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Unsupervised Detection of Postoperative
Complications in Home-Monitored Patients:

Preliminary Results
Fatime Oumar Djibrillah*, ‡,1,Ilse Waanders‡,2,Daan Lips3,Gabriela F. Nane4,Maurice van Keulen5,

Annemieke Witteveen 1, Arlene John 1

Abstract—Wearable sensors enable remote, continuous patient
monitoring at home, offering a promising approach for early
detection of postoperative complications. However, analyzing
continuous long-term physiological data remains challenging,
particularly in the absence of precisely labeled deterioration
events. Unsupervised change point detection methods can address
this issue by identifying physiological deviations without requir-
ing predefined event labels. This study investigates the feasibility
of using a Long-Short-Term Memory (LSTM) autoencoder for
detecting postoperative complications from continuous heart rate
and respiration rate data using a wearable patch sensor while
monitoring patients in their homes. The autoencoder was applied
to identify physiological deviations that may indicate potential
complications after major abdominal oncological surgeries in ten
patients. The model was trained on data from seven patients
to recognize deviations from normal physiological patterns and
evaluated on three patients. The proposed model detected change
points preceding the clinically documented complication time in
two test patients, identifying these deteriorations an average of
3.25 hours earlier than the standard Remote Early Warning
Score (REWS) alarm system. These findings suggest that LSTM
autoencoder-based change point detection could be a valuable
tool for identifying postoperative complications early in remote
patient monitoring settings, to support timely intervention and
potentially improving patient outcomes.

Index Terms—Remote Patient Monitoring, Wearables, Postop-
erative complications, LSTM autoencoder, Change point detec-
tion.

I. INTRODUCTION

Early detection of postoperative complications is critical
for timely intervention and improved patient outcomes [1].
While in-hospital monitoring often provides periodic assess-
ments, these may fail to capture early signs of physiological
deterioration occurring between scheduled evaluations [2].
After discharge, the absence of monitoring further increases
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the risk of delayed complication detection, which may lead
to adverse events [3]. Continuous remote monitoring with
wearable sensors offers a promising solution by enabling
continuous tracking of physiological signals, also at home and
potentially detecting complications earlier [4]–[6].

Effectively analyzing data from wearable sensors requires
advanced analytics to detect early signs of deterioration that
may indicate potential complications. Change points in time-
series data refer to instances where the statistical properties
of the signal undergo significant deviations [7]. Change point
detection (CPD) is a widely used technique to identify abrupt
changes in time-series data and has been applied in various
domains [7], including finance [8], environment [9], medicine
[10], [11]. In the context of physiological monitoring, CPD
can help detect abrupt changes in vital signs that may indicate
potential complications. However, often only the moment of
diagnosis of a complication is known and not the moment
of onset, making it challenging to apply supervised learning
approaches for detecting complications. Unsupervised CPD
provides a promising solution by detecting change points
without requiring predefined labels [12]. Long Short-Term
Memory (LSTM) autoencoders have been widely studied for
unsupervised change point or anomaly detection [13]–[15].

In this study, we investigated an LSTM autoencoder-based
approach for unsupervised change point detection in physio-
logical data to identify postoperative complications after major
abdominal cancer surgery in patients. The contributions of
this study are developing an LSTM autoencoder-based CPD
model for postoperative monitoring; implementing dynamic
thresholding, which adapts detection sensitivity based on
individual patient variability to improve CPD performance,
and comparing the proposed model’s performance using the
standard Remote Early Warning Score (REWS) alarm system.

II. METHOD

A. Data collection

This prospective observational study included thirty patients
who underwent elective oncologic small bowel, colorectal or
pancreatic resections between June and October 2024 at the
Medisch Spectrum Twente (MST) Hospital in the Netherlands.
Eligible patients were ≥ 18 years old, undergoing elective
surgery (small bowel, colorectal or pancreatic) under general
anesthesia, and provided written informed consent. Exclusion
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criteria were recent reoperations, having antibiotic-resistant
infections, psychiatric hospitalization, having implantable de-
vices, or skin conditions affecting sensor placement. Approval
for this study was granted by the MST Board of Directors and
the Local Advisory Committee on Feasibility on April 2, 2024,
and the informed consent was obtained from all participants.

