
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Efficient On-chip Voice
Activity Detector Exploit-
ing Temporal Sparsity
Master Thesis
Yuhang Jian

Efficient On-chip Voice Activity
Detector Exploiting Temporal

Sparsity

by

Yuhang Jian

Student Name Student Number
(Yuhang Jian) 5447151

Student number: 5447151
Project duration: Nov, 2022 - Dec, 2023
Thesis committee: Prof. Dr. Ir. Rene Van Leuken TU Delft, chairman

Dr. Ir. Chang Gao TU Delft, supervisor
Dr. Ir. Charlotte Frenkel TU Delft

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Chang Gao, for his guidance and
support throughout this work. I feel lucky to have chosen him as my supervisor. He led my
graduate study work step by step and provided much technical support and guidance to help
me conduct better research. He taught me about the technical field and how to be a better
engineer. This has benefited me a lot in my master’s life.

I would also like to thank my two other master committee members, the chairman, Prof.
Rene van Leuken, and the external member, Dr. Charlotte Frenkel. They provided valuable
feedback on this work and provided many specific optimization methods for my future work.
This support helps me make better plans for my future career.

Next, I would like to thank my colleagues in the research group office, Dr. Anil Kumaran
and Dr. Gagan Singh. When I was overcoming difficult challenges in this work, they taught me
many methods for conducting academic research, as well as some basic cross-field expertise,
which greatly improved the efficiency of my research work.

Then, I definitely thank my good brother, Fanyuan Li, and my parents. Their concern for my
daily life helps me to have the courage to face difficulties. Thank you for the encouragement
when I was at a low point in my master’s life.

Finally, I would like to thank myself. Thanks for my hard work as a graduate student at TU
Delft. I will continue to study in the future and grow into an excellent engineer.

Yuhang Jian
Delft, December 2023

i

Abstract

Voice activity detection (VAD) is the prevailing approach to extracting meaningful speech
information from the pervasive noise found in the physical environment. Presently, deep neural
networks (DNN) are widely employed as the classifier component in Voice Activity Detec-
tion (VAD) systems. However, conventional deep neural networks, like fully connected (FC)
deep neural networks, encounter the challenge of excessive computational complexity. This
heightened complexity can result in diminished computing efficiency, unnecessary utilization of
hardware resources, and redundant power consumption. To address the inefficiency issue from
computational complexity, this study introduces a novel neural network architecture named
DeltaFC. This architecture attains an operation time latency of less than 1 ms for each 30ms
voice segment, resulting in a 54% reduction in latency compared to the baseline fully connected
(FC) model. In software design, this study tackles the issue by compressing and encoding
time-series information using the Delta algorithm, with the objective of introducing temporal
sparsity. Based on the software results, the neural network surpasses both the baseline fully
connected (FC) and LSTM [14] models in AUC (area under the curve), with accuracy at a
lightweight parameter scale. In hardware design, this study reproduces the neural network
software design into FPGA hardware RTL design, implementing a lightweight digital IP core.
This digital IP core accelerates neural network operations in hardware by the deployment of
Delta and CSR algorithms. Compared with not introducing temporal sparsity, the computing
efficiency increases by approximately 85% with 0.5% loss in accuracy. This substantiates that
within the domain of lightweight neural networks containing fewer than 30,000 parameters, the
DeltaFC network proposed in this study is more suitable for Voice Activity Detection (VAD)
when compared to fully connected (FC), LSTM [14], and other baseline network architectures.

ii

Contents

Preface i

Abstract ii

Nomenclature v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description. 1
1.3 Objective . 2
1.4 Contributions . 3
1.5 Outline. 3

2 Background 5
2.1 Feature Extraction . 5

2.1.1 Short Time Energy (STE) . 5
2.1.2 Zero Crossing Rate (ZCR). 5
2.1.3 Spectral Entropy . 6
2.1.4 Mel Frequency Cepstral Coefficients (MFCC) 6

2.2 Traditional Classification Methods. 7
2.2.1 Threshold-based classification . 8
2.2.2 Gaussian-based statistical model WebRTC classification 8

2.3 Neural Network-Based Classification Methods . 9
2.3.1 Novel method: Deep Neural Networks. 9
2.3.2 Introduction of Neural network . 10
2.3.3 Fully connected neural network(FC) . 10
2.3.4 Recurrent neural network(RNN) . 12

2.4 Neural Network Optimization Methods . 13
2.4.1 Quantization . 13
2.4.2 Sparsity. 14
2.4.3 Compressed Sparse Row (CSR) Algorithm. 17

2.5 Neural Network Hardware Architecture. 17
2.5.1 Multistage pipeline . 18
2.5.2 Von Neumann architecture . 18

2.6 Neural Network Hardware Deployment. 19
2.6.1 Hardware Resources . 19
2.6.2 Hardware implementation unit . 21

2.7 Related Work. 24

iii

Contents iv

3 Proposed Methodology 27
3.1 Software implementation . 27

3.1.1 Delta Algorithm . 28
3.1.2 DeltaFC DNN layer . 29
3.1.3 Temporal Sparsity. 31
3.1.4 Quantization . 33

3.2 Hardware Implementation . 35
3.2.1 DeltaFC Architecture on FPGA . 35
3.2.2 Multiple Channel Parallel DSPs. 37
3.2.3 CSR Algorithm Implementation On FPGA 41
3.2.4 Delta Algorithm Implementation On FPGA 48
3.2.5 Interface Design. 51

4 Results 53
4.1 Experiment Setup . 53

4.1.1 Software Design Setup. 53
4.1.2 Hardware Design Setup . 55

4.2 Experiment Results . 56
4.2.1 Software Design Results. 56
4.2.2 Hardware Design Results . 60

4.3 Experiment Analysis . 66
4.3.1 Software Design Analysis . 66
4.3.2 Hardware Design Analysis. 68

5 Conclusions and Future works 71
5.1 Conclusion . 71
5.2 Future work . 71

References 76

Nomenclature

Abbreviations

Abbreviation Definition

VAD Voice Activity Detection
STE Short Time Energy
ZCR Zero Crossing Rate
CNN Convolutional Neural Networ
TD-CNN Time-Domain Convolutional Neural Net-

work
M-AECNN Masked Auditory Encoder-based Convolu-

tional Neural Network
FFT Fast Fourier Transform
SNR Signal Noise Ratio
GMM Gaussian Mixed Model
LLR Log Likelihood Ratio
FPGA Field Programmable Gate Array
BNN Binarized Neural Network
MSE Mean Square Error
LSTM Long Short Term Memory
CSR Compressed Sparse Row
GCD Greatest Common Divisor
DNN Deep Neural Network
FC Full Connection
RAW Read After Write
RW Read Write

v

List of Figures

1.1 Human sounds in noisy environment . 1
1.2 Always-on voice activity detection process . 2
1.3 Structure of sparse matrix calculations. 3

2.1 Gaussian model fitting to speech and noise . 8
2.2 Basic structure of 5-layer DNN. 11
2.3 typical structure of RNN unit . 12
2.4 The standard RNN and unfolded RNN. 12
2.5 The structure of LSTM . 13
2.6 Spatial sparsity involves calculations only for hidden layer values that differ from

their ground state . 15
2.7 Sound spectrogram of voice segment features 16
2.8 After Delta algorithm conversion, the sound spectrogram of voice segment

features shows a certain temporal sparsity. 16
2.9 CSR algorithm conversion . 17
2.10 Multistage pipeline . 18
2.11 Von Neumann Architecture . 19
2.12 In Memory Computing Architecture . 19
2.13 AND chain vs. LUT6 synthesis . 20
2.14 Cascaded DFFs STA (Static Timing Analysis) 20
2.15 Simple BRAM Configuration . 21
2.16 Simple DSP48E1 . 22
2.17 FIFO Configuration . 22
2.18 SRAM structure. (a)SPRAM (b) SDPRAM (c)TDPRAM 23
2.19 Multiplier example. (a)Dual-channel DSP multiplier (b) Single-channel DSP

multiplier . 24

3.1 DeltaFC calculation of one frame . 27
3.2 DeltaFC DNN structure . 28
3.3 DeltaFC Neural network structure . 29
3.4 Current(a) and previous(b) frames . 30
3.5 Delta absolute frame . 30
3.6 Delta absolute frame after threshold filter . 30
3.7 Input features use the Delta algorithm to increase temporal sparsity 32
3.8 Input features use the Delta algorithm to increase temporal sparsity 32
3.9 32-bit Single-Precision Floating-Point Number 33
3.10 Low bits number with high bits memory will cause the waste of memory 34
3.11 16-bit Fixed-Point Number . 34
3.12 DeltaFC DNN hardware design conversion based on software design 36
3.13 DeltaFC DNN hardware design of module reuse architecture 36
3.14 DeltaFC simple architecture on FPGA . 37
3.15 DeltaFC accelerator architecture on FPGA . 38
3.16 Matrix multiplication process in software and hardware design 38

vi

List of Figures vii

3.17 6 data concatenation for 6 parallel DSPs synthesize 39
3.18 Matrix partitioning . 40
3.19 Matrix multiplication process in 3 parallel DSPs hardware architecture 40
3.20 Timing diagram of 6 DSPs design and 3 DSPs design 40
3.21 sparse matrix example of 12 features and 3 frames 41
3.22 (a) sparse data transmission and (b) CSR data transmission 42
3.23 Interlock data transmission . 42
3.24 Bypassing data transmission . 42
3.25 Bypassing data transmission process . 43
3.26 Speculation data transmission process . 44
3.27 RW conflicts often occur when SRAM reads and writes to the same address

simultaneously . 45
3.28 Optimized CSR Buffer RAM can solve RW conflicts 46
3.29 Weights example, which has dimensions of 3×12 46
3.30 Process of CSR Acceleration . 47
3.31 Timing diagram of CSR algorithm acceleration 48
3.32 Process of Delta Algorithm Implementation on FPGA (omits all write-back oper-

ations for updates) . 49
3.33 Timing diagram of a 4-stage pipeline of Delta algorithm deployment 49
3.34 DeltaFC digital IP diagram . 52

4.1 AUC results of 4 networks. The threshold of DeltaFC is 0, which is equivalent to
FC mathematically . 57

4.2 Relationships between accuracy & temporal sparsity and threshold from 0 to 0.5 58
4.3 Relationships between accuracy & temporal sparsity and threshold from 0 to 0.1 59
4.4 Audio part and voice label developed by WebRTC 59
4.5 Audio part and voice label developed by DeltaFC 59
4.6 The device diagram of DeltaFC IP core . 60
4.7 The area and utilization of DeltaFC IP core . 61
4.8 The power consumption of DeltaFC IP core . 61
4.9 The STA slacks of DeltaFC IP core . 62
4.10 The threshold variation on accuracy of software design and hardware design . 62
4.11 The relationships between threshold and temporal sparsity and throughput . . 64
4.12 The timing diagram for the DeltaFC IP without acceleration 65
4.13 The timing diagram for the DeltaFC IP with acceleration 65
4.14 Temporal sparsity will increase as threshold increases 66
4.15 Data distribution of 2048th batch’s features before Delta algorithm 67
4.16 Data distribution of 2048th batch’s features after Delta algorithm 67
4.17 Integration of Features Distribution curve . 68
4.18 Timing diagram of insufficient RAM ports of bottleneck 70

List of Tables

2.1 COMPARISON RESULTS OF THREE ALGORITHMS [46] 6

4.1 Dataset sampling parameters . 53
4.2 The MFCC parameter settings for each 30ms audio segment. 54
4.3 On-board resources parameters of MiniZed . 55
4.4 The parameters of 4 different basic neural networks tested in this work. The

threshold of DeltaFC is 0, which is equivalent to FC mathematically 57
4.5 Accuracy and FAR&FRR results of 4 networks. The threshold of DeltaFC is 0,

which is equivalent to FC mathematically . 57
4.6 The relationships between threshold and temporal sparsity, latency, and through-

put. The lightweight DeltaFC architecture parameter scale used in this work is
27202, and the maximum theoretical throughput is 1.6Gop/s 64

4.7 Comparison of latency and effective throughput of DeltaFC before and after
acceleration. 64

4.8 Comparison of the accelerated hardware accuracy with the non-accelerated
hardware accuracy for the entire test dataset 65

viii

1
Introduction

1.1. Motivation
In the real world, the surrounding environment is replete with various noises. Accurate
interpretation of audio information, especially human sounds in a noisy environment, requires
the use of Voice Activation Detection (VAD) to extract meaningful acoustic information from the
ambient noise, as shown in Fig. 1.1. A typical VAD system consists of a feature extractor and a
classifier. VAD classifier implementation methods encompass both conventional audio sensing
classification techniques and deep learning methods based on deep neural networks (DNN).
This work primarily delves into the DNN method.

Figure 1.1: Human sounds in noisy environment

Conventional deep neural networks (DNN) face challenges of high computational complexity
when dealing with large models, and their architectures are not well-suited for processing
sequential information such as audio. Taking the example of a conventional fully connected (FC)
neural network, the participation of numerous neurons and synapses in matrix multiplication
and accumulation (MAC) operations elevates the computational complexity of the neural
network [24], resulting in diminished computational efficiency, especially on hardware design.
Therefore, a novel lightweight neural network named DeltaFC is proposed to address the
issue of inefficient computational efficiency stemming from resource-intensive calculations in
traditional neural networks, especially in hardware design.

1.2. Problem Description
In the domain of Voice Activity Detection (VAD), the output complexity is very low, characterized
by a binary format (1 denotes "speech" and 0 signifies "noise," as shown in Fig. 1.2). Further-
more, after feature extraction, the input audio exhibits inherent temporal correlations along the
time axis. Temporal correlation implies that the variations in input features at each time step

1

1.3. Objective 2

are insignificant. Inducing temporal sparsity through the intrinsic temporal correlations of the
audio signal has become the central focus of acceleration in this work.

Following the induction of temporal sparsity, the input matrix exhibits sparsity, which can be
accelerated through the application of partial convolution. The adoption of partial convolution
in VAD speech recognition can be beneficial. Partial convolution selectively processes specific
features by leveraging the temporal sparsity induced by the temporal correlations in the input
audio signal. As a result, it is recommended to devise a novel neural network, such as DeltaFC,
proposed in this work, which introduces more temporal sparsity in the input features. On the
other hand, partial convolution can be implemented using the CSR algorithm to accelerate the
calculation process.

Figure 1.2: Always-on voice activity detection process

In software design, the concept of sparsity is introduced as a foundational principle. Sparsity
refers to zero values and intermediate variables that can be converted to zero values in the
model, bypassing unnecessary calculations involving zero-multiplied terms, as depicted in
Fig. 1.3. Integrating sparsity enhances computational efficiency and resource utilization in
sparsity-aware neural network accelerators [45]. Therefore, this study will use thresholds to
filter features with insufficient delta values between the current and next audio frame, aiming to
introduce more sparsity.

In hardware design, this work adopts a unique hardware architecture to implement the CSR
and Delta algorithms [31], thereby implementing the DeltaFC digital IP core. In pursuit of a
lightweight neural network, the strategy incorporates a multi-channel parallel DSP architecture
for foundational matrix partitioning and MAC operations. Furthermore, to boost the computa-
tional speed of the neural network, this work employs a multi-stage pipeline architecture to
deploy the CSR and Delta algorithms, directly accelerating neural network operations at the
hardware design level.

1.3. Objective
The main objectives of this work are as follows:

1.4. Contributions 3

Figure 1.3: Structure of sparse matrix calculations.

• In software design, to train a lightweight (for example, the number of neural network
parameters is less than 30k) DeltaFC DNN, which induces sufficiently high accuracy
(Over 90%) and temporal sparsity (Over 50%).

• In software design, compared with the baseline neural network in terms of performance,
the DeltaFC DNN shows advantages in AUC, accuracy, and parameter scale.

• In hardware design, to implement a lightweight digital IP that can deploy and accelerate
the DeltaFC DNN, and it is supposed to be implemented by low resources consuming
(below 50%) and run in high frequency (100MHz).

• In hardware design, the designed hardware module can achieve the expected accel-
eration, and the function verification is correct through synthesis, implementation, and
routing.

1.4. Contributions
The main contributions of this work are as follows:

• Proposing a new neural network based on FC. This novel neural network named DeltaFC
leverages the Delta algorithm to introduce temporal sparsity, enhancing the computational
efficiency.

• Implementing the acceleration of the neural network on FPGA RTL design by the de-
ployment of Delta and CSR algorithms. Deploying the Delta and CSR algorithms in
FPGA RTL design is implemented through a multi-channel parallel architecture. This ap-
proach enables hardware acceleration, allowing for efficient processing of neural network
computations on the hardware design.

1.5. Outline
The structure of this thesis is shown as follows:

• Chapter I: Introduction

Brief introduction of the motivation for this work, the objectives to be achieved, and the
contribution made.

1.5. Outline 4

• Chapter II: Background

Introducing the feature extraction methods and components both in software and hard-
ware design, encompassing elements like the neural network structure and optimization
methods in software design, as well as the hardware architecture, resources, and FPGA
units in hardware design.

• Chapter III: Proposed Methodology

Outlining the implementation of Delta Deep Neural Network (DNN) in both software and
hardware design. This encompasses the neural network architecture in software and
hardware design and the deployment of CSR and the Delta algorithms.

• Chapter IV: Results

Setup of the experimental framework for both software and hardware design. Subse-
quently, analyze the obtained experimental results and provide corresponding evaluations.

• Chapter V: Conclusion

Summarize the objectives achieved in this work and list possible future works.

2
Background

The implementation of Voice Activity Detection (VAD) is a multifaceted process, comprising
several distinct steps. The initial phase involves audio feature extraction, followed by audio
VAD neural network classification. Subsequently, there’s the implementation of audio VAD in
hardware, culminating in the presentation of audio output results. Given the intricacy of this
process, it is essential to delve into the background knowledge of each step. The upcoming
chapter will provide a comprehensive introduction to each of these steps, offering a detailed
understanding of the intricate VAD implementation process.

2.1. Feature Extraction
The initial phase in Voice Activity Detection (VAD) is feature extraction. As mentioned earlier,
various methods are commonly employed for VAD feature extraction, including Short Time
Energy (STE), Zero Crossing Rate (ZCR), Spectral Entropy, and Mel Frequency Cepstral
Coefficients (MFCC), among others. In the subsequent sections, these feature extraction
methods will be introduced in detail.

2.1.1. Short Time Energy (STE)
Since voice signals vary significantly over time, voice features can be distinguished by the
short-term energy of each frame we defined. The formula of short-time energy is as follows
[46]:

E(n) =
N∑
i=1

xn(i)
2 (2.1)

N is frame length, xn(i) is the speech signal of frame n, and E(n) is the short-time energy
of frame n. This is the simplest and most direct method, not only used for feature extraction
but also for classification. However, STE is very sensitive to large amplitude signals and will
likely exceed the threshold when the SNR is large. Therefore, STE is often used combined
with other methods.

2.1.2. Zero Crossing Rate (ZCR)
As the name implies, ZCR means the frequency at which the signal statistically exceeds 0 or
not. It can represent the existence and non-existence of discrete-time signals. The formula of
ZCR calculation is as follows [46]:

Zn =

∞∑
m=−∞

|sgn[s(m)]− sgn[s(m− 1)]| (2.2)

5

2.1. Feature Extraction 6

In the above equation, sgn(x) is the sgn function, which is a special form of the tanh function.
And sgn(x) function is as follows.

|sgn(x)| =
{

1 , x ≥ 0
−1 , x < 0

(2.3)

s(m) is the speech signal of the frame. The ZCR is often combined with STE characteristics
for endpoint detection. Following the detection of endpoints, a small sample of silence interval
before the commencement of speech signal is taken, and STE and ZCR are calculated [28].

2.1.3. Spectral Entropy
Spectral entropy serves as an effective measure of signal confusion. In the case of white noise,
characterized by a disordered spectrum, the spectral entropy is high. Conversely, speech
signals exhibit a more organized spectrum, resulting in lower spectral entropy. This inherent
difference allows spectral entropy to distinguish between noise and speech signals effectively.
The fundamental concept behind utilizing spectral entropy in voice activity detection lies in the
observation that the signal spectrum is less organized during non-speech intervals compared
to speech intervals [34]. The formula for calculating spectral entropy is as follows:

H(n) = −
N/2∑
k=0

pn(k)log2pn(k) (2.4)

P is the signal spectral line density. Through spectral entropy calculation, the signal can be
extracted from the mixed signals by the entropy size.

To compare feature extraction results, Thein Htay Zaw1 [46] and Nu War raised different
combinations of ZCR, STE, and LPE (Linear Prediction Error), and spectral entropy methods
to evaluate the maximum and minimum accuracy. They kept the same parameters, such as
sampling frequency for each combination, and finally, they obtained the table of comparison
results, as shown in Tab. 2.1. In most cases, those feature extraction methods are used not
independently but in combination.

Features Minimum Accuracy
ZCR + Energy + LPE + Spectral Entropy (Proposed Algorithm) 90.35%
ZCR + Energy + Spectral Entropy 89.33%
ZCR + Energy + LPE 89.58%
Features Maximum Accuracy
ZCR + Energy + LPE + Spectral Entropy(Proposed Algorithm) 97.22%
ZCR + Energy + Spectral Entropy 95.44%
ZCR + Energy + LPE 96.20%

Table 2.1: COMPARISON RESULTS OF THREE ALGORITHMS [46]

2.1.4. Mel Frequency Cepstral Coefficients (MFCC)
The traditional feature extraction method is the application of the speech signal in time domain
parameters, such as ZCR, STE, and so on. Except for the 3 fundamental methods introduced
previously, MFCC is one of the most effective features for speaker recognition, especially in
recent years of research. MFCCs are based on the known variety of the human ear’s critical
bandwidths with frequency [7]. The perception of the human ear is sensitive to low frequency
and rather ambiguous to high frequency. Therefore, Mel frequency simulates the hearing
characteristics of the human ear, converts the spectrum to a non-linear spectrum based on

2.2. Traditional Classification Methods 7

Mel frequency coordinates, and then converts it to the spectrum domain. Mel frequency and
actual frequency can be transformed by the following formula [43]:

Mel(f) = 2595lg(1 + f/700) (2.5)

The MFCC feature extraction process can be divided into steps as follows:

1. Pre-emphasis

The purpose of pre-emphasis is to boost the high frequencies to flatten the signal
spectrum, which can be regarded as the signals through the high-pass filter. This will
facilitate the calculation of SNR.

H(z) = 1− µz−1 (2.6)

2. Frame

Due to the non-stationary and short-term stationary characteristics of the speech signal,
the speech signal is divided into frames.

3. Windowing

Multiplying each frame by a Hamming window to increase the continuity of the left and
right of the frame, as follows [43]:

S′(n) = S(n)W (n) (2.7)

where

W (n) = 0.54− 0.4cos[2πn/(N − 1)] (2.8)

4. Fast Fourier Transform (FFT)

To observe the signals’ characteristics more conveniently, transform the time domain
signal into frequency domain energy distribution. Then, the spectral energy of the speech
signal is calculated.

5. Triangular window band-pass filter

Passing the energy spectrum through a set of Mel-scale triangular window band-pass
filters. Triangular window band-pass filter can smooth the spectrum and remove the
effects of harmonics, emphasizing the formants of the original speech [43]. The filters are
dense, and the threshold is low when frequencies are high, and filters are sparse, and
the threshold is high when frequencies are low. This is also the auditory characteristic of
the human ear.

The signal energy output by each band-pass filter is the basic feature of the signal, which
can be used as the input feature of speech after further processing.

2.2. Traditional Classification Methods
The second step for VAD is classification. The commonly used classification methods include
conventional methods such as threshold-based methods and Gaussian-based statistical model
methods such as WebRTC.

2.2. Traditional Classification Methods 8

2.2.1. Threshold-based classification
The energy spectrum of the signals can be obtained through feature extraction. The next step
is classifying the noise and the non-noise based on the energy threshold. The threshold values
are often preset; the values can be calculated in advance or pre-obtained according to the
features of the training data set by neural network [22]. For scenes with varying noise, an
adaptive threshold is required. Assume η is the adapted threshold energy, which varies from
η0 to η1, and E1 is the energy maximum, E2 is the energy minimum. So η can be calculated as
follows:

η =

η0 E < E0

η0−η1
E0−E1

(E − E0) + η0 E0 ≤ E ≤ E1

η1 E > E1

(2.9)

The advantage of this threshold preset is that it is simple and easy to understand. However,
the false alarm rate will increase for short-time spiking signals or signals with low SNR because
of the stubbornly preset threshold. Therefore, with time-varying, a more smoothy strategy can
be used as follows:

η = αη + (1− α)ηnew (2.10)

2.2.2. Gaussian-based statistical model WebRTC classification
Gaussian Mixed Model (GMM) is the statistical Model commonly used in speech algorithms,
and WebRTC uses the Gaussian-based statistical model method combined with extractors
such as STE and ZCR mentioned before. This method assumes that the audio signal has
Gaussian model characteristics first and then uses the Gaussian model to fit two models of
speech and noise to distinguish the two signals, as shown in Fig. 2.1.

Figure 2.1: Gaussian model fitting to speech and noise

WebRTC uses the GMM statistical model to make VAD classification, divides 0 4kHz into
several subbands, and uses these. The subband energy of the frequency band is used as
GMM features. The WebRTC process is rough as follows [37]:

1. Initialization and configuration, including coefficients of the filters and parameters of VAD
hangover;

2. Downsampling the speech signals to 8kHz and calculating the energy of each subband
as a GMM feature (STE method for each subband);

2.3. Neural Network-Based Classification Methods 9

3. Calculating the Gaussian probability corresponding to each subband and multiplying it
with the weight of the subband as the final probability of speech/noise;

4. Calculating the LLR (log-likelihood ratio, LLR) of each subband and the LLR of each
subband will be compared with the threshold as a local VAD decision. When one of
the classification results has speech, it is determined that the current frame is a speech
frame;

5. Smoothing the result;
6. Adaption, which means updating GMM parameters and iteration;

Gaussian-based statistical model WebRTC classification has significant improvements in
accuracy and sensitivity. Its application scenarios are very wide, especially in conventional
VAD methods. The VAD that Google developed for the WebRTC project is reportedly one of
the best available, being fast, modern, and free [12]. Since it uses fixed point operations and is
optimized for real-time use for web transmission [35], the Gaussian-based statistical model
WebRTC is a good baseline for VAD implementation. In chapter 4, WebRTC will serve as a
benchmark for the VAD classification of this work.

In Chapter 4, WebRTC will serve as the benchmark for the VAD classification in this work,
providing a robust reference against which the outcomes of the proposed approach of this
work can be measured.

2.3. Neural Network-Based Classification Methods
2.3.1. Novel method: Deep Neural Networks
Conventional VAD classification methods, such as the WebRTC model classification method,
can distinguish noise and speech signals well in scenarios with high SNR and are also
great in real-time response. However, for low SNR, the performance of conventional VAD
classification methods is not well. However, deep learning classification performs excellently in
speech recognition for a novel method. The commonly used structure of the Deep learning
classification method is DNN. DNN-based VAD systems can fuse the advantages of multiple
features much better than traditional VADs [40].

DNN structure and the training-testing process will be briefly introduced. Assume a
feedforward FC DNN has multiple fully connected layers, each with multiple neurons. Features
extracted from audio signals are input from the left fully connected layer of this DNN and will
output from the right fully connected layer of this DNN. In DNN-based VAD classification, the
output has only 1 judgment bit to distinguish whether the input signal is a speech signal or
noise. In the training process, when the dataset is sufficiently rich, this model will be trained
repeatedly to update parameters, including each layer’s weights and biases. After dozens
or even hundreds of training epochs, the trained-well model will be called by the final testing
process. The results, such as the accuracy and loss of the model output, will be evaluated
during the testing period.

Compared with conventional DNN classification, the classification thresholds of the DNN-
based model classifier are not preset or calculated but are updated by the model’s parameters
under the massive dataset. With sufficiently rich and well-characterized datasets, the data
output by the DNN model will fit the real-world acoustic data.

However, deep learning classification also has several drawbacks, but the solutions are
given below:

1. Computing resources are usually more expensive than traditional methods;

The problem of high consumption of computing resources can be optimized by changing
the network model structure, model pruning, and compression [26];

2.3. Neural Network-Based Classification Methods 10

2. The model’s generalization ability is usually worse than that of traditional methods.

The problem of the weak generalization ability of the model can be improved by using
various regularization methods, expanding the training data set, and replacing the network
input features.

2.3.2. Introduction of Neural network
In this work, the classification method adopts the neural network method. There are many
types of neural networks, and based on the aforementioned type of connections, neural
networks can be classified into two types: feedforward network and feedback network [48].
The feedforward neural network can be subdivided into a fully connected layer neural network
and a convolutional neural network. The representative network of feedback neural networks
is the Recurrent Neural Network(RNN). In the field of voice activity detection, the traditional
method is to divide a piece of voice into several frames, extract the features of each frame, and
input them into the traditional neural network for training. The most traditional form of neural
network is a DNN composed of fully connected layers. It performs an inner product of each
audio frame’s features and network parameters. However, calculating such many parameters
is inefficient in hardware implementation.

In later research on audio feature extraction, it was observed that each frame of the audio
spectrum, post Mel-Frequency Cepstral Coefficients (MFCC), exhibits visual features similar to
those found in images. This discovery led to applying a bottom-up local visual feature extraction
mechanism to process audio spectrograms, treating them like image features. Abdel-Hamid
et al. [1] applied their functionally extended Convolutional Neural Networks (CNNs) to sound
spectrogram inputs. They showcased that their CNN architecture outperformed earlier basic
forms of FC DNNs in tasks such as phone recognition and large vocabulary speech recognition.
However, CNN, which has an advantage in speech recognition in audio processing based
on the MFCC spectrum, is ineffective in voice activity detection. On the one hand, CNN will
overkill and lose some key features in the pooling operation, and these lost features play a
decisive role in identifying whether this audio is speech or noise (such as human voice in a
noisy environment). On the other hand, the computational and storage load of convolutional
neural networks is too large, which conflicts with the objective of this work, which requires
lightweight networks.

To achieve neural network acceleration in hardware implementation and the processing
of all keyframes in the audio, this study proposes a new fully connected (DeltaFC) DNN. In
voice activity detection, the audio features after MFCC are coherent without instantaneous
jumps. Leveraging this characteristic, the DeltaFC layer utilizes the feature difference (∆x)
between adjacent frames as input features instead of the original features (x) of the audio. This
section will introduce the baseline models of FC and Recurrent Neural Network (RNN). The
subsequent chapter 3 will delve into the details of the DeltaFC layer, elucidating its innovative
approach in enhancing hardware-accelerated neural network processing for voice activity
detection.

2.3.3. Fully connected neural network(FC)
The FC neural network represents a classic application of the multilayer perceptron (MLP). This
neural network type embodies the fundamental characteristics of a DNN, featuring an input
layer, multiple hidden layers, and an output layer. It is called the FC because each network
node is fully connected to all the nodes of the previous layer, which is used to integrate the
features extracted earlier. Fig. 2.2 shows the FC neural network structure.

The weight matrix in the FC neural network is a two-dimensional matrix comprising weights
and an additional line for bias. Initially, FC utilizes random numbers to determine the connec-

2.3. Neural Network-Based Classification Methods 11

Figure 2.2: Basic structure of 5-layer DNN.

tion weights between the input and hidden layers. Subsequently, error correction learning
techniques, such as the backpropagation (BP) algorithm [47], are employed to iteratively
adjust the connection weights between the hidden layer and the output layer. This iterative
learning process enables the network to fine-tune its parameters based on the observed errors,
enhancing its ability to capture underlying patterns in the data accurately. Assuming an FC
has input nodes of 3 and output nodes of 3, then input can be assumed as x1, x2, x3, while
output as a1, a2, a3. And weights can be assumed as Wi,j(i, j represents the row and column
of this FC matrix, as 3 and 3 in this FC), then bias as b1, b2, b3. The output can be calculated
as Eq. 2.2.

a1 = W11x1 +W12x2 +W13x3 + b1

a2 = W21x1 +W22x2 +W23x3 + b2

a3 = W31x1 +W32x2 +W33x3 + b3

(2.11)

Eq. 2.11 can be transformed into matrix calculations, as Eq. 2.12.

a1a2
a3

 =

W11 W12 W13 b1
W21 W22 W23 b2
W31 W32 W33 b3

 ·

x1
x2
x3
1

 (2.12)

The FC operation calculations are evidently straightforward, primarily involving matrix
operations. This simplicity renders the modification of the FC flexible, and the computational
process remains linear and robust. The hardware design used in this work is suitable for this
mode of operation, which means the large-scale matrix operation adopts the multi-channel
pipeline parallel structure design. However, the amount calculation operations of the FC is
complex, especially when the network’s input and output reach the size of 64, 128, which poses
a challenge to the lightweight hardware design of this work. Therefore, this work improves
based on FC and proposes the DeltaFC neural network, which will be introduced in detail in
Chapter 3.

2.3. Neural Network-Based Classification Methods 12

2.3.4. Recurrent neural network(RNN)
In contrast to the feedforward neural network represented by FC, the Recurrent Neural Network
(RNN) stands out as a representative of the feedback neural network. The typical structure of
the RNN unit is shown in Fig. 2.3.

Figure 2.3: typical structure of RNN unit

It’s obvious to see that RNN has a strong temporal correlation since the output of each
current state is related to the output of the previous state. Here is the reference of calculation
process derivation of RNN by Robin M. Schmidt [36] from Eberhard-Karls-University Tübingen.
Assuming time, t denotes the current state, while t-1 denotes the previous moment. X repre-
sents input features, and H represents the hidden layer. The hidden layer computation in RNN
is similar to the MAC operation in FC. However, due to the temporal correlation in RNN, each
hidden layer output equals the sum of the hidden output from the current layer and the hidden
output from the previous layer, as shown in the Eq. 2.13 and Eq. 2.14.

Ht = ϕh(XtWxh +Ht−1Whh + bh) (2.13)

Ot = ϕo(HtWho + bo) (2.14)

From this derivation process, it can be clearly observed that RNN uses the output of the
previous state as a part of the current state’s input (usually as bias). If the input is input frame
by frame in a sequential manner, the RNN unfold calculation structure is shown in Fig. 2.4.

Figure 2.4: The standard RNN and unfolded RNN.

Due to the special structure of RNN processing information from the time axis, RNN is very
suitable for processing time series information, such as audio, video, .etc. Therefore, RNNs
find applications in natural language processing, speech recognition, computer vision, and
Video processing [36]. However, vanishing or exploding gradients are a key problem of RNNs.
Since the input of each current temporal layer is associated with the output of the previous
temporal layer, if the weight of the matrix in the operation of the previous layer is small (for
example, less than 1), then this will affect the gradient of the next layer which will decrease if in
continuous. The gradient will approach 0 (gradients vanishing) under the iteration of multiple
small weight frames. On the contrary, it will cause a gradient explosion. These issues prompted

2.4. Neural Network Optimization Methods 13

the adoption of Long Short-Term Memory units (LSTMs), specifically designed to address the
gradient vanishing and explosion problems [36].

Compared with RNN, LSTM introduces control gates to manage the stream information
from the data selection C(t−1) and C(t), the input Input(t), the output of the previous time step
H(t−1), and the outputH(t), as shown in Fig. 2.5. These control gates dynamically regulate
data selection C(t) within the network. For instance, the forget gate decides whether to retain
the output of the previous layer H(t−1). Each gate has its own corresponding weights and
biases because of the control gate selection. By selectively choosing data through control
gates, gradient disappearance, and explosion issues can be mitigated as much as possible.

Figure 2.5: The structure of LSTM

It is worth noting that because of the introduction of control gates, the computational
complexity of LSTM is very high. Furthermore, the iterative structure of LSTM determines
that it is unsuitable for lightweight parallel processing. This leads to the fact that the hardware
implementation of LSTM will consume a lot of resources, such as a large number of FIFOs
and BRAMs used to cache the memory, which is contrary to the objective of the lightweight
design of this work. However, the original RNN also faces the dilemma of acceleration induced
by temporal sparsity disabled. Therefore, in response to this problem, the DeltaFC proposed in
this work uses FC as the baseline and introduces a iterative structure similar to RNN, and Delta
algorithm to implement lightweight operations based on memory processing of time series
information. Delta-Fully-Connected (DeltaFC) will be introduced in Chapter 3.

2.4. Neural Network Optimization Methods
This work not only realizes the classification processing of the neural network but also accel-
erates its operation. In this section, two acceleration strategies for neural networks will be
introduced. One is the neural network quantization that simplifies data structure, and the other
is the sparsity strategy.

2.4.1. Quantization
In mathematics and digital signal processing, quantization is the process of mapping input
values from a large set (usually a continuous set) into a smaller set (usually with a finite number
of elements). In optimizing neural networks, this method converts floating-point numbers
into fixed-point integer values. In the realm of neural network quantization, the weights and
activation tensors are stored at lower bit precision compared to their standard training precision
of 16 or 32 bits. Transitioning from 32 to 8 bits substantially reduces memory overhead,
decreasing storage requirements by a factor of 4. Simultaneously, the computational cost

2.4. Neural Network Optimization Methods 14

for matrix multiplication experiences a quadratic reduction, diminishing by a factor of 16, as
highlighted in [29]. The quantization of the neural network will slightly impact the accuracy, but
it will save a lot of hardware cache resources.

At the hardware design, quantization can save resource consumption of computing units
to accelerate neural networks. In neural network calculations, the most basic operation is
Multiply-Accumulate (MAC), as shown in Eq. 2.15.

yn = Wnxn + yn−1 (2.15)

In this process, if the neural network is not quantized and the operation results of the
previous layer are passed to the next layer without loss, then W, X, and bias must support
floating-point logic. This means, on the one hand, not only more bits need to be stored in the
data cache, but the bit width of the multiplier must also be expanded. On the other hand, since
the number of bits of floating-point numbers is variable, the storage bit width is fixed. This
leads to the fact that in the caching strategy, data with a short bit width often has vacant bits
in the storage of data with a long bit width, which also causes a waste of storage resources.
The computational cost of digital arithmetic is generally scaled either linearly or quadratically
with the number of bits utilized. Consequently, fixed-point calculations are deemed more
efficient than their floating-point counterparts [15]. In summary, unquantized neural networks
are contrary to this work’s objective of lightweight design. The implementation of specific
floating-point data to fixed-point data transformation will be elaborated in Chapter 3.

2.4.2. Sparsity
Sparsity refers to the characteristic that the processed data presents several 0 values. Sparsity
can be divided from the time and space dimensions into temporal and spatial sparsity. However,
for some signals that do not contain sparsity, some operations can be used to make them
sparse, that is, to create activation sparsity. This work will introduce the commonly used neural
network sparsity applications, including activation, spatial, and temporal sparsity.

Activation sparsity
In natural language processing, the features of the audio signal contain inherent temporal
correlation. However, activation sparsity makes these features lose information spontaneously
by temporal correlation to achieve the activation of sparsity. So that is to say, sparse activation
causes information loss; in the information encoding, more elements are zero or tend to zero.
For example, the Sigmoid and ReLu functions are representative methods for increasing
activation sparsity in neural networks.

Improving activation sparsity significantly improves the computational efficiency of neural
networks. However, directly increasing the activation sparsity of audio leads to losing key
features of the audio signal. Therefore, the increase in activation sparsity in the audio field
often adopts indirect methods, such as introducing a memory layer to perform Delta operations
on the features of the front and rear frames or to increase or reduce the dimensions of the
features. Park et al. [32] also suggested that in algorithms where the kernel exhibits sparsity,
the Compressed Sparse Row (CSR) format can be employed to pre-compress the sparse
kernel before inference. This approach enhances activation sparsity without incurring any
performance overhead.

Activation sparsity focuses more on operations that perform activations on sparsity. There-
fore, making more features tend to 0 indirectly is the key to increasing activation sparsity. In
this sense, the temporal sparsity and spatial sparsity mentioned later can also be classified as
subsets of activation sparsity. For easier distinguishing, the sparsity used in this work is always
expressed as temporal sparsity.

2.4. Neural Network Optimization Methods 15

Spatial sparsity
Spatial sparsity is the statistical probability of 0 value after compressing the input data or
network parameters in space (such as a two-dimensional matrix) as a whole or locally. Its input
features lack temporal correlations between different frames, only maintaining the traditional
topological relationships in regular space. Based on this characteristic, spatial sparsity is
commonly applied to Convolutional Neural Networks (CNNs) that are well-suited for image
processing. In Convolutional Neural Networks (CNNs), spatial activation sparsity is defined as
the ratio of zero activations within a feature map to the total number of activation neurons in
that feature map.

Spatial sparsity is applied in CNN to explain the acceleration principle. When an all-zero
feature is input into each hidden layer of the CNN, the bias item in the matrix prevents the
matrix from being an all-zero array, and these non-zero elements are considered to be at the
ground state of spatial sparsity. In cases where the input array is sparse, only calculations
related to the values of hidden layers that deviate from their ground state are processed, as
described in [13]. This process is shown in Fig. 2.6, showcasing how active spatial locations
evolve across the layers.

Figure 2.6: Spatial sparsity involves calculations only for hidden layer values that differ from their ground state

As the name suggests, the main field of application of spatial sparsity lies in the spatial
sparse algorithmic acceleration. However, in the field of time-sequential audio processing,
implementing spatial sparsity is unsuitable since it only accelerates the matrix operation in the
traditional regular space. It is not sensitive to the time axis; therefore, temporal sparsity fits this
work better.

Temporal Sparsity and Delta algorithm
Unlike spatial sparsity in static signal processing (such as image processing), temporal sparsity
focuses more on streaming signal processing (such as audio-video processing).

Neural networks, including Recurrent Neural Networks (RNNs) and the DeltaFC model
introduced in this study, encounter the challenge of heightened computational demands when
processing time-series information. This is due to the network’s computation of features at
each time step, leading to a potential increase in computational complexity. Nevertheless, a
temporal correlation exists within time-series information, manifesting as subtle changes in
features between previous and current frames, as shown in Fig. 2.7. Therefore, if the temporal
correlations in time-series information can be indirectly induced to generate temporal sparsity,
it is possible to reduce computational complexity.

Temporal sparsity can be introduced by utilizing the Delta algorithm, which specifically
focuses on the amplitude difference, denoted as ∆y, between consecutive frames rather than

2.4. Neural Network Optimization Methods 16

Figure 2.7: Sound spectrogram of voice segment features

processing the entire amplitude. When the amplitude difference ∆y drops below a predefined
threshold, it is designated as 0. In the time-series information, numerous such ’∆y’ values
exist, providing an opportunity to skip calculations involving these zero values [42], which can
introduce temporal sparsity, as shown in Fig. 2.8. This process effectively reduces unnecessary
operations, thereby boosting the speed of neural network operations. The detailed process of
the delta algorithm will be discussed in Chapter 3. Temporal sparsity denotes the proportion of
sparse input features along the time dimension. This is quantified as the ratio of the count of
zero values to the count of input features, as shown in Eq. 2.16.

Temporal_Sparsity =
count_of_0_values

count_of_input_features
(2.16)

Figure 2.8: After Delta algorithm conversion, the sound spectrogram of voice segment features shows a certain
temporal sparsity.

However, a single time-sparse application will face the problem of high resource consump-
tion due to high spatial complexity. For example, in video processing, the features of each
frame contain a complete stack of several images. A single temporal sparsity application
cannot handle complex visual features on the time axis (dimensions out of bounds), which
differs from the single-dimensional audio representation on the time axis. Huixiang Chen [5]
introduced a 3D CNN structure incorporating a novel approach. This architecture leverages
differential convolution along the temporal dimension, specifically operating on the temporal
delta of Integrated Maps (imaps) for each layer. The computation is performed bit-serially,
focusing solely on the significant bits of the temporal delta. This methodology is extended
across all CNN convolution kernels in the network. Additionally, Chen proposed a control
mechanism capable of dynamically switching between spatial delta dataflow and temporal

2.5. Neural Network Hardware Architecture 17

delta dataflow. This dynamic switching mechanism facilitates resource balancing between the
network’s temporal and spatial sparsity.

The integration of temporal and spatial sparsity is geared toward handling complex stream-
ing media tasks, such as video processing. However, in this project’s audio processing
context, the focus only lies on temporal sparsity. The detailed analysis of this temporal sparsity
application will be provided in Chapter 3.

2.4.3. Compressed Sparse Row (CSR) Algorithm
The resulting features matrix exhibits temporal sparsity after applying the Delta algorithm
for sparsification. The sparse matrix needs to undergo matrix compression to accelerate
neural networks, for which the CSR algorithm is employed. The CSR algorithm can effectively
compress the sparse values of the matrix, making the matrix operation more compact [3].

The Compressed Sparse Row (CSR) algorithm offers an efficient approach for storing
sparse matrices in a memory-efficient manner [3]. It uses three arrays to store the parameters
of the compression matrix: data, indices, and indptr.

• data: Non-zero elements of each row of the matrix in row order;
• indices: The column index value of each non-zero element;
• indptr: The index value of the first non-zero element in each row in the data array

In this work, the concept of ’indptr‘ is not involved, so it will not go into detail. Here is a
simple example of how the CSR algorithm stores a 4 × 4 sparsed matrix, as Fig. 2.9 shows.

Figure 2.9: CSR algorithm conversion

From this conversion, it is easy to get the arrays of data and indices,

• data: [1,2,3,4,5,6,7,8];
• indices: [0,1,0,2,1,3,2,3]

Indeed, models in real-world applications are much larger, often extending to several
thousand rows and columns. Given the substantial size of these models, the Compressed
Sparse Row (CSR) algorithm becomes particularly crucial for handling large-dimensional
sparse matrices. It is significant to compress matrix elements at scale through temporal
sparsity, thereby accelerating data processing. In this work, the CSR algorithm holds particular
importance. It plays an important role in boosting Multiply-Accumulate (MAC) operations
involving sparse matrices in the hardware design of neural networks. Detailed insights into this
utilization will be provided in Chapter 3.

2.5. Neural Network Hardware Architecture
The primary objective of this project is to implement neural networks in hardware design, which
needs a focus on hardware architecture design as the initial step.

2.5. Neural Network Hardware Architecture 18

2.5.1. Multistage pipeline
The multistage pipeline is the basic structure of modern computer instruction execution. This
work’s neural network hardware IP also applies this classic modern computer architecture.
Since the neural network hardware IP is integrated into the FPGA and has the characteristics
of multi-channel parallel execution, when executing a series of instructions in a certain order,
this sequential series of instructions can be dispersed in different clock cycles in the form of
a pipeline. For example, if this hardware IP is supposed to execute 4 instructions named A,
B, C, and D sequentially and loop for 2 rounds, then 8 clock cycles will be wasted if these
4 instructions are executed serially. However, if the pipeline is executed parallel, it will only
consume 5 clock cycles, as shown in Fig. 2.10.

Figure 2.10: Multistage pipeline

The CPU design under modern computer architecture will sequentially execute the Instruc-
tion Fetch (IF) stage, Instruction Decode (ID) stage, Instruction Execute (EX) stage, Memory
Access (MEM) stage, and Write Back (WB) stage in the form of a pipeline [6]. However, in
this work, although the neural network hardware IP implemented by FPGA does not have
a specific instruction set (such as X86, RISC-V, etc.), the multi-instruction pipeline structure
is also used in specific task execution, which will reduce the hardware execution time and
increase the overall throughput of the hardware IP at high frequencies (above 100MHz). The
pipeline hardware structure also encounters some pipeline hazards, which will be discussed in
detail in Chapter 3.

2.5.2. Von Neumann architecture
In the classic von Neumann architecture, the arithmetic unit and control unit are separated
from each other in the main frame of the computer system, and instructions and data co-exist
in the memory. The basic architecture of this work also adopts the von Neumann structure,
which demonstrates that the hardware IP of this work separates the neural network memory
(cache) and control (digital logic). After the stream data input, the IP can read the cache inside
the IP to the processing element (PE) to perform MAC operations as Fig. 2.11.

Before each MAC operation, read and write operations of the memory unit are required.
If faced with a high-frequency large-model computing scenario, the limited total bandwidth
between the computing core and memory directly limits the data transmission speed, leading
to the "Memory Wall". Therefore, an integrated storage and computing architecture(Memory
Computing Architecture) that breaks the original traditional von Neumann architecture is
currently proposed for high-performance hardware computing architecture of large models. It
integrates the computing unit PE with storage and directly completes operations in the storage
unit to avoid memory access delays, as shown in Fig. 2.12. For high-performance computing
chips, the cutting-edge technology in recent years has focused on memristor storage and

2.6. Neural Network Hardware Deployment 19

Figure 2.11: Von Neumann Architecture

computing integrated chips [21].

Figure 2.12: In Memory Computing Architecture

However, this project focuses on implementing on-chip lightweight neural networks. While
there are demands for computing power with multi-channel parallel requirements, these needs
can be adequately addressed through the use of multistage pipelines and Von Neumann
architecture designs. Furthermore, the Von Neumann architecture is a well-established and
mature design that seamlessly integrates hardware acceleration functions.

2.6. Neural Network Hardware Deployment
This work’s VAD audio detection process must meet fast response requirements, high clock
frequency, and flexible circuit design. The field programmable gate array (FPGA) can achieve
high parallelism due to its programmable hardware flexibility to guarantee fast calculations to
meet fast response requirements. In practical applications, since AI algorithms require multiple
optimization iterations, FPGA is also often used as a prototype verification platform for ASIC in
AI hardware deployment.

On the Xilinx Zynq 7000 series FPGA development board, numerous hardware resources
are integrated to facilitate the implementation of various programmable gate arrays. This work
mainly uses hardware resources such as LUT, FF, BRAM, and DSP. These hardware resources
can be implemented as corresponding hardware units, such as FIFO, SRAM multipliers, etc.

2.6.1. Hardware Resources
LUT
LUT (Look-Up Table) was proposed to solve the reconfigurable problem of traditional combina-
tional logic circuits during wiring and gates. In FPGAs, LUTs are commonly used to replace
gate circuits to implement combinational logic synthesis.

LUT uses a truth table to determine the outputs according to the inputs. Therefore, LUT
can adapt to different Boolean algebraic logics. Fig. 2.13 shows the difference between a
6-input AND gates chain synthesized logic circuit and the corresponding LUT6 (6-input LUT)

2.6. Neural Network Hardware Deployment 20

synthesized logic circuit. As Fig. 2.13 shows, the adapted synthesis of LUT is more flexible
than combinational gates.

Figure 2.13: AND chain vs. LUT6 synthesis

FF
FF (Flip-Flop) is a memory unit that can store one bit of binary code. Several FFs can store
multi-bitwidth data. For ASIC and FPGA design, sequential logic synthesis usually uses DFF.
However, timing violations may occur in DFF if the circuit is improperly designed after synthesis
or implementation. The most common cases are setup time violations and hold time violations.

Figure 2.14: Cascaded DFFs STA (Static Timing Analysis)

As shown in Fig. 2.14, this is a circuit of Cascaded DFFs. Tclk2q represents the delay
from clock to Q, and Tcomb represents a delay of combinational logic (including routing delay)
between 2 DFFs, while Tclk and Tskew represent clock cycle and clock skew, respectively. To
ensure the requirements of setup time and hold time, setup time and hold time should satisfy
the relationship as Eq. 2.17 and Eq. 2.18:

Tclk2q + Tcomb+ Tsetup <= Tclk + Tskew (2.17)

Tclk2q + Tcomb >= Thold+ Tskew (2.18)

In FPGA, the fundamental piece, internal DFF devices, cannot be replaced, and the clock
uses the global clock (or BUFG). Therefore, if setup hold timing violations are encountered,
in addition to the constraints on each clock path or fan-in and fan-out of the DFF, the most
common way is to optimize the combinational logic. Specific timing logic optimization based on
STA will be discussed in Chapter 3.

BRAM
BRAM (Block Random Access Memory) is the RAM composed of embedded memory resources
(RAMB36E1 and RAMB18E1) inside the FPGA. Xilinx 7000 series FPGA boards mainly include
two types of memory resources, one of which is distributed RAM composed of LUT units, and

2.6. Neural Network Hardware Deployment 21

Figure 2.15: Simple BRAM Configuration

the other is BRAM. BRAM can realize the cache, FIFO, pipeline, and other functions of FPGA
hardware. BRAMS are fundamental memory resources in FPGA.

Fig. 2.15 shows a simple BRAM configuration diagram. This BRAM contains a read data
channel ’rd_data’, a write data channel ’wr_data’, and a corresponding read address channel
’rd_addr’ and a write address channel ’wr_addr’. This BRAM implements a function similar to
a single-port SRAM. It is driven by the input clock ’clk’. When wr_en is high, data is written
to the BRAM, and when rd_en is high, then data is read from the BRAM. The bit-width of
data is ‘WIDTH’, and the depth of BRAM is ’DEPTH’, so this BRAM storage capacity can be
calculated as Eq. 2.19. This case shows a simple BRAM implementation. Multiple BRAMs
can be combined to realize RAM of larger capacity and more complex functions, which will be
discussed in the next section.

Capacity = WIDTH ∗DEPTH/8 (2.19)

DSP
Although many LUT resources are integrated into the FPGA that can be used for MAC calcula-
tions, especially high-width fixed-point (or floating-point) operations, those will consume LUT
resources that are not worth the gain. Therefore, FPGA handles large-scale data operations
through DSP. The 7000 series FPGA board used in this work integrates 12 DSP hard cores
dedicated to digital MAC operations, the DSP48E1 slice.

Fig. 2.16 shows a simple DSP48E1 structure. The DSP’s main computing resources include
multipliers and adders for fixed-point (or floating-point operations) and logic gates for logic
operations. For example, this DSP48E1 can perform the simplest operations, ’E = (B+C) * A’
and ’E = E ∨ D’. In actual scenarios, DSP48E1 integrates many computing units internally,
which can support multiplication at most signed 18-bit with 25-bit numbers [20]. DSP48E1 can
decompose complex arithmetic operations into different small pieces of operations and execute
them in parallel, which means that it can be dynamically configured. Moreover, DSP48E1 can
operate at the FPGA’s highest clock frequency (100MHz in this work). Therefore, the DSP48E1
is well-suited for handling computationally intensive operations on FPGA.

2.6.2. Hardware implementation unit
The basic resources inside the FPGA can implement various hardware units, such as SRAM
series, FIFO, multipliers, etc.

FIFO
FIFO (First-in-Frist-out) is often used as a cache unit in FPGA. In high-speed communication,
FIFO acts as a reservoir to cache data. FIFO also often uses high-speed protocols, such as the

2.6. Neural Network Hardware Deployment 22

Figure 2.16: Simple DSP48E1

AXI-4 protocol, when transmitting data with other units. FIFO is implemented by synthesized
BRAM in FPGA.

Fig. 2.17 shows a FIFO structure. Obviously, FIFO has empty and full signal judgments,
but it does not have ‘addr’ addressing compared to BRAM. Because the data caching rule of
FIFO is first-in-first-out, the address line comprises a self-increasing pointer inside the FIFO.
FIFO can be divided into synchronous FIFO and asynchronous FIFO depending on the input
read and write clock. Since FIFO is implemented by SDPRAM (Simple Dual Port RAM), the
read and write clock domains of FIFO are separated. If the sources of ’clk_wr’ and ’clk_rd’ are
the same, it is a synchronous FIFO. However, when it comes to clock domain crossing (CDC)
transmission, if the read and write clock sources are different, it is an asynchronous FIFO.
Although the read and write clock domains are independent, in CDC transmission, the pointer
transmission through read and write domains needs to use Gray code to avoid metastability.

Figure 2.17: FIFO Configuration

FIFO is often used for high-speed communication cache because it has a simple structure,
no addressing line, and bubbles in transmission. However, in this work, due to the acceleration
of neural network operations, data at specific locations will be addressed during the operation,
so the cache in this work uses SRAM instead of FIFO, which will be introduced in detail in
Chapter 3.

2.6. Neural Network Hardware Deployment 23

SRAM
SRAM refers to static random access memory. When SRAM is powered on, the stored data
will not be lost and does not need to be refreshed. Because SRAM is fast and consumes less
power than other RAMs, it is often used for cache or on-chip memory. However, due to the
high cost, the BRAM-synthesised SRAM resources in the FPGA are also limited, which need
to be reused in digital logic design. There are three types of commonly used SRAM in FPGA:
SPRAM (Single Port RAM), SDPRAM (Simple Dual Port RAM), and TDPRAM (True Dual Port
RAM). Fig. 2.18 shows the structure of three SRAMs.

Figure 2.18: SRAM structure. (a)SPRAM (b) SDPRAM (c)TDPRAM

• SPRAM

SPRAM is the simplest form of SRAM. Its structure is similar to BRAM. SPRAM has only
one channel and one clock for reading and writing, meaning it cannot read while writing
or vice versa. Due to its simple structure and function, its applications are limited.

• SDPRAM

SDPRAM is a standard SRAM application that is widely used in FPGA. It has two
channels and two clocks for reading and writing, respectively. However, although it can
read and write in two channels simultaneously because the read and write channels of
SDPRAM are fixed, neither channel can read or write simultaneously.

• TDPRAM

TDPRAM is a high-end application of SRAM. TDPRAM can be regarded as a combination
of the RAM of two SPRAMs. It has two independent sets of channels and clocks, which
can read and write data simultaneously without interfering with each other. This means
that TDPRAM can read or write from two channels simultaneously, or it can read and
write respectively simultaneously. TDPRAM is flexible enough to get reconfigured.

In this work’s actual approach, many combinations of various SRAMs will be flexibly
configured to implement caching. However, both SDPRAM and TDPRAM will encounter a risk:
RAM read and write conflicts (when reading and writing the same address simultaneously).
The solution will be discussed in detail in Chapter 3.

Multiplier
The multiplier mentioned here specifically refers to the DSP synthesized multiplier that can
perform MAC operations. As mentioned earlier, one single DSP48E1 supports signed multi-
plication operations of up to 25 bits variable and 18 bits variable. However, in neural network

2.7. Related Work 24

hardware implementation, neural network accelerators often use 8-bit quantization to perform
convolution operations. This will definitely waste a lot of bit width when only operating the mul-
tiplication of 8-bit and 8-bit. To improve DSP utilization rate and data transmission throughput,
multiple multipliers can be combined and concatenated together to form a multi-channel DSP
multiplier.

Fig. 2.19 shows two unsigned multiplications of A, B, and C that have been 8-bit fixed-point
quantized using a dual-channel DSP multiplier and a single-channel DSP multiplier. It is
assumed that there is no overflow in multiplication under 8-bit fixed-point quantization, and
the DSP supports up to 25-bit and 18-bit unsigned multiplication. It can be obviously seen
that after A and B are concatenated together, within the same clock cycle, (a) can complete
two multiplications of A×C and B×C, but (b) can only complete A×C. A dual-channel DSP
multiplier can bring 50% multiplication calculation efficiency compared with a single-channel
DSP multiplier.

Figure 2.19: Multiplier example. (a)Dual-channel DSP multiplier (b) Single-channel DSP multiplier

Regarding multiplier hardware implementation, if a single DSP is supposed to implement
dual channels, the two multiplicands can be concatenated together directly. It is worth mention-
ing that without adding the ′set_property′ constraint instruction, it will be defaultly synthesized
into 2 DSPs. This depends on the resource requirements of the project.

2.7. Related Work
The following is a summary of some recent cutting-edge VAD works. It is worth mentioning
that some VAD works focus on optimizing energy consumption and resource utilization, and
some VAD works focus on improving accuracy, while some VAD works focus on optimizing the
neural network training process.

Time-Domain CNN (TD-CNN) VAD [4] [33] [16]:

Inspired by recent advances in the raw-data convolutional neural network (CNN), Feifei
Chen and Ka-FaiUn proposed a switched-capacitor time-domain CNN (TD-CNN) analog
feature extractor (AFE). The always-on full-bandwidth analog-to-digital converter (ADC) and
digital feature extractor can consume a significant power of >20 µW for conventional VAD with
an analog filter bank. The TD-CNN with sparsity-aware computation (SAC) and sparsified
quantization (SQ) is the first layer for extraction, and then the extracted features are then 1
bit quantized by a comparator to evaluate the binarized neural network (BNN). Unlike the
conventional AFE, all the sampling units execute in parallel, and the sampling capacitors’
execution is determined by sampling cycles and kernels. A signal sampling of each kernel

2.7. Related Work 25

occurs in a different time domain; this reasonable allocation will significantly reduce the
hardware resources and power consumption. This article used the TIMIT dataset as their test
dataset in the final experiment. Benchmarking with the prior art, their VAD in 28-nm CMOS
scores a 90% (94%) speech (non-speech) hit rate on the TIMIT dataset with small power (108
nW) and area (0.8 mm2), and the KWS accuracy is 94.3%.

Masked auditory encoder based CNN (M-AECNN) VAD [22]:
Encoders of the network will become not robust if they are designed for using energy levels

or Mel-frequency cepstral coefficients (MFCCs). Motivated by the human acoustic system,
Masashi Unoki and Nan Li proposed a masked auditory encoder-based CNN (M-AECNN) to
improve the robustness of VAD. It used an auditory encoder (AE) for signal feature extraction
and masked auditory encoder-based CNN (M-AECNN) for classification. AE used a gamma
chirp auditory filter bank (GAFB) as the feature extraction step’s feature extractor. This filter
bank can reproduce the psychophysiological estimation of human auditory filters over a wide
range of central frequencies, which simulates the human-ear effect of MFCC but does not
consume much power like MFCC. In the classification step, to simulate the masking effect of
human ears on different frequencies, they propose an estimation of masking weights block
to learn a group of masking values for AE. The masking weights block is executed iteratively
until MSE loss tends to 0; the classification accuracy can increase significantly. In evaluating
the final results, the proposed approach average achieves an absolute improvement in AUC
of about 10.5% over the CNN-MFCC-based approach; this improvement is more obvious in
the -5 dB and -10 dB low-SNR noisy environments. The results of this study demonstrate the
potential significance of using human auditory properties for robust VAD.

CNN-LSTM-DNN-based VAD [44] [9]:
L. Deng and J.C.Platt proved that CNNs are good at extracting features, and LSTMs (Long

Short Term Memory) are good at processing sequence data. However, the input of CLDNN
(convolutional long short-term memory DNNs) must be sequence data because of the LSTM,
while CNN is located in the bottom layer of CLDNN. Therefore, Tianjiao Xu and Hao Li proposed
a two-stage training strategy based on the VAD data training step. In the first stage, the CNN
is trained on frame-level data to get high-level feature expressions individually. The network
targets the VAD label of each frame. CLDNN applies a CNN at the bottom to reduce frequency
variation in the input, which is then passed to an LSTM to perform temporal modeling. In
the second stage, the LSTM receives the high-level feature expression and is trained with
sequence data. The two-stage learning strategy improves data utilization, which uses the
frame-level features in the first stage and sequence data in the second. The final results show
that the proposed method achieves over 2.89% relative improvement over the original CLDNN
on noise-matched conditions and over 1.07% on unmatched conditions. It represents that the
proposed method has obvious advantages in discriminative ability and generalization ability.
They can obtain an accurate VAD system trained with very limited training data using the
proposed method.

Reconfigurable DNN accelerator for VAD [24] [41] [25]:
IoT speech recognition systems, high energy efficiency, and extremely low power consump-

tion are particularly important for DNN implementation. Bo Liu proposed a reconfigurable
DNN accelerator architecture for voice activity detection(VAD) to reduce power consumption
and achieve high energy efficiency. It contains two optimization techniques: one is a pro-
cessing element that supports digital-analog hybrid approximate calculation, and the other is
a dynamically configurable approximate calculation unit. The optimized DNN digital-analog
hybrid architecture for the processing element accumulates and quantizes pulse signals with
different delay widths at the analog TDC output. For the calculation unit, this work proposed a

2.7. Related Work 26

multi-step quantized multiplication unit that adds a MUX to dynamically select the number of
quantization bits to achieve the purpose of dynamic configuration. From the results, compared
with Thinker, this work improves the energy efficiency with proposed approximate computing
units and achieves over 6.5X better energy efficiency. Compared with EERA-ASR, this work
can achieve up to 10X better in energy efficiency. The results show that, implemented and
simulated with TSMC 28 nm HPC + process technology, the estimated power of this DNN
accelerator is 6 ∼ 12 µW, and the energy efficiency achieves 33.33 ∼ 66.67 TOPS/W, which is
over 6.5X better than state-of-the-art architectures.

3
Proposed Methodology

This chapter will illustrate the software-hardware co-design of this work from the software
implementation and hardware implementation of VAD. In software design, this work innovatively
proposes a new type of neural network, DeltaFC, whose architecture is based on FC, and
introduces the optimization mechanism of the network on temporal sparsity and quantization.
In hardware design, this work proposes an innovative FPGA architecture to deploy the Delta
algorithm and CSR algorithm and implements the calculation acceleration of neural networks
directly in hardware design.

3.1. Software implementation
The software design of this work is aimed at the algorithm of this new neural network, DeltaFC
DNN. The operation for one frame in the DeltaFC layer is shown in Fig. 3.1.

Figure 3.1: DeltaFC calculation of one frame

The multi-layer DeltaFCs and FCs are combined to create the DeltaFC DNN, as shown in
Fig. 3.2.

27

3.1. Software implementation 28

Figure 3.2: DeltaFC DNN structure

3.1.1. Delta Algorithm
The delta algorithm is the core of this work. The Delta algorithm has a wide range of applica-
tions, such as real-time data analysis in quantitative finance [18], data preprocessing in digital
communications, and deep learning algorithm compression involved in this article. Its purpose
is to compute the increment of feature data for each frame rather than the feature data of each
frame itself. The underlying principle of the Delta algorithm is similar to differential calculus.

Assume that the f(x) is a basic neural network operation. And assume that the input feature
at time t is xt, then the input feature of the previous frame is xt−1. Then, the corresponding f(x)
in differential expansion with the feature itself in the regular space and differential expansion
with the time axis as shown in Eq. 3.1.

f(x) = wx+ b => f ′(x) = w∆x

=> f ′(x) = w(xt − xt−1)
(3.1)

∆x in differential calculus is infinitesimal, corresponding to the time frame (xt − xt−1) being
as small as possible. After Delta algorithm processing, f(x) essentially differentiate to f ′(x),
so to integrate it to f(x) itself, bias ′b′ need to be equal to its value in the previous frame, as
shown in Eq. 3.2.

∫
f ′(x)dx =

∫
w(xt − xt−1)dx = f(x)

f(xt) = w(xt − xt−1) + f(xt−1)

(3.2)

Due to the small feature variation along the time axis in the MFCC-processed audio stream
data used in this work, the Delta algorithm is well-suited for compressing feature information,

3.1. Software implementation 29

significantly reducing data redundancy. Furthermore, the combination of the Delta algorithm
and the threshold filtering introduced later results in considerable sparsity in the original data.
These sparsity characteristics greatly accelerate the operation speed of the neural network.

3.1.2. DeltaFC DNN layer
DeltaFC is a neural network based on FC and introduced RNN recurrent memory layer, as
shown in Fig. 3.3.

Figure 3.3: DeltaFC Neural network structure

Delta Features
The time-series information is input frame by frame with a fixed time step. Firstly, assume the
current state of the input audio frame is the ’input current frame’, and the adjacent previous
input frame is regarded as the ’input previous frame’. In DeltaFC, the input feature is the
absolute value difference of the features of the two adjacent frames of current xt and previous
xt−1 (read from prev memory, so actually is xpre(t), unless otherwise specified, it is expressed
as xt−1), rather than the input feature itself, as shown in Eq. 3.3.

∆xt = xt − xpre(t)

= xt − xt−1

(3.3)

Here is an example: assuming that there are two audio frames and each contains 8 features,
the features after MFCC of current and previous frames are shown in Fig. 3.4. Because time
series information exhibits temporal correlation, the variation between frames will not be
obvious.

If the two frames are directly input into the neural network for parallel matrix operations, the
neural network needs to use an 8-way multiplier (in hardware implementation, it is mostly a
DSP), which is a huge computational load on neural network operations. However, the current
and previous frames in this example are features after the audio MFCC and have a timing

3.1. Software implementation 30

Figure 3.4: Current(a) and previous(b) frames

Figure 3.5: Delta absolute frame

correlation. If the feature is the difference between the current and previous features, then the
Delta absolute frame can be calculated as shown in Fig. 3.5.

The Delta difference is hundreds of times less than the original calculated value. However,
if the calculated difference without quantization is less than 1 but contains too many decimal
bits, this also imposes a computational load on the neural network. These decimals less than 1
have little impact on the final result, so these decimals can also be regarded as sparse values.
Therefore, the threshold is applied to limit the range of delta input features.

Introducing a threshold in the Delta input feature can help improve temporal sparsity. The
threshold specifies the minimum range of feature propagation, similar to a filter. If the Delta
input feature is higher than the threshold, it can continue propagation to the next frame, or it will
be regarded as 0, as shown in Eq. 3.4. In addition to threshold, correspondingly, prev memory
will compare the feature xt of the current frame with the xt−1 of the previous frame. If the input
∆xt is higher than the threshold, the prev memory will retain the xt of the current frame, and if
it is less than the threshold, it will retain the xt−1 of the previous frame, as shown in Eq. 3.5.

∆(x) =

{
∆(x) , |∆(x)| ≥ Threshold
0 , |∆(x)| < Threshold

(3.4)

xpre(t+1) =

{
xt , |∆(x)| ≥ Threshold
xt−1 , |∆(x)| < Threshold

(3.5)

For example, when the Delta input feature obtained the value shown in Fig. 3.5, assuming
the threshold is set to 2.0000, the Delta input feature filtered as shown in Fig. 3.6.

Figure 3.6: Delta absolute frame after threshold filter

3.1. Software implementation 31

Only one feature, ’3.0000’, is left in the Delta input frame after threshold filtering, and the
rest are filtered out. Through delta transformation and threshold, the calculation of the eight
features of each frame is simplified to the calculation of only one feature. The threshold is
dozens of times smaller than the original feature, so the filtered result has little effect on the
final recognition result, especially for this work whose output is a binary value of 0(noise) or
1(speech). During the operation of the neural network, due to the 87.5% temporal sparsity,
the operation can save 7 operation cycles. In this process, there are many such 0 values in
the neural network operations, and the neural network directly bypasses the 0 values, directly
accelerating the operation of the neural network.

Processing Element(PE)
The structure of DeltaFC is based on FC, which means that the FC module undertakes the
work of the processing element (PE). It can be seen from chapter 2 that the calculation of FC
output is as Eq. 3.6.

Zn =
∑
m

(Wn,mxm) + biasn (3.6)

where Zn is the output of FC, and W is weights while bias is the bias. If it is specific to the FC
of one frame, the operation is shown in Eq. 3.7.

Cm = Wmxm + bias (3.7)

After the previous delta features transformation, since the input is the difference between
the two frames current and previous, x is replaced by ∆x, and bias is replaced by the output of
the previous frame Cm−1, then the above formula can be transformed into Eq. 3.8.

Cm = Wm∆xm + Cm−1

= Wm(xm − xm−1) + Cm−1
(3.8)

Where Cm is the output of frame m, and ∆xm will perform the threshold filtering process.
Such a loop structure is similar to the memory unit of RNN. Now, as the input features are
considered timing correlated, the expectation is that ∆x and Zn are also temporally sparse. In
essence, the temporal sparsity between consecutive features is cast on the temporal sparsity
of the delta features that are propagated.

This is reflected in the large amount of 0 values in each frame in the matrix operation
of PE, and the input of the previous layer will be calculated as the output of the next layer,
which implements the temporal sparsity propagation. However, after the features of a frame
pass through PE, they need to be cached as the input of the next frame instead of being
dropped. This is embodied as a caching strategy on the neural network of the hardware,
usually implemented by FIFO or BRAM.

3.1.3. Temporal Sparsity
As discussed in Chapter 2, streaming signals like voice and video exhibit robust temporal
correlation—meaning that their features experience small changes over time. These charac-
teristics imply that the stream signals can induce significant temporal sparsity after the Delta
algorithm transformation.

Temporal sparsity can be achieved through the iterative Delta algorithm. Fig. 3.7 shows
the input audio signal features after MFCC in the first frame of the first batch. This frame of
audio contains 24 Features and 32 Frames (more subdivided features and frames). It contains
information on a brief 30-ms slice of an audio segment.

3.1. Software implementation 32

(a) Input features before delta algorithm (b) Input features after delta algorithm

Figure 3.7: Input features use the Delta algorithm to increase temporal sparsity

(a) Input features before delta algorithm (b) Input features after delta algorithm

Figure 3.8: Input features use the Delta algorithm to increase temporal sparsity

The ’FRAMES’ on the x-axis can be regarded as the time axis, and the y-axis represents
the feature axis of the input neural network, while the z-axis represents the amplitude of this
audio slice after MFCC. It’s obvious that along the time axis ’FRAMES’, the change of the
MFCC value of the feature axis is not significant. This exhibits the temporal correlation of the
audio signal. Furthermore, if observing the feature changes of audio slices after MFCC on a
fixed feature axis (such as 2nd FEATURE), then Fig. 3.8 can be observed.

Fig. 3.8(a) input feature that has not been transformed by iterative Delta algorithm. If
ordinary hardware neural networks are used to process this stream data, even if it has been
fixed-point quantized, it will cause useless hardware resources due to bit width limitations.
When applying the Delta algorithm introduced in this study and utilizing a threshold of 0.03 (not
optimized), the streaming data transforms, resulting in the representation shown in Fig. 3.8(b).
It can be seen that the input features of Fig. 3.8(a) are dense and do not have temporal sparsity,
but the input features of Fig. 3.8(b) have temporal sparsity increased to 31.25% after the Delta
algorithm iteration. As mentioned previously, neural network hardware operations will skip
these 0 values, so this is reflected in a 45.5% improvement in hardware operation efficiency.
How temporal sparsity accelerates neural network hardware operations will be discussed in
detail in the next section.

3.1. Software implementation 33

3.1.4. Quantization
As mentioned in the Chapter 2, this work applies 8-bit and 16-bit fixed-point quantization.
Firstly, it’s necessary to compare floating-point and fixed-point quantization. This section
mainly focuses on single-precision floating-point quantization and 8-bit fixed-point floating-point
quantization.

In the software design, this work uses floating-point numbers after normalization. However,
during the hardware design, the input dataset utilizes the dataset after fixed-point quantization,
which is achieved through a Python conversion script in the software.

Floating-point Quantization
According to the IEEE-754 standard [17], a 32-bit single-precision floating-point number can
be represented as shown in Fig. 3.9.

Figure 3.9: 32-bit Single-Precision Floating-Point Number

Where S represents the sign bit to indicate the positive or negative of the number, while
E represents the exponent indicating that the absolute value range of the number is within
the 2E+1, and F represents the decimal mantissa after normalization. If a number -3.75 is
given, the process of expressing -3.75 as a 32-bit single-precision floating-point number is as
in Eq. 3.9.

−3.75 = −11.11 = −1.111 ∗ 21

= (−1)1 ∗ (1 + 0.111000000000000000000000) ∗ 2128−127

(3.9)

According to the IEEE-754 standard [17], a 32-bit single-precision floating-point number
can be represented as Eq. 3.10.

X = (−1)S ∗ (1 + F) ∗ 2E−127 (3.10)

Then -3.75 can be represented as 1 1000 0000 1110 0000 0000 0000 0000 0000 in 32-bit
single-precision floating-point number form and 1 80E0 0000(C 0700 0000) in hexadecimal
form. Regarding the floating-point form, the number -3.75 contains a lot of sparsity.

However, the sparsity will be greatly reduced if the number is not divisible, such as -3.967 (C
07DE 3540). Due to the uncertainty associated with the decimal point in floating-point numbers
and the fixed bit-width of hardware memory, it is imperative to standardize the input bit width
for both the operation and storage units. Insufficient bit count can result in a wasteful utilization
of the bit width in hardware implementation, as shown in Fig. 3.10. Although FPGA contains
many floating-point units(FPUs), these applications increase the power consumption of the
FPGA and do not meet the lightweight objective of this work. Indeed, floating-point numbers
are notably intricate and, in general, may not be well-suited for hardware implementation [19].

Fixed-point Quantization
As the name suggests, Fixed-point numbers are numbers with a fixed decimal point. But
in most cases, the decimal point of the fixed-point number is fixed to the last digit, which

3.1. Software implementation 34

Figure 3.10: Low bits number with high bits memory will cause the waste of memory

means that the fixed-point number usually represents a pure integer. If the original decimal
is converted into this form, the original number needs to be enlarged to the Nth power of 2,
shifted to the left by N bits. Here is an example of how 4.5 transformed to a 16-bit fixed-point
number, as shown in Eq. 3.11.

4.527 => 4 + 0.527

4 => 8′h04

0.527 => 0.527 ∗ 28 = 134.912 ≃ 135 = 8′h87

4.527 =>
{
8′h04, 8′h87

}
= 16′h0487

(3.11)

However, when the hexadecimal value 16’h0487 is converted to decimal, it yields 4.52734375
instead of the exact value of 4.5. This implies that the conversion to a fixed-point number
may result in a loss of precision, but its impact on the binary output of this study is minimal.
Consequently, all features are normalized to a consistent number of bits, effectively mitigating
resource wastage in hardware implementation.

Quantization can save resources, and, more importantly, implementing quantization in
FPGA can accelerate neural network operations. This work applies the form of eight integers
and eight decimals for the FPGA quantization. The first bit of the integer part is the sign bit,
as shown in Fig. 3.11, which means that the fixed-point number range of the work is between
-32768 and 32767. The original audio feature signal will be normalized first at the software
design to control all audio feature ranges within this range, ensuring that most calculation
cases will not overflow.

Figure 3.11: 16-bit Fixed-Point Number

Here is a simple example. This operates in the above form to calculate the product of two
decimals, such as 2.853*4.212. If expressed as fixed-point arithmetic, the two numbers can be
expressed as Eq. 3.12:

3.2. Hardware Implementation 35

2.853 => 16′h02DA

4.212 => 16′h0436

2.853 ∗ 4.212 => (16′h02DA ∗ 16′h0436) >> 8 = (32′h000C01FC) >> 8

= 16′h0C01 <=> 12.00390625

(3.12)

It is evident that, given the fixed bit representation, each transformed number is allocated
and processed with a consistent 4-bit storage and calculation. Moreover, 2.853*4.212 uses
4 shift multiplication operations, while 16’h02DA * 16’h0436 only uses 3 shift multiplication
operations and 1 shift operation. The hardware consumption of the shift operation is less,
and the reduced two-shift operations are reflected in a 25% reduction in calculation time in
the DSP hardware circuit. For results, the true result 12.016836 deviates from the quantized
result 12.00390625 by less than 0.1%, and precision is not significantly lost in 16-bit fixed-point
quantization.

In summary, this study employs a 16-bit fixed-point quantization method for quantifying
input features in the hardware implementation. This approach substantially accelerates the
neural network’s operations within the hardware framework.

3.2. Hardware Implementation
The hardware design objective of this work is to deploy the DeltaFC DNN and the accelera-
tion algorithm on an FPGA. However, hardware algorithm deployment necessitates careful
consideration of hardware architecture and timing.

3.2.1. DeltaFC Architecture on FPGA
In the initial stage of hardware deployment, a key focus is the hardware architecture. Hardware
deployment includes the neural network itself and the neural network accelerator module. The
core of this section is to utilize hardware resources to implement hardware functions effectively.

Module Reuse Architecture
The initial step in neural network hardware design involves establishing the top-level architec-
ture. Intuitively, if the neural network software design shown in Fig. 3.2 is directly translated into
a hardware design, the resulting representation would resemble what is shown in Fig. 3.12.

The blue parts in Fig. 3.12 are the PEs, and the green parts are the cache memory
units. Such conversion seems to be very straightforward and effective and is very efficient in
prototype verification of small models. However, directly deploying the algorithm on hardware
may lead to insufficient FPGA hardware resources, primarily due to the limited resources of
the FPGA on the Zynq board used in this lightweight study. Secondly, in this design, resource
redundancy is serious. For example, as shown in Fig. 3.12, during the operation of the first
neural network layer, the remaining four layers of neural networks are idle, but their power
consumption continues. This does not meet the requirements for rational utilization of hardware
resources. Therefore, this work proposes a module reuse architecture, as shown in Fig. 3.13.

As shown in Fig. 3.13, when the module reuse architecture is adopted, only two pieces
of RAM serve as caches, which store data alternately. For example, the first layer uses
DataCache 1 for reading and data DataCache 2 for writing, but the second layer uses DataCache 2
for reading and DataCache 1 for writing. In addition, the PEs of the hardware is composed of a
specific module, a multiple-channel parallel DSP. The module reuse architecture can alleviate
the pressure on hardware resources, significantly reduce power consumption, and improve
module utilization efficiency. This architecture will serve as the basic architecture for this work.

3.2. Hardware Implementation 36

Figure 3.12: DeltaFC DNN hardware design conversion based on software design

Figure 3.13: DeltaFC DNN hardware design of module reuse architecture

CSR Buffer RAM For CSR Acceleration
After the previous introduction, the simple hardware implementation of DeltaFC with module
reuse architecture is shown in Fig. 3.14.

As Fig. 3.14 shows, this is a simple FPGA hardware implementation of DeltaFC neural
network architecture. It caches the xt and xt−1 in each FRAME through DataCache 1&2 FIFO
and Prev FIFO, and then performs matrix MAC operations after the Delta algorithm through
PE implemented by DSP. However, this simple architecture can only perform the basic Delta
algorithm but cannot perform the CSR acceleration based on temporal sparsity.

The reason is obvious, as discussed in Chapter 2. This is due to the absence of an
address line in the FIFO, making it impossible to address cache data at a specific location. The
acceleration of the CSR algorithm necessitates the extraction of CSR indices for each row in
the sparse matrix. In other words, it involves retrieving the addresses of non-zero elements in
each row of the sparse matrix. Therefore, for non-zero element caches that require sparse

3.2. Hardware Implementation 37

Figure 3.14: DeltaFC simple architecture on FPGA

acceleration, the hardware resources need to be configured as SRAM instead of FIFO, as
shown in Fig. 3.15.

The CSRBuffer RAM can both write the CSR indices of a sparse matrix and read them
when required. Subsequently, these CSR indices can be used to address the Input, weight,
and Data,Cache, 1&2 SRAMs, facilitating data retrieval from specific addresses. Unlike
DataCache 1&2, CSRBuffer RAM essentially stores a series of addresses rather than
the data itself. From the perspective of modern computer architecture, CSRBuffer RAM can
also be regarded as a high-speed cache for addressing instructions. CSRBuffer RAM is an
indispensable memory unit for CSR algorithm acceleration.

3.2.2. Multiple Channel Parallel DSPs
The PEs utilized for the matrix MAC operations in the neural network are synthesized and
implemented through multi-channel parallel DSPs in the FPGA hardware. However, there is a
difference between the matrix MAC operation process on hardware and the execution process
on software. The hardware design must account for the parallel architecture and incorporate
matrix partitioning strategies to optimize parallel operations efficiently, avoiding potential timing
conflicts in STA.

Matrix Multiplication Process In Hardware Design
The most important part of the DNN is the MAC operation of the matrix. However, limited by
the hardware architecture, the matrix multiplication process differs between the software and
hardware levels. The distinction lies in the parallelism of hardware matrix multiplication.

Fig. 3.16(a) shows the matrix multiplication process in software design. Matrix multiplication
in software design is similar in structure to scalar space multiplication. The condition for

3.2. Hardware Implementation 38

Figure 3.15: DeltaFC accelerator architecture on FPGA

performing matrix multiplication is that the number of columns of the first matrix must equal the
number of rows of the second matrix.

Figure 3.16: Matrix multiplication process in software and hardware design

However, as shown in Fig. 3.16(b), the matrix multiplication process in hardware design
is parallel. Unlike software design, which multiplies matrix A and matrix B by each element
sequentially, hardware matrix multiplication is a parallel multiplication of matrix A and a column
element of matrix B (Transposed) and then performs MAC operations. Moreover, since each
matrix element in the hardware is input individually with the clock cycle (like a stream), the
hardware matrix can be regarded as a one-dimensional array without rows and columns.

3.2. Hardware Implementation 39

In summary, due to the parallel architecture of the hardware, the matrix operation of the
software cannot be directly transplanted to the hardware, but more hardware deployment
issues, such as parallelism, need to be considered. But precisely because of the parallel
architecture of the hardware, the hardware computing efficiency is strong enough to process
large-scale data operations. As shown in Fig. 3.16, if the hardware design adopts software
architecture, it requires 48 clock cycles to process whole multiplication. But if the hardware
parallel architecture is adopted in hardware design, that is, a 6-channel multiplier for matrix
multiplication, only 8 clock cycles are needed, and efficiency increases by 500%.

Multiple Parallel DSPs And Matrix Partitioning
As mentioned in Chapter 2, hardware operation efficiency can be improved by adopting multiple
parallel DSPs. If multiple parallel DSPs are used, the multiplicands must be concatenated
together so that the synthesis tool can synthesize them into multiple parallel DSPs or a single
multi-channel DSP. The example of 6 data concatenation for 6 parallel DSPs synthesize is
shown in Fig. 3.17.

Figure 3.17: 6 data concatenation for 6 parallel DSPs synthesize

As shown in Fig. 3.16(b), this hardware design concatenated 6 matrix B elements together
so that the synthesis tool can automatically synthesize 6 parallel DSPs. However, for some
large models, such as when the dimensions of the matrix reach thousands, it is impossible
to concatenate thousands of elements together. Not only will this cause timing violations for
the STA, but the hardware resources do not have enough DSPs. Assuming that the hardware
design in Fig. 3.16 only has 3 DSPs available, then the matrix multiplication needs to be
partitioned into several parts, as shown in Fig. 3.18 and Fig. 3.19.

It’s obvious to see that, after matrix partitioning, the elements of each column are partitioned
into 2 parts. And the original result is combined with all parts concatenated together in order.
However, after partitioning the original matrix into 3 channels instead of 6 channels parallel
DSPs architecture, this will also cause an increase in timing, as shown in Fig. 3.20. Where ’1’,

3.2. Hardware Implementation 40

Figure 3.18: Matrix partitioning

Figure 3.19: Matrix multiplication process in 3 parallel DSPs hardware architecture

’2’, ’3’, etc. represent the ’a1’, ’a2’, ’a3’, etc. in Matrix A shown in Fig. 3.16, and are similar
in Matrix B. While ’16’, ’13’, etc. represent concatenated data from ’x1’ to ’x6’, ’x1’ to ’x3’ in
results shown in Fig. 3.16.

Figure 3.20: Timing diagram of 6 DSPs design and 3 DSPs design

The timing of multiple DSP operations is related to the nodes of matrix A and matrix B,
matrix A’s frames (number of rows), and DSP channels. Assume that the nodes of matrix
A are ′NodesA′, while the nodes of matrix B are ′NodesB′, then the frames of the matrix
are ′FRAMES′, and the number of channels is ′CHANNELS′, then the timing required for
multiple DSPs operation matrix can be Calculated as Eq. 3.13.

3.2. Hardware Implementation 41

Timing =
NodesA ∗NodesB

CHANNELS
∗ FRAMES (3.13)

Although matrix partitioning will increase the timing, it can make the timing in a single clock
cycle of the DSPs less stressful so that more combinational logic can be executed within one
clock cycle, such as the Delta operation used in this work. In addition, matrix partitioning can
also make multiple DSPs can accommodate models of different sizes, such as the models in
this work. In this work, the nodes of the DeltaFC DNN are 24, 96, 128, 64, and 32, respectively.
The number of channels needs to be selected so that each channel has as little redundancy
as possible. This means these nodes’ greatest common divisor (GCD) can be chosen as the
number of channels. Obviously, the 8-channel DSP architecture is the best choice.

3.2.3. CSR Algorithm Implementation On FPGA
CSR algorithm is important in accelerating DeltaFC neural network within hardware design.
Extracting the indices of non-zero elements at high frequency is crucial for FPGA hardware.
However, the software algorithm deployment hardware is not executed sequentially on the
Pytorch platform but in parallel in FPGA. Hardware algorithm deployment needs to take into
account computer hardware architecture issues.

Read After Write (RAW) Hazard
FPGAs generally do not have an instruction set (such as X86, RISC-V) like a CPU or MCU.
However, if indices read and write the CSR algorithm as instructions, then RAW hazard is the
biggest obstacle to CSR algorithm deployment.

Assume a sparse matrix has 12 features and 3 frames, as shown in Fig. 3.21. Then, the
cached 8-bit data transmission of the first frame (each frame has 12 features) is shown in
Fig. 3.22 (a). Each 8-bit fixed-point quantized data enters hardware execution on the clock
positive edge. It’s a sparse matrix data. Then, the data transmission after using the CSR
algorithm is shown in Fig. 3.22 (b). The data transmission first writes the CSR indices into
’CSRBuffer RAM’, and then it can read the indices from ’CSRBuffer RAM’ to perform the
CSR algorithm. But in this way, the operation of reading the indices will always be later than
writing the indices, known as the Read After Write (RAW) hazard.

Figure 3.21: sparse matrix example of 12 features and 3 frames

Here is an example explaining how the RAW occurs. As shown in Fig. 3.22, ’csr_addr’ can
be regarded as the address operand of the indices instruction. According to the hardware
pipeline structure in this figure, the CSR indices of each feature are written and read one by
one with each positive edge clock. In the second feature after CSR algorithm acceleration
in Fig. 3.22 (b), this IP should be supposed to enter the data ’0a’ under ’csr_addr’ as ’0x04’.
However, only the second ’addr’ as ’0x02’ can be read from CSRBuffer RAM at this moment,
but at the same time, the fourth ’addr’ as ’0x04’ is supposed to be written to CSRBuffer RAM
for CSR acceleration. This results in reading the indices ’0x04’ will be later than writing the
indices ’0x02’, which is known as RAW conflict.

3.2. Hardware Implementation 42

Figure 3.22: (a) sparse data transmission and (b) CSR data transmission

There are three main methods to solve data hazards: RAW, interlock, bypassing, and
speculation [39].

• Interlock

Interlock refers to locking the upstream transmitter and downstream receiver after the
pipeline data transmission encounters a RAW data hazard and waits for the hazard to
be resolved to continue transmission, as shown in Fig. 3.23. Interlock can solve RAW
hazards, but neural network acceleration requires data transmission without bubbles.
Interlocked waiting cycles do not contribute to the efficiency of neural network acceleration.
However, it is worth mentioning that since there is no data switching in SRAM during the
waiting time, this method can reduce the dynamic power consumption of FPGA.

Figure 3.23: Interlock data transmission

• Bypassing

Bypassing refers to data bypassing the read and write RAM operations and directly
participating in the CSR data transmission. In FPGA, bypassing is usually done by
combinational logic, as shown in Fig. 3.24.

Figure 3.24: Bypassing data transmission

This combinational logic chain is a complex process with several steps. For example,
assuming DATA 4 is the non-zero data in those 4 data, the process is shown in Fig. 3.25.

3.2. Hardware Implementation 43

In step (a), 4 cached data are read from the cache by burst transmission, and then in
step (b), it performs non-zero value addressing on the cached data one by one. If it is a
non-zero value, finally, in step (c), the indices are transmitted directly without write-back
to CSRBuffer RAM.

Figure 3.25: Bypassing data transmission process

Since it’s a combinational logic chain, this process executes within one clock cycle.
This means that such a process can easily cause timing violations in STA due to long
combinational logic, especially in high frequency (100M in this work). This method
was the strategy at the beginning of this work. However, the worst native slack (WNS)
under pipeline and bit-width optimization has reached positive. Since burst transmis-
sions require too many FFs and BRAMs, this has redundancy on resources and power
consumption. Therefore, bypassing strategies on CSR transfers is not recommended.

• Speculation

The solution employed in this work to tackle RAW hazards is speculation, also known
as prediction. Speculation involves predicting the CSR indices of non-zero data at time
t+1 in the next frame while the data is currently being transmitted at time t in the current
frame. Due to the hardware’s parallel pipeline structure, the current data operation and
next data speculation processes can be executed simultaneously in parallel. Through
speculation, the write operation is always completed in the previous frame, and the read
operation is always completed in the current frame. The current frame operation can
always read the updated write data of the previous frame, so there is no RAW hazard. It
is similar to the dynamic branch prediction of the CPU.

The sparse matrix example is shown in Fig. 3.22. Firstly, assuming this matrix is multiplied
by another matrix B, the ratio of matrix B nodes to the number of parallel channels is
2. Therefore, from Eq. 3.13, each frame of the original sparse matrix requires 24 clock
cycles before the CSR algorithm, as shown in Fig. 3.22 (a). Then, since the value of the
transmitted sparse matrix on each frame is reflected in the features of each time step, the
first frame can be regarded as the first time step, assuming Current t, and the second
frame can be assumed as Next t+ 1. In the speculation method, this IP will predict the
non-zero value indices of the frame at Next t+ 1 while the hardware transmits the frame
of Current t, as shown in the Fig. 3.26. Specifically, while transmitting the first frame,
due to the parallel architecture of the hardware, this IP will simultaneously predict the
CSR indices of the second frame and store them in CSRBuffer RAM. Then, at the
start of transmitting the second frame, CSRBuffer RAM will read out the stored CSR
indices, which have been written in the first frame, to implement the CSR algorithm. At

3.2. Hardware Implementation 44

the same time, it will also predict the CSR indices of the third frame and store them in
CSRBuffer RAM. This cycle continues until the entire sparse matrix is processed.

Figure 3.26: Speculation data transmission process

As Fig. 3.26 shows, the CSR algorithm can be fully deployed, and the entire hardware
pipeline transmission has no bubbles through the speculation method. Moreover, unlike
the method of bypassing, the entire speculation process is advanced based on the
hardware pipeline, so there are no timing violations in the combinational logic. And it
can achieve the purpose of high-frequency transmission. But it is worth noting that, to
ensure pipeline transmission, the timing of the next frame Next t+ 1 speculation must
be shorter than the timing of the current frame Current t operation. The timing of the
next frame Next t+ 1 speculation is equal to the sparse matrix nodes NodesA, but the
timing of the current frame Current t operation is uncertain, which is related to the CSR
indices of the previous frame. This rule can be summarized as Eq. 3.14.

Speculation T iming = NodesA <
NodesA ∗NodesB

CHANNELS
∗ FRAMES ∗ (1− Sparsity)

1− Sparsity >
CHANNELS

NodesB ∗ FRAMES
(3.14)

If the number of channels and frames is substituted into 8 and 32 of this work, Eq. 3.14
can be simplified to Eq. 3.15.

1− Sparsity >
1

NodesB ∗ 4
(3.15)

NodesB refers to the dimension of the multiplicand matrix (weights), which is also the
nodes of the next layer of the current layer network. The sparsity after the delta algorithm
is low, generally only about 50%, but NodesB is relatively large, with more than 32 nodes.
Fortunately, it has been verified that the speculation method-based CSR algorithm of this
work accelerates without bottlenecks in 98.5% of cases, but the speculation method also
has many limitations, which will be discussed in Chapter 4.

Read-Write (RW) Conflict
In hardware design, read-write (RW) conflicts arise from simultaneous read-and-write opera-
tions on the same address of the same dual-port SRAM. In this work, RW conflicts mainly occur
in the reading and writing of CSRBuffer RAM. To avoid redundancy of BRAM resources,

3.2. Hardware Implementation 45

CSRBuffer RAM will only store the CSR indices of a single frame. Therefore, CSRBuffer
RAM needs to be updated with the operation of each frame. This implies that the CSRBuffer
RAM should write the data in the same clock cycle as it reads the data, ensuring a continuous
and uninterrupted data transmission without introducing bubbles in the process. As a result,
the reading and writing of data at the same address is uncertain.

RW conflicts often occur when SRAM reads and writes to the same address simultane-
ously, as shown in Fig. 3.27 for example. Assume that within a single clock cycle, when the
CSRBuffer RAM (assumed the depth is 8 and the width is 4-bit) reads out the required CSR
indices (assumed to be Address 1 old), the DeltaFC IP provides an updated CSR indices for
the next frame (assumed to be Address, 1, new), which needs to be promptly written to the
CSRBuffer RAM. However, since the read and write indices of the previous frame and the
next frame are the same, the reading and writing of CSRBuffer RAM are directed to the
same address (assumed to be CSRBuffer 1). Read operations and write operations are
actually in sequence. This sequence depends on effects such as implementation routing delay
and clock skew, so the sequence is uncertain. In other words, CSRBuffer RAM can read
first and then write, or write first and then read. Therefore, the address Address 1 stored in
CSRBuffer 1 of CSRBuffer RAM is also uncertain.

Figure 3.27: RW conflicts often occur when SRAM reads and writes to the same address simultaneously

Unlike RAW hazards, RW conflicts’ read and write operations occur simultaneously, which
cannot be separated by time. Therefore, the solution to avoid RW conflicts is to separate the
space of read and write operations, that is, to operate on different addresses. Therefore, after
reading and writing space separation, the optimized CSRBuffer RAM is shown in Fig. 3.28.
In the optimized CSRBuffer RAM, the read operation of this frame will be read from the
address from CSRBuffer 1 to CSRBuffer 8, while the write operation will be written from
the address from CSRBuffer 9 to CSRBuffer 16, and vice versa for the next frame. Address
separation optimization can ensure that only one address is operated in one clock cycle,
thereby avoiding RW conflicts.

It’s noteworthy to mention that the optimization involving address separation leads to a
doubling of the original size of the BRAM area. Nevertheless, upon evaluation, the increase in
area was found to be insignificant, and the resource utilization are tolerable.

3.2. Hardware Implementation 46

Figure 3.28: Optimized CSR Buffer RAM can solve RW conflicts

CSR Algorithm Acceleration
This section will discuss how the CSR algorithm accelerates the operation of neural networks.
The CSR algorithm extracts the indices of the sparse matrix in each frame, but it only com-
presses the sparse matrix. Since the MAC operation of the neural network can be regarded as
mainly the matrix multiplication of sparse matrices and weights, the CSR indices also need to
address the weights correspondingly.

Still taking the matrix in Fig. 3.21 as an example. Assume that this sparse matrix is
multiplied by the weight matrix with dimensions of 3×12, shown in Fig. 3.29 (a). Fig. 3.29
(b) shows a simplified diagram of (a), where 125 represents the 3 channels parallel form of
columns w1 to w25, and so on. It can be seen that the weight matrix of this example is not
sparse, and the weights of the DeltaFC trained in this work are also non-sparse matrices. For
easier comparison, the nodes and the number of parallel channels ratio of the weights example
here is set to 1.

Figure 3.29: Weights example, which has dimensions of 3×12

3.2. Hardware Implementation 47

The process of multiplication under CSR acceleration of the sparse matrix (shown in
Fig. 3.21) and the example of the weight (shown in Fig. 3.29) is shown in Fig. 3.30. First, step
(a) performs the CSR algorithm on the sparse matrix alone to extract CSR indices. Then,
in step (b), it is worth noting that the sparse matrix and the weights matrix need to be CSR
addressed. Then, in step (c), the non-zero elements of the two matrices addressed by CSR
indices will perform MAC operations in one-to-one correspondence. Not only are the 0 values
of the sparse matrix skipped, but also the weight matrices. The final step (d) is to merge the
results of these three frames.

Figure 3.30: Process of CSR Acceleration

The CSR algorithm acceleration timing diagram is shown in Fig. 3.31. It can be observed
that the acceleration effect of the CSR algorithm is very obvious. In the original matrix MAC
operation without CSR acceleration, it takes 36 clock cycles to complete, but after CSR
acceleration, it only takes 22 clocks, reducing the MAC timing by 30.6% and increasing the
operation efficiency by 63.6%. The timing and efficiency of CSR acceleration are related to
temporal sparsity, according to the definition of temporal sparsity introduced in Chapter 2,
which refers to the ratio of the count of 0 values to the number of input features in input signals.
Therefore, the relationship between the timing and efficiency improvement of CSR acceleration
and temporal sparsity can be expressed as Eq. 3.16 and Eq. 3.17.

Timing = Original T iming ∗ (1− Temporal Sparsity) (3.16)

Efficiency Improvement =
Temporal Sparsity

1− Temporal Sparsity
(3.17)

3.2. Hardware Implementation 48

Figure 3.31: Timing diagram of CSR algorithm acceleration

The CSR algorithm plays a very important role in the field of sparse matrix acceleration. It
accelerates the MAC operations by compressing sparse matrix. In addition, it is worth noting
that because the CSR algorithm can reduce the scale of data transmission, it can also save
memory resources in proportion to temporal sparsity.

3.2.4. Delta Algorithm Implementation On FPGA
The Delta algorithm is fundamental for transforming an original temporal-related matrix into
a sparse matrix. However, when deploying the Delta algorithm in hardware, it is essential
to consider the hardware architecture and the memory resource configuration of the FPGA
hardware.

Multistage Pipeline
In software design, the input matrix undergoes Delta conversion frame by frame sequentially.
However, in hardware, the input matrix undergoes Delta conversion feature by feature sequen-
tially in the pipeline. The Delta algorithm-based PE operation of a single element in detail is
shown in Fig. 3.32. Fig. 3.31 omits all write-back operations for updates to simplify the process.

• 1. Addressing

The CSRBuffer RAM introduced previously stores the CSR indices. These indices will
address the original elements of the Data cache, Prev RAM, and inputweight RAM that
the Delta algorithm has not processed. Assume that the output by the DataCache RAM
is curr_part and the output by Prev RAM is prev_part.

• 2. Differentiation

The curr_part and prev_part processed in step 1 execute the Delta algorithm. This will
go through three steps. The first step is to take the absolute difference (Delta_value)
between the curr_part and the prev_part. The second step is to perform threshold
filtering on the Delta_value. The third step is to write back the updated prev_part to
Prev RAM based on the threshold filtering result.

• 3. MAC

The Delta value processed in step 2 participates in the MAC operation. Due to the
speculation in the previous frame, all Delta Values here are non-sparse.

• 4. Integration

The delta memory output by the Delta,Memory RAM will be combined with the MAC
product processed in step 3 and then subjected to the ReLU activation function. Subse-
quently, the updated delta memory will be written back to the Delta,Memory RAM.

3.2. Hardware Implementation 49

Figure 3.32: Process of Delta Algorithm Implementation on FPGA (omits all write-back operations for updates)

The Delta algorithm is a complex process, so a 4-stage pipeline architecture is used to
deploy the Delta algorithm on hardware, as the timing diagram shown in Fig. 3.33. Although
the multi-stage pipeline architecture requires more area and resources for cache or logic
segmentation, it allows the timing of the FPGA hardware to be stable and run faster. This
architecture prioritizes performance and speed optimization at the expense of increased area
utilization.

Figure 3.33: Timing diagram of a 4-stage pipeline of Delta algorithm deployment

Dual-port SRAM Application
As previously introduced, from the speculation perspective, it is known that the CSR algorithm
must process the current frame and simultaneously speculate on the next frame. The pre-

3.2. Hardware Implementation 50

algorithm of the CSR algorithm is the Delta algorithm, which can transform the original non-
sparse dataset into a sparse dataset. The delta algorithm operation must also be performed
during the speculation process on the current and next frames. Since the Delta algorithm
involves many cache tasks, accurately reading and writing the memory of the Previous
Current and Next frame is the key to deploying the delta algorithm.

To cache various data used for Delta algorithms effectively, this work flexibly configures a
variety of SRAMs, as shown below.

• Weights_RAM

This SRAM is used to read and write weights for DeltaFC IP processing. Since there
is only initial writing and PE operation, reading and writing processes do not occur
simultaneously. Therefore, this SRAM is configured as SPRAM.

• Prev_RAM

This SRAM is used to read and write data of the previous frame for the Delta differentiation
algorithm. However, as mentioned previously, Prev RAM needs to update the cache of
the previous frame, which means Prev RAM has to read and write simultaneously. To
avoid RW conflicts, reading and writing need to be separated. This SRAM is configured
as SDPRAM.

• Prev_ACC_RAM

This SRAM is used to read and write data of the next frame for the Delta algorithm before
speculation. Since the cache of the next frame also needs to be updated as frames. In
the same way, to avoid RW conflicts, this SRAM is configured as SDPRAM.

• CSR Buffer_RAM

This SRAM is used to read and write CSR indices for the CSR algorithm. Since the CSR
indices also need to be updated as frames. In the same way, to avoid RW conflicts, this
SRAM is configured as SDPRAM.

• Delta_Memory

This SRAM is used to read and write the delta memory for the Delta integration algorithm.
Since the delta memory also needs to be updated as frames. In the same way, to avoid
RW conflicts, this SRAM is configured as SDPRAM.

• Data_Cache_1 & Data_Cache_2

These SRAMs are used to read and write the original dataset for DeltaFC IP processing.
However, since the processing of cache data is flexible, not only do the Delta or CSR
algorithms need to read and write to update the cache simultaneously, but both ports
must also read or write simultaneously during the speculation process. This means that
the two ports of SRAM are not fixed for reading and writing but are free for reading and
writing. The only SRAM that can be freely configured with two ports is TDPSRAM. So,
this SRAM is configured as TDPRAM.

Obviously, to deploy the Delta algorithm and CSR algorithm, a large amount of SRAM
resources must be consumed for caching. This is also a common problem with timing hardware
algorithms and neural network IP. But in any case, all BRAM resource consumption is within
the controllable range. For example, the BRAM consumption in this work does not exceed 50%
of the FPGA hardware resources.

3.2. Hardware Implementation 51

3.2.5. Interface Design
In essence, the neural network accelerator in the hardware design of this work is a digital
IP that serves as the PL side of the ZYNQ board. Interface design is necessary for data
communication between PL and PS. This includes the AXI4-stream interface design and the
IO ports design of the digital IP of the neural network digital IP.

AXI4-stream
The AXI4-stream protocol is a high-speed communication protocol dedicated to streaming data
transmission in digital systems [38]. Streaming data mainly includes video, audio, etc. The
AXI4-stream protocol has the advantages of low latency, simple structure, and easy integration,
so it is suitable for streaming data transmission with strict real-time and flexible reconfiguration
requirements. This work uses the AXI4-stream interface protocol for communication between
the PL and the PS.

AXI4-stream significantly differs from other AXI4 series protocols, mainly reflected in the
different interface definitions. First, unlike the AXI4-full and AXI4-lite protocols, the AXI4-stream
protocol does not have address lines, meaning the channel is not memory-mapped. Secondly,
since AXI4-stream focuses on streaming data transmission, there is no write response channel
to achieve high-throughput intensive data communication. In addition, since AXI4-stream is
suitable for one-way transmission of stream data, there are no write and read channels but a
one-way channel composed of the master end and the slave end.

Because this work aims to implement a lightweight neural network on hardware design,
the interface definition should also be simplified as much as possible to meet basic data
communication needs. In this work, a single DeltaFC digital IP as the slave has the following
AXI interfaces:

• 1. TDATA

The TDATA channel is the most important channel of the AXI4-stream protocol, which
contains valid data for stream data transmission. In this work, the TDATA channel includes
s_axis_input_tdata and s_axis_weights_tdata.

• 2. TVALID

The TVALID channel indicates whether the master end is valid for the data transmission.
In this work, the TVALID channel includes s_axis_input_tvalid and s_axis_weights_tvalid.

• 3. TREADY

The TREADY channel indicates whether the slave end is ready for the data transmission.
In this work, the TREADY channel includes s_axis_input_tready and s_axis_weights_tready.

• 4. TLAST

The TLAST channel flags the last package of streaming data. In this work, the TLAST
channel includes s_axis_input_tlast and s_axis_weights_tlast.

IO ports design
The AXI4-stream interface protocol mentioned in the previous subsection is for the purpose of
high-speed streaming data communication. In this section, the data transmitted by IO ports will
be discussed.

It can be seen from the previous hardware design the fundamental inputs of the neural
network mainly include data and weights, and the outputs of the neural network include neural
network calculation results. But in terms of hardware implementation, except for AXI4-stream
interfaces, adding a synchronized clock and reset input on the hardware design is necessary.
On the other hand, the hardware neural network deployed on the Zynq board also includes

3.2. Hardware Implementation 52

SDK development, which involves communication between the PL and the PS side. More
straightforwardly, the ARM core of the PS is supposed to accept the feedback signal from the
FPGA of the PL to interrupt, reset, etc. Therefore, in PL hardware development, designing
the feedback signal from FPGA to PS, such as the start signal ’START’ and the end signal
’END_FLAG’ of the recognition task in this work, is also necessary. This IP interface diagram is
shown in Fig. 3.34.

Figure 3.34: DeltaFC digital IP diagram

4
Results

4.1. Experiment Setup
This section primarily focuses on establishing the testing environment platform, including
preparing software and hardware datasets and a general overview of the evaluation indicators.

4.1.1. Software Design Setup
Dataset Preparation
The dataset used in the training process of this study is divided into two types of datasets:
speech and noise. On the one hand, the speech dataset uses Libri-Speech, a corpus of
approximately 1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with
the assistance of Daniel Povey. The data is derived from reading audiobooks from the LibriVox
project [23]. On the other hand, the noise dataset uses QUT-noise. The QUT-NOISE-TIMIT
corpus consists of 600 hours of noisy speech sequences designed to enable a thorough
evaluation of voice activity detection (VAD) algorithms across various common background
noise scenarios [8].

They must undergo several processing steps to transform these datasets into input features
for DeltaFC DNN.

• 1. Sampling the source audio

The first step is to traverse all the audio files in the data sets, set the sampling parameters
to sample those source audios, and then save the normalized array of sampled audio
files in the ’raw’ dictionary of the data class and shuffle. The sampling parameters are
shown in Tab. 4.1.

Sample Rate 16000 Hz
Sample Width 2

Sample Channels 1

Table 4.1: Dataset sampling parameters

• 2. Conversion from audio files to fixed frames

This step is to convert all the files with different frame rates of the source audio files ’raw’
into fixed frame rates and store these converted frames in the ’frames’ dictionary of the
data class. The size of each frame is 30ms.

• 3. Labeling the sampled frames

This step aims to recognize and label the converted frames of the second step. The
WebRTC vad library developed by Google [12] is used as the benchmark label of the
data set itself.

53

4.1. Experiment Setup 54

• 4. Extracting the dataset features

This step aims to extract the audio features through MFCC. The MFCC parameters are
shown in Tab. 4.2. After MFCC, the original one-dimensional audio waveform array can
be converted into a two-dimensional matrix containing spectral feature vectors over time,
which will be used as the neural network input.

Sample Rate 16000 Hz
Window Step 30 ms

Window Length 120 ms
NFFT 2048

Table 4.2: The MFCC parameter settings for each 30ms audio segment.

• 5. Partitioning the dataset

This step divides the train, test, and validation sets into the 0.8, 0.1, and 0.1 ratios. These
divided datasets are used for neural network training and testing and neural network
validation.

To use the GPU to accelerate the CUDA training of neural networks more efficiently, this
work uses 2048 batches of parallel training. The previous operations divided the data set into
24 features, 32 frames, and 2048 batches as the basic training, testing, and validation data
package.

Receiver Operating Characteristic (ROC)
ROC curves are commonly utilized to visually represent the trade-off between clinical sensitivity
and specificity for various possible cut-off values in a test or a combination of tests [10]. ROC
was originally the data of the positive diagnosis rate analysis in medicine, but this visualization
tool is also applicable in the field of neural network classification. The ROC curve reflects the
response of the neural network model to stimuli at different points on the curve (also known as
sensitivity). The model’s probability of accurately recognizing different points on the curve is
reflected in voice activity detection. The accurate recognition probability here can be expressed
by FRR (False Rejection Rate) and FAR (False Acceptance Rate).

In the domain of voice activity detection, where the model output consists solely of noise
and speech (a two-category model), False Rejection Rate (FRR) and False Acceptance Rate
(FAR) can be expressed as shown in Eq. 4.1.

FRR =
FN

FN + TP

FAR =
FP

FP + TN

(4.1)

FN (False Negative), FP (False Positive), TN(True Negative), and TP(True Positive) are the
predicted results obtained from the neural network confusion matrix. Where FN, FP, TN, and
TP represent results as follows:

• FN: predicted as noise actually speech
• FP: predicted as speech actually noise
• TN: predicted as noise actually noise
• TP: predicted as speech actually speech

4.1. Experiment Setup 55

FRR represents the proportion of actual noise in all speech predicted by the model, and
FAR represents the proportion of actual speech in all noise predicted by the model. Both the
lower and the better; this means the model has a clear classification for speech and noise. The
ROC curve uses FAR and FRR as coordinate axes, reflecting the model’s sensitivity to both
speech and noise.

The TN, TP, FN, and TP obtained from the neural network confusion matrix can also be
used to calculate accuracy, as shown in Eq. 4.2. As the definition suggests, accuracy reflects
the proportion of correctly recognized speech/noise samples in the entire sample set in audio
classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

ROC is a probability curve, and AUC represents the degree or measure of separability. It
tells how much the model is capable of distinguishing between classes. An excellent model
typically exhibits an AUC close to 1, indicating a high level of separability [30].

4.1.2. Hardware Design Setup
Dataset Quantization
Since floating point calculations cannot be performed directly in the hardware without a
dedicated IP, the FPGA hardware input dataset must be transformed through fixed-point
quantization. The hardware dataset input here includes the dataset itself and the neural
network weights.

To reproduce the neural network results of the software to the greatest extent, the input
dataset quantization of the hardware adopts a 16-bit fixed-point quantization. However, since
the weight of the software shows a certain normalization after neural network training, the
weights can adopt 8-bit fixed-point quantization.

FPGA Board
The ZYNQ board model used in this work is MiniZed (xc7z007sclg225-1). It includes 512
MB DDR3L memory and various interfaces (such as HDMI, USB, and Ethernet). Besides, it
features an ARM Cortex-A9 dual-core processor embedded for PS development [2]. However,
although MiniZed’s integrated units are diverse, their physical size is small, there are few
on-board resources, and the layout is compact. Due to its lightweight design, it is easy to carry.
Therefore, it is suitable for small-scale hardware FPGA design, such as the lightweight neural
network of this work. The on-board resources parameters of MiniZed are as shown in the Tab.
4.3.

Slice LUTs Slice Registers Slice LUT as Logic Block RAM Tile DSPs
14400 28800 4400 14400 50 66

Table 4.3: On-board resources parameters of MiniZed

PPA(Performance, Power, Area)
FPGA’s PPA (Performance, Power, Area) are the most important indicators to evaluate the
quality of FPGA design. PPA involves evaluating FPGA hardware design from three aspects:

• 1. Performance

Performance indicates how well hardware implements functions. In this work, hardware
performance includes the following evaluation indicators: STA slacks, accuracy, and
acceleration efficiency.

4.2. Experiment Results 56

• 2. Power

Power consumption refers to the power consumption of hardware to perform tasks per
frame.

• 3. Area

The area represents the resource utilization of hardware. In this work, this includes
resource utilization.

4.2. Experiment Results
4.2.1. Software Design Results
This work will first test the trained DeltaFC DNN on software and evaluate the performance of
the DeltaFC. The performance of DeltaFC DNN in software design is mainly evaluated through
the following aspects:

• 1. DeltaFC DNN basic parameters

This mainly discussed the performance comparison of DeltaFC and other neural networks,
including accuracy AUC, FAR & FRR, and other indicators.

• 2. DeltaFC DNN temporal sparsity

This mainly includes evaluating the impact of temporal sparsity induced by DeltaFC on
accuracy.

• 3. DeltaFC DNN testing actual results

This mainly includes the test results of DeltaFC on a test dataset audio (train set unseen),
compared with the test results of Google’s WebRTC, which serves as the baseline for
comparison.

Results of comparison between DeltaFC and others
In this subsection, this study uses 4 different types of neural networks for horizontal compar-
isons across various metrics such as AUC, Accuracy, and FAR/FRR. Among them, the LSTM
network is referenced from Niklas Hansen [14], and DeltaGRU is referenced from Chang Gao
[11]. To verify the DeltaFC’s performance from the classification perspective, this work uses
other 3 neural networks for comparison.

To ensure a fair comparison, the parameters for all neural networks are set as follows:

• 1. All network parameters are controlled below 40K to reach the demand for lightweight.
• 2. All networks use the same datasets, Librispeech for speech and QUT-noise for noise.
• 3. All network training processes adopt the ADAM optimizer, using the same momentum

(0.9) and learning rate (0.01).
• 4. All network training processes employ early stopping to prevent overfitting and explod-

ing gradients.

As a result, the parameters of those 4 networks are shown in the Tab. 4.4. In this part
of the work, to balance with the optimization of other networks, the threshold of DeltaFC is
chosen as 0.

• ROC(Receiver Operating Characteristic) and AUC(Area Under Curve)

In the field of VAD, AUC reflects the model’s classification performance for noise and
speech. The AUC results are shown in Fig. 4.1.

It can be seen that the classification performance of FC and DeltaFC for speech and
noise is the highest in this work of lightweight networks with parameters less than 40K,

4.2. Experiment Results 57

Network type Parameters Early stopping Stopping epoch
FC 27202 True 70

DeltaFC 27202 True 53
LSTM [14] 34128 True 118

DeltaGRU [11] 38608 True 99

Table 4.4: The parameters of 4 different basic neural networks tested in this work. The threshold of DeltaFC is 0,
which is equivalent to FC mathematically

Figure 4.1: AUC results of 4 networks. The threshold of DeltaFC is 0, which is equivalent to FC mathematically

reaching 0.972. This shows that introducing the FC structure has slightly improved
classification performance.

• Accuracy and FAR&FRR

The accuracy and corresponding FAR&FRR of the four networks are shown in Tab. 4.5.
FAR and FRR are controlled within the range of 8% ± 1 % as much as possible to
facilitate comparison.

Network type Accuracy FAR FRR Fixed FAR Fixed FRR
FC 91.26% 12.24% 5.05% 8.65% 6.99%

DeltaFC 91.85% 10.67% 5.53% 7.23% 8.45%
LSTM [14] 91.48% 9.05% 8.13% 9.07% 8.06%

DeltaGRU [11] 88.94% 10.84% 10.91% 14.09% 8.02%

Table 4.5: Accuracy and FAR&FRR results of 4 networks. The threshold of DeltaFC is 0, which is equivalent to FC
mathematically

It can be seen that among all networks, the classification accuracy performance of
sequential networks such as DeltaFC is significantly higher than that of the other three.
And the accuracy of DeltaFC is the highest, reaching 91.85%. But what is interesting
is that the structure of DeltaFC is similar to FC, but the accuracy is higher than FC.
The difference is due to the stochasticity during the neural network training process.
Meanwhile, DeltaFC has the lowest FAR but the highest FRR. The main reason for
this result is that DeltaFC is more sensitive to noise on the one hand, and it is related

4.2. Experiment Results 58

to the selection of data sets on the other hand. But in summary, the classification
performance of DeltaFC shows advantages compared with the other 3 basic neural
networks, especially in aspects of parameter scale, AUC, and accuracy.

Results of DeltaFC temporal sparsity
As mentioned previously in Chapter 3, when the feature difference ∆X is sufficiently small, the
operation can be skipped if the delta input falls below a specified threshold. This approach is
implemented to enhance temporal sparsity in the data processing. However, a high threshold
will cause the accuracy rate to collapse since too many key features are filtered out. Choosing a
reasonable threshold will help accelerate the model without sacrificing accuracy, which requires
a balance between temporal sparsity and accuracy. This section will explore the relationship
between threshold, accuracy, and temporal sparsity in software design.

In this section, the discussion revolves around selecting a threshold without quantization.
From the input features extraction after MFCC, the audio features of this work are generally
concentrated between 0 and 1, especially the absolute value of features in the hidden layer
of the DeltaFC are concentrated between 0 and 0.5. This demonstrates that the threshold
selection from the range of 0 to 0.5 can filter most small features.

Firstly, keep the early stopping epoch of DeltaFC as 78, and then change the thresholds
of all hidden layers in the range of 0 to 0.5, then can get relationships between accuracy &
temporal sparsity and threshold curves, as shown in Fig. 4.2.

Figure 4.2: Relationships between accuracy & temporal sparsity and threshold from 0 to 0.5

Then, make a relationship curve where the threshold changes from 0 to 0.1, as shown in
Fig. 4.3. It can be seen that, on the one hand, for accuracy, the accuracy gradually increases
in the range of threshold changes from 0 to 0.01, reaches a peak at 0.01, and then gradually
decreases in subsequent changes. When the threshold reaches 0.5, the accuracy collapses
below 90% directly. On the other hand, for temporal sparsity, this curve is more similar to
a power function whose power is less than 1 with threshold-related. This is because when
the threshold is high, the occupancy of the features becomes more and more stable, and the
temporal sparsity converges accordingly. The next section will discuss more detailed analyses
of accuracy and temporal sparsity.

From the perspective of accelerating the operation speed of DeltaFC, it is hoped that the
higher the sparsity of the model, the better to generate more 0s to realize the zero-jump
operation to accelerate the neural network calculation. However, since the network is for voice

4.2. Experiment Results 59

Figure 4.3: Relationships between accuracy & temporal sparsity and threshold from 0 to 0.1

activity detection, it becomes imperative to fulfill the requirements for computational speed and
prioritize high accuracy. The selection of the threshold depends on the objective of the task.

Results of tested audio
The tested audio also uses part of the original (unseen training dataset). For the label of the
tested audio, the WebRTC_vad [12] developed by Google for the WebRTC project is used as
the benchmark, which can classify a piece of audio data as being voiced or unvoiced. The
original audio labels classified by WebRTC_vad are shown in Fig. 4.4.

Figure 4.4: Audio part and voice label developed by WebRTC

The original audio labels predicted by DeltaFC in the threshold of 0.01 are shown in Fig. 4.5.

Figure 4.5: Audio part and voice label developed by DeltaFC

The noise and speech classification accuracy results predicted by the DeltaFC network are
92.3% compared with WebRTC_vad. This proves that the neural network has good detection
accuracy in lightweight networks.

4.2. Experiment Results 60

4.2.2. Hardware Design Results
This work will then deploy the DeltaFC DNN software design on FPGA hardware and implement
hardware acceleration. The device diagram of this work is shown in Fig. 4.6. The evaluation of
hardware design will be carried out from the following aspects of PPA:

Figure 4.6: The device diagram of DeltaFC IP core

• 1. DeltaFC hardware area and utilization

This mainly includes the area and utilization of digital IP after implementation.
• 2. DeltaFC hardware power consumption

This mainly involves the power consumption evaluation of various modules in the DeltaFC
hardware design.

• 3. DeltaFC hardware STA slacks

This mainly involves the STA of DeltaFC hardware design, including setup and hold
slacks evaluations.

• 4. DeltaFC hardware threshold variation on accuracy

This mainly involves examining how adjusting the threshold from 0 to 0.9 affects the
accuracy of DeltaFC on the hardware.

• 5. DeltaFC hardware threshold variation on throughput

This mainly involves examining how adjusting the threshold from 0 to 0.1 affects the
throughput of DeltaFC on the hardware.

• 6. DeltaFC hardware acceleration

This mainly involves the impact of DeltaFC acceleration on timing and accuracy.

Results of Area And Utilization
This work first conducted out-of-context (OOC) synthesis and implementation for the Delta
digital IP core. In the context, synthesis adopted strategy ′FlowP erfOptimized_high ∗
(V ivadoSynthesis2022′, and implementation adopted strategy ′Performance_Auto_1′. Af-
ter synthesis and implementation, the area and utilization of the DeltaFC IP core are shown in
Fig. 4.7.

4.2. Experiment Results 61

Figure 4.7: The area and utilization of DeltaFC IP core

It can be observed that the resource utilization of the DeltaFC IP, after implementation, is
around 25% for all components except BRAM. However, the BRAM utilization reaches 52%.
This is primarily due to the significant consumption of BRAM by the FPGA hardware for caching
weight values and activation values in neural networks, which is inevitable. But overall, the
FPGA hardware design has met the expected standards.

Results of Power Consumption
After synthesis and implementation, the power consumption of the DeltaFC IP core is shown in
Fig. 4.8.

Figure 4.8: The power consumption of DeltaFC IP core

It can be observed that the power consumption of the FPGA neural network is primarily
concentrated on BRAM instead of DSP, which reaches 81%. This is mainly because the
SRAMs of the FPGA hardware for neural networks require frequent read and write operations
of weights and activation values.

Results of STA slacks
After synthesis and implementation, the STA slacks of the DeltaFC numeric IP core are shown
in Fig. 4.9.

It can be observed that, at a synchronous clock frequency of 100 MHz, there are no
timing violations in the DeltaFC IP core. Both synthesis and implementation are free of critical
warnings and latch designs. This is attributed to the strict adoption of a pipeline structure in all
RTL modules of this work. Additionally, logic reuse and multi-register synchronization designs
are implemented in multiple modules, ensuring that the possibility of combinational logic timing
violations in the hardware design is minimized.

4.2. Experiment Results 62

Figure 4.9: The STA slacks of DeltaFC IP core

Results of DeltaFC threshold variation on accuracy.
Accuracy is a benchmark metric for the DeltaFC hardware design. The accuracy evaluation is
primarily conducted through quantized test datasets and weights input into the DeltaFC IP. To
replicate software results and provide a more intuitive diagram of the impact of thresholds on
accuracy, this work uses multiple threshold points ranging from 0 to 0.9 in the accuracy testing
during this section. The testing process includes both hardware testing and software testing
with corresponding thresholds. Since the quantized thresholds in hardware are supposed to
be integers, for example, 0.1 in software design will be quantized to 2.56 but is reflected as
3 in the hardware. If not specified, all instances of thresholds in the following sections are
quantized thresholds. The testing results are shown in Fig. 4.10.

Figure 4.10: The threshold variation on accuracy of software design and hardware design

It’s evident that, as the threshold uniformly varies from 0 to 0.9, the accuracy of the software
design gradually decreases. However, although the overall accuracy of the hardware design
is decreasing, the loss gap between hardware accuracy and software accuracy diminishes
gradually before the threshold of 0.4. Between the thresholds 0.4 and 0.7, the accuracy of
software design is almost the same as that of hardware design. Beyond the threshold of 0.7,
the loss gap between hardware and software accuracy increases again. This indicates that
between the threshold values of 0.4 and 0.7, the DeltaFC hardware accuracy demonstrates
strong robustness.

4.2. Experiment Results 63

Results of DeltaFC threshold variation on Throughput.
More comprehensively, increasing the threshold enhances temporal sparsity and accelerates
the neural network’s throughput.

First, for this work, the total operation load is composed of adding MAC operations at each
layer. Each clock will perform 2 operations for MAC operation, one multiplication and one
addition. Therefore, the operation load of each layer can be calculated as Eq. 4.3.

Operation_Load_of_Each_Layer = (NodesA+ 1) ∗NodesB ∗ FRAMES ∗ 2 (4.3)

Where NodesA represents the previous layer nodes, and the NodesB represents the next
layer nodes. Therefore, after substituting the nodes of each layer of DeltaFC, 24, 96, 128, 64,
32, the total operation load can be calculated as Eq. 4.4.

Total_Operation_Load = (24 + 1) ∗ 96 ∗ 32 ∗ 2
+ (96 + 1) ∗ 128 ∗ 32 ∗ 2
+ (128 + 1) ∗ 64 ∗ 32 ∗ 2
+ (64 + 1) ∗ 32 ∗ 32 ∗ 2
+ (32 ∗ 32 + 1) ∗ 2
= 1611778

(4.4)

Next, this work uses an 8-channel parallel DSP architecture to perform MAC operations,
and the operating frequency is 100MHz. Therefore, the theoretical maximum throughput of this
work can be calculated as 1.6 Gop/s, as shown in Eq. 4.5.

Throughput = 100MHz ∗ 8 ∗ 2 = 1.6Gop/s (4.5)

Finally, the throughput can also be calculated as Eq. 4.6. Therefore, obtaining the latency
corresponding to each threshold can deduce the throughput corresponding to each threshold.
Assuming that the threshold varies from 0 to 0.5. The temporal sparsity, accuracy, latency,
and throughput corresponding to each software and hardware design threshold are shown in
Tab. 4.6. And the curve corresponding to this Tab. 4.6 is shown in the Fig. 4.11.

Throughput =
Operation_Load

Latency
(4.6)

It can be seen that, except for the threshold of 0.5, the changing trends of throughput and
temporal sparsity are the same. This not only ensures that the threshold can significantly
increase the throughput of the hardware but also underscores a tight correlation between
throughput and temporal sparsity. However, high temporal sparsity will lead to error throughput,
which will be analyzed in the next section.

Results of DeltaFC acceleration
This work’s hardware acceleration significantly improves computational efficiency. Here is a
representative case. Assuming the threshold for this network is set to 0.01, the timing diagram
for the DeltaFC IP without acceleration (corresponding to ’ACCELERATION_MODE’ to 0
in Figure) is shown in Fig. 4.12.

As the Fig. 4.12 shows, the result is ’fffccb1a’. The calculation time displayed in the
Tcl console is 2133000 ns. After incorporating hardware acceleration (corresponding to
’ACCELERATION_MODE’ to 1 in Figure), the timing diagram for DeltaFC IP is shown in
Fig. 4.13.

4.2. Experiment Results 64

Software Design Hardware Design
Threshold Temporal Sparsity Accuracy Throughput(Gop/s) Efficiency Latency(ms) Accuracy

0 50.7% 91.84% 1.423 88.9% 1133 91.43%
0.004 54.0% 91.77% 1.560 97.5% 1033 91.34%
0.012 56.1% 91.81% 1.640 102.5% 983 91.42%
0.02 60.5% 91.85% 1.935 120.9% 833 91.37
0.028 59.1% 91.56% 1.825 114.1% 883 91.3%
0.036 61.9% 91.68% 2.058 128.6% 783 90.88%
0.1 73.2% 91.65% 3.024 189.0% 533 90.28%
0.2 84.5% 91.22% 4.842 302.6% 333 90.27%
0.3 89.5% 90.84% 6.912 432.0% 233 90.38%
0.5 94.1% 89.7% 0.452 28.3% 3567 89.8%

Table 4.6: The relationships between threshold and temporal sparsity, latency, and throughput. The lightweight
DeltaFC architecture parameter scale used in this work is 27202, and the maximum theoretical throughput is

1.6Gop/s

Figure 4.11: The relationships between threshold and temporal sparsity and throughput

As the Fig. 4.12 shows, the result is still ’fffccb1a’. However, the calculation time displayed
in the Tcl console is only 983000 ns. Moreover, the latency and throughput of DeltaFC before
and after induced temporal sparsity acceleration are shown in Tab. 4.7. The results show that
the computation time has reduced by 54%, leading to an 85% improvement in computational
efficiency.

Latency(ms) Effective Throughput (GOp/s)
Without temporal sparsity 2.133 0.7556

With temporal sparsity 0.983 1.640

Table 4.7: Comparison of latency and effective throughput of DeltaFC before and after acceleration.

Acceleration, in the majority of cases, significantly enhances computational efficiency. This

4.2. Experiment Results 65

Figure 4.12: The timing diagram for the DeltaFC IP without acceleration

Figure 4.13: The timing diagram for the DeltaFC IP with acceleration

indicates that through the combined deployment of the Delta algorithm and CSR algorithm,
sparse acceleration induced by the temporal sparsity of DeltaFC can be implemented. However,
in exceptionally rare instances, acceleration can lead to a loss in accuracy. If the input features
are expanded to the entire test dataset of 20,480 batches instead of a single batch, the
accuracy results compared to the original non-accelerated results are shown in the Tab. 4.8:

Accuracy
Without temporal sparsity 91.42%

With temporal sparsity 90.96%

Table 4.8: Comparison of the accelerated hardware accuracy with the non-accelerated hardware accuracy for the
entire test dataset

As shown in the figure, this indicates that acceleration induced by temporal sparsity has
a 0.5% probability of causing accuracy loss. Theoretically, acceleration only compresses the
sparse matrix, and sparse matrices do not contribute to the results. The accuracy loss caused
by acceleration will be discussed in the next section.

4.3. Experiment Analysis 66

4.3. Experiment Analysis
The last section analyzes the experiment results from software design and hardware design.
On the one hand, the software design subsection mainly analyses how the threshold affects
temporal sparsity and accuracy. On the other hand, the hardware design subsection mainly
analyzes the impact of thresholds on hardware acceleration.

4.3.1. Software Design Analysis
Impacts of threshold on temporal sparsity and accuracy
Threshold is used to filter low amplitude delta input features. This means that the threshold can
increase the temporal sparsity by filtering more low features, but an excessively high threshold
will reduce the accuracy of the neural network because of the loss of the key feature. So, it is
very important to choose the appropriate threshold.

Fig. 4.14 shows a classic example of this work to show how threshold increases sparsity
and decreases accuracy. This is the last frame’s last 8 features of the 2048th batch in the
first speech package after being transformed by the Delta algorithm, as shown in Fig. 4.14.
When the threshold changes from 0.05 to 0.25, the temporal sparsity also increases from
12.5% to 100%. However, when the threshold is too high, such as reaching 0.25, all 8 features
shown in Fig. 4.14 are filtered out, meaning all information is lost. These feature losses will
cause accuracy loss in the final recognition result. Therefore, as shown in Fig. 4.2 and Fig. 4.3,
temporal sparsity will gradually increase as the threshold increases, and accuracy will show a
downward trend as the threshold increases.

Figure 4.14: Temporal sparsity will increase as threshold increases

However, it is worth noting that, as shown in Fig. 4.2 and Fig. 4.3, a slightly increased
threshold boosts a little accuracy. This is a very interesting phenomenon, which means that the
threshold can help filter out some of the feature glitches that negatively affect the recognition
results (similar to a high-pass filter).

The curve of temporal sparsity and threshold
Fig. 4.2 shows the resulting relationship curve between accuracy and threshold. It is a power
function with an exponent between 0 and 1. The shape of such a curve is related to the
distribution of input features.

Fig. 4.15 shows a classic example of this work to show why the temporal sparsity and
threshold curve exhibit power function characteristics. This is the 2048th batch’s features before
the Delta algorithm in the first speech package, as shown in Fig. 4.15. It can be seen that this

4.3. Experiment Analysis 67

curve has the characteristics of a Gaussian distribution. This is because the dataset has been
normalized before input. Among them, the data included in the red circle are excluded outliers
of input features, and the red line represents the fitting curve of the Gaussian distribution. From
the perspective of input features, it generally has normal distribution characteristics.

Figure 4.15: Data distribution of 2048th batch’s features before Delta algorithm

This is the 2048th batch’s features after the Delta algorithm in the first speech package, as
shown in Fig. 4.16. It can be seen that after the Delta algorithm transformation, the absolute
input features curve becomes half of the Gaussian distribution curve.

Figure 4.16: Data distribution of 2048th batch’s features after Delta algorithm

The integration of the Gaussian distribution represents the probability that the data is
distributed in a certain interval. If it is assumed that the threshold varies from 0 to a specific
amplitude (assumed to be 0.5), then the area enclosed between 0 and 0.5 represents the
distribution probability of data between 0 and 0.5, as shown in Fig. 4.17. According to the
definition of temporal sparsity, as shown in Eq. 2.16, these features below the threshold
(between 0 and the threshold) will be filtered to 0, so the data as shown in the Fig. 4.17 will
eventually become sparse values. The probability of these filtered sparse values is exactly the
value of temporal sparsity.

Therefore, the integral Gaussian distribution represented in Fig. 4.17 is the temporal sparsity,
as shown in Eq. 4.7. The integration of the Gaussian distribution exhibits the characteristics of

4.3. Experiment Analysis 68

Figure 4.17: Integration of Features Distribution curve

a power function [27], so the curve of temporal sparsity also exhibits the characteristics of a
power function.∫ Threshold

0
Distrubution_Probability d(Amplitude) = Temporal_Sparsity (4.7)

4.3.2. Hardware Design Analysis
Impacts of Quantization On Accuracy
It can be seen from the results in the figure that the accuracy of hardware design is 0.5%
averagely less than that of software design. This is mainly because the hardware design uses
fixed-point quantization, which will cause a certain information loss after quantification.

It was mentioned in Chapter 2 that the input features of the hardware design have been
16-bit quantized; however, the weights of the hardware design model itself have only been
8-bit quantized. This is because DeltaFC, similar to other RNNs, also has the characteristics of
weight sharing. In the iterative reasoning process, the weights already have certain regulariza-
tion characteristics. Therefore, to save hardware resources, only 8-bit quantization is used. But
precisely, only 8-bit quantization of weights means that the weights fitting is weakened, and the
model may not be able to capture some subtle key features, thus affecting the accuracy of the
neural network.

There are several ways to solve the decrease in accuracy caused by quantization.

• 1. 16-bit Fixed-point Quantization of Weights

The high bit-width quantization of the model itself will lead to increased hardware resource
consumption and computational complexity. This work’s lightweight neural network
implementation does not recommend higher precision quantification of weights.

• 2. Introducing Quantization-Aware Training Techniques

Fixed-point quantization can be performed not at the end of the training process but
between training processes, which is known as quantization-aware training. This allows
the weights to fit the model as much as possible with a low-precision bit width after each
epoch ends, thereby reducing the information loss caused by iterative quantization. This
process is completed in software design.

4.3. Experiment Analysis 69

Impacts of Threshold on Throughput
Thresholds can significantly influence the throughput, closely correlating to temporal sparsity.
The throughput can be calculated as Eq. 4.8.

Throughput =
Timing_Cost ∗Baseline_Throughput

Latency
(4.8)

The operation load refers to the total executed operations, which is the product of timing
cost and a constant of baseline throughput. However, this IP will bypass all sparse value
operations after hardware acceleration. This highlights that the latency associated with each
voice segment exclusively involves non-sparse value operations. Therefore, the latency can be
deduced as Eq. 4.9.

Latency = Timing_Cost ∗ (1− Temporal_Sparsity) (4.9)

If substituting Eq. 4.9 into Eq. 4.8, then the throughput can be deduced as Eq. 4.10.

Throughput =
Baseline_Throughput
1− Temporal_Sparsity

(4.10)

Since temporal sparsity is always in the range of 0 to 1, throughput is positively related to
temporal sparsity. Therefore, increasing the threshold not only results in heightened temporal
sparsity but also contributes to an increased throughput. The observed trends in throughput
and temporal sparsity exhibit complete alignment and consistency.

However, as shown in Fig. 4.11, when the sparsity is too high, it can lead to incorrect
throughput. The reason for this problem is the memory bottleneck, which will be discussed in
detail in the next section.

Impacts of Acceleration on Throughput and Accuracy
Fig. 4.11 shows that if the sparsity is too high, it can lead to crashed throughput. Fig. 4.10
shows that the accuracy of the results after hardware acceleration is slightly lower than the
results before acceleration. But in fact, the induced temporal sparsity acceleration only skips
sparse value operations, and theoretically, there should not be throughput loss and accuracy
loss. The main reason for the throughput and accuracy loss is that a memory bottleneck of
insufficient RAM ports can occur during speculation.

Here is an example of how memory bottlenecks occur. Assume a sparse matrix A has
12 features and 3 frames, as shown in Fig. 3.21. Then, assuming this matrix is multiplied by
another matrix B, and the ratio of matrix B nodes to the number of parallel channels is only 1
instead of 2 mentioned in Chapter 3. In this way, the timing diagram of the speculation data
transmission process is shown in Fig. 4.18. It can be seen that since the rule shown in Eq. 3.14
is not satisfied, the first frame calculation time is not enough to cover the speculation time.

On the one hand, for a wrong throughput issue, if high sparsity causes the calculation
time to be lower than the speculation time since there is no enabled signal response, the
hardware will always wait for the CSR indices speculated in the previous frame. This will lead
to a transmission deadlock and an abnormal pipeline structure. This issue could have been
avoided with more cache units. However, due to the architecture design of this work, there is
no more memory to cache the CSR indices of the previous layer, and the deadlock caused
by the memory bottleneck will continue. Therefore, the memory bottlenecks will occur if the
threshold is high enough, such as beyond 0.5.

On the other hand, for accuracy loss issues, when the threshold is low, while the CSRBuffer
RAM reads the CSR indices of the second frame, the CSRBuffer RAM input write port not
only needs to write the unspeculative data of the second frame but also needs to write the

4.3. Experiment Analysis 70

Figure 4.18: Timing diagram of insufficient RAM ports of bottleneck

speculative data of the third frame simultaneously. However, CSRBuffer RAM is synthesized
based on BRAM, which has only one write port, which leads to a memory bottleneck caused
by insufficient memory ports. Therefore, due to the memory bottleneck, the input CSR indices
are uncertain so accuracy loss will occur under the forward propagation of the hierarchical
DNN. According to the results in Tab. 4.8, when the threshold is below 0.3, the probability of
memory bottleneck occurring is approximately 0.5%.

The memory capacity can be increased to solve the memory bottleneck to avoid crashed
throughput and accuracy loss. In other words, adding a parallel CSRBuffer RAM can assist
in data writing. Data can be written simultaneously in two parallel CSRBuffer RAMs during
the reading process. While writing data, one of the CSRBuffer RAMs can write the CSR
indices of the current frame, and simultaneously, the other CSRBuffer RAM can write the
CSR indices of the next frame. This avoids the memory bottlenecks. However, adding a parallel
memory will double the CSRBuffer RAM resources used for acceleration and double the
power consumption. Although such overhead is manageable in this work, it is intolerable for
non-lightweight models. For other large models, the memory bottleneck issue can be optimized
through the following strategies:

• Optimizing memory access patterns
• Adopting more efficient data structures
• Using more efficient compression algorithms

5
Conclusions and Future works

5.1. Conclusion
After the experimental results and analysis in Chapter 4, the following conclusions can be
drawn:

• 1. In software design, DeltaFC DNN can achieve 92.3% accuracy, 27202 parameters,
and 56% temporal sparsity with a threshold of 0.01.

Both temporal sparsity and accuracy are related to thresholds. When the threshold
continues to increase, the accuracy will decrease by about 0.5%, but the temporal
sparsity will be improved significantly, which can accelerate the operation of the neural
network by 85%.

• 2. In software design, DeltaFC DNN has higher accuracy, higher AUC, and lower
parameters than baseline neural networks such as FC, LSTM, etc.

In more detail, DeltaFC DNN can achieve the highest accuracy (91.8%) with the smallest
parameter (27202). This means that DeltaFC DNN is suitable for processing temporal
information such as audio and can maintain the advantage of being lightweight. The
software design results are as expected.

• 3. In hardware design, DeltaFC digital IP is deployed on FPGA RTL design with low
resource utilization and successfully achieves high-frequency operation (100MHz)

DeltaFC digital IP implements the deployment of the Delta algorithm and CSR algorithm
on FPGA through RTL design. Through reasonable logic design, the IP implements
DeltaFC DNN itself and supports acceleration algorithms with extremely low resource
utilization.

• 4. In hardware design, DeltaFC digital IP could implement all expected functions
without functional verification and timing verification errors.

This digital IP can reproduce all results in the software design and has passed STA,
pre-simulation post-simulation, etc. This proves that the hardware design can be used as
an independent IP for block design in future work.

5.2. Future work
After the previous analysis, the following future work can be proposed for reference:

• 1. Block design and ARM core SDK development

This work is only the FPGA (PL) development of the Zynq board. But to truly realize VAD
testing on board, SDK development (PS) for the ARM core of the Zynq board is also
necessary.

71

5.2. Future work 72

• 2. In software design, training-aware quantization can be used to reduce accuracy
loss.

Training-aware quantization can increase the fit of weights to the model. In addition, this
method also involves the configuration of neural network training parameters in software
design, such as step size, optimizer selection, etc.

• 3. In hardware design, the memory bottlenecks can be optimized.

Accuracy will be slightly reduced due to memory bottlenecks caused by hardware accel-
eration. Therefore, the memory access pattern of the acceleration unit and the memory
architecture can be optimized to avoid memory bottlenecks as much as possible.

References

[1] Ossama Abdel-Hamid and Hui Jiang. “Rapid and Effective Speaker Adaptation of Con-
volutional Neural Network Based Models for Speech Recognition”. In: Aug. 2013. DOI:
10.21437/Interspeech.2013-336.

[2] Avnet. MiniZed Hardware User Guide. English. Version 2.0. Avnet. 40 pp. published.

[3] Urban Borštnik et al. “Sparse matrix multiplication: The distributed block-compressed
sparse row library”. In: Parallel Computing 40.5 (2014), pp. 47–58. ISSN: 0167-8191. DOI:
https://doi.org/10.1016/j.parco.2014.03.012. URL: https://www.sciencedirect.
com/science/article/pii/S0167819114000428.

[4] Feifei Chen et al. “A 108-nW 0.8-mm2 Analog Voice Activity Detector Featuring a Time-
Domain CNN With Sparsity-Aware Computation and Sparsified Quantization in 28-nm
CMOS”. In: IEEE Journal of Solid-State Circuits 57.11 (2022), pp. 3288–3297. DOI:
10.1109/JSSC.2022.3191008.

[5] Huixiang Chen et al. “3D-based video recognition acceleration by leveraging temporal
locality”. In: (June 2019), pp. 79–90. DOI: 10.1145/3307650.3322260.

[6] Lin Chen, Xiao Ma, and Xiang Ji. “FPGA-based LoongArch Five-stage Pipeline CPU”. In:
Journal of Physics: Conference Series 2450 (Mar. 2023), p. 012058. DOI: 10.1088/1742-
6596/2450/1/012058.

[7] Khalid A. Darabkh, Laila Haddad, and Saadeh Sweidan. “A Modified Speech Recognition
Algorithm for People with Physical Disabilities”. In: 2017 European Conference on
Electrical Engineering and Computer Science (EECS). 2017, pp. 23–27. DOI: 10.1109/
EECS.2017.13.

[8] David Dean et al. “The QUT-NOISE-TIMIT corpus for evaluation of voice activity detection
algorithms”. In: Proceedings of the 11th Annual Conference of the International Speech
Communication Association. Ed. by K Hirose, S Nakamura, and T Kaboyashi. CD
Rom: International Speech Communication Association, 2010, pp. 3110–3113. URL:
https://eprints.qut.edu.au/38144/.

[9] Li Deng and John Platt. “Ensemble Deep Learning for Speech Recognition”. In: Proc.
Interspeech. Sept. 2014. URL: https://www.microsoft.com/en-us/research/publica
tion/ensemble-deep-learning-for-speech-recognition/.

[10] Suzanne MSc Ekelund. “ROC Curves—What are They and How are They Used?” In:
Point of Care: The Journal of Near-Patient Testing Technology 11.1 (2012), pp. 16–21.
DOI: 10.1097/POC.0b013e318246a642.

[11] C. Gao et al. “Edgedrnn: recurrent neural network accelerator for edge inference”. In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 10 (4 2020),
pp. 419–432. DOI: 10.1109/jetcas.2020.3040300.

[12] Google. ’WebRTC’. 2020. URL: https://webrtc.org/.

[13] Benjamin Graham. “Spatially-sparse convolutional neural networks”. In: (Sept. 2014).

[14] Niklas Hansen and Simom Holst Albrechtsen. “Voice activity detection in noisy envi-
ronments”. In: DEEP LEARNING, DTU COMPUTE, Dec. 2018, p. 02456. URL: https:
//github.com/nicklashansen/voice-activity-detection.

73

https://doi.org/10.21437/Interspeech.2013-336
https://doi.org/https://doi.org/10.1016/j.parco.2014.03.012
https://www.sciencedirect.com/science/article/pii/S0167819114000428
https://www.sciencedirect.com/science/article/pii/S0167819114000428
https://doi.org/10.1109/JSSC.2022.3191008
https://doi.org/10.1145/3307650.3322260
https://doi.org/10.1088/1742-6596/2450/1/012058
https://doi.org/10.1088/1742-6596/2450/1/012058
https://doi.org/10.1109/EECS.2017.13
https://doi.org/10.1109/EECS.2017.13
https://eprints.qut.edu.au/38144/
https://www.microsoft.com/en-us/research/publication/ensemble-deep-learning-for-speech-recognition/
https://www.microsoft.com/en-us/research/publication/ensemble-deep-learning-for-speech-recognition/
https://doi.org/10.1097/POC.0b013e318246a642
https://doi.org/10.1109/jetcas.2020.3040300
https://webrtc.org/
https://github.com/nicklashansen/voice-activity-detection
https://github.com/nicklashansen/voice-activity-detection

References 74

[15] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”. In:
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 2014, pp. 10–14. DOI: 10.1109/ISSCC.2014.6757323.

[16] Itay Hubara et al. “Binarized Neural Networks”. In: Advances in Neural Information
Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc., 2016. URL:
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776
bfd50-Paper.pdf.

[17] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008), pp. 1–70.
DOI: 10.1109/IEEESTD.2008.4610935.

[18] Sofie Reyners Jan De Spiegeleer Dilip B. Madan and Wim Schoutens. “Machine learning
for quantitative finance: fast derivative pricing, hedging and fitting”. In: Quantitative
Finance 18.10 (2018), pp. 1635–1643. DOI: 10.1080/14697688.2018.1495335. eprint:
https://doi.org/10.1080/14697688.2018.1495335. URL: https://doi.org/10.
1080/14697688.2018.1495335.

[19] Ž Jovanović and V Milutinović. “FPGA accelerator for floating-point matrix multiplication”.
In: IET Computers & Digital Techniques 6.4 (2012), pp. 249–256.

[20] Emre Karabulut and Aydin Aysu. “A Hardware-Software Co-Design for the Discrete
Gaussian Sampling of FALCON Digital Signature”. In: (2023). https://eprint.iacr.
org/2023/908. URL: https://eprint.iacr.org/2023/908.

[21] Zheng Lei et al. “Research on the Application of Integrated Storage and Computing
Chip Based on Image Recognition”. In: 2023 IEEE International Conference on Sensors,
Electronics and Computer Engineering (ICSECE). 2023, pp. 605–609. DOI: 10.1109/
ICSECE58870.2023.10263456.

[22] Nan Li et al. “Robust Voice Activity Detection Using a Masked Auditory Encoder Based
Convolutional Neural Network”. In: ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2021, pp. 6828–6832. DOI:
10.1109/ICASSP39728.2021.9415045.

[23] “Librispeech: An ASR corpus based on public domain audio books”. In: IEEE, 2015,
pp. 5206–5210. DOI: 10.1109/ICASSP.2015.7178964.

[24] Bo Liu et al. “An energy-efficient voice activity detector using deep neural networks
and approximate computing”. In: Microelectronics Journal 87 (2019), pp. 12–21. ISSN:
0026-2692. DOI: https://doi.org/10.1016/j.mejo.2019.03.009. URL: https:
//www.sciencedirect.com/science/article/pii/S0026269218307043.

[25] Bo Liu et al. “EERA-ASR: An Energy-Efficient Reconfigurable Architecture for Automatic
Speech Recognition With Hybrid DNN and Approximate Computing”. In: IEEE Access
6 (2018), pp. 52227–52237. URL: https://api.semanticscholar.org/CorpusID:
52966121.

[26] Jing Liu et al. “Discrimination-Aware Network Pruning for Deep Model Compression”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 44.8 (2022), pp. 4035–
4051. DOI: 10.1109/TPAMI.2021.3066410.

[27] Dmitri Martila and Stefan Groote. “Evaluation of the Gauss Integral”. In: Stats 5.2
(2022), pp. 538–545. ISSN: 2571-905X. DOI: 10 . 3390 / stats5020032. URL: https :
//www.mdpi.com/2571-905X/5/2/32.

[28] Sameeraj Meduri and Rufus Ananth. A Survey and Evaluation of Voice Activity Detection
Algorithms: Speech Processing Module. Koln, DEU: LAP Lambert Academic Publishing,
2012. ISBN: 3659172049.

https://doi.org/10.1109/ISSCC.2014.6757323
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1080/14697688.2018.1495335
https://doi.org/10.1080/14697688.2018.1495335
https://doi.org/10.1080/14697688.2018.1495335
https://doi.org/10.1080/14697688.2018.1495335
https://eprint.iacr.org/2023/908
https://eprint.iacr.org/2023/908
https://eprint.iacr.org/2023/908
https://doi.org/10.1109/ICSECE58870.2023.10263456
https://doi.org/10.1109/ICSECE58870.2023.10263456
https://doi.org/10.1109/ICASSP39728.2021.9415045
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/https://doi.org/10.1016/j.mejo.2019.03.009
https://www.sciencedirect.com/science/article/pii/S0026269218307043
https://www.sciencedirect.com/science/article/pii/S0026269218307043
https://api.semanticscholar.org/CorpusID:52966121
https://api.semanticscholar.org/CorpusID:52966121
https://doi.org/10.1109/TPAMI.2021.3066410
https://doi.org/10.3390/stats5020032
https://www.mdpi.com/2571-905X/5/2/32
https://www.mdpi.com/2571-905X/5/2/32

References 75

[29] Markus Nagel et al. “A White Paper on Neural Network Quantization”. In: (June 2021).

[30] Sarang Narkhede. “Understanding AUC - ROC Curve”. In: Towards Data Science (2018).
URL: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9
c5.

[31] Daniel Neil et al. “Delta Networks for Optimized Recurrent Network Computation”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
June 2017, pp. 2584–2593. URL: https://proceedings.mlr.press/v70/neil17a.html.

[32] Jongsoo Park et al. “Faster CNNs with Direct Sparse Convolutions and Guided Pruning”.
In: arXiv e-prints, arXiv:1608.01409 (Aug. 2016), arXiv:1608.01409. DOI: 10.48550/
arXiv.1608.01409. arXiv: 1608.01409 [cs.CV].

[33] Michael Price, James Glass, and Anantha P. Chandrakasan. “A Low-Power Speech
Recognizer and Voice Activity Detector Using Deep Neural Networks”. In: IEEE Journal
of Solid-State Circuits 53.1 (2018), pp. 66–75. DOI: 10.1109/JSSC.2017.2752838.

[34] Philippe Renevey and Andrzej Drygajlo. “Entropy based voice activity detection in very
noisy conditions”. In: Sept. 2001, pp. 1887–1890. DOI: 10.21437/Eurospeech.2001-446.

[35] Abhipray Sahoo. “Voice activity detection for low-resource settings -”. In: CS230 deep
learning (). URL: http://cs230.stanford.edu/projects_winter_2020/reports/
32224732.pdf.

[36] Robin Schmidt. “Recurrent Neural Networks (RNNs): A gentle Introduction and Overview”.
In: (Nov. 2019).

[37] Jongseo Sohn, Nam Soo Kim, and Wonyong Sung. “A statistical model-based voice
activity detection”. In: IEEE Signal Processing Letters 6.1 (1999), pp. 1–3. DOI: 10.1109/
97.736233.

[38] AXI4 stream. “AMBA Axi4 interface protocol”. In: AMD (). URL: https://www.xilinx.
com/products/intellectual-property/axi.html.

[39] Wenyu Tang. “Automatic Functional Datapath Optimization”. In: (2014).

[40] Sibo Tong, Hao Gu, and Kai Yu. “A comparative study of robustness of deep learning
approaches for VAD”. In: 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2016, pp. 5695–5699. DOI: 10.1109/ICASSP.2016.
7472768.

[41] Fengbin Tu et al. “Deep Convolutional Neural Network Architecture With Reconfigurable
Computation Patterns”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25.8 (2017), pp. 2220–2233. DOI: 10.1109/TVLSI.2017.2688340.

[42] Preetha Vijayan. and T.G.R.M. van Leuken. “Temporal Delta Layer: Training Towards
Brain Inspired Temporal Sparsity”. In: Delft University of Technology (2021). DOI: https:
//repository.tudelft.nl/islandora/object/uuid:0806241d-9037-4094-a197-
6e65d6482f2b.

[43] Hongzhi Wang, Yuchao Xu, and Meijing Li. “Study on the MFCC similarity-based voice ac-
tivity detection algorithm”. In: 2011 2nd International Conference on Artificial Intelligence,
Management Science and Electronic Commerce (AIMSEC). 2011, pp. 4391–4394. DOI:
10.1109/AIMSEC.2011.6009945.

[44] Tianjiao Xu et al. “Improve Data Utilization with Two-stage Learning in CNN-LSTM-
based Voice Activity Detection”. In: 2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC). 2019, pp. 1185–1189. DOI:
10.1109/APSIPAASC47483.2019.9023306.

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://proceedings.mlr.press/v70/neil17a.html
https://doi.org/10.48550/arXiv.1608.01409
https://doi.org/10.48550/arXiv.1608.01409
https://arxiv.org/abs/1608.01409
https://doi.org/10.1109/JSSC.2017.2752838
https://doi.org/10.21437/Eurospeech.2001-446
http://cs230.stanford.edu/projects_winter_2020/reports/32224732.pdf
http://cs230.stanford.edu/projects_winter_2020/reports/32224732.pdf
https://doi.org/10.1109/97.736233
https://doi.org/10.1109/97.736233
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://doi.org/10.1109/ICASSP.2016.7472768
https://doi.org/10.1109/ICASSP.2016.7472768
https://doi.org/10.1109/TVLSI.2017.2688340
https://doi.org/https://repository.tudelft.nl/islandora/object/uuid:0806241d-9037-4094-a197-6e65d6482f2b
https://doi.org/https://repository.tudelft.nl/islandora/object/uuid:0806241d-9037-4094-a197-6e65d6482f2b
https://doi.org/https://repository.tudelft.nl/islandora/object/uuid:0806241d-9037-4094-a197-6e65d6482f2b
https://doi.org/10.1109/AIMSEC.2011.6009945
https://doi.org/10.1109/APSIPAASC47483.2019.9023306

References 76

[45] Amirreza Yousefzadeh and Manolis Sifalakis. “Training for temporal sparsity in deep
neural networks, application in video processing”. In: ArXiv, July 2021. URL: /abs/2107.
07305..

[46] Thein Htay Zaw and Nu War. “The combination of spectral entropy, zero crossing rate,
short time energy and linear prediction error for voice activity detection”. In: 2017 20th
International Conference of Computer and Information Technology (ICCIT). 2017, pp. 1–
5. DOI: 10.1109/ICCITECHN.2017.8281794.

[47] Jinghua Zhang, Chen Li, and Marcin Grzegorzek. “Applications of Artificial Neural
Networks in Microorganism Image Analysis: A Comprehensive Review from Conventional
Multilayer Perceptron to Popular Convolutional Neural Network and Potential Visual
Transformer”. In: (July 2021).

[48] Jinming Zou, Yi Han, and Sung-Sau So. “Overview of Artificial Neural Networks”. In:
Artificial Neural Networks: Methods and Applications. Ed. by David J. Livingstone. Totowa,
NJ: Humana Press, 2009, pp. 14–22. ISBN: 978-1-60327-101-1. DOI: 10.1007/978-1-
60327-101-1_2. URL: https://doi.org/10.1007/978-1-60327-101-1_2.

/abs/2107.07305.
/abs/2107.07305.
https://doi.org/10.1109/ICCITECHN.2017.8281794
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-1-60327-101-1_2

	Preface
	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Description
	Objective
	Contributions
	Outline

	Background
	Feature Extraction
	Short Time Energy (STE)
	Zero Crossing Rate (ZCR)
	Spectral Entropy
	Mel Frequency Cepstral Coefficients (MFCC)

	Traditional Classification Methods
	Threshold-based classification
	Gaussian-based statistical model WebRTC classification

	Neural Network-Based Classification Methods
	Novel method: Deep Neural Networks
	Introduction of Neural network
	Fully connected neural network(FC)
	Recurrent neural network(RNN)

	Neural Network Optimization Methods
	Quantization
	Sparsity
	Compressed Sparse Row (CSR) Algorithm

	Neural Network Hardware Architecture
	Multistage pipeline
	Von Neumann architecture

	Neural Network Hardware Deployment
	Hardware Resources
	Hardware implementation unit

	Related Work

	Proposed Methodology
	Software implementation
	Delta Algorithm
	DeltaFC DNN layer
	Temporal Sparsity
	Quantization

	Hardware Implementation
	DeltaFC Architecture on FPGA
	Multiple Channel Parallel DSPs
	CSR Algorithm Implementation On FPGA
	Delta Algorithm Implementation On FPGA
	Interface Design

	Results
	Experiment Setup
	Software Design Setup
	Hardware Design Setup

	Experiment Results
	Software Design Results
	Hardware Design Results

	Experiment Analysis
	Software Design Analysis
	Hardware Design Analysis

	Conclusions and Future works
	Conclusion
	Future work

	References

