
Delft University of Technology
Master of Science Thesis in Embedded Systems and Computer Science

Monitoring the health of urban greenery
with terrestrial low-cost, mobile sensors

Akshit Gupta

Embedded
Networked
Systems





Monitoring the health of urban greenery with
terrestrial low-cost, mobile sensors

Master of Science Thesis in Embedded Systems and Computer 
Science

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science 

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Akshit Gupta

April 2022

mailto:a.gupta-20@student.tudelft.nl


Author
Akshit Gupta 

Title
Monitoring the health of urban greenery with terrestrial low-cost, mobile sensors 

MSc Presentation Date 26 April 2022

Graduation Committee
dr. RangaRao Venkatesha Prasad Delft University of Technology
dr. Simone Mora Massachusetts Institute of Technology
dr. Ujwal Gadiraju Delft University of Technology



Abstract

Urban forests and vegetation are fundamental for developing resilient cities.
Thus, the e↵ective management and protection of urban trees and greenery are
essential. Nowadays, urban trees are experiencing atypical amount of natural
and human-induced stresses which a↵ects their functionality, productivity and
survival. The current methods for monitoring the health of urban trees mainly
comprises of manual inspection by arborists and remote sensing. However, all
these methods are riddled with various challenges involving scalability, spatio-
temporal resolutions and quality of assessment. The goal of this thesis was to
develop a method which can autonomously measure the health of trees on a
city-wide scale with high spatio-temporal resolutions at low costs.

To achieve this goal, we first performed an in-depth survey and comparative
analysis of the existing state-of-the-art techniques for tree health measurement,
identified a research gap and based on this, developed a novel system to meas-
ure tree health autonomously from ground level in urban cities. The system
can be deployed both in a drive-by sensing paradigm on moving vehicles such as
taxis and garbage trucks or be carried by humans in a citizen science paradigm.
A computer vision model developed using transfer learning and traditional im-
age processing techniques were employed to fuse the data collected by low cost
thermal and multispectral imaging sensors on the edge devices. The approach
was evaluated through data collection experiments performed in Cambridge,
USA. Comparison with parameters in ground truth datasets revealed several
significant relationships. Thus, motivating various studies in the future along
with potential large-scale deployment of this technique in cities and municipal-
ities around the world.
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Chapter 1

Introduction

Urban forests, parks and greenery increase cities’ resilience due to their ability to
mitigate the e↵ects of climate change. As per the latest IPCC Report [13], global
warming and climate change presents multiple risks to humans as well as nature.
Thus, protecting, managing and restoring ecosystems is fundamental for climate
resilient development. In cities, urban canopies and vegetation provide a wide
range of ecosystem benefits such as air filtering, carbon sequestration, reduced
energy consumption and decreasing local temperatures [52, 58]. Trees mainly
reduce local temperatures and heat index by both shading (which decreases the
direct incoming net radiation from the sun) and transpiration (which transfers
the latent heat energy from the leaf to the atmosphere and in turn reduces
the amount of hot air trapped in its surroundings [56]). Both these factors
complement each other to enhance the cooling benefits of trees [56]. Further,
trees help in mitigating the urban heat island e↵ect (which leads to an air
temperature di↵erence as high as 10� C [56] in highly urbanized cities compared
to the rural or sub-urban surrounding). Thus, improving the perceived tolerance
of the citizens to the environment (Human Thermal Comfort) [56, 41].

However, urban trees are experiencing an ample amount of abiotic and biotic
stressors that are exacerbated due to climate change [53, 75, 30]. As a result,
their functionality, productivity, and survival are of increasing concern [98].
Trees with poor health cannot provide most of the aforementioned ecosystem
services [54, 57]. For instance, trees with low transpiration rates do not cool the
environment su�ciently and trees with low growth rate have reduced shading
e↵ect.

Greenery has been a high-maintenance asset because it is constantly changing
due to natural and human-induced stresses. Globally, the total cost of inspec-
tion, maintenance and settlement of tree damages is estimated to be more than
$2 trillion USD [101]. Large trees also yield higher maintenance costs [54], yet
compared to smaller trees, large trees can provide up to 8 times more ecosystem
benefits [73]. Nowadays, the health of trees can be inspected by arborists (a
tree expert) with good quality results, but usually at high costs, leading to an
assessment that has a low spatial and temporal resolution. However, in recent
years, a few technology-assisted screening methods have been developed to com-
plement inspection by arborists. Satellite-based imaging can cover large areas
although at a low spatial granularity [47], with data quality depending on the
availability of clear skies [47] and low-time resolution as satellites can revisit the
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same spot only at an interval of few days. Airborne sensing using Unmanned
Aerial Vehicles (UAVs) or aeroplanes leads to an increased spatial granularity
[47]; yet it involves high operational costs and is not suitable in highly urban-
ized environments due to aviation authority regulations. Further, both airborne
sensing and satellite imagery can only capture the overhead view of the tree can-
opy. As a result, vegetation elements such as green walls, short trees or shrubs
present under the tree canopy are missed [69] or even misinterpreted as part of
tree canopy [1].

Recently, several projects have investigated the use of low-cost technological
alternatives to monitor parameters of urban environment in cities; for instance,
using Google street view (GSV) images to detect the presence of trees such
as [68, 85], or using drive-by sensing to measure air pollution in an area [6].
These projects are set within the field of opportunistic sensing and are aimed at
developing platforms that can be deployed and operated without the need for
an established, expensive infrastructure and human operators.

Following on this trend and the critical need for managing and protecting
urban ecosystems, in this thesis, we will try to answer the following research
question: how can we measure terrestrially (from ground level) the health of
urban trees at a low cost and in an opportunistic fashion at a high spatial and
temporal resolution? In the process of answering this question, we will describe
the existing state of the art techniques for tree health assessment, identify the
research gaps and based on a comparative analysis, design a custom method
from scratch to measure tree health from the ground level in urban cities. The
method is then evaluated on a real-world dataset revealing several significant
relationships. We also hope that this work serves to inspire deeper collaborations
between environmental and computer scientists of the future to revolutionise the
field of greenery health monitoring.

1.1 Context

This research work was performed in collaboration with the Senseable City Lab
[19] located at Massachusetts Institute of Technology (MIT) along with the
Embedded and Networked systems group [2] at Technische Universiteit Delft
(TU Delft). The Senseable City lab deals with research at the interface of cities
and technology. An urban platform developed in the lab called CityScanner
[6] currently measures particulate matter, temperature and humidity in various
cities around the world (USA, Sweden, Kazakhstan) with a drive-by sensing
approach. Drive-by sensing is an approach where sensors are deployed on small
number of everyday vehicles like taxis and garbage trucks as shown in Figure
1.2. As the vehicle on which the sensor is mounted moves, the data for the
phenomenon being measured is collected. The number of devices needed to be
deployed to cover the entire city is also extremely small. For instance, it was
shown that just ten random taxis can capture data for one-third of Manhattan
streets in a single day using this approach in [76]. This allows drive-by sensing to
collect data at both high temporal and spatial resolution compared to stationary
and airborne sensing paradigms as show in Figure 1.1.

Considering the advantages of drive-by sensing and the low expected variab-
ility of tree health within a single day, the system developed in this work will
either be suitable to be deployed independently in a drive-by sensing paradigm
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Figure 1.1: Comparison of di↵erent sensing paradigms. Stationary
sensing is limited with respect to spatial resolution and airborne sens-
ing is limited with respect to temporal resolution (As shown in [76])

Figure 1.2: A CityScanner device (in white box) deployed on top of a
tuk-tuk in Stockholm [18]

similar to CityScanner or serve as an additional module to the existing City-
Scanner sensing devices or be suitable to be carried by humans in a citizen
science based paradigm.

1.2 Problem Statement

Monitoring, managing and protecting urban trees and greenery are essential for
developing climate adaptive cities of the future. As discussed earlier, the current
methods of monitoring urban trees include manual inspection by arborists and
remote sensing with satellites and UAVs. The inspection by arborists leads to
low spatio-temporal resolution of monitoring. Remote sensing based approaches
lead to inspections only from the overhead viewpoint and are susceptible to mis-
interpreting the vegetation elements present underneath the canopy. Further,
they are subjected to various other challenges for deployment in highly urban-
ised environments such as aviation authority regulations. The main aim of this
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Figure 1.3: An illustration of the challenges induced due to remote
sensing in highly urbanised environments. The smaller trees (or other
vegetation elements) underneath the larger trees are missed or mis-
represented using strictly overhead analysis by satellites, UAVs or
airborne sensing. In contrast, the arborist based approach has low
scalability. Drive-by sensing based approach can be a suitable altern-
ative.

work is to create a system to measure the health of urban trees terrestrially
at high temporal and spatial resolutions. To ensure wide scalability, the sys-
tem should be low cost and suitable for capturing data with as little human
intervention as possible or be completely autonomous.