The patient data were continuously recorded using the
Philips HealthDot, a wearable patch sensor, for a period of
14 days postoperatively at 5-minute intervals. The Healthdot
is an accelerometer-based wearable patch sensor and is placed
on the left lower rib of the patient. The sensor records heart
rate (HR), respiratory rate (RR), posture and activity level,
which were transmitted via the LoRa network [16]. The Philips
HealthDot was placed on the patient following oncological
abdominal surgery, including colorectal, pancreatic, and small
bowel resections. All patients included in the study followed
the same-day discharge protocol and the Healthdot-based
monitoring was carried out in the patient’s home.

The mean patient age was 70.0 years (standard deviation
[SD] = 8.78, range: 54-85), with 63% male and 37% female.

B. Data preprocessing

To increase the robustness of our model, we applied several
data preprocessing steps. For the current analysis, only HR and
RR signals were used as input to the model. Outlier detection
is crucial in time-series analysis, as anomalous data points
can significantly distort model performance [17]. We used
physiologically guided thresholding by defining HR values
below 40 or above 200 bpm and RR values below 4 or above
40 bpm as outliers and replaced them with Not a Number
(NaN) values. Missing data, which is common in wearable
sensor recordings [18], was handled using linear interpolation
followed by backward filling to maintain temporal consistency
and avoid disruptions in sequential learning. Physiological
signals such as HR and RR often have different ranges,
which can negatively impact model training by causing certain
features to dominate the learning process. Data normalization
or transformation is a common step in machine learning
models to ensure that all features contribute equally to model’s
learning process [19]. To achieve this, we applied z-score nor-
malization to each patient data, which transforms each feature
to have zero mean and unit variance [19]. This process ensures
that the model effectively captures patterns without being
biased toward features with larger numerical values. Following
the normalization, the time-series data were segmented into
overlapping 3-hour sequences (36-time steps per sequence) to
provide temporal context for training the model.

C. Model architecture and training

In this study we investigated LSTM autoencoder-based un-
supervised approach to identify change points that might indi-
cate potential deterioration in patient vital signs. Autoencoders
are neural networks designed to compress and reconstruct
input data [20]. LSTM, a type of recurrent neural network
(RNN), is well-suited for capturing long-term dependencies
in sequential data. It enables effective anomaly or CPD by

leveraging reconstruction loss to identify deviations in times
series [21].

The proposed LSTM autoencoder architecture, illustrated
in Figure 1, consists of an encoder-decoder structure. The
encoder maps the input sequences into a compressed latent
space, and the decoder reconstructs the original sequence. The
architecture was designed as follows:

• Encoder: Two stacked LSTM layers with 64 and 32 units,
respectively.

• Latent space representation: Encodes the time-series se-
quence into a reduced-dimensional feature space.

• Decoder: Two LSTM layers mirroring the encoder (32
and 64 units), followed by a dense output layer to
reconstruct the input.

Prior to training, the dataset was divided into training and
testing sets with patient stratification, with 70% (n = 7) of
the patients used for training and 30% (n = 3) for testing. The
model was trained to minimize the Mean Squared Error (MSE)
reconstruction loss between the original input sequence Xi

and its reconstructed output sequence X̂i. This loss function
ensures that the model captures patterns and deviations in the
physiological time series.

The model was trained using the Adam optimizer with a
learning rate of 0.001. Early stopping was applied to prevent
overfitting by monitoring validation loss and stopping training
when no further improvement was observed. To ensure stabil-
ity of the results, training was repeated with different random
seed initializations, and results from one representative run
using a fixed seed are reported.

D. Change point detection

In physiological monitoring, these shifts may indicate poten-
tial clinical deterioration. To identify physiological deviations
which could indicate of potential complications, we analyzed
the reconstruction errors of the LSTM autoencoder model on
the test set.

The reconstruction error was computed using the MSE (1),
which calculates the difference between the original input
sequence Xi and its reconstructed output sequence X̂i:

et =
1

w

w∑
i=1

(
Xt,i − X̂t,i

)2

(1)

where w is the sequence length,Xt, i, represents the original
input values at time stept, and X̂t, i, represents the corre-
sponding reconstructed values. Higher reconstruction errors
indicate deviations from learned patterns and might potentially
be due to a change point. In order to determine whether a
given data point represents a change point, a threshold must be
set on the reconstruction errors. A fixed global threshold may
not be suitable due to inter-patient variability. Therefore, we
implemented a patient-level dynamic thresholding approach
[12]. This method allows us to adaptively define a threshold
based on each patient’s distribution of reconstruction errors.
This ensures that the detection process accounts for individual
differences rather than applying a one-size-fits-all threshold.
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Fig. 1. General flow diagram of the proposed approach.

The dynamic threshold (2) for patient p is computed as
follows:

θp = µ(ep) + zσ(ep) (2)

where µ(ep) and σ(ep) are the mean and standard deviation
of reconstruction errors for patient p, and z is an adjustable
parameter that controls sensitivity and determines how many
standard deviations above the mean are considered indicative
of change point. A previous study [12] suggests that selecting
z between 2 and 5 provides a balance between detecting
meaningful deviations and reducing false positives. In this
study, we selected z=2.

In order to reduce false positives, we filtered consecutive
detections within 12-time steps (1 hour) and kept only the first-
detected change point, thereby maintaining only significant
changes.

To evaluate the proposed LSTM autoencoder-based CPD,
we defined Time-to-Detection (TTD) as difference between
the first detected change point and the first clinically recorded
complication timings.

E. Baseline method: Golden standard REWS features

In order to evaluate the effectiveness of our proposed
CPD method, we compared it against a clinically established
baseline feature, the Remote Early Warning Score (REWS).
The REWS is calculated by summing the weight scores of
30-minute averages of HR and RR . The assigned weights are
shown in Table I. A REWS alarm is generated when the sum
of weights from HR and RR ≥ 3.

TABLE I
REWS SCORE WEIGHTS FOR HR AND RR

Vital Signs
Score 2 1 0 1 2 3

HR (bpm) < 40 40-50 51-100 101-110 111-130 >130
RR (bpm) <9 9-14 15-20 21-30 ≥ 30

III. RESULTS AND DISCUSSION

We used a subset of ten patients (five with complications
and five without complications) (Table II) for development
and evaluation of the proposed methodology. These ten pa-
tients were selected to ensure a balanced comparison of both
groups while maintaining computational feasibility for this
preliminary analysis. The analysis focused on detecting change
points indicative of potential complications and comparing the
TTD of our approach with the time-to-alarm (TTA), which
represents the interval between the first REWS-generated
alarm and the clinically documented complication timing.

TABLE II
SUMMARY OF INCLUDED PATIENTS’ COMPLICATIONS AND SURGERY

TYPES

Category Complication (n=5) Non-Complication (n=5)
Clavien-Dindo Classification CD = 1 (n=1), CD = 2 (n=1) CD = 0 (n=5)

CD = 3.5 (n=3)
Type of Complication Respiratory (n=1), Surgical (n=3) None

Other (Constipation) (n=2)
Surgery Type Laparoscopic (n=1), Open (n=1) Laparoscopic (n=3), Open (n=1),

Robotic (n=3) Robotic (n=1)

A. Model performance and reconstruction errors

The LSTM autoencoder was trained using data from seven
patients and evaluated on the remaining three patients. The
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reconstruction errors were computed at each time step and
used as indicators of deviation in physiological patterns. The
mean reconstruction errors across all test patients were 0.2748
(SD ± 0.0887), with variability observed among individual
patients (Table III). The dynamic threshold, calculated per
patient from the mean and SD of reconstructions errors,
varied across patients. Higher error variability led to higher
thresholds, as seen in Test Patient 3 (Table III).

TABLE III
MEAN RECONSTRUCTION ERRORS AND DYNAMIC THRESHOLDS FOR TEST

PATIENTS

Patient ID Mean Error Standard Dev Dynamic Threshold Complication Status
Test Patient 1 0.2190 0.0581 0.3352 Yes (Surgical)
Test Patient 2 0.3023 0.0721 0.4465 Yes (Respiratory)
Test Patient 3 0.3033 0.1360 0.5753 No

B. Change point detection

The proposed model detected multiple change points in all
test patients based on deviations in reconstruction errors. In
patients who developed complications, a higher concentration
of change points in period preceding the clinically recorded
complication time was observed in the period preceding the
clinically recorded complication time.

Figure 2 illustrates the detected change points timing (with
red dots) in comparison to the clinically documented compli-
cation timing (black dashed line) across the three test patients.
For patients who developed complications, the detected change
points were more clustered around the clinically documented
complication times (black dashed lines), which indicate early
physiological deviations before clinical recognition.

This clustering of change points suggests that the model
was able to identify early signs of potential deterioration.
However, change points were also detected in the patient
without complications (Figure 2). This highlights the challenge
of distinguishing between clinically significant changes and
normal physiological fluctuations without complications.

C. Time-to-Detection and comparison with REWS

The LSTM autoencoder detected signs of complications
earlier than the REWS alarm system. As shown in Table IV,
the proposed method identified deviations an average of 6.6
hours before the first REWS alarm. In both patients who had
complications in the test set, the LSTM autoencoder provided
an earlier indication of potential deterioration. The average
TTD was 26.35 hours, while the average TTA was 19.73 hours,
each calculated independently across patients.

These results demonstrate that while the model was able
to detect early changes in physiological patterns related to
complications, further refinement may be needed to improve
its ability to differentiate between clinically relevant changes
and normal fluctuations in cases with no complications.

D. Limitations

This study presented a preliminary analysis of LSTM
autoencoder-based CPD for complication monitoring after ma-
jor abdominal cancer surgery. While the results demonstrated
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Fig. 2. Detected change points (red) and clinically documented complications
(black dashed line) for Test Patients.

TABLE IV
TIME-TO-DETECTION (TTD) AND TIME-TO-ALARM (TTA) FOR TEST

PATIENTS

Patient ID TTD (Hours) TTA (Hours) Complication Status
Test Patient 1 30.29 18.53 Yes (Surgical)
Test Patient 2 22.41 20.92 Yes (Respiratory)
Test Patient 3 N/A N/A No

the potential of this approach, several limitations must be
considered. First, the analysis was conducted on a small
subset of patients, which may limit the generalizability of
the findings. Additionally, implementing cross-validation or
leave-one-out strategies would provide more robust estimates
of model performance, particularly for small datasets. Second,
the dynamic thresholding method accounts for inter-patient
variability, but further optimization of the adjustable parameter
(z) is needed to balance sensitivity. Finally, change points
were also detected in patients with no clinically recorded
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complication, which highlights the challenge of distinguishing
between normal physiological variations and clinically relevant
deviations.

IV. CONCLUSION AND FUTURE WORK

This preliminary study explored an LSTM autoencoder-
based unsupervised CPD approach for postoperative complica-
tions. The proposed model effectively identified deviations in
physiological signals with change points prior to the clinically
documented complications. Compared to the REWS alarm
system, our model demonstrated earlier detection of complica-
tions as well. However, the presence of change points in non-
complication case indicates the need for further refinement
to minimize false positive alarms. Future work will focus
on expanding the dataset to improve model generalizability,
perform additional preprocessing steps like smoothening the
physiological data before processing, and incorporate cross-
validation to further evaluate the model’s robustness.
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