

Delft University of Technology

Decentralized and Privacy-Preserving Smart Parking with Secure Repetition and Full
Verifiability

Li, Meng; Zhang, Mingwei; Zhu, Liehuang; Zhang, Zijian; Conti, Mauro; Alazab, Mamoun

DOI
10.1109/TMC.2024.3397687
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Mobile Computing

Citation (APA)
Li, M., Zhang, M., Zhu, L., Zhang, Z., Conti, M., & Alazab, M. (2024). Decentralized and Privacy-Preserving
Smart Parking with Secure Repetition and Full Verifiability. IEEE Transactions on Mobile Computing,
23(12), 11635-11654. https://doi.org/10.1109/TMC.2024.3397687

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TMC.2024.3397687
https://doi.org/10.1109/TMC.2024.3397687

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024 11635

Decentralized and Privacy-Preserving Smart Parking
With Secure Repetition and Full Verifiability
Meng Li , Senior Member, IEEE, Mingwei Zhang , Liehuang Zhu , Senior Member, IEEE,

Zijian Zhang , Senior Member, IEEE, Mauro Conti , Fellow, IEEE, and Mamoun Alazab , Senior Member, IEEE

Abstract—Smart Parking Services (SPSs) enable cruising
drivers to find the nearest parking lot with available spots, reducing
the traveling time, gas, and traffic congestion. However, drivers risk
the exposure of sensitive location data during parking query to an
untrusted Smart Parking Service Provider (SPSP). Our motivation
arises from a repetitive query to an updated database, i.e., how a driver
can be repetitively paired with a previously-matched-but-forgotten
lot. Meanwhile, we aim to achieve repetitive query in an oblivious
and unlinkable manner. In this work, we present Mnemosyne2:
decentralized and privacy-preserving smart parking with secure
repetition and full verifiability. Specifically, we design repetitive,
oblivious, and unlinkable Secure k Nearest Neighbor (Sk NN) with
basic verifiability (correctness and completeness) for encrypted-
and-updated databases. We build a local Ethereum blockchain
to perform driver-lot matching via smart contracts. To adapt to
the lot count update, we resort to the immutable blockchain for
advanced verifiability (truthfulness). Last, we utilize decentralized
blacklistable anonymous credentials to guarantee identity privacy.
Finally, we formally define and prove privacy and security. We
conduct extensive experiments over a real-world dataset and com-
pare Mnemosyne2 with existing work. The results show that a

Manuscript received 22 June 2023; revised 19 January 2024; accepted 3 May
2024. Date of publication 7 May 2024; date of current version 5 November 2024.
This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant U23A20303 and Grant 62372149, in part by
the Beijing Advanced Innovation Center for Future Blockchain and Privacy
Computing, and in part by the EU LOCARD Project under Grant H2020-SU-
SEC-2018-832735. The work of Mamoun Alazab was supported in part by the
Ministry of Education of the Republic of Korea and in part by the National
Research Foundation of Korea under Grant NRF-2021S1A5A2A03064391.
Recommended for acceptance by O. Yagan. (Corresponding author: Zijian
Zhang.)

Meng Li and Mingwei Zhang are with the Key Laboratory of Knowledge
Engineering with Big Data, Hefei University of Technology, Ministry of Ed-
ucation, Hefei 230002, China, also with the School of Computer Science and
Information Engineering, Hefei University of Technology, Hefei 230002, China,
also with the Anhui Province Key Laboratory of Industry Safety and Emergency
Technology, Hefei 230002, China, and also with the Intelligent Interconnected
Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei
230002, China (e-mail: mengli@hfut.edu.cn; mwzhang@mail.hfut.edu.cn).

Liehuang Zhu is with the School of Cyberspace Science and Tech-
nology, Beijing Institute of Technology, Beijing 100081, China (e-mail:
liehuangz@bit.edu.cn).

Zijian Zhang is with the School of Cyberspace Science and Technology,
Beijing Institute of Technology, Beijing 100081, China, and also with the Beijing
Advanced Innovation Center for Future Blockchain and Privacy Computing,
Beijing 100081, China (e-mail: zhangzijian@bit.edu.cn).

Mauro Conti is with the Department of Mathematics and HIT Center, Uni-
versity of Padua, 35131 Padua, Italy, and also with the Faculty of Electrical
Engineering, Mathematics and Computer Science, Delft University of Technol-
ogy, 2628 Delft, The Netherlands (e-mail: mauro.conti@math.unipd.it).

Mamoun Alazab is with the College of Engineering, IT and Environ-
ment, Charles Darwin University, Casuarina, NT 0810, Australia (e-mail:
alazab.m@ieee.org).

Digital Object Identifier 10.1109/TMC.2024.3397687

query only needs 8 seconds (175 ms) on average for service waiting
(verification) among 500 drivers.

Index Terms—Smart Parking, repetitive query, privacy, security,
SkNN, blockchain.

I. INTRODUCTION

THE surge of vehicles and the lack of effective navigation
have lead to a parking headache in modern cities. It is

reported that there are 289.5 million registered cars in the US in
2021 [1] and drivers from NYC, LA, and San Francisco spent
up to 107 Hours a year looking for parking [2]. It is estimated
that the global smart parking market will reach US$11.2 Billion
by 2027 [3]. Driven by the advancement of cloud computing
and smart devices, Smart Parking Services (SPSs) are proposed
to alleviate the parking problem. SPSs guide cruising drivers to
a nearby parking lot with the help of a Smart Parking Service
Provider (SPSP) or Road-Side Units [4], [5], [6], [7]. Recently,
Decentralized Smart Parking Services (DSPSs) attract plenty of
attention from both academia [8], [9] and industrial commu-
nity [10] for eliminating the deficiency of centralized solutions,
i.e., single-point-of-failure and non-transparency. They have
revealed a great potential to fundamentally alter transportation
systems by reducing cruising time, saving gas/electricity cost,
and easing traffic congestion.

While SPSs offer appealing advantages, drivers still encounter
various privacy concerns [11], [12]. This is because drivers have
to upload sensitive current locations to request a parking lot
from an untrusted SPSP. Such location information is highly
related to user activities, which can be analyzed to track and
even profile drivers [13]. The privacy concerns have stimulated
the emergence of Privacy-Preserving Smart Parking (PPSP) [4],
[5], [6], [7], [8], [9] that focuses on privacy issues.

We observe that there is a new parking requirement, i.e., repet-
itive parking. In particular, a driver may request a previously
matched parking lot that she/he forgets its exact location. We
validate it by using an online ballot (see Section VIII). For exam-
ple, as shown in Fig. 1, a driver requested a parking spot on day 1
and is matched with a parking lot. On dayk, the driver in the same
neighborhood needs to find the previously matched parking lot.
However, the driver forgets the exact location and has erased
the parking history locally for privacy concerns. Inspired by this
new requirement, we are motivated to achieve secure repetition,
i.e., drivers can request a previously-matched-but-forgotten lot
in an oblivious and unlinkable manner. Informally, it prevents

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3553-0813
https://orcid.org/0000-0002-0204-1709
https://orcid.org/0000-0003-3277-3887
https://orcid.org/0000-0002-6313-4407
https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0002-1928-3704
mailto:mengli@hfut.edu.cn
mailto:mwzhang@mail.hfut.edu.cn
mailto:liehuangz@bit.edu.cn
mailto:zhangzijian@bit.edu.cn
mailto:mauro.conti@math.unipd.it
mailto:alazab.m@ieee.org

11636 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 1. An example of repetitive parking.

the SPSP from perceiving a driver’s demand for repetitive query
and linking the current request to her/his previous requests. At
first glance, requesting the same parking lot more than once
does not violate user privacy. However, it informs the SPSP of
the driver’s visit to the same neighbor, which leaks the driver’s
moving pattern and frequently visited locations. Therefore, the
potential privacy leakage necessitates secure repetition.

Existing work on PPSP [4], [5], [6], [7], [8], [9] does not
support repetitive parking, let alone secure repetition. Secure
k Nearest Neighbor (S k NN) [14], [15] naturally fits in PPSP
since it is a secure location-based service that performs user-item
matching and protects location privacy. However, existing work
does not consider searching on an updated index that may not
return the previous data item (parking lot) and disable repetitive
query (parking). For example, say a driver Bob drove to the Hair
Salon on 64th Street in New York and he used a smart parking
app to park in a parking lot “iPark” on the same street. A few days
later, Bob drives to the club again but forgets where the iPark
is. A problem arises when the SPSP has a new encrypted index,
which is updated by the parking lot owner, and the previous
iPark was ordered at the bottom of the recommendation list. If
Bob submits a S2NN query, he will probably receive iPark on
E 65th Street and iPark on E 67th Street, which is not what
he expects. Moreover, most existing work on S k NN and PPSP
only considers a semi-honest model for the service provider [4],
[5], [6], [7], [8], [9], [14], [15]. In this study, we consider a
stronger security model, where the SPSP is malicious and has
a secret agreement with a Parking Lot Manager (PLM). Simply
put, they can launch an unfair ordering attack, a mismatching
attack, an ignoring attack, and a miscounting attack, which
necessitates full verifiability. The drivers should be allowed to
verify the correctness, completeness, and truthfulness of the
query results. Therefore, smart parking with secure repetition
and full verifiability exhibits a different structure that cannot be
handled using existing techniques, which calls for new solutions.
To achieve this goal, we need to address two fundamental
problems:
� How to request a previously-matched data item from the

SPSP with an updated secure index under a S k NN
framework?

� How to guarantee verifiability of the query results when
the SPSP may tamper with the matching process?

A simple way of finding a previously-matched parking lot in
an oblivious and unlinkable manner is to query all the parking

lots near the driver’s current location. Apparently, this causes
huge computational costs in query processing and large com-
munication overhead of returned results. Assume that the driver
needs the parking lot pl with a sequence number i. Intuitively,
there are three approaches to finding pli in SPSP’s index:
1) Find pli and continue to find the other k − 1 data items.
2) End at pli and return the obtained data items. 3) Randomly
choose r data items before pli and find k − r − 1 data items
after pli. The three approaches require special treatment on
locating pli which makes it difficult for the SPSP not to notice
this difference. This first one may traverse the whole index and
the second one may return all the matched data items if pli is
in the end. The last one is faced with an uncertain choice of
r. To enable repetitive parking, we can introduce an identity
to each parking lot. The data owner appends the identity to
the location for each parking lot. When processing a repetitive
parking query, the SPSP uses the identity as the extra query
condition. While matching the previous parking lot precisely
regardless of the index update, this approach, however, excludes
other location-matching parking lots which may expose the
driver’s intention. To match other parking lots, we cannot use the
identity directly. Therefore, challenge I lies in the contradiction
between locating a preferred parking lot and matching other
parking lots. In current S k NN schemes [14], [15], there is a
count update problem that could potentially be the Achilles’ heel
of S k NN. As it is well-known that a place of business (park
lot) frequently updates its service availability (count of available
parking spots), thereby, updating the count of each data item is
a normal operation for the SPSP. However, the index structures
of current S k NN techniques can only lay a foundation for basic
verifiability (correctness and completeness), but cannot control
the data item count that varies during query matching (advanced
verifiability). Therefore, challenge II lies in the contradiction
between data owner’s losing control over counts and SPSP’s
proving the truthfulness of counts.

To cope with the above challenges, we propose a decentralized
and privacy-preserving scheme named Mnemosyne2 to achieve
smart parking with secure repetition and full verifiability. Specif-
ically, we first divide the service map into a l-leveled pyramid
and each level consists of a number of grids. For each level,
we design an efficient space encoding technique to process
locations. The parking lot manager encodes the parking lots’
locations and obtains a set of leveled location codes. At the l-th
level, we assign an identity to each parking lot. The parking lot
manager computes a prefix family of the parking lot identity and
integrates it with location codes at the l-th level. Next, the PLM
inserts the integrated codes into an Indistinguishable Bloom
Filter (IBF) [17] as a secure index. A driver user who is about to
submit a repetitive parking query generates a customized identity
range to compute a minimum set of prefixes while guaranteeing
the range includes the identity of the previous parking lot and
the length of the minimum set of prefixes is equal to the one of a
normal query (non-repetitive query). Next, the driver integrates
the prefixes with the location codes and computes a query token,
hiding the intention of repetitive parking. By doing so, the SPSP
can search the secure index by querying the token on it without
violating the secure repetition, solving the first challenge.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11637

TABLE I
COMPARISON AMONG PREVIOUS PPSP SCHEMES AND MNEMOSYNE2

To bridge the gap between the loss of count control and the
autarchy of count update, we build a consortium blockchain [18],
[19] among several collaborating SPSPs to offer transparency by
recording parking/departing queries, and responding to parking
queries via smart contracts. In this way, the SPSPs have to prove
the truthfulness of available spots by providing periodic proofs
from the auditable blockchain, solving the second challenge.

Last, we utilize the Decentralized Blacklistable Anonymous
Credentials (DBAC) [20] to adapt to the decentralized network
while guaranteeing identity privacy.

We list the comparison among previous PPSP schemes and
Mnemosyne2 in Table I, and state our contributions as follows.
� To the best of our knowledge, we are the first to focus

on the repetitive parking in SPSs. We propose a privacy-
preserving smart parking system SPS with secure repetition
based on a carefully crafted S k NN technique.

� We focus on the count update problem of existing S k NN
and design a blockchain-based approach to provide full
verifiability of query results.

� We integrate smart parking with S k NN by locating four
security attacks that apply to both of them.

� We formally state and define privacy and security. We
implement a prototype based on a server and conduct exper-
iments over a real-world dataset. We conduct a thorough
comparison with existing work regarding system model,
security, privacy, and performance.

The remaining of this paper is organized as follows. We
discuss related work in Section II. We elaborate on the system
model, threat model, and design objectives in Section III. We
revisit some preliminaries in Section IV. In Section V, we
present the proposed Mnemosyne2. We formally analyze the
security and privacy in Section VI. We implement Mnemosyne2

and analyze its performance in Section VII. Lastly, we give
discussions in Section VIII and conclude in Section IX.

II. RELATED WORK

In this section, we review some related work and summarize
how Mnemosyne2 advances the state of the art.

A. PPSP

Ni et al. [4] proposed a privacy-preserving smart parking nav-
igation scheme P-SPAN with efficient navigation result retrieval.
They utilize the short randomizable signatures [21] to provide
anonymous authentication. Each driver encrypts the basic query
information, e.g., pickup location and destination, and sends the

ciphertext to an SPSP via the relay of the nearby RSUs. The SPSP
authenticates and decrypts the query and looks for an available
parking lot. The SPSP encrypts a navigation result and returns
it to the driver by using a counting Bloom filter [22].

Huang et al. [5] proposed a privacy-preserving reserva-
tion scheme for automated valet parking. They protect identity
privacy and prevent the claimed “double-reservation attack”
based on zero-knowledge proofs of knowledge and proxy re-
signature [23]. To enhance location privacy, they adopt the
Geo-indistinguishability mechanism [24] to protect from the
location-based statistical analysis attack.

Ni et al. [6] proposed a secure and privacy-preserving au-
tomated valet parking scheme for self-driving vehicles. They
extend anonymous authentication to support two-factor authen-
tication with mutual traceability based on one-time password
and secure mobile devices. They complete the querying process
based on a cuckoo filter supporting item adding and remov-
ing [25].

Zhu et al. [7] proposed to leverage private parking spots
to ease the public parking problem and presented a privacy-
preserving smart-parking scheme supporting anonymous pay-
ment. The short randomizable signatures are used to provide
identity privacy in a conditional way. Each driver sends a cloaked
location to the SPSP which constructs a hashmap for quick
matching. The anonymous payment process is achieved by using
E-cash based on blond signatures [26].

Wang et al. [8] presented a privacy-preserving parking spot
sharing scheme without trusted third parties. The use decen-
tralized anonymous credentials [27] for identity privacy in a
consortium blockchain maintained by fog servers. The parking
spot queries and reports are encrypted via ElGamal encryp-
tion [28]. A variant Monero is used to guarantee the anonymity
and confidentiality of payments.

Li et al. [9] presented a privacy-preserving parking-space
recommendation scheme. A driver with a decentralized anony-
mous credential anonymously reveals to the SPSP (enabled by
the blockchain) a set of necessary attributes to find a parking
slot. The blockchain forwards the request to a parking space
provider, which responds to the request and updates the status
and decisions to the blockchain.

B. S k NN

Li et al. [44] presented the first range query processing
protocol, which achieved index indistinguishability under the
indistinguishability against chosen keyword attack (IND-CKA).

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11638 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

A data owner converts each data item dti by prefix encod-
ing [29] and organizes each prefix family of encoded item
F (dii) into a PBTree. Then the data owner makes the PBtree
privacy-preserving by a keyed hash message authentication code
HMAC and Bloom filters [30]. For each prefix pri, the data
owner computes several hashes HMAC(Kj , pri), and inserts a
randomized version HMAC(r,HMAC(Kj , pri)) into a Bloom
filter. Each r corresponds to a node and each node relates to a
prefix family, i.e., data item. Next, a data user converts a range
into a minimum set of prefixes and computes several hashes
HMAC(Kj , pri) for each pri as a trapdoor. The service provider
searches the PBtree by using the trapdoor.

Lei et al. [15] presented a secure and efficient query process-
ing protocol SecEQP. They leveraged several primitive projec-
tion functions to convert the neighbor regions of a given location.
Given the codes of two converted locations, the service provider
computes the proximity of the two locations by judging whether
the two codes are the same. The two-dimensional location data is
projected to high-dimensional data to expand the location space
and make the converted location more secure. The data owner
further embeds the codes into an IBF [17] to build a secure index.
In an IBF, a pseudo-random hash function h determines a cell
location H(hk+1(hj(wi))⊕ r), i.e., which twin cell stores ‘1’.
The data user computes similar trapdoors by using a keyed hash
message authentication code. The query processing is conducted
by searching the IBF tree to find a match by using the trapdoor.

Cui et al. [16] proposed a secure and verifiable k nearest
neighbor query processing protocol SVkNN. They adopted
Voronoi diagram to divide the whole area. This space encoding
method is a replaceable unit that is not directly related to their
core design. They design a new data structure, i.e., Verifiable
and Secure Index (VSI) to support fast query and verification.
Next, they propose several secure protocols and a compact ver-
ification method to facilitate the operation over VSI to support
performing the search over the secure index. However, SVkNN
uses two cloud servers that require extra communication and
computation.

Li et al. [31] proposed a repetitive, oblivious, and unlinkable
S k NN scheme ROU for location-based services. It designs a
multi-level structure to process locations and integrates a data
item identity into the framework of S k NN. Data owners and
data users can realize secure query processing via encrypted
indexes and encrypted tokens from a customized identity range.
It is also the foundation of this work.

The promotion over existing work is that Mnemosyne 2 sup-
ports secure repetitive querying for Sk NN with an updated index
and secure repetitive parking for SPSs, supports truthfulness
of results for S k NN and full verifiability (correctness, com-
pleteness, and truthfulness) of query results for SPSs, resists
unfair ordering attack, mismatching attack, ignoring attack, and
miscounting attack from the malicious SPSP. Specifically, we
extend our previous work (ICICS’22) [31] from the following
aspects: We observe the problem of repetitive query in smart
parking services (SPSs) and emphasize how it violates drivers’
location privacy. We formally define repetitive querying in SPSs.
Following this problem, we propose the requirement of secure
repetition in RHS. We introduce and formally define four new

Fig. 2. System model and information flows of mnemosyne2.

attacks, i.e., unfair ordering attack, mismatching attack, ignor-
ing attack, miscounting attack from the Smart Parking Service
Provider (SPSP) and drivers. Under these attacks, the matching
fairness of is easily violated. We formally define privacy (identity
privacy and location privacy), secure repetition (obliviousness
and unlinkability) and full verifiability (correctness, complete-
ness, and truthfulness) in SPSs. We propose a new ride matching
scheme Mnemosyne 2 based on a carefully crafted Sk NN and
blockchain to achieve the privacy and security goals. We update
the related work with the state-of-the-art. We conduct a thorough
comparison with P-SPAN (2018), SAVP (2018), PrivAV (2018),
ASAP (2020), PEPS (2020), PriParkRec (2021) regarding sys-
tem model, computational costs, and communication overhead.
We include a new section (Section III Problem Statement). This
section gives the system model, security model, and design
objectives of our smart parking scheme. We formally analyze
the security and privacy of our proposed scheme. We instantiate
Mnemosyne2 using a PC server as crypto server and an An-
droid smartphone as a driver, two Android virtual machines as
testing devices. We conduct extensive experiments over a real-
world dataset to evaluate Mnemosyne2’s performance, including
computational cost, communication overhead, and scalability.
According to the previous points, Title, Abstract, Introduction,
and Conclusions have been completely revised. In general, we
re-structured the paper in a more reader-friendly manner.

III. PROBLEM STATEMENT

In this section, we formalize the system model (Section III-A)
and the formal security model (Section III-B), and summarize
the formal design objectives (Section III-C). We formally define
the four new attacks mentioned in Section I.

A. System Model

We portray the system model in Fig. 2. We list the key
notations in Table II. The system model of Mnemosyne2 consists
of five types of entities: driver, parking lot (PL), parking lot
manager (PLM), smart parking service provider (SPSP), Crypto
Server (CS), and consortium blockchain (CB).

Driver is a user who is equipped with an on-board unit or
a smartphone and searching a nearby parking lot near her/his
current location cl. The driver registers to an SPSP, the CB, and
the CS. The driver downloads the latest requirement of an SPSP
from the CB, sends a parking query to an SPSP, and awaits a

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11639

TABLE II
KEY NOTATIONS OF MNEMOSYNE2

query result from the CB. The driver decrypts the information of
a set of parking lot and chooses one to establish a secure channel
to communicate and park. When the parking is complete, the
driver sends a feedback to the CB. Only registered drivers can
enjoy the SPS.

PL is a parking lot with multiple parking spots. It monitors
the status of each parking spot, waits for drivers to park, and
charges a parking fee for the drivers through IoT devices (e.g.
sensors and cameras).

PLM owns at least one parking lot pl. It monitors each PL
and uploads their real-time status (e.g., parking fee standard and
number of available parking spots) to an SPSP.

SPSP is a cloud server that collects parking lot information
from several PLMs. It provides on-demand parking services to
cruising drivers by uploading a parking status transaction TxSta

with parking lots, proofs, and requirements to the CB. It receives
and verifies parking queries from drivers. The SPSP accepts a
driver’s query if and only if the driver meets its requirement.
An SPSP collects data from the CB automatically and puts its
requirement, including a candidate driver set and a blacklist, to
the CB regularly. We assume that there are more than one SPSP
and they all associate with at least one PLM.

CB is a permissioned blockchain co-maintained by SPSPs
that processes all the parking transactions. It is accessible to
all participants, e.g., drivers and SPSPs. It receives registration
queries from drivers, parking status from SPSPs, and responds
to drivers’ parking queries by using a driver-lot matching smart
contract (DLMSC).

CS is an entity that initializes the Mnemosyne 2 system by
generating public parameters and cryptographic keys for the
drivers and SPSPs. For the public parameters of the DBAC,
the CS is only used in the system initialization phase. For the
parameters of the Sk NN, the CS is only used during registration.

The CS can be the Department of Transportation in a real-world
implementation. It divides the parking service area into a multi-
level structure with SPSPs.

Definition 1 (Repetitive Query): Given a driverDj and his/her
parking queryQ, we there is a repetitive queryQ′ fromDj when
the requested PL identity is the same as the query result of Q.

B. Security Model

The blockchain is trusted for correctness and availability
while not for user privacy [32]. We assume that the CS generates
the public parameters honestly. We do not consider physical
attack, such as tracking a driver by taking photos. The threats
mainly come from internal adversaries [19], [33], [34], [35],
[36], [37] and we adopt the semi-honest security model for the
drivers. The drivers are assumed to be semi-honest. We do not
exclude the possibility that a driver to repudiate the parking
fee. Such a misbehavior can be detected at the parking lot exit
by conditionally triggered video surveillance or camera, which
generates a proof of flee for accountability. Moreover, we can
ask the drivers to put down a deposit before parking, which in
turn calls for studying its feasibility. The security assumption of
PLM and PL is semi-honest. They do not collude with the SPSP
since they care about their reputation in the long run and it is
possible for the SPSP to know which PL the current driver is
heading toward under such a collusion attack.

Especially, we consider unfair ordering attack, mismatching
attack, ignoring attack, miscounting attack from the SPSP. •The
unfair ordering attack sorts a parking lot in a specific location
when building a secure index over a set of parking spots, which
is similar to unfair ranking where some search engines treat
websites unfairly [38].
� The mismatching attack recommends to a driver a parking

lot that does not match the current location of the driver.
� The ignoring attack does not recommend to a driver a

parking lot that matches the current location of the driver
when the number of matched parking lots is less than k.

� The miscounting attack claims that a location-matching
parking lot does not have enough parking spots. The
miscounting attack is from the malicious SPSP since it
receives all parking lot information from the PLMs and can
easily misclaim the number of parking spots. The PLM is
considered as the owner of several PLs that does not have
enough incentive to miscount when maintaining its good
reputation.

Now we give their formal definitions.
Definition 2 (Unfair Ordering Attack AttUO): Given a set of

parking lots PL = {pl1, . . . , pln1
}, we define a normal order-

ing function, i.e., a pseudo-random permutation F1 : PLn1 →
π(PLn1), which outputs a sequences of parking lots drawn from
PL after a pseudo-random permutation π. Given PL, a parking
lot pli, and a location j where pli and j are chosen by a malicious
SPSPA, the unfair ordering attack AttUO is defined as a function

FUO
1 : PLn1×[n1]× [n1]→{. . . , pli, . . .}.

jth

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11640 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

PLn1 denotes to a sequence of n1 distinctive parking plots
and AttUO can be extended to put any pl at any intended location.

Definition 3 (Mismatching Attack AttMM): Given a set
of secure indexes IND = {ind1, ind2, . . . , indn1

} and a
query token qt including a query parameter k, we define
a normal matching function F2 : INDn1 × {qt} → {indqti |
Match(indqti , qt) = 1, 1 ≤ i ≤ k, indqti ∈ IND}, which out-
puts the first k secure indexes that matches qt. Match(·) is a
membership checking function that checks whether a qtmatches
an ind. Given IND, a secure index indj chosen by A, the
mismatching attack AttMM is defined as a function

FMM
2 : INDn1×{qt}×[n1]→{indqti |Match(indqti , qt)=1,

0≤ i≤j − 1, j ≤ k,Match(indqtj , qt) = 0}.

Definition 4 (Ignoring Attack AttIG): Given IND, a secure
index indj chosen by A, the ignoring attack AttIG is defined as
a function

F IG
3 : INDn1 × {qt} × [n1]→ {indqti |Match(indqti , qt) = 1,

0 ≤ i ≤ k, indqti ∈ IND \ {indj}, indj ∈ F2(IND, qt)}.
Definition 5 (Miscounting Attack AttMC): A secure index indi

corresponds to a parking lot pli with a number of available park-
ing spotpsi, we define a normal counting functionF4 : {ind} →
{0, 1, . . . , cnt}, which outputs the number of available parking
spots. Given an indi chosen byA, the miscounting attack AttMC

is defined as a function

FMC
4 : {indi} → {0, 1, . . . , psi − 1, psi + 1, . . . , cnt}.

We separated privacy from security to achieve a reasonable
level of rigor and clarity. The privacy is about location, iden-
tity, and secure repetition (obliviousness, unlinkability), while
security only refers to defending three attacks.

C. Design Objectives

1) Privacy: (1.1) Location privacy. The current location of
drivers should be protected from the SPSP. The location pri-
vacy refers to index privacy and token privacy. (1.2) Identity
Privacy. The identity of drivers should be protected from the
SPSP and PLM. We give its formal definition as follows. A
Probabilistic Polynomial-Time (PPT) adversaryA attacking the
smart parking scheme Π is SPSP. Now we design an experiment
PrivKind

A,Π(λ) based on A and Π as follows.
Identity indistinguishability experiment PrivKind

A,Π(λ):
1. Setup: a pair of public key and private key (sk, pk)

is generated. Tickets {tki} of sk are computed by
TicketGen(sk) [20]. A can access an oracle O.

2. Oracle: A makes a number of queries to O and receives
newly computed tickets from TicketGen(sk).

3. Challenge: C chooses a uniform bit b ∈ {0, 1}. If b = 0, C
returns {tki} toA; else, returns tickets sampled uniformly
at random from the range of the TicketGen(·).

4. Guess: A outputs b′ ∈ {0, 1}.
5. The output of the experiment is defined to be 1 if b′ = b,

and 0 otherwise. We write PrivKind
A,Π(λ) = 1 if the output

of the experiment is 1, i.e., A succeeds.

Definition 6 (Identity Privacy): Mnemosyne2 achieves iden-
tity privacy if Pr[PrivKidn

A,Π(λ) = 1] ≤ 1
2 + negl(λ), where

the probability is taken over all randomness used in
PrivKidn

A,Π(λ), idn stands for identity, and negl() is a negligible
function.

2) Secure Repetition:
(2.1) Obliviousness. A cannot know whether any driver re-

quests a previous parking lot, i.e., cannot distinguish a normal
query from a normal query (non-repetitive query). We design an
experiment PrivKobl

A,Π(λ) as follows.
Obliviousness experiment PrivKobl

A,Π(λ):
1. Setup: n1 parking lots and n2 drivers are generated. Secret

keys are generated by using Setup.
2. Execution: Π is executed with n1 parking lots and n2

drivers. A observes the index, token, and matching.
3. Prepare: A generates a pair of queries q0 = (cl0, pl

′
0)

and q1 = (cl1, pl
′
1) satisfying cl0 = cl1,pl′0 ∈ {pl1, pln1

},
pl′1 = 0, and |S(Range(pl′0))| = |S(pl1, pln1

)|. A sends
(q0, q1) to C. Range() is a designed function to hide the
PL’s identity, which we will define in Section V-D.

4. Challenge: A uniform bit b ∈ {0, 1} is chosen and a chal-
lenge query token T Kb ← Token(qb) is computed and
given to A.

5. Guess: A outputs a bit b′.
6. The output of the experiment is defined to be 1 if b′ = b,

and 0 otherwise. We write PrivKind
A,Π(λ) = 1 if the output

of the experiment is 1, i.e., A succeeds.
Definition 7 (Obliviousness): Mnemosyne2 achieves oblivi-

ousness if Pr[PrivKobl
A,Π(λ) = 1] ≤ 1

2 + negl(λ), where the prob-
ability is taken over all randomness used in the experiment.

(2.2) Unlinkablity. A cannot link any driver’s request to
her/his previous requests. We design an experimentPrivKunl

A,Π(λ)
as follows.

Unlinkability experiment PrivKunl
A,Π(λ):

1. Setup: n1 parking lots and n2 drivers are generated. Secret
keys are generated by using Setup.

2. Execution: Π is executed with n1 parking lots and n2

drivers. A observes the index, token, and matching.
3. Challenge: A uniform bit i ∈ [1, n2] is chosen and a

new query token qi1 is computed and given to A. We
require that previous query qi0 and qi1 satisfy Exp(cli0) �=
Exp(cli1) ∨ idi0 �= idi1. Exp() is a function that expands
the input area to a bigger area.

4. Guess: A outputs a bit i′.
5. The output of the experiment is defined to be 1 if i′ = i,

and 0 otherwise. We write PrivKunl
A,Π(λ) = 1 if the output

of the experiment is 1, i.e., A succeeds.
Definition 8 (Unlinkablity): Mnemosyne2 achieves un-

linkablity if Pr[PrivKunl
A,Π(λ) = 1] ≤ 1

n2
+ negl(λ), where the

probability is taken over all randomness used in the
experiment.

3) Full Verifiability:
(3.1) Correctness. Given a park query pq, the SPSP returns the

result setR = {R1, R2, . . . , Ru}. If for each result Ri (i ≤ u),
the decrypted parking lot pli of Ri matches the location of pq,
thenR is correct.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11641

(3.2) Completeness. Given a parking query pq, the SPSP
returns the result setR = {R1, R2, . . . , Ru}. If each of the first
k records pli ∈ PL such that pli matches Q, the encrypted data
Ri must inR, thenR is complete.

(3.3) Truthfulness. Given a parking query pq, the SPSP returns
the result setR = {R1, . . . , Ru}. If eachRi (i ≤ u) has enough
available parking spots, thenR is truthful.

Efficiency: The proposed scheme Mnemosyne2 should be
efficient, i.e., computational costs and communication overhead
of Mnemosyne2 is acceptable. Especially, it has good scalability
regarding number of drivers and parking spots.

IV. PRELIMINARIES

In this section, we revisit some preliminaries, namely
IBF (Section IV-A), two cryptographic assumptions (Section
IV-B), zero-knowledge proof of knowledge (Section IV-C),
and blockchain and smart contract (Section IV-D).

A. IBF

An Indistinguishable Bloom Filter (IBF) contains an ar-
ray IBF of m cell twins, t pseudo-random hash functions
h1, h2, . . . , ht+1, and a hash function H . Each cell twin has
two cells and each cell stores either ‘0’ or ‘1’. In the begin-
ning, the all cells are set to ‘0’. An item tm is hashed to
t twin cells IBF [h1(tm)], IBF [h2(tm)], . . . , IBF [ht(tm)].
ht+1 and a random number r determine which cell stores ‘1’:
IBF i[hi(tm)][H(ht+1(hi(tm))⊕ r)] = 1, 1 ≤ i ≤ t.

B. Two Cryptographic Assumptions

Link Decisional (LD)-RSA assumption [39]. Let N = (2p+
1)(2q + 1) be a product of two large safe primes and g is
a generator of QRN . Let p0, q0, p1, q1 be four sufficiently
large and distinct primes, and n0 = p0q0, n1 = p1q1. We have

(N ; g;n0;n1; g
p0+q0)

c≈ (N ; g;n0;n1; g
p1+q1) where A

c≈ B
to denote that A and B are computationally indistinguishable

Decisional Diffie-Hellman (DDH)-II assumption [40]. The
original DDH-II assumption works in a prime order sub-group
of a group Z∗p for prime p, it can be extended to the quadratic
residue group QRN , where N is the product of two safe primes.
Let g be a generator of QRN , then for any distribution X with
a super-logarithmic min-entropy, we have (g, gx, gy, gxy) ≈
(g, gx, gy, gz), where x← X and y, z

$← ZN .

C. Zero-Knowledge Proof of Knowledge

In a zero-knowledge proof of knowledge (ZKPK) proto-
col [41], a prover proves a statement to a verifier without
revealing anything about the statement other than that it is true.
Normally, the prover P and the verifier V have to conduct
several interactions for the proving process to complete. But
this process can be converted into non-interactive proofs by
applying the Fiat-Shamir heuristic [42]. For instance, we denote
NIZKPK{(a) : A = ga} as a non-interactive zero-knowledge
proof of knowledge of the value a satisfyingA = ga. The values
in () are the knowledge thatP needs to prove, and the other values

are known to V . The transformed non-interaction proof protocol
admits a message m as input. It is named Signature Proof of
Knowledge (SPK), denoted as SPK{(w) : S}[m] where w is a
witness and S is a statement.

D. Blockchain and Smart Contract

Blockchain is a public, decentralized, and tamper-proof ledger
that was initially used as an underlying technique to solve the
double-spending problem in cryptocurrencies [43]. It integrates
cryptography, economic modeling, peer-to-peer networking and
decentralized consensus to achieve distributed database syn-
chronization. Blockchain is classified into three types: public,
private, and consortium. We rely on the last one to build our
parking system where the blockchain stakeholders have some
trust in each other and they collaborate with each other to achieve
a common goal. Smart contact is a piece of codes deployed
on the blockchain with a unique address and state variables.
It autonomously performs the functions triggered by specific
transactions in a predetermined manner. Executing functions in
smart contracts raises some execution fees to incentivize peers
and mitigate denial of service attacks.

V. THE PROPOSED SCHEME MNEMOSYNE2

A. Overview

At a high level, Mnemosyne 2 consists of five phases: system
initialization, parking sharing, parking querying and respond-
ing, and parking completion. In system initialization, the CS
generates all system parameters for anonymous authentication
and Sk NN. The SPSPs initialize the CB and DLMSC. The
drivers register to one of the SPSPs. The drivers register to CB
by sending a parking registration transaction TxReg. The drivers
and PLMs register to the CS to obtain keys and functions. In
parking sharing, each SPSP collects parking lot information
from their PLMs and uploads a parking status transaction TxSta

to CB. In parking querying and responding, a driver sends a
parking querying transaction TxQue to an SPSP. They interact
with each other to complete anonymous authentication. If the
driver is authenticated, the SPSP forwards it to the CB to be
processed by the DLMSC. If the query is matched to a parking
lot, the DLMSC generates a query result R, i.e., a receipt of
TxQue, waiting to be packed in a new block for the driver to
retrieve. In parking completion, the driver pays a parking fee
to the parking lot and PLM sends a departing transaction TxDep

to CB.

B. System Initialization

We propose a space encoding technique to process the location
of parking lots into a multi-level structure and prepare for
efficient matching.

As shown in the upper half part of Fig. 3 (PLM view), there
are l = 3 levels in the pyramid-like structure, i.e., l1, l2, and l3.
All levels cover the whole service area with different granularity.
From the second level l2, the area is divided into more than one
grid. Each level encodes its grids from ‘1’ prefixed with the level
number such that each grid has a unique number. In the upper

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11642 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 3. Space encoding technique.

half part of Fig. 3 (driver view), the current location on the lowest
level is expanded into several grids. The CS generates a secret
key sk.

The n4 SPSPs create and maintain a CB. The SPSPs all have
a blockchain account by possessing a pair of public key and
private key (pk, sk). A DLMSC is defined and deployed on the
CB with a unique address. The drivers register to one of the
SPSPs to become a candidate driver.

Each SPSP publishes on the CB a requirementRE including
a candidate driver set CD, a policy PO, and a rating records list
LI. A driver Dj is assumed to satisfy RE if Dj ∈ CD and the
scores ofDj calculated according toLI andPO satisfyPO. We
refer readers to [20] for details. The anonymous authentication
is based on RSA and works in a quadratic residue group QRN

with a generator g, where N is the product of two big safe prime
numbers.

Given a security parameter 1λ, a driver runs a key generation
algorithm Gen(1λ) to generate two safe primes p, q and a
prime n = 2pq + 1, and outputs a secret key sk = (p, q) and a
public key pk = n. To check the validity of (sk, pk), the driver
checks whether p and q are safe primes with identical lengths,
n = 2pq + 1, and n is a prime. Next, the driver computes π ←
SPK{(sk) : Ver1(pk, sk) = 1}[aux, att], where Ver1(·) is a
polynomial-time algorithm, s.t. Ver1(pk, sk) = 1 iff (pk, sk)
is a valid key pair. The driver generates a pseudo identity pid
and stores (pid, pk, π, att, aux) on the CB by sending a parking
registration transaction:

TxReg = [“Register”, pid, pk, π, att, aux, pkEth]sk. (1)

For the S k NN part, the CS generates t+ 2 (reg-
ularly updated) secret keys K = {sk0, sk1, . . . , skt+1}, t
pseudo-random hash functions h1, h2, . . . , ht where hi(.) =
HMACski

(.)%m (1 ≤ i ≤ t), a pseudo-random hash func-
tion ht+1(.) = HMACt+1(.), and a hash function H(.) =
SHA256(.)%2. The drivers and PLMs register to the CS to obtain
K and (h1, h2, . . . , ht+1, H). We define Check1(IBF , r, T K)
as checking whether a keyword w of a token T K exists in
an IBF . For example, T K = {110, 11∗, 1 ∗ ∗} has three key-
words.

C. Parking Sharing

To provide an SPS, an SPSP collects real-time parking lot
information from its PLMs. Specifically, a PLM is monitor-
ing a set of parking lots PL = {pli}. A parking lot pli =
(idi, psi, prii, loci) where idi, psi, prii, and loci are the iden-
tity, parking spot number, price standard, and location of pli,
respectively. For each pli, the PLM converts loci into a set of
grid numbers {gni2, . . . , gnil} and encodes them into a set of
l − 1 leveled location codes:

LCi = {lci2, lci3, . . . , lcil−1, lcil}
= {2||HMACsk(gni2), 3||HMACsk(gni3),

. . . , l − 1||HMACsk(gnil−1), gnil}. (2)

The PLM processes {lci2, lci3, . . . , lcil−1} as follows.
• Create an empty IBF IBF i.
• Embed each location code lcij and a randomly chosen

number ri into IBF i by setting for j ∈ [2, l − 1], u ∈ [1, t]:

IBF i[hu(lcij)][H(ht+1(hu(lcij))⊕ ri)] = 1, (3)

IBF i[hu(lcij)][1−H(ht+1(hu(lcij))⊕ ri)] = 0. (4)

The PLM processes lcil as follows.
• Compute a prefix family PF i1 of gnil by using prefix

encoding [44] and a prefix family PF i2 of idi.
• Mix PF i1 with PF i2 by concatenating their prefixes to

obtain a mixed code setMCi.
• Prefix each mixed code with the level number. In this way,

we lay a foundation for the repetitive query. • Insert each mix
code mcij inMCi into IBF i by setting for all j ∈ [1, |MCi|],
u ∈ [1, t]:

IBF i[hu(mcij)][H(ht+1(hu(mcij))⊕ ri)] = 1, (5)

IBF i[hu(mcij)][1−H(ht+1(hu(mcij))⊕ ri)] = 0. (6)

After processing all parking lots, the PLM obtains a set of IBFs
and compute a hash value HVi for each IBF i. The PLM builds
an index tree T R from the bottom to up as follows. Assume
that IBF is the father IBF of two IBFs: IBF le (left child) and
IBF ri (right child), then for each i ∈ [1,m], the value of IBF ’s
i-th twin is the logical OR of IBF le’s i-th twin and IBF ri’s
i-th twin

IBF [H(ht+1(i)⊕ r1)][i]

= IBF le[i][H(ht+1(i)⊕ r2)] ∨ IBF ri[i][H(ht+1(i)⊕ r3)].
(7)

The hash value HVi of each intermediate node is computed
as the hash value of its left child and right child: HVi =
hash(HV le

i +HV ri
i). The PLM encrypts each pli by using

AES encryption Enc and sk0 to obtain a ciphertext cti. Finally,
the PLM submits to the SPSP idsp the number of available
parking spotspsi of eachpli, theT R including IBFs and random
numbers, the ciphertexts CT , and a hash value setHV including
a root hash value RH . When there are multiple PLMs, the SPSP
will merge their trees to form a complete tree. For each PLM,

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11643

the SPSP uploads a parking status transaction to the CB:

TxSta = [“Status”, idsp, {(pli, pstsi , psts−1i ,

T R, CT ,HV ,Bi1,Bi2)}, pk]sk, (8)

where pstsi (psts−1i) is the psi of pli in current period ts (last
period ts− 1) and Bi1 (Bi2) is a set of block identifiers and
corresponding blocks include the parking querying transactions
(departing transactions) related to pli during the last update
period. Note that searching all the blocks for each query takes
much time, we alleviate this effect by only checking the new
blocks generated from the pl’s last update Tx. The pli is to be
included in a future block for generating a PoT.

D. Parking Querying

A driver Dj is cruising at a current location clj with an aim
for pli and converts clj into a set of leveled location codes:

LC = {lcj2, . . . , lcjl} =
{2||HMACsk(gj2), 3||HMACsk(gj3), . . . ,

l − 1||HMACsk(gjl−1),Exp(gjl)}, (9)

where Exp(gil) expands from gil to a bigger area, e.g., the
nearest nine grids.
Dj processes {lcj2, lcj3, . . . , lcjl−1} as follows.
• Compute a location hv(lcju), 2 ≤ u ≤ l − 1, 1 ≤ v ≤ t.
•Compute a hashht+1(hv(lcju)), 2 ≤ u ≤ l − 1, 1 ≤ v ≤ t.
The sub-token of a location code lcju is a t-pair

of twin locations and hashes: {(h1(lcju)), ht+1(h1(lcju)),
. . . , (ht(lcju), ht+1(ht(lcju)))}. Given the l − 2 location
codes, Dj now obtains a ((l − 2)× t)-pair of twin locations
and hashes. We denote T Kj1 as the first part of the token T Kj .

For the l-th location code, Dj computes a minimum set S of
prefixesM1 for Exp(gjl) and a minimum set of prefixesM2

for Rangei(idi). We require that Rangei(idi) =
⎧⎪⎪⎨
⎪⎪⎩

[idi, idi + 1] ∨ [idi + 2, idi + 3] ∨ . . .∨[
idi + 2|S(1, n)| − 2, idi + 2|S(1, n)| − 1], if idi%2 = 0[

idi − 1, idi] ∨ [idi + 1, idi + 2] ∨ . . .∨[
idi + 2|S(1, n)| − 3, idi + 2|S(1, n)| − 2], if idi%2 = 1

By doing so, we have |M2| = |S(pl1, pln1
)|, i.e., the number

of prefixes inM2 is equal to the one of S(pl1, pln1
). Dj mixes

M1 withM2 by concatenating their prefixes to obtain a mixed
code setMC. Further,U prefixes each mixed code with the level
number. We denote the set by T Kj2, i.e., the second part of the
T Kj . Now Dj has the token T Kj = (T Kj1, T Kj2).

Before sending a parking query, Dj needs to interact with an
SPSP idsp to complete anonymous authentication. Dj down-
loads the requirement RE = (CD,PO,LI) for accessing idsp
from the CB and checks whether she/he satisfies the RE . If
so, Dj sends a request to an SPSP idsp and receives a chal-
lenge m||id′sp back, where m is a randomly chosen message.
If id′sp = idsp, Dj generates a ticket T Ij and a proof π′j .
Specifically, we assume that Dj chooses the first SPSP when

registering. Dj computes a ticket T Ij = {τj1, τj2, . . . , τjn3
}:

r ← Zn,

τj1 = (tj1, tj2) = (gr mod N, tp+q
j1 mod N),

τji ← TicketGen(i)(·), i ∈ [2, n3].

Dj computes a proof π′j =:

SPK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∨n3
i=1(Ver

(i)
1 (pkj , skj) = 1

(skj , pkj) : ∧pkj ∈ CDi

∧Ver(i)2 (skj , τji) = 1

∧Ver(i)3 (PO,LI(i), skj) = 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

[m||idsp],

where the statement contains a proof of possession of skj , a
proof of validity of pkj , a proof of the validity of τj1, a proof of
fulfillment of a policy. CDi consists of all public keys of drivers
registered to SPSPi, andLI(i) consists of all rating records inLI
but for each record the ticket T I′ = (τ ′1, τ

′
2, . . . , τ

′
n3
) is replaced

with τ ′i [46]. Next, Dj sends a parking querying transaction to
idsp:

TxQue = [“Querying”, T Ij , π′j , T Kj , pk
′]sk′ .

E. Parking Responding

Upon receiving the query, idsp verifies π′j and sends TxQue to
the CB iff π′j is valid. At the end of each blockchain period, the
selected (winning) node executes the DLMSC (with pseudocode
in Algorithm 1) to match T Kj and a previous T R as follows:
• Search T R from up to the bottom to find leaf nodes that

match T Kj . 1) Compute Check1(IBF , T Kj1) for matching
leaf nodes. If this match continues until the leaf level, it means
there is at least one parking lot matches the query on the first
l − 2 levels. 2) At a matching leaf node with IBF , compute
Check1(IBF , T Kj2). If there is a match, continue to search
other matched leaf nodes until k matching leaf nodes are found.
If the search on current index tree is done with less than k
matching leaf nodes, search other index trees.
• Proof of Correctness (PoC1). Pack the IBF , r, and HV of

each matched leaf node (pl with available parking spots) into
the PoC1, proving that pl matches T Kj regarding location.
• Proof of Completeness (PoC2). There are two parts of a

token: T K1 and T K2.
� If an index tree does not match T K1, the PoC2 is the IBF

and random number of the root.
� Otherwise, the search reaches the leaf level by using T K2.

The principle is to pack the IBF and random number of (as
less as possible) corresponding nodes. For example, if no
leaf node matches T K2, then the PoC2 is also the IBF and
random number of the root. if one leaf node (parking lot)
matches T K2, but its brother leaf does not, then pack the
IBF and random number of the brother node into PoC2; if
two brother leaf nodes do not match, then their father node
is a potential node to be packed. Finally, the PoC2 should
prove that all leaf nodes in T R have been searched. Note
that if there are already k matching leaf nodes before the

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11644 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 4. An sketch of generating PoC1, PoC2, and PoT.

search is over, then pack the hash value of the highest node
on the brother path as in the Merkle tree.

• Proof of Truthfulness (PoT). Pack the {B1,B2} of each
matched leaf node (pl with available parking spots) during the
last update period into the PoT, proving that the claimed number
of parking spots is truthfully updated. We do not include this
process in the DLMSC because the Ethereum smart contracts we
use in our implementation cannot query the block information.
We realize it by SP’s local processing.
• If T K is matched to a pl, generate a query result R, i.e., a

receipt of TxQue, to be packed in a new block for Dj to retrieve.
We give an example of the three proofs in Fig. 4. There are

three matching parking lots pl1, pl3, pl4 when k = 3 and three
valid search paths are marked in red.

- The PoC1 is IBFV1
, rV1

, HVV1
, IBFV3

, rV3
, HVV3

, and
IBFV4

, rV4
, HVV4

.
- The PoC2 is HVV2

and HVV13
.

- The PoT is B1 and B2. The former contains the numbers of
all the blocks that include TxQue matched to pl1, pl3, and
pl4. The latter contains the numbers of all the blocks that
include TxDep related to pl1, pl3, and pl4 during the last
period.

F. Parking Completion

Dj retrieves the parking result R in the latest block and
verifies the R by verifying the given proofs: match T Kj with
each IBF in PoC1, recompute a RH ′ from HV in PoC2 and
compare it with RH from the CB; (if necessary) verify ps by
using B1 and B2. If they all pass, Dj decrypts and chooses one
parking lot to park and the corresponding PLM sends a parking
transaction to the CB after Dj arrives:

TxPar = [“Parking”, ts, pl, pk∗]sk∗ .

Upon the completion of parking in pl, Dj remotely pays a
parking fee based on anonymous electronic cash or Bitcoin [6].

Algorithm 1: Pseudocode of DLMSC.
1 create Que, k; //Parking query
2 create Par{}; //Parking lots
//Map of matching results:

3 mapping (bytes32 => uint256) R{};
//Brother nodes in Merkle tree:

4 mapping (bytes32 => uint256) Bro{};
//Proof of correctness:

5 mapping (bytes32 => uint256) PoC1{};
//Proof of completeness:

6 mapping (bytes32 => uint256) PoC2{};
7 function Query(k, T K)
8 Que← T K;
9 call Match;

10 function Share(T R)
11 Par{}← T R;
12 function Match(Que, Par{})
13 Initialize a stack s;
14 p← root of T R;
15 while s is not empty || p is not null
16 while p is not null
17 if p is not leaf node
18 if Check1(p.IBF,p.r,Que[0]) = 1
19 s.push(p);
20 p← p.lchild;
21 else PoC2{}← (P.IBF,P.r); break;
22 if p is leaf node
23 if Check1(P.IBF,P.r,Que[1]) = 1 &&
24 pl.ps >0 && |R{}| < k
25 R{}← (P.pl);
26 PoC1{}← (P.IBF,P.r,P.HV);
27 s.push(p);
28 p← p.lchild;
29 if s is not empty
30 p← s.pop();
31 p← p.rchild;
32 Compute Bro{} of valid search paths;
33 if |R{}| < k
34 PoC2{}← (IBF, r) from Bro{};
35 else PoC2{}← HV from Bro{};
36 clear Que, k;
37 return (R{}, PoC1{}, PoC2{});
38 function Parking(pl)
39 pl.ps← pl.ps - 1; //Update ps
40 function Departing(pl)
41 pl.ps← pl.ps + 1; //Update ps

Finally, the PLM sends a departing transaction to the CB:

TxDep = [“Departing”, ts, pl, pk∗]sk∗ .

G. Managing a Blacklist

Recall that a driver initially retrieves the SPSP’s latest require-
ments from the blockchain to check whether he satisfies it. The

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11645

requirement for drivers to access services of an SPSP includes
three parts, namely the candidate driver set CD, the policy PO
and the rating records list LI. The list LI encompasses rating
records utilized for driver evaluation. Specifically, each rating
record primarily consists of a tuple (sid, tid, score), where sid
is the unique string identifying the SPSP submitting the rating,
tid is the unique string for the rated authentication event, and
score is the rating for tid. In detail, each element in score is a
tuple (c, ς) where c is a category and ς is a score for c.

In the setup phase, each SPSP would initialize an empty list
LI. Based on ς , the rating record list is divided into two parts:
the meritlist, comprising terms with ς ≥ 0, and the blacklist,
encompassing terms with ς < 0. After the driver drivers away
from the PL, the SPSP submits a rating transaction and adds
a new rating record in the LI. When an SPSP revokes a rating
record, it puts a revoke transcation to the blockchain, and deletes
the rating record in the LI.

VI. PRIVACY AND SECURITY ANALYSIS

In this section, we formally prove the privacy and security of
Mnemosyne2 with respect to the design objectives.

A. Privacy

1) Location Privacy: We adopt the adaptive indistin-
guishability under chosen-keyword attack (IND-CKA) secure
model [47] and prove that Mnemosyne2 is adaptive IND-
CKA (L1,L2)-secure in the random oracle model. We as-
sume that PLM uses a CPA-secure encryption scheme [48]
Σ to encrypt the data items. We define two leakage func-
tions as follows. 1) L1(T R,PL): Given T R and PL, L1

returns m, n1, (pl1, pl2, . . . , pln1
), and ciphertext length |ct|. 2)

L2(T R,PL, T K): Given T R, PL, and T K, L2 returns search
pattern, i.e., whether T K was searched, and access pattern, i.e.,
which data item matches T K.

Theorem 1: Mnemosyne2 is adaptive IND-CKA (L1,L2)-
secure in the random oracle model, achieving location privacy
(data privacy, index privacy, and token privacy).

Proof: We build a simulator S that can simulate a view V ∗ =
(T R∗, T K∗, CT ∗) with the information acquired from the L1

and the L2. Then, we prove that a PPT adversary A cannot
distinguish the SV from the real view V = (T R, T K, CT).

Data privacy: To simulate the ciphertexts CT of PL, the S
acquires n and |ct| from the L1. The S creates a simulated
ciphertext CT ∗ with a randomly chosen plaintext and the Σ.
The S has to make sure that the length of the CT ∗ is the
same as the length of the real ciphertext. Hence, the A cannot
distinguish the CT ∗ from the C since the Σ provides ciphertext
indistinguishability.

Index privacy: To simulate the T R∗, the S builds an T R∗
with the same structure. The S builds an IBF for each node z in
T Rwhile satisfying that the IBF size is the same as the length of
the IBF in the T R. In the j-th cell twin of IBF z , the S either
sets IBF z[j][0] = 0 or IBF z[j][0] = 1 which is determined
by tossing a coin. Next, the S chooses a random number r to
randomize each node. Lastly, the S returns IBF ∗ and r as the
T R∗. The T R∗ is the same as the real index T R. The ‘0’s and

‘1’s are IBF ∗ equally distributed in the cell twins of the IBF ∗

and 1-cell. Therefore, the A cannot distinguish the T R∗ from
the I .

Token privacy: To simulate T K∗, the S knows if a received
T K has been submitted from the L2. If so, the S returns the
previous query token to the A. Otherwise, the S creates a new
query token T K∗ which is a set of location hashes and locations.
Specifically, the S uses the H to choose p-pair of hashes and
locations while make sure that the chosen ones match the T K
for the matched leaf nodes. The S uses the H to ensure that
the p-pair of hashes and locations do not match the T K for the
unmatched leaf nodes. Then the S returns the p-pair of hashes
and locations as the T K∗. Since T K∗ is generated by random
hash functions, theA cannot distinguish the T K∗ from the T K.

In conclusion, the V ∗ and the V are indistinguishable by A.
Therefore, Mnemosyne2 is adaptive IND-CKA (L1,L2)-secure
in the random oracle model.�

2) Identity Privacy:
Theorem 2: Mnemosyne2 achieves identity privacy if the LD-

RSA assumption [39] and the DDH-II assumption [40] hold in
the quadratic residue group QRN .

Proof: To prove this Theorem, we define the following four
hybrids [49], [50], between whom the indistinguishabilities are
reduced to the two assumptions. Hybrid H1: This is exactly
the identity indistinguishability experiment PrivKind

A,Π(λ) and
the oracle O is answered honestly. Specifically, when b = 0,
the tickets {tki} are returned; when b = 1, new tickets sampled
uniformly at random from the range of the TicketGen(·) are
returned. Hybrid H2: This is identical to H1 except that when
b = 0, a secret key sk′ is generated and tickets of sk′ are re-
turned. Indistinguishability between H1 and H2 comes from the
LD-RSA assumption. HybridH3: This is identical toH2 except
that when b = 0,h is sampled freshly and uniformly fromQRN ,

a random number is sampled r
$← ZN , and (h, hr) is returned.

Indistinguishability betweenH2 andH3 comes from the DDH-II
assumption. HybridH4: This is identical toH3 except that when
b = 0, h1, h2 are sampled freshly and uniformly from QRN .
(h1, h2) is returned. Indistinguishability between H3 and H4

comes from the standard DDH assumption, which can be implied
by the DDH-II assumption. Note that in H4, the O is answered
identically for both the case b = 0 and the case b = 1. Therefore,
Pr[PrivKidn

A,Π(λ) = 1] ≤ 1
2 + negl(λ), completing the proof.�

B. Secure Repetition

1) Obliviousness:
Theorem 3: Mnemosyne2 achieves obliviousness if the un-

derlying HMAC is a pseudo-random function [51].
Proof: We assume that A attacks Π with an upper bound

ub on the number of Π’s executions. We briefly describe an
indistinguishability experiment DHMAC,f (λ): a PPT adversary
A′, which generates a message m and has an oracle access to
HMAC(·), is given an output of either the HMAC or a random
function f on m and distinguishes whether it is HMAC or f .
We say that HMAC is a pseudo-random function if there is
a negligible function negl such that |Pr[DHMAC(·)(λ) = 1]−

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11646 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

|Pr[Df(·)(λ) = 1]| ≤ negl(λ). Now we construct the efficient
adversary A′ that runs A to attacks Π′, i.e., HMAC.

Algorithm A′:
The algorithm is given all public parameters of Π.
1) Generate messagesM = {m1,m2, . . . ,mub}.
2) QueryM to HMAC(·) and obtains ub outputs.
3) Generate a message mc /∈M and send it to the challenger.
4) Receive an output HMAC(mc).
5) Choose a random value r in the range of the HMAC(·) and

return (HMAC(mc), r) to A.
6) Output what A outputs.
The view of A when run as a subroutine by A′ in exper-

iment DHMAC,f (λ) is identical to the view of A in experi-
ment PrivKobl

A,Π(λ). Therefore, we have Pr[DHMAC,f (λ) = 1] =

Pr[PrivKobl
A,Π(λ) = 1]. If A successfully distinguishes a repet-

itive query and a normal query, then Π is breakable, i.e., do
not guarantee obliviousness, whereA′ can invoke it to break the
pseudo-randomness ofHMAC. However, sinceΠ′ is secure, then
Pr[DHMAC,f (λ) = 1] is negligible and Pr[DHMAC(·)(λ) = 1] ≤
1
2 + negl(λ), it immediately implies that Pr[PrivKobl

A,Π(λ) =

1] ≤ 1
2 + negl(λ). We complete the proof. �

2) Unlinkability: Mnemosyne2 achieves unlinkability for
three reasons. First, there is no identifiable information used
in token generation. Second we require that for a driver’s two
queries q0 and q1, it satisfies that Exp(cl0) �= Exp(cl1) ∨ id0 �=
id1, which leads to two different mix code sets. The former
case indicates two different current locations, i.e., different grid
numbers. The latter means that the driver explicitly asks for two
different parking lots. Last, we require that the secret keys K =
{sk0, sk1, sk2, . . . , skt+1} are regularly updated. Therefore, the
adversary A can correctly guess i by 1) randomly guessing i
and 2) correctly guessing the secret keys and the mixed code set,
which leads to Pr[PrivKunl

A,Π(λ) = 1] = Pr[Case 1] + Pr[Case 2].
In case 2, we need to compute the minimum number of prefixes in
a mixed code setMC. Given a range [a, b], where a and b are two
numbers of w bits, the number of prefixes in S([a, b]) is at least
2w − 2 [52]. The minimum number of prefixes in S(pl1, pln1

) is
2 log2(pln1

+ 1)− 2. The number of prefixes inM1 is 6. Hence,
the minimum size of MC is 12 log2(pln1 + 1)− 12. Now
we have Pr[PrivKunl

A,Π(λ) = 1] ≤ 1
n2

+ 1
2(t+1)λ∗212 log2(pln1+1)−12 ,

which is not bigger than 1
n2

+ negl(λ). �

C. Full Verifiability

The full verifiability refers to correctness, completeness, and
truthfulness. 1) Correctness. For each returned leaf node (park-
ing lot), the DLMSC attaches its IBF and random number for the
driver to re-search the token on the IBF, thus guaranteeing the
correctness of the returned parking lot. 2) Completeness. If there
are less thankmatching parking lots, the DLMSC packs the IBFs
and random numbers of corresponding nodes in the index tree
such that the driver can verify the mismatching nodes. It also
packs the hash value of the unsearched nodes when there are
already k matching leaf nodes for the driver to re-compute the
hash value of the root, thus guaranteeing the completeness of the
search on the index tree. 3) Truthfulness. It is a new definition
that we propose for smart parking. Truthfulness includes (a)

TABLE III
DATASET

PLMs truthfully report the number of available parking spots
and (b) the returned result has enough available parking spots.
The first one is guaranteed by the semi-honest assumption of
PLM. The second one is secured by the PoT. For each parking
lot, when there are matching queries in each time period, the
DLMSC retrieves the number of previous blocks that include the
parking querying transactions (IN) and departing transactions
(OUT) pertinent to this parking lot. The drivers who receive
a query result can verify the number of parking spots in the
parking lot by counting the IN and OUT activities. Given that the
number of parking spots are truthfully reported and recorded on
the blockchain, consecutively proving that the claimed number
of parking spots is truthfully updated in the last period will form
a chain of continuity and integrity of such a number. Therefore,
truthfulness holds.

D. Discussions of Sharing Secret Keys

In the design of query processing [15], [17], [44], the data
owner shares the same secret keys with data users. In the parking
scenario, we follow this setting by mapping PLM to data owner,
and mapping driver to data user. At first glance, it may seem
incompatible since the PLM and drivers are not acquainted and
do not share information beforehand. However, the PLM and
drivers are not malicious, and they participate in the parking
system to gain profits and request parking services. The unique
background and tacit understanding smoothly transform into a
relation that resembles the one between owner and user in query
processing.

For security, even though the PLM is semi-honest, it cannot
acquire the plaintext of drivers’ location or the requested PL
identity since the location is projected into a grid and the PL
identity is hidden in a customized range. Further, to protect the
keys from the PLM, we can remotely attest codes in a Trusted
Execution Environment (TEE), e.g., Intel SGX enclave [53],
[54], [55], store the secret keys in it, and then run index building
in the secure enclave with confidentiality and integrity.

VII. PERFORMANCE ANALYSIS

In this section, we show how to build a prototype of
Mnemosyne2 and analyze its performance regarding computa-
tional cost, communication overhead, and scalability. We also
compare Mnemosyne2 with existing PPSP schemes.

A. Experiment Settings

Dataset: We have collected a city map as our SPS areas
including the information of parking lots. Each parking lot has
an identity, two location coordinates, the number of parking
spots and price standard. We list the detailed information of the
collected dataset in Table III.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11647

TABLE IV
EXPERIMENTAL PARAMETERS

Parameters: We list the key experimental paraments in Ta-
ble IV, including the value of query parameter k, the number of
pseudo-random hash functions t, the false positive rate pr, the
IBF sizem, the number of parking lots n1, the number of drivers
n2, the number of SPSPS n3, the lengths of secret keys sk, the
random number r, two safe primes p, q, and the AES symmetric
key sk′.

Metrics: We evaluate computational costs and communica-
tion overhead for Driver, PLM, CS and SP. For computational
costs, we measured the running time of registration, PLM and
SP’s sharing, Driver’s querying, SP’s responding, and Driver and
PLM’s completion. For communication overhead, we measured
the size of the transmitted messages during the five main phase,
i.e., registration, sharing, querying, responding and completion.

Setup: We instantiate Mnemosyne2 on a PC server run-
ning Win11 Home with a 10th Gen Intel (R) Core (TM) i5-
10210 U CPU @ 1.60 GHz processor, and 8 GB RAM. We use
HMAC− SHA256 as the pseudo-random function to implement
the hash functions of IBF. We use AES as the symmetric en-
cryption. We write the smart contract with an online integrated
development environment remix (remix.ethereum.org) and de-
ploy it via metamask (metamask.io) which is a light-weighted
browser plugin. We use puppeth (github.com/ethereum/go-
ethereum/tree/master/cmd/puppeth) to create the genesis block
with Proof-of-Authority consensus mechanism (Clique) and the
block creation time is set as 1 s. It can be adjusted according to
the application. We use Java (JDK8) to implement cryptographic
primitives. The work mode of AES in this work is Cipher-
Block Chaining (CBC). We have uploaded all source codes of
Mnemosyne2 on Github: https://github.com/UbiPLab/DecPark.

B. Computational Cost

We use different notations to stand for cryptographic op-
erations: mui, exi, dii denote multiplication, exponentiation,
and division in Gi of prime order p′ (i = 1, 2, 3), respectively.
gi is the generator of Gi (i = 1, 2, 3). h/H and bp denote
hash function and bilinear pairing. Gen, Ver, Sig, Ecd denote
generation, verification, signing, and encoding. Ins, Che, Del
denote inserting, checking, and deleting in an IBF, a Bloom
filter [4], a cuckoo filter [6], a hashmap [7], or an exchange
pool [8]. Enc and Dec denote AES encryption and decryption.
Enc′ and Dec denote the ElGamal encryption and decryption.
CSC denotes creating a smart contract [9]. Specifically, in
P-SPAN [4], PriAV [6], ASAP [7], and PEPS [8], the bilinear
pairing is e: G1 ×G2 → G3; in SAVP [5], the bilinear pairing is
e: G1 ×G1 → G2. We record the theoretical results in Table V.

The CS in registration processes the registration requests from
drivers and PLMs, namely generating hash functions, i.e.,n(h+
H), it costs 1.85n ms.

A driver’s primary computational cost rests in registration,
querying and completion. Registration consists of generating
a key pair (pk, sk), computing a signature of knowledge π,
signing the registration transaction, i.e., Gen + Genπ + Sig,
it costs the driver 134 + 122 + 10 = 266 ms. Querying consists
of computing a ticket tk, computing a signature of knowledge
π′, computing a query token qt, signing the querying transaction,
i.e., Gentk + Genπ′ + Genqt + Sig, it costs 5 + 631 + 4 + 15
= 655 ms. Completion consists of decrypting parking resultR,
verifying the given proofs PoC1, PoC2 and PoT, i.e., Dec +
Ver1 + Ver2 + Ver3, it costs 3 + 3 + 2 + 170 = 178 ms.

For a PLM, the most computational cost lies in registration,
sharing and completion. Registration consists of generating
a key pair (pk, sk), computing a signature of knowledge π,
signing the registration transaction, i.e., Gen + Genπ + Sig,
it costs the PLM 123 + 116 + 10 = 249 ms. Sharing consists
of encoding and encrypting parking lots PL, inserting location
codes and prefixes into IBFs, computing the hash value set HV ,
i.e., Ecd + Enc + ins + h, it costs 5 + 728 + 3045 + 127 =
3905 ms. Completion consists of signing parking transaction
TxPar and departing transaction transaction TxDep, i.e., 2Sig,
it costs 2 ∗ 9 = 18 ms.

The major computational cost of a SP rests in registration,
sharing and responding. Registration consists of verifying PLMs
and drivers’ signature and proof π, i.e., n(Verσ + Verπ), it
costs it costs the SP n(2 + 122) = 124n ms. Sharing consists
of signing status transaction TxSta, computing the number of
querying transactions B1 and departing transactions B2, up-
dating parking spots ps, i.e., Sig + GenB1 + GenB2 + Upd,
it costs 17 + 125 + 2 = 144 ms. Responding consists of ver-
ifying signature of drivers’ querying transaction and proof
π′, searching index tree T R, generating proof of correctness
PoC1, proof of completeness PoC2 and proof of Truthful-
ness PoT, i.e., Verσ + Verπ′ + Mat + Gen1 + Gen2 + Gen3,
it costs 2 + 536 + 30 + 125 = 693 ms.

C. Communication Overhead

The CS in registration returns secret keys and hash
functions for all the registered drivers and PLMs, i.e.,
n(t|sk| + |h| + |H|) = n ∗ (t ∗ 256 + 8 ∗ 6 + 8 ∗ 6) =
(256t+ 96)n bits. A driver sends a registration transaction
TxReg, i.e., |“Register”|+ |pid|+ |pk|+ |att|+ |aux|+
|σ|+ |π|+ |pkEth| = 8 ∗ 8 + 16 + 2048 + 16 + 16 + 520 +
(2048 + 2048 + 2048) ∗ 5 + 256 + 256 = 33912 bits = 4.14
Kbytes. The driver also sends a registration request to CS, it
consists of identity of driver, i.e., |id| = 16 bits. At the phase
of querying, the driver sends a querying transaction TxQue,
i.e., |“Querying”|+ |σ|+ |pk|+ |tk|+ |qt|+ |π′| = 8 ∗ 8 +
520 + 256 + 2048 ∗ 3 + (14 + 256) ∗ 5 ∗ 2 + (14 + 256) ∗
60 ∗ 5 + (6 + 8 + 14 + 8 + 18 + 16) ∗ 2048 + 3 ∗ 256 =
234812 bits = 28.66 Kbytes. The PLM submits a registration
request to CS and SP, i.e., |id| = 8 bits, |“Register”|+

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

https://github.com/UbiPLab/DecPark

11648 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

TABLE V
COMPARISON OF COMPUTATIONAL COSTS

TABLE VI
COMPARISON OF COMMUNICATION OVERHEAD

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11649

Fig. 5. Basic blockchain performance.

|pid|+ |pk|+ |att|+ |aux|+ |σ| + |π| + |pkEth| = 4.14
Kbytes. At the phase of sharing, the PLM also sends the
index tree, the ciphertexts, a hash value set and the number
of available parking spots of each parking lot to SP, i.e.,
|T R|+ |ct|+ |HV |+ |ps| = 68.06 Kbytes. When a driver
chooses one parking lot to park, the PLM sends a parking
transaction TxPar, i.e., |“Parking”|+ |σ|+ |pl|+ |ts|+
|pk| = 0.10 Kbytes, after the completion of parking,
the PLM sends a departing transaction TxDep, i.e.,
|“Departing”|+ |σ|+ |pl|+ |ts|+ |pk| = 0.11 Kbytes. For
each PLM, the SP uploads a parking status transaction TxSta,
i.e., |σ|+ |id|+ |str|+ |T R|+|ct|+|HV |+|PoT|+|ps|=
68.60 Kbytes. For a query request, the SP sends the query result
to the related driver, i.e., |R|+ |PoC1|+ |PoC2|+ |PoT| =
11.65 Kbytes. We record the results in Table VI.

D. Basic Blockchain Performance

Now we analyze the basic blockchain performance, i.e.,
blockchain consensus time, transaction confirmation time, and
gas cost.

We set the block period to be 1 s. From the Fig. 5(a), the real
consensus time fluctuates around 1 s because of the hardware
interference. Next, we use ethGetTransactionReceipt() to
compute the confirmation time of the six types of transactions
and use System.currentT imeMillis() to record the elapsed
time. The results are illustrated in Fig. 5(b). The interval time
between two transactions of six types is 1 s. Due to network delay
and consensus mechanism, the confirmation time of transac-
tions is approximately 2 seconds. The transaction confirmation
time can be reduced by decreasing the consensus time in the
blockchain network according to application’s requirements. We
measure the gas cost of six types of transactions. Specifically,
they are divided into three sets: Tx1 and Tx4 for driver; Tx2,
Tx5 and Tx6 for PLM; and Tx3 for SPSP. Fig. 5(c) indicates
that the average gas usage for Tx4 is about 396093. We set the
gas price to be 1 Gwei (0.000000001 Ether) in the Mnemosyne2

blockchain, at the time of writing (August 9, 2022), the exchange
rate is $1,774.47 USD per Ether. Each Tx4 costs about 0.0004
Ether (0.7 USD). The gas varies because the transaction items
are different. Even when two transactions are of the same type,
the query token and the proof vary for different driver in Tx4.

We build our own blockchain test network based on Ethereum
to adjust experimental parameters, such as blockchain creation
time and gas price. We set the blockchain creation time as 1 s
to reduce response time for parking queries. We set the gas
price as 1 Gwei to reduce the transaction fee drivers. Such a

Fig. 6. Waiting time of one driver.

capability of regulating parameters enable the parking system
to have more flexibility in different parking scenarios. Layer 2
(L2) is a collective term to describe a specific set of Ethereum
scaling solutions. An L2 is a separate blockchain that extends
Ethereum and inherits Ethereum’s security guarantees. L2 test-
nets are usually coupled to public Ethereum testnets [56]. For
gas price, the L2 gas price on an Arbitrum chain has a set floor,
which can be queried via ArbGasInfo’s getMinimumGasPrice
method (currently 0.1 gwei on Arbitrum One and 0.01 gwei on
Nova) [57]. However, there is no regulatory party and anyone can
freely join, which is not applicable to smart parking. L2 systems
have limited scalability potential, while approaches offering
better performance, sacrifice security and result in an increase in
centralization. L2 projects also impose a load on the main-chain
to constitute a severe bottleneck, preventing them from reaching
their alleged maximum throughput levels [58]. Many L2 projects
are still in an early stage and require users to trust some operators
to be honest. L2 projects also contain additional risks compared
to holding funds and transacting directly on Ethereum Mainnet.
For instance, sequencers may go down, leading you to have to
wait to access funds [59]. In this work, we realize a prototype
system to evaluate the performance. The current test network
suffices to do the job.

E. Scalability

Now we analyze the scalability of Mnemosyne2, i.e., the
maximum (minimum, average) waiting time of one driver
and the average waiting time of multiple drivers when there
are fixed/varied number of drivers that have different parking
choices. The rationale is to see hown2 and the choices of parking
lots affect the waiting time.

In Fig. 6(a), the number of drivers asn2 = 500 and each driver
requests a fixed parking lot. The maximum (minimum) waiting

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

11650 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 7. Average waiting time of multiple drivers.

time of one driver is only 2.46 (13.98) seconds. In Fig. 6(b),
we randomize the parking choices of drivers to find that the
maximum (minimum) waiting time of one driver is only 2.55
(16.81) seconds, showing no obvious impacts from the parking
choices.

In Fig. 6(c), n2 varies from 100 to 500 and the drivers request
a fixed parking lot. We conduct 20 sets of experiments for each
choice ofn2. The average waiting time of one driver ranges from
1.75 seconds to 12.19 seconds. In Fig. 6(d), we randomize the
parking choices of drivers to find that the average waiting time
of one driver ranges from 1.87 seconds to 12.21 seconds.

From Fig. 7(a), (b), (c), and (d), we test the average time of all
drivers under different settings where a part of drivers request a
fixed parking lot. The results show that the average waiting time
ranges between 4 seconds and 14 seconds, indicating no obvious
impacts from the parking choices. After the drivers receive query
results, it takes 175 ms on average for verification (on PoC1,
PoC2, and PoT).

F. Managing a Blacklist

There are three steps involved in managing a blacklist. An
SPSP 1) puts its requirement to the blockchain by sending
a transaction, i.e., |“Upload”|+ |σ|+ |sid|+ |CD|+ |PO|+
|LI|+ |pk| = 564.39 + 0.25 ∗ |CD|+ 1.25 ∗ |LI| Kbytes, 2)
submits a rating for the anonymous user in an authentication
event, i.e., |“Rating|+ |σ|+ |rid|+ |sid|+ |tid|+ |score|+
|pk|= 1.35 Kbytes. Rating consists of signing the rating trans-
action and adding a new rating record, it costs 11 ms, and
3) sends a revoke transaction to revoke a rating record, i.e.,
|“Revoke”|+ |σ|+ |rid|+ |sid|+ |pk|= 0.85 Kbytes. Revoke
consists of signing the revoke transaction and deleting a rating
record, it costs 10 ms.

G. Comparison

Now we compare Mnemosyne2 with related work regard-
ing computational costs and communication overhead. Both

Fig. 8. Screenshots of app mnemosyne2.

P-SPAN [4] and ASAP [7] utilize the short randomizable sig-
natures [21] to achieve anonymous authentication. P-SPAN [4]
suffers from huge computation costs and communication over-
head in querying responding because 1) the drivers have to not
only send a parking query, but also retrieves a result from an RSU
when entering its coverage area; 2) the RSUs have to verify and
upload queries to the cloud, and update a local Bloom filter; 3)
the cloud has to verify queries, and then generate and forward re-
sults to each RSU. Both SAVP [5] and PrivAV [6] focus on valet
parking in autonomous driving era, which makes them a little
different from our work. SAVP [5] has a similar system model
without blockchain. It designs three zero-knowledge proofs
of knowledge to defend against the double-reservation attack.
PrivAV [6] utilized non-interactive zero-knowledge-proofs for
identity privacy. All the computations of generating proofs and
verifying proofs incur extra computational costs and commu-
nication overhead. ASAP [7] adopted a hashmap to store and
look for parking spots, but it did not consider the Sybil attack.
PEPS [8] leveraged the decentralized anonymous credentials
to achieve anonymous authentication in a blockchain network
without a trusted entity. However, this method cannot track
malicious users. PriParkRec [9] is also a decentralized parking
system, which incurs too much computational burden for using
zero-knowledge proof, re-randomized public-key encryption,
oblivious pseudo-random function, and private set intersection.

H. Implementation on Smartphone and Server

We instantiate Mnemosyne2 using a PC server as CS and
an Android smartphone as a driver, two Android virtual ma-
chines as testing devices. Specially, we use Geth (Go-Ethereum
Client) as the primary tool for Ethereum network environment
establishing. We instantiate four SPSPs on the PC server using
VMware Virtual Machine and Geth, each node has a signer
account with authority to seal a block. We use Spring Boot
projects at IDEA for CS. We create an application on an Android
smartphone and use Gradle to introduce the Web3J library to
interact with the consortium blockchain. We use the javax.crypto
library to implement the cryptographic primitives. We store
the data generated during communication in a database using
SQLite. The screenshots of the application are shown in Fig. 8.
A driver registers to the CS and CB. After logging into the

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11651

parking system, the driver interacts with one of the SPSPS to
complete anonymous authentication (Fig. 8(a)). By inputting the
parking lot identity and query parameter, the authenticated driver
can query the previously matched parking lot. The locations
of returned results are marked on the map (Fig. 8(b)) and one
matched parking lot is reserved (Fig. 8(c)).

VIII. DISCUSSIONS

A. Assumption of Secure Repetitive Parking

To validate our assumption of the secure repetitive parking,
we initiated an online ballot on the RapidWorkers [60]: “Do
you think it is necessary to protect repetitive query from the
service provider when using a smart parking app? Repetitive
query refers to a cruising driver’s need for the same parking
lot that was assigned to them before. We assume that the driver
forgot the exact location of the parking lot and did not record
the parking history locally for privacy concerns.” We upload the
detailed information on https://github.com/UbiPLab/DecPark.
We provided $0.03 for answering the three questions as an
incentive. From May 18, 2022 to August 21, 2022, we collected
861 answers, among which 625 (72.6%) chose “Yes”, indicating
that most workers agree with our assumption.

B. CS in Blockchain

The CS may look contradictory to our decentralized frame-
work. However, it is responsible for generating parameters and
keys for S k NN. Once the SPS is running, the CS stays offline
until a new driver comes to register. There is also a central-
ized or trusted third server in some blockchain-based vehicular
schemes, such as certificate authority in EBCPA [61], location
prover in B-Ride [62], and task administrator and container
administrator in BloCkEd [63].

C. Parking Lot Identity

We assume that the drivers have the identity idi of the target
parking lot for two reasons. First, the integer-based identity, e.g.,
a three-digit number, is much easier to remember than a specific
location either by memory or jot down on a sun visor. Second, it
is perfectly compatible with the S k NN range query processing.

Meanwhile, directly querying the PLM about the location
of loci is not the best solution in our scenario. The reason is
threefold. First, we cannot ask the drivers to send idi in plaintext
to PLM. Second, even if idi is simply encrypted via S k NN
without using the range technique we proposed, the calculated
token will be the same when idi is queried multiple times.
Third, asking the PLM to respond to drivers’ queries cannot
guarantee correctness, completeness, or truthfulness since the
PLM holds all the parking lot information private. This is why
we use the blockchain and smart contract to match parking
queries and parking lots. Although Private Information Retrieval
(PIR) is a powerful technique for oblivious queries, still it incurs
both prohibitively high computational cost and communications
overhead compared to S k NN.

D. Parking Lot Availability

With a low probability, if the parking lot is not working
for the current period but worked normally in the last period
(e.g., the parking lot is not open because of the flood or fire),
then the PoT would be unconvincing to drivers. However, the
availability of parking lots is beyond the scope of this paper. Still
we provide some solutions to such an issue. First, it is better
to take preventive measures to protect parking lots from flood
and fire [64]. Some safety precaution includes incorporating a
drainage system and adding curbing [65], and adopting a smoke
& fire early warning system [66]. Second, to reduce negative
impacts of a similar incident, we can deploy a wireless sensor
network or video surveillance to detect fire or flood. If some
predefined conditions are satisfied (e.g., 122 degrees Fahrenheit
in winter, water level reaches 20 centimeters), the PL will inform
its PLM of “num=0” to indicate a status of “out of service”. The
PLM will send a special transaction to update the index tree and
set the number of PL to 0. Afterwards, the SPSP will not dispatch
this PL to future drivers.

E. Driver’s Key Pair

Many existing work resorts to a trusted server to register users
and distribute keys or credentials [6], [7], [33], [34]. Most of
our previous works follow this assumption as well. However,
storing all the sensitive keys and credentials on a server makes it
a single point of failure and a target for adversaries, let alone
the maintenance costs. On the other hand, it is possible to
eliminate the need for a trusted server and shift the burden from
the server to distributed users [20], [27], [67]. We also assume
that the drivers are semi-honest. Given the above conditions, we
have come to allow the drivers to generate a key pair and then
anonymously authenticate the possession of a valid key pair to
the SPSP.

F. Smart Contract

Smart contract can request some information of blocks by
using some built-in global variables and functions. For instance,
requesting the block number of a block via block.number and
requesting the hash value of a block via blockhash(unit block-
Number). However, smart contract cannot access the informa-
tion of transactions in a block. Requesting such information
usually requires leveraging specific tools, such as Web3j and
Web3.js [68].

IX. CONCLUSION

In this work, we first identify the problem of secure repetition
and full verifiability in smart parking scenarios. To solve the
problems, we have designed Mnemosyne 2, i.e., a repetitive,
oblivious, and unlinkable Sk NN scheme based on blockchain.
With Mnemosyne2, drivers can securely requests a previously
matched parking lot and verify the matching results. We have
formally defined and analyzed the security and privacy of
Mnemosyne2, including the capability to withstand four secu-
rity attacks. We implement a prototype based on Ethereum.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

https://github.com/UbiPLab/DecPark

11652 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Extensive experimental results show that Mnemosyne2 ex-
hibits good practicability and an improvement over existing
schemes.

REFERENCES

[1] “US VIO vehicle registration statistics - hedges & company,” 2024.
[Online]. Available: https://hedgescompany.com/automotive-market-
research-statistics/auto-mailing-lists-and-marketing

[2] “NYC, LA, San Francisco drivers spend up to 107 hours a year looking
for parking,” 2018. [Online]. Available: https://www.thedrive.com/news/
25557/nyc-la-san-francisco-drivers-spend-up-to-107-hours-a-year-
looking-for-parking

[3] “Global smart parking market report 2022: Market will reach 11.2
billion by 2027 from $4.1 Billion in 2021, Growing at a CAGR
of $18.2%,” PR Newswire, 2022. [Online]. Available: https://
www.prnewswire.com/news-releases/global-smart-parking-market-
report-2022-market-will-reach-11-2-billion-by-2027-from-4-1-billion-
in-2021--growing-at-a-cagr-of-18-2-301540552.html

[4] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Privacy-preserving smart
parking navigation supporting efficient driving guidance retrieval,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6504–6517, Jul. 2018.

[5] C. Huang, R. Lu, X. Lin, and X. Shen, “Secure automated valet park-
ing: A privacy-preserving reservation scheme for autonomous vehi-
cles,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11169–11180,
Nov. 2018.

[6] J. Ni, X. Lin, and X. Shen, “Toward privacy-preserving valet parking
in autonomous driving era,” IEEE Trans. Veh. Technol., vol. 68, no. 3,
pp. 2893–2905, Mar. 2019.

[7] L. Zhu, M. Li, Z. Zhang, and Z. Qin, “ASAP: An anonymous smart-parking
and payment scheme in vehicular networks,” IEEE Trans. Dependable
Secure Comput., vol. 17, no. 4, pp. 703–715, Jul./Aug. 2020.

[8] L. Wang, X. Lin, E. Zima, and C. Ma, “Towards Airbnb-like
privacy-enhanced private parking spot sharing based on blockchain,”
IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 2411–2423, Mar.
2020.

[9] Z. Li, M. Alazab, S. Garg, and M. S. Hossain, “PriParkRec: Privacy-
preserving decentralized parking recommendation service,” IEEE Trans.
Veh. Technol., vol. 70, no. 5, pp. 4037–4050, May 2021.

[10] “Blockchain’s role in revolutionalizing city parking,” 2019. [On-
line]. Available: https://www.allerin.com/blog/blockchains-role-in-revo
lutionalizing-city-parking

[11] M. Zhou et al., “PPTA: A location privacy-preserving and flexible task
assignment service for spatial crowdsourcing,” Comput. Netw., vol. 224,
2023, Art. no. 109600.

[12] Y. Zheng et al., “SecDR: Enabling secure, efficient, and accurate data
recovery for mobile crowdsensing,” IEEE Trans. Dependable Secure
Comput., vol. 21, no. 2, pp. 789–803, Mar./Apr. 2024.

[13] D. Frassinelli, S. Park, and S. Nürnberger, “I know where you parked last
summer : Automated reverse engineering and privacy analysis of modern
cars,” in Proc. IEEE 41st Symp. Secur. Privacy, San Francisco, USA, 2020,
pp. 1401–1415.

[14] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neighbor
query over encrypted data in outsourced environments,” in Proc. IEEE 30th
Int. Conf. Data Eng., Chicago, USA, 2014, pp. 664–675.

[15] X. Lei, A. X. Liu, R. Li, and G.-H. Tu, “SecEQP: A secure and ef-
ficient scheme for SkNN query problem over encrypted geodata on
cloud,” in Proc. 35th IEEE Int. Conf. Data Eng., Macao, China, 2019,
pp. 662–673.

[16] N. Cui, X. Yang, B. Wang, J. Li, and G. Wang, “SVkNN: Effi-
cient secure and verifiable k-nearest neighbor query on the cloud plat-
form,” in Proc. IEEE 36th Int. Conf. Data Eng., Dallas, USA, 2020,
pp. 253–264.

[17] R. Li and A. X. Liu, “Adaptively secure conjunctive query processing over
encrypted data for cloud computing,” in Proc. IEEE 33rd Int. Conf. Data
Eng., San Diego, USA, 2017, pp. 697–708.

[18] V. Buterin, “On public and private blockchains,” 2015. [Online].
Avaialble: https://blog.ethereum.org/2015/08/07/on-public-and-private-
blockchains

[19] M. Li, Y. Chen, C. Lal, M. Conti, M. Alazab, and D. Hu, “Eunomia:
Anonymous and secure vehicular digital forensics based on blockchain,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 225–241,
Jan./Feb. 2023.

[20] R. Yang, M. H. Au, Q. Xu, and Z. Yu, “Decentralized black-
listable anonymous credentials with reputation,” in Proc. 23rd Aus-
tralas. Conf. Inf. Secur. Privacy, Wollongong, Australia, 2018,
pp. 720–738.

[21] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in
Proc. Cryptographers’ Track RSA Conf., San Francisco, USA, 2016,
pp. 111–126.

[22] C. Dong, L. Chen, and Z. Wen, “When private set intersec-
tion meets Big Data: An efficient and scalable protocol,” in Proc.
20th ACM Conf. Comput. Commun. Secur., Berlin, Germany, 2013,
pp. 789–800.

[23] B. Libert and D. Vergnaud, “Multi-use unidirectional proxy re-signatures,”
in Proc. 15th ACM Conf. Comput. Commun. Secur., Alexandria, USA,
2008, pp. 511–520.

[24] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in Proc. 20th ACM Conf. Comput. Commun. Secur., Berlin, Ger-
many, 2013, pp. 901–914.

[25] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. 10th ACM Int.
Conf. Emerg. Netw. Experiments Technol., Sydney, Australia, 2014,
pp. 75–88.

[26] D. Chaum, “Blind signatures for untraceable payments,” in Proc. 3rd Adv.
Cryptology, Santa Barbara, USA, 1983, pp. 199–203.

[27] C. Garman, M. Green, and I. Miers, “Decentralized anonymous creden-
tials,” in Proc. 21st Netw. Distrib. System Secur. Symp., San Diego, USA,
2014, pp. 1–15.

[28] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472,
Jul. 1985.

[29] A. X. Liu and F. Chen, “Collaborative enforcement of firewall policies
in virtual private networks,” in Proc. 27th ACM Symp. Princ. Distrib.
Comput., Toronto, Canada, 2008, pp. 95–104.

[30] B. H. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[31] M. Li, M. Zhang, J. Gao, C. Lal, M. Conti, and M. Alazab, “Repetitive,
oblivious, and unlinkable SkNN over encrypted-and-updated data on
cloud,” in Proc. 24th Int. Conf. Inf. Commun. Secur., Canterbury, UK,
2022, pp. 261–280.

[32] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts,” in Proc. IEEE 37th Symp. Secur. Privacy, San Jose, USA, 2016,
pp. 839–858.

[33] M. Li, Y. Chen, S. Zheng, D. Hu, C. Lal, and M. Conti, “Privacy-
preserving navigation supporting similar queries in vehicular networks,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 1133–1148,
Mar./Apr. 2022.

[34] M. Li, L. Zhu, Z. Zhang, C. Lal, M. Conti, and M. Alazab, “User-
defined privacy-preserving traffic monitoring against n-by-1 jamming
attack,” IEEE/ACM Trans. Netw., vol. 30, no. 5, pp. 2060–2073,
Oct. 2022.

[35] D. He, J. Chen, and R. Zhang, “An efficient identity-based blind signature
scheme without bilinear pairings,” Comput. Elect. Eng., vol. 37, no. 4,
pp. 444–450, 2011.

[36] D. He, Y. Zhang, and J. Chen, “Cryptanalysis and improve-
ment of an anonymous authentication protocol for wireless ac-
cess networks,” Wirel. Pers. Commun., vol. 74, pp. 229–243,
2014.

[37] D. He, N. Kumar, K. -K. R. Choo, and W. Wu, “Efficient hierarchical
identity-based signature with batch verification for automatic dependent
surveillance-broadcast system,” IEEE Trans. Inf. Forensics Secur., vol. 12,
no. 2, pp. 454–464, Feb. 2017.

[38] F. Poutinsev, “Unfair search engine ranking results,” Honest Pros and Cons
(HPC), 2021. [Online]. Available: https://honestproscons.com/unfair-
search-engine-ranking-results

[39] P. P. Tsang and V. K. Wei, “Short linkable ring signatures for e-voting,
e-cash and attestation,” in Proc. 1st Int. Conf. Inf. Secur. Pract. Experience,
Singapore, 2005, pp. 48–60.

[40] R. Canetti, “Towards realizing random oracles: Hash functions that hide
all partial information,” in Proc. 17th Annu. Int. Cryptol. Conf., Santa
Barbara, USA, 1997, pp. 455–469.

[41] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
1989.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

https://hedgescompany.com/automotive-market-research-statistics/auto-mailing-lists-and-marketing
https://hedgescompany.com/automotive-market-research-statistics/auto-mailing-lists-and-marketing
https://www.thedrive.com/news/25557/nyc-la-san-francisco-drivers-spend-up-to-107-hours-a-year-looking-for-parking
https://www.thedrive.com/news/25557/nyc-la-san-francisco-drivers-spend-up-to-107-hours-a-year-looking-for-parking
https://www.thedrive.com/news/25557/nyc-la-san-francisco-drivers-spend-up-to-107-hours-a-year-looking-for-parking
https://www.prnewswire.com/news-releases/global-smart-parking-market-report-2022-market-will-reach-11-2-billion-by-2027-from-4-1-billion-in-2021--growing-at-a-cagr-of-18-2-301540552.html
https://www.prnewswire.com/news-releases/global-smart-parking-market-report-2022-market-will-reach-11-2-billion-by-2027-from-4-1-billion-in-2021--growing-at-a-cagr-of-18-2-301540552.html
https://www.prnewswire.com/news-releases/global-smart-parking-market-report-2022-market-will-reach-11-2-billion-by-2027-from-4-1-billion-in-2021--growing-at-a-cagr-of-18-2-301540552.html
https://www.prnewswire.com/news-releases/global-smart-parking-market-report-2022-market-will-reach-11-2-billion-by-2027-from-4-1-billion-in-2021--growing-at-a-cagr-of-18-2-301540552.html
https://www.allerin.com/blog/blockchains-role-in-revolutionalizing-city-parking
https://www.allerin.com/blog/blockchains-role-in-revolutionalizing-city-parking
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains
https://honestproscons.com/unfair-search-engine-ranking-results
https://honestproscons.com/unfair-search-engine-ranking-results

LI et al.: DECENTRALIZED AND PRIVACY-PRESERVING SMART PARKING WITH SECURE REPETITION AND FULL VERIFIABILITY 11653

[42] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proc. 3th Annu. Int. Cryptol.
Conf., 1986, pp. 186–194.

[43] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[44] R. Li, A. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query
processing with strong privacy protection for cloud computing,” in
Proc. 40th Int. Conf. Very Large Data Bases, Hangzhou, China, 2014,
pp. 1953–1964.

[45] M. Szydlo, “Merkle tree traversal in log space and time,” in Proc. 10th Int.
Conf. Theory Appl. Cryptographic Techn., Interlaken, Switzerland, 2004,
pp. 541–554.

[46] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in Proc. 14th
Annu. Int. Cryptol. Conf., 1994, pp. 174–187.

[47] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,” in
Proc. 13th ACM Comput. Commun. Secur. Conf., Alexandria, USA, 2006,
pp. 79–88.

[48] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd Ed. Boca
Raton, FL, USA: CRC, 2021.

[49] R. Chatterjee et al., “Compact ring signatures from learning with errors,”
in Proc. 41st Annu. Int. Cryptol. Conf., Virtual, 2021, pp. 282–312.

[50] F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko, “Threshold Schnorr
with stateless deterministic signing from standard assumptions,” in Proc.
41st Annu. Int. Cryptol. Conf., 2021, pp. 127–156.

[51] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness
and security of OpenSSL HMAC,” in Proc. 24th USENIX Secur. Symp.,
Washington, DC, USA, 2015, pp. 207–221.

[52] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Netw., vol. 15, no. 2, pp. 24–32, Mar./Apr. 2001.

[53] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proc. 2nd Int. Workshop Hardware Architectural Support
Secur. Privacy, 2013.

[54] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for
CPU based attestation and sealing,” in Proc. 2nd Int. Workshop Hardware
Architectural Support Secur. Privacy, 2013, pp. 1–7.

[55] Intel, “Intel Software Guard Extensions,” 2024. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/get-started.html

[56] Ethereum, “Layer 2 testnets,” 2024. [Online]. Available: https://ethereum.
org/en/developers/docs/networks

[57] Arbitrum Docs, “Gas price floor,” 2024. [Online]. Available: https://docs.
arbitrum.io/arbos/gas#gas-price-floor

[58] R. Neiheiser, G. Inácio, L. Rech, C. Montez, M. Matos, and L. Rodrigues,
“Practical limitations of ethereum’s layer-2,” IEEE Access, vol. 11,
pp. 8651–8662, 2023.

[59] Etretrum, “Layer 2,” 2024. [Online]. Available: https://ethereum.org/en/
layer-2

[60] RapidWorkers. 2024. [Online]. Available: https://www.rapidworkers.com
[61] C. Lin, X. Huang, and D. He, “EBCPA: Efficient blockchain-based condi-

tional privacy-preserving authentication for VANETs,” IEEE Trans. De-
pendable Secure Comput., vol. 20, no. 3, pp. 1818–1832, May/Jun. 2023.

[62] M. Baza, N. Lasla, M. Mahmoud, G. Srivastava, and M. Abdallah,
“B-Ride: Ride sharing with privacy-preservation, trust and fair payment
atop public blockchain,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 1214–1229, Second Quarter 2021.

[63] G. S. Aujla, A. Singh, M. Singh, S. Sharma, N. Kumar, and K.-K. R. Choo,
“BloCkEd: Blockchain-based secure data processing framework in edge
envisioned V2X environment,” IEEE Trans. Veh. Technol., vol. 69, no. 6,
pp. 5850–5863, Jun. 2020.

[64] Dryzone, “6 tips to prevent fire and flood in your garage,” 2022. [On-
line]. Available: https://www.dryzoneinc.net/blog/2022/december/6-tips-
to-prevent-fire-and-flood-in-your-garage

[65] J. Topa, “How to prevent & fix your property’s flooding parking lot,”
2019. [Online]. Available: https://www.heliconusa.com/blog-1/2019/02/
21/how-to-prevent-fix-your-propertys-flooding-parking-lot

[66] Parking Network, “Reducing the risk of car park fires: Introducing
S.A.F.E. by highlight parking systems Ltd.,” 2023. [Online]. Avail-
able: https://www.parking.net/parking-news/highlight-parking-systems-
ltd/reducing-the-risk-of-car-park-fires

[67] M. H. Au, A. Kapadia, and W. Susilo, “BLACR: TTP-free blacklistable
anonymous credentials with reputation,” in Proc. 19th Annu. Netw. Distrib.
System Secur. Symp., San Diego, USA, 2012, pp. 1–17.

[68] Ethereum, “Block and transaction properties,” 2024. [Online]. Avail-
able: https://docs.soliditylang.org/en/v0.8.23/units-and-global-variables.
html#block-and-transaction-properties

Meng Li (Senior Member, IEEE) received the PhD
degree in computer science and technology from the
School of Computer Science and Technology, Beijing
Institute of Technology (BIT), China, in 2019. He
is an associate professor and dean assistant with the
School of Computer Science and Information En-
gineering, Hefei University of Technology (HFUT),
China. He is also a postdoc researcher with the De-
partment of Mathematics and HIT Center, University
of Padua, Italy, where he is with the Security and
PRIvacy Through Zeal (SPRITZ) research group led

by Prof. Mauro Conti (IEEE Fellow). He was sponsored by ERCIM ‘Alain
Bensoussan’ Fellowship Programme (from October 1, 2020 to March 31, 2021)
to conduct postdoc research supervised by Prof. Fabio Martinelli at CNR, Italy.
He was sponsored by China Scholarship Council (CSC) (from September 1,
2017 to August 31, 2018) for joint Ph.D. study supervised by Prof. Xiaodong
Lin (IEEE fellow) with the Broadband Communications Research (BBCR) Lab,
University of Waterloo and Wilfrid Laurier University, Canada. His research
interests include data security, privacy preservation, applied cryptography,
blockchain, TEE, and Internet of Vehicles. In this area, he has published 76
papers in international peer-reviewed journals and conferences, including IEEE
Transactions on Information Forensics and Security, IEEE Transactions on
Dependable and Secure Computing, IEEE Transactions on Mobile Computing,
IEEE/ACM Transactions on Networking, IEEE Transactions on Knowledge and
Data Engineering, ACM Transactions on Database Systems, IEEE Transactions
on Services Computing, IEEE Transactions on Smart Grid, IEEE Transactions
on Industrial Informatics, IEEE Transactions on Vehicular Technology, IEEE
Transactions on Network and Service Management, IEEE Transactions on Net-
work Science and Engineering, IEEE Transactions on Green Communications
and Networking, COMST, ISSTA, MobiCom, ICICS, SecureComm, TrustCom,
ICC, and IPCCC. He is a Senior Member of CIE, CIC, and CCF. He is an
associate editor for IEEE Transactions on Information Forensics and Security,
IEEE Transactions on Network and Service Management, and IEEE Internet of
Things Journal.

Mingwei Zhang received the BE degree from the
Jiangsu University of Science and Technology, in
2021. He is currently working toward the MS degree
with the School of Computer Science and Informa-
tion Engineering, Hefei University of Technology.
His research interests include data security, privacy
preservation, applied cryptography, blockchain, TEE,
and Internet of Vehicles.

Liehuang Zhu (Senior Member, IEEE) received the
MS degree in computer science from Wuhan Uni-
versity, Wuhan, China, in 2001, and the PhD degree
in computer science from the Beijing Institute of
Technology, Beijing, China, in 2004. He is a full
professor with the School of Cyberspace Science and
Technology, Beijing Institute of Technology, Beijing,
China. His research interests include data security and
privacy protection, blockchain applications, and AI
security. He has authored more than 500 journal and
conference papers in these areas.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

https://bitcoin.org/bitcoin.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://ethereum.org/en/developers/docs/networks
https://ethereum.org/en/developers/docs/networks
https://docs.arbitrum.io/arbos/gas#gas-price-floor
https://docs.arbitrum.io/arbos/gas#gas-price-floor
https://ethereum.org/en/layer-2
https://ethereum.org/en/layer-2
https://www.rapidworkers.com
https://www.dryzoneinc.net/blog/2022/december/6-tips-to-prevent-fire-and-flood-in-your-garage
https://www.dryzoneinc.net/blog/2022/december/6-tips-to-prevent-fire-and-flood-in-your-garage
https://www.heliconusa.com/blog-1/2019/02/21/how-to-prevent-fix-your-propertys-flooding-parking-lot
https://www.heliconusa.com/blog-1/2019/02/21/how-to-prevent-fix-your-propertys-flooding-parking-lot
https://www.parking.net/parking-news/highlight-parking-systems-ltd/reducing-the-risk-of-car-park-fires
https://www.parking.net/parking-news/highlight-parking-systems-ltd/reducing-the-risk-of-car-park-fires
https://docs.soliditylang.org/en/v0.8.23/units-and-global-variables.html#block-and-transaction-properties
https://docs.soliditylang.org/en/v0.8.23/units-and-global-variables.html#block-and-transaction-properties

11654 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Zijian Zhang (Senior Member, IEEE) received the
PhD degree from the School of Computer Science
and Technology, Beijing Institute of Technology.
He is now a professor with the School of Cyberspace
Science and Technology, Beijing Institute of Tech-
nology. He was a visiting scholar with the Computer
Science and Engineering Department, State Univer-
sity of New York at Buffalo in 2015. His research
interests include design of authentication and key
agreement protocol and analysis of entity behavior
and preference.

Mauro Conti (Fellow, IEEE) received the PhD de-
gree from the Sapienza University of Rome, Italy,
in 2009. He is full professor with the University of
Padua, Italy. He is also affiliated with TU Delft and
University of Washington, Seattle. After his Ph.D.,
he was a postdoc researcher with Vrije Universiteit
Amsterdam, The Netherlands. In 2011 he joined
as assistant professor with the University of Padua,
where he became associate professor in 2015, and
full professor in 2018. He has been visiting researcher
with GMU, UCLA, UCI, TU Darmstadt, UF, and FIU.

He has been awarded with a Marie Curie Fellowship (2012) by the European
Commission, and with a Fellowship by the German DAAD (2013). His research
is also funded by companies, including Cisco, Intel, and Huawei. His main
research interest includes the area of security and privacy. In this area, he
published more than 400 papers in topmost international peer-reviewed journals
and conferences. He is editor-in-chief for IEEE Transactions on Information
Forensics and Security, area editor-in-chief for IEEE Communications Surveys
& Tutorials, and has been associate editor for several journals, including IEEE
Communications Surveys & Tutorials, IEEE Transactions on Dependable and
Secure Computing, and IEEE Transactions on Network and Service Manage-
ment. He was Program Chair for TRUST 2015, ICISS 2016, WiSec 2017, ACNS
2020, CANS 2021, and General Chair for SecureComm 2012, SACMAT 2013,
NSS 2021 and ACNS 2022. He is a senior member of the ACM, and fellow of
the Young Academy of Europe.

Mamoun Alazab (Senior Member, IEEE) received
the PhD degree in computer science from the Fed-
eration University of Australia, School of Science,
Information Technology and Engineering. He is an
associate professor with the College of Engineer-
ing, IT and Environment, Charles Darwin University,
Australia. He is a cybersecurity researcher and prac-
titioner with industry and academic experience. His
research is multidisciplinary that focuses on cyber-
security and digital forensics of computer systems
with a focus on cybercrime detection and prevention

including cyber terrorism and cyber warfare. He has more than 150 research
papers. He delivered many invited and keynote speeches, 24 events in 2019 alone.
He convened and chaired more than 50 conferences and workshops. He works
closely with government and industry on many projects, including Northern
Territory (NT) Department of Information and Corporate Services, IBM, Trend
Micro, the Australian Federal Police (AFP), the Australian Communications
and Media Authority (ACMA), Westpac, United Nations Office on Drugs and
Crime (UNODC), and the Attorney General’s Department. He is the founding
chair of the IEEE Northern Territory (NT) Subsection.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 25,2024 at 10:09:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

