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SIMPLE-TYPE PRECONDITIONERS FOR THE OSEEN

PROBLEM

M. UR REHMAN, C. VUIK, AND G. SEGAL

Abstract. In this report, we discuss block preconditioners used to solve the
incompressible Navier-Stokes equations. We emphasize on the approximation
of the Schur complement used in SIMPLE-type preconditioners. In the usual
formulation, the Schur complement uses scaling with the diagonal of the con-

vection diffusion matrix. A variant of SIMPLE, SIMPLER is studied. Con-
vergence of the SIMPLER preconditioner depends on the grid size, but not
on the Reynolds number. We introduce a new variant of SIMPLER (Modified
SIMPLER or MSIMPLER), based on the diagonal of the velocity mass matrix
as scaling matrix instead of the diagonal of the convection-diffusion matrix.

With the new approximation, we observe a drastic improvement in conver-
gence for fairly large problems. MSIMPLER shows better convergence than
the well-known least-squares commutator (LSC) preconditioner which is also
based on the diagonal of the velocity mass matrix.

Keywords. Navier-Stokes, Block preconditioners, ILU preconditioners, Krylov
subspace methods
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1. Introduction

Solution of the incompressible Navier-Stokes problem, numerically, is a hot topic
in scientific research nowadays. Solving the resulting linear system efficiently is of
prime interest, because most of the CPU time and memory is consumed in solving
the systems. The incompressible Navier-Stokes problem is given as

−ν∇2u + u · ∇u + ∇p = f in Ω, (1)

∇ · u = 0 in Ω. (2)

Equations (1) and (2) are known as the momentum equations and the continuity
equations, respectively. u is the velocity vector, p the pressure and ν is the viscosity
inversely proportional to the Reynolds number. Ω is a 2 or 3 dimensional domain
with a piecewise smooth boundary ∂Ω with boundary conditions on ∂Ω = ∂ΩE ∪
∂ΩN given by

u = w on ∂ΩE , ν
∂u

∂n
− np = 0 on ∂ΩN .

Discretization of (1) and (2) by finite element method (FEM) leads to a non-
linear system. After linearization by the Picard method, or Newton method, the
linear system can be written as:

[

F BT

B 0

] [

u
p

]

=

[

f
g

]

, (3)

where F ∈ R
n×n is a convection-diffusion operator, B ∈ R

m×n is a divergence op-
erator and m ≤ n. n is the number of velocity unknowns and m is the number
of pressure unknowns. The system is sparse, symmetric indefinite in the case of
the Stokes problem and unsymmetric indefinite in the Navier-Stokes problem. The
system (3) is obtained from a finite element discretization that satisfies the LBB
condition. In case where the LBB condition is not satisfied we need some stabiliza-
tion scheme in the continuity equation. In that case the right-under block in the
matrix is no longer zero.

In order to solve linear systems of shape (3) we apply Krylov subspace methods.
These methods can only be applied in combination with a suitable preconditioner.
Two types of preconditioners are distinguished:
Algebraic preconditioners applied on the complete system (3) and physics-based
approaches using some kind of block preconditioner. In general algebraic precondi-
tioners are based on ILU factorization of the coefficient matrix. In order to avoid
problems with zeros on the main diagonal, either dynamic pivoting or a clever a-
priori reordering technique has to be applied [1–9].
In [9] we published an a-priori reordering technique (SILU), that converges fast for
small to mid-sized grids.
Characteristics of algebraic preconditioners are:
- they do not require any extra knowledge of the system
- implementation is cheap and straight-forward
- convergence may be slow for fine grids.
Block preconditioners, on the other hand, distinguish subsystems for pressure and
velocity separately. A special algorithm takes care of the overall convergence. The
preconditioners are based on the knowledge of the pressure and velocity matrices.
Examples of such preconditioners can be found in [10–16]. The goal of all these
preconditioners is to get convergence independent of the Reynolds number and grid
size. In [17] and [18] one can find an overview of recent published block precondi-
tioners.
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In Section 2 we shall discuss two types of block preconditioners: block precondi-
tioners based on approximate commutators in particular the least squares commu-
tator (LSC) and various kinds of SIMPLE-type preconditioners.
We propose a variant of SIMPLER (MSIMPLER) that improves the convergence
and makes its performance better than LSC. In Section 3, some numerical exper-
iments are presented for two benchmark problems: backward facing step and lid
driven cavity flow. In Section 4, we conclude our numerical experiments.

2. Preconditioning strategies based on block factorization

Preconditioning is a technique used to enhance the convergence of an iterative
method to solve a large linear system iteratively. Instead of solving a system Ax = b,
one solves a system P−1Ax = P−1b, where P is the preconditioner. A good pre-
conditioner should lead to fast convergence of the Krylov method. Furthermore,
systems of the form Pz = r should be easy to solve.
Block preconditioners for the (Navier-)Stokes equations are characterized by a segre-
gation of velocity and pressure during each step in the iterative solution procedure.
System (3) is solved by a Krylov subspace solver, for example GCR. To accelerate
the convergence of this process a preconditioner is applied. This implies that during

each iteration an extra system of the shape Pz = r has to be solved. r =

[

ru

rp

]

,

is a residual, where ru and rp correspond to the velocity and the pressure part
respectively. The preconditioner P is based on the block LDU factorization of (3):

[

F BT

B 0

]

= LDU =

[

I 0
BF−1 I

] [

F 0
0 S

] [

I F−1BT

0 I

]

, (4)

where S = −BF−1BT , is known as the Schur complement matrix.
Most of the preconditioners published, try to approximate the DU part:

Pt =

[

F 0
0 S

] [

I F−1BT

0 I

]

=

[

F BT

0 S

]

. (5)

Preconditioners based on formulation (5) are known as block triangular precondi-
tioners (Pt). The most expensive part of the block preconditioner is the inverse of
F and S. In general, block preconditioners consist of some good and cheap approx-
imations to F−1 and S−1 along with matrix vectors multiplications and updates.
In order to investigate the spectral properties of the preconditioned matrix one can
consider the following generalized eigenvalue problem

[

F BT

B 0

] [

u
p

]

= λ

[

F BT

0 S

] [

u
p

]

, (6)

This eigenvalue problem has the eigenvalues λ = 1 of multiplicity n and the remain-
ing eigenvalues depend on the approximation to the Schur complement

BF−1BT p = µiSp,

where µi are the eigenvalues corresponding to the Schur complement [19]. From
the eigenvalues, it is evident that convergence with the preconditioners based on
formulation (5) depends strongly on the approximation to the Schur complement
matrix. In ( [11], [10], [13]) one can find examples of such preconditioners.

2.1. Block preconditioners based on approximate commutators. Kay et al
( [13]) published a class of approximations for the Schur compliment based on the
assumption that the commutator of the convection diffusion operator on the velocity
space, multiplied by the gradient operator on the velocity space, with, the gradient
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operator acting on the convection diffusion operator in the pressure space, is small.
The discrete commutator in terms of finite element matrices is given as

εh = (Q−1
u F )(Q−1

u BT ) − (Q−1
u BT )(Q−1

p Fp), (7)

where Qu denotes the velocity mass matrix and Qp, the pressure mass matrix, are
scaling matrices. Fp is a discrete convection-diffusion operator on pressure space.
The multiplication by Q−1

u and Q−1
p , transforms quantities from integrated values to

nodal values. Pre-multiplication of (7) by BF−1Qu, post-multiplication by F−1
p Qp

and assuming that the commutator is small, leads to the Schur approximation

BF−1BT ≈ BQ−1
u BT F−1

p Qp. (8)

Kay et al replace the expensive part BQ−1
u BT by the pressure Laplacian matrix Ap

which is spectrally equivalent to BQ−1
u BT . Hence

S = −BF−1BT ≈ −ApF
−1
p Qp. (9)

The approximation substituted in (5) is known as pressure convection-diffusion
(PCD) preconditioner.
Elman et al [11] created a matrix Fp that minimizes the commutator (7). This can
be achieved by solving a least squares problem. For the jth column of matrix Fp,
the least squares problem is of the form:

min‖[Q−1
u FQ−1

u BT ]j − Q−1
u BT Q−1

p [Fp]j‖Qu
, (10)

where ‖.‖Qu
is the

√

x
¯

T Qux
¯

norm. The normal equations associated with this
problem are:

Q−1
p BQ−1

u BT Q−1
p [Fp]j = [Q−1

p BQ−1
u FQ−1

u BT ]j ,

which leads to the following definition of Fp:

Fp = Qp(BQ−1
u BT )−1(BQ−1

u FQ−1
u BT ).

Substituting this expression into (8) gives an approximation of the Schur comple-
ment matrix:

BF−1BT ≈ (BQ−1
u BT )(BQ−1

u FQ−1
u BT )−1(BQ−1

u BT ). (11)

The preconditioner based on this approximation is known as the Least Squares
Commutator (LSC) preconditioner. The preconditioner is expensive if the full ve-
locity mass matrix is used in the preconditioner. Therefore, Q−1

u is replaced with

Q̂−1
u , the inverse of the diagonal of the velocity mass matrix. According to the

literature ( [13], [11]), the convergence of the LSC and PCD preconditioners is inde-
pendent of the grid size, and only mildly dependent on the Reynolds number. The
preconditioners have been tested for the driven cavity and backward facing step
problem using Q2-Q1 and Q2-P1 elements. It has also been tested for stabilized
elements. LSC requires two Poisson per iteration, whereas PCD requires only one.
On the other hand, PCD requires two extra operators Fp and Ap on the pressure
space. These operators needboundary conditions for the pressure, which are taken
to be zero at inflow and Neumann at all other boundaries. So PCD requires extra
start-up time, but per iteration LSC is more expensive.

2.2. SIMPLE(R) preconditioner. SIMPLE (Semi Implicit Method for Pressure
Linked Equations) [20], [21] is a classical algorithm for solving the Navier-Stokes
equations, discretized by a finite volume technique. In this algorithm, to solve
the momentum equations, the pressure is assumed to be known from the previous
iteration. The newly obtained velocities do not satisfy continuity since the pressure
field assumed is only a guess. Corrections to velocities and pressure are proposed
to satisfy the discrete continuity equation. The algorithm can be derived from the
block LU decomposition of the coefficient matrix (3)
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[

F BT

B 0

] [

u
p

]

=

[

F 0
B −BF−1BT

] [

I F−1BT

0 I

] [

u
p

]

=

[

f
g

]

. (12)

F in (12) is approximated by the diagonal of F , D. This leads to the SIMPLE
algorithm

[

F 0
B −BD−1BT

] [

u∗

δp

]

=

[

f
g

]

(13)

and
[

I D−1BT

0 I

] [

u
p

]

=

[

u∗

δp

]

. (14)

In the SIMPLE algorithm form, the above two steps are performed recursively
SIMPLE algorithm:

(1) Solve Fu∗ = f − BT p∗.

(2) Solve Ŝδp = g − Bu∗.
(3) update u = u∗ − D−1BT δp.
(4) update p = p∗ + δp,

where pressure p∗ is estimated from prior iterations. D is the diagonal of the
convection diffusion matrix and Ŝ = −BD−1BT , an approximation to the Schur
complement.
Vuik et al [16], used SIMPLE and its variants as a preconditioner to solve the
incompressible Navier-Stokes problem. One iteration of the SIMPLE algorithm with
assumption p∗ = 0 is used as a preconditioner. The preconditioner gives convergence
if combined with the GCR method. However, the convergence rate depends on the
number of grid elements and the Reynolds number. The convergence of SIMPLER,
a variant of SIMPLE, is independent of Reynolds. Instead of estimating pressure
p∗ in the SIMPLE algorithm, p∗ is obtained from solving a subsystem:

Ŝp∗ = g − BD−1((D − F )uk + f), (15)

where uk is obtained from the prior iteration. In case SIMPLER is used as pre-
conditioner, uk is taken equal to zero. The classical SIMPLER algorithm proposed
by Patanker consists of two pressure solves and one velocity solve. However, in the
literature the SIMPLER algorithm is formulated such that the steps of the algo-
rithm closely relates the Symmetric Block Gauss-Seidal method [22]. This form of
the SIMPLER preconditioner can be written as:

(

u∗

p∗

)

=

(

uk

pk

)

+ M−1
L BL

((

f
g

)

− A

(

uk

pk

))

, (16)

(

uk+1

pk+1

)

=

(

u∗

p∗

)

+ BRM−1
R

((

f
g

)

− A

(

u∗

p∗

))

, (17)

where A represents the complete matrix given in (3), uk and pk in (16) are obtained
from the previous step (both zero in our case) and

BR =

(

I −D−1BT

0 I

)

, MR =

(

F 0

B Ŝ

)

and (18)

BL =

(

I 0
−BD−1 I

)

, ML =

(

F BT

0 Ŝ

)

. (19)

The steps given in (16) and (17) contain two Poisson solves, two velocity subprob-
lems solves- posed to one velocity solve in the classical algorithm- and matrix vector
updates. However, in practical SIMPLER implementation -per preconditioning step
- the velocity solve is performed once because no significant effect on the convergence
with the SIMPLER preconditioner is observed, see Appendix-A. In the remainder
of this paper, we will use SIMPLER with one velocity solve. One iteration of the
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SIMPLER algorithm is approximately 1.3 times more expensive than the SIMPLE
iteration [16]. SIMPLER convergence is usually faster than SIMPLE. However,
convergence with both preconditioners is decreased with an increase in the number
of grid elements.

2.3. SIMPLE-type preconditioners and commutators preconditioners. El-
man et al [19], [11] discussed relations between SIMPLE and commutator precon-
ditioners. The more general form of (11) is given as:

(BF−1BT )−1 ≈ Fp(BM−1
1 BT )−1, (20)

where

Fp = (BM−1
2 BT )−1(BM−1

2 FM−1
1 BT ),

where M1 and M2 are scaling matrices. Consider a new block factorization precon-
ditioner in which the Schur complement is based on a commutator approximation
but built on SIMPLE’s approximate block factorization written as:

P =

[

F 0
B −BM1−1BT

] [

I D−1BT

0 I

] [

I 0
0 F−1

p

]

. (21)

When M1 = D and Fp the identity matrix, the preconditioner formulation (21)
corresponds to SIMPLE. The formulation given in (21) is equivalent to the SIMPLE
algorithm if the subsystem for the pressure part in step 3 in the SIMPLE algorithm
is solved with the approximation given in (20)

Ŝδp = g − Bu∗ where Ŝ = −(BM−1
1 BT )F−1

p .

When FD−1 is close to identity, Fp will also be close to identity. This is true in
a time dependent problem with small time steps where the diagonal of F has larger
entries than the off-diagonal entries [11].

2.4. Improvements in the SIMPLER preconditioner.

2.4.1. hSIMPLER. We have observed that in the Stokes problem, the SIMPLER
preconditioner shows stagnation at the start of the iterative method . The be-
havior is not seen in the SIMPLE preconditioner. A better convergence can be
achieved if the first iteration is carried out with the SIMPLE preconditioner and
then SIMPLER is employed. We call it hSIMPLER(hybrid SIMPLER). This imple-
mentation gives a fair reduction in the number of iterations if the Stokes problem
is solved. However, in the Navier-Stokes problem, SIMPLER performs better than
hSIMPLER. More details are given in the section on numerical experiments.

2.4.2. MSIMPLER. It has been shown in [11], that scaling with the velocity mass
matrix improves the convergence of the LSC preconditioner. Here we utilize the
observation of Elman regarding the time dependent problem. We know that in
time dependent problems,

Ft =
1

∆t
Qu + F, (22)

where Ft represents the velocity matrix for the time dependent problem and ∆t rep-
resents the time step. For small time steps Ft ≈

1

∆t
Qu. This kind of approximation

has been used in fractional step methods for solving the unsteady Navier-Stokes
problem [23], [24], [25]. We use this idea in solving the steady Navier-Stokes prob-

lem. Therefore, in (20), we assume that M1 = M2 = Q̂u then

Fp = (BQ̂−1
u BT )−1(BQ̂−1

u FQ̂−1
u BT ),

we assume that the factor FQ̂−1
u in Fp is close to identity:

Fp = (BQ̂−1
u BT )−1(BQ̂−1

u BT ) = I.
9



Then the approximation (20) becomes

BF−1BT ≈ (BQ̂−1
u BT ). (23)

A new variant of SIMPLER arises if we replace the scaling with the diagonal of the
velocity matrix by the diagonal of the velocity mass matrix. We call it MSIMPLER
(modified SIMPLER). The MSIMPLER preconditioner is given by:

MSIMPLER preconditioner:

(1) Solve Ŝp∗ = rp − BQ̂−1
u ru.

(2) Solve Fu∗ = ru − BT p∗.

(3) Solve Ŝδp = rp − Bu∗.

(4) update u = u∗ − Q̂−1
u BT δp.

(5) update p = p∗ + δp. .

In the LSC preconditioner, the first three steps are used to solve the approximate
Schur complement (5). The preconditioning steps with LSC are:

LSC preconditioner:

(1) Solve BBtp = rp where BBt = BQ̂−1
u BT

(2) Update rp = BQ̂−1
u FQ̂−1

u BT p.
(3) Solve BBtp = −rp.
(4) update ru = ru − BT p.
(5) Solve Fu = ru.

2.5. Cost comparison of the preconditioners. From a construction point of
view, the LSC and MSIMPLER preconditioners are built from available matrices.
Another advantage is, that the Schur complement is constructed once -at the start
of the linearization - because Q̂−1

u remains the same in the linearization steps. The
preconditioning steps with both preconditioners involves two Poisson solves and one
velocity subproblem solve as the major steps.
Computationally, per iteration, the MSIMPLER preconditioner is less expensive
than the LSC preconditioner. Both preconditioners have to solve three subsystems
(two for the pressure and one for the velocity) per iteration. We assume that solv-
ing the subsystem corresponding to the pressure takes sp flops and the subsystem
corresponding to the velocity part takes fu flops. nnzB are the number of non-zero
entries in B and nnzF are the number of non-zero entries in F and cost of the ma-
trix vector product is computed by assuming an average number of non-zero entries
per row of a matrix. Then the cost of the MSIMPLER preconditioner per step is:

costmsimpler = 8nnzB + 5n + 2m + 2sp + fu,

and the cost of the LSC preconditioner is

costlsc = 6nnzB + 2nnzF + 3n + 2sp + fu.

We assume that the cost of solving the subsystem in both preconditioner is the
same. Then the difference in cost of both preconditioners exist of matrix vector
multiplications and updates. Per iteration, the difference between the cost is:

diff = (2nnzF ) − (2m + 2n + 2nnzB).

Since we using stable elements only, diff > 0.

2.6. Suitable norm to terminate the Stokes iterations. We have noticed that
when we solve the Stokes equations by SIMPLE-type preconditioned GCR method,
the number of iterations depends on the viscosity (Reynolds number). See for exam-
ple Table 1. Such a result is unexpected since in the Stokes equations the viscosity
is only a scaling parameter and therefore the convergence should be independent of
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the Reynolds number. Close inspection reveals that the accuracy of the solution is
lower for high Reynolds numbers than for low ones. Hence the conclusion is that, in
case of Stokes, the termination criterion should be adapted to avoid this viscosity
dependence.

Grid SIMPLER (Re=1) SIMPLER (Re=300)
8 × 24 20 18
16 × 48 40 36
32 × 96 110 52

Table 1. Backward facing step: Solution of the Stokes problem
with SILU preconditioned Bi-CGSTAB(accuracy of 10−6).

To investigate this effect we take the SIMPLE preconditioner and solve the Stokes
problem with viscosity ν = 1

[

F BT

B 0

] [

u
p

]

=

[

f
g

]

, (24)

the convergence criteria for the outer iterations is:

‖

[

f − Fu − BT p
g − Bu

]

‖2

‖

[

f
g

]

‖2

≤ ǫ. (25)

Since ν = 1, so the solution is obtained upto the required accuracy because no
scaling is involved in the momentum and continuity equations and convergence
check (28) will terminate the iterative method at the desired accuracy. However, in
case of a general value of the ν we rewrite the system as:

[

F̃ BT

B 0

] [

u
p̃

]

=

[

f̃
g

]

, (26)

where F̃ = νF , p̃ = νp and f̃ = νf . The SIMPLE preconditioner for (26) can be
written as:

Effect of ν on the SIMPLE preconditioner

(1) Solve F̃ u∗ = f̃

(2) Solve Sδ̃p = g − Bu∗

(3) update u = u∗ − D̃−1BT δ̃p, where D̃ = νD

(4) update p̃ = δ̃p

• Step 1 is terminated if ‖f̃−F̃u∗‖2

‖f̃‖2

≤ ǫ, so no effect of ν on the convergence.

• In Step 2 we use ‖g−Bu∗−Sδ̃p‖2

‖g−Bu∗‖2

≤ ǫ, so also no effect of ν on the convergence.

• For the outer iterations the usual termination criterion is

‖

[

f̃ − F̃ u − BT p̃
g − Bu

]

‖2

‖

[

f̃
g

]

‖2

≤ ǫ. (27)

We see in (26), that only the momentum equation is scaled with ν so this will effect
the convergence of the outer iterative method if convergence check (27) is applied.
This means that using ν in the Stokes problem effects the accuracy of the solution
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of the Stokes problem. If a suitable norm is used, ν will have no effect on the
convergence of the iterative method. First we shall define some quantities:

Nfull = ‖

[

f̃ − F̃ u − BT p̃
g − Bu

]

‖2, Nr = ‖

[

f̃
g

]

‖2 (28)

Nu = ‖ f̃ − F̃ u − BT p̃ ‖2, Nru = ‖ f̃ ‖2 (29)

Np = ‖ g − Bu ‖2, Nrp = ‖ g ‖2 (30)

Convergence checks: We have implemented the following options to terminate the
iteration process:

(1) Nfull ≤ ǫNr (standard criterion)
This check shows viscosity dependence convergence in the Stokes problem.
The reason is that in the overall norm, only the velocity is scaled with the
viscosity.

(2) Nu ≤ ǫNru and Np ≤ ǫNrp

Fails to show convergence in the Navier-Stokes problem due to too small
ǫNrp. However, in the Stokes problem it shows viscosity independent con-
vergence.

(3) Nfull ≤ ǫNr and Nu ≤ ǫNru

This check shows viscosity independent convergence in the Stokes problem
and faces no trouble in the Navier-Stokes problem. In this case, if pressure
dominates the full norm, then the second condition takes care of the velocity
norm to satisfy the convergence criterion.

(4) (Nu + Np) ≤ ǫ(Nru + Nrp)
This convergence check shows viscosity dependence in the Stokes problem.
If the pressure dominates the norm then it will show viscosity dependent
convergence.

In our implementation, we tested all these conditions and option 3 is considered to
be the best condition both in the Stokes and the Navier-Stokes problem since this
is the only condition that encounters the effect of scaling on convergence without
any problem.
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3. Numerical experiments

Numerical experiments are performed for the following benchmark problems in
2D:

(1) The Poisseuille channel flow in a square domain (−1, 1)2 with a parabolic
inflow boundary condition and a natural outflow condition having the an-
alytic solution: ux = 1 − y2; uy = 0; p = 2νx. In case of Stokes flow
ν = 1.

(2) The L-shaped domain known as the backward facing step shown in Figure 1.
A Poisseuille flow profile is imposed on the inflow (x = −1; 0 ≤ y ≤ 1) and
zero velocity conditions are imposed on the walls. Neumann conditions are
applied at the outflow which automatically sets the mean outflow pressure
to zero.

(3) Lid driven cavity problem; flow in a square cavity (−1, 1)2 with enclosed
boundary conditions and a lid moving from left to right given as:

y = 1; −1 ≤ x ≤ 1|ux = 1 − x4,

known as regularized cavity problem shown in Figure 2.

Figure 1. Backward facing step domain
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Figure 2. Streamlines and pressure field for the lid driven cavity problem

Preconditioned Krylov subspace methods are used to solve the Stokes and the
Navier-Stokes problem. We divide the experiments into two sections; Section 3.1
which deals only with SIMPLE-type preconditioners and Section 3.2 which consists
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of a comparison of SIMPLE-type preconditioners with the least squares commuta-
tor(LSC) preconditioner. To solve the subsystems iteratively, ILU preconditioned
Krylov subspace methods are used. The iteration is stopped if the linear systems

satisfy ‖rk‖2

‖b‖2

≤ tol, where rk is the residual at the kth step of the Krylov subspace

method, b is the right-hand side, and tol is the desired tolerance value. Some abbre-
viations are used: out-iter. is used for outer iterations, NC for no convergence, Iter.

for iterations, inner-it-u and inner-it-p is used for iterations taken by the solver to
solve subsystems in the preconditioners corresponding to velocity and pressure part,
respectively. Numerical experiments are performed on an Intel 2.66 GHz processor

with 8GB RAM. We will use IFISS package and SEPRAN for our numerical exper-
iments. The IFISS software1 in Matlab, can be used to solve linear systems arising
from finite element discretizations of problems in computational fluid dynamics. It
has built-in multigrid and Krylov subspace solvers and includes a variety of appro-
priate preconditioning strategies for each problem in 2D. SEPRAN2, developed by
”Ingenieursbureau SEPRA”, is a general purpose finite element package used to
solve a wide variety of problems in 2D and 3D programmed in FORTRAN 90. It is
a powerful, modular, open ended, easy to use package for finite element analysis.

3.1. SIMPLE-type preconditioners. SIMPLE-type preconditioners are tested
with the GCR method [26]. GCR allows variable preconditioners. A direct solver
and preconditioned Bi-CGSTAB [27] as well as PCG [28] are used to solve subsys-
tems in the preconditioners.
In report [29], we concluded that SIMPLER performs better than the SIMPLE
preconditioner. However, a positive aspect of the SIMPLE preconditioner that
we have observed here is that the convergence of the SIMPLE preconditioner is
independent of the accuracies used to solve subsystems, while the SIMPLER pre-
conditioner strongly depends on the inner accuracies. The larger the number of grid
elements, the stronger the accuracy requirement should be for the inner solver in
the SIMPLER preconditioner. In Table 2, we can see that hSIMPLER and SIM-
PLER depend strongly on the inner tolerance. For a large problem, SIMPLER does
not give convergence even with a high accuracy for the subsystem solves. Though
hSIMPLER shows better convergence than MSIMPLER, however convergence with
hSIMPLER also depends on inner accuracies.

The same problem solved with SIMPLE and MSIMPLER is shown in Table 3.
The inner accuracies in this case are kept constant at 10−1 for the velocity part
and 10−2 for the pressure part. Both SIMPLE and MSIMPLER show convergence
independent of the inner accuracies. MSIMPLER shows much faster convergence
in outer iterations, inner iterations and CPU time than the other SIMPLE-type
preconditioners discussed in this report.

The Navier-Stokes problem solved with various Reynolds numbers is shown in
Figure 3 . We report here the number of accumulated inner iterations (Left) and
the CPU time (Right). We see that MSIMPLER shows faster convergence than the
other variants of SIMPLE-type preconditioners. hSIMPLER is not used as it gives
only advantage in the Stokes problem.

From the discussion above, we conclude that the convergence of MSIMPLER is
better than other SIMPLE-type preconditioners. Compared to other SIMPLE-type
preconditioners, convergence of the MSIMPLER preconditioner is less affected by
the grid size and the Reynolds number. MSIMPLER shows robust convergence
behavior and the accuracies of the inner solver need not to be changed with the

1http://www.maths.manchester.ac.uk
2http://ta.twi.tudelft.nl/sepran/sepran.html
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increase in number of elements. In the next section, we will compare MSIMPLER
with the least squares commutator preconditioner.

Tolerance hSIMPLER SIMPLER

(10p1,u1,p1) out-it,Time(s) inner-it-u
inner-it-p

out-it,Time(s) inner-it-u
inner-it-p

16 × 48

-2 , -1 , -2 NC NC

-2 , -1 , -3 31, 0.6 245

897
28, 0.57 225

795

-3 , -1 , -3 22, 0.45 170

669
28, 0.58 224

849

-3 , -1 , -3

32 × 96

-2 , -1 , -2 NC NC

-3 , -1 , -3 NC NC

-3 , -1 , -4 35, 5.6 586

2213
NC

-3 , -3 , -3 NC NC

-4 , -1 , -3 NC NC

-4 , -1 , -4 34, 5.6 572

2250
NC

-4 , -2 , -4 41, 9.5 1141

2686
NC

-4 , -3 , -4 34, 10.4 1354

2237
67, 20 2680

2654

64 × 192

-5 , -3 , -5 45, 188 3668

6169
NC

-4 , -3 , -5 45, 187 3668

5935
NC

-3 , -3 , -5 46, 190 3752

5781
NC

Table 2. Sensitivity of the SIMPLER preconditioner to the inner
tolerances, Stokes backward facing step solved with GCR(20) with
accuracy of 10−4 , PCG used as an inner solver (SEPRAN)

SIMPLE MSIMPLER

Grid size out-it,Time(s) inner-it-u
inner-it-p

out-it,Time(s) inner-it-u
inner-it-p

16 × 48 49, 0.8 145

765
9, 0.15 22

260

32 × 96 89, 8.9 418

2585
10, 0.97 32

568

64 × 192 193, 148 1940

10067
14, 8.4 90

1433

Table 3. Stokes backward facing step, GCR(20) with
accuracy of 10−4 , PCG used as an inner solver (SEPRAN)
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Figure 3. The Navier-Stokes problem solved in Q2-Q1 dis-
cretized 16× 48 backward facing step with various Reynolds num-
bers. Number of accumulated inner iterations(Left), CPU time in
seconds (Right)-(SEPRAN)
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3.2. Comparison of Preconditioners.

3.2.1. Comparison in 2D. In this section, we compare the MSIMPLER precondi-
tioner with the least squares commutator preconditioner. For outer iterations in
LSC, Bi-CGSTAB(ℓ) [30] and GMRES( with modifications from Kelly ) [31] are
used in the literature [19]. Therefore, some of the experiments will be carried out
with these two iterative methods using the IFISS package. Besides, some experi-
ments are done with GCR(20) in SEPRAN. Subsystems in the preconditioners are
solved with a direct solver, an iterative solver and a multigrid solver. In case of MG
or direct solver used as inner solver, we performed the experiments within the IFISS
package. We report here the total number of GMRES iterations. We keep the inner
accuracy of 10−1 for the velocity part and 10−2 for the pressure part. Besides that
we also used the algebraic-based preconditioner SILU [9].
Backward facing step problem: To compare the various preconditioners we first con-
sider the solution of the Stokes and Navier-Stokes equations on the backward facing
step problem.
Table 4 shows the number of iterations and CPU time required to solve the Stokes
problem in the backward facing step using Q2-Q1 elements by the various precon-
ditioners, in combination with GCR. Also the results of SILU iterations are shown.
For SILU there is only one set of iterations, since there are no inner iterations.
In Table 5 we only compare LSC and MSIMPLER for the solution of the Navier-
Stokes problem on the backward facing step for various values of the Reynolds
number. The equations are linearized by the Picard method. The number of it-
erations shown is the sum of all iterations over all Picard steps. The number of
Picard iterations required in LSC is sometimes larger than for MSIMPLER. For
the combination LSC and RE=400, Picard does not converge. Clearly MSIMPLER
behaves much better than LSC.

The difference in number of iterations between LSC and MSIMPLER decreases
with increasing mesh size. This can be seen in Table 6. The system of equations for
pressure and velocity part is solved by one MG cycle. The convergence is almost
independent of the Reynolds number, especially for increasing mesh size. It can
been seen that in most cases, the number of iterations for fixed Reynolds decreases
with increase in the number of grid elements. This is due to the decrease in the cell
Reynolds number (Rec = element size/ν).
Although LSC and MSIMPLER also can be applied in case Navier-Stokes is lin-
earized by the Newton Raphson method, Table 7 shows that its convergence is much
slower than Picard linearization. The reason is that Newton may have a negative
effect on the main diagonal elements of the velocity matrix. Switching from Picard
to Newton linearization, the difference in number of iterations is small for MSIM-
PLER and large for LSC.

From our experiments we conclude that MSIMPLER performs better than LSC
both in number of iterations and CPU time. This behavior is the most pronounced
if we use a preconditioned Krylov subspace method as inner solver. MSIMPLER
is cheaper than LSC per iteration since it does not involve the multiplication of a
vector with the convection-diffusion matrix.
Lid driven cavity problem: The results for the lid driven cavity confirm our conclu-
sions of the previous section. We have solved this problem with the IFISS package.
In this case the first 8 iterations are solved by a direct solver and in the ninth Pi-
card iteration step, the iterative solver is used. This is the default setting of IFISS.
Hence the number of iterations presented in Table 8 refer to one Picard iteration
only.
For increasing Reynolds number the number of iterations for both our precondition-
ers increases mildly. This behavior decreases for increasing mesh size. MSIMPLER
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always requires less CPU-time than LSC.
Table 9 shows the effect of replacing the iterative inner solver by a direct inner
solver. We compare GMRES(20) with the direct solver to see the effect on the
number of outer iterations. It is clear that the number of outer iterations in case of
MSIMPLER is hardly effected by using an iterative solver instead of a direct solver.
In case of LSC this is no longer true. For fine grids LSC does not even converge, if
an iterative inner solver is used. But even in case of a direct solver, the number of
outer iterations of MSIMPLER never exceeds that of LSC. Since for a large problem
a direct solver is no option. We conclude that also for this problem MSIMPLER is
better than LSC.

Grid size MSIMPLER SILU LSC

out-it,Time(s) inner-it-u
inner-it-p

out-it,Time(s) out-it,Time(s) inner-it-u
inner-it-p

16 × 48 12, 0.17 24

346
87, 0.26 18, 0.37 78

506

32 × 96 16, 1.46 54

864
276, 3.6 24, 3.46 201

1318

64 × 192 23, 11.4 145

2308
1052, 56 40, 42 674

4049

128 × 384 32, 147 388

5924
4235, 966 69, 600 2412

13265

Table 4. Backward facing step: Preconditioners used in
solving the Stokes problem with preconditioned GCR(20) with
accuracy of 10−6 , PCG is used as an inner solver with an accuracy
of 10−2 for the pressure and 10−1 for the velocity system(SEPRAN)

Grid Re=100 Re=200 Re=400
Grid MSIMPLER LSC MSIMPLER LSC MSIMPLER LSC

outer-iterations inner-it-u
inner-it-p

16 × 48 111 284

1134
137 622

2102
182 581

2017
257 1202

3545
449 1697

5235
715 3529

8481

32 × 96 146 859

2651
238 2332

6735
241 1758

4485
472 4383

13955
480 3487

8268
820 7772

19752

64 × 192 190 2727

11932
393 9785

29924
286 4647

16665
913 18441

69137
506 8190

27789
NC

Table 5. Backward facing step: Preconditioned GCR is used
to solve the Navier-Stokes problem with accuracy 10−2, using Bi-
CGSTAB as inner solver, the number of iterations are the accumu-
lated iterations consumed by the outer and inner solvers
(SEPRAN)

Grid Re=100 Re=200 Re=400
Grid Rec MSIMPLER LSC Rec MSIMPLER LSC Rec MSIMPLER LSC

outer-iterations (time in seconds)
16 × 48 3.13 9(3.1) 17(5.3) 6.25 15(5.8) 27(9.2) 25 29(13.4) 73(30)
32 × 96 1.56 11(14.5) 16(20) 3.12 10(14.7) 15(22) 12.5 15(19) 24(28)
64 × 192 0.78 20(98) 24(117) 1.56 15(70) 23(106) 6.24 18(118) 22(143)

Table 6. Backward facing step: Solution of the Navier-Stokes
problem linearized by Picard method , Q2 − Q1 discretization
preconditioned Bi-CGSTAB(accuracy of 10−6), MG is used inner
solver (IFISS)
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Grid Re=100 Re=200 Re=400
Grid MSIMPLER LSC MSIMPLER LSC MSIMPLER LSC

outer-iterations (time in seconds)
16 × 48 11(4.5) 25(9.6) 18(8.6) 55(23.7) 44(24.7) 154(79)
32 × 96 13(23) 25(33) 17(33) 46(79) 31(59) 122(233)
64 × 192 19(140) 33(247) 22(126) 50(282) 38(235) 140(950)

Table 7. Backward facing step: Solution of the Navier-Stokes
problem linearized by Newton method , Q2 − Q1 discretization
preconditioned Bi-CGSTAB(accuracy of 10−6), MG is used inner
solver (IFISS)

Grid Re=100 Re=500 Re=1000
Grid MSIMPLER LSC MSIMPLER LSC MSIMPLER LSC
8 × 8 15 24 48 75 97 137

16 × 16 17 24 46 72 88 130
32 × 32 22 27 40 57 74 113
64 × 64 30 32 39 49 58 71

Table 8. Lid driven cavity: The number of outer iterations taken
by preconditioned GMRES to solve the Navier-Stokes problem with
accuracy 10−6, using MG as inner solver (IFISS)

Grid ILU preconditioned GMRES Direct solver
Grid MSIMPLER LSC MSIMPLER LSC

outer-iterations inner-it-u
inner-it-p

Re =100

8 × 8 12 43

89
17 60

198
2 14

16 × 16 14 80

152
18 119

256
14 16

32 × 32 18 182

293
29 424

1960
19 21

64 × 64 25 528

693
33 1122

3881
26 28

Re =500

8 × 8 32 151

236
36 227

267
30 36

16 × 16 34 180

357
40 329

466
33 36

32 × 32 28 289

454
38 714

1423
30 33

64 × 64 35 981

1037
NC 35 38

Re =1000

8 × 8 70 346

519
73 478

524
57 69

16 × 16 68 414

724
78 717

791
71 80

32 × 32 60 616

935
86 1633

1700
55 60

64 × 64 47 1262

1253
NC 45 53

Table 9. Lid driven cavity: Preconditioned GCR(20) is used to
solve the Navier-Stokes problem with accuracy 10−6 (IFISS)
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Effect of stretching. To investigate the effect of stretching on the preconditioners
we consider the following two types of stretching.

Length stretching: This is the most simple type of stretching. The length of the
channel is increased in the flow direction keeping the number of elements constant.
Hence the grid remains equidistant in both directions, but the aspect ratio of the
elements increases.

Elastic stretching: Elements sizes are taken small in regions where there is a large
change in the solution and large when the change is small. Hence the mesh is no
longer equidistant. Instead element sizes become larger with some factor. Both
ways of stretching are shown in Figure 4.
Another type of stretching: increasing the number of elements in a direction per-
pendicular to the flow will not be discussed in this report. In this case, the aspect
ratio of the elements in the grid remains the same.

Table 10 shows the convergence of the iterative solver on a grid with length
stretching. It concerns a Stokes channel flow. From the table one may conclude
that SIMPLER is very sensitive to length stretching. In case of high aspect ratio,
convergence is not guaranteed. The other preconditioners have no problem at all
with high aspect ratios. Since hSIMPLER reduces to SIMPLER in case of Navier-
Stokes it can also not used in case of length stretching.

The story is completely different in case of elastic stretching. As long as the
grid size is constant per direction, MSIMPLER and LSC perform well. However,
if the grid size changes, the number of iterations increases considerably even if the
increase in length between adjacent elements is small.
Table 11 shows the results for a square cavity and flow over a plate. The stretch
factor is the ratio of the length of two adjacent elements. The IFISS package is
used and each inner solve is performed by a direct solver to eliminate the effect of
inaccurate inner solvers.
It is clear that scaling with the diagonal of the velocity mass matrix (MSIMPLER,
LSC) is in general less effective than the scaling with the diagonal of the velocity
matrix (SIMPLER, LSC(diag(F )) as soon the stretching factor increases. These
methods are only superior for equidistant grids. If we use an iterative solver, SIM-
PLER even does not converge in some cases. So we may conclude that element
stretching introduces large problems for our iterative methods. Probably a better
scaling matrix is required in those cases.

Length SIMPLE SIMPLER hSIMPLER MSIMPLER LSC
Iter. Iter. Iter. Iter. Iter.

L=10 70 51 36 18 21
L=50 94 NC 45 21 20
L=100 75 105 37 16 16
L=200 56 NC 26 13 16
Table 10. Solution of the channel Stokes problem, 16×16 Q2−Q1

discretization, preconditioned GCR (accuracy of 10−6) and sub-
system solved with PCG(SEPRAN)
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Figure 4. Q2-Q1 stretched grids, normal grid (Left), Elastic
stretching (Right), Length stretching (Below).
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Figure 5. Flow over a plate: Streamline plot (Left) and horizontal
velocity contour plot (Right) of a 64 × 64 grid with ν = 1/100.
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Grid stretch-factor SIMPLER MSIMPLER LSC LSC(diag(F ))
Iter.(sec) Iter.(sec) Iter.(sec) Iter. (sec)

Re=200, Cavity flow
16 × 16 1 22(0.7) 19(0.6) 22(0.6) 26(0.76)
16 × 16 1.1669 29(0.82) 31(0.88) 34(0.92) 33(0.90)
32 × 32 1 34(5.3) 21(2.7) 24(2.9) 35(5.1)

1.097 49(7.73) 51(8) 61(9) 54(8)
64 × 64 1 71(58) 30(20) 33(21) 60(46)

1.056 NC 95(81) 124(102) 99(81)
Re=100, Flow over a plate

32 × 32 1 85(11.31) 42(5.3) 44(5.2) 76(9.3)
1.05 105(14) 66(8.5) 67(8.1) 104(13)
1.1 123(16) 128(17) 120(15) 126(16)
1.15 129(17.6) 233(34) 222(30.5) 137(17.6)

Re=200, Flow over a plate
32 × 32 1.1 161(22.5) 159(22) 157(20.4) 166(21.8)

1.15 177(25) 305(47) 306(45) 177(23.6)
Table 11. Solution of the Navier-Stokes problem, Q2 − Q1 dis-
cretization, preconditioned GCR (accuracy of 10−6) and subsys-
tem solved with direct solver for elastic stretching(IFISS)

3.2.2. Experiments in 3D. To investigate the performance of the iterative methods
in 3D we have solved the 3D backward facing step problem. We have limited our-
selves to non-stretched grids. Besides the iterative solvers derived in this report we
also use the SILU iterative solver for comparison. Mark that iterations in SILU are
noted as outer iterations, although there are no inner iterations for that method.
Table 12 shows the results for the Stokes problem. We see that both SIMPLER and
LSC fail for increasing mesh size. MSIMPLER is always cheaper than SILU espe-
cially for increasing grid size where the gain becomes large. The accuracy required
is 10−6.

Table 13 gives the results for Navier-Stokes problem linearized by the Picard
method. In each non-linear iteration we use an accuracy of 10−2 which is also
sufficient to let LSC converge. In this case the difference between MSIMPLER
and SILU is much smaller. LSC converges but takes approximately twice the time
needed for the other methods in case of fine grids. If we replace the hexahedrons
by tetrahedrons the results for the Navier-Stokes are completely different as shown
in Table 14. Now SIMPLE converges much faster than MSIMPLER and LSC, and
SILU is superior to the other methods. The diagonal of the velocity mass matrix
does not seem a good scaling matrix in this case.
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Grid size SIMPLE MSIMPLER SILU LSC

out-it(ts)
inner-it-u
inner-it-p

out-it(ts)
inner-it-u
inner-it-p

out-it(ts) out-it(ts)
inner-it-u
inner-it-p

8 × 8 × 16 50(4.4) 100

923
14(1.3) 27

514
149(2.6) 21(2.3) 50

756

16 × 16 × 32 95(113) 328

3291
20(25) 61

1313
557(77) 29(50) 148

1913

24 × 24 × 48 130(617) 439

6518
19(94) 51

1833
698(373) NC

32 × 32 × 40 NC 26(208) 93

3069
978(720) NC

Table 12. 3D Backward facing step: Preconditioners used
in the Stokes problem with preconditioned GCR(20) with
accuracy of 10−6 (SEPRAN) using Q2-Q1 hexahedrons

Grid size MSIMPLER SILU LSC

out-it(ts)
inner-it-u
inner-it-p

out-it(ts) out-it(ts)
inner-it-u
inner-it-p

8 × 8 × 16(Re = 100) 63(11) 135

1026
207(8.0) 84(15) 267

1948

8 × 8 × 16(Re = 200) 90(14.3) 166

1725
311(11.5) 132(20) 337

2830

16 × 16 × 32(Re = 400) 153(269) 485

4757
901(207.6) 271(553) 1300

10327

24 × 24 × 48(Re = 400) 154(1187) 675

6498
2072(1400) 297(2800) 1961

18056

32 × 32 × 40(Re = 400) 209(2479) 1322

10249
3008(2607) 387(4600) 3970

29190

Table 13. 3D Backward facing step: Preconditioners used in
solving the Navier-Stokes problem with preconditioned GCR(20)
with accuracy of 10−2 (SEPRAN) using Q2-Q1 hexahedrons

Re SIMPLE MSIMPLER SILU LSC

out-it(ts)
inner-it-u
inner-it-p

out-it(ts)
inner-it-u
inner-it-p

out-it(ts) out-it(ts)
inner-it-u
inner-it-p

50 107(255) 498

107
128(309) 597

256
210(105) 118(259) 405

236

200 203(551) 1232

203
248(698) 1549

496
392(188) 275(753) 1609

550

400 238(716) 1700

238
272(1359) 1932

544
547(175) 389(1676) 3050

778

Table 14. 3D Backward facing step: Preconditioners used
in the Navier-Stokes problem with preconditioned GCR(20) with
accuracy of 10−2 (SEPRAN) using 16×16×32 Q2-Q1 tetrahedron,
the accumulated number of iterations are reported in this table
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Conclusions

In this report we have studied the convergence behavior of some block precon-
ditioner for Stokes and Navier-Stokes both in 2D and 3D. Results for various grid
sizes and Reynolds numbers have been investigated. In some cases we also compared
the convergence with an algebraic preconditioner (SILU). Unfortunately there is no
unique conclusion, since the results depend on stretching and the type of elements
used. We come to the following observations:

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners,
except in the case of 3D tetrahedrons, where its convergence becomes poor.

• In contrast with SIMPLER, MSIMPLER is not sensitive to the accuracies
that are used for the inner solvers.

• MSIMPLER is the cheapest to construct of all SIMPLE-type methods since
the Schur complement matrix is constant and therefore can be made at the
start of the process. This is because the scaling is independent of the
velocity.

• In all our experiments MSIMPLER proved to be cheaper than LSC. This
concerns both the number of inner iterations and CPU time.

• The number of outer iterations in MSIMPLER hardly increases if a direct
solver for the subsystems is replaced by an iterative solver. This is in
contrast with LSC where large difference are observed. It appears that the
combination of LSC with MG is nice but LSC with PCG inner solver can
take many iterations and much CPU time.

• In our experiments, MSIMPLER proved to be cheaper than SILU except in
case of 3D tetrahedrons.

• MSIMPLER has no problem with length stretching, whereas some of the
other preconditioners have. However in case of elastic stretching, the con-
vergence of MSIMPLER and LSC becomes poor.

We observed that, for the grid having elements with small aspect ratio, the conver-
gence of MSIMPLER is encouraging for the rectangular elements in 2D and hex-
ahderons elements in 3D. However, the nice convergence properties of MSIMPLER
fade when it is applied to the grid with trianglular elements in 2D and tetrahedrons
in 3D. MSIMPLER shows also problems in stretched grids. These are the main
points of our further research.
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Appendix A. SIMPLER formulations

We have seen that SIMPLER preconditioner /algorithm can be written in form
of Symmetric Block Gauss-Seidal [22]. This form contains two Poisson solves as
well as two velocity solves. The classical form of the SIMPLER method contains
only one velocity solve . We shall show that the second velocity solve has no effect
on the convergence of SIMPLER. The classical from of SIMPLER is:
SIMPLER algorithm with one velocity solve:

(1) Solve Ŝp∗ = rp − BD−1((D − F )uk + ru),
(2) Solve Fu∗ = ru − BT p∗.

(3) Solve Ŝδp = rp − Bu∗.
(4) update u = u∗ − D−1BT δp.
(5) update p = p∗ + δp, ,

where velocity uk is estimated from prior iterations. ru and rp are the residuals in
the velocity part and pressure part, respectively. D is the diagonal of the convection
diffusion matrix and Ŝ = −BD−1BT , an approximation to the Schur complement.
The Symmetric Block Gauss-Seidal form of the SIMPLER preconditioner can be
written as:

(

u∗

p∗

)

=

(

uk

pk

)

+ M−1
L BL

((

ru

rp

)

− A

(

uk

pk

))

, (A-1)

(

uk+1

pk+1

)

=

(

u∗

p∗

)

+ BRM−1
R

((

ru

rp

)

− A

(

u∗

p∗

))

, (A-2)

where uk and pk in (16) are obtained from the previous step (both zero in our case)
and

A =

(

F BT

B 0

)

(A-3)

BR =

(

I −D−1BT

0 I

)

, MR =

(

F 0

B Ŝ

)

and (A-4)

BL =

(

I 0
−BD−1 I

)

, ML =

(

F BT

0 Ŝ

)

. (A-5)

The steps given in (A-1) and (A-2) contain two Poisson solves, two velocity sub-
problems solves- posed to one velocity solve in the classical algorithm- and matrix
vector updates.

A.1. The SIMPLER preconditioner with one velocity solve. In the SIM-
PLER preconditioner, we use one step of the SIMPLER method. Therefore, we
initialize uk and pk to zero in (A-1). This reduces (A-1) to

(

u∗

p∗

)

= M−1
L BL

(

ru

rp

)

, (A-6)

Rewriting (A-6) leads to

p∗ = Ŝ−1(rp − BD−1ru), (A-7)

and

u∗ = F−1(ru − BT p∗), (A-8)

assuming we use exact inverses. Next we consider (A-2). First compute the residual
part,

(

run

rpn

)

=

(

ru

rp

)

− A

(

u∗

p∗

)

. (A-9)

The velocity part becomes:
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run = ru − Fu∗ − BT p∗.

If we substitute u∗ from (A-8) in run we get

run = ru − FF−1(ru − BT p∗) − BT p∗ = 0. The pressure part is equal to:

rpn = rp − BT u∗,

therefore, (A-5) reduces to
(

uk+1

pk+1

)

=

(

u∗

p∗

)

+ BRM−1
R

(

0
rpn

)

. (A-10)

The formulation (A-6) and (A-10) will give rise to three steps in the SIMPLER
preconditioner because there is no need to perform an extra velocity solve in (A-10)
when the right-hand side is zero.

δp = Ŝ−1(rp − Bu∗), (A-11)

uk+1 = u∗ + BD−1δp, (A-12)

and
pk+1 = p∗ + δp. (A-13)

In the next section, we will show that this also holds in the SIMPLER algorithm.

A.2. The SIMPLER algorithm with one velocity solve. The SIMPLER al-
gorithm in the Symmetric Block Gauss-Seidal form is given:

(

u∗

p∗

)

=

(

uk

pk

)

+ M−1
L BL

((

ru

rp

)

− A

(

uk

pk

))

, (A-14)

(

uk+1

pk+1

)

=

(

u∗

p∗

)

+ BRM−1
R

((

ru

rp

)

− A

(

u∗

p∗

))

, (A-15)

where A represents the complete matrix given in (4), uk and pk in (16) are obtained
from the previous step

BR =

(

I −D−1BT

0 I

)

, MR =

(

F 0

B Ŝ

)

and (A-16)

In this case we assume that uk and pk are non-zero. We are interested in computing
the residual in (A-15) that is:

(

run

rpn

)

=

(

ru

rp

)

− A

(

u∗

p∗

)

, (A-17)

From (A-14), we can write

A

(

u∗

p∗

)

= A

(

uk

pk

)

+ AM−1
L BL

((

ru

rp

)

− A

(

uk

pk

))

. (A-18)

First we evaluate AM−1
L ,

AM−1
L =

(

F BT

B 0

) (

F−1 −F−1BT Ŝ−1

0 Ŝ−1

)

=

(

I 0

BF−1 −BF−1BT Ŝ−1

)

.

(A-19)
And next AM−1

L BL,

AM−1
L BL =

(

I 0

BF−1 −BF−1BT Ŝ−1

) (

I 0
−BD−1 I

)

=

(

I 0
Br Sr

)

, (A-20)

where Br = BF−1+BF−1BT Ŝ−1BD−1 and Sr = −BF−1BT Ŝ−1. (A-18) becomes

A

(

u∗

p∗

)

= A

(

uk

pk

)

+

(

I 0
Br Sr

) (

ru − Fuk − BT pk

rp − Buk

)

. (A-21)
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A

(

u∗

p∗

)

=

(

Fuk + BT pk

Buk

)

+

(

ru − Fuk − BT pk

Br(ru − Fuk − BT pk) + Sr(rp − Buk)

)

, (A-22)

A

(

u∗

p∗

)

=

(

ru

Buk + Br(ru − Fuk − BT pk) + Sr(rp − Buk)

)

. (A-23)

Updating (A-17) by using (A-23) leads to
(

run

rpn

)

=

(

0
rp − (Buk + Br(ru − Fuk − BT pk) + Sr(rp − Buk))

)

. (A-24)

So again we see that the right-hand side for the velocity solve in (A-17) is zero.
In the proofs we used exact solvers. We have done some experiments with inexact
solvers and found no major difference between the number of iterations with one or
two velocity solves. For this reason we only use the one velocity solve formulation.
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