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Abstract

This research expands past research on implementing the TDNN-OPGRU network
for Automatic Phoneme Recognition on Dutch speech by implementing and testing the
TDNN-OPGRU network on Mandarin speech. The goal of this research is to investi-
gate the performance of the TDNN-OPGRU architecture when decoding phonemes in
Mandarin prepared and spontaneous speech. The difference in Phoneme Error Rate be-
tween prepared and spontaneous speech is being determined, and the effect that tones
have on the PER is being investigated since Mandarin is a tonal language.

The results are that a substantial amount of the PER comes from substitutions that
are made where only the tone is incorrectly determined. However, tone does not appear
to have an impact on the difference in PER between spontaneous and prepared speech
since it is responsible for an similar amount of the substitutions in both types of speech.
The inclusion of tone also causes the error rate of the TDNN-OPGRU architecture on
base phonemes to increase.

1 Introduction

Automatic Speech Recognition (ASR) systems convert the sound generated by speech into a
sequence of discrete sentences, words or phonemes. ASR systems are widely used, well known
examples are Word Recognition (WR) systems such as Siri or Google Assistant. However,
a downside of WR systems is that they can not recognize words that they have not been
trained on.

This is where Automatic Phoneme Recognition (APR) systems come in. A phoneme
is the “smallest unit of speech distinguishing one word (or word element) from another, as
the element p in ‘tap’, which separates that word from ‘tab’” [1]. APR systems output
a sequence of phonemes, even if these phonemes would not construct a word that it has
been trained on. This can be useful for a variety of tasks including the identification of
mispronounced phonemes 2] [3].

There are two types of speech that are defined in ASR research. Prepared speech occurs
for example when reading a passage from a book, or during a rehearsed speech. Spontaneous
speech occurs in unprepared situations, for example having a conversation or a spontaneous
discussion with a friend. In general spontaneous speech is harder to process for ASR systems
than prepared speech. Some causes for this include unexpected pauses, repetition and some
phonemes not being pronounced properly [4]. To get a good impression of the performance



of an ASR or APR system it is therefore important to evaluate its performance on both
types of speech.

In march 2021 a master thesis was published that evaluated four Neural Network archi-
tectures for use as the acoustic model of an APR system for the Dutch language [5]. From
this research came TDNN-OPGRU (Time-Delayed Open-Gate Projected Recurrent Unit
Recurrent Neural Network) and TDNN-BLSTM (Time-Delayed Bi-directional Long Short
Term Memory Recurrent Neural Network) as two of the best performing architectures for
spontaneous speech and prepared speech respectively.

Based on the results of the master thesis the TDNN-OPGRU and TDNN-BLSTM archi-
tectures are being further evaluated on Mandarin and English in several studies alongside
this research. Some steps such as the data preparation will be shared between the studies
to ensure that results between the studies are comparable; The main variation will be the
network architecture. This paper will focus on the TDNN-OPGRU architecture and the
Mandarin language.

TDNN-OPGRU is a DNN (Deep Neural Network) that combines TDNN (Time-Delayed
Neural Network) layers with OPGRU (Output-Gate Projected Gated Recurrent Unit) layers.
TDNN layers help capture contextual dependencies because temporal context can be added
through a delay element. (OP)GRU is a simplified version of LSTM, which helps solve the
vanishing gradient problem [5].

Mandarin could pose different issues for an APR system because it is a tonal language.
This means that rather than changing the sound, for example from ‘p’ to ‘b’, the tone of
a syllable alone can affect the meaning of a word; Z(M&) means horse, but ff(M4) means
hemp [6], adding an additional distinction between meaning over the dutch language. There
are four tones and a neutral tone in Mandarin [6], this increases the amount of phonemes
that have to be recognized from 34 for Dutch [5] to 113 used in this research for Mandarin.

1.1 Related Research

Not much research has been done on phoneme recognition in Mandarin speech. However,
research has been done on tone recognition for mandarin speech. Some research focuses on
system that are designed to recognize only tone, and no other aspects of the phonemes or
language [7]. Other research focuses on improving the tone recognition aspect within an
ASR system [8]. It is stated that improving the tone recognition of an ASR system can
improve the overall performance since the tone decision might impact the phonetic decision
because of context dependence [8]. The results of these researches can be used as points
of comparison with the results of TDNN-OPGRU regarding tone recognition, since tone
recognition will be an aspect of phoneme recognition.

