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Abstract—A series of probabilistic models were bench-marked
during the European Energy Markets forecasting Competition
2020 to assess their relative accuracy in predicting aggregated
Swedish wind power generation using as input historic weather
forecasts from a numerical weather prediction model. In this
paper, we report the results of one of these models which uses a
deep learning approach integrating two architectures: (a) Con-
volutional Neural Network (CNN) LeNet-5 based architectrure;
(b) Multi-Layer Perceptron (MLP) architecture –with two hidden
layers–. These are concatenated into the Smooth Pinball Neural
Network (SPNN) framework for quantile regression. Hyperpa-
rameters were optimised to produce the best model for every
region. When tuned, the re-forecasts from the model performed
favorably compared to other machine learning approaches and
showed significant improvement on the original competition
results, though failed to fully capture spatial patterns in certain
cases when compared to other methods.

Index Terms—wind power forecasting, convolutional neural
network, smooth pinball neural network, multilayer perceptron,
numerical weather prediction

I. INTRODUCTION

System operators face the challenge of integrating variable
wind power into the grid and avoiding possible power imbal-
ances by scheduling other dispatchable generation units and
calling on reserve mechanisms [3]. Wind power forecasting
serves as a means to facilitate the decision-making of these
operators, providing a tool for risk management in electricity
markets [4]. This has stimulated research into new method-
ologies to to make best use of Numerical Weather Prediction
(NWP) products [5].

Machine learning and Artificial Intelligence (AI) have
shown promise in the energy sector to assist data-driven deci-
sion making [3]. As the performance of computers improves
and algorithms become more efficient, society is shifting to an
era of energy digitalisation [6], where the use of Information
and Communication Technology (ICT) plays a key role in
the energy transition. AI has also become a favored tool to
provide probabilistic wind power forecasts [1]. The use of a
Convolutional Neural Network (CNN) model is described in
[8] for wind power generation forecasting using NWP data,

capturing spatial patterns from relevant meteorological vari-
ables. Moreover, a Smooth Pinball Neural Network (SPNN)
model is presented in [8], where an alternative is proposed
to the traditional quantile deep regression model. Both archi-
tectures motivated the development of a deep neural network
model described in this paper, developed by DeepWinds, Team
18 of the European Energy Markets (EEM) 2020 forecasting
competition.

This paper describes the DeepWinds model, how it was
implemented and its accuracy during the various rounds of
the EEM 2020 competition. Furthermore, there is discussion
of the challenges in developing the model, including feature
selection, application to multiple price regions (climates), and
how to apply the model when installed capacity is changing
over time.

The structure of the remaining part of this paper is as
follows: in Section II, the competition is described and an
overview of the measured and forecast data is given. The
methodology for the deep neural network model is explained
in Section III. Section IV presents an analysis of the compe-
tition results, highlighting the performance of the DeepWinds
model with respect to other models in the competition. The
conclusions are given in Section V.

II. COMPETITION SETTING

The EEM organizers hosted a day-ahead market forecasting
competition, in which teams were asked to predict the aggre-
gated wind power of four price regions in Sweden, using a
probabilistic methodology. The competition was divided into
six submission rounds with every round focusing on two
months of onshore wind power output during 2001 for which
day-ahead forecasts were to be produced. The data provided
to the competitors in order to make the forecasts consisted of
three elements:

• NWP data of seven different meteorological variables.
• Aggregated wind power from the four price regions in

Sweden.
• A record of the wind turbines installed in Sweden over

the period of interest.
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The EEM 2020 edition started on May 5, 2020 and ended
on June 9, 2020. The data were released the day after every
round submission, giving one week to train the models and
produce new results for the following round. The ranking was
published three days after the submission deadline for every
round.

The data corresponding to the year 2000 were made avail-
able in advance of the competition proper, allowing partici-
pants to train their initial models and develop their forecast
strategy, depending on their approach.

This first part of the data were daily netCDF format NWP
model output consisting of 24 hourly values of seven meteoro-
logical variables (2m temperature, 10 m zonal and meridional
wind speed components, 10 m wind gust speed, mean sea
level pressure, relative humidity and total cloud cover) for ten
ensemble members on a 71 × 169 grid covering Sweden with
a spatial resolution of 10 km × 10 km. The forecasts were
generated by MET Norway and archived by Greenlytics.

The first challenge was how best to utilize the multi-
dimensional dataset which contained 83,993 variables per
hour, accounting for 8736 hours in year 2000 (May 14, 2000
and September 26, 2000 were missing). Data cleansing and
dimensionality reduction strategies were necessary to develop
a model which was not computationally prohibitive.

The second part of the data consisted of the aggregated
power production for the four price regions in Sweden, defined
as: SE1, SE2, SE3 and SE4. The competition required quantile
day-ahead forecasts to be produced for these data. Therefore,
a further challenge was to derive quantile forecasts from
a trained single-value output. Furthermore, a decision was
required between training a single model for all price regions
or training separate models for each region.

The third part of the data corresponded to a record over time
of installed wind turbines in Sweden as the power capacity
increased significantly during the training and forecasting time
horizon of the competition (2000–2001). Therefore, there was
a challenge in capturing the dynamics of the changing wind
power installed capacity. Moreover, this record contained 4004
turbines accounting for 8640 MW, while in reality 4099 wind
turbines were installed by that time, accounting for 8984 MW.
As a consequence, the record did not entirely represent the
actual conditions in which the aggregated power output was
based for every price region.

The share of the installed capacity by the end of 2001 was
15.4 %, 34.8%, 30.8% and 18.9%, for the four price regions
SE1–SE4, respectively. At the same time, the share of the
number of turbines was 11.8%, 27.8%, 36.2% and 24.2%,
respectively. Furthermore, the average terrain height in each
region was 348 m, 476 m, 170 m and 73 m, respectively. It is
important to note that the highest terrain location is 1003 m in
SE2. This information is relevant to understand the diversity of
conditions in every price region which represented a challenge
to produce accurate forecasts with the limited data provided.

The accuracy of the models was measured using the pinball

loss function. In this edition of the competition, the prediction
output was required to consist of nine deciles from Q10 to
Q90. Equation (1) shows the formula for the pinball loss
function, ρik, evaluated for each price region:

ρik
(
qik, yk

)
=

{
(i/100)

(
yk − qik

)
, yk ≥ qik

(1− i/100)
(
qik − yk

)
, qik < yk

(1)

where i represents the percentile to be assessed (between
10 and 90), qik is the predicted power value and yk is the
observed power value at time step k. Note that this formula
only gives positive values. One of the purposes of this loss
function is to properly penalize over- and under-estimates [8].
The final forecast score is calculated by averaging the pinball
loss function over all percentiles, price regions and time steps
for the particular two-month period.

III. METHODOLOGY

The deep learning-based (DeepWinds) forecasting model
was developed in several stages: (a) Data cleansing; (b) Feature
engineering; (c) Target engineering; (d) Development of a
probabilistic framework; (e) Development of the deep learning
framework. These stages are explained below:

A. Data cleansing

Identifying incorrect or missing data may be necessary
to avoid any bias when training a model. Using a deep
learning approach can facilitate and partly automate this time-
consuming task [9]. In the case of the NWP data, the cleansing
approach consisted of substituting missing or incorrect values
with zeros. Outliers were not filtered out as a deep CNN
approach is relatively robust to a small number of such data
points. In fact, it was found that only a relatively small number
of forecast values needed to substituted.

B. Feature engineering

Wind power forecasting models developed for one location
may not be representative of other locations for a variety of
reasons, e.g. the effects of varying terrain height, localised
wind speed patterns, differences in local temperature, pres-
sure and humidity, etc, [10]. Forecast bias and accuracy is
a function of these and other variables. The challenge is
to decide what input variables add value to a probabilistic
forecast and how to develop a model which is both accurate
and parsimonious.

The first approach was to reduce the dimensionality of the
input data. This done by using the median value of the ten
ensembles, as suggested in [11]. The full size grid NWP data
was used to model every price region. The aim was thus for
the model to use deep learning to output quantile forecasts
directly.

According to [12], the accuracy of wind power predictions
is seasonally dependent. In order to capture seasonal and
diurnal dependencies, a time proxy was use, namely the day of
year and time of day, following [14], in the form of periodic
functions.
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The main feature in deep learning-based models related
to power production is wind speed as shown in [13], [14].
This variable is derived from the 10-meter zonal (U10) and
meridional (V10) wind speed components. Table I summarizes
the correlation between the input forecast variables and the
power data for the four price regions.

TABLE I
ABSOLUTE CORRELATION BETWEEN FORECAST VARIABLES AND WIND

POWER BY PRICE REGION - HIGHEST CORRELATIONS ARE SHOWN IN BOLD

Feature variable SE1 SE2 SE3 SE4
Wind speed (WS) 0.523 0.659 0.696 0.560

Wind direction (WD) 0.060 0.060 0.016 0.164
Zonal 10-meter wind (V10M) 0.336 0.453 0.545 0.527

Meridional 10-meter wind (V10M) 0.416 0.512 0.511 0.338
Wind gust 0.521 0.657 0.687 0.548

Mean sea level pressure (MLSP) 0.063 0.240 0.315 0.234
Screen level rel. humidity (RH2M) 0.050 0.017 0.012 0.051

Surface temperature (T2M) 0.034 0.002 0.103 0.199
Total cloud cover (TCC) 0.065 0.149 0.244 0.197

Wind speed resulted to have the greatest correlation with
wind power, as expected. On the other hand, wind direction
showed almost no correlation. Although wind gust also shows
a good correlation with power output, inclusion as an input to
the model did not improve the forecast beyond using only the
wind speed magnitude as they are already highly correlated
between them (>0.97). The relative humidity shows little
correlation. Pressure shows a small degree of correlation but
this varies significantly by region. Consequently, only the wind
speed magnitude was used as a forecast input variable in the
model. The wind speed input was scaled by subtracting the
mean and dividing by the variance of the training dataset to
promote an efficient optimization process of the model [15].

C. Target engineering

As mentioned earlier, installed capacity per region changed
over time. In order for the model to adequately cope with this
variation, the power values for each price region were divided
by the current installed capacity for that respective hour. This
has the effect of normalizing the output values in the form of a
capacity factor in order to train the model. Predicted capacity
factors are then converted back into power production values
for producing the final forecasts, assuming that wind turbine
availability is 100%.

D. Development of a probabilistic framework

Traditional Bayesian statistics are used when more infor-
mation about a forecast is required, extending the model
from a deterministic to a probabilistic nature, by inferring the
distribution over the dataset. Nevertheless. Bayesian methods
have a high computational cost when used with large datasets
and thus are unsuitable for this application [16].

In order to build a model that could be generalized for all
price regions, a non-parametric approach was followed. No
assumptions about the shape of the wind speed distributions
were made, as this can vary in time for a given location [17].
However, the non-parametric approach requires the tuning

of additional parameters and consequently, brings additional
computational costs.

The Smooth Pinball Neural Network (SPNN) architecture
was used to develop a deep learning model for quantile
regression that uses a non-parametric approach [18], [19] and
is a combination between a Huber loss (smooth L1-loss) and a
pinball loss using an objective function Sj for each jth decile
(j = i/10) with quantile value τ=i/100, of the form:

Sj = τ · uj + α · log(1 + exp(−uj
α
)) (2)

The difference between the observed and predicted value
for each decile, uj , was smoothed using the parameter, α, to
promote a non-convex optimization algorithm, facilitating the
convergence of the model. The advantage of this approach was
that optimization was based directly on the forecast evaluation
metric used in the competition.

Non-parametric deep learning models can have difficulties
interpreting the ranked order of quantiles. Hence, another ad-
vantage of the framework was dealing with the quantile cross-
over problem: it occurs when the prediction output values
for higher quantiles is smaller than lower quantiles (e.g. Q20
< Q10). This behaviour becomes common when explanatory
variables are heteroscedastic [8]. Eventually, the estimations
do not follow the nature of a probability distribution function,
reducing the reliability of the forecast. As a consequence, a
penalty factor was applied in the objective function such that
it stimulates particular local minima, similar to the idea of
reinforcement learning [20]. The penalty function P is given
by:

P = κ ·max[0, ε− (q<τ−1> − q<τ>)]2 (3)

The margin, ε, expresses the desired spacing between two
consecutive quantile forecast values, qτ , and qτ−1, while the
penalty factor, κ, indicates the severity of the cross-over error.
This penalty term was added to the smoothed pinball function
in (2), meaning that three additional parameters had to be
tuned in the model.

E. Development of the deep learning framework

The final stage consisted of expanding the SPNN frame-
work for quantile regression, concatenating CNN and MLP
architectures. Hence, the input layer consists of two branches:
(a) the NWP grid data, introduced in the CNN architecture;
(b) the time proxy, introduced in the MLP architecture.

Three CNN architectures were considered, namely LeNet-5
[21], AlexNet [22] and the VGG-16, the latter used to win
the Imagenet competition in 2014 [23]. The motivation to
introduce a CNN was to capture spatial patterns in the NWP
data. On the other hand, to simplify the MLP branch, a simple
architecture with two hidden layers was used (6 and 26 nodes).

Quantile forecasts were made simultaneously following the
methodology in [8]. The concatenation between the CNN
and the MLP takes place at the last hidden layer of both
architectures. This structure is integrated in the framework of
the traditional SPNN, in which the nodes of the output layer
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represent the quantiles to be forecasted. Hence, the output
layer corresponds to nine nodes, each having a customized
optimization function based on their respective decile target
(τ ), given in (2). The final quantile regression loss function
(QRLF) can be expanded to the sum of every unit of the dense
output layer representing the nine deciles:

QRLF =

9∑
j=1

Sj (4)

Figure 1 illustrates the framework of the SPNN, including
the concatenation of both branches.

The models were trained separately for each price region.
However, the entire NWP grid of data was used to train a
single model. As a consequence, the deep learning algorithm
was able to capture the relationships between the input data,
without introducing a spatial subset of the meteorological
variables. Figure 1 shows an schematic representation of
the final concatenated model, based on the SPNN quantile
regression framework.

The training phase consisted of using 10 months of shuffled
data from year 2000, while the testing data consisted of the
remaining two months. Furthermore, a validation split was per-
formed in the training set to evaluate both bias and variance:
indicators of under- and over-fitting. To simplify the tuning
process, the SPNN parameters, α and κ, were replicated from
[18], and only the margin parameter, ε, was used to calibrate
the forecasts. Moreover, the kernel random initialization used a
normal distribution, while the regularization term, λ = 0.0001,
was used to avoid over-fitting [18]. Regarding the activation
function, the Rectified Linear Unit (ReLU) function was used.
Finally, an early stopping criterion was employed instead of
defining a fixed number of epochs. In this manner, once the
validation error showed no further improvement, the model
terminated the optimization algorithm to avoid memorizing
the training dataset.

IV. RESULTS

A. Model training

The selection of the CNN architecture was performed prior
to the first round of the competition. Once the competition
started, the deep learning architecture was not altered. Table
II shows the results of the different architectures considered
comparing the predicted and observed wind power values for
the two-month testing period and determining the best mean
absolute percentage error (MAPE) after model tuning.

It can be seen that the simple LeNet-5 architecture clearly
showed the best results for this application. The more complex
architectures (i.e. AlexNet and VGG-16) generalized the data,
failing to predict well the power values during the testing
period. Therefore, it was decided to concatenate the LeNet-
5 architecture with the MLP architecture.

Four elements (hyper-parameters) were tuned to produce the
best model for every price region: the type of sub-sampling
layer (maximum or average pooling), the degree of spatial
dropout, the batch size and the margin to manage quantile

TABLE II
COMPARISON OF RESULTS BETWEEN DIFFERENT CNN ARCHITECTURES;

MAPE = MEAN ABSOLUTE PERCENTAGE ERROR.

Architecture Overview Best MAPE

LeNet-5

Conv. layer: [6, 16]
Fully-connected layer: [120, 84]
Kernel: 3x3
Padding: no; stride: 1

8.5%

VGG-16

Conv. layer: [16, 16, 64, 64, 128, 128]
Fully-connected layer: [4096, 4096]
Kernel: 3x3
Padding: no; stride: 1

18.7%

AlexNet

Conv. layer: [96, 256, 384, 384, 384]
Fully-connected layer: [4096, 4096]
Kernel: variable from 3x3 to 11x11
Padding: 1; stride: variable from 1 to 4

16.2%

cross-over. Table IV-A shows the results of the pinball loss
metric as a function of four different models with different
hyper-parameter settings. The best (lowest) values for each
price region are shown in bold.

TABLE III
PINBALL LOSS FUNCTION AS A FUNCTION OF HYPER-PARAMETER VALUES
FOR EACH PRICE REGION. THE BEST CHOICE OF PARAMETERS FOR EACH

PRICE REGION IS SHOWN IN BOLD

Parameters SE1 SE2 SE3 SE4
Model A

a. Max Pooling
b. Spatial Dropout = 0.25

c. Batch size = 64.
d. ε = 0.002

38.9 184.2 117.4 77.3

Model B
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. ε = 0.001

34.6 139.6 92.2 60.5

Model C
a. Average Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. ε = 0.001

34.9 143.3 92.4 59.6

Model D
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 32.

d. ε = 0.001

32.2 148.3 106.0 58.2

Based on the sensitivity analysis, two models were consid-
ered, namely Model B and Model D. Both models performed
best with a margin, ε = 0.001, while the best sub-sampling
layer approach was Max Pooling to reduce the shape of
the input data. Moreover, Spatial Dropout did not improve
the score, hence only the λ term was used for regularizing
the weights of the kernels. In Model B, a batch size of 64
performed best for price regions SE2 and SE3. In contrast,
the best fit for price regions SE1 and SE4 was achieved with
a batch size of 32, corresponding to Model D. Finally, to avoid
forecast quantile values exceeding the installed capacity factor
at each time step, a clipping factor between 65% to 88% was
applied based on the historical training data starting from the
median quantile.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 11,2020 at 11:57:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. A visual representation of the final model; (a) a LeNet-5 based CNN architecture for the NWP data; (b) a simple MLP for the time proxy. Both
architectures are concatenated in their final hidden layer to compute the output quantiles.

B. Competition and re-forecast results

The pinball score results for the top four teams and the
DeepWinds model are shown by round in Figure 2. For com-
parison, the DeepWinds model scores are also shown for re-
forecasts using the final tuned version of the model in Round
6 and post-competition. Note that the model architecture and
the feature engineering have not been changed.

Fig. 2. Pinball scores by round for the top teams in the forecasting
competition, compared with the DeepWinds model in three cases; (a) Official
competition; (b) Tuned until round 6 parameters; (c) Tuned post-competition.

As the final score of the teams was determined by the
best five submission rounds, the standings at the end of the
competition are shown in Table IV, along with model type.

The DeepWinds model re-forecasts show competitive results
with respect to the top performing teams and are a significant
improvement on the model used during Rounds 1–5. How-
ever, the model was not able to capture the spatial patterns
sufficiently well in rounds 1 and 4 when compared with other
models by using the full size NWP grid data. Note that a
separate team from TU Delft (Turbulence), which came third,
also used a model incorporating a CNN and MLP, but the
architecture was quite different to the DeepWinds model, and
incorporated additional feature engineering.

TABLE IV
FINAL RESULTS OF THE TOP FOUR TEAMS IN THE FORECASTING
COMPETITION COMPARED WITH THE DeepWinds MODEL; QRF =

QUANTILE REGRESSION FOREST; QGAM = QUANTILE GENERALIZED
ADDITIVE MODEL; GBM = GRADIENT BOOSTING MACHINE; HCM =

HYBRID CNN-MLP

Rank Team Final Score Model Type
1 MinesTech Paris 44.92 QRF
2 Univ. of Strathclyde 47.93 QGAM & GBM
3 TU Delft, Turbulence 51.52 HCM

- TU Delft, DeepWinds
(Post-competition) 57.55 SPNN, CNN & MLP

- TU Delft, DeepWinds
(until R6 parameters) 63.78 SPNN, CNN & MLP

- TU Delft, DeepWinds
(Competition) 80.38 SPNN, CNN & MLP

The post-competition tuned version of the model followed
a re-evaluation of Model B and Model D. This showed that
the accuracy of the models displayed a seasonal dependence
despite the time proxy, i.e. Model D performed better in
winter for price regions SE1 and SE4 but also performed
better than Model B in summer for regions SE2 and SE3, and
vice versa for Model B. As a consequence, better performance
was achieved by having models tuned with hyper-parameters
appropriate for both price region and season.

V. CONCLUSIONS

This paper has summarized the approach followed by
the DeepWinds model to predict wind power production in
Sweden using a probabilistic framework for the EEM 20
forecasting competition. The model was based on a deep learn-
ing method using the novel Smooth Pinball Neural Network
(SPNN), concatenating CNN and MLP architectures.

The resulting framework provided a simple way to output
quantile values from NWP input data. The non-parametric
approach allowed a generalization of the model to different
datasets, allowing it to be trained for different price regions
separately. Moreover, ways to reduce data dimensionality and
changes in installed capacity were proposed. The application
of this deep learning model is suitable for mid- and long-term
forecasting and can be used as a benchmark tool for other
similar models.
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