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Abstract

In research there is often a need to choose between multiple competing models.
Two popular criteria for model selection are the AIC and BIC. The AIC excels
in estimating the best model for the unknown data generating process. The
BIC on the other hand is consistent in finding the true model. It is clear that
for model selection these two information criterion give answers to different
selection criteria. The question that arises is whether it is possible to construct
a model selection criterion which combines the strengths of both AIC and BIC.
In this study we will show that it is impossible to construct a model selection
criterion which shares the above mentioned two strenghts by revisiting the proof
of (Yang, 2005) : That is, any consistent model selection criterion must be sub-
optimal in the minimax convergence rate for regression estimation compared to
the AIC.
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1 Introduction

Statistics is used in all branches of science and industries. An important task
in statistics is modelling data, it allows us to study, explain and predict data.
A question that frequently comes up during modelling is: “Which model repre-
sents the process which generated the observed data best?”. Statistics provides
a tool for model selection in the form of information criterion. Information cri-
teria are used to measure the “quality” of a model by taking the goodness of fit
and the complexity of the model into consideration.

There are many information criteria to choose from, with two of the most well-
known information criteria are the AIC (Aikaike Information Criterion) (Akaike,
1973) and the BIC (Bayesian Information Criterion), (Schwarz, 1978). While
we will not go into detail about the process of selecting an information criterion
we will stress that it is important to ask ourselves what the goals of the study
are, which kind of model we are building, and what the considerations, circum-
stances, sample size and assumptions of the study are.

In this thesis we will have an in-depth look at the AIC and the BIC. With the
main focus being on the properties of these criteria, in particular the minimax-
rate optimality property of the AIC and the consistency property of the BIC.
And the proof that for any consistent model selection criterion, it must be sub-
optimal in the minimax convergence rate for regression estimation compared to
the AIC.
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2 Background material

The goal of this section is to inform and/or refresh the reader about a few
concepts in statistics as well as to fix the notation. This will make it easier for
the reader to follow the content in this thesis.

2.1 Kullback-Leibler information

As stated in the introduction, there are many information criteria. One of
these is the Kullback-Leibler information (KL information) (Kullback & Leibler,
1951). The KL information measures the information that is lost when we use
function g to approximate function f and is defined as:

I(f, g) =

∫
f(x)log

(
f(x)

g(x)

)
dx (1)

Where log denotes the natural logarithm.

We use function f to represent the reality or true model, while function g is
used to represent the approximating model. We aim to find the approximating
model g which loses the least amount of information and thus minimize I(f, g)
over g.

The KL information is of importance for this study because it is one of the
main components behind the theory of the AIC.

2.2 Regression analysis

Regression analysis is a method which estimates the relationship between a re-
sponse variable and one or more independent variables. The aim of regression
analysis is to construct a model which describes or explains the relationship
between variables (we refer to (Seber & Lee, 2012) for an in-depth introduction
to this subject).

Let us denote the response variable as Y and the set of independent variables as
X1, X2, ..., Xp, where p is the number of independent variables. Then a regres-
sion model which represents the true relationship between the response variable
Y and the independent variables Xi may be formulated as:

Y = f(X1, X2, ..., Xp) + ε (2)

Where f(X1, X2, ..., Xp) is the regression function which describes the relation-
ship between the response variable Y and the independent variables Xi. And
ε denotes the random error of the approximation. These random errors are as-
sumed to be normally distributed with mean 0 and variance σ2, ε ∼ N(0, σ2).
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For the purpose of the proof in the later parts of this study we shall use the
same regression model as in (Yang, 2005):

Y = fk(x, θk) + ε (3)

Where Fk = {fk(x, θk), θk ∈ Θk} is a linear family of regression functions for
all k. And θk is the parameter of a finite dimension mk.

When we use an approximating model to represent the reality or true model we
have to decide on how many parameters to use. This choice can cause two prob-
lems. If too few parameters are used then it will cause a large approximation
error since a function cannot be approximated well by a projection onto a small
dimensional subspace. This also causes underfitting the observed data. Which
implies that the resulting approximation model does not reflect the observed
data. However, the usage of too many parameters causes a large stochastic er-
ror since there is a stochastic error in each of the many estimated parameters. It
also causes overfitting of the observed data. Which results into the approxima-
tion model being too dependent on the observed data. This is undesirable as we
are not trying to find a model that fits the observed data exactly, we are trying
to find a model that represents the process or distribution which generated the
observed data. Another undesirable effect of overfitting is the inability to fit or
predict new data. The issue of overfitting and underfitting will also appear in
Section 5.1.

2.3 Likelihood

Definition 2.1. Let the random variables Y1, Y2, . . . , Yn of sample size n have
a joint distribution function f(Y1, Y2, . . . , Yn|θ) which depends on a set of pa-
rameters θ. Let y1, y2, . . . , yn be the observed values corresponding to the afore
mentioned random variables. Then the likelihood function is defined as L(θ) =
L(θ|y1, y2, . . . , yn) = f(y1, y2, . . . , yn|θ).

The likelihood function represents the probability that a specific set of pa-
rameters would yield the observed data. In maximuml likelihood estimation
we want to choose the set of parameters which results in the highest proba-
bility of the observed data. The AIC and BIC both use maximum likelihood
estimation as a means to calculate their values. The variant the AIC and BIC
use is the log-likelihood, which simply log(L(θ|y1, y2, . . . , yn)). The usage of the
natural logarithm is justified by its monotonically increasing property which en-
sures that the maximum value of the log of the probability occurs at the same
point as the original probability function. While also being easier to work with
mathematically with regards to differentiation and expressions.

2.4 Loss function and risk function

In the context of statistics the loss function is used to quantify the difference
between the estimated parameter θ̂ and the true parameter θ0, or that of a
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predictor ŷi and the true outcome yi. If we define the estimation error as θ̂−θ0,
then the loss function is a function which maps the estimation error to the set
of real numbers. The choice of the loss function depends on the considerations
of the study. It is important to note that the choice of the loss function impacts
how well an information criterion such as the AIC and BIC performs as argued
by (Vrieze, 2012).

An example of the loss function would be the sum of squared error, SSE =
(θ̂ − θ0)2. The expected value of the loss function is called the risk function or
simply risk. If we take the expected value of the squared estimation error then
we would get the mean squared error, R = MSE = Eθ0((θ̂−θ0)2). Similarly the
risk function of the predictor is, R = MSE = 1

n

∑n
i=i(ŷi − yi)2 for n samples.

One of the aims of the AIC is to find a model which minimizes these functions
or in other words, the estimation or prediction error.

2.5 Bayes factor

In Bayesian statistics the prior probability of a random event is the uncondi-
tional probability assigned to the random event before taking any evidence into
account. In contrast to the prior probability, the posterior probability of a ran-
dom event is the conditional probability assigned to the random event after the
relevant evidence has been taken into account. For example, assume that a pro-
fessor wants to find out how much percent of his students will attend to every
lecture during this semester. Then he could look at the historical data from
surveys which estimates it to be 70%. This is the prior probability. Assume
that he hands out surveys in the middle of the semester which only a part of the
students answer. He then takes the new data into consideration with the given
old data and comes in to an estimate of 75%. This is the posterior probability.
Let Pr(Mi) be the prior probability of model i, Pr(y) be the prior probability
of observed data y. Then we can define Pr(y|Mi) to be the probability of data
y being produced under model Mi. We can define the posterior probability
Pr(Mi|y) using the Bayes theorem as

Pr(Mi|y) =
P (y|Mi) · Pr(Mi)

Pr(y)

One way to choose between two models Mi and Mj under the observed data y
in a model selection problem is to look at the ratio of the the posterior proba-
bilities of one model over another. If we assume that prior probabilities of both
models are equal, Pr(Mi) = Pr(Mj) then this ratio is called the Bayes factor
Bij . The Bayes factor is defined as
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Bij =
Pr(y|Mi)

Pr(y|Mj)

=

Pr(Mi|y)Pr(y)
Pr(Mi)

Pr(Mj |y)Pr(y)
Pr(Mj)

=
Pr(Mi|y)

Pr(Mj |y)

The Bayes factor can be interpreted as the ratio quantifying the relative prob-
ability of some observed data for one model over another. If value of Bij > 1
then Mi is more strongly supported by the observed data y than Mj . Therefore,
we should choose model Mi. If Bij < 1, then we should choose model Mj as Mj

is more supported by the data y than Mi. Table 1 below will show the precise
interpretation for the Bayes factor for different values for a model M1 and M2.
It is a modified version of the interpretation of (Jeffreys, 1961) made by (Lee &
Wagenmakers, 2014).

Bayes factor B12 interpretation
> 100 Extreme evidence for M1

30− 100 Very strong evidence for M1

10− 30 Strong evidence for M1

3− 10 Moderate evidence for M1

1− 3 Anecdotal evidence for M1

1 No evidence for M1

1
3 − 1 Anecdotal evidence for M2

1
10 −

1
3 Moderate evidence for M2

1
30 −

1
10 Strong evidence for M2

1
100 −

1
30 Very strong evidence for M2

< 1
100 Extreme evidence for M2

Table 1: Interpretation of the Bayes factor values for two models M1 and M2.

The Bayes factor is treated in this section because to compare two models with
equal prior probability, one can use the Bayes factor to measure which model is
more supported by the data. And the BIC has its roots in posterior probabilities.
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3 AIC

The Akaike Information Criterion, or commonly abbreviated as the AIC was
introduced by Akaike in 1973 when he found a relation between the relative
expected Kullback-Leibler information (KL information) and the maximized
log-likelihood. The AIC is used in model selection as a measure for how good an
estimating model out of a set of candidate estimating models is for representing
the process which generated the observed data.
The formula of the AIC given by (Burnham & Anderson, 2002) is:

AIC = −2log(L(θ̂|y)) + 2K (4)

Where log(L(θ̂|y) is the numerical value of the log-likelihood at its maximum
point. And K as the the number of estimated parameters.

We shall not give an derivation of the AIC, however, a derivation from the
aspect of the KL information can be found in Chapter 2.2 of (Burnham & An-
derson, 2002). The AIC does not assume that the “true model” is in the set of
the candidate estimating models. This stems from the belief that a model can-
not reflect reality, which is also why the KL information cannot be used directly
as an information criterion, because that would imply that we know the truth
(see (Burnham & Anderson, 2004)). The AIC was derived as an estimate of the
KL information, it gives an estimate of the expected, relative distance between
a candidate estimating model g and the unknown true model f . Let g1 and
g2 be estimating models for the true model f . We do not know the absolute
distance between an estimating model g1 and the true model f , however, we can
compare its expected distance to the expected distance of g2 and f . The smaller
the expected relative distance, the less information is lost in the KL information
and the more this estimating model approaches the true model. Therefore, the
estimating model which has the lowest AIC value is the preferred model for
representing the unknown true model.

A point of consideration is that the estimate of the expected, relative distance
mentioned before only holds asymptotically. For sample sizes which are too
small the AIC tends to overfit and a stronger penalty term is recommended. As
the sample size grows the risk of overfitting and underfitting diminishes for the
AIC. In general it is recommended to use the AIC if there is an emphasis on
avoiding underfitting (we refer to (Bozdogan, 1987) for an in-depth analysis of
how sample size affects overfitting and underfitting for the AIC). We also refer
to (Hurvich & Tsai, 1989) as it goes into on the proposed AICc criterion which
addresses this problem. The lower case “c” in the AICc indicates that this is
the version of the AIC which counterbalances the overfitting for small sample
sizes with additional penalty.
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3.1 Minimax-rate optimality

The AIC has a minimax property, it minimizes the maximum possible risk. This
means that the AIC will perform the best in the worst possible situation that
is allowed under the set of conditions. (Yang, 2005) gives an example on AIC
yielding the minimax-rate optimal estimators of the regression function under
a squared-error-type loss. We shall not go into the details of the proof but at-
tempt to summarize the most important steps. For clarity we will take over his
notation and definitions.

First, find a loss function to use for estimating the regression function f , as well
as the according risk function. In this example we assume that it is the mean
squared error (MSE). Let δ be the model selection criterion that selects model

k̂, θ̂k̂ be the least squares estimator of the parameter in the selected model,

then MSE(fk̂) = 1
n

∑n
i=1(f(xi) − fk̂(xi, θ̂k̂))2. The according risk function of

the MSE is: R(f, δ, n) = 1
n

∑n
i=1E(f(xi)− fk̂(xi, θ̂k̂))2.

Second, define minimax-rate optimality:

Definition 3.1. A model selection criterion δ is said to be minimax-rate opti-
mal over a class of regression functions F if supf∈F R(f, δ, n) converges at the

same rate as inf f̂ supf∈F
1
n

∑n
i=1E(f(xi) − fk̂(xi, θ̂k̂))2, where inf f̂ is over all

estimators based on the observations of Y1, . . . , Yn.

Third, proving that the rate of convergence is equal. (Yang, 2005) uses the
result of his past study, (Yang, 1999), to formulate a proposition as well as a
corollary.
We first need introduce the notation used in (Yang, 2005). Let Γ be the set
of candidate models, which size can be either finite or countably infinite. We
denote Nm as the number of models that have the same dimension m in the set
of candidate models Γ. And mk as the dimension of model k. We assume that
there exists a constant c > 0 such that Nm ≤ ecm. We denote the estimator
of f based on the outcome of AIC as δAIC . We denote Mk as the projection
matrix of model k and let rk denote the rank of projection matrix Mk. We note
that rk ≤ mk as the rank of the projection matrix of model k cannot be larger
than the dimension of model k itself in this case. For simplicity we assume that
σ2 = 1.

Proposition 3.1. (Proposition 1 in (Yang, 2005)) There exists a constant C >
0 depending on c such that for every regression function f , we have

R(f, δAIC , n) ≤ C inf
k∈Γ

(
||f −Mkf ||2n

n
+
rk
n

)
.

Where || · || denotes the Euclidean norm of an n-dimensional vector.
This proposition states that the risk function has to be smaller or equal than

a constant C multiplied by the infimum over all possible models of
||f−Mkf ||2n

n ,
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which stands for the approximation error of model k, plus rk
n , which stands for

the stochastic error of model k.

Corollary 3.1. (Corollary 1 in (Yang, 2005)) Suppose that model k∗ ∈ Γ is
the true model. Then

supf∈Fk∗R(f, δAIC , n) ≤ Cmk∗

n
.

Corollary 3.1 implies that the worst case risk of δAIC under the true model k∗

decays at the rate of 1
n . This means that the estimator δAIC is minimax-rate

optimal whenever the true model is in the set of candidate models Γ. When the

true regression function is infinite-dimensional relative to Γ, then
||f−Mkf ||2n

n is
nonzero for all models k. We can also look at smoothness classes such as Sobolev
balls. For these classes we can choose an appropriate set of candidate models
such as polynomial splines. The choice was made in such a way that it results

into infk∈Γ

(
||f−Mkf ||2n

n + rk
n

)
being of the same order as the minimax-rate of

convergence. Hence the δAIC is minimax-rate optimal over smoothness classes
without the need to know the true smoothness order. Therefore, the δAIC is
minimax-rate optimal with a convergence rate of 1

n when one of the candidate
model holds. It is also minimax-rate optimal when the true regression function
is of infinite dimension.

11



4 BIC

The Bayesian Information Criterion, or abbreviated as the BIC was derived by
Schwartz in 1978 when he proposed a Bayesian argument for adopting Akaike’s
work. The formula given by (Burnham & Anderson, 2002) is:

BIC = −2log(L(θ̂|y)) +K · log(n). (5)

Where the n denotes the sample size.

The BIC unlike the AIC is not an estimate for the KL distance, it is an es-
timate of the Bayes factor. To compare two models Mi and Mj , one can use
the BIC to estimate the Bayes factor Bij by

Bij ≈ exp(−1

2
BICi +

1

2
BICj). (6)

The candidate model with the smallest BIC value, is the candidate model with
the highest Bayesian posterior probability. And therefore the “best” performing
candidate model is the model with the lowest BIC value.

4.1 Consistency

The BIC is part of a class of criteria that uses “consistency” or “dimension-
consistency” as an approach to model selection. The main assumption the BIC
makes is that a true model exists which represents the reality fully. And when
the true model is in the set of candidate models, then the probability of choosing
the true model goes to one as sample size increases. The formal definition is:

Definition 4.1. Assume that the “true model” exists and is in the set of candi-
date models. Furthermore, assume that the dimension of the true model remains
fixed as the sample size grows, and the number of parameters in the true model
is finite. Then an information criterion is consistent if the probability to choose
“the true model” approaches 1 as the sample size increases to infinity.

There is much debate and confusion about the existence of a true model. In-
formation theorists do not believe that a model exists which can fully represent
reality. It even creates a paradox, because if the true model existed, and is
assumed to be in the set of candidate models, then would you not already know
the true model?

It is worth mentioning that while the AIC does not have the consistency prop-
erty it might select a better performing model compared to the BIC. This is due
to its minimax-rate optimality which minimzes the loss function as discussed in
(Vrieze, 2012).
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5 AIC versus BIC

It should be clear by now that the inherent goals of the AIC and BIC are differ-
ent. The AIC attempts to find the model which has the best predictive power
to predict future observations. The method is preferred in cases where the true
model is too complex as it contains an inifinite amount of parameters. While the
BIC attempts to find the true model which generated the observed data. This
causes the BIC to be preferred in cases where the true model exists and is in
the candidate set of models. The BIC is not minimax-rate optimal, because no
consistent model selection criteria can be minimax-rate optimal (Yang, 2005).
The AIC is not consistent as it has a nonzero probability of failing to choose
the true model as the smaple size goes to infinity. This is true even under the
assumption that the true model is in the candidate set of models.

5.1 Underfitting and overfitting

The formula of the AIC can be separated into two parts. The first part is
−2log(L(θ̂|y)). This part contains the numerical value of the log-likelihood at
its maximum point. Due to the term being multiplied with a “-2” it rewards
goodness of fit as it lowers the AIC value. However, this causes the risk of
overfitting. The second part of the formula is 2K, which penalizes overfitting
as it discourages the usage of more estimated parameters. As a result, the AIC
manages to avoid both overfitting as well as underfitting.

We observe that the formula for the BIC is very similar to that of the AIC,
The only difference being the penalty term against overfitting, log(n). This
fuction becomes bigger than 2 when the sample size reaches 8. Therefore, the
BIC penalizes overfitting more for big sample sizes compared to the AIC. This
implies that the BIC will prefer more “simple” or “smaller” models (models
with less parameters) compared to the AIC for sample sizes bigger than 8. As
an additional result the models chosen by the AIC and BIC will be remarkably
different for large sample sizes.

5.2 Numerical example

This section will feature a simple example to illustrate the differences between
the AIC and BIC in a simulated model selection problem. We will compare
the AIC and BIC values for different sample sizes as well as looking at the re-
sults of the cross validation. The cross validation method is a model selection
method used to measure the predictive ability of models. It is a method used
as a measure against overfitting in a predictive model. Cross validation parti-
tions the data in a predetermined amount of partitions, runs the analysis on
each partition, and then takes the average of the overall error estimate, which
is in our case the squared error. In cross validation the amount of partitions is
denoted by the letter k. We also say that we apply k-fold cross validation for
the amount of partitions we divide our data into. We refer to (Shao, 1993) for
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further reading about the cross validation method.

5.2.1 Methodology

Consider the following model:

y = αx+ βx2 + γx3 + ε

where y is the response variable, x the predictor and ε the random error. This
will be our true model which generates the data.

• The values for [α, β, γ] were chosen arbitrarily to be [−2, 5, 7].

• The predictor “x” is assumed to be uniformly distributed between -2 and
2.

• The random error “ε” is assumed to be normally distributed with mean 0
and variance 1.

• The candidate models will consist out of five polynomials from degree one
to five.

• The candidate models will be generated using the R function “lm” with
argument “poly” to fit the generated data.

• The cross validation will be five fold.

• Usage of the free statistical software R.

• The code is used in the simulations is a modified version from (Petrkeil,
2013).

• I will use a fixed seed for the simulations, “4630521” which is my student
number. A fixed seed is chosen so we can observe how the models perform
each time new data gets added to the old data set. This is also such
that the simulations are replicable. I will do an additional Monte Carlo
simulation without a seed.

I will denote the sample size by the letter “n” and the amount of simulations
with the letter “m”. The goal of the simulations is to let the AIC and BIC choose
between the fitted set of candidate models which consists out of polynomials of
degrees one to five and choose the “best” model out of them.

14



5.2.2 Simulation of model selection scores

Figure 1: The candidate models are represented by the lines in different colours
and the observations generated by the true model are represented by the blue
dots. The sample size is n = 10.

From Figure 1 one can observe the generated data points of the true model and
the fits of the different degree polynomials. It becomes immediately clear that
the polynomials of degrees one and two are underfitting. The higher degree
polynomials will cause overfitting, as they are be able to fit the data more
precisely due to their higher degree.
From the above Table 2 we observe that both the AIC and BIC choose the
polynomial of degree four as the “best” model. This coincides with the cross
validation method designating the polynomial of degree four having the best
predictive ability. A possible explanation for why the BIC has failed to choose
the true model here could be that the sample size is too small. If we estimate
the Bayes factor for M3 and M4 which are the candidate models of degree three
and four , respectively, the value is B34 ≈ 0.47. According to Table 1 this
corresponds to an anecdotal evidence for M4. Therefore, it seems that the BIC
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degree AIC BIC cross validation
1 84.00 84.90 2456.59
2 76.03 77.25 2310.24
3 31.15 32.66 33.53
4 29.34 31.16 12.76
5 31.15 33.27 28.31

Table 2: The values of the AIC, BIC and cross validation for different polyno-
mial degrees rounded to two decimals for sample size n=10.

is not too inaccurate. We will look at the results again for a sample size of n =
50.

degree AIC BIC cross validation
1 378.49 384.22 5620.80
2 364.05 371.70 4381.31
3 144.98 154.54 54.09
4 137.79 149.25 45.75
5 138.82 152.21 46.40

Table 3: The values of the AIC, BIC and cross validation for different polyno-
mial degrees rounded to two decimals for sample size n=50.

We observe a similar result as before. Both AIC and BIC agree that the “best”
model is the candidate model with polynomial degree four. And the cross val-
idation method chose the candidate model with polynomial degree four as the
best predictive model again. For the next simulation we will increase the sample
size to n = 250.

degree AIC BIC cross validation
1 1844.52 1855.08 23374.19
2 1778.00 1792.09 18039.14
3 713.78 731.39 252.01
4 713.94 735.07 251.90
5 715.72 740.37 253.39

Table 4: The values of the AIC, BIC and cross validation for different polyno-
mial degrees rounded to two decimals for sample size n=250.

The BIC has chosen the candidate model with degree three which is the
polynomial degree of the true model. It is clear that the BIC prefers the candi-
date model with degree three over degree two. The estimated Bayes factor for
candidate models of degree three and four is B34 = 6.30. This result implies
according to Table 1 that there is moderate evidence for the candidate model
with degree three. This observation demonstrates the consistency property of
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the BIC partially, because the BIC has chosen the correct model as the sam-
ple size increased. The AIC has also chosen the polynomial of degree three,
however, the difference between the AIC values of the model with polynomial
degrees three and four differ very little. The cross validation method once again
has chosen the model with polynomial degree four as the model with the best
predictive capability. This partially illustrates the AIC’s property to prefer
models for prediction throughout all three simulations.

A possible explanation for why all three methods preferred polynomials of de-
gree three or higher is because the true model itself is a polynomial of degree
three. The polynomials of degree one and two could not fit the data generated
by a polynomial of degree three adequately and have been heavily penalized for
underfitting. This issue appears consistently for all three sample sizes as we can
observe that the values of the criteria for those two candidate models are much
higher. In contrast, if a third, fourth or fifth degree polynomial are used to
approximate a third degree polynomial then they would all be very precise. We
know that higher degree polynomials can approximate lower degree polynomi-
als better compared to the other way around. This resulted into the overfitting
to be of a much lower degree compared to the underfitting of the lower degree
candidate models. Hence it would not be penalized as much which explains why
the criterion scores for these three higher degree candidate models are so close
to each other.

5.2.3 Monte Carlo simulations

I will now perform a second simulation where I illustrate the consistency prop-
erty of the BIC more clearly. The simulation will calculate the probability of the
AIC and BIC selecting the candidate model with degree three which is the same
degree as the true model for different sample sizes (n) and different numbers of
simulations (m). I’ve removed the code for calculating the cross validation in
the Monte Carlo simulations as the computation time is too long when I increase
the sample size or the amount of simulations.

AIC n = 10 n = 50 n = 250 n = 1000
m = 25 36% 80% 84% 76%
m = 100 47% 76% 80% 73%
m = 250 47.2% 75.6% 80.4% 78.5%
m = 500 46.2% 75.6% 79.6% 78.8%
m = 1000 48.6% 74.9% 79.7% 77.5%

Table 5: Probability of AIC selecting the candidate model with degree three.
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BIC n = 10 n = 50 n = 250 n = 1000
m = 25 44% 88% 100 100%
m = 100 51% 93% 98% 98%
m = 250 51.6% 93.6% 98.8% 98%
m = 500 51.2% 92.6% 98.6% 98.2%
m = 1000 52.9% 92.1% 98.4% 98.5%

Table 6: Probability of BIC selecting the candidate model with degree three.

From Tables 5 and 6 we observe multiple things. The first is that in general
the sample size affects whether the candidate model with the true degree was
chosen for both AIC and BIC. The second is that the BIC is more consistent
in choosing the candidate model with the degree compared to the AIC. As seen
before in Section 5.2.2 this is caused by the AIC preferring models with stronger
explanatory ability compared to the BIC. Lastly, we observe that the probabil-
ity to select the candidate model with the true degree approaches one as the
sample size grows for the BIC. This also shows of the consistency property of
the BIC to a degree.

We will perform Monte Carlo simulations without using a fixed seed. This
will make it so that each simulation is randomized and simulations with bigger
sample sizes and amount of simulations no longer have any data related with
the simulations with smaller sample sizes and amount of simulations.

AIC n = 10 n = 50 n = 250 n = 1000
m = 25 60% 80% 68% 84%
m = 100 49% 77% 77% 80%
m = 250 56% 74.4% 77.6% 79.2%
m = 500 45.2% 76.4% 79.4% 77.4%
m = 1000 47.4% 76% 76.5% 78.2%

Table 7: Probability of AIC selecting the candidate model with degree three.
(No seed used).
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BIC n = 10 n = 50 n = 250 n = 1000
m = 25 60% 100% 92% 100%
m = 100 55% 93% 97% 99%
m = 250 60% 93.2% 98% 100%
m = 500 50% 94% 98% 99.6%
m = 1000 52.1% 93.1% 97.1% 98.8%

Table 8: Probability of BIC selecting the candidate model with degree three.
(No seed used.)

From Tables 7 and 8 we can observe roughly the same results as before. The
probability to choose the candidate model with degree three appears to go to
one as the sample size increases for the BIC. The AIC also has an increased
chance to select the candidate model with the true degree. However, for sample
sizes 50, 250 and 1000 the probability of selecting the true model is hovering
a round 80%. We cannot conclude that the AIC has reached a bottleneck
for consistency at around 80% because we haven’t done enough simulations
to confirm this numerically. However, we can attribute this result to AIC’s
property to prefer candidate models with better predictive power. It still holds
that the BIC is more consistent compared to the AIC for these simulations. And
that sample size affects the probability to select the true model for both model
selection criteria. Compared to the simulations before which used a seed the
probabilities for sample size n = 10 for both AIC and BIC are on average higher.
The explanation for this is because the random number generator is no longer
restricted by a seed and therefore it would result into different percentages.
We do not observe other significant differences between the two Monte Carlo
simulations.

5.2.4 Discussion

It should be noted that the simulations performed in this section were not in-
depth. A simulation for the expected loss function could be added for each
candidate model for an inspection of the minimax-rate properties for both AIC
and BIC. It would also be worthwhile to find out another way to simulate the
cross validation score for the Monte Carlo simulations in a way that it is feasible
time wise. Furthermore the simulations were performed using a single response
variable. This could be expanded with multiple response variables. There are
many more simulations that can be done to get a better understanding of how
the AIC and BIC perform under application for model selection. However, that
is outside the scope of this thesis.
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6 Combining the strength of AIC and BIC

The topic of interest in this study is whether we can create a method which has
both the minimax-rate optimality of the AIC and the consistency of the BIC.
Hypothetically this would lead to a method of model selection which would
result in better chosen models.

6.1 Proof that it is not possible to combine the strengths

Unfortunately under the standard definition of the minimax-rate optimality it
is not possible for a method to be both consistent and minimax-rate optimality.
I will go through the proof given by (Yang, 2005) for this claim.

6.1.1 Assumptions

The structure of the proof begins with making some assumptions.

Assumption 1 (Assumption 1 in (Yang, 2005)). There exists two models
k1, k2 ∈ Γ such that

1. Fk1 = {fk1(x, θk1) : θk1 ∈ Θk1} is a sub-linear space of Fk2 = {fk2(x, θk2) :
θk2 ∈ Θk2}.

2. There exists a function φ(x) in Fk2 orthogonal to Fk1 (at the design points)
with 1

n

∑n
i=1 φ

2(xi) being bounded between two positive constants for a
large enough n.

3. There exists a function f0 ∈ Fk1 such that f0 is not in any family Fk(k ∈
Γ) that does not contain Fk1 .

The term design point in part two of Assumption 1 means the points on which
you observe something. An example of a design point is when you split a
function f(x) on the interval x ∈ [0, 1] into 4 equidistant intervals. And only
look at the values of f(x) on the design points x ∈ {0, 1

4 ,
1
2 ,

3
4 , 1}. The second

part of the assumption is satisfied for a reasonable design. The third part of
the assumption holds when there are a finite number of models or a countable
list of (nested) models. It is said that two models are nested if the parameters
in one of the two models are a subset of the other model.

6.1.2 Theorem

Theorem 6.1 (Theorem 1 in (Yang, 2005)). Under Assumption 1, if any model
selection method δ is consistent in model selection, then we must have

n sup
f∈Fk2

R(f, δ, n) −→∞. (7)

Theorem 6.1 basically says that in a parametric case, a case where we estimate
the function f to be finite dimensional, consistency in model selection comes at a
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high price for estimation of the regression function. The risk function multiplied
by a constant n goes to infinity, this is the high cost. In the parametric case,
we can typically achieve a rate of 1

n for minimax-rate optimal model selection
methods. Since this term goes to infinity, it cannot be minimax-rate optimal.

6.1.3 Proof in a special case

The proof by (Yang, 2005) reduces the problem to a hypothesis testing problem.
If we do this then we can apply hypothesis testing theory. We will first prove
Theorem 6.1 for a simple case and afterwards for a more general case.
We first define the null model M0 to be:

Yi = α+ εi, i = 1, 2, ..., n (8)

Afterwards we define the simple linear model M1 to be:

Yi = α+ βxi + εi, i = 1, 2, ..., n (9)

where x is an one-dimensional design variable and ε is the error. We can assume
that the design has the property x̄n = 0 without loss of generality. Furthermore,
similarly to the second part of Assumption 1 we have assume that 1

n

∑n
i=1 x

2
i is

bounded between two positive constants for all n.
Consider a consistent model selection criterion δ and let An be the event that
M1 is chosen with n observations. Then the corresponding estimator of f(xM0

)
is

f̂(xM0
) = α̂+ β̂xM0

IAn

where IAn
is the indicator function of event An which outputs 1 when event An

happens and 0 otherwise.
The risk at xM0 under squared error loss is:

σ2

n
+ x2

M0
E
(
β̂IAn

− β
)2

+ 2xM0
E(α̂− α)(β̂IAn

− β).

Where σ is the standard deviation and σ2 is the variance. These terms appear in
the expression because the calculation involves taking the expected value of the
function f̂(xM0

) substituted into the formula for the squared error loss. We want

to take the expected value of this equation, the first part σ2

n is just a constant
so we can use linearity of the expectation to take it out of the expectation. In

the middle section we have the expected value E
(
β̂IAn

− β
)2

, we know that
the expected value of the expected value is itself. The last part of the equation
2xM0E(α̂ − α)(β̂IAn − β) disappears because of our assumption that x̄n = 0.
The mean average squared error is therefore:

R(f, δ, n) =
σ2

n
+

(
1

n

n∑
i=1

x2
i

)
E
(
β̂IAn

− β
)2
.
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Now that we have an expression for R(f, δ, n) we can adapt it to the expression

in Theorem 6.1 and prove the theorem.

In particular, we show that for any consistent model selection method, for each

c > 0, we must have

n sup
|β|≤c

Eβ
(
β̂IAn − β

)2 −→∞

⇐⇒ sup
|β|≤c

Eβ
(√

nβ̂IAn −
√
nβ
)2 −→∞

⇐⇒ sup
|β|≤c

Eβ
(√

n(β̂ − β)IAn −
√
nβIAc

n

)2 −→∞

⇐⇒ sup
|β|≤c

(
Eβn(β̂ − β)2IAn + nβ2Pβ(A

c
n)
)
−→∞.

Where Acn is the complement of An. We notice that the expression in the last
equivalency goes to infinity if the second term, nβ2Pβ(Acn), goes to infinity.
Therefore, it suffices to prove that for each c > 0

sup
|β|≤c

nβ2Pβ(Acn) −→∞. (10)

Now we set up a testing problem as follows. The true model which generated
the observations is:

Yi = βxi + εi, i = 1, 2, ..., n (11)

where εi are independent standard normally distributed errors. This model is a
sub family of model (9) with α = 0 and σ = 1. We will now construct a hypoth-
esis testing problem. Let the null hypothesis be: H0 : β = 0 and the alternative
hypothesis be H1 : β > 0. For this hypothesis test we take An as the rejection
region and δ as the testing rule with probability of type I error approaching
zero. Using the Neyman-Pearson Lemma (Neyman & Pearson, 1933) it can be
shown that for any test with probability of type I error going to zero, it has to
hold that sup|β|≤c nβ

2Pβ(Ãcn) −→ ∞. With Ã being the rejection region of the
test. Let us denote the joint probability density function of Y1, ..., Yn of model
(11) to be f(y1, ..., yn;β). Then for β1 > β0 ≥ 0,

f(y1, ..., yn;β1)

f(y1, ..., yn;β0)
= exp

(
1

2

n∑
n=1

(
(yi − β0xi)

2 − (yi − β1xi)
2

))

= exp

(
(β1 − β0)

n∑
n=1

xiyi +
1

2
(β2

0 − β2
1)

n∑
i=1

x2
i

)
.

We observe that this ratio is non decreasing for the statistic
∑n
i=1 xiYi. This

family of models therefore has the property that is also known as a monotone
likelihood ratio. Using the Karlin-Rubin Theorem that an uniformly most pow-
erful (UMP) test exists. Which rejects H0 when

∑n
i=1 xiYi > C where C is a
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constant which we choose to be dn. This dn has been chosen in such a way that
Pβ=0(

∑n
i=1 xiYi ≥ dn) = Pβ=0(An). Let An,∗ be the event {

∑n
i=1 xiYi ≥ dn}.

By the UMP property of An,∗ we have that for all β > 0

Pβ(An,∗) ≥ Pβ(An).

As a result we also have that:

sup
|β|≤c

nβ2Pβ(Acn,∗) ≥ sup
|β|≤c

nβ2Pβ(Acn).

We know that
∑n
i=1 xiYi has a normal distribution, therefore for β = 0:

Pβ=0(An,∗) = Pβ=0(

n∑
i=1

xiYi ≥ dn)

= P

(
N(0, 1) ≥ dn√∑

x2
i

)
and for β > 0

Pβ(An,∗) = Pβ(

n∑
i=1

xiYi < dn)

= P

(
N(0, 1) <

dn − β
∑
x2
i√∑

x2
i

)
.

With our earlier choice of dn such that Pβ=0(
∑n
i=1 xiYi ≥ dn) = Pβ=0(An) and

our model selection criterion δ consistent which implies that Pβ=0(An) −→ 0. We
have that Pβ=0(

∑n
i=1 xiYi ≥ dn) = Pβ=0(An) −→ 0. This implies that dn√

n
−→∞.

If we choose βn = min
(

dn
2
∑
x2
i
, c
)
, then:

sup
|β|≤c

nβ2Pβ(A
c
n,∗) ≥ nβ2

nPβn(A
c
n,∗).

Because dn√
n
−→ ∞, it means that dn grows faster than

√
n. Therefore, it be-

comes clear that nβ2
n −→ ∞. For the choice of βn we have that Pβn(Acn,∗) ≥

P
(
N(0, 1) < dn

2
√∑

x2
i

)
, and therefore Pβn

(Acn,∗) −→ 1. With these results we can

now conclude that sup|β|≤c nβ
2P (Acn) ≥ sup|β|≤c nβ

2P (Acn,∗) −→ ∞. We have
now proven Equation (10) and our proof for the special case is complete.

6.1.4 Proof in a general case

The second part of the proof will prove Theorem 6.1 for the general case (Yang,
2005). Let all three parts of Assumption 1 hold. Let k1 and k2 be two nested
models according to Assumption 1. And Bn be the event such that the model
selection method δ does not choose model k1. If we assume that the model
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selection method δ is consistent, then Pf0(Bn) −→ 0 as n −→ ∞. The f0 here is
the f0 in part three of Assumption 1. This says that the probability that the
probability of not choosing model k1 given function f0 for which the associated
true model is k1 is zero as the sample size grows to infinity. This is simply the
consistency property of δ.
Consider the simplified model:

Yi = f0(xi) + βφ(xi) + εi, i = 1, 2, ..., n. (12)

Where φ(xi) is the function which satisfies part two of Assumption 1. Now let

us construct a hypothesis test similar to the proof in the special case. Let null

hypothesis be H0 : β = 0 and the alternative hypothesis be H1 : β > 0. Fur-

thermore, for the null hypothesis the observations come from model k1 while

the observations for the alternative hypothesis H1 comes from the regression

functions in Fk2 . The model selection criterion δ is used to construct the fol-

lowing test: H0 is accepted when model k1, the true model, has been chosen

by δ. And H0 is rejected in any other cases. Because we have chosen δ to be

consistent, the probability of a type I error goes to zero as n goes to infinity.

In the context of Equation (12), let ~f = [f(x1), ..., f(xn)]T where f(xi) =

f0(xi) + βφ(x1), ~Y = [Y1, ..., Yn]T , ~ε = [ε1, ..., εn]T , ~φ = [φ(x1), ..., φ(xn)]T .

These are all vectors and the superscript T denotes the transpose. Let Mk1 be

the projection matrix of model k1. The loss function for model k1 is

||~f −Mk1
~Y ||2n (13)

= ||~f −Mk1
~f ||2n + ~εTMk1~ε (14)

= ||β~φ− βMk1
~φ||2n + ~εTMk1~ε (15)

= β2||~φ||2n + ~εTMk1~ε. (16)

The first equality follows from taking out the error. The second equality follows

from that [f0(x1), ..., f0(xn)]T is the column space of Mk and ~φ is orthogonal

to the column space of Mk therefore the term ~f0 vanishes. The third equality

follows again from that ~φ is orthogonal to the column space of Mk. The risk

function is therefore:
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R(f, δ, n) =
1

n

∑
k∈Γ

Eβ||~f −Mk
~Y ||2nI{k̂=k}

≥ 1

n
Eβ||~f −Mk1

~Y ||2nI{k̂=k1}

≥ β2

n
Eβ||~φ||2nI{k̂=k1}

=

∑n
i=1 φ

2(xi)

n
β2Pβ(k̂ = k1),

where k is a candidate model in the set of candidate models Γ and k1 is the
aforementioned true model. The first equality is simply the expected value of
the loss functions. The first inequality follows from that the sum being larger
or equal than a single element of the sum. The second inequality follows from
Equation (16). And the last equality follows from expanding the expression.
To prove Theorem 6.1 and thus the expression n supf∈Fk2

R(f, δ, n) −→∞ holds

we can simply modify Expression (10) from the special case and construct a
similar proof. That is, it suffices to prove that for each c > 0

sup
|β|≤c

nβ2Pβ(B
c
n) −→∞.

This statement only holds for our hypothesis testing problem if we can show
that for any test with rejection An satisfying Pβ=0(An) −→ 0 we must have
sup|β|≤c nβ

2P (Acn) −→ ∞. We can construct a random variable Zi = Yi −
f0(xi) such that Z1, ..., Zn are independent Gaussian random variables with
distribution N(βφ(xi), σ

2). We can apply the arguments which we used in the
simple two-model case again as they hold similarly. Thus we can conclude that
sup|β|≤c nβ

2Pβ(Bcn) −→ ∞ and the proof of Theorem 6.1 is complete for the
general case.

6.2 A positive outlook

We have just proven that it is impossible to combine the minimax-rate optimal-
ity property of the AIC and the consistency property of the BIC. But this hasn’t
discouraged researchers to stop searching for a way to combine the strengths.
Multiple studies have successfully combined the strengths of the AIC and BIC
in other ways, for example; (Erven, Grünwald, & de Rooij, 2012), used a “switch
distribution” to achieve both model consistency and the minimax-rate optimal
convergence rate to a degree under fairly weak conditions. The study of (Zheng
& Loh, 1995) uses a set of penalty functions and a procedure of sorting covari-
ates based on t-statistics to generalize Mallows’ Cp, AIC, BIC and φ information
criterion (we recommend (Hannan & Quinn, 1979) page 191 for more reading
on the proposed φ criterion) . The methods obtained by these two studies give
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a result which is better than using either AIC or BIC alone. A recent preprint
on the AIC-BIC dilemma (Kirichenko & Grünwald, 2020) foregoes the assump-
tion that the sample size is fixed in advance. By redefining the definition of
minimax-rate optimality as “weakly adversarial time-robust minimax optimal”
(Section 2.3 of (Kirichenko & Grünwald, 2020)) they have achieved a way to
circumvent the AIC-BIC dilemma.
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7 Summary and conclusion

The goal of this thesis was to take an in-depth look at the two of the most well
known information criteria, the AIC and BIC, and revisit the proof of (Yang,
2005) that it is not possible to combine two of their most important properties.

To introduce these two model selection criterion we revisited some concepts
in statistics such as; the KL information which is used to measure the loss of
information between two models, regression analysis which is is used to exam-
ine the relationships between a response and (multiple) independent variables,
likelihoods, loss and risk functions and the Bayes factor.

Afterwards I have introduced the AIC and BIC and how it relates to the concepts
before. The AIC is a model selection criterion which is used for its capability
to select the model with the most predictive ability. Furthermore, the AIC has
an important property which is its ability to be minimax-rate optimal for both
parametric and nonparametric cases. The BIC is known for its ability to choose
the true model when the true model exists and is in the set of candidate models.
It also has a higher penalty term compared to the AIC for large sample sizes
which causes it to prefer more simple models. In the limited simulations I have
performed we have seen the AIC’s tendency to pick models with high predictive
power as well as the consistency property for the BIC.

For applications in model selection problems both consistency and minimax-
rate optimality are important. This has sparked debate around whether it is
possible to combine both properties into a superior model selection criterion.
Some studies have successfully shown that a superior criterion can be made
which combines the strenghts of the AIC and BIC to a degree. However, with
the current definition of the minimax-rate optimality it is not possible to com-
bine both consistency as well as minimax-rate optimality. The proof of (Yang,
2005) I revisited shows this.

The research into optimizing the model selection process by combining desired
properties of model selection criteria is a very complex one. And while it is not
possible to have the very best of both worlds in this case, it is certain that there
will be more discoveries which will advance the model selection process.
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8 R code

This code is a modified version of the code listed on:
https://www.r-bloggers.com/aic-bic-vs-crossvalidation/ written by a
person who goes by the username of “Petrkeil”. Most parts of the code remains
the same. I’ve edited the code under the comment “# plotting the data and
the fitted models” which plotted graph 1 because the original code written by
Petrkeil didn’t work properly. I modified the code such that it became easier
to run multiple simulations with it. Such as adding a variable for the value of
the sample size, and adding variables α, β and γ to make it easier to change
the parameters of the true model. I’ve removed the parts in the original code
which printed the graph for the AIC and BIC scores as well as the graph for the
cross validation. Furthermore, I modified the code to have a loop for the Monte
Carlo simulations. And allow it to identify the candidate model with the lowest
AIC and BIC scores.

8.1 Code used in Section 5.2.2

# the f i g u r e s r e q u i r e ggp lot2 l i b r a r y and
# a l l packages i t depends on
l i b r a r y ( ggp lot2 )

#Set t i ng seed
s e t . seed (4630521)

#Sample s i z e
n <− 1000
# generate the x p r e d i c t o r
x <− r u n i f (n ,−2 ,2)

# s e t the parameters
alpha <− −2
beta <− 5
gamma <− 7
e p s i l o n <− rnorm (n)

# generate the y response
y <− alpha ∗x + beta ∗xˆ2 + gamma∗xˆ3 + e p s i l o n
xy <− data . frame ( x=x , y=y )
# s p e c i f y the maximum polynomial degree that w i l l be exp lored
max . poly <− 5

# c r e a t i n g data . frame which w i l l s t o r e model p r e d i c t i o n s
# that w i l l be used f o r the smooth curves in Fig . 1
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x . new <− seq ( min ( x ) , max( x ) , by=0.1)
degree <− rep ( 1 : max . poly , each=length ( x . new ) )
p r ed i c t ed <− numeric ( l ength ( x . new)∗max . poly )
new . dat <− data . frame ( x=rep ( x . new , t imes=max . poly ) ,

degree ,
p r ed i c t ed )

# f i t t i n g lm ( ) po lynomia ls o f i n c r e a s i n g complexity
# (up to max . degree ) and s t o r i n g t h e i r p r e d i c t i o n s
# in the new . dat data . frame
f o r ( i in 1 :max . poly )
{

sub . dat <− new . dat [ new . dat$degree==i , ]
new . dat [ new . dat$degree==i , 3 ] <− p r e d i c t ( lm( y˜ poly (x , i ) ) ,

newdata=data . frame ( x=x . new ) )
}

# p l o t t i n g the data and the f i t t e d models
p <− ggp lot ( ) +

geom point ( aes (x , y ) , xy , co l ou r=”blue ”) +
geom l ine ( aes (x , pred ic ted , co l ou r=as . cha rac t e r ( degree ) ) , new . dat ) +
s c a l e x c o n t i n u o u s ( breaks = round ( seq (−2 , 2 , by = 0 . 5 ) , 1 ) ) +
s c a l e c o l o u r d i s c r e t e (name = ”Degree ”) +
theme bw ( ) +
labs ( t i t l e =”Considered models ”)

p r i n t (p , comment = FALSE)

# c r e a t i n g empty data . frame that w i l l s t o r e
# AIC and BIC va lue s o f a l l o f the models
AIC . BIC <− data . frame ( c r i t e r i o n=c ( rep (”AIC” ,max . poly ) ,

rep (”BIC” ,max . poly ) ) ,
va lue=numeric (max . poly ∗2) ,
degree=rep ( 1 : max . poly , t imes =2))

# c a l c u l a t i n g AIC and BIC va lue s o f each model
f o r ( i in 1 :max . poly )
{

AIC . BIC [ i , 2 ] <− AIC( lm( y˜ poly (x , i ) ) )
AIC . BIC [ i+max . poly , 2 ] <− BIC( lm( y˜ poly (x , i ) ) )

}

# func t i on that w i l l perform the ” l eave one out ”
# c r o s s v a l i d a t i o n f o r a y˜ poly (x , degree ) polynomial
c r o s s v a l i d a t e <− f unc t i on (x , y , degree )
{

preds <− numeric ( l ength ( x ) )
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f o r ( i in 1 : l ength ( x ) )
{

x . in <− x[− i ]
x . out <− x [ i ]
y . in <− y[− i ]
y . out <− x [ i ]
m <− lm( y . in ˜ poly ( x . in , degree=degree ) )
new <− data . frame ( x . in = seq (−3 , 3 , by =0.1))
preds [ i ]<− p r e d i c t (m, newdata=data . frame ( x . in=x . out ) )

}
# the squared e r r o r :
r e turn (sum ( ( y−preds ) ˆ 2 ) )

}

# c r o s s v a l i d a t i n g a l l o f the polynomial models
# and s t o r i n g t h e i r squared e r r o r s in
# the ”a” ob j e c t
a <− data . frame ( c r o s s=numeric (max . poly ) )
f o r ( i in 1 :max . poly )
{

a [ i , 1 ] <− c r o s s v a l i d a t e (x , y , degree=i )
}

8.2 Code used in Section 5.2.3

#Set t ing seed
s e t . seed (4630521)

#i n i t i a l i z e v a r i a b l e s
AIC cor <− 0
BIC cor <− 0

#Sample s i z e
n <− 250

#amount o f s imu la t i on s
m <− 500

f o r ( j in 1 :m)
{
x <− r u n i f (n ,−2 ,2)
alpha <− −2
beta <− 5
gamma <− 7
e p s i l o n <− rnorm (n)
y <− alpha ∗x + beta ∗xˆ2 + gamma∗xˆ3 + e p s i l o n
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xy <− data . frame ( x=x , y=y )
max . poly <− 5
x . new <− seq ( min ( x ) , max( x ) , by=0.1)
degree <− rep ( 1 : max . poly , each=length ( x . new ) )
p r ed i c t ed <− numeric ( l ength ( x . new)∗max . poly )
new . dat <− data . frame ( x=rep ( x . new , t imes=max . poly ) ,

degree ,
p r ed i c t ed )

f o r ( i in 1 :max . poly )
{

sub . dat <− new . dat [ new . dat$degree==i , ]
new . dat [ new . dat$degree==i , 3 ] <− p r e d i c t ( lm( y˜ poly (x , i ) ) ,

newdata=data . frame ( x=x . new ) )
}

AIC . BIC <− data . frame ( c r i t e r i o n=c ( rep (”AIC” ,max . poly ) ,
rep (”BIC” ,max . poly ) ) ,

va lue=numeric (max . poly ∗2) ,
degree=rep ( 1 : max . poly , t imes =2))

f o r ( i in 1 :max . poly )
{

AIC . BIC [ i , 2 ] <− AIC( lm( y˜ poly (x , i ) ) )
AIC . BIC [ i+max . poly , 2 ] <− BIC( lm( y˜ poly (x , i ) ) )

}

Data AIC <− subset (AIC . BIC , c r i t e r i o n==”AIC”)
Data BIC <− subset (AIC . BIC , c r i t e r i o n==”BIC”)

# f i n d i n g minimum
Data AICmin <− Data AIC [ which . min ( Data AIC$value ) , ]
Data BICmin <− Data BIC [ which . min ( Data BIC$value ) , ]

# i n c r e a s e count i f c o r r e c t degree has been s e l e c t e d
i f ( Data AICmin [ , 3 ] == 3){

AIC cor = AIC cor + 1
}
i f ( Data BICmin [ , 3 ] == 3){

BIC cor = BIC cor + 1
}
}
( AIC cor/m)∗100
( BIC cor /m)∗100
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