1.2.1 Requirement analysis

A complete quantitative model for such a system does not exist and falls outside
the scope of this thesis, but the system can be evaluated on a few important
parameters which can serve as main requirements:

• Functional Requirements:

1. Mobile sensing: Recall from the previous section that the drive-by
sensing paradigm allows us to achieve both high temporal and spatial
resolution. Hence, the system should be suitable for this paradigm
by either being deployable on moving vehicles or being small enough
to be carried by humans as a citizen science project.

Our literature study directly led to the selection of technologies suit-
able for this approach and influenced the system design (see Section
2.2.5).

2. Data Privacy: The system should not send any privacy-invasive
data concerning a citizen or buildings to a centralised server. In
other words, the system should not store any uniquely identifiable
citizen or building information. This follows from GDPR (General
Data Protection Regulation) compliance in EU (European Union)
and EEA (European Economic Area).
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We fulfilled this in our system by processing all the data on the main
single board computer on the edge device (refer Sections 3.4 and 3.3).

• Non-functional Requirements:

1. Cost: The system should be as low cost as possible (less than $1000)
to make it widely accessible. In other words, the system should not
use very expensive sensors over $800 and should compensate for noise
and lower quality hardware sensing using software-based algorithms.

In our system, this was achieved using low-cost hardware and data
fusion from sensors on the edge device (refer Section 3.1.1).

2. Quality of Assessment: The performance of the system with re-
spect to ground truth is not the highest priority, but the ability of
the system to quantify the di↵erences amongst trees is the main pri-
ority. This follows naturally from the non-availability of terrestrial
tree health datasets with daily or monthly resolutions.

This is elaborated in depth in Section 4.2.

1.3 Research Contributions

The main goal of this thesis is to provide researchers with a method to measure
the health of trees terrestrially in a low cost opportunistic fashion. The main
research contributions of this thesis are three-fold:

1. Knowledge

1.1. A review and comparison of the existing state-of-the-art methods to
measure health of trees (refer Section 2.1). Further, we elaborate on
our experience of fusing two of these methods and deploying them in
a real world scenario (refer Sections 5.1.6 and 5.1.2).

2. Technology

2.1. Development of an autonomous system suitable to deployed on mov-
ing infrastructure or citizen science paradigms to measure health of
urban trees terrestrially in urban cities (refer Chapter 3).

2.2. In the process of developing this system, we developed a custom deep
learning model for instance segmentation of tree canopies (tree tops)
in RGN (red, green, near infrared) images with processing on the
edge (refer Section 3.4). This mask R-CNN based approach allowed
us to extract useful information from low resolution thermal images.

Deployment of this method on a large scale will contribute towards protecting
and managing nature e↵ectively for cities and municipalities around the world.

1.4 Thesis Structure

This thesis is structured as follows: in Chapter 2, we survey the state of the
art methods and briefly describe the preliminaries. This survey influences the
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choice of technology for our system design. Chapter 3 deals with the design
and implementation of our system. The data collection experiments performed
in Cambridge, USA and ground truth tree health datasets are also described
in this chapter. We analyse the data collected and evaluate the e↵ectiveness of
our method in Chapter 4. We extend the discussion of our results as well as
the e↵ectiveness of our method in Chapter 5 along with the challenges associ-
ated with our method. The areas of future work are also identified from these
challenges. Finally, we conclude the thesis in Chapter 6.
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Chapter 2

Problem Background and

Preliminaries

This chapter provides background information as well as current state of the
art technologies in the context of tree health monitoring in Sections 2.1 and 2.2.
A comparison between these technologies is performed and a research gap is
identified based on this. This is followed by Sections 2.3 and 2.4 which give an
overview of metrics and brief technological theory that will serve as the basis
for the upcoming chapters.

2.1 Monitoring the health of urban greenery

Like humans, trees have several attributes or parameters that can be monitored
to check for illnesses. For instance, just like the human body temperature (at-
tribute) is used to detect health problems which might be the result of an un-
derlying illness; similarly, the canopy (tree top) temperature of trees is used to
detect a problem which might be the result of water stress (underlying illness).
This section aims to elaborate the state of the art methodologies to measure
health of trees as well as to identify the attributes related to health that can be
captured by these methodologies. We also highlight the existing research gaps
and discuss the design choices for the development of our system.

Materials and Methods. All the works perused were found by performing
a query search on Google Scholar and Web of Science. This was carried out
between June 2021 and February 2022. The keywords were tree, tree health,
vegetation health, vegetation index, mapping, monitoring, inspection, methods,
techniques, sensing, sensor, mobile, thermal, infrared, thermography, drive-by,
vehicle, vehicular sensor network. The keywords were combined with ”AND”
and ”OR” operations as well as the use of brackets (”()”). Amongst the results
generated, the abstracts of the works were read to select relevant papers which
were further analysed. The reference list of relevant works was also taken into
account and repeated references were also examined. Works older than the year
2000 were excluded from the study. After this process, we retained sixty-nine
papers that were read in depth. Later, nine papers were found to be irrelevant
in the specific context of the problem and were excluded. Each paper was
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annotated with relevant interesting parts being digitally highlighted for later
analysis.

2.2 Inspection Strategies for Greenery health

In this section, we first give an overview of current manual methods used to
determine greenery health and then discuss some of the emerging sensing tech-
niques for the measurement of tree health. These emerging approaches are
largely based on imaging based methods. The aim in these methods is to gener-
ate and detect a representation of single or multiple attributes of a tree such as
chlorophyll, canopy temperature, water transpiration etc. Herewith, each ap-
proach was further analysed to critically to determine the extent of tree health
attributes measured by it.

Each of the methods reviewed is classified based on the primary and secondary
sensors used and is summarized briefly in Table 2.2 and 2.3.

2.2.1 Manual Inspection Techniques

In general, arborists measure tree health firstly by visual inspection. However,
visual inspection does not provide su�cient information about the presence of
trees’ damages and their extent. For instance, external symptoms of decay may
be absent even in the presence of internal decay [67]. This in turn may lead
to delayed action when the tree has already reached its terminal stages and in
order to avoid disease spread to other parts or trees [35]. Hence, in order to
verify the health and provide complete information about the extent of damage
in trees, visual inspection is sometimes combined with other manual inspection
methods like electrical resistance (involves calculating voltage di↵erence by at-
taching electrodes and passing electric current through the trunk) or destructive
instruments like increment borers (a wooden core from the tree is extracted and
analysed).

These manual inspection methods can be broadly classified into invasive or
non invasive categories and might have screening, diagnostic or evaluation pur-
poses [67] [92]. Invasive methods require drilling and penetration in the sapwood
(living wood), thus creating an entry for pathogens or altering the structural
integrity of. On the other hand, non-invasive methods do not need deep pen-
etration into the sapwood. However, both invasive and non-invasive methods
require intensive manual human labour with low spatial scalability as the ana-
lysis is done one tree at a time. Overall, the general rule is to start with the least
damage causing method for screening the health of trees such as stress wave ve-
locity [92] and then apply a more aggressive technique such as boroscope to get
more information about the damage or decay [78].

Currently, various manual inspection methods exist and they are summarised
based in Table 2.1. More details can be found in References [92], [67] and [51].
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Method Property
Measured

Quality
of Assess-
ment

Cost* Level of in-
vasiveness

Increment
borer

Visual in-
spection

Low $ Invasive

Boroscope Internal
visual in-
spection
from inside

Moderate $$ Invasive

Resist-o-
graph

Penetration
resistance

Moderate $$ Invasive

Shigometer Single probe
electrical
resistivity

Moderate $ Invasive

Fractometer Strength and
sti↵ness

Moderate $ Invasive

Stress
wave velo-
city

Single path
acoustic
wave velo-
city

Low $$ Non-Invasive

Electrical
resistance

Multi-probe
electrical
resistivity

Moderate $$ Non-Invasive

Stress
wave tomo-
graphy

Multi-path
acoustic
wave velo-
city

High $$$ Non-Invasive

Electro-
magnetic
tomo-
graphy

Electro-
magentic
wave permit-
tivity

High $$$ Non-Invasive

Nuclear
magnetic
resonance
(NMR)

Magnetic
property

High $$$$$ Non-Invasive

Electronic
nose

Odour Low $$ Non-Invasive

Gamma-
ray com-
puted
Tomo-
graphy

Gamma ray
transmissiv-
ity

High $$$$$ Non-Invasive

Table 2.1: Summary of manual techniques for detecting tree damage
(* refers to relative cost where $ is lowest cost and $$$$$ is highest
)
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2.2.2 Embedded Sensors