Parameters for the TDNN-OPGRU network are defined in [5] based on results from
other papers. However, it does not explain what these parameters are, how they influence
the network, or why these parameters are suited for this specific task. These parameters
include dropout schedule, L2 regularization and layer size. Dropout is a mechanic that
improves generalization of a system by randomly ignoring a certain percentage of the cells in
a layer. A dropout schedule is a version of this that can linearly interpolate between different
dropout values through several epochs [9]. The same dropout schedule that is described in
this paper for ASR is also used in [5]. L2-regularization is a method that removes a small
portion of the weights of cells at each iteration of the training. It is a technique that helps
with reducing over fitting on the training data [10]. The value that is selected for this in [5]
is chosen based on [10].



The required layer size of a network is partially dependent on the amount of training data
that is used. Specifically, a layer size that is too large can result in under fitting and a layer
size that is too small can result in over fitting [11]. This means that if the amount of training
data differs, a different layer size from the one that is used in [5] might be more optimal
for the network. Similarly, [11] shows that too many layers can lower the performance of a
network for ASR. This indicates that these parameters have to be tuned to the specific data
set and language.

1.2 Research Goals

The goal of this research is to investigate the performance of the TDNN-OPGRU architecture
when decoding phonemes in Mandarin prepared and spontaneous speech. This will be done
by training and evaluating the architecture on a data set containing spontaneous speech,
and a data set containing prepared speech. Afterwards the Phoneme Error Rate (PER)
will be analyzed to determine the differences between prepared and spontaneous speech.
Phoneme error rate is the sum of all substitutions, deletions and insertions, divided by the
total amount of occurrences of the phoneme in the ground truth. Substitutions are cases
where one phoneme is wrongly decoded and substituted by another phoneme. Insertions are
cases where no phoneme is present in the ground truth, but an extra phoneme is present in
the decoding. Deletions are cases where a phoneme is present in the ground truth, but not
present in the decoding.

Error-prone phonemes will also be determined and compared with error-prone phonemes
identified in other languages [5]. Error-prone phonemes are phonemes that have an above
average PER, as well as an above average contribution to the PER. The contribution to the
overall PER is determined by dividing the amount of substitutions, deletions and insertions
from one specific phoneme by the sum of all substitutions, deletions and insertions.

Lastly, [7] and [8] demonstrate that tone recognition is important for ASR on Mandarin
speech. Therefore the performance of the architecture on tone recognition is important
to determine. Since tone can be decoded separately it will also be useful to investigate
the performance of the architecture without tone information, this can help determine if
perhaps tone should be decoded separately for increased performance. To aid in completing
the research goal the following research questions have been constructed:

e What is the PER when recognizing phonemes in Mandarin speech with a TDNN-
OPGRU architecture?

e What is the difference in PER between prepared and spontaneous speech when recog-
nizing phonemes in Mandarin speech with a TDNN-OPGRU architecture?

e What phonemes are error-prone when decoding phonemes in Mandarin speech with a
TDNN-OPGRU architecture?

e What influence does the presence of tones have on the PER when decoding phonemes
in Mandarin speech with a TDNN-OPGRU architecture?

1.3 Report Outline

In section two the methodology of the research will be discussed. Section three will then
discuss the contributions of this research. In section four the setup of the experiment is
described. Section five presents the different results and section six is dedicated to the ethical



aspects of the research and the reproduciblility of the methods. In section seven the results
of the previous sections will be discussed and the results will be put into a broader context.
Finally in section eight the paper will be concluded and future work will be recommended.

2 Methodology

This section focuses on the methodology that is applied in this paper. First the software
that is used will be presented. Next, the data sets that will be used are discussed, together
with the specific preparation of the data. Following this the training and implementation of
the TDNN-OPGRU network will be discussed. Afterwards how the research questions will
be answered is explained. Lastly, some notes on collaboration between different papers will
be given.

2.1 Kaldi

The TDNN-OPGRU architecture will be implemented using the Kaldi framework [12], this is
a framework that has been developed for ASR. Although APR is slightly different the frame-
work can be used by replacing characters in the transcripts with their phoneme sequences
and replacing a lexicon that normally maps words to phonemes with a dummy lexicon that
maps phonemes to phonemes.

2.2 Data sets

In order to train and evaluate the network a data set is needed. In this case two separate
data sets are used for prepared and spontaneous speech. The data sets that are going to be
used are:

e Aidatatang 200zh : a Chinese (Mandarin) read speech corpus [13]

e Magic Data Chinese Mandarin Conversational Speech : a Chinese (Mandarin) spon-
taneous speech corpus [14]

The Aidatatang set, a read speech corpus, is freely available and used on a desktop
computer. The speech was recorded in a quiet room, the data was collected from 34 provincial
administrative regions across China. A gender ratio of about 3 males to 3.3 females is
indicated [13]. The Magic Data set, a spontaneous speech corpus, is a paid version and
only accessible on the TU Delft HPC [15]. The speech was recorded on mobile devices with
speakers "from accent regions across the country" [14].

The network will not be trained on the complete data sets. For Aidatatang the following
speakers have been selected from the training set: G0013, G0017, G0019, G0020, G0029,
G0030, G0032, G0034, G0037, G0038. This results in about 217 minutes of training data.
This has a gender distribution of 9 males and 1 female, from 9 different provinces in China.
The full test and dev sets will be used for evaluation. Magic data does not have a train-
ing/test division available in the set, so the following sub sets have been selected: SPK001
- SPKO026 are the training set. SPK027 - SPK030 are used as the test set. This leads to
about 233 minutes minutes of training data. No specific gender or location information is
included with the data.

There are slight differences in how the transcripts for Aidatatang and Magic Data are
provided. Aidatatang provides word-level transcriptions, but Magic Data provides character



level transcriptions. An excerpt from Aidatatang shows spaces between the words: "#& A
BEE AN EEIF K", but an excerpt from Magic Data shows a lack of spaces: "{/RE
RECIRBEM H X FFEE JL". This matters because the pronunciation of a character can vary
slightly based on the context. Having less context about the usage of the character makes it
more difficult to determine the correct phoneme sequence that was used in the speech. This
is an issue for both data sets; The Aidatatang phoneme lexicon provides several possible
transcripts for most words, where it is unclear which transcript is the correct one. The
Magic Data phoneme lexicon provides only character level transcripts, so some information
related to the context or word is lost.

The data sets will have to be pre-processed for use; Specific files are required for Kaldi,
and the feature vectors need to be extracted from the audio files. This pre-processing will
also be performed with Kaldi. The processing of the data sets will be partially divided
between other members of the research group.

2.3 Training and Optimization

After the data has been processed, the TDNN-OPGRU architecture will be implemented
and trained. In order to provide forced alignments that are needed for training the network,
a Gaussian Mixture Model - Hidden-Markov-Model (GMM-HMM) is trained on the data
to provide these forced alignments. There are two types of GMM-HMM models directly
available in Kaldi: A Tri3 model that has one round of Monophone training and 3 rounds
of triphone training with delta+deltadeltas, LDA+MLLT and SAT training to generate
forced alignments. A Triba model that has an extra round of delta+deltadeltas training on
triphones and a second SAT training round with a larger number of leaves and gaussians.
First will be determined which of these results in a lower PER. The model with a lower PER
will be used in consecutive steps.

The TDNN-OPGRU network will then be implemented and trained based on the pa-
rameters used in [5],. Afterwards some of the parameters will be iterated, such as the layer
size, layer count and training rate since these vary based on the size of the training data and
complexity of the language [11]. The aim of this is to improve the PER. These iterations
will be performed on the Aidatatang dev set to avoid over-fitting to the test sets. Because
of time constraints no optimization of these parameters is performed on a dev set for Magic
Data.

A simple overview of the base TDNN-OPGRU architecture can be found in Figure 1.
This figure shows how the layers are interlaced with each other, any experiments that change
the amount of layers will not change how the layers are interlaced.

2.4 Answering research questions

After the TDNN-OPGRU network is optimized on the Aidatatang dev set, the network will
be trained separately on the Magic Data set, and on versions of both sets where the tone
information has been removed from the transcripts. Then the trained networks will be used
to decode the respective test sets. The resulting PER information from this will be used
to determine what the PER is when recognizing phonemes in Mandarin speech as well as
determining what the difference in PER is between spontaneous and prepared speech when
decoding phonemes in Mandarin speech with a TDNN-OPGRU architecture.

More detailed information on the error rate of phonemes will also be gathered from the
results of the decoding. Kaldi will store the substitutions, insertions, deletions and correct
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Figure 1: TDNN-OPGRU layout

results for each unique phoneme after comparing the result with the ground truth. With
this information error-prone phonemes can then be identified.

2.5 Collaboration

There will be some collaboration between other members of the research group. This will
be in regards to the pre-processing of data since multiple members have similar goals with
different neural network/language combinations as mentioned in the introduction. For the
evaluation of the TDNN-OPGRU networks, there will be dependence on the results of other
members of the research group to be able to compare the results in a broader context.

3 Expanding Phoneme Recognition

As mentioned in the introduction, the goal of this research is to investigate the perfor-
mance of the TDNN-OPGRU network when decoding phonemes in Mandarin prepared and
spontaneous speech. Currently there does no exist research on using the TDNN-OPGRU
network for phoneme recognition on Mandarin speech. This research can be used as point
to continue expanding APR research for mandarin, and as a comparison for the evaluation
of other acoustic models. The results of this paper will be compared with research on the
TDNN-OPGRU architecture for phoneme recognition on other languages such as English
[16] and Dutch [5]. And the performance of a similar neural network for Mandarin phoneme
recognition, TDNN-BLSTM [17], that is being conducted in parallel with this research.

Next to making comparison with other languages and models, the goal is to perform
comparisons within different permutations of the TDNN-OPGRU network, and gain insight
into what phonemes the network struggles with identifying, as well as the differences in
PER between prepared and spontaneous speech. Most interesting will be how the network
handles the smaller differences between phonemes, as well as the differences in the network
complexity and how the increase in phonemes influences this.

4 Experimental Setup

This section will discuss the setup used to train the TDNN-OPGRU. Steps such as the feature
extraction, generation of the forced alignments and optimization steps will be discussed.



4.1 Feature extraction

When training an ASR or APR system, the input of that system is not the raw audio data.
Rather, several features will be extracted from the audio, and this is what will be used
as an input. Depending on the language and model, different features will give a different
performance for the system.

The features that will be used are a combination of Mel-frequency cepstral coefficients
(MFCCs) and pitch information. The pitch information is intended to aid the system specif-
ically with the tone recognition. This results in an input vector with a size of 43.

4.2 Forced Alignments

The TDNN-OPGRU framework needs forced alignments to be trained on. This is not
something that the data sets provide; They only provide character level transcripts for an
sequence. In order to generate these, as mentioned before, a GMM-HMM will be used. Two
different GMM-HMM setups will be tested, to determine which one is better suited for the
data set. The two GMM-HMM setups are Tri3 and Triba. In both cases each consecutive
model will be trained using alignments generated by the previous model.

For Tri3, first a monophone model is trained, and after that triphone models with delta
+ delta-deltas, LDA + MLLT and SAT are trained. Each of these models is trained with
2500 leaves and 15000 gaussians. For Ttrida, two triphone delta + delta-deltas models are
trained consecutively instead of one. A second, larger, SAT model is also trained at the end
with 4000 leaves and 25000 Gaussians.

4.3 Optimization

During the optimization step of the network, some parameters will remain fixed with values
based on [5]. The fixed parameters can be found in Table 1. The mini-batch size parameter
is set to 64 as opposed to 128 used in [5] because of gpu memory constraints. Other variables
such as the learning rate, layer size and layer count will be varied because their influence on
the performance can vary with the size of the training data [11]. These parameters can be
found in 2.

Parameter Value
L2 Regularization 0.00005
Epochs 6
Mini-batch size 64
dropout schedule | 0,0@0.20,0.3@0.50,0

Table 1: Fixed parameters

4.4 Decoding and scoring

For decoding and scoring some specific Kaldi algorithms will be used. For decoding the
nnet3 decode.sh script will be used [12]. For scoring the result, Kaldi’s score_wer kaldi.sh
script will be used [12].



Parameter Minimum Value | Maximum Value
Initial Learning Rate 0.0005 0.05
Final Learning Rate 0.00005 0.005
Layer size 256 1024
Recurrent projection size 64 256
TDNN layer amount 4 7
OPGRU layer amount 2 3

Table 2: Variable parameters

5 Results

In this section the results of different inputs and training parameters will be presented.
First the difference of the Tri3 and Tris5a GMM-HMM models will be shown. Next, the
performance of the TDNN-OPGRU network with different parameters will be shown. Lastly,
the differences between prepared and spontaneous speech, as well as the impact of tones will
be shown based on selected parameters.

5.1 GMM-HMM

The PER that is achieved by the Tri3 and Triba GMM-HMM models on Aidatatang is shown
in Table 3. This table shows that the Tri5a model does not offer an improved PER over
Tri3, therefore Tri3 will be used to generate the forced alignments from now on.

Name PER
test dev
Tri3 | 43.88 | 43.58
Triba | 44.54 | 44.19

Table 3: GMM-HMM results on Aidatatang

5.2 TDNN-OPGRU optimization

For determining what parameters are optimal several iterations of the TDNN-OPGRU ar-
chitecture with varying parameters were performed on the Aidatatang dev set, the resulting
PER of these iterations can be seen in Table 4.

Table 4 shows that the best results with tone were achieved with an Initial Learning
Rate of 0.05 and Final Learning Rate of 0.005. The other parameters such as layer size and
recurrent layers ended up being most optimal with values as specified in [5]. The need for a
high learning rate, combined with a high layer count and size shows that the network was
under trained on the smaller training data, but did require the bigger layer size and count
to model the complexity of the language.

The difference in performance between the set including tone information and the set
without tone information shows that the smaller difference in pronunciation between phonemes
and the higher amount of phonemes requires a more complex network; The difference in PER,
between a layer size of 1024 and 256 is smaller for the tests with tone data removed. This
also shows that since with tones, Mandarin has more phonemes than English, perhaps a
layer size larger than 1024 might improve the PER of TDNN-OPGRU.



Initial Final Layer | Rec layer | TDNN | OPGRU PER
learning rate | learning rate | size size layers layers tones | no tones
0.0005 0.00005 256 64 7 3 46.28 34.04
0.005 0.0005 256 64 7 3 41.55 31.61
0.05 0.005 256 64 7 3 42.63 30.89
0.0005 0.00005 1024 256 7 3 44.16 33.56
0.005 0.0005 1024 256 7 3 39.22 29.66
0.05 0.005 1024 256 7 3 39.07 | 29.10
0.005 0.0005 1024 256 4 2 42.15 31.51
0.005 0.0005 512 256 7 3 40.70 30.71

Table 4: TDNN-OPGRU PER on Aidatatang dev

5.3 PER in prepared and spontaneous speech

Based on the results in the previous section, the choice was made to go with the following
settings: Initial Learning Rate = 0.05, Final learning rate = 0.005, Layer size = 1024,
Recursive layer size = 256, 7 TDNN layers, 3 OPGRU layers. When evaluating the network
on the test sets of Aidatatang and Magic Data

data set PER
Aidatatang 200zh 39.99
Aidatatang 200zh no tones | 29.34
Magic Data 30.76

Magic Data no tones 23.27

Table 5: Achieved PER on Aidatatang and Magic Data test sets

Table 5 shows that the TDNN-OPGRU network performs better on the Magic Data set
than on the Aidatatang set. As a reminder, the Aidatatang 200zh data set is prepared
speech, and the Magic Data set is spontaneous speech. This is unexpected because the
general expectation is that prepared speech has a lower error rate than spontaneous speech
[4].

There are several possible explanations for the difference in performance that are not
caused by the language or network itself. Firstly, even though a similar amount of training
material was used in both cases, a smaller amount of speakers was used for the Aidatatang
set, with more audio material per speaker. Secondly, the Aidatatang data set was transcribed
on a word level, where the Magic Data data set was transcribed on a character level. This
possibly influences the correctness of the phoneme transcripts, as for Aidatatang a choice
had to be made out of several options without being convinced of the correct one.

Lastly, the gender distribution of the training set for Aidatatang is 9 males and 1 female.
Since the general set indicates a better balance of males and females, the higher PER could
be caused by worse performance on female speakers. The gender distribution of the Magic
Data training and test sets is unknown, so it is unclear how much influence this has.

Both data sets indicate that the participants were from different regions across Mainland
China [15] [14], as such a diversity or lack thereof in this area does not appear to be the
cause for this discrepancy.

Table 5 also shows that the removal of tone information before training has a positive
impact on the PER for both prepared and spontaneous speech. Since the amount of possible



phonemes is smaller without tonal information there are less opportunities for confusion,
and less complexity in the language. Lastly, the table shows that the difference in PER
between data sets with and without tone information is similar between prepared and spon-
taneous speech. This might be an indication that the amount of errors made in decoding
caused specifically by cases where only the tone is incorrect is similar between prepared and
spontaneous speech.

Phoneme AA AE AE5 AH A0 AWS5 | AY5 EH EHb5

PER 1.0 1.0 0.86 | 0.99 1.0 1.0 0.95 | 9.83 | 0.97
Contribution to PER | 0.006 | 0.004 | 0.19 | 0.016 | 0.001 | 0.003 | 0.054 | 0.021 | 0.023
Phoneme Iy IY5 | NGb | OW5 | RbH UH | UH5 | UW | UW5H

PER 097 | 085 | 0.86 | 0.88 | 0.96 1.0 1.0 0.99 | 0.92
Contribution to PER | 0.047 | 0.403 | 0.128 | 0.148 | 0.05 0.0 | 0.001 | 0.009 | 0.173

Table 6: PER of phonemes present in Aidatatang but missing in Magic Data

Table 6 shows the set of phonemes that are present in Aidatatang, but not in Magic
Data. These phonemes almost exclusively exist of phonemes without tone that originate
from English sections in the transcripts, as well as tones with the 5th neutral tone. The
PER indicates that the network failed to recognize these phonemes well. The contribution
to PER indicates that these phonemes did not occur a lot in the Aidatatang test set. In
total they only account for 1.28% of the PER on the Aidatatang set, however the increased
amount of phonemes still increases the complexity of the model.

5.4 Error-prone phonemes

For the evaluation of error-prone phonemes, tone information will be ignored. This means
that substitutions where only the tone is decoded incorrectly will be considered as correct.
Table 7 displays all phonemes which have an above average average contribution to the PER.

Looking at the results of Table 7, it shows that IY does not have an above average PER,
but does still have the highest contribution to PER, this is caused by the high amount of
occurrences of this phoneme, rather than the PER of the phoneme. The phonemes N, UW,
NG, ER and AH can be considered error-prone phonemes for both prepared and spontaneous
speech. AW and AE are error-prone only for prepared speech, D and AA are error-prone
only for spontaneous speech. This shows that these are phonemes that are pronounced less
clearly between the different types of speech. Several of the phonemes that are error-prone,
such as N, ER, AA have a PER that is less than 2% higher than the average PER. This
indicates that the main reason for the higher contribution to PER is the how often the
phoneme occurs in the transcripts.

Another aspect that can be deduced from Table 7 is that the average PER of the sets
where tone information was stripped before training is lower than the PER of the sets
where the tone information was not stripped. This indicates that the introduction of tone
information has a negative impact on ability of the TDNN-OPGRU architecture to correctly
decode the base phonemes.

5.5 Tone

There are several ways in which the influence of tone on the performance of the TDNN-
OPGRU can be examined. The direct approach is by looking at the error rate in tone

10




Aidatatang Aidatatang no tones Magic Data Magic Data no tones
Phoneme | PER | cont Phoneme | PER | cont Phoneme | PER | cont Phoneme | PER | cont
average 30.7 | 2.78 average 28.5 | 2.78 average 234 | 2.78 average 228 | 2.78
1Y 221 | 9.5 N 29.0 | 9.1 Iy 18.5 | 10.2 N 25.8 | 9.2
N 31.2 8.6 1Y 16.2 7.8 N 25.2 8.2 Y 14.8 89
Uw 376 | 6.9 AE 334 | 7.3 Uw 305 | 7.9 Uw 274 | 1.7
NG 41.0 | 6.0 Uuw 343 | 7.3 ER 244 | 5.0 ER 27.2 | 6.1
AE 32.5 | 5.8 NG 36.7 | 6.1 AA 25.2 | 4.9 AA 24.0 | 5.1
ER 31.7 | 44 ER 30.2 | 4.6 D 245 | 4.5 D 24.8 | 5.0
AH 40.0 | 3.5 AH 40.7 | 4.1 AE 20.0 | 4.3 AE 19.6 | 4.8
AA 30.6 | 3.0 AA 27.7 | 3.1 NG 243 | 4.1 NG 224 | 4.1
AW 348 | 2.9 D 228 | 2.9 AH 31.9 | 34 AH 33.6 | 4.0
AW 314 | 2.9 JH 331 [ 29 R 44.7 | 3.2

Y 23.9 2.8 Y 22.3 3.1

JH 32.0 | 3.0

AO 25.1 | 3.0

Table 7: The phonemes with an above average contribution to PER, sorted by contribution
to PER, the cont column represents contribution to PER.

recognition, this can be seen in Table 8. The influence of tone on the performance of
the TDNN-OPGRU network between prepared and spontaneous speech can be analysed by
looking at what percentage of the substitution errors is caused by tone-only errors. These are
errors in decoding where the base phoneme is correctly recognized, but the tone is incorrectly
recognized. This contribution to substitution is shown in Table 9.

data set Tone error rate Afidata set Subst;tut;on %
Aidatatang 27.48 Ml B.Lta]t)ang 22.39
Magic Data 20.42 agic Data .

Table 9: Percentage of substitutions caused by

Table 8: Tone Error rate per data set.
tone errors.

Table 8 shows that a significantly higher tone error rate Table 9 demonstrates that even
though a lower PER is achieved on Magic Data, a similar percentage of the substitutions
made are caused by tone-only errors. Indicating that the TDNN-OPGRU network does not
have more issues with identifying tone between prepared and spontaneous speech.

Table 10: Aidatatang tone confusion matrix Table 11: Magic Data tone confusion matrix
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Tone Tone percentage
Aidatatang | Magic Data
1 23.2 27.2
2 17.9 19.0
3 22.6 15.6
4 28.4 33.5
5 7.8 4.8

Table 12: Distribution of tones in the test sets

Tables 10 and 11 are confusion matrices. Each row shows how often a tone, together with
the distribution of tones in Table 12. Show some similarities and some differences between
the different data sets regarding tone recognition.

Tables 10 and 11 show that in both Aidatatang and Magic Data sets, tone 1 and tone
4 are mistakenly recognized the most often. Tone 5 is mistakenly recognized very little. In
both the Aidatatang and Magic Data test set the occurrence of tone 1 and 4 is the highest,
this might also be present in the training data, causing the network to be biased towards
tone 1 and 4. However, Tone 5 is poorly recognized in the Aidatatang test set, with a correct
recognition of only 58.5%, compared to a recognition of 80.1% in Magic Data. This can be
partially explained by the phonemes present in Table 6, since the total amount of phonemes
with tone 5 in the transcript is small, and there are several phonemes with tone 5 present
in that table,

6 Responsible Research

This section will discuss the ethical aspects of the research and the repoducibility of the
methods used. It will go into detail on the general ethical implications of phoneme recogni-
tions, as well as mention some aspects that could be investigated further. After this it will
discuss how it has been ensured that the results obtained in this research are reproducible.

6.1 Ethical implications

As mentioned in the introduction of this paper, APR can benefit people who are learning a
new language or benefit people with a speech impediment [3]. In this regard APR research
has a societal benefits that it can increase equality by helping people communicate better,
both in helping people to learn languages, and increasing the performance of ASR for people
who have trouble speaking.

This specific research does not focus on the bias of APR or ASR systems between people
of different genders, ethnicity or geographical locations. This is something that is worth
researching, and is covered for example in [18]. This bias is actually a potential issue in
this research, because there is an imbalance in the gender distribution of one of the training
sets. However, despite this the research can still provide insight into the Performance of
TDNN-OPGRU as an APR system for Mandarin.

6.2 Reproducibility and integrity

There are several ways in which this paper attempts to allow reproducibility of the results.
The main way this is achieved is by including as much information as possible when it comes
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to the parameters that were used to train the network. Another way in which this was done
was by disclosing choices that were made, such as the choice to select the first occurrence of
a character or word in the lexicon. This situation is not ideal, but the choice that is made
was described and can thus be followed by future research, or changed if deemed necessary
or possible.

Some issues, such as the imbalance in gender distribution in the Aidatatang training set
are not ideal. However, while they influence the result of the research, they are disclosed
and discussed. This allows readers of this paper to draw their own conclusions and perform
future research. The code used for preparing the data and running the networks will be
available on GitHub [19] as well. This will ensure that other people are able to reproduce
the results and further investigate these issues.

This research aimed to take the parameters selected in [5]. But when implementing
and training the network it appeared that some parameters, such as the learning rate, were
missing from the information. It is important to disclose these possible deviations from that
research since some the results will be compared.

7 Discussion

In this section the results be reflected on and placed in a broader context by comparing them
to other research on PER. The results will also be compared with other papers focusing on
tone recognition.

7.1 Phoneme Error Rate

The difference in PER between prepared and spontaneous speech is unexpected as mentioned
in the results section. A better result is achieved on spontaneous speech than on prepared
speech. This counters the results of [5], where prepared speech is easier to decode than
spontaneous speech, especially by a large margin as shown in Table 5. However, results
obtained by [17] which used the same setup but implements the TDNN-BLSTM architecture,
obtain similar results. The performance on prepared speech is lower than on spontaneous
speech.

As mentioned in the results section, there are several reasons that can cause the higher
PER on prepared speech that are not due to the Mandarin language or the TDNN-OPGRU
architecture, such as the amount of speakers, gender distribution an differences in transcrip-
tion. The parameters that were used for the comparison between prepared and spontaneous
speech were determined on the prepared speech dev set. This gives a possible bias in the
performance of the architecture towards prepared speech, since different parameters might
have resulted in a higher performance on the spontaneous speech set, but this was not eval-
uated. Despite this, the achieved PER of the TDNN-OPGRU architecture is still higher on
spontaneous speech than on prepared speech.

The PER obtained by TDNN-BLSTM in [17] is higher than that of TDNN-OPGRU for
both prepared and spontaneous speech. TDNN-BLSTM obtained a PER of 45.31 and 35.38
on prepared and spontaneous speech respectively, compared to 39.99 and 30.76 for TDNN-
OPGRU. Together with the results obtained in this research this indicates that TDNN-
OPGRU is better suited for phoneme recognition in Mandarin than TDNN-BLSTM.

Based on the optimization results a higher layer size is beneficial for an improved PER
with the TDNN-OPGRU network. However, no layer size above 1024 cells was evaluated.
It is possible that a large layer size will yield an even lower PER.
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Two researches that evaluated TDNN-BLSTM [20] and TDNN-OPGRU [16] on English
prepared and spontaneous speech had a similar result. There TDNN-OPGRU obtains a
lower PER than TDNN-BLSTM on both prepared and spontaneous speech as well. This
indicates that TDNN-OPGRU might be a better performing network in general, despite
outperforming the TDNN-BLSTM network on dutch prepared speech [5].

7.2 Error-prone phonemes

In the results section the phonemes N, UW, NG, ER and AH have been marked as error-
prone phonemes for both prepared and spontaneous speech, it is important to repeat that
these are not complete phonemes in Mandarin, as the tonal aspect has been stripped. These
error-prone phonemes are quite different from the error-prone phonemes occurring in dutch
according to [5]. TH, AA, K, S, and AX are error-prone in Dutch, which indicates that there
is no direct overlap in error-prone phonemes between these languages, AX does not exist in
the Mandarin phonemes at all. Some similarities occur with the phoneme AA, it is error-
prone for spontaneous speech in Mandarin, but not for prepared speech. These differences
in error-prone phonemes demonstrate how different the Mandarin and Dutch language are.

7.3 Tone

The results demonstrate that an equal amount of the PER is caused by tone-only errors in
both prepared and spontaneous speech. Despite this, tone errors do make up 29 % of the sub-
stitution errors made on both prepared and spontaneous speech. TDNN-OPGRU achieved
a tone-error of 27.48% on prepared speech and 20.42% on spontaneous speech. These results
are better than the achieved PER on base phonemes without tone information. However
there were 36 phonemes present and only 5 tones, indicating that the tone recognition is
harder in comparison to the base phoneme recognition for the TDNN-OPGRU network.

This achieved tone error is also worse than the results obtained in [7], where the best
tone error achieved is 19.82% by a DMN network. They are also worse than the results
obtained in [8], which indicates a tone error of 9.7% on read news speech. This shows that
the TDNN-OPGRU network in its current implementation is still behind in regards to tone
recognition by alternative methods.

8 Conclusions and Future Work

The goal of this research was to investigate the performance of the TDNN-OPGRU network
when decoding phonemes in Mandarin prepared and spontaneous speech. Several research
questions were formed to aid this goal, these questions will now be answered. Recommen-
dations for future research will be made

What is the PER when recognizing phonemes in Mandarin speech with a TDNN-OPGRU
architecture? The best achieved PER is 39.99% on prepared speech and 30.76% on spon-
taneous speech. This is achieved with an intial and final learning rate of 0.05 and 0.005
respectively. The other parameters for this are identical to those defined in [5], except for
the mini-batch size which is set to 64 because of computational limitations. A higher PER
might be achievable with bigger data sets and computational power. This is something that
should be examined in future work.

What is the difference in PER between prepared and spontaneous speech when recog-
nizing phonemes in Mandarin speech with a TDNN-OPGRU architecture? The difference
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in PER is 7.23% in the favor of spontaneous speech. This is different from existing research
[5], the general expectation is that spontaneous speech is harder to decode [4]. There are
several aspects of the research that could have contributed to this result. A smaller amount
of speakers in the prepared speech training data, an in balance in the gender distribution
of the prepared data training set for prepared speech and a difference in the transcripts of
the two data sets. The fact that TDNN-OPGRU performs better on spontaneous speech is
unexpected, and should be investigated further.

What phonemes have an above average PER when decoding phonemes in Mandarin
speech with a TDNN-OPGRU architecture? The phonemes N, UW, NG, ER and AH are
error-prone when decoding both prepared and spontaneous speech with TDNN-OPGRU.
The phonemes AW and AE are error-prone only when decoding prepared speech, and the
phonemes D and AA are error-prone when decoding spontaneous speech with a TDNN-
OPGRU architecture. This difference in error-prone phonemes highlights areas of the lan-
guage where the TDNN-OPGRU architecture performs worse between the speaking styles.
Further research investigating the cause of this difference in error-prone phonemes is recom-
mended.

What influence does the presence of tones have on the PER when decoding phonemes
in Mandarin speech with a TDNN-OPGRU architecture? A similarly sized TDNN-OPGRU
network will achieve a worse PER when tone information in present. It achieves a PER of
39.99% versus 29.34% on prepared speech, and a PER of 30.76% vs 23.27% on spontaneous
speech. This shows that the added complexity and increased amount of phonemes caused by
tonal information makes it more difficult for the TDNN-OPGRU architecture to correctly
recognize phonemes. However, in both prepared and spontaneous speech, mistakes where
only the tone is recognized incorrectly contribute to a similar percentage of the substitution
errors. Indicating that the difference in the PER that is obtained by TDNN-OPGRU is
not caused by errors where only the tone is incorrect. It is also shown that the PER on
base phonemes is worse when tone information is included during training. This indicates
that the inclusion of tone information negatively affects the ability of the TDNN-OPGRU
architecture to recognize the base phonemes.

In this research the main focus has been on a separate evaluation of tone recognition
and base phoneme recognition. However as is stated in [8] the tone and base phoneme are
context dependent and the decision for tone can affect the decision for the base phoneme
during decoding. Due to this more insights and improvements can be gained in future
research by evaluating the tone and phoneme results of TDNN-OPGRU as a whole.
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