed(L-1 downto 0):= "0000000011101011110111100110001101100010000100110101000000000000";
constant p0_112: signed(L-1 downto 0):= "0000000011100010001001111011101111000010111000100101000000000000";
constant p0_113: signed(L-1 downto 0):= "0000000011010110011001000011110001100111101000100100000000000000";
constant p0_114: signed(L-1 downto 0):= "0000000011001011110110101111010100101101011000101101000000000000";
constant p0_115: signed(L-1 downto 0):= "0000000011000010010111001000111011001011011010011101000000000000";
constant p0_116: signed(L-1 downto 0):= "0000000010111001110000101100110101010100001010100101000000000000";
constant p0_117: signed(L-1 downto 0):= "0000000010110001111011100111011110100010111111110100000000000000";
constant p0_118: signed(L-1 downto 0):= "0000000010101010110001011100110010111110101110110000000000000000";
constant p0_119: signed(L-1 downto 0):= "0000000010100100001100110101110100101011000110011111000000000000";
constant p0_120: signed(L-1 downto 0):= "0000000010011110001001010010101111001010100110101011000000000000";
constant p0_121: signed(L-1 downto 0):= "0000000010011000100011000000001011001100111011111111000000000000";
constant p0_122: signed(L-1 downto 0):= "0000000010010011010110101110111100000010010101001011000000000000";
constant p0_123: signed(L-1 downto 0):= "0000000010001110100001101101011111011111010110011001000000000000";
constant p0_124: signed(L-1 downto 0):= "0000000010001010000001100010110100110010001010010101000000000000";
constant p0_125: signed(L-1 downto 0):= "0000000010000101110100001010010101101101000110111110000000000000";
constant p0_126: signed(L-1 downto 0):= "0000000010000001110111110000100010111111100000011000000000000000";
constant p0_127: signed(L-1 downto 0):= "0000000001111110001010110000011000101001101010001010000000000000";
constant p0_128: signed(L-1 downto 0):= "0000000001111001000010101010100011000110010110111010000000000000";
constant p0_129: signed(L-1 downto 0):= "0000000001110010110101001011101001010000111111001001000000000000";
constant p0_130: signed(L-1 downto 0):= "0000000001101101010001000001011100111101000101101000000000000000";
constant p0_131: signed(L-1 downto 0):= "0000000001101000001111111110010101100000001101100100000000000000";
constant p0_132: signed(L-1 downto 0):= "0000000001100011101101000001000010111011000110011001000000000000";
constant p0_133: signed(L-1 downto 0):= "0000000001011111100100000011001001111010010001111101100000000000";
constant p0_134: signed(L-1 downto 0):= "0000000001011011110001101100001000111110101110110001100000000000";
constant p0_135: signed(L-1 downto 0):= "0000000001011000010011000111101110110100111101100110100000000000";
constant p0_136: signed(L-1 downto 0):= "0000000001010101000101111110100110100011110010010000000000000000";
constant p0_137: signed(L-1 downto 0):= "0000000001010010001000010000110000111100111100111110000000000000";
constant p0_138: signed(L-1 downto 0):= "0000000001001111011000010001001110001010010011011100100000000000";
constant p0_139: signed(L-1 downto 0):= "0000000001001100110100100010100011100010111100010011000000000000";
constant p0_140: signed(L-1 downto 0):= "0000000001001010011011110100001110111110101111011110100000000000";
constant p0_141: signed(L-1 downto 0):= "0000000001001000001101000000011100111011001000001111000000000000";
constant p0_142: signed(L-1 downto 0):= "0000000001000110000111001010011001010110100101001010000000000000";
constant p0_143: signed(L-1 downto 0):= "0000000001000100001001011100110101101000000100111111100000000000";
constant p0_144: signed(L-1 downto 0):= "0000000001000001011011010111001111111101011001000000000000000000";
constant p0_145: signed(L-1 downto 0):= "0000000000111110001000010111100110111111010010001011111111111110";
constant p0_146: signed(L-1 downto 0):= "0000000000111011001011001110000001100110011100111111011111111110";
constant p0_147: signed(L-1 downto 0):= "0000000000111000100000101000110011100011001111100010111111111110";
constant p0_148: signed(L-1 downto 0):= "0000000000110110000101111110011110011010110111011110111111111110";
constant p0_149: signed(L-1 downto 0):= "0000000000110011111001000100100010100011110010000000111111111110";
constant p0_150: signed(L-1 downto 0):= "0000000000110001111000001000101100001000011001010111111111111110";
constant p0_151: signed(L-1 downto 0):= "0000000000110000000001101011101110000110110111011010111111111110";
constant p0_152: signed(L-1 downto 0):= "0000000000101110010100011101101100000011001001000001011111111110";
constant p0_153: signed(L-1 downto 0):= "0000000000101100101111011010111101001110010100011010111111111110";
constant p0_154: signed(L-1 downto 0):= "0000000000101011010001101001111010000010000101011010111111111110";
constant p0_155: signed(L-1 downto 0):= "0000000000101001111010011001001001000100110000100101111111111110";
constant p0_156: signed(L-1 downto 0):= "0000000000101000101000111110000100001001000000000100111111111110";
constant p0_157: signed(L-1 downto 0):= "0000000000100111011100110011101111100000111011010110111111111110";
constant p0_158: signed(L-1 downto 0):= "0000000000100110010101011001111111011010001110011011011111111110";
constant p0_159: signed(L-1 downto 0):= "0000000000100101010010010100101000011011111110111011111111111110";
constant p0_160: signed(L-1 downto 0):= "0000000000100011110101011000111000011000111011111110011111111110";
constant p0_161: signed(L-1 downto 0):= "0000000000100010000100101100111010010111110101010011111111111110";
constant p0_162: signed(L-1 downto 0):= "0000000000100000011111101000001101110111100100111101111111111110";
constant p0_163: signed(L-1 downto 0):= "0000000000011111000100011011101000001111001010011001111111111110";
constant p0_164: signed(L-1 downto 0):= "0000000000011101110001101101010000101110110110001111111111111110";
constant p0_165: signed(L-1 downto 0):= "0000000000011100100110010011101000001100011101000001111111111110";
constant p0_166: signed(L-1 downto 0):= "0000000000011011100001010010000011001000101010010100011111111110";
constant p0_167: signed(L-1 downto 0):= "0000000000011010100001110101111101110111111011110110111111111110";
constant p0_168: signed(L-1 downto 0):= "0000000000011001100111010100111010010010110000001011111111111110";
constant p0_169: signed(L-1 downto 0):= "0000000000011000110001001010111011111000100110110110111111111110";
constant p0_170: signed(L-1 downto 0):= "0000000000010111111110111001011010001010011000010000111111111110";
constant p0_171: signed(L-1 downto 0):= "0000000000010111010000000110000011110011001010111001111111111110";
constant p0_172: signed(L-1 downto 0):= "0000000000010110100100011010001110011011001101000110111111111110";
constant p0_173: signed(L-1 downto 0):= "0000000000010101111011100010010000000110011101111100111111111110";
constant p0_174: signed(L-1 downto 0):= "0000000000010101010101001101000000010010010001001010111111111110";
constant p0_175: signed(L-1 downto 0):= "0000000000010100110001001011011110101000010111101110111111111110";
constant p0_176: signed(L-1 downto 0):= "0000000000010011111111010000011001111000010000100011111111111110";
constant p0_177: signed(L-1 downto 0):= "0000000000010011000010101100100100111010010110100111111111111110";
constant p0_178: signed(L-1 downto 0):= "0000000000010010001100010110100011011011110100000101111111111110";
constant p0_179: signed(L-1 downto 0):= "0000000000010001011011010011000010010101100010110000111111111110";
constant p0_180: signed(L-1 downto 0):= "0000000000010000101110110010000011010111000100111110111111111110";
constant p0_181: signed(L-1 downto 0):= "0000000000010000000110001100010111001001110100010110111111111110";
constant p0_182: signed(L-1 downto 0):= "0000000000001111100001000001100011000010100011101011011111111110";
constant p0_183: signed(L-1 downto 0):= "0000000000001110111110110110100101100111101100101010111111111110";
constant p0_184: signed(L-1 downto 0):= "0000000000001110011111010100110001011110000010101100011111111110";
constant p0_185: signed(L-1 downto 0):= "0000000000001110000010001000110111111011110000011101111111111110";
constant p0_186: signed(L-1 downto 0):= "0000000000001101100111000010011111110100001100011000111111111110";
constant p0_187: signed(L-1 downto 0):= "0000000000001101001101110011100100111100111011010010111111111110";
constant p0_188: signed(L-1 downto 0):= "0000000000001100110110001111111110100001101101110011111111111110";
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constant p0_189: signed(L-1 downto 0):= "0000000000001100100000001101001010100010001111111101011111111110";
constant p0_190: signed(L-1 downto 0):= "0000000000001100001011100001111101001110110100111100111111111110";
constant p0_191: signed(L-1 downto 0):= "0000000000001011111000000110010011101011111110000110111111111110";
constant p0_192: signed(L-1 downto 0):= "0000000000001011011101001010101010011111100010000111111111111110";
constant p0_193: signed(L-1 downto 0):= "0000000000001010111100011111101001101011100111111000111111111110";
constant p0_194: signed(L-1 downto 0):= "0000000000001010011111001011010000010010011111111001011111111110";
constant p0_195: signed(L-1 downto 0):= "0000000000001010000100101101100111100000011000100010011111111110";
constant p0_196: signed(L-1 downto 0):= "0000000000001001101100101100111100111101000011110001111111111110";
constant p0_197: signed(L-1 downto 0):= "0000000000001001010110110100001001111011010011001010111111111110";
constant p0_198: signed(L-1 downto 0):= "0000000000001001000010110001110001111110110001000011111111111110";
constant p0_199: signed(L-1 downto 0):= "0000000000001000110000010111010001111111111101100011111111111110";
constant p0_200: signed(L-1 downto 0):= "0000000000001000011111011000011011000100011001100000111111111110";
constant p0_201: signed(L-1 downto 0):= "0000000000001000001111101010110101111101101111101101111111111110";
constant p0_202: signed(L-1 downto 0):= "0000000000001000000001000101101101000000000101101010111111111110";
constant p0_203: signed(L-1 downto 0):= "0000000000000111110011100001011010101000111001111011111111111110";
constant p0_204: signed(L-1 downto 0):= "0000000000000111100110110111011011101100110011111000011111111110";
constant p0_205: signed(L-1 downto 0):= "0000000000000111011011000010000100010101111111001111111111111110";
constant p0_206: signed(L-1 downto 0):= "0000000000000111001111111100010111001011010000011111111111111110";
constant p0_207: signed(L-1 downto 0):= "0000000000000111000101100001111110000001110011011101111111111110";
constant p0_208: signed(L-1 downto 0):= "0000000000000110110111000111101010011011100010111000011111111110";
constant p0_209: signed(L-1 downto 0):= "0000000000000110100101101010111011111111100110001001111111111110";
constant p0_210: signed(L-1 downto 0):= "0000000000000110010110000011011100010001110110010111111111111110";
constant p0_211: signed(L-1 downto 0):= "0000000000000110000111111111111100000011010011011001111111111110";
constant p0_212: signed(L-1 downto 0):= "0000000000000101111011010010011101111000101100101100011111111110";
constant p0_213: signed(L-1 downto 0):= "0000000000000101101111101111100110010101011000110011011111111110";
constant p0_214: signed(L-1 downto 0):= "0000000000000101100101001101111000101010001100110100111111111110";
constant p0_215: signed(L-1 downto 0):= "0000000000000101011011100101011100011011101101011100111111111110";
constant p0_216: signed(L-1 downto 0):= "0000000000000101010010101111101001011111110011001001111111111110";
constant p0_217: signed(L-1 downto 0):= "0000000000000101001010100110111000100100001001000111111111111110";
constant p0_218: signed(L-1 downto 0):= "0000000000000101000011000110010111010000001100100111011111111110";
constant p0_219: signed(L-1 downto 0):= "0000000000000100111100001001111110101011100100010111111111111110";
constant p0_220: signed(L-1 downto 0):= "0000000000000100110101101110001100000000111011011101111111111110";
constant p0_221: signed(L-1 downto 0):= "0000000000000100101111101111111010100000010101111110111111111110";
constant p0_222: signed(L-1 downto 0):= "0000000000000100101010001100011110101011011010001101111111111110";
constant p0_223: signed(L-1 downto 0):= "0000000000000100100101000001100010011011000011001110011111111110";
constant p0_224: signed(L-1 downto 0):= "0000000000000100011101111101000101000101001100100010111111111110";
constant p0_225: signed(L-1 downto 0):= "0000000000000100010101100010100100101110010010101100111111111110";
constant p0_226: signed(L-1 downto 0):= "0000000000000100001110001011111100111001110100100100111111111110";
constant p0_227: signed(L-1 downto 0):= "0000000000000100000111110000000010011010010010100100111111111110";
constant p0_228: signed(L-1 downto 0):= "0000000000000100000010000111011101101101100100011010111111111110";
constant p0_229: signed(L-1 downto 0):= "0000000000000011111101001100010001000111101000010001111111111110";
constant p0_230: signed(L-1 downto 0):= "0000000000000011111000111001100101110010110110100100011111111110";
constant p0_231: signed(L-1 downto 0):= "0000000000000011110101001011011101100110000001001100111111111110";
constant p0_232: signed(L-1 downto 0):= "0000000000000011110001111110101000011001100000000010011111111110";
constant p0_233: signed(L-1 downto 0):= "0000000000000011101111010000011100000000001010100111111111111110";
constant p0_234: signed(L-1 downto 0):= "0000000000000011101100111110101101111010011010011111111111111110";
constant p0_235: signed(L-1 downto 0):= "0000000000000011101011000111101110100101111100100001111111111110";
constant p0_236: signed(L-1 downto 0):= "0000000000000011101001101010000101110101010001001111111111111110";
constant p0_237: signed(L-1 downto 0):= "0000000000000011101000100100101111111111111001010011111111111110";
constant p0_238: signed(L-1 downto 0):= "0000000000000011100111110110111100000000011100010001011111111110";
constant p0_239: signed(L-1 downto 0):= "0000000000000011100111100000001001111001000100010000111111111110";
constant p1_0: signed(L-1 downto 0):= "1111111111111001101010100100011100111010100111011001100000000000";
constant p1_1: signed(L-1 downto 0):= "1111111111111001101011110000000100101011111010100111000000000000";
constant p1_2: signed(L-1 downto 0):= "1111111111111001101100110111101010100001111010110011100000000000";
constant p1_3: signed(L-1 downto 0):= "1111111111111001101101111011101001001100000011100000100000000000";
constant p1_4: signed(L-1 downto 0):= "1111111111111001101110111100010111011010110000101110000000000000";
constant p1_5: signed(L-1 downto 0):= "1111111111111001101111111010001000101111111100000100000000000000";
constant p1_6: signed(L-1 downto 0):= "1111111111111001110000110101001110000100011000111100000000000000";
constant p1_7: signed(L-1 downto 0):= "1111111111111001110001101101110110000101000111110101000000000000";
constant p1_8: signed(L-1 downto 0):= "1111111111111001110010100100001101101010100011010101100000000000";
constant p1_9: signed(L-1 downto 0):= "1111111111111001110011011000100000001011000100100110100000000000";
constant p1_10: signed(L-1 downto 0):= "1111111111111001110100001010110111101010000011101001100000000000";
constant p1_11: signed(L-1 downto 0):= "1111111111111001110100111011011101000100000110010010000000000000";
constant p1_12: signed(L-1 downto 0):= "1111111111111001110101101010011000011001000011100111100000000000";
constant p1_13: signed(L-1 downto 0):= "1111111111111001110110010111110000110100011000111100100000000000";
constant p1_14: signed(L-1 downto 0):= "1111111111111001110111000011101100110100000110001001000000000000";
constant p1_15: signed(L-1 downto 0):= "1111111111111001110111101110010010001110100010100110000000000000";
constant p1_16: signed(L-1 downto 0):= "1111111111111001111000101011000011010011101010110110100000000000";
constant p1_17: signed(L-1 downto 0):= "1111111111111001111001111001001000110111001001011100100000000000";
constant p1_18: signed(L-1 downto 0):= "1111111111111001111011000011000100110110000011011000100000000000";
constant p1_19: signed(L-1 downto 0):= "1111111111111001111100001001010010110000100100110101100000000000";
constant p1_20: signed(L-1 downto 0):= "1111111111111001111101001100001010000000110100100101000000000000";
constant p1_21: signed(L-1 downto 0):= "1111111111111001111110001011111110101100100110000001000000000000";
constant p1_22: signed(L-1 downto 0):= "1111111111111001111111001001000010001011110110111111100000000000";
constant p1_23: signed(L-1 downto 0):= "1111111111111010000000000011100011100110110110110100000000000000";
constant p1_24: signed(L-1 downto 0):= "1111111111111010000000111011110000001101111100010010000000000000";
constant p1_25: signed(L-1 downto 0):= "1111111111111010000001110001110011101100101011000110000000000000";
constant p1_26: signed(L-1 downto 0):= "1111111111111010000010100101111000011001001110111001000000000000";
constant p1_27: signed(L-1 downto 0):= "1111111111111010000011011000000111100001000000000001000000000000";
constant p1_28: signed(L-1 downto 0):= "1111111111111010000100001000101001010010111001000000100000000000";
constant p1_29: signed(L-1 downto 0):= "1111111111111010000100110111100101000111111010011110100000000000";
constant p1_30: signed(L-1 downto 0):= "1111111111111010000101100101000001101010010011111110000000000000";
constant p1_31: signed(L-1 downto 0):= "1111111111111010000110010001000100111011100011011110100000000000";
constant p1_32: signed(L-1 downto 0):= "1111111111111010000111001111111100011101101001100101000000000000";
constant p1_33: signed(L-1 downto 0):= "1111111111111010001000100000101111100110011111001100000000000000";
constant p1_34: signed(L-1 downto 0):= "1111111111111010001001101101010000110101011001111000000000000000";
constant p1_35: signed(L-1 downto 0):= "1111111111111010001010110101111100011111100100010100100000000000";
constant p1_36: signed(L-1 downto 0):= "1111111111111010001011111011001010101100010111101011100000000000";
constant p1_37: signed(L-1 downto 0):= "1111111111111010001100111101010000001000101001011010100000000000";
constant p1_38: signed(L-1 downto 0):= "1111111111111010001101111100011110101110010000010111100000000000";
constant p1_39: signed(L-1 downto 0):= "1111111111111010001110111001000110000011000011101100000000000000";
constant p1_40: signed(L-1 downto 0):= "1111111111111010001111110011010011110001011101011011100000000000";
constant p1_41: signed(L-1 downto 0):= "1111111111111010010000101011010011111100000011100101100000000000";
constant p1_42: signed(L-1 downto 0):= "1111111111111010010001100001010001001101100000001011000000000000";
constant p1_43: signed(L-1 downto 0):= "1111111111111010010010010101010101000101011101101000100000000000";
constant p1_44: signed(L-1 downto 0):= "1111111111111010010011000111101000000011001111111011100000000000";
constant p1_45: signed(L-1 downto 0):= "1111111111111010010011111000010001101110101000100100000000000000";
constant p1_46: signed(L-1 downto 0):= "1111111111111010010100100111011000111111001101000110000000000000";
constant p1_47: signed(L-1 downto 0):= "1111111111111010010101010101000100000010100010000010000000000000";
constant p1_48: signed(L-1 downto 0):= "1111111111111010010110010110010000010011001100110111100000000000";
constant p1_49: signed(L-1 downto 0):= "1111111111111010010111101010000011100010011001011011100000000000";
constant p1_50: signed(L-1 downto 0):= "1111111111111010011000111001011011101111100000100101100000000000";
constant p1_51: signed(L-1 downto 0):= "1111111111111010011010000100110110001001100000111111000000000000";
constant p1_52: signed(L-1 downto 0):= "1111111111111010011011001100101011101001001111110111000000000000";
constant p1_53: signed(L-1 downto 0):= "1111111111111010011100010001010001100110001010101011100000000000";
constant p1_54: signed(L-1 downto 0):= "1111111111111010011101010010111010011111001001101100000000000000";
constant p1_55: signed(L-1 downto 0):= "1111111111111010011110010001110110011010011011110001100000000000";
constant p1_56: signed(L-1 downto 0):= "1111111111111010011111001110010011011110111001011000000000000000";
constant p1_57: signed(L-1 downto 0):= "1111111111111010100000001000011110001000010100100010000000000000";
constant p1_58: signed(L-1 downto 0):= "1111111111111010100001000000100001010111110000011011100000000000";
constant p1_59: signed(L-1 downto 0):= "1111111111111010100001110110100111000000110111101001000000000000";
constant p1_60: signed(L-1 downto 0):= "1111111111111010100010101010110111110100111010011110100000000000";



82 B. Feedback system code

constant p1_61: signed(L-1 downto 0):= "1111111111111010100011011101011011101011110100110000100000000000";
constant p1_62: signed(L-1 downto 0):= "1111111111111010100100001110011001101011110011000010000000000000";
constant p1_63: signed(L-1 downto 0):= "1111111111111010100100111101111000001111101010000000000000000000";
constant p1_64: signed(L-1 downto 0):= "1111111111111010100110000001101010000110101111001110100000000000";
constant p1_65: signed(L-1 downto 0):= "1111111111111010100111011000110011010101110111100001000000000000";
constant p1_66: signed(L-1 downto 0):= "1111111111111010101000101011010111011111101101110010000000000000";
constant p1_67: signed(L-1 downto 0):= "1111111111111010101001111001110100110010101001111111000000000000";
constant p1_68: signed(L-1 downto 0):= "1111111111111010101011000100100100111101110000011010100000000000";
constant p1_69: signed(L-1 downto 0):= "1111111111111010101100001011111110000111010000010101000000000000";
constant p1_70: signed(L-1 downto 0):= "1111111111111010101101010000010011010110101011001101000000000000";
constant p1_71: signed(L-1 downto 0):= "1111111111111010101110010001110101010101110011000111000000000000";
constant p1_72: signed(L-1 downto 0):= "1111111111111010101111010000110010101010110010100110000000000000";
constant p1_73: signed(L-1 downto 0):= "1111111111111010110000001101011000001101000111001110000000000000";
constant p1_74: signed(L-1 downto 0):= "1111111111111010110001000111110001010110011011100111100000000000";
constant p1_75: signed(L-1 downto 0):= "1111111111111010110010000000001000010000011010000010100000000000";
constant p1_76: signed(L-1 downto 0):= "1111111111111010110010110110100110000000000001111011000000000000";
constant p1_77: signed(L-1 downto 0):= "1111111111111010110011101011010010101111000001000100100000000000";
constant p1_78: signed(L-1 downto 0):= "1111111111111010110100011110010101110011101001000100000000000000";
constant p1_79: signed(L-1 downto 0):= "1111111111111010110101001111110101110111010100010110000000000000";
constant p1_80: signed(L-1 downto 0):= "1111111111111010110110010110100001011101110110110110000000000000";
constant p1_81: signed(L-1 downto 0):= "1111111111111010110111110001011010110111010001010101000000000000";
constant p1_82: signed(L-1 downto 0):= "1111111111111010111001000111100100000011000011011111000000000000";
constant p1_83: signed(L-1 downto 0):= "1111111111111010111010011001011100010101011110010111000000000000";
constant p1_84: signed(L-1 downto 0):= "1111111111111010111011100111011110011001011010101001000000000000";
constant p1_85: signed(L-1 downto 0):= "1111111111111010111100110010000001001000101111000001100000000000";
constant p1_86: signed(L-1 downto 0):= "1111111111111010111101111001011000010111110100011001000000000000";
constant p1_87: signed(L-1 downto 0):= "1111111111111010111110111101110101010111101101010011000000000000";
constant p1_88: signed(L-1 downto 0):= "1111111111111010111111111111100111010001001000000000100000000000";
constant p1_89: signed(L-1 downto 0):= "1111111111111011000000111110111011011010000111110100000000000000";
constant p1_90: signed(L-1 downto 0):= "1111111111111011000001111011111101100111100101000000100000000000";
constant p1_91: signed(L-1 downto 0):= "1111111111111011000010110110111000011011011110100000000000000000";
constant p1_92: signed(L-1 downto 0):= "1111111111111011000011101111110101010000101001000011000000000000";
constant p1_93: signed(L-1 downto 0):= "1111111111111011000100100110111100100100011101101100100000000000";
constant p1_94: signed(L-1 downto 0):= "1111111111111011000101011100010101111111000001000101100000000000";
constant p1_95: signed(L-1 downto 0):= "1111111111111011000110010000001000011001110111100000000000000000";
constant p1_96: signed(L-1 downto 0):= "1111111111111011000111011010000110000010111100000101000000000000";
constant p1_97: signed(L-1 downto 0):= "1111111111111011001000111001001111001100000110001011000000000000";
constant p1_98: signed(L-1 downto 0):= "1111111111111011001010010011011011101101100000101111000000000000";
constant p1_99: signed(L-1 downto 0):= "1111111111111011001011101001001100001000111101101010100000000000";
constant p1_100: signed(L-1 downto 0):= "1111111111111011001100111010111100001011101101100111000000000000";
constant p1_101: signed(L-1 downto 0):= "1111111111111011001110001001000011101000111010011100000000000000";
constant p1_102: signed(L-1 downto 0):= "1111111111111011001111010011110111000110110010000001100000000000";
constant p1_103: signed(L-1 downto 0):= "1111111111111011010000011011101000100001111110100000100000000000";
constant p1_104: signed(L-1 downto 0):= "1111111111111011010001100000100111101001101000100110000000000000";
constant p1_105: signed(L-1 downto 0):= "1111111111111011010010100011000010010101110100100010000000000000";
constant p1_106: signed(L-1 downto 0):= "1111111111111011010011100011000100111001101100000101100000000000";
constant p1_107: signed(L-1 downto 0):= "1111111111111011010100100000111010010010010010011111000000000000";
constant p1_108: signed(L-1 downto 0):= "1111111111111011010101011100101100010010110000000001100000000000";
constant p1_109: signed(L-1 downto 0):= "1111111111111011010110010110100011101110011000000101100000000000";
constant p1_110: signed(L-1 downto 0):= "1111111111111011010111001110101000100001000100001110000000000000";
constant p1_111: signed(L-1 downto 0):= "1111111111111011011000000101000001110110011000110101000000000000";
constant p1_112: signed(L-1 downto 0):= "1111111111111011011001010010101111001010001100101110100000000000";
constant p1_113: signed(L-1 downto 0):= "1111111111111011011010110110101110100101110110110110000000000000";
constant p1_114: signed(L-1 downto 0):= "1111111111111011011100010101100011011101111011000010000000000000";
constant p1_115: signed(L-1 downto 0):= "1111111111111011011101101111101111101010101101100101000000000000";
constant p1_116: signed(L-1 downto 0):= "1111111111111011011111000101110000000011101000001101100000000000";
constant p1_117: signed(L-1 downto 0):= "1111111111111011100000010111111101011011110111010001100000000000";
constant p1_118: signed(L-1 downto 0):= "1111111111111011100001100110101101010001010110100000100000000000";
constant p1_119: signed(L-1 downto 0):= "1111111111111011100010110010010010010001100011000010100000000000";
constant p1_120: signed(L-1 downto 0):= "1111111111111011100011111010111100110110100101001000100000000000";
constant p1_121: signed(L-1 downto 0):= "1111111111111011100101000000111011011110100110101011000000000000";
constant p1_122: signed(L-1 downto 0):= "1111111111111011100110000100011010111110101011110101000000000000";
constant p1_123: signed(L-1 downto 0):= "1111111111111011100111000101100110110010001101001101000000000000";
constant p1_124: signed(L-1 downto 0):= "1111111111111011101000000100101001000111100011000110000000000000";
constant p1_125: signed(L-1 downto 0):= "1111111111111011101001000001101011001010100101101111000000000000";
constant p1_126: signed(L-1 downto 0):= "1111111111111011101001111100110101001101011110011011000000000000";
constant p1_127: signed(L-1 downto 0):= "1111111111111011101010110110001110101111111110101110000000000000";
constant p1_128: signed(L-1 downto 0):= "1111111111111011101100001000010000001101010111100010100000000000";
constant p1_129: signed(L-1 downto 0):= "1111111111111011101101110001110101011010101110101110000000000000";
constant p1_130: signed(L-1 downto 0):= "1111111111111011101111010110000000010010001100010100000000000000";
constant p1_131: signed(L-1 downto 0):= "1111111111111011110000110101010100001101011001111000100000000000";
constant p1_132: signed(L-1 downto 0):= "1111111111111011110010010000001111010111001101011111000000000000";
constant p1_133: signed(L-1 downto 0):= "1111111111111011110011100111001011101010111010110000000000000000";
constant p1_134: signed(L-1 downto 0):= "1111111111111011110100111010011111100101001111001110100000000000";
constant p1_135: signed(L-1 downto 0):= "1111111111111011110110001010011110101010101000101111000000000000";
constant p1_136: signed(L-1 downto 0):= "1111111111111011110111010111011010000101101111001011000000000000";
constant p1_137: signed(L-1 downto 0):= "1111111111111011111000100001100000111111101011010110000000000000";
constant p1_138: signed(L-1 downto 0):= "1111111111111011111001101001000000110011110011111011000000000000";
constant p1_139: signed(L-1 downto 0):= "1111111111111011111010101110000101011111110010100001100000000000";
constant p1_140: signed(L-1 downto 0):= "1111111111111011111011110000111001110000110010010111100000000000";
constant p1_141: signed(L-1 downto 0):= "1111111111111011111100110001100111001110011110000000000000000000";
constant p1_142: signed(L-1 downto 0):= "1111111111111011111101110000010110100100001001001000100000000000";
constant p1_143: signed(L-1 downto 0):= "1111111111111011111110101101001111101000011100101010000000000000";
constant p1_144: signed(L-1 downto 0):= "1111111111111100000000000100010010011011010010000000000000000000";
constant p1_145: signed(L-1 downto 0):= "1111111111111100000001110100011000001111000010111111100000000000";
constant p1_146: signed(L-1 downto 0):= "1111111111111100000011011110110001101000000100111101100000000000";
constant p1_147: signed(L-1 downto 0):= "1111111111111100000101000100000011101110011010110111100000000000";
constant p1_148: signed(L-1 downto 0):= "1111111111111100000110100100101110001011101000000110100000000000";
constant p1_149: signed(L-1 downto 0):= "1111111111111100001000000001001100001100111010010000000000000000";
constant p1_150: signed(L-1 downto 0):= "1111111111111100001001011001110101010110010101000101000000000000";
constant p1_151: signed(L-1 downto 0):= "1111111111111100001010101110111110001010111010001011100000000000";
constant p1_152: signed(L-1 downto 0):= "1111111111111100001100000000111000101100011100111110100000000000";
constant p1_153: signed(L-1 downto 0):= "1111111111111100001101001111110100110101000010001111100000000000";
constant p1_154: signed(L-1 downto 0):= "1111111111111100001110011100000000101011101000001011100000000000";
constant p1_155: signed(L-1 downto 0):= "1111111111111100001111100101101000110100111011111011000000000000";
constant p1_156: signed(L-1 downto 0):= "1111111111111100010000101100111000100001010000001101100000000000";
constant p1_157: signed(L-1 downto 0):= "1111111111111100010001110001111001110111111100100010000000000000";
constant p1_158: signed(L-1 downto 0):= "1111111111111100010010110100110110000001000010110100000000000000";
constant p1_159: signed(L-1 downto 0):= "1111111111111100010011110101110101001101010011000111000000000000";
constant p1_160: signed(L-1 downto 0):= "1111111111111100010101010010110000111101010110001010000000000000";
constant p1_161: signed(L-1 downto 0):= "1111111111111100010111001010011111101011001111010101000000000000";
constant p1_162: signed(L-1 downto 0):= "1111111111111100011000111100001100111101010011100111100000000000";
constant p1_163: signed(L-1 downto 0):= "1111111111111100011010101000011111111001111111100111000000000000";
constant p1_164: signed(L-1 downto 0):= "1111111111111100011100001111111001110111011000000000100000000000";
constant p1_165: signed(L-1 downto 0):= "1111111111111100011101110010110111100000100101001001100000000000";
constant p1_166: signed(L-1 downto 0):= "1111111111111100011111010001110001101011100010010111000000000000";
constant p1_167: signed(L-1 downto 0):= "1111111111111100100000101100111110000011000110011010000000000000";
constant p1_168: signed(L-1 downto 0):= "1111111111111100100010000100101111101000011110001011100000000000";
constant p1_169: signed(L-1 downto 0):= "1111111111111100100011011001010111001101111111000010000000000000";
constant p1_170: signed(L-1 downto 0):= "1111111111111100100100101011000011101100110010001001100000000000";
constant p1_171: signed(L-1 downto 0):= "1111111111111100100101111010000010010110100001010100000000000000";
constant p1_172: signed(L-1 downto 0):= "1111111111111100100111000110011111000011111011010000100000000000";
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constant p1_173: signed(L-1 downto 0):= "1111111111111100101000010000100100100000111000110110000000000000";
constant p1_174: signed(L-1 downto 0):= "1111111111111100101001011000011100010110100010101110000000000000";
constant p1_175: signed(L-1 downto 0):= "1111111111111100101010011110001111010011101111111001000000000000";
constant p1_176: signed(L-1 downto 0):= "1111111111111100101100000010000101011101010000000111100000000000";
constant p1_177: signed(L-1 downto 0):= "1111111111111100101110000010110001100101110011101010100000000000";
constant p1_178: signed(L-1 downto 0):= "1111111111111100101111111101000011001001001000011000000000000000";
constant p1_179: signed(L-1 downto 0):= "1111111111111100110001110001100011011111101111010001100000000000";
constant p1_180: signed(L-1 downto 0):= "1111111111111100110011100000110101111101001011011100000000000000";
constant p1_181: signed(L-1 downto 0):= "1111111111111100110101001011011000111001001110001111100000000000";
constant p1_182: signed(L-1 downto 0):= "1111111111111100110110110001100110101000100010001101100000000000";
constant p1_183: signed(L-1 downto 0):= "1111111111111100111000010011110110001001000111011011100000000000";
constant p1_184: signed(L-1 downto 0):= "1111111111111100111001110010011011100101100100011001100000000000";
constant p1_185: signed(L-1 downto 0):= "1111111111111100111011001101101000110001010111100010100000000000";
constant p1_186: signed(L-1 downto 0):= "1111111111111100111100100101101101011111110000000111100000000000";
constant p1_187: signed(L-1 downto 0):= "1111111111111100111101111010110111110110011010101001100000000000";
constant p1_188: signed(L-1 downto 0):= "1111111111111100111111001101010100011100111001111000100000000000";
constant p1_189: signed(L-1 downto 0):= "1111111111111101000000011101001110101001010111111100100000000000";
constant p1_190: signed(L-1 downto 0):= "1111111111111101000001101010110000101011010000110010000000000000";
constant p1_191: signed(L-1 downto 0):= "1111111111111101000010110110000011110100001111110110100000000000";
constant p1_192: signed(L-1 downto 0):= "1111111111111101000100100001110010011001000001100110100000000000";
constant p1_193: signed(L-1 downto 0):= "1111111111111101000110101100101001001100011110001110000000000000";
constant p1_194: signed(L-1 downto 0):= "1111111111111101001000110000100100111110101111010010000000000000";
constant p1_195: signed(L-1 downto 0):= "1111111111111101001010101110010001110000011101010101000000000000";
constant p1_196: signed(L-1 downto 0):= "1111111111111101001100100110010101000101001101111100100000000000";
constant p1_197: signed(L-1 downto 0):= "1111111111111101001110011001001111010001000111001100000000000000";
constant p1_198: signed(L-1 downto 0):= "1111111111111101010000000111011100010100110100000111100000000000";
constant p1_199: signed(L-1 downto 0):= "1111111111111101010001110001010100101100101101001111100000000000";
constant p1_200: signed(L-1 downto 0):= "1111111111111101010011010111001101110110010010101000000000000000";
constant p1_201: signed(L-1 downto 0):= "1111111111111101010100111001011010101110001100001101000000000000";
constant p1_202: signed(L-1 downto 0):= "1111111111111101010110011000001100001000011100111110100000000000";
constant p1_203: signed(L-1 downto 0):= "1111111111111101010111110011110001000100011001011101100000000000";
constant p1_204: signed(L-1 downto 0):= "1111111111111101011001001100010110111100111110001000000000000000";
constant p1_205: signed(L-1 downto 0):= "1111111111111101011010100010001001110110010011100101100000000000";
constant p1_206: signed(L-1 downto 0):= "1111111111111101011011110101010100101001000100000100000000000000";
constant p1_207: signed(L-1 downto 0):= "1111111111111101011101000110000001001011111101010101000000000000";
constant p1_208: signed(L-1 downto 0):= "1111111111111101011110111001010011101000101111011010000000000000";
constant p1_209: signed(L-1 downto 0):= "1111111111111101100001001101100111110011011100111110000000000000";
constant p1_210: signed(L-1 downto 0):= "1111111111111101100011011010001011010000111000101100000000000000";
constant p1_211: signed(L-1 downto 0):= "1111111111111101100101011111101100100011000010111000100000000000";
constant p1_212: signed(L-1 downto 0):= "1111111111111101100111011110110011010000101100111011100000000000";
constant p1_213: signed(L-1 downto 0):= "1111111111111101101001011000000001010111111111101100100000000000";
constant p1_214: signed(L-1 downto 0):= "1111111111111101101011001011110100001110011010110000000000000000";
constant p1_215: signed(L-1 downto 0):= "1111111111111101101100111010100101010011000001011001000000000000";
constant p1_216: signed(L-1 downto 0):= "1111111111111101101110100100101010110110010000010100100000000000";
constant p1_217: signed(L-1 downto 0):= "1111111111111101110000001010011000011001111010000001100000000000";
constant p1_218: signed(L-1 downto 0):= "1111111111111101110001101011111111001010111101010100100000000000";
constant p1_219: signed(L-1 downto 0):= "1111111111111101110011001001101110010110101011110011100000000000";
constant p1_220: signed(L-1 downto 0):= "1111111111111101110100100011110011011100000000110000100000000000";
constant p1_221: signed(L-1 downto 0):= "1111111111111101110101111010011010011001111001010000000000000000";
constant p1_222: signed(L-1 downto 0):= "1111111111111101110111001101101101111011010011010000100000000000";
constant p1_223: signed(L-1 downto 0):= "1111111111111101111000011101110111100001010000110101000000000000";
constant p1_224: signed(L-1 downto 0):= "1111111111111101111010001110111110110110101110011111100000000000";
constant p1_225: signed(L-1 downto 0):= "1111111111111101111100011110000001011100110011110111000000000000";
constant p1_226: signed(L-1 downto 0):= "1111111111111101111110100010011000101001100100010101000000000000";
constant p1_227: signed(L-1 downto 0):= "1111111111111110000000011100101011000000111011011011100000000000";
constant p1_228: signed(L-1 downto 0):= "1111111111111110000010001101010110011110111001110110000000000000";
constant p1_229: signed(L-1 downto 0):= "1111111111111110000011110100110001100111010110100101000000000000";
constant p1_230: signed(L-1 downto 0):= "1111111111111110000101010011001100100000011111101011000000000000";
constant p1_231: signed(L-1 downto 0):= "1111111111111110000110101000110001011101000110110110100000000000";
constant p1_232: signed(L-1 downto 0):= "1111111111111110000111110101100101011001110011010010100000000000";
constant p1_233: signed(L-1 downto 0):= "1111111111111110001000111001101000001111101100101010000000000000";
constant p1_234: signed(L-1 downto 0):= "1111111111111110001001110100110100111110000010001101000000000000";
constant p1_235: signed(L-1 downto 0):= "1111111111111110001010100111000001101011101010110110000000000000";
constant p1_236: signed(L-1 downto 0):= "1111111111111110001011001111111111100000111101110010000000000000";
constant p1_237: signed(L-1 downto 0):= "1111111111111110001011101111011010011010001001101000000000000000";
constant p1_238: signed(L-1 downto 0):= "1111111111111110001100000100111000110001111001001111100000000000";
constant p1_239: signed(L-1 downto 0):= "1111111111111110001100001111111011000011011101110111100000000000";

constant p0: p_vect_type := (p0_239,p0_238,p0_237,p0_236,p0_235,p0_234,p0_233,p0_232,p0_231,p0_230,p0_229,p0_228,p0_227,p0_226,p0_225,p0_224,p0_223,p0_222,p0_221,p0_220,p0_219,p0_218,p0_217,p0_216,p0_215,p0_214,p0_213,p0_212,p0_211,p0_210,p0_209,p0_208,p0_207,p0_206,p0_205,p0_204,p0_203,p0_202,p0_201,p0_200,p0_199,p0_198,p0_197,p0_196,p0_195,p0_194,p0_193,p0_192,p0_191,p0_190,p0_189,p0_188,p0_187,p0_186,p0_185,p0_184,p0_183,p0_182,p0_181,p0_180,p0_179,p0_178,p0_177,p0_176,p0_175,p0_174,p0_173,p0_172,p0_171,p0_170,p0_169,p0_168,p0_167,p0_166,p0_165,p0_164,p0_163,p0_162,p0_161,p0_160,p0_159,p0_158,p0_157,p0_156,p0_155,p0_154,p0_153,p0_152,p0_151,p0_150,p0_149,p0_148,p0_147,p0_146,p0_145,p0_144,p0_143,p0_142,p0_141,p0_140,p0_139,p0_138,p0_137,p0_136,p0_135,p0_134,p0_133,p0_132,p0_131,p0_130,p0_129,p0_128,p0_127,p0_126,p0_125,p0_124,p0_123,p0_122,p0_121,p0_120,p0_119,p0_118,p0_117,p0_116,p0_115,p0_114,p0_113,p0_112,p0_111,p0_110,p0_109,p0_108,p0_107,p0_106,p0_105,p0_104,p0_103,p0_102,p0_101,p0_100,p0_99,p0_98,p0_97,p0_96,p0_95,p0_94,p0_93,p0_92,p0_91,p0_90,p0_89,p0_88,p0_87,p0_86,p0_85,p0_84,p0_83,p0_82,p0_81,p0_80,p0_79,p0_78,p0_77,p0_76,p0_75,p0_74,p0_73,p0_72,p0_71,p0_70,p0_69,p0_68,p0_67,p0_66,p0_65,p0_64,p0_63,p0_62,p0_61,p0_60,p0_59,p0_58,p0_57,p0_56,p0_55,p0_54,p0_53,p0_52,p0_51,p0_50,p0_49,p0_48,p0_47,p0_46,p0_45,p0_44,p0_43,p0_42,p0_41,p0_40,p0_39,p0_38,p0_37,p0_36,p0_35,p0_34,p0_33,p0_32,p0_31,p0_30,p0_29,p0_28,p0_27,p0_26,p0_25,p0_24,p0_23,p0_22,p0_21,p0_20,p0_19,p0_18,p0_17,p0_16,p0_15,p0_14,p0_13,p0_12,p0_11,p0_10,p0_9,p0_8,p0_7,p0_6,p0_5,p0_4,p0_3,p0_2,p0_1,p0_0);
constant p1: p_vect_type := (p1_239,p1_238,p1_237,p1_236,p1_235,p1_234,p1_233,p1_232,p1_231,p1_230,p1_229,p1_228,p1_227,p1_226,p1_225,p1_224,p1_223,p1_222,p1_221,p1_220,p1_219,p1_218,p1_217,p1_216,p1_215,p1_214,p1_213,p1_212,p1_211,p1_210,p1_209,p1_208,p1_207,p1_206,p1_205,p1_204,p1_203,p1_202,p1_201,p1_200,p1_199,p1_198,p1_197,p1_196,p1_195,p1_194,p1_193,p1_192,p1_191,p1_190,p1_189,p1_188,p1_187,p1_186,p1_185,p1_184,p1_183,p1_182,p1_181,p1_180,p1_179,p1_178,p1_177,p1_176,p1_175,p1_174,p1_173,p1_172,p1_171,p1_170,p1_169,p1_168,p1_167,p1_166,p1_165,p1_164,p1_163,p1_162,p1_161,p1_160,p1_159,p1_158,p1_157,p1_156,p1_155,p1_154,p1_153,p1_152,p1_151,p1_150,p1_149,p1_148,p1_147,p1_146,p1_145,p1_144,p1_143,p1_142,p1_141,p1_140,p1_139,p1_138,p1_137,p1_136,p1_135,p1_134,p1_133,p1_132,p1_131,p1_130,p1_129,p1_128,p1_127,p1_126,p1_125,p1_124,p1_123,p1_122,p1_121,p1_120,p1_119,p1_118,p1_117,p1_116,p1_115,p1_114,p1_113,p1_112,p1_111,p1_110,p1_109,p1_108,p1_107,p1_106,p1_105,p1_104,p1_103,p1_102,p1_101,p1_100,p1_99,p1_98,p1_97,p1_96,p1_95,p1_94,p1_93,p1_92,p1_91,p1_90,p1_89,p1_88,p1_87,p1_86,p1_85,p1_84,p1_83,p1_82,p1_81,p1_80,p1_79,p1_78,p1_77,p1_76,p1_75,p1_74,p1_73,p1_72,p1_71,p1_70,p1_69,p1_68,p1_67,p1_66,p1_65,p1_64,p1_63,p1_62,p1_61,p1_60,p1_59,p1_58,p1_57,p1_56,p1_55,p1_54,p1_53,p1_52,p1_51,p1_50,p1_49,p1_48,p1_47,p1_46,p1_45,p1_44,p1_43,p1_42,p1_41,p1_40,p1_39,p1_38,p1_37,p1_36,p1_35,p1_34,p1_33,p1_32,p1_31,p1_30,p1_29,p1_28,p1_27,p1_26,p1_25,p1_24,p1_23,p1_22,p1_21,p1_20,p1_19,p1_18,p1_17,p1_16,p1_15,p1_14,p1_13,p1_12,p1_11,p1_10,p1_9,p1_8,p1_7,p1_6,p1_5,p1_4,p1_3,p1_2,p1_1,p1_0);

constant p_vect_size: integer := 240;
constant log_segs: integer := 15;
constant lin_segs: integer := 16;
constant lin_segs_pow: integer := 4;
constant Qmn_norm_one: integer := 52;

constant FHE_q_bitvect: signed(L-1 downto 0) := "0000001000000000000000000000000000000000000000000000000000000000"; --Qm_norm, Qn_norm

--FHE parameters----------------------------------------------------------------------------------------------------------------

constant FHE_m: natural := 3;
constant FHE_n: natural := 3;
constant FHE_L: natural := 112;--80;

constant FHE_CN: natural := (FHE_n+1)*FHE_L;

constant FHE_Qm: natural := 16;
constant FHE_Qn: natural := 32;

type vector_array is array (natural range <>) of signed(FHE_L-1 downto 0);
type matrix_array is array (natural range <>, natural range <>) of signed(FHE_L-1 downto 0);

type vector_array_e is array (natural range <>) of signed(FHE_L-1 downto 0);
type matrix_array_e is array (natural range <>, natural range <>) of signed(FHE_L-1 downto 0);

type vector_bit_array is array (natural range <>) of std_logic;
type matrix_bit_array is array (natural range <>, natural range <>) of std_logic;

constant A00_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111101111001001100110";
constant A01_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111000101111000001011000";
constant A02_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101111000000000000";
constant A03_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001010111010";
constant A04_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000111110110110";
constant A10_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111010000100000100000000000";
constant A11_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000010000110010010101111100111000101";
constant A12_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111010000100000100000000000";
constant A13_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011000100100111110";
constant A14_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000010101001011100001110101111101";
constant A20_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001010000110001101011111011";
constant A21_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001010110010100001010101011";
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constant A22_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000100000001010000110001101011111011";
constant A23_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000010100011100011101001000000";
constant A24_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110000000000000000000000";
constant A30_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011111100001100001011101000010011";
constant A31_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011110100000000001011001000001110";
constant A32_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011111100001100001011101000010011";
constant A33_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011111111100010011100011001110110";
constant A34_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111010101110000110010000000000000";
constant A40_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
constant A41_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
constant A42_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
constant A43_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
constant A44_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000010110111011011101001100010010001";

constant B0_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110000001111001001101101";
constant B1_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011010000101110111001101101100001";
constant B2_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111110011111101011000000000000";
constant B3_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111001011111010110000011000000000000";
constant B4_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000111000101100011001100011001110010110";

constant K0_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000010011010001111100001001101000111110";
constant K1_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000011010000110100111110101000010010";
constant K2_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000010001101100011011011001011111001111";
constant K3_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000001101110010001000110100010010001";
constant K4_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111100100000111111100000000000";

constant L00_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111001100011111111110100100000000000";
constant L01_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000001000110111110110000101100000";
constant L10_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111010010100111000101100000000000000";
constant L11_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000001101110011101101111001111010111110";
constant L20_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000000000011001001101001110101001011111";
constant L21_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111110111011101011110110101000000000000";
constant L30_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000111100001111000101011111001010001010";
constant L31_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111100001101110011100101100101100000000000";
constant L40_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111110100111101000000100000100000000000";
constant L41_coef: signed(FHE_L-1 downto 0) := "0000000000000000000000000000000000000000000000000000000000000000000000000000011100001010111111010111001001100100";

constant neg_one_coef: signed(FHE_L-1 downto 0) := "1111111111111111111111111111111111111111111111111111111111111111111111111111111100000000000000000000000000000000";

end package;

--package body------------------------------------------------------------------------------------------------------------------
package body types_package is

end package body;

B.8. key_generator.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity key_generator is
generic (LFSR_reg_size: natural);
port (

clk : in std_logic;
reset : in std_logic;
gen : in std_logic;
LFSR_reg : in std_logic_vector(LFSR_reg_size-1 downto 0);

public_key : out matrix_array(0 to FHE_m-1, 0 to FHE_n);
private_key : out vector_array(0 to FHE_n-1);
gen_done : out std_logic

);
end key_generator;

architecture Behavioral of key_generator is

--component declaration-------------------------------------------------------------------
component debounce_comparator is
generic(init: std_logic := '0');
port(

clk : in std_logic;
db_in : in std_logic;
pulse_out : out std_logic

);
end component;

component error_vect_gen is
port(

clk : in std_logic;
input_vect : in vector_array_e(0 to FHE_m-1);
calc : in std_logic;

output_vect : out vector_array(0 to FHE_m-1);
done_flag : out std_logic := '0'

);
end component;

component MVa_core is
generic(row_count, col_count : natural);

Port (
clk: in std_logic;
calc: in std_logic;

input_mat: in matrix_array(0 to row_count-1, 0 to col_count-1);
input_vect0: in vector_array(0 to col_count-1);
input_vect1: in vector_array(0 to row_count-1);
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output_vect: out vector_array(0 to row_count-1);
calc_done: out std_logic

);
end component;

--signal declaration----------------------------------------------------------------------
constant cycle_count_e : natural := integer(ceil(real(FHE_m)*real(FHE_L)/real(LFSR_reg_size))); --amount of cycles needed to fill an array for errorvector generation
constant final_cycle_e : natural := FHE_m*FHE_L-(cycle_count_e-1)*LFSR_reg_size; --in case the target (FHE_m) is not evenly devisible in blocks of 256, a special subroutine handles the final allocation

constant cycle_count_t : natural := integer(ceil(real(FHE_n)*real(FHE_L)/real(LFSR_reg_size))); --amount of cycles needed to fill an array for errorvector generation
constant final_cycle_t : natural := FHE_n*FHE_L-(cycle_count_t-1)*LFSR_reg_size;

constant cycle_count_B : natural := integer(ceil(real(FHE_m)*real(FHE_n)*real(FHE_L)/real(LFSR_reg_size))); --amount of cycles needed to fill an array for errorvector generation
constant final_cycle_B : natural := FHE_m*FHE_n*FHE_L-(cycle_count_B-1)*LFSR_reg_size;

signal t_vect : vector_array(0 to FHE_n-1);

signal b_vect : vector_array(0 to FHE_m-1);
signal LFSR_vect_pipe : vector_array_e(0 to FHE_m-1);

signal B_mat : matrix_array(0 to FHE_m-1, 0 to FHE_n-1);

signal e_empt : vector_array(0 to FHE_m-1) := (others => (others => '0'));
signal e_vect : vector_array(0 to FHE_m-1);
signal e_i, new_e_i : natural range 0 to cycle_count_e-1 := cycle_count_e-1;
signal t_i, new_t_i : natural range 0 to cycle_count_t-1 := cycle_count_t-1;
signal B_i, new_B_i : natural range 0 to cycle_count_B-1 := cycle_count_B-1;

signal e_in_done_db, t_done_db, B_done_db, error_gen_done, MMult_done: std_logic := '0';
signal e_in_done, t_done, B_done : std_logic := '1';
signal e_in_done_delay, t_done_delay, B_done_delay : std_logic := '1';

constant debug_const: natural := 0;

--function declaration--------------------------------------------------------------------
function reg2vect_e_in(input_reg: std_logic_vector(LFSR_reg_size-1 downto 0); input_vect: vector_array_e(0 to FHE_m-1); i: natural) return vector_array_e is
variable output_vect: vector_array_e(0 to FHE_m-1);
variable sel_i: natural range 0 to FHE_m-1;
variable sel_j: natural range 0 to FHE_L-1;

begin
output_vect := input_vect;

if i = cycle_count_e-1 then
for j in 0 to final_cycle_e-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_L;
sel_j := (i*LFSR_reg_size+j)-FHE_L*sel_i;

output_vect(sel_i)(sel_j) := input_reg(j);
end loop;

else
for j in 0 to LFSR_reg_size-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_L;
sel_j := (i*LFSR_reg_size+j)-FHE_L*sel_i;

output_vect(sel_i)(sel_j) := input_reg(j);
end loop;

end if;
return output_vect;
end function;

function reg2vect_t(input_reg: std_logic_vector(LFSR_reg_size-1 downto 0); input_vect: vector_array(0 to FHE_n-1); i: natural) return vector_array is
variable output_vect: vector_array(0 to FHE_n-1);
variable sel_i: natural range 0 to FHE_n-1;
variable sel_j: natural range 0 to FHE_L-1;

begin
output_vect := input_vect;

if i = cycle_count_t-1 then
for j in 0 to final_cycle_t-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_L;
sel_j := (i*LFSR_reg_size+j)-FHE_L*sel_i;

if sel_j < debug_const then
output_vect(sel_i)(sel_j) := input_reg(j);

else
output_vect(sel_i)(sel_j) := '0';

end if;
end loop;

else
for j in 0 to LFSR_reg_size-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_L;
sel_j := (i*LFSR_reg_size+j)-FHE_L*sel_i;

if sel_j < debug_const then
output_vect(sel_i)(sel_j) := input_reg(j);

else
output_vect(sel_i)(sel_j) := '0';

end if;
end loop;

end if;
return output_vect;
end function;

function reg2mat(input_reg: std_logic_vector(LFSR_reg_size-1 downto 0); input_mat: matrix_array(0 to FHE_m-1,0 to FHE_n-1); i: natural) return matrix_array is
variable output_mat: matrix_array(0 to FHE_m-1,0 to FHE_n-1);
variable sel_i: natural range 0 to FHE_m-1;
variable sel_j: natural range 0 to FHE_n-1;
variable sel_k: natural range 0 to FHE_L-1;

begin
output_mat := input_mat;

if i = cycle_count_B-1 then
for j in 0 to final_cycle_B-1 loop

sel_i := (i*LFSR_reg_size+j)/(FHE_L*FHE_n);
sel_j := (i*LFSR_reg_size+j)/FHE_L - FHE_n*sel_i;
sel_k := (sel_j*FHE_L+j+i*LFSR_reg_size)-(((sel_j*FHE_L+j+i*LFSR_reg_size)/FHE_L))*FHE_L;

if sel_k < debug_const then
output_mat(sel_i, sel_j)(sel_k) := input_reg(j);
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else
output_mat(sel_i, sel_j)(sel_k) := '0';

end if;
end loop;

else
for j in 0 to LFSR_reg_size-1 loop

sel_i := (i*LFSR_reg_size+j)/(FHE_L*FHE_n);
sel_j := (i*LFSR_reg_size+j)/FHE_L - FHE_n*sel_i;
sel_k := (sel_j*FHE_L+j+i*LFSR_reg_size)-(((sel_j*FHE_L+j+i*LFSR_reg_size)/FHE_L))*FHE_L;

if sel_k < debug_const then
output_mat(sel_i, sel_j)(sel_k) := input_reg(j);

else
output_mat(sel_i, sel_j)(sel_k) := '0';

end if;
end loop;

end if;
return output_mat;
end function;

function pk_assembler(b_vect: vector_array(0 to FHE_m-1); B_mat: matrix_array(0 to FHE_m-1,0 to FHE_n-1)) return matrix_array is
variable pk: matrix_array(0 to FHE_m-1,0 to FHE_n);
variable tmp: signed(FHE_L-1 downto 0);

begin
for i in 0 to FHE_m-1 loop

pk(i,0) := b_vect(i);
end loop;

for i in 0 to FHE_m-1 loop
for j in 1 to FHE_n loop

pk(i,j) := B_mat(i,j-1);
end loop;

end loop;
return pk;
end function;

begin

debounce_comparator_unit_LFSR: debounce_comparator
generic map(init=>'1')
port map(

clk=>clk,
db_in=>e_in_done_delay,
pulse_out=>e_in_done_db

);

debounce_comparator_unit_t_vect: debounce_comparator
generic map(init=>'1')
port map(

clk=>clk,
db_in=>t_done,
pulse_out=>t_done_db

);

debounce_comparator_unit_B_mat: debounce_comparator
generic map(init=>'1')
port map(

clk=>clk,
db_in=>B_done_delay,
pulse_out=>B_done_db

);

error_vect_gen_unit: error_vect_gen
port map(

clk=>clk,
input_vect=>LFSR_vect_pipe,
calc=>e_in_done_db,

output_vect=>e_vect,
done_flag=>error_gen_done

);

MVa_core_unit: MVa_core
generic map(row_count=>FHE_m, col_count=>FHE_n)
port map(

clk=>clk,
calc=>B_done_db,

input_mat=>B_mat,
input_vect0=>t_vect,
input_vect1=>e_empt, --e_empt for debug!!!!!! normally must be e_vect

output_vect=>b_vect,
calc_done=>MMult_done

);

gen_done <= MMult_done;

sync_read: process(clk)
begin
if rising_edge(clk) then

e_i <= new_e_i;
t_i <= new_t_i;
B_i <= new_B_i;

end if;
end process;

cycle_increment_logic_e: process(gen, e_i)
begin
if gen = '1' then

new_e_i <= 0;
e_in_done <= '0';

else
if e_i = cycle_count_e-1 then

new_e_i <= e_i;
e_in_done <= '1';

else
new_e_i <= e_i + 1;
e_in_done <= '0';

end if;
end if;
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end process;

cycle_increment_logic_t_mat: process(e_in_done_db, t_i)
begin
if e_in_done_db = '1' then

new_t_i <= 0;
t_done <= '0';

else
if t_i = cycle_count_t-1 then

new_t_i <= t_i;
t_done <= '1';

else
new_t_i <= t_i + 1;
t_done <= '0';

end if;
end if;
end process;

cycle_increment_logic_B_mat: process(t_done_db, B_i)
begin
if t_done_db = '1' then

new_B_i <= 0;
B_done <= '0';

else
if B_i = cycle_count_B-1 then

new_B_i <= B_i;
B_done <= '1';

else
new_B_i <= B_i + 1;
B_done <= '0';

end if;
end if;
end process;

LFSR_read: process(clk)
begin
if rising_edge(clk) then

e_in_done_delay <= e_in_done;
t_done_delay <= t_done;
B_done_delay <= B_done;

if e_in_done_delay = '0' then
LFSR_vect_pipe <= reg2vect_e_in(LFSR_reg, LFSR_vect_pipe, e_i);

end if;

if t_done_delay = '0' then
t_vect <= reg2vect_t(LFSR_reg, t_vect, t_i);

end if;

if B_done_delay = '0' then
B_mat <= reg2mat(LFSR_reg, B_mat, B_i);

end if;

if MMult_done = '1' then
public_key <= pk_assembler(b_vect, B_mat);
private_key <= t_vect;

end if;
end if;
end process;

end Behavioral;

B.9. LFSR_sub.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

--entity declaration----------------------------------------------------------------------
entity lfsr_sub is
generic(seed: std_logic_vector(63 downto 0));
port(

clk : in std_logic;
reset : in std_logic;
enable : in std_logic;
output_bit : out std_logic
);

end lfsr_sub;

architecture Behavioral of lfsr_sub is

signal sequence_reg : std_logic_vector (63 downto 0) := seed;
signal feedback : std_logic;

begin
feedback <= not(sequence_reg(63) xor sequence_reg(62) xor sequence_reg(60) xor sequence_reg(59));

count_gen: process (reset, enable, clk)
begin
if rising_edge(clk) then

if (reset = '1') then
sequence_reg <= (others => '0');

elsif enable = '1' then
sequence_reg <= sequence_reg(62 downto 0) & feedback;

end if;
end if;
end process;
output_bit <= sequence_reg(0);
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end architecture Behavioral;

B.10. LFSR256.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity lfsr256 is
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output_reg : out std_logic_vector(255 downto 0)

);
end lfsr256;

architecture Behavioral of lfsr256 is

component lfsr_sub is
generic(seed: std_logic_vector(63 downto 0));
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output_bit : out std_logic := '0'

);
end component;

--signal declaration----------------------------------------------------------------------

signal sequence_reg : std_logic_vector(255 downto 0);

constant seed0: std_logic_vector(63 downto 0):= "1100101011110101000100101101110100101101001111010101001010011101";
constant seed1: std_logic_vector(63 downto 0):= "1110010011101111010110111110000110110000000000011101110110010101";

--The full list of seeds has been removed for brevity, the entire code is 20k lines-------

constant seed255: std_logic_vector(63 downto 0):= "0100010100110110111001110111001001011101001000100000000011000001";

--componants wiring-----------------------------------------------------------------------
begin

rand_gen0: lfsr_sub
generic map(seed => seed0)
port map(

clk => clk,
reset => reset,
enable => enable,
output_bit => sequence_reg(0)

);

rand_gen1: lfsr_sub
generic map(seed => seed1)
port map(

clk => clk,
reset => reset,
enable => enable,
output_bit => sequence_reg(1)

);

--The full list of seeds has been removed for brevity, the entire code is 20k lines-------

rand_gen255: lfsr_sub
generic map(seed => seed255)
port map(

clk => clk,
reset => reset,
enable => enable,
output_bit => sequence_reg(255)

);

output_reg <= sequence_reg;

end architecture Behavioral;

B.11. main_controller.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity main_controller is
port(

clk : in std_logic;
setup : in std_logic;
crtl : in std_logic;
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reset : in std_logic;

public_key : in matrix_array(0 to FHE_m-1, 0 to FHE_n);
theta_0_enc : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
theta_1_enc : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

upd_u : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

new_u : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
new_xh0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
new_xh1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
new_xh2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
new_xh3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
new_xh4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

crtl_done : out std_logic;
setup_done : out std_logic

);
end main_controller;

architecture Behavioral of main_controller is

component System_gen is
generic (LFSR_reg_size: natural);
port(

clk : in std_logic;
calc : in std_logic;

LFSR_reg : in std_logic_vector(LFSR_reg_size-1 downto 0);
public_key : in matrix_array(0 to FHE_m-1, 0 to FHE_n);

A_00 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_10 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_20 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_30 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_40 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_01 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_11 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_21 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_31 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_41 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_02 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_12 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_22 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_32 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_42 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_03 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_13 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_23 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_33 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_43 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_04 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_14 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_24 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_34 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_44 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

B_0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

K_0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_00 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_10 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_20 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_30 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_40 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_01 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_11 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_21 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_31 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_41 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

neg_one : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

sys_done : out std_logic
);

end component;

component Controller is
port (

clk : in std_logic;
calc : in std_logic;
reset : in std_logic;

theta_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
theta_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

upd_u : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
upd_xh4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
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out_u : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
out_xh4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_00 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_10 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_20 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_30 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_40 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_01 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_11 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_21 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_31 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_41 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_02 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_12 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_22 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_32 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_42 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_03 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_13 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_23 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_33 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_43 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_04 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_14 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_24 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_34 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_44 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

B_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

K_0 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_1 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_2 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_3 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_4 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_00 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_10 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_20 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_30 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_40 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_01 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_11 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_21 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_31 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_41 : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

neg_one : in matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

done_flag : out std_logic
);

end component;

component lfsr256 is
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output_reg : out std_logic_vector(255 downto 0)

);
end component;
-----------------------------------------------------------------------------------------------------------------------------

signal A_00, A_10, A_20, A_30, A_40: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal A_01, A_11, A_21, A_31, A_41: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal A_02, A_12, A_22, A_32, A_42: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal A_03, A_13, A_23, A_33, A_43: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal A_04, A_14, A_24, A_34, A_44: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal B_0, B_1, B_2, B_3, B_4: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal K_0, K_1, K_2, K_3, K_4: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal L_00, L_10, L_20, L_30, L_40: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal L_01, L_11, L_21, L_31, L_41: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

signal neg_one: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

constant LFSR_reg_size: natural := 256;
signal LFSR_reg: std_logic_vector(LFSR_reg_size-1 downto 0);
signal LFSR_enable : std_logic := '0';
signal setup_pipe : std_logic;

-----------------------------------------------------------------------------------------------------------------------------
--constant trunc_amount : natural := 30;
-----------------------------------------------------------------------------------------------------------------------------

--function circshift(input_mat: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1)) return matrix_bit_array is
--variable output_mat: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
--begin
--for i in trunc_amount to FHE_CN-1 loop
-- for j in 0 to FHE_CN-1 loop
-- output_mat(i-trunc_amount,j) := input_mat(i,j);
-- end loop;
--end loop;

--for i in 0 to trunc_amount-1 loop
-- for j in 0 to FHE_CN-1 loop
-- output_mat(i+(FHE_CN-trunc_amount)-1,j) := input_mat(i,j);
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-- end loop;
--end loop;
--return output_mat;
--end function;

-----------------------------------------------------------------------------------------------------------------------------
begin

lfsr256_unit: lfsr256
port map(

clk => clk,
enable => LFSR_enable,
reset => reset,
output_reg => LFSR_reg

);

System_gen_unit: System_gen
generic map (LFSR_reg_size => LFSR_reg_size)
port map(

clk => clk,
calc => setup,

LFSR_reg => LFSR_reg,
public_key => public_key,

A_00 => A_00,
A_10 => A_10,
A_20 => A_20,
A_30 => A_30,
A_40 => A_40,

A_01 => A_01,
A_11 => A_11,
A_21 => A_21,
A_31 => A_31,
A_41 => A_41,

A_02 => A_02,
A_12 => A_12,
A_22 => A_22,
A_32 => A_32,
A_42 => A_42,

A_03 => A_03,
A_13 => A_13,
A_23 => A_23,
A_33 => A_33,
A_43 => A_43,

A_04 => A_04,
A_14 => A_14,
A_24 => A_24,
A_34 => A_34,
A_44 => A_44,

B_0 => B_0 ,
B_1 => B_1 ,
B_2 => B_2 ,
B_3 => B_3 ,
B_4 => B_4 ,

K_0 => K_0 ,
K_1 => K_1 ,
K_2 => K_2 ,
K_3 => K_3 ,
K_4 => K_4 ,

L_00 => L_00,
L_10 => L_10,
L_20 => L_20,
L_30 => L_30,
L_40 => L_40,

L_01 => L_01,
L_11 => L_11,
L_21 => L_21,
L_31 => L_31,
L_41 => L_41,

neg_one => neg_one,

sys_done => setup_pipe
);

setup_done <= setup_pipe;

Controller_unit: Controller
port map(

clk => clk,
calc => crtl,
reset => reset,

theta_0 => theta_0_enc,
theta_1 => theta_1_enc,

upd_u =>upd_u,
upd_xh0=>upd_xh0,
upd_xh1=>upd_xh1,
upd_xh2=>upd_xh2,
upd_xh3=>upd_xh3,
upd_xh4=>upd_xh4,

out_u => new_u,
out_xh0=>new_xh0,
out_xh1=>new_xh1,
out_xh2=>new_xh2,
out_xh3=>new_xh3,
out_xh4=>new_xh4,

A_00 => A_00,
A_10 => A_10,
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A_20 => A_20,
A_30 => A_30,
A_40 => A_40,

A_01 => A_01,
A_11 => A_11,
A_21 => A_21,
A_31 => A_31,
A_41 => A_41,

A_02 => A_02,
A_12 => A_12,
A_22 => A_22,
A_32 => A_32,
A_42 => A_42,

A_03 => A_03,
A_13 => A_13,
A_23 => A_23,
A_33 => A_33,
A_43 => A_43,

A_04 => A_04,
A_14 => A_14,
A_24 => A_24,
A_34 => A_34,
A_44 => A_44,

B_0 => B_0 ,
B_1 => B_1 ,
B_2 => B_2 ,
B_3 => B_3 ,
B_4 => B_4 ,

K_0 => K_0 ,
K_1 => K_1 ,
K_2 => K_2 ,
K_3 => K_3 ,
K_4 => K_4 ,

L_00 => L_00,
L_10 => L_10,
L_20 => L_20,
L_30 => L_30,
L_40 => L_40,

L_01 => L_01,
L_11 => L_11,
L_21 => L_21,
L_31 => L_31,
L_41 => L_41,

neg_one => neg_one,

done_flag => crtl_done
);

LFSR_enable_logic: process(clk)
begin

if rising_edge(clk) then
if setup = '1' then

LFSR_enable <= '1';
end if;
if setup_pipe = '1' then

LFSR_enable <= '0';
end if;

end if;
end process;

end architecture Behavioral;

B.12. Setup_Encoder.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity Setup_Encoder is
generic (LFSR_reg_size: natural);
port(

clk : in std_logic;
calc : in std_logic;

LFSR_reg : in std_logic_vector(LFSR_reg_size-1 downto 0);
mu : in signed(FHE_L-1 downto 0);
public_key : in matrix_array(0 to FHE_m-1, 0 to FHE_n);

output_cipher : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
enc_done_flag : out std_logic := '0'

);
end Setup_Encoder ;

architecture Behavioral of Setup_Encoder is

component debounce_comparator is
generic(init: std_logic := '0');
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port(
clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_comparator;

component BitMatMul_core is
generic(row_countA, col_countA, row_countB, col_countB : natural);

Port (
clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_bit_array(0 to row_countA-1, 0 to col_countA-1);
input_matB: in matrix_array(0 to row_countB-1, 0 to col_countB-1);

output_mat: out matrix_array(0 to row_countA-1, 0 to col_countB-1);
calc_done: out std_logic

);
end component;

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
signal R_mat : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_m-1);
signal RA_mat : matrix_array(0 to FHE_CN-1, 0 to FHE_n);
signal RA_mat_pmu : matrix_array(0 to FHE_CN-1, 0 to FHE_n);
signal done_flag, done_delay : std_logic := '0';

constant cycle_count : natural := integer(ceil(real(FHE_CN)*real(FHE_m)/real(LFSR_reg_size))); --amount of cycles needed to fill an array for errorvector generation
constant final_cycle : natural := FHE_CN*FHE_m-(cycle_count-1)*LFSR_reg_size; --in case the target (FHE_m) is not evenly devisible in blocks of 256, a special subroutine handles the final allocation

signal R_fill_done : std_logic := '1';
signal R_fill_done_db : std_logic := '0';
signal i, new_i: natural range 0 to cycle_count-1 := cycle_count-1;

signal output_cipher_pipe : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1) := (others => (others => '0'));
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

function reg2mat_R(input_reg: std_logic_vector(LFSR_reg_size-1 downto 0); input_mat: matrix_bit_array(0 to FHE_CN-1,0 to FHE_m-1); i: natural) return matrix_bit_array is
variable output_mat: matrix_bit_array(0 to FHE_CN-1,0 to FHE_m-1);
variable sel_i: natural range 0 to FHE_CN-1;
variable sel_j: natural range 0 to FHE_m-1;

begin
output_mat := input_mat;

if i = cycle_count-1 then
for j in 0 to final_cycle-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_m;
sel_j := (i*LFSR_reg_size+j) - FHE_m*sel_i;

output_mat(sel_i, sel_j) := input_reg(j);
end loop;

else
for j in 0 to LFSR_reg_size-1 loop

sel_i := (i*LFSR_reg_size+j)/FHE_m;
sel_j := (i*LFSR_reg_size+j) - FHE_m*sel_i;

output_mat(sel_i, sel_j) := input_reg(j);
end loop;

end if;
return output_mat;
end function;

--The following functions generate the cipher. To reduce the amount of calculations required, the generation is heavily altered
--i.e. replaced with equivalent but more efficient operations. See documentation on the alterations.
function Imu_add(mu: signed(FHE_L-1 downto 0); RA_mat: matrix_array(0 to FHE_CN-1, 0 to FHE_n)) return matrix_array is
variable RA_plus_Imu: matrix_array(0 to FHE_CN-1, 0 to FHE_n);
variable mu_shifted: signed(FHE_L-1 downto 0);
variable k: natural range 0 to FHE_L-1;
variable container: natural range 0 to FHE_n+1;

begin
RA_plus_Imu := RA_mat;
container := 0;
k := 0;
for i in 0 to FHE_CN-1 loop

mu_shifted := shift_left(mu,k);
RA_plus_Imu(i,container) := RA_mat(i,container) + mu_shifted;
if (k = FHE_L-1) then

container := container + 1;
k := 0;

else
k := k + 1;

end if;
end loop;

return RA_plus_Imu;
end Imu_add;

--The Flattening operation is integrated in the next two functions. Binary representation is used, hence BitDecomp and inverse-BitDecomp
--have to be interpreted and integrated
function cipher_gen(RA_plus_Imu: matrix_array(0 to FHE_CN-1, 0 to FHE_n)) return matrix_bit_array is
variable cipher : matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

begin
for i in 0 to FHE_CN-1 loop

for j in 0 to FHE_n loop
for k in 0 to FHE_L-1 loop

cipher(i,k+j*FHE_L) := RA_plus_Imu(i,j)(k);
end loop;

end loop;
end loop;

return cipher;
end function;

--signal dfun_out: integer;
--function dfun(R_mat: matrix_bit_array(0 to FHE_CN-1,0 to FHE_m-1)) return integer is
--variable vect: vector_bit_array(0 to FHE_m-1);
--variable val: natural;

--begin
--for i in 0 to FHE_CN-1 loop



94 B. Feedback system code

-- vect := (others => '0');
-- for j in 0 to FHE_m-1 loop
-- vect(j) := R_mat(i,j);
-- end loop;
-- val := to_integer(unsigned(vect));
-- report natural'image(val);
--end loop;
--return 0;
--end function;

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
begin

debounce_comparator_unit: debounce_comparator
generic map(init=>'1')
port map(

clk=>clk,
db_in=>R_fill_done,
pulse_out=>R_fill_done_db

);

BitMatMul_core_unit: BitMatMul_core
generic map(row_countA=>FHE_CN, col_countA=>FHE_m, row_countB=>FHE_m, col_countB=>FHE_n+1)
port map(

clk=>clk,
calc=>R_fill_done_db,

input_matA=>R_mat,
input_matB=>public_key,

output_mat=>RA_mat,
calc_done=>done_flag
);

cycle_increment_logic: process(calc, i)
begin
if calc = '1' then

new_i <= 0;
R_fill_done <= '0';

else
if i = cycle_count-1 then

new_i <= i;
R_fill_done <= '1';

else
new_i <= i + 1;
R_fill_done <= '0';

end if;
end if;
end process;

mu_capture: process(clk)
begin
if rising_edge(clk) then
i <= new_i;
done_delay <= done_flag;
enc_done_flag <= done_delay;

if R_fill_done = '0' then
R_mat <= reg2mat_R(LFSR_reg, R_mat, i);

end if;

if done_flag = '1' then
RA_mat_pmu <= Imu_add(mu, RA_mat);

end if;

if done_delay = '1' then
output_cipher_pipe <= cipher_gen(RA_mat_pmu);

end if;
end if;
end process;

output_cipher <= output_cipher_pipe;

end architecture Behavioral;

B.13. System_gen.vhd
--Author: Pieter Stobbe
--Date latest update:

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity System_gen-----------------------------------------------------------------------
entity System_gen is
generic (LFSR_reg_size: natural);
port(

clk : in std_logic;
calc : in std_logic;

LFSR_reg : in std_logic_vector(LFSR_reg_size-1 downto 0);
public_key : in matrix_array(0 to FHE_m-1, 0 to FHE_n);

A_00 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_10 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_20 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_30 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_40 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
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A_01 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_11 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_21 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_31 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_41 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_02 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_12 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_22 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_32 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_42 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_03 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_13 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_23 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_33 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_43 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

A_04 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_14 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_24 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_34 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
A_44 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

B_0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
B_4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

K_0 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_1 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_2 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_3 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
K_4 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_00 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_10 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_20 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_30 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_40 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

L_01 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_11 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_21 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_31 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
L_41 : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

neg_one : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);

sys_done : out std_logic
);

end System_gen;

architecture Behavioral of System_gen is

component debounce_pulse is
generic(init: std_logic := '0');
port(

clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_pulse;

component lfsr256 is
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output_reg : out std_logic_vector(255 downto 0)

);
end component;

component Setup_Encoder is
generic (LFSR_reg_size: natural);
port(

clk : in std_logic;
calc : in std_logic;

LFSR_reg : in std_logic_vector(LFSR_reg_size-1 downto 0);
mu : in signed(FHE_L-1 downto 0);
public_key : in matrix_array(0 to FHE_m-1, 0 to FHE_n);

output_cipher : out matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
enc_done_flag : out std_logic := '0'

);
end component;

signal coef: signed(FHE_L-1 downto 0);
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

constant A_dim: natural := 5; --square
constant operation_cnt: natural := A_dim*A_dim + 4*A_dim + 1;

signal i, new_i: natural range 0 to operation_cnt-1;
signal done: std_logic := '1';
--signal done_db: std_logic := '0';

signal calc_cipher: std_logic := '0';

constant LFSR_size: natural := 256;

signal cur_cipher: matrix_bit_array(0 to FHE_CN-1, 0 to FHE_CN-1);
signal enc_done_flag: std_logic;

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
begin

--debounce_pulse_unit: debounce_pulse
--generic map( init=>'1' )
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--port map(
-- clk=>clk,
-- db_in=>done,
-- pulse_out=>done_db
-- );

Setup_Encoder_unit: Setup_Encoder
generic map(LFSR_reg_size=>LFSR_reg_size)
port map(

clk=>clk,
calc=>calc_cipher,

LFSR_reg=>LFSR_reg,
mu=>coef,
public_key=>public_key,

output_cipher=>cur_cipher,
enc_done_flag=>enc_done_flag

);

sync: process(clk)
begin
if rising_edge(clk) then

if done = '1' then
sys_done <= enc_done_flag;

else
sys_done <= '0';

end if;

if (enc_done_flag = '1' and done = '0') or calc = '1' then
i <= new_i;

end if;
end if;
end process;

cycle_increment_logic: process(calc, enc_done_flag, i)
begin
if calc = '1' then

new_i <= 0;
done <= '0';

calc_cipher <= '1';
else

if i = operation_cnt-1 then
new_i <= i;
done <= '1';

calc_cipher <= '0';
else

new_i <= i + 1;
done <= '0';

calc_cipher <= enc_done_flag;
end if;

end if;
end process;

input_piping: process(clk)
begin
if i = 0 then

coef <= A00_coef;
end if;
if i = 1 then

coef <= A10_coef;
end if;
if i = 2 then

coef <= A20_coef;
end if;
if i = 3 then

coef <= A30_coef;
end if;
if i = 4 then

coef <= A40_coef;
end if;

if i = 5 then
coef <= A01_coef;

end if;
if i = 6 then

coef <= A11_coef;
end if;
if i = 7 then

coef <= A21_coef;
end if;
if i = 8 then

coef <= A31_coef;
end if;
if i = 9 then

coef <= A41_coef;
end if;

if i = 10 then
coef <= A02_coef;

end if;
if i = 11 then

coef <= A12_coef;
end if;
if i = 12 then

coef <= A22_coef;
end if;
if i = 13 then

coef <= A32_coef;
end if;
if i = 14 then

coef <= A42_coef;
end if;

if i = 15 then
coef <= A03_coef;

end if;
if i = 16 then

coef <= A13_coef;
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end if;
if i = 17 then

coef <= A23_coef;
end if;
if i = 18 then

coef <= A33_coef;
end if;
if i = 19 then

coef <= A43_coef;
end if;

if i = 20 then
coef <= A04_coef;

end if;
if i = 21 then

coef <= A14_coef;
end if;
if i = 22 then

coef <= A24_coef;
end if;
if i = 23 then

coef <= A34_coef;
end if;
if i = 24 then

coef <= A44_coef;
end if;

if i = 25 then
coef <= B0_coef;

end if;
if i = 26 then

coef <= B1_coef;
end if;
if i = 27 then

coef <= B2_coef;
end if;
if i = 28 then

coef <= B3_coef;
end if;
if i = 29 then

coef <= B4_coef;
end if;

if i = 30 then
coef <= K0_coef;

end if;
if i = 31 then

coef <= K1_coef;
end if;
if i = 32 then

coef <= K2_coef;
end if;
if i = 33 then

coef <= K3_coef;
end if;
if i = 34 then

coef <= K4_coef;
end if;

if i = 35 then
coef <= L00_coef;

end if;
if i = 36 then

coef <= L10_coef;
end if;
if i = 37 then

coef <= L20_coef;
end if;
if i = 38 then

coef <= L30_coef;
end if;
if i = 39 then

coef <= L40_coef;
end if;

if i = 40 then
coef <= L01_coef;

end if;
if i = 41 then

coef <= L11_coef;
end if;
if i = 42 then

coef <= L21_coef;
end if;
if i = 43 then

coef <= L31_coef;
end if;
if i = 44 then

coef <= L41_coef;
end if;

if i = 45 then
coef <= neg_one_coef;

end if;

end process;

output_piping: process(clk)
begin
if rising_edge(clk) then

if enc_done_flag = '1' then
if i = 0 then

A_00 <= cur_cipher;
end if;
if i = 1 then

A_10 <= cur_cipher;
end if;
if i = 2 then

A_20 <= cur_cipher;
end if;
if i = 3 then
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A_30 <= cur_cipher;
end if;
if i = 4 then

A_40 <= cur_cipher;
end if;

if i = 5 then
A_01 <= cur_cipher;

end if;
if i = 6 then

A_11 <= cur_cipher;
end if;
if i = 7 then

A_21 <= cur_cipher;
end if;
if i = 8 then

A_31 <= cur_cipher;
end if;
if i = 9 then

A_41 <= cur_cipher;
end if;

if i = 10 then
A_02 <= cur_cipher;

end if;
if i = 11 then

A_12 <= cur_cipher;
end if;
if i = 12 then

A_22 <= cur_cipher;
end if;
if i = 13 then

A_32 <= cur_cipher;
end if;
if i = 14 then

A_42 <= cur_cipher;
end if;

if i = 15 then
A_03 <= cur_cipher;

end if;
if i = 16 then

A_13 <= cur_cipher;
end if;
if i = 17 then

A_23 <= cur_cipher;
end if;
if i = 18 then

A_33 <= cur_cipher;
end if;
if i = 19 then

A_43 <= cur_cipher;
end if;

if i = 20 then
A_04 <= cur_cipher;

end if;
if i = 21 then

A_14 <= cur_cipher;
end if;
if i = 22 then

A_24 <= cur_cipher;
end if;
if i = 23 then

A_34 <= cur_cipher;
end if;
if i = 24 then

A_44 <= cur_cipher;
end if;

if i = 25 then
B_0 <= cur_cipher;

end if;
if i = 26 then

B_1 <= cur_cipher;
end if;
if i = 27 then

B_2 <= cur_cipher;
end if;
if i = 28 then

B_3 <= cur_cipher;
end if;
if i = 29 then

B_4 <= cur_cipher;
end if;

if i = 30 then
K_0 <= cur_cipher;

end if;
if i = 31 then

K_1 <= cur_cipher;
end if;
if i = 32 then

K_2 <= cur_cipher;
end if;
if i = 33 then

K_3 <= cur_cipher;
end if;
if i = 34 then

K_4 <= cur_cipher;
end if;

if i = 35 then
L_00 <= cur_cipher;

end if;
if i = 36 then

L_10 <= cur_cipher;
end if;
if i = 37 then

L_20 <= cur_cipher;
end if;
if i = 38 then
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L_30 <= cur_cipher;
end if;
if i = 39 then

L_40 <= cur_cipher;
end if;

if i = 40 then
L_01 <= cur_cipher;

end if;
if i = 41 then

L_11 <= cur_cipher;
end if;
if i = 42 then

L_21 <= cur_cipher;
end if;
if i = 43 then

L_31 <= cur_cipher;
end if;
if i = 44 then

L_41 <= cur_cipher;
end if;

if i = 45 then
neg_one <= cur_cipher;

end if;
end if;

end if;
end process;

end architecture Behavioral;





C
Demo code

The FPGA can be interfaced with utilsing the matlab code below. The files "nexys4_demo_interface.m" and
"Gentry_HME_MM.m" are followed by the vhdl code that is used in the demo. To prevent repetition, the
modules that have already been presented in appendix B have been omitted.

C.1. nexys4_demo_interface.vhd
close;
clear;
clc;

%% prep
%-------------------------
transmit_queue = [];
for i = 1:4:4*64

transmit_queue = [transmit_queue, uint64(i)+uint64(i+1)*uint64(2^16)+uint64(i+2)*uint64(2^(2*16))+uint64(i+3)*uint64(2^(48))];
% transmit_queue = [transmit_queue, uint64(i+3)+uint64(i+2)*uint64(2^16)+uint64(i+1)*uint64(2^(2*16))+uint64(i)*uint64(2^(48))];
end
transmit_queue = [transmit_queue, transmit_queue];
%-------------------------

% row_1 = uint64(1)+uint64(2)*uint64(2^16)+uint64(3)*uint64(2^(2*16))+uint64(4)*uint64(2^(48));
% fact = 1;
% row_1 = uint64(fact*1)+uint64(fact*1)*uint64(2^16)+uint64(fact*1)*uint64(2^(2*16))+uint64(fact*1)*uint64(2^(48));

% transmit_queue = [row_1, zeros(1,63), row_1, zeros(1,63)];
% transmit_queue = repmat(row_1,1,2*64);

% transmit_queue = repmat(intmax('uint64'),1,2*64);
% transmit_queue = uint64(randi(intmax('uint32'),1,2*64)+randi(intmax('uint32'),1,2*64));

%%
% transmit_queue = [];
% for i = 0:63
% transmit_queue = [transmit_queue, uint64(2^i)];
% end
% transmit_queue = uint64([zeros(1,16),ones(1,16),zeros(1,32)]);

%%
val1 = uint64(7);
% val1t = val1;
val1t = val1 + val1*uint64(2^48);

val2 = uint64(1);
% val2t = val2 + val2*uint64(2^48);
val2t = val2;

transmit_queue(1:64) = val1t;
transmit_queue(65:end) = val2t;

%%
FHE_n = 3;
FHE_L = 16;
FHE_CN = (FHE_n+1)*FHE_L;

% C1 = reshape(uint64(randi(intmax('uint8'),1,(FHE_n+1)*FHE_CN)),FHE_CN,FHE_n+1);
% C2 = reshape(uint64(randi(intmax('uint8'),1,(FHE_n+1)*FHE_CN)),FHE_CN,FHE_n+1);

% cnt = 1;
% for i = 1:FHE_CN
% C1(i,:) = uint64(cnt:(cnt+FHE_n));
% cnt = cnt + FHE_n+1;
% end
% C2 = C1;

C1 = repmat(uint64([val1,0,0,val1]),FHE_CN,1);
C2 = repmat(uint64([val2,0,0,0]),FHE_CN,1);

% C1 = repmat(uint64([val1,0,0,0]),FHE_CN,1);
% C2 = repmat(uint64([val2,0,0,val2]),FHE_CN,1);

C_out = Gentry_HME_MM(C1,C2,FHE_n,FHE_L);

101
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C_out(1,:)

%% contact
device = serialport("COM3",1E6);
% write(device, "flp", 'char')
% write(device, "mode", 'char')

%% send
write(device, "clc", 'char')

for i = 1:length(transmit_queue)
write(device, transmit_queue(i), 'uint64')

end

write(device, "calc", 'char')
data = uint64(read(device,4,'uint64'));

%%
ciph_out = zeros(1,4*length(data));
for i = 1:4:4*length(data)

tmp = de2bi(data(floor(i/4)+1),64);
ciph_out(i:i+3) = [bi2de(tmp(1:16)),bi2de(tmp(17:32)),bi2de(tmp(33:48)),bi2de(tmp(49:end))];

end

ciph_out_old = ciph_out;
ciph_out = zeros(length(ciph_out_old)/4,4);
for i = 1:length(ciph_out_old)

ciph_out(floor((i-1)/4)+1,mod(i-1,4)+1) = ciph_out_old(i);
end

ciph_out

C.2. Gentry_HME_MM.vhd
function C_out = Gentry_HME_MM(C1,C2,FHE_n,FHE_L)

if size(C1) ~= size(C1)
error('C1 and C2 must be the same size')

end
FHE_CN = (FHE_n+1)*FHE_L;

for col = 1:(FHE_n+1)
for i = 1:FHE_CN

row_cnt = 1;
carry = 0;
for j = 1:(FHE_n+1)

cur_el = C1(i,j);
for k = 1:FHE_L

sel = uint64(2^(k-1));
pre_sel = uint64(2^k);

step1 = idivide(cur_el,pre_sel);
step2 = cur_el - step1*pre_sel;
bit = idivide(step2,sel);

carry = carry + bit*C2(row_cnt,col);

row_cnt = row_cnt+1;
end

end
C_out(i,col) = carry;

end
end

end

C.3. APU.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural and structural design of a simple APU
--This APU is hard wired for performing a cipher multiplication and addition

--The matrix and vector data are loaded continuously from the input register
--every time the circuit receives a read-ready signal (UART receiver has
--received 8 bytes of information) in the order: matrix in row major order,
--and then the vector. To ensure correct loading of the values, sending
--a "clc" command to the UART port is recommended as this resets the loading
--process.
--To perform the calculation, send a "calc" command to the UART port

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use IEEE.MATH_REAL.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity APU is
port(

clk : in std_logic;
reset : in std_logic;
input_reg : in std_logic_vector(UART_msg_len-1 downto 0);
read_ready : in std_logic;
calc : in std_logic;

result_mat : out matrix_array(0 to FHE_CN-1, 0 to FHE_n);
TXD_start : out std_logic
);
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end APU;

------------------------------------------------------------------------------------------
architecture Behavioral of APU is

--component declaration-------------------------------------------------------------------
component CipherAdd_core is

port (
clk: in std_logic;
calc: in std_logic;

input_matA: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);
input_matB: in matrix_array(0 to FHE_CN-1, 0 to FHE_n);

output_mat: out matrix_array(0 to FHE_CN-1, 0 to FHE_n);
calc_done: out std_logic

);
end component CipherAdd_core;

--signal declaration----------------------------------------------------------------------

constant cycle_count : natural := integer(ceil(real(FHE_CN)*real(FHE_CN)/real(UART_msg_len))); --amount of cycles needed to fill an array for errorvector generation
constant final_cycle : natural := FHE_CN*FHE_CN-(cycle_count-1)*UART_msg_len;

constant mat_count: natural := 2;

signal input_matA, input_matB, output_mat: matrix_array(0 to FHE_CN-1, 0 to FHE_n) := (others => (others => (others => '0')));

signal i, new_i: natural range 0 to cycle_count-1;
signal mat_cntr, new_mat_cntr: natural range 0 to mat_count-1;
signal calc_done, switch_input: std_logic := '0';
signal load, new_load: std_logic := '1';

signal output_pipe: std_logic_vector(L-1 downto 0);

--function declaration--------------------------------------------------------------------
function reg2mat(input_reg: std_logic_vector(UART_msg_len-1 downto 0); input_mat: matrix_array(0 to FHE_CN-1,0 to FHE_n); i: natural) return matrix_array is
variable output_mat: matrix_array(0 to FHE_CN-1,0 to FHE_n);
variable sel_i: natural range 0 to FHE_L-1;
variable sel_j: natural range 0 to FHE_n+1;
variable sel_k: natural range 0 to FHE_L-1;
variable loop_cnt: natural range 0 to UART_msg_len;

begin
output_mat := input_mat;

if i = cycle_count-1 then
loop_cnt := final_cycle;

else
loop_cnt := UART_msg_len;

end if;

for j in 0 to loop_cnt-1 loop
sel_i := (i*UART_msg_len+j)/FHE_CN;
sel_j := (i*UART_msg_len+j)/FHE_L - (FHE_n+1)*sel_i;
sel_k := (i*UART_msg_len+j) - ((i*UART_msg_len+j)/FHE_L)*FHE_L;--(sel_j*FHE_L+j+i*UART_msg_len)-(((sel_j*FHE_L+j+i*UART_msg_len)/FHE_L))*FHE_L;

output_mat(sel_i, sel_j)(sel_k) := input_reg(j);
end loop;

return output_mat;
end function;

--component wiring------------------------------------------------------------------------
begin

CipherAdd_core_unit : CipherAdd_core
port map(

clk => clk,
calc => calc,

input_matA => input_matA,
input_matB => input_matB,

output_mat => output_mat,
calc_done => calc_done

);

--State changes are registered on the clock tick
sync: process(clk)
begin

if rising_edge(clk) then
load <= new_load;
i <= new_i;
mat_cntr <= new_mat_cntr;

end if;
end process;

--Register loading into buffer
register_read: process(i, read_ready, reset, input_reg, load, output_pipe, mat_cntr)
begin
if rising_edge(read_ready) then

if load = '1' then
if mat_cntr = 0 then

input_matA <= reg2mat(input_reg, input_matA, i);
else

input_matB <= reg2mat(input_reg, input_matB, i);
end if;

end if;
end if;

if reset = '1' then
new_i <= 0;
new_mat_cntr <= 0;
new_load <= '1';

else
if read_ready = '1' then

if i = cycle_count-1 then
if mat_cntr = mat_count-1 then

new_i <= i;
new_mat_cntr <= mat_cntr;
new_load <= '0';
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else
new_i <= 0;
new_mat_cntr <= mat_cntr + 1;
new_load <= '1';

end if;
else

new_i <= i + 1;
new_mat_cntr <= mat_cntr;
new_load <= '1';

end if;
else

new_i <= i;
new_mat_cntr <= mat_cntr;
new_load <= load;

end if;
end if;
end process;

--Matrix vector multiplication
calculation: process(clk, calc_done)
begin

if rising_edge(clk) then
result_mat <= output_mat;

end if;
end process;

--Sending out signal when result is ready
TXD_start <= calc_done;

end architecture Behavioral;

C.4. counter.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural design of a counter
--Every clock tick the counter counts, but only when the enable signal is high

--When the enable signal is low, the count is retained.
--When the reset signal is high the count is reset

--Both enable and reset signals are acted upon synchronously

--When the counter reaches the maximum counter value, the output signal is set to high.
--Only when the reset signal is sent will the count be reset and the output signal set to low.
--If the user wishes for a clock that resets itself, see cyc_counter.
--Linking the output signal to the reset of this unit will likely cause unexpected behaviour
--and hence not advised (use cyc_counter).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

--entity declaration----------------------------------------------------------------------
entity counter is
generic(system_speed, max_count : natural);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic
);

end counter;

------------------------------------------------------------------------------------------
architecture Behavioral of counter is

--signal declaration----------------------------------------------------------------------
type state_type is (s0, counting, finish);
signal state, new_state : state_type;
signal count, new_count : natural range 0 to max_count:= 0;

--State changes are registered on the clock tick
begin
sync : process (clk)

begin
if (rising_edge(clk)) then

state <= new_state;
count <= new_count;

end if;
end process;

--State change logic
logic : process(clk, state, reset, count)

begin
case state is

when s0=>
if (reset = '1') then

new_state <= s0;
else

new_state <= counting;
end if;

when counting =>
if (reset = '1') then

new_state <= s0;
elsif (count > max_count-2) and (reset = '0') then

new_state <= finish;
else

new_state <= counting;
end if;

when finish =>
if reset = '1' then
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new_state <= s0;
else

new_state <= finish;
end if;

when others =>
new_state <= finish;

end case;
end process;

--Behaviour attributed to each state
operation : process(state, count, enable)

begin
case state is

when s0 =>
new_count <= 0;
output <= '0';

when counting =>
if enable = '1' then

new_count <= count + 1;
else

new_count <= count;
end if;
output <= '0';

when finish =>
new_count <= 0;
output <= '1';

end case;
end process;

end Behavioral;

C.5. cyc_counter.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural design of a cyc_counter
--Every clock tick the counter counts, but only when the enable signal is high
--When the maximum count has been reached, the count is reset the next clock tick.

--When the enable signal is low, the count is retained.
--When the reset signal is high the count is reset

--Both enable and reset signals are acted upon synchronously

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

--entity declaration----------------------------------------------------------------------
entity cyc_counter is
generic(system_speed, max_count : integer);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic := '0'
);

end cyc_counter;

------------------------------------------------------------------------------------------
architecture Behavioral of cyc_counter is

--signal declaration----------------------------------------------------------------------
type state_type is (s0, counting);
signal state, new_state : state_type;
signal count, new_count : natural range 0 to max_count:= 0;

--State changes are registered on the clock tick
begin
sync : process (clk)

begin
if (rising_edge(clk)) then

state <= new_state;
count <= new_count;

if new_count = max_count and enable = '1' then
output <= '1';

else
output <= '0';

end if;
end if;

end process;

--State change logic
logic : process(clk, state, reset, count)

begin
case state is

when s0=>
if (reset = '1') then

new_state <= s0;
else

new_state <= counting;
end if;

when counting =>
if (reset = '1') then

new_state <= s0;
elsif (count > max_count-2) and (reset = '0') then

new_state <= s0;
else

new_state <= counting;
end if;
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when others =>
new_state <= s0;

end case;
end process;

--Behaviour attributed to each state
operation : process(state, count, enable)

begin
case state is

when s0 =>
new_count <= 0;

when counting =>
if enable = '1' then

new_count <= count + 1;
else

new_count <= count;
end if;

end case;
end process;

end Behavioral;

C.6. instruction_launcher.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural and structural design of a circuit that receives reads the input register
--and checks if a command has been received, then performs the instruction pertaining
--to the given command.
--This design utilises a cyc_counter unit, debounce_comparator and pulse_to_switch unit.

--Whenever a command has been received, the circuit switches from the default idle state
--to the busy state. When in the busy state, the counter is enabled. Whenever the counter
--reaches its maximum count is reset and the circuit switches to the idle state. For
--the duration of the busy state, no new command can be received.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

--entity declaration----------------------------------------------------------------------
entity instruction_handler is
generic(system_speed, baud_ticks: integer);
port(

clk : in std_logic;
input_reg : in std_logic_vector(63 downto 0);
ready : out std_logic;

--instruction switches:
switch : out std_logic;
clear : out std_logic;
calc : out std_logic

-- mode : out std_logic
);

end instruction_handler;

architecture Behavioral of instruction_handler is
--signal declaration----------------------------------------------------------------------
type state_type is (idle, busy);
signal state, new_state : state_type;
signal switch_command, enable, reset, command_done, calc_command: std_logic := '0'; --mode_command

constant zeros5b: std_logic_vector(39 downto 0) := (others => '0');
constant zeros4b: std_logic_vector(31 downto 0) := (others => '0');

--component declaration-------------------------------------------------------------------
component pulse_to_switch is
port(

clk: in std_logic;
pulse_in: in std_logic;
output: out std_logic

);
end component pulse_to_switch;

component cyc_counter is
generic(system_speed, max_count : integer);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic
);

end component cyc_counter;

component debounce_comparator is
port(

clk : in std_logic;
db_in : in std_logic;
pulse_out : out std_logic

);
end component;
begin
--component wiring------------------------------------------------------------------------
pulse_to_switch_unit_cmd_state: pulse_to_switch
port map(clk=>clk, pulse_in=>switch_command, output=>switch);
reset <= not enable;
ready <= command_done;

--pulse_to_switch_unit_mode_state: pulse_to_switch
--port map(clk=>clk, pulse_in=>mode_command, output=>mode);
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counter_unit: cyc_counter
generic map(system_speed=>system_speed, max_count=>90*baud_ticks)
port map(clk=>clk, enable=>enable, reset=>reset, output=>command_done);

debounce_comparator_unit : debounce_comparator
port map(clk=>clk, db_in=>calc_command, pulse_out=>calc);

--State changes are registered on the clock tick
sync: process(clk)
begin

if rising_edge(clk) then
state <= new_state;

end if;
end process;

--Behaviour attributed to each state
state_logic: process(state, input_reg, command_done)
begin

case state is
when idle =>

if input_reg = zeros5b & "01110000" & "01101100" & "01100110" --flp
or input_reg = zeros5b & "01110000" & "01101101" & "01100011" --cmp
or input_reg = zeros5b & "01100011" & "01101100" & "01100011" --clc
or input_reg = zeros4b & "01100011" & "01101100" & "01100001" & "01100011" --calc

-- or input_reg = zeros4b & "01100101" & "01100100" & "01101111" & "01101101" --mode
then

new_state <= busy;
else

new_state <= idle;
end if;

when busy =>
if command_done = '1' then

new_state <= idle;
else

new_state <= busy;
end if;

end case;
end process;

--State change logic
operation: process(state)
begin

case state is
when idle =>

enable <= '0';

when busy =>
enable <= '1';

end case;
end process;

--Behaviour attributed to each state
command_operation: process(input_reg, switch_command)
begin

if input_reg = zeros5b & "01110000" & "01101100" & "01100110" then --flp
switch_command <= '1';

else
switch_command <= '0';

end if;

if input_reg = zeros5b & "01100011" & "01101100" & "01100011" then --clc
clear <= '1';

else
clear <= '0';

end if;

if input_reg = zeros4b & "01100011" & "01101100" & "01100001" & "01100011" then --calc
calc_command <= '1';

else
calc_command <= '0';

end if;

-- if input_reg = zeros4b & "01100101" & "01100100" & "01101111" & "01101101" then --mode
-- mode_command <= '1';
-- else
-- mode_command <= '0';
-- end if;
end process;

end architecture Behavioral;

C.7. main.vhd
--Author: Pieter Stobbe
--Date latest update:

--Structural design of the main module

--This circuit contains all the modules that make up the functionality
--of the design. The main module is setup with constraints for the
--physical design.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

library Work;
use Work.types_package.all;

--entity declaration----------------------------------------------------------------------
entity main is
port(

clk : in std_logic;
RXD : in std_logic;
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TXD : out std_logic;

-- MV_switch : in std_logic;
button : in std_logic;
calc_button : in std_logic;

green : out std_logic;
blue : out std_logic;
red : out std_logic;

switch_led : out std_logic
);

end main;

------------------------------------------------------------------------------------------
architecture Structural of main is

--component declaration-------------------------------------------------------------------
component UART_receiver is
generic(system_speed, baud_ticks: integer);
port(

clk : in std_logic;
RXD : in std_logic;
clear : in std_logic;
finished : out std_logic;
output_reg : out std_logic_vector(UART_msg_len-1 downto 0)
);

end component UART_receiver;

component UART_cipher_transmitter is
generic(system_speed, baud_ticks: integer);
port(

clk : in std_logic;
input_mat : in matrix_array(0 to FHE_CN-1, 0 to FHE_n);
start : in std_logic;
TXD : out std_logic := '1';
finished : out std_logic := '1'

);
end component UART_cipher_transmitter;

component button_switch is
generic(system_speed, db_interval: integer);
port(

clk: in std_logic;
button: in std_logic;
output: out std_logic

);
end component button_switch;

component debounce_comparator is
port(

clk : in std_logic;
db_in : in std_logic;
pulse_out : out std_logic

);
end component;

component instruction_handler is
generic(system_speed, baud_ticks: integer);
port(

clk : in std_logic;
input_reg : in std_logic_vector(UART_msg_len-1 downto 0);
ready : out std_logic;

--instruction switches:
switch : out std_logic;
clear : out std_logic;
calc : out std_logic
);

end component instruction_handler;

component APU is
port(

clk : in std_logic;
reset : in std_logic;
input_reg : in std_logic_vector(UART_msg_len-1 downto 0);
read_ready : in std_logic;
calc : in std_logic;

result_mat : out matrix_array(0 to FHE_CN-1, 0 to FHE_n);
TXD_start : out std_logic

-- debug : out std_logic
);

end component APU;

--signal declaration----------------------------------------------------------------------
constant baud_ticks: integer := 100; --sets baudrate (125 -> 1E6 baud at system clock = 20E6)
constant db_interval: integer := 4e5; --(db_interval/system_speed = debounce time)
constant system_speed: integer := 20e6; --Hz
signal UART_out, receive_flag: std_logic;
signal receive_reg: std_logic_vector(L-1 downto 0);
signal calculation_result_mat: matrix_array(0 to FHE_CN-1, 0 to FHE_n);
signal switch_out, debug: std_logic;

signal APU_calc, calc, MV_mode, command_clear, dummy_ready, clear, calc_done, result_start: std_logic;
signal UART_finish_flag, calc_UART_out: std_logic;
signal UART_start: std_logic;

begin

--component wiring------------------------------------------------------------------------
UART_receiver_unit : UART_receiver
generic map(system_speed => system_speed, baud_ticks => baud_ticks)
port map(clk=>clk, RXD=>RXD, clear=>'0', finished=>receive_flag, output_reg=>receive_reg);

instruction_handler_unit : instruction_handler
generic map(system_speed=>system_speed, baud_ticks=>baud_ticks)
port map(clk=>clk, input_reg=>receive_reg, ready=>dummy_ready, switch=>switch_out, clear=>clear, calc=>calc);

APU_unit : APU
port map(clk=>clk, reset=>clear, input_reg=>receive_reg, read_ready=>receive_flag, calc=>APU_calc, result_mat=>calculation_result_mat, TXD_start=>calc_done);--, debug=>debug);
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UART_calc_result_unit : UART_cipher_transmitter
generic map(system_speed => system_speed, baud_ticks => baud_ticks)
port map(clk=>clk, input_mat=>calculation_result_mat, start=>UART_start, txd=>calc_UART_out, finished=>UART_finish_flag);

--LED wiring------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
red <= calc;
blue <= clear;
green <= receive_flag;

switch_led <= switch_out;
TXD <= calc_UART_out;

UART_start <= calc_done or button;

APU_calc <= calc or calc_button;

end Structural;

C.8. MatVect_types.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

package types_package is

--Vector and matrix definitions-------------------------------------------------------------------------------------------------
type intmat is array (m-1 downto 0, n-1 downto 0) of signed(L-1 downto 0);
type intvect is array (n-1 downto 0) of signed(L-1 downto 0);

constant zeros_vect: intvect := (others => (others => '0'));
constant zeros_mat: intmat := (others => (others => (others => '0')));
constant UART_msg_len : natural := 64;

--FHE parameters----------------------------------------------------------------------------------------------------------------

constant FHE_m: natural := 3;
constant FHE_n: natural := 3;
constant FHE_L: natural := 32; --80;

constant FHE_CN: natural := (FHE_n+1)*FHE_L;

constant FHE_Qm: natural := 16;
constant FHE_Qn: natural := 32;

type vector_array is array (natural range <>) of signed(FHE_L-1 downto 0);
type matrix_array is array (natural range <>, natural range <>) of signed(FHE_L-1 downto 0);

type vector_array_e is array (natural range <>) of signed(FHE_L-1 downto 0);
type matrix_array_e is array (natural range <>, natural range <>) of signed(FHE_L-1 downto 0);

type vector_bit_array is array (natural range <>) of std_logic;
type matrix_bit_array is array (natural range <>, natural range <>) of std_logic;

end package;

--package body------------------------------------------------------------------------------------------------------------------
package body types_package is

end package body;

C.9. pulse_to_switch.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural and structural design of a circuit that switches between a low
--and high state when input changes from low to high (input is required to
--be a pulse (single clock tick)).

--The circuit has two states, high and low. The initial state is low. When
--the input (pulse_in) pulses high, the circuit switches between high and low.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

--entity declaration----------------------------------------------------------------------
entity pulse_to_switch is
port(

clk: in std_logic;
pulse_in: in std_logic;
output: out std_logic := '0'

);
end pulse_to_switch;

------------------------------------------------------------------------------------------
architecture Behavioural of pulse_to_switch is

--signal declaration----------------------------------------------------------------------
type state_type is (low, high);
signal state, new_state : state_type;
signal prev_pulse: std_logic;

begin
--behaviour-------------------------------------------------------------------------------
sync: process(clk)
begin

if rising_edge(clk) then
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state <= new_state;
prev_pulse <= pulse_in;

end if;
end process;

logic: process(clk, state, prev_pulse, pulse_in)
begin

case state is
when high =>
if pulse_in = '1' and prev_pulse = pulse_in then

new_state <= low;
else

new_state <= high;
end if;

when low =>
if pulse_in = '1' and prev_pulse = not pulse_in then

new_state <= high;
else

new_state <= low;
end if;

when others =>
new_state <= low;

end case;
end process;

operation: process(clk, state)
begin

case state is
when high =>
output <= '1';

when low =>
output <= '0';

when others =>
output <= '0';

end case;
end process;

end Behavioural;

C.10. UART_cipher_transmit.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural and structural design of a circuit to send a UART signal.
--This design utilises two cyc_counter units.
--This circuit sends 8 bytes of data via UART when given a start signal.

--The circuit has two states, idle and sending. When given a start signal, the circuit
--starts sending out a UART signal containing the bytes supplied to the input register.
--When in the sending state, the baud counter and transmision counter are activated.
--The baud counter switches to high after one symbol duration (1/baud rate) and the
--transmision counter switches the done signal to high, prompting the circuit to
--switch to the idle state.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use IEEE.MATH_REAL.ALL;

library Work;
use Work.types_package.all;

--entity declaration-------------------------------------------------
entity UART_cipher_transmitter is
generic(system_speed, baud_ticks: integer);
port(

clk : in std_logic;
input_mat : in matrix_array(0 to FHE_CN-1, 0 to FHE_n);
start : in std_logic;
TXD : out std_logic := '1';
finished : out std_logic := '1'

);
end UART_cipher_transmitter;

architecture Behavioral of UART_cipher_transmitter is
--signal declaration-------------------------------------------------
constant bit_total : natural := FHE_CN*FHE_CN + 2*integer(ceil(real(FHE_CN)*real(FHE_CN)/real(UART_msg_len)));

signal baudrate_clock, reset, enable: std_logic := '0';
signal done, new_done: std_logic := '1';
signal done_db: std_logic := '0';

signal bit_counter, new_bit_counter: natural range 0 to bit_total-1:= bit_total-1;

type state_type is (idle, sending);
signal state, new_state : state_type;

--function declaration--------------------------------------------------------------------

function shift_register_fun(input_mat: matrix_array(0 to FHE_CN-1, 0 to FHE_n); bit_counter: natural) return std_logic is
variable st_dv, st_md, cnt, sel_i, sel_j, sel_k: natural;
variable TXD_output: std_logic;

begin
st_dv := bit_counter/(UART_msg_len+2);
st_md := bit_counter - st_dv*(UART_msg_len+2);

if st_md = 0 then
TXD_output := '0';

elsif st_md = UART_msg_len+1 then
TXD_output := '1';
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else
cnt := bit_counter - 2*st_dv - 1;
sel_i := cnt/FHE_CN;
sel_j := cnt/FHE_L - sel_i*(FHE_n+1);
sel_k := cnt - sel_i*FHE_CN - sel_j*FHE_L;
if sel_i < FHE_CN then

TXD_output := input_mat(sel_i, sel_j)(sel_k);
else

TXD_output := '0';
end if;

end if;
return TXD_output;

end shift_register_fun;

--component declaration-------------------------------------------------------------------
component cyc_counter is
generic(system_speed, max_count : integer);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic
);

end component cyc_counter;

component debounce_comparator is
generic(init : std_logic := '0');
port(

clk: in std_logic;
db_in: in std_logic;
pulse_out: out std_logic

);
end component debounce_comparator;

begin
--component wiring------------------------------------------------------------------------
baud_clock: cyc_counter
generic map(system_speed => system_speed, max_count=> baud_ticks-1)
port map(

clk => clk,
enable => enable,
reset => reset,
output => baudrate_clock

);

debounce_comparator_unit: debounce_comparator
generic map(init => '1')
port map(

clk=>clk,
db_in=>done,
pulse_out=>done_db

);

finished <= not enable;

--state behaviour------------------------------------------------------------------------
sync: process(clk)
begin

if rising_edge(clk) then
state <= new_state;

end if;
end process;

state_logic: process(clk, state, start, done_db, baudrate_clock)
begin

case state is
when idle =>

if start = '1' then
new_state <= sending;

else
new_state <= idle;

end if;

when sending =>
if done_db = '1' then

new_state <= idle;
else

new_state <= sending;
end if;

when others =>
new_state <= idle;

end case;
end process;

operation: process(clk, state, bit_counter, input_mat)
begin

case state is
when idle =>

enable <= '0';
reset <= '1';
TXD <= '1';

when sending =>
enable <= '1';
reset <= '0';
TXD <= shift_register_fun(input_mat, bit_counter);

when others=>
enable <= '0';
reset <= '1';
TXD <= '1';

end case;
end process;
--output generation-----------------------------------------------------------------------

bit_send_sync: process(clk, done, baudrate_clock, new_bit_counter)
begin

if rising_edge(clk) then
if baudrate_clock = '1' or new_bit_counter = 0 then

bit_counter <= new_bit_counter;



112 C. Demo code

done <= new_done;
end if;

end if;
end process;

bit_send_logic: process(clk, bit_counter, start)
begin

if start = '1' then
new_bit_counter <= 0;
new_done <= '0';

else
if bit_counter = bit_total-1 then

new_bit_counter <= bit_counter;
new_done <= '1';

else
new_bit_counter <= bit_counter + 1;
new_done <= '0';

end if;
end if;

end process;

end Behavioral;

C.11. UART_receiver.vhd
--Author: Pieter Stobbe
--Date latest update:

--Behavioural and structural design of a circuit to receive a UART signal.
--This design utilises one counter unit, three cyc_counter units and a debounce unit.
--This circuit detects an incoming UART signal and polls the signal state at the
--midpoints of each bit (if a bit starts at t = 0s and has a duration of t = 1s
--then the state of the incomming bit is polled at t = 0.5s).
--The UART circuit has a 64-bit or 8-byte buffer in which input is stored.

--When there is no incomming signal (i.e. UART signal is high), the circuit is in
--the idle state. In this state, the input is connected to a debounce unit. When the
--input signal switches to low for half a symbol duration (1/baud-rate) an incomming
--UART signal is detected and so the circuit switches to the hold state.
--When in the hold state, the hold and reset counters are turned on. The reset counter
--ensures the input buffer is flushed after the time required to send a message of 8 bytes.
--In case a command of less that 8 bytes is received, the reset counter ensures that
--this command is not concatenated to the next message (See example at the bottom of the
--discription). The hold counter serves as a clock to introduce half a symbol duration of
--off-set. When the hold counter is done, the circuit switches to the receiving state,
--where the baud clock and transmision clock are turned on and input is polled everytime
--the baud clock is high. The transmission clock resets the state to the idle state when
--a byte of information has been received.

--The reset counter is a regular counter that has to be reset externaly, this prevents
--circuit from rapidly switching between enabling and disabling the reset counter when
--input buffer is filled and a new transmission starts immediatly after flushing the input buffer.

--Example of concatination issue:
--Take a command "clac". The FPGA expects "calc" and so the command "clac" is stored, but
--is not registered as a command. If the command correct command "calc" is sent next, the
--buffer now stores "claccalc", which is also wrong.
--The reset counter flushes the buffer, which means that sending "clac" and then "calc",
--the command is received without issue.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

--entity declaration----------------------------------------------------------------------
entity UART_receiver is
generic(system_speed, baud_ticks: integer);
port(
clk : in std_logic;
RXD : in std_logic;
clear : in std_logic;
finished : out std_logic;
output_reg : out std_logic_vector(63 downto 0) := (others => '0')

);
end UART_receiver;

------------------------------------------------------------------------------------------
architecture Behavioral of UART_receiver is

--signal declaration----------------------------------------------------------------------
constant transmission_length: integer := 63;
constant zeros: std_logic_vector(transmission_length downto 0) := (others => '0');

signal baudrate_clock, reset, enable, done: std_logic := '0';
signal hold_enable, hold_reset, hold_done: std_logic := '0';
signal db_RXD, not_RXD: std_logic := '0';
signal bus_enable, not_bus_enable, bus_done: std_logic := '0';

signal shift_register : std_logic_vector(transmission_length downto 0) := (others => '0');
signal bit_counter, new_bit_counter: natural range 0 to transmission_length:= 0;

type state_type is (idle, hold, receiving);
signal state, new_state : state_type;

--component declaration-------------------------------------------------------------------
component cyc_counter is
generic(system_speed, max_count : integer);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic
);

end component cyc_counter;
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component counter is
generic(system_speed, max_count : integer);
port(

clk : in std_logic;
enable : in std_logic;
reset : in std_logic;
output : out std_logic
);

end component counter;

component debounce is
generic(db_interval, system_speed: integer);
port(

clk: in std_logic;
button: in std_logic;
output: out std_logic

);
end component debounce;

------------------------------------------------------------------------------------------
begin
--component wiring------------------------------------------------------------------------
baud_clock: cyc_counter
generic map(system_speed => system_speed, max_count=> baud_ticks-1)
port map(

clk => clk,
enable => enable,
reset => reset,
output => baudrate_clock

);

transmision_clock: cyc_counter
generic map(system_speed => system_speed, max_count=> 8*baud_ticks - 1)
port map(

clk => clk,
enable => enable,
reset => reset,
output => done

);

reset_clock: counter
generic map(system_speed => system_speed, max_count=> (10*8 + 1)*baud_ticks)
port map(

clk => clk,
enable => bus_enable,
reset => not_bus_enable,
output => bus_done

);

phase_offset_clock: cyc_counter
generic map(system_speed => system_speed, max_count=> baud_ticks - 2) --4 clock ticks less, as it takes 3 clock ticks for the state machine to start receiving
port map(

clk => clk,
enable => hold_enable,
reset => hold_reset,
output => hold_done

);

debounce_unit: debounce
generic map(baud_ticks/2-4, system_speed)
port map(clk=>clk, button=>not_RXD, output=>db_RXD);

finished <= bus_done;
reset <= not enable;
hold_reset <= not hold_enable;
not_bus_enable <= not bus_enable;

--State changes are registered on the clock tick
sync: process(clk)
begin

if rising_edge(clk) then
state <= new_state;

end if;
end process;

--State change logic
state_logic: process(clk, state, done, bus_done, hold_done, db_RXD)
begin

case state is
when idle =>

if db_RXD = '1' then
new_state <= hold;

else
new_state <= idle;

end if;

when hold =>
if hold_done = '1' then

new_state <= receiving;
else

new_state <= hold;
end if;

when receiving =>
if done = '1' then

new_state <= idle;
else

new_state <= receiving;
end if;

when others =>
new_state <= idle;

end case;
end process;

--Behaviour attributed to each state
operation: process(clk, state, RXD)
begin

case state is
when idle =>

enable <= '0';
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hold_enable <= '0';
not_RXD <= not RXD;

when hold =>
enable <= '0';
hold_enable <= '1';
not_RXD <= '0';

when receiving =>
enable <= '1';
hold_enable <= '0';
not_RXD <= '0';

when others=>
enable <= '0';
hold_enable <= '0';
not_RXD <= '0';

end case;
end process;

--output generation--------------------------------------------------
bit_receive_sync: process(clk, baudrate_clock, bit_counter, new_bit_counter, RXD, clear)
begin
if rising_edge(clk) then

if (baudrate_clock = '1' or hold_done = '1') and clear = '0' and done = '0' and bus_done = '0' then
bit_counter <= new_bit_counter;
shift_register(bit_counter) <= RXD;

elsif clear = '1' or bus_done = '1' then
bit_counter <= 0;
shift_register <= zeros;

end if;
end if;
end process;

bit_counter_assignment: process(bit_counter, new_bit_counter)
begin

if bit_counter = transmission_length then
new_bit_counter <= 0;

else
new_bit_counter <= bit_counter + 1;

end if;

end process;

cutting_transmisson: process(db_RXD, bus_done)
begin

if rising_edge(db_RXD) then
bus_enable <= '1';

end if;

if bus_done = '1' then
bus_enable <= '0';

end if;
end process;

--Register is updated everytime the input buffer is updated
output_register_assignment: process(shift_register, baudrate_clock)
begin
if rising_edge(baudrate_clock) then

output_reg <= shift_register;
end if;
end process;

end Behavioral;
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