Embedded methods involves the use of static sensors which are directly attached
to the trees or are placed near the trees to measure a property at regular in-
tervals. Usually, they generate data at high temporal resolution with little or
no human labour involved. The property measured by these methods can vary
from detection of sudden vibrations to measure of water uptake and transpir-
ation. Potamitis et al. [79] explores the use of an accelorometer-based sensor
which is attached to the tree and constantly monitors for the presence of move-
ment of insects or larvae in the internal part of the tree by transmitting the
internal vibrations of the trunk. This approach is deemed to be cost-e�cient
as it reduces repeated visits by a human to examine the tree for presence of
insects at regular intervals. Shabandri et al. [86] uses various sensors to detect a
multitude of physical phenomenon such as sudden tree movements, availability
of enough sunlight, enough soil moisture etc and sends the gathered data to a
centralised server to shows real time alerts in an app. In [97] and [20], sensors
are installed in the surrounding of the tree which are used as input features for
developing a machine learning based algorithm to classify between healthy and
unhealthy trees. In both these works, various features such as air temperature,
humidity, soil humidity and soil acidity are fed specifically into a radial basis
function based neural network in case of [97] and logistic regression in case of
[20]. In the follow-up work [94], the same approach is extended by transferring
the sensor data to a centralised server using NB-IoT. In a similar approach, Wu
et al. [101] use the bifurcation of features into static and dynamic categories
and feed them to a neural network to output a new index namely Urban Tree
Health Index (UTHI). The static features are composed of parameters such as
tree species, age, rooting area etc. whereas dynamic features consists of para-
meters such as air temperature, air humidity, soil moisture, tilt angle etc. The
dynamic features are fed into a recurrent based neural network (RNN) layer and
the static features are fused with the output of the RNN into fully connected
neural network layers. In all these works [97] [20] [94] [101], the ground truth
tree health data is obtained using manual inspection. In other works, Borges
et al. [35] propose an Electrical Impedance Spectroscopy (EIS system) to assess
the physiological stress in the trees. In this work, a pair of electrodes are placed
in the trunk of the trees at diametric positions and an alternating current or
a voltage with varying frequencies is passed and the resulting impedances are
measured. It is found that there is a strong correlation with the ratio of im-
pedances at predefined frequencies with the physiological stress in the trees. In
order to measure tree growth, dendrometers can also be used [61] which can
detect long term seasonal growth patterns, daily cycles of water uptake and
shorter patterns like swelling after rainfall and subsequent drying [45, 83]. Fur-
ther, these dendrometers can be combined with sap flow sensors to estimate
both transpiration as well as hydration at tree level and detect early signs of
tree mortality [80]. More details can also be found in [89] where a review of
various static sensors used to measure tree health is also given. In general, all
these methods require the installation of a sensor either on or near the trees.
This leads to a high cost of deployment on a per tree basis with the benefits of
reduced human labour thereafter. Further, with the development of new types
of sensors, new tree properties can be measured in future.

10



W
o
rk

s
P
ri
m
a
ry

S
e
n
so

rs
U
se

d
A
u
x
il
la
ry

S
e
n
so

rs
In

sp
e
ct
io
n

L
e
v
e
l

M
e
tr
ic

C
o
m
p
u
te

d
D
e
p
lo
y
m
e
n
t
T
y
p
e

R
e
a
l

W
o
rl
d

E
v
a
lu
-

a
ti
o
n

[3
8
]
a
n
d

[3
9
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

C
o
o
l
z
o
n
e
s

H
a
n
d
h
e
ld

o
v
e
r

2
0
0
0

t
r
e
e
s

s
e
le

c
t
e
d

o
v
e
r

1
0

y
e
a
r

[7
8
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

T
e
m

p
e
r
a
t
u
r
e

g
r
a
d
ie

n
t
,

c
o
o
l
z
o
n
e
s

H
a
n
d
h
e
ld

2
s
a
m

p
le

t
r
e
e
s

[8
7
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
I
R

m
o
d
ifi

e
d

R
G

B

C
a
m

e
r
a
,
L
iD

A
R

M
a
n
u
a
l

t
r
e
e

t
e
m

p
e
r
a
t
u
r
e

r
is

e

a
n
d

d
is

e
a
s
e

p
r
o
g
r
e
s
s

U
A
V

4
0

s
a
m

p
le

t
r
e
e
s

[7
1
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

t
r
e
e

t
e
m

p
e
r
a
t
u
r
e

r
is

e

a
n
d

d
is

e
a
s
e

p
r
o
g
r
e
s
s

H
a
n
d
h
e
ld

1
5

s
a
m

p
le

t
r
e
e
s

[3
6
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

T
e
m

p
e
r
a
t
u
r
e

g
r
a
d
ie

n
t

(
I
n
t
e
r
n
a
l
D

e
fe

c
t
s
)

H
a
n
d
h
e
ld

4
8

t
r
e
e
s

[8
8
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

T
e
m

p
e
r
a
t
u
r
e

g
r
a
d
ie

n
t

(
I
n
t
e
r
n
a
l
D

e
fe

c
t
s
)

H
a
n
d
h
e
ld

2
0

s
a
m

p
le

t
r
e
e
s

[4
7
]

T
h
e
r
m

a
l
C

a
m

e
r
a

V
is

ib
le

C
a
m

e
r
a

A
u
t
o
m

a
t
ic

T
W

S
I

fr
o
m

t
h
e
r
m

a
l

d
a
t
a
,

L
A

I
e

fr
o
m

R
G

B

d
a
t
a

C
a
r

1
7
2

t
r
e
e
s

o
n

2
.5

2
k
m

t
r
e
e
s

[7
4
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

M
a
n
u
a
l

C
W

S
I

H
a
n
d
h
e
ld

5
s
a
m

p
le

t
r
e
e
s

[6
0
]
a
n
d

[3
2
]

T
h
e
r
m

a
l
C

a
m

e
r
a

V
is

ib
le

C
a
m

e
r
a

A
u
t
o
m

a
t
ic

C
a
n
o
p
y

T
e
m

p
e
r
a
t
u
r
e

(
W

a
t
e
r

S
t
r
e
s
s
)

H
a
n
d
h
e
ld

4
4

im
a
g
e
s

(
t
r
e
e
s

n
o
t

m
e
n
t
io

n
e
d
)

[6
4
]

N
D

V
I

s
e
n
s
o
r
,

I
R

t
h
e
r
-

m
o
m

e
t
e
r
,

T
h
e
r
m

a
l

C
a
m

e
r
a
,

v
is

-

ib
le

c
a
m

e
r
a
,

m
u
lt

is
p
e
c
-

t
r
a
l
c
a
m

e
r
a

M
a
n
u
a
l

N
D

V
I
,

c
a
n
o
p
y

t
e
m

p
e
r
-

a
t
u
r
e

c
o
r
r
e
la

t
io

n

C
a
r

2
0

s
a
m

p
le

t
r
e
e
s

[6
5
]

T
h
e
r
m

a
l
C

a
m

e
r
a

N
A

A
u
t
o
m

a
t
ic

D
e
t
e
c
t
io

n
o
f

s
t
r
u
c
t
u
r
a
l

d
e
fe

c
t

in
t
r
u
n
k

H
a
n
d
h
e
ld

8
s
a
m

p
le

t
r
e
e
s

[3
3
]
a
n
d

[9
3
]

N
D

V
I

S
e
n
s
o
r
s

L
iD

A
R

A
u
t
o
m

a
t
ic

N
D

V
I

v
a
lu

e
M

o
b
il
e

R
o
b
o
t

L
a
b

e
n
v
ir

o
n
m

e
n
t

[4
6
]

A
ir

b
o
r
n
e

H
y
p
e
r
s
p
e
c
t
r
a
l

c
a
m

e
r
a

A
ir

b
r
o
n
e

L
iD

A
R

A
u
t
o
m

a
t
ic

N
D

V
I

v
a
lu

e
S
t
a
t
io

n
a
r
y

1
7
5

t
r
e
e
s
,

s
e
t
u
p

a
m

-

b
ig

u
o
u
s

[9
5
]

R
G

B
C

a
m

e
r
a

N
A

A
u
t
o
m

a
t
ic

E
s
t
im

a
t
e
d

N
D

V
I

v
a
lu

e

a
ft

e
r

m
o
d
if
y
in

g
c
a
m

e
r
a

H
a
n
d
h
e
ld

c
o
n
t
r
o
ll
e
d

in
d
o
o
r

s
e
t
u
p

[2
7
]

C
u
s
t
o
m

H
y
p
e
r
s
p
e
c
t
r
a
l

c
a
m

e
r
a

N
A

A
u
t
o
m

a
t
ic

N
D

V
I
,
N

D
R

E
,
L
A

I
H

a
n
d
h
e
ld

N
A

[6
3
]

S
a
t
e
ll
it

e
b
a
s
e
d

N
D

V
I

S
a
t
e
ll
it

e
b
a
s
e
d

L
S
T

M
a
n
u
a
l

R
e
la

t
io

n
N

D
V

I
a
n
d

L
S
T

S
a
t
e
ll
it

e
E

n
t
ir

e
M

o
n
g
o
li
a
:

C
o
a
r
s
e

R
e
s
o
lu

t
io

n

[1
0
3
]

M
u
lt

is
p
e
c
t
r
a
l

R
e
m

o
t
e

S
e
n
s
in

g
D

a
t
a

N
A

M
a
n
u
a
l

N
D

V
I

N
A

8
9
6
2

T
r
e
e
s

S
a
t
e
ll
it

e
b
a
s
e
d

N
D

V
I

S
a
t
e
ll
it

e
b
a
s
e
d

L
S
T

M
a
n
u
a
l

R
e
la

t
io

n
N

D
V

I
a
n
d

L
S
T

S
a
t
e
ll
it

e
E

n
t
ir

e
M

o
n
g
o
li
a
:

C
o
a
r
s
e

R
e
s
o
lu

t
io

n

[4
4
]

A
ir

b
o
r
n
e

H
y
p
e
r
s
p
e
c
t
r
a
l

C
a
m

e
r
a

A
ir

b
o
r
n
e

L
iD

A
R

A
u
t
o
m

a
t
ic

L
A

I
a
n
d

N
D

V
I

A
ir

p
la

n
e

1
1
8

t
r
e
e
s

T
ab

le
2.

2:
A

su
m

m
a
ry

o
f
em

er
g
in

g
a
p
p
ro

a
ch

es
a
n
a
ly

se
d

fo
r

d
et

ec
ti

n
g

tr
ee

h
ea

lt
h

11



W
o
rk

s
P
ri
m
a
ry

S
e
n
so

rs
U
se

d
A
u
x
il
la
ry

S
e
n
so

rs
In

sp
e
ct
io
n

L
e
v
e
l

M
e
tr
ic

C
o
m
p
u
te

d
D
e
p
lo
y
m
e
n
t
T
y
p
e

R
e
a
l
W

o
rl
d

E
v
a
l-

u
a
ti
o
n

[1
0
2
]

L
iD

A
R

:
V

e
h
ic

le

b
o
r
n
e

a
n
d

a
ir

b
o
r
n
e

I
n
fr

a
r
e
d

C
a
m

e
r
a

A
u
t
o
m

a
t
ic

C
u
s
t
o
m

h
e
a
lt

h
c
la

s
-

s
ifi

c
a
t
io

n
in

4
le

v
e
ls

H
e
li
c
o
p
t
e
r

a
n
d

C
a
r

2
2
0

t
r
e
e
s

[8
4
]

L
iD

A
R

N
A

A
u
t
o
m

a
t
ic

L
A

I
H

a
n
d
h
e
ld

3
s
a
m

p
le

t
r
e
e
s

[8
1
]

A
r
r
a
y

o
f

fi
x
e
d

li
g
h
t

s
e
n
s
o
r
s

S
m

a
r
t
p
h
o
n
e

A
u
t
o
m

a
t
ic

L
A

I
S
t
a
t
io

n
a
r
y
,
H

a
n
d
h
e
ld

E
x
a
c
t

n
u
m

b
e
r

n
o
t

m
e
n
t
io

n
e
d

[3
]

G
S
V

I
m

a
g
e
s

N
A

A
u
t
o
m

a
t
ic

G
r
e
e
n
e
r
y

V
ie

w
I
n
-

d
e
x

(
N

o
h
e
a
lt

h
a
s
-

s
e
s
s
m

e
n
t
)

M
o
b
il
e

N
A

[9
6
]

B
a
id

u
S
t
r
e
e
t

V
ie

w

I
m

a
g
e
s

N
A

A
u
t
o
m

a
t
ic

P
a
n
o
r
a
m

ic
G

r
e
e
n
e
r
y

V
ie

w
I
n
d
e
x

(
N

o

h
e
a
lt

h
a
s
s
e
s
s
m

e
n
t
)

M
o
b
il
e

S
a
n
y
a
,
C

h
in

a

[7
0
]

G
S
V

I
m

a
g
e
s

N
A

A
u
t
o
m

a
t
ic

S
h
a
d
in

g
e
↵
e
c
t

o
f

t
r
e
e
s

(
N

o
h
e
a
lt

h

a
s
s
e
s
s
m

e
n
t
)

M
o
b
il
e

D
o
w

n
t
o
w

n
a
r
e
a

o
f

B
o
s
t
o
n

[7
9
]

A
c
c
e
le

r
o
m

e
t
e
r

b
a
s
e
d

s
e
n
s
o
r

d
e
t
e
c
t
in

g
v
i-

b
r
a
t
io

n
s

N
A

M
a
n
u
a
l

P
r
e
s
e
n
c
e

o
f
in

s
e
c
t
s

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

t
o

t
r
e
e

1
1

s
a
m

p
le

t
r
e
e
s

[3
5
]

e
le

c
t
r
ic

a
l

im
p
e
d
a
n
c
e

s
p
e
c
t
r
o
s
c
o
p
y

N
A

M
a
n
u
a
l

P
r
e
s
e
n
c
e

o
f

d
is

e
a
s
e

a
n
d

h
y
d
r
a
t
io

n
s
t
r
e
s
s

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

t
o

t
r
e
e

2
4

s
a
m

p
le

t
r
e
e
s

[8
6
]

T
e
m

p
e
r
a
t
u
r
e
,

m
o
is

-

t
u
r
e
,
c
a
r
b
o
n

s
e
n
s
o
r

A
ir

q
u
a
li
t
y

s
e
n
s
o
r
,

li
g
h
t
-
d
e
p
e
n
d
e
n
t

r
e
s
is

t
o
r
,

v
ib

r
a
t
io

n

s
e
n
s
o
r

M
a
n
u
a
l

R
e
a
l

t
im

e
r
e
a
d
in

g
s

fo
r

a
le

r
t
s

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

t
o

t
r
e
e

N
A

[9
7
,
2
0
]

S
e
n
s
o
r
s

t
o

m
e
a
s
u
r
e

s
u
r
r
o
u
n
d
in

g
a
m

b
ie

n
t

fe
a
t
u
r
e
s

N
A

A
u
t
o
m

a
t
ic

B
in

a
r
y

h
e
a
lt

h
c
la

s
s
i-

fi
c
a
t
io

n

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

a
r
o
u
n
d

t
h
e

t
r
e
e

1
0
0

a
n
d

1
4

s
a
m

p
le

t
r
e
e
s

r
e
s
p
e
c
t
iv

e
ly

[2
0
,
9
4
]

S
e
n
s
o
r
s

t
o

m
e
a
s
u
r
e

s
u
r
r
o
u
n
d
in

g
a
m

b
ie

n
t

fe
a
t
u
r
e
s

N
A

A
u
t
o
m

a
t
ic

B
in

a
r
y

h
e
a
lt

h
c
la

s
s
i-

fi
c
a
t
io

n

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

a
r
o
u
n
d

t
h
e

t
r
e
e

1
4

a
n
d

1
5

s
a
m

p
le

t
r
e
e
s

r
e
s
p
e
c
t
iv

e
ly

[1
0
1
]

S
e
n
s
o
r
s

t
o

m
e
a
s
u
r
e

s
u
r
r
o
u
n
d
in

g
a
m

b
ie

n
t

fe
a
t
u
r
e
s

I
n
fo

r
m

a
t
io

n
li
k
e

lo
c
-

a
t
io

n
,

a
g
e
,

s
it

e
c
o
n
-

d
it

io
n

e
t
c
.

A
u
t
o
m

a
t
ic

F
iv

e
p
o
in

t
h
e
a
lt

h

c
la

s
s
ifi

c
a
t
io

n

S
t
a
t
io

n
a
r
y
,
A

t
t
a
c
h
e
d

a
r
o
u
n
d

t
h
e

t
r
e
e

1
4
1
8

t
r
e
e
s

T
ab

le
2.

3:
C

o
n
td

:
A

su
m

m
a
ry

o
f
em

er
g
in

g
a
p
p
ro

a
ch

es
a
n
a
ly

se
d

fo
r

d
et

ec
ti

n
g

tr
ee

h
ea

lt
h

12



2.2.3 Imaging Based Methods

This section goes over imaging based techniques to measure tree health. We
go over thermal imaging, hyper spectral imaging and LiDAR based methods.
The works are classified into each section based on the primary sensor used.
A subset of the works reviewed were found to use a a combination of multiple
approaches and they are classified as multi-sensory methods. The methods in
this section allow analysis of multiple trees using a single sensing equipment.
This makes them suitable for low-cost sensing at the expense of varying quality
of sensing. In most of the works surveyed, it is observed that the data analysis
is usually done manually and deterministically by a human.

Thermal Imaging

Thermal imaging based on IR (InfraRed) radiation emitted from biological ma-
terials is one of the most emerging technological approaches for tree health
monitoring. It has been mainly used for either detecting cavities in tree trunks
or measuring the water stress in trees.

Early works in this field [38, 39] relied on experts manually reviewing thermal
images to identify conditions such as cavities and zones of decay in the bark
or branches of a tree (wooden part). The areas with cavities appear cooler
in thermal footprint than the rest of the bark surface. However, the extent
as well the cause of the decay can hardly be estimated using thermal images
alone. Moreover, to provide reliable results, the tree surface has to be shielded
from direct sunlight since sun-exposed part may show higher temperature in the
thermal images; hiding potential damages. Further, since water absorbs the IR
radiation, the part which is examined cannot be wet. Moreover, the surface of
the tree being examined has to be free of moss or other vegetation.

Leong et al. [67] argued that while thermal imaging is a good technique to
screen trees for possible damage (binary classification), more advanced tech-
niques are needed for an accurate health inspection. A recent review on thermal
imaging techniques for tree health assessment by Vidal and Pitarma [92] found
that there is no generalised temperature gradient pattern in terms of shape and
size, along the bark to detect damage across various species of trees. Although
the area near a deteriorated tissue might have a lower temperature, di↵erent
conditions can generate di↵erent temperature gradients along the trunk of two
di↵erent trees even if they belong to the same species. The main works analysed
by the authors are also summarised concisely in Figure A.6 in Appendix (As
shown from [92]).

Pitarma et al. [78] give an overview of the intricacies as well as the complexities
of thermal imaging to detect the health of branches and the trunk taking into
account the atmospheric temperature, the exposure to sun and the thermal
environment of observations. The method used in this work again relies on
the temperature di↵erences between various parts of the tree. Specifically, it
is illustrated that even if a part of the tree is exposed to sun, inferences can
still be made about the health of a branch by comparing its temperature to
atmospheric temperature. However, these inferences require expert knowledge.

On a separate note, while most of the previous works focus on identifying
colder parts in the tree’s trunk as an indicator of poor health, others [87][71]
argue that the early onset of diseases in trees is in-turn associated with temper-
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ature increase. For instance, Smigaj et al. [87] used a thermal camera mounted
on a UAV to detect sub-degree temperature rise in the leaf and canopy tem-
perature of trees a↵ected by red band needle blight ; a common disease. The
infection level of each tree was manually assessed at ground level for valida-
tion. Similarly, Majdak et al. [71] found that infected trees have higher trunk
temperature than un-infected trees and the di↵erences are more noticeable on
warm and sunny days than on cold and cloudy days. In a study that leveraged a
drive-by sensing approach, Fuentes et al. [47] mounted both thermal and visible
imaging cameras on top of moving vehicles to monitor the green infrastructure
of Melbourne, Australia, at a tree-by-tree scale. The tree growth was estimated
in terms of Leaf Area Index (LAI) and Tree Water Stress Index (TWSI). The
LAI was measured by applying computer vision algorithms to the RGB images
of tree canopy to segment leaves from the rest of the environment. The TWSI
was measured using the canopy temperatures obtained by the thermal camera.
The approach was also deemed privacy preserving as the cameras were mounted
in an upward looking fashion facing towards the sky and the images are cap-
tured above the pedestrian level. Other work employing thermal cameras for
water stress detection include [74], [88] and [64].

Finally, Kwok et al. [65] proposed a machine learning based method to auto-
matically extract abnormal tree parts potentially containing cavities from thermal
images installed at static positions. The method used k-mean clustering and
Sobel gradient filter to identify potential cavities and the evaluation was per-
formed on a dataset specifically created for this study and consisted of four tree
species along with manual verification by an arborist. Similarly, Jiménez-Bello
et al. [60] developed an automated method to calculate plant water stress by
using a fusion of RGB (visible) and thermal imaging. It was found that the
type of tree under examination had an important influence in determining the
correlation with ground truth water stress results. Interestingly the process was
fully automated using unsupervised classification in RGB images. In the follow
study [32], further intricacies involved in usage of thermal imaging to detect
water stress are enlightened. It was seen that the size of leaves may have a
significant e↵ect on the performance of thermal imaging. Futher, the absolute
values of CWSI and canopy temperature do not yield accurate correlation with
actual water stress and thus, relative comparison with control trees is required.
On a seperate note, Burcham et al. [36] suggest that thermal imaging does not
provide accurate results about the internal condition of trees containing decay
and cavities and can only be used to detect superficial bark surface damage
damage like detached bark or mechanical damage.

Multispectral/Hyperspectral Imaging

In hyerspectral and multispectral imaging, various bands in the electromagnetic
spectrum are captured which may or may not be in the visible band range. This
captured data is then used to calculate various vegetation indexes, the most
popular of which is NDVI. NDVI stands for Normalized Di↵erence Vegetation
Index. It relies on the ratio between visible red band and the near infrared
(NIR) signals reflected by the vegetation and is widely used for vegetation health
assessment. The NDVI index relies on the property of the chlorophyll present
in the leaves which absorb red light and the cell structure of the leaves which
reflects NIR. Higher NDVI values symbolise healthy photosynthetic capacity
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while lower values symbolise poor health or presence of stress in trees or absence
of vegetation. This technique, while already being measured using satellites and
drones can also be measured terrestrially to give an estimate of tree health. This
terrestrial measurement can be done using either active NDVI sensors which
have their own energy source or passive NDVI sensors such as hyperspectral
or multispectral cameras. Both of these types of sensors are readily available
in the market from various manufacturers [100] [4]. Huang et al. [59] give a
comprehensive review on the e↵ectiveness of NDVI as a measure of the health
of vegetation, but they also argue for the need of calibration of NDVI sensors.
Further, Bahe et al. [31] suggest evidence that NDVI values can give accurate
stress detection results when comparing data within one species and not across
diverse species.

In recent works, Bietresato et al. [33] uses a mobile robot with NDVI and
LiDAR sensors to detect health of five plants in a controlled environment.
LiDAR is used to model the plant volume whereas NVDI sensors by OptRx
[100] (popular in literature) are used to measure plant health and discriminate
between vegetation, flower pots and background. The preceding work is contin-
ued in [93] and the vegetation thickness and NDVI index are combined to give
a diagnostic matrix to give region wise vegetation index map. The approach of
combining NVDI and LiDAR is also used in [46] where individual tree are iden-
tified from point clouds using both hyperspectral and depth information. Then,
for health analysis, geometric parameters of the trees such as height, inclina-
tion and crown diameter are determined using LiDAR data and physiological
parameters to be determined from hyper-spectral data are left to be explored
in a further study. In [95], in order to reduce the cost associated with NDVI
sensors, the NDVI index is calculated by modifying a regular RGB camera to
remove the NIR rejection filters. In [27], the authors provide the design and
implementation of a handheld generic sensor that can configured to give various
characteristics of a plant such as NDVI, LAI and nutrient requirements. The
maximum distance of the target under measurement from the sensor in this
study is 4m.

As discussed earlier, NDVI is also measured using satellites or other airborne
approaches, e.g. employing aeroplanes or UAVs. In [63], the NDVI index calcu-
lated using satellite data is correlated with Land Surface Temperature (LST).
Degerickx et al. [44] utilised LiDAR data for individual tree segmentation and
hyperspectral imaging from an aeroplane to detect tree health. The authors in
[103] used multispectral remote sensing data to measure health of trees at both
pixel level and whole tree level. Lausch et al. [66] gave an overview of various
remote sensing strategies available for sensing forest health and advocate the
fusion of terrestrial data along with remote sensing based approach to achieve
a better health assessment.

LiDAR

LiDAR stands for Light Detection and and Ranging. It is used to determine
variable distances to an object under consideration or contour of surfaces by
targeting it with a pulsed laser and measuring the time for the reflected light
to return to the receiver. In [72], the authors used a mobile LiDAR system in
a two-stage process. In the first stage, the species of the tree is identified by
first determining if the tree is coniferous or deciduous and then examining the
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branching behaviour. In the second stage, the health of the tree is calculated by
analysing the point density of the tree which involves an estimation of the leaves
surrounding each branch in the tree. Wu et al. [102] compare LiDAR based
airborne laser scanning (ALS) and LiDAR ground based mobile laser scanning
(MLS) for tree detection, tree species classification and vitality classification.
It is found that while ALS in general, gives better performance to MLS, the
combination of both ALS and MLS surpasses the performance achieved by only
either of them. For tree health alone, more useful features were extracted from
MLS compared to ALS. Degerickx et al. [44] derive Leaf Area Index (LAI) for
tree health quantification using laser penetration metric of LiDAR. It is found
that specifically for LAI, LiDAR performed better than hyperspectral data.
Similarly, [84] also uses low cost LiDAR sensor ($129) for ground based LAI
measurement to quantify health of oil palm trees using intensity data.

Multi-sensory Approaches

The works discussed in this section use a combination of previously discussed
methods. This enables them to measure more than one parameter related to
tree health than is possible with a single sensor or overcome the drawbacks of a
single sensor.

Kim and Glenn [64] used a multi modal system comprising of thermal cam-
era, IR thermometers, multi spectral camera and NDVI sensors to detect plant
water stress. The use of multiple sensors is based on the hypothesis that water
stress causes: 1. leaf temperature changes which are identified using thermal
camera and IR thermometers 2. leaf color changes which are identified using
multispectral camera and NDVI sensors. The sensors were mounted on a mobile
vehicle and evaluation was performed in a controlled environment consisting of
irrigated and non irrigated trees. It was found that the array IR thermometer
can serve as low cost alternative to thermal camera, at the expense of bulkiness.
Further, the NDVI sensor was found to perform better than the multispectral
camera to distinguish between dry and irrigated trees. Qu [81] proposed two
methods to detect tree health based on the leaf area index (LAI). The first ap-
proach uses fixed light sensors installed above and below the canopy to measure
received and transmitted solar radiation and quantify the LAI. The second ap-
proach uses handheld device containing two smartphones which determine the
LAI by applying object segmentation on the captured image. Both the methods
were evaluated in a controlled environment and the measured LAI values were
compared against a commercially available handheld device (LAI-2000) which
is used to measure LAI.

Further, Google and Baidu panoramic street view images have also been used
to quantify the extent of urban greenery. Li et al. [70] quantified the shading
e↵ect of urban trees using panoramic google street view (GSV) images. In [104],
the authors used custom hemispherical view panoramic photos and employed
image processing on the resulting photos to give a quantification of urban green-
ery at pedestrian level. The resulting quantification of urban greenery called
panoramic green cover index (PGCI) was also correlated with land surface tem-
peratures and NDVI of the urban areas. A similar approach is used in [3] and
[96] where the authors used panoramic images from Google and Baidu respect-
ively. However, these street view based approaches have only been used to
quantify the spread of urban greenery rather than it’s health.
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2.2.4 Comparison

A comparison of the surveyed methods in terms of working mechanism, quality
of tree health assessment, cost (considering evaluation of multiple trees on cite-
wide scale) and level of invasiveness is shown in Table 2.4.

Approach Working
Mechanism

Quality of
Assesment

Cost* Level of in-
vasiveness

Manual
Inspection
Methods

Depends on
Method

Varying on
method, gen-
erally high

$$$$$ Depends on
the method

Static Em-
bedded
Sensors

Depends on
Method

Lower than
manual
methods

$$$ Depends on
method

NDVI Properties of
Chlorophyll

High quality
Quantitative
Value

$$ low

Thermal
Imaging

Cavities,
temperature
gradient and
water stress

Cavities,
temp. gradi-
ent: Mostly
Binary Clas-
sification,
Water Stress:
Quantitative
Value

$ low

LiDAR Uses laser
penetration
metrics for
parameters
like LAI and
leaf density

Low quality
quantitative
Value

$ to $$$ low

Street
view based
methods

Image pro-
cessing to
detect green-
ery

No health
assesment,
only extent of
greenery

$ low

Remote
Sensing

Satellite Im-
agery

Top level
view only

$ low

Table 2.4: A comparison of approaches to analyse tree health
(* refers to relative cost where $ is the lowest cost and $$$$$ is the
highest cost for large-scale evaluation of multiple trees (> 50))

While manual methods like nuclear wave resonance or stress wave tomography
have the high quality of assessment, they are time-consuming and infeasible in
terms of cost for analysing each and every tree in the urban area. Further, the
amount of labour involved is also huge. Terrestrial static methods again lead to
high cost for analysing each and every tree due to sensors costs with the benefit
of reduced human labour. The quality of analysis is also lower than manual
methods. On the other hand, although infrared thermography has been used
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to compute TWSI [47] [74], most of the perused literature [92] [39] uses it for
detection of presence or absence of decay only (binary classification). NDVI
sensors give more quantitative information about the health of trees, however,
commercially available NDVI sensors (OptRx) are more expensive than thermal
cameras. Sometimes, the NDVI is also susceptible to reach the maximum value
due to the chlorophyll content representing peak greenness. Hence, any health
issue may become di�cult to detect until the problem progresses enough to
reduce the NDVI value from the peak maximum value [48]. LiDAR based de-
tection methods as discussed in [44] [84] are mostly used to calculate the Leaf
Area index (LAI) and canopy density. However, the LAI value varies with re-
spect to commercial handheld LAI measurement devices and canopy density
varies for di↵erent species. Street view based methods [70, 104, 3, 96] while
cost-e↵ective are only able to quantify the extent of urban greenery rather than
its health.

2.2.5 Research gaps and influence on design

From the literature surveyed above, it is clear that the manual inspection meth-
ods are infeasible for large-scale deployment due to both time and cost con-
straints. Further, some of them are invasive as discussed in Section 2.2.1. While,
satellite and airborne based remote sensing approaches can cover large areas but
with low resolution per pixel [47], they are only able to analyse the vegetation
from an overhead view. Further, the presence of background materials such
as grass or shrubs within the same pixel a↵ects the reliability of observations
[97]. In contrast, ground based sensing can look at vegetation elements in a
more holistic manner. Based on the emerging technologies perused, the use of
thermal imaging to analyse attributes of tree such as water stress index and
cavities in trees seemed promising and suitable for our problem statement. Also
recall from Section 2.2.3, hyperpectral/multispectral imaging can also generate
a number of vegetation indexes, the most popular of which is NDVI. Contra-
dictory studies were seen on the usage of LiDAR with some works such as [84]
claiming no increase in health detection performance with its addition.

It is seen that most of the works perused that measured tree health from
ground level except two [47] [64] used manual judgment and processing by hu-
mans on the data collected and employed handheld data collection. This makes
them ine�cacious to be deployed on large scale with data collection at regular
time intervals. For the two comparable related works [47] [64], it is found that
in [47], the authors only calculate the water stress index on a moving vehicle
without validating the same with any ground-truth dataset. Further, the ex-
periment was controlled by mounting the camera in an upward facing fashion
to only inspect tall trees. Whereas in [64], while the authors did use a ground
truth dataset for validation, the processing of both thermal and hyperspectral
images was performed manually using human intervention.

In essence, although there are ample works which have tried to measure
tree health from ground level (terrestrial), measuring this health autonomously
without human intervention and scaling it to be suitable for city-wide evalu-
ations is an open field of research. Given the current advances in the field of
computer vision and availability of low cost multispectral & thermal cameras
along with the proliferation of microcontrollers and single-board computers, we
employed a combination of these technologies in the developed system. We em-
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ployed traditional image processing techniques along with a custom computer
vision model to automatically generate the tree health attributes which was
later validated with a ground truth dataset.

2.3 Metrics (NDVI and CTD)

In this section, we will briefly discuss the two tree health metrics namely NDVI
(Normalised Di↵erence Vegetation Index) and CTD (Canopy Temperature Dif-
ference) used in this thesis. Each object in the physical world emits or reflects
electromagnetic (EM) radiation. The electromagnetic spectrum is the range
of frequencies of EM radiation. A visible imaging, thermal imaging or multis-
pectral imaging sensor is sensitive only to particular wavelengths of these EM
radiations. These captured wavelengths are then stacked over to form di↵erent
channels of a pixel and the combination of these pixels form an image. For the
context of our work, the information captured from di↵erent spectral bands is
used to measure two di↵erent attributes of tree health which are derived from
the specific technology (thermal and multispectral imaging) incorporated in the
system.

1. NDVI: The multispectral sensor used in our system captures spectral re-
flectance (radiation) of trees at di↵erent wavelengths or across di↵erent
bands, the details of which are elaborated in Chapter 3. Interestingly,
combining these radiations or reflectances from di↵erent spectral bands
mathematically leads to a Vegetation Index (VI). In literature, based on
the application, there exists various vegetation indices such as Green Nor-
malized Di↵erence Vegetation Index (GNDVI) or Normalized Di↵erence
Red Edge (NDRE) [26]. One of the most popular vegetation indexes used
to measure tree health is called Normalised Di↵erence Vegetation Index
(NDVI). Recall from Section 2.2.3, the properties of chlorophyll and leaf
cell structure in the trees on which NDVI is physically based on.

Mathematically, NDVI is calculated as:

NDV I =
NIR � Red

NIR + Red
, (2.1)

where NIR and Red are near-infrared reflectance and visible red relfect-
ance from the leaves of the tree respectively. As per (2.1), NDVI lies in
the range [-1,1] and higher values indicate higher photosynthetic activity
(or health of trees in our case). In case of calibrated NDVI values, 0.3 is
used as the cuto↵ to distinguish between vegetation and non-vegetation
elements.

2. CTD: The thermal imaging sensor used in our system can be used to
measure the tree canopy temperature. Similar to the various vegetation
indices, various thermal stress indices exist in literature [88]. Canopy
Temperature Di↵erence (CTD) is one of the most simplest of these indices.
CTD is based on the property of the leaf stomata closing under water
stress, thus decreasing the rate of transpiration and thereby, decreasing
the rate of cooling. This leads to an increase in canopy temperature and a
reduction of photosynthetic activity. This index has been found to have a
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high correlation with water stress in trees [88][32]. Mathematically, CTD
is calculated as:

CTD = Tcanopy � Tair, (2.2)

where Tcanopy and Tair are canopy temperature and air temperature re-
spectively. Well irrigated trees without water stress will have lower values
of CTD and trees under water stress have higher values of CTD (in hot
weather conditions).

2.4 Image Segmentation

Image segmentation is the task of segmenting objects of interest (parts of tree
canopy in our case) in an image by combining parts of objects together that
belong to the same label (or class). When performed using deep learning, it
can also be considered as a pixel-level classification problem. However, image
segmentation can also be performed using traditional deterministic image pro-
cessing algorithms like thresholding or watersheds. As shown in Section 3.3,
we used a combination of both traditional image processing and deep-learning
based techniques.

Image segmentation can be of two types depending on the complexity:

• Semantic Segmentation (Less complex): In this type of image segment-
ation, each pixel is classified into di↵erent objects without any di↵eren-
tiation between multiple instances of the same object. Hence, similar
objects are treated as a single label from the image level.

• Instance Segmentation (More complex): Here, each pixel is classified
into di↵erent objects while also recognising the di↵erent object instances.
Hence, each object instance is treated as a separate label from the image
level.

A visual demonstration of these two types of segmentation is shown in Figure
2.1.

2.4.1 IoU

The performance of image segmentation models is measured by a metric called
Intersection over Union (IoU).

Mathematically, IoU is calculated as:

IoU =
Area of Overlap between A and B (A \ B)

Area of Union between A and B (A [ B)
(2.3)

where A and B are predicted mask and ground truth mask (segmentation) for
an object instance in the image. IoU lies in the range [0,1] with 1 indicating per-
fecting overlapping segmentations (masks) and 0 indicating no overlap. Higher
the IoU, better is the model performance.

Usually, to measure the performance of image segmentation models, the aver-
age precision (AP) is calculated at various IoU. This average precision is actually
calculated by computing the area under the precision-recall curve for each ob-
ject label in the image and then taking the mean for each label across all the
images in the dataset [9].
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Figure 2.1: Di↵erence between Semantic and Instance Segmentation:
In the left image, all instances of humans (object) are classified with
single label namely person. In the right image, each instance of object
(human) is classified with separate labels

2.4.2 Mask R-CNN

Mask R-CNN is a state-of-the-art deep learning model to perform instance seg-
mentation. It is an extension of Faster R-CNN with the addition of another
branch for predicting the object mask (region of interest) in parallel with the
existing branch for bounding box recognition in Faster R-CNN [55]. Faster
R-CNN is an enhancement over Fast R-CNN which builds on top of R-CNN.
A detailed explanation of the working of Mask R-CNN is outside the scope of
this work because it involves the understanding of R-CNN [50], Fast R-CNN
[49] and Faster R-CNN [82] in that order. Further, this work does not propose
any modifications to the Mask R-CNN architecture, rather uses it to extract
useful information from low resolution thermal imaging sensor and identify tree
canopies in the image.

Mask R-CNN is a computationally heavy model compared to object detection
and semantic segmentation models both in terms of training and inference. In
our system, due to data privacy requirements and the need for detection of
multiple trees in an image, the custom Mask R-CNN model was optimised to
run on the edge device.

2.4.3 Transfer Learning

Transfer learning is a technique in deep learning where a model pre-trained on a
large dataset related to solving one task is used as the starting point for solving
another related task. The main advantage of using transfer learning to solve the
another related task is, it allows to train models with good performance even
with very small datasets as well as saves time and resources compared to train-
ing a model from scratch. For instance, in the field of computer vision, there
are large scale open-source datasets like CIFAR-10, COCO and ImageNet con-
taining thousands to millions of images. Employing transfer learning for image
segmentation means that we can use a model pre-trained for image segment-
ation on large scale dataset like COCO (which does not have object labels of
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Figure 2.2: A model (Model 1) trained to classify cats and dogs can
be reused and used as starting point to develop a model (Model 2)
to classify cows and horses. This is because Model 1 already contains
layers to detect low level features (feature extractors) like eyes, nose,
ears etc. and these low level feature extractors can be reused in
Model 2 without any change in weights (As shown in [28]).

interest) and use the same model weights & layers as a starting point to retrain
the model on small dataset (which contains object labels of interest) collected
by us. While transfer learning is domain agnostic, it is specially popular in the
field of computer vision.

For the context of this work, as discussed more in Section 3.4, transfer learning
was used for the task of instance segmentation of tree canopies using a Mask
R-CNN model pretrained on COCO dataset [8].

2.5 Takeaways

In this chapter, we surveyed the existing works related to monitoring the health
of trees. We found that despite ample research on this topic, there has not
been prior research on the measuring tree health health autonomously without
human intervention and scaling it to be suitable for deployment on large scale.
Based on the existing research, we also identified the technologies that were
suitable to be incorporated into our system. Further, we briefly discussed the
preliminaries about image segmentation and the metrics that will be used in the
remainder of this thesis.
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Chapter 3

Materials and Methodology

In this chapter, we elaborate on the hardware and software components used in
our system along with their implementation in Sections 3.1 and 3.2. A visual
image processing pipeline is also demonstrated in Section 3.3. The implement-
ation of custom Mask R-CNN is elaborated in detail in Section 3.4. Finally,
we elaborate on the ground truth dataset used for our evaluation and the data
collection experiments performed in Cambridge in Sections 3.5 and 3.6.

3.1 System Design

As described in the Section 2.2.5, we incorporated thermal and multispectral
imaging sensors in our system. We omitted LiDAR in the current system be-
cause of unavailability of low cost LiDAR module with high distance range as
well as the conflicting results about the usefulness of LiDAR in the works dis-
cussed in the previous Chapter 2. In this section, we will elaborate on the
hardware components and the software choices employed to develop the system
along with reasoning for choosing them over other available alternatives.

3.1.1 Hardware

The following indicates all the hardware components employed to develop the
system:

1. FLIR Lepton 3.5 (Thermal Imaging): This is a thermal sensor with
an uncooled microbolometer and captures images with a resolution of
160x120 and FOV (field of view) of 57�. It captures long wave infrared
radiation in the spectral range of 8 µm to 14 µm and can measure tem-
peratures in the range of -10 to 140°C (High Gain mode). The sensor
supports radiometric calibration which allows it to measure the true tem-
perature of the surface being observed if certain conditions are met as
per FLIR and elaborated in [12]. Nevertheless, from previous works [88]
utilising these types of sensors as well as during our experiments, such
micro thermal sensors employing uncooled bolometers are susceptible to
non uniform noise and temperature instability when powered on before
giving stable outputs. Hence, it is imperative to wait for some minutes
before collecting data with this sensor. An alternative to this module was
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a thermal sensor array such as [16] which has better noise performance.
However, FLIR Lepton was chosen as it has a higher thermal resolution
than a thermal sensor array and lower costs ($150) compared to other
thermal camera modules. More details about this module can be found
at [15].

2. MAPIR Survey 3W RGN (Multispectral Imaging) with GPS
Receiver: This is a compact low cost ($400) multi-spectral imaging sys-
tem which captures RGN (Red, Green and Near Infrared) images with
sensitivity to wavelengths of Red 660nm, Green 550nm and near infrared
850nm. It has a resolution of 12 Megapixel (4000x3000) and FOV (field
of view) of 87�. It was ideally developed for mounting on drones and
UAVs and provides a PWM (Pulse width modulation) interface through
the HDMI port to issue basic control commands such as taking an image
or mounting/unmounting the memory card. Further, it supports an ex-
ternal GPS module manufactured by MAPIR to geotag the images taken.
Although, a multispectral module developed for connecting to an embed-
ded system would have been preferred instead of a full fledged imaging
system like MAPIR Survey, at the time of this work, we were unable to
find any multispectral modules available in the market. In fact, MAPIR
has an upcoming multispectral module array [14] which is scheduled to
start shipping in Q3 2022. More details about this component can be
found at [22].

3. OpenMV cam H7 with Lepton adapter module: OpenMV cam
H7 is a small low-power microcontroller board with support for running
computer vision algorithms on the edge and interfaces easily with FLIR
Lepton 3.5 using the lepton adapter module. It uses the popular STM32
series [21] of microprocessors and supports running Tensorflow Lite [25]
models. Further, it provides a Remote Procedure Call (RPC) interface to
send/receive control commands and data from another microcontroller or
single board computer. It was chosen considering the imperative require-
ment of a module to integrate the FLIR Lepton 3.5 into the system and
its low cost ($65+$15) along with the tensorflow lite support. Further,
this microcontroller was also successfully used earlier to integrate FLIR
Lepton into the CityScanner project. More details about this module can
be found at [17].

4. Raspberry Pi 4: This is a single board computer that serves as the
brain of our system. It was chosen because of its low cost ($35), flexibil-
ity to run various frameworks in multiple languages such as OpenCV and
Tensorflow in Python or C++. Further, it is very flexible in terms of hard-
ware expansions with various modules available to add extra capabilities
to it. For instance, a dedicated tensor processing unit (TPU) to speed
up the running of the deep learning models [10]. More details about this
component can be found at [77].

All of these components are shown in Figure 3.1. In essence, the total hardware
related cost of our system is $150+400+65+15+35 = $665
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(a) FLIR Lepton 3.5 (b) OpenMV H7 with
Lepton adapter module

(c) MAPIR Survey 3W (d) MAPIR GPS module

(e) Raspberry Pi 4
Model B (Ram 4GB)

Figure 3.1: Hardware Components used in the system

3.1.2 Software

The following indicates all the software based choices that were used to develop
the system:

1. Language: Python 3 was selected as the core language to develop the
system. The idea behind choosing Python instead of a low level language
like C or C++ was the flexibility o↵ered by Python in terms of support for
various deep learning and image processing frameworks such as OpenCV,
Tensorflow and PyTorch along with direct integration with micropython
based microcontrollers such as OpenMV cam H7.

2. Software Frameworks: Tensorflow [24] was used as the deep learning
framework of choice instead of pytorch. The main reasoning behind this
is the support for easy conversion of Tensorflow models into Tensorflow
Lite [25] by quantizing them and enabling them to run on the edge. In
addition, OpenCV was used as the image processing library.

3. Communication with Hardware: The communication between Raspberry
Pi and FLIR Lepton 3.5 was implemented using the RPC interface over

25



Figure 3.2: All hardware components encased with the 3D printed case

USB with OpenMV Cam H7 as the mediator. The MAPIR Survey 3W
only has support for PWM signals for control commands. Hence, scripts
were coded to pulse modulate GPIO pins on Raspberry Pi which were in
turn connected to the micro HDMI port of MAPIR Survey 3W. These
scripts mounted and unmounted the memory card installed in MAPIR
Survey 3W with the raspberry pi and triggered image capture.

All the hardware components were encased in a 3D printed case as shown
in Figure 3.2. This made it easy to carry during data collection. Further, the
case was designed such that it is suitable to be attachable to moving vehicles
using magnets currently used in the CityScanner project as shown in Figure 3.3.
(This casing was designed by a member of the CityScanner team in consultation
with the main author of this work.)

3.2 System Architecture

The block diagram of the entire system along with all the major modules is
shown in Figure 3.4. Recall from previous Section 3.1.1 that a raspberry pi
is employed as the central brain of our system and all the other modules are
interfaced with it. Herewith, we will give a brief overview of all the other
major modules as shown in the architecture diagram. We begin by elaborating
on the hardware modules, then move towards embedded control module and
finally towards image processing and calculation modules. The sequence of
steps applied during image processing are also visually shown in Figure 3.5.
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(a) Concept casing for the
system with magnets

(b) The system attached
to the top of a car

(c) A closeup view of the
system attached to the
roof of a car

Figure 3.3: Concept casing with magnets attachable to moving vehicles
(Developed by a member of CityScanner [6] Team)

1. FLIR Lepton 3.5 and OpenMV Cam H7: The thermal imaging
sensor is attached to openMV cam H7 using a FLIR Lepton adapter mod-
ule. This module communicates with Raspberry Pi via remote procedure
call over USB. The custom python code running on OpenMV is configured
to measure temperature in range of �10� to 40� C and returns grayscale
image data normalised to this temperature range. This means that a meas-
ured temperature of �10� C or lower will be scaled to 0 (black) as pixel
value and a measured temperature of 40� C or higher will be scaled to 255
(white) as pixel value. This temperature range was chosen by consider-
ing the temperature of tree canopies observed during the data collection
experiments (refer Section 3.6). A narrow temperature range is usually
preferred to decrease the e↵ect of non-uniform noise across the sensor.
The micropython code running on OpenMV also handles the serving of
the callbacks initiated by the Control module.

2. MAPIR Survey 3W with GPS Receiver: The multispectral ima-
ging sensor is attached to the raspberry pi over USB and the mounting
/unmounting of the memory card along with the capturing of images is
handled using PWM signals over the micro HDMI port of MAPIR Survey.
Further, a GPS receiver is attached to MAPIR Survey in order to geo-tag
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Figure 3.4: Architecture Diagram of the system

all the images captured.

3. Event Trigger: This indicates any event which signals the beginning
of processing on raspberry pi from capturing the images to generating
NDVI and CTD values. At the current state of the prototype, a press of
a push button connected to GPIO 2 of raspberry pi was used as an event
trigger for the data collection experiments. However, this trigger can also
be an event signalling the co-location of the system with particular GPS
coordinates. For instance, when the the system is deployed on moving
vehicles, the co-location of the system with GPS coordinates fetched from
a tree inventory database will be used to trigger this processing.

4. Control Module: This software module handles the event trigger, sig-
nals the sensors to capture the images and transfers the captured images
to the raspberry pi for further analysis. For the OpenMV Cam, this in-
volves initiation of callbacks requesting the transfer of current image frame
from the thermal imaging sensor. For the multispectral imaging sensor,
this involves generating PWM signals to capture an image, mounting the
memory card installed in the multispectral imaging sensor with the rasp-
berry pi, transferring the captured image to the raspberry pi and finally,
unmounting the memory card from the raspberry pi.

5. Image Registration Module: Image registration is the task of matching
or aligning images taken by two di↵erent sensors or di↵erent viewpoints
into a single coordinate system for further analysis [62]. It involves map-
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ping points from one image to corresponding points in another image.
In our system, both the multispectral and thermal imaging sensors have
di↵erent FOV (field of view) and are not co-aligned. This software mod-
ule registers the images taken by the thermal and multispectral imaging
sensors. In order to align both multispectral (RGN) and thermal images,
this module handles the linear translation of RGN images in both ho-
rizontal and vertical directions. Further, to compensate for wider FOV
of multispectral sensor, this module also handles the zooming in of the
RGN images. For our prototype, in case of RGN images, the values of
translation in X (horizontal) and Y (vertical) directions were found to be
+50 and +150 pixels respectively and zoom scale was found to be 0.57
(1 indicates no magnification and 0 indicates pixel level magnification) to
perfectly overlay thermal and RGN images. These configuration paramet-
ers were manually found by taking multiple RGN and thermal images and
overlaying them. An instance of inputs and outputs utilizing this module
are shown in Figure 3.5. Further, in order to scale this module for large
scale production of the system in the future, we also tried automatic image
registration using three traditional image registration algorithms namely
SIFT, SURF and ORB [5]. However, none of the algorithms were able to
find useful keypoints or features in the thermal images. We believe that
this was due to the low resolution of thermal images.

6. Image Segmentation Module: The is the most computationally
intensive software module of our system. Recall that the aim of
our system is to calculate NDVI and CTD values of trees in the images.
However, these values should only be calculated for the leaves in the tree
canopy and not the wooden parts which include branches and trunk. This
is solved using a fusion of custom Mask R-CNN model and pixel-wise
NDVI analysis. Hence, given a RGN image, this task can be broken into
two sub-problems as follows:

• Detecting the canopy part of the trees even in cases where
the image contains multiple trees: This is solved using a custom
Mask R-CNN model. The Mask R-CNN model is discussed in more
detail in Section 3.4 and it outputs the instances of the tree canopies
in the image by generating a mask (segmentation) over their canopies
as shown in Figure 3.5.

• Once the canopy of the tree is detected, the segmentation
of only the the leaves of the tree without the wooden parts
and sky: Recall from Section 2.3 that non-vegetation elements such
as trunks, branches and sky have very low NDVI values compared to
vegetation elements which have significantly higher NDVI. Thus, we
employ a thresholding method which first calculates the individual
NDVI of each pixel in the segmentation mask given by Mask R-
CNN and then, eliminates pixels with NDVI values below a certain
threshold as shown in Figure 3.5. The calculation of NDVI for each
pixel is simply computed by deriving the raw values in the red and
near infrared channels of the pixel and plugging them in (2.1). In or-
der to eliminate noise along the edges of tree canopy, median filtering
is also employed.
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The end result using the above two-stage approach gives segmentation of
leaves present on the canopy of a tree while eliminating the sky, wooden
branches and trunk of the tree. Since our multispectral imaging sensor is
uncalibrated, the raw NDVI values generated by it are relative. Hence, a
value of 0.02 was used threshold cuto↵ value to eliminate non-vegetation
elements in the image. This value was derived using the analysis of the
images captured during data collection and comparing the output quality
with di↵erent threshold values. An instance of inputs and outputs using
this module is also shown in Figure 3.5.

7. Analysis and Calculation Module: With the availability of segment-
ation i.e. tree canopy mask consisting of only leaves for RGN images, the
same mask can also be used for thermal images due to image registration.
This module handles the calculation of final NDVI and CTD for the tree.

The CTD value is computed by calculating the raw temperature value for
each pixel by converting its color intensity value in the grayscale thermal
image (using (3.1), computing the mean temperature over all pixels in
the canopy and subtracting the ambient air temperature from the mean
canopy temperature (refer (2.2)).

The temperature of each pixel is calculated as:

Tpixel =
Pvalue

255
⇤ (Tmax � Tmin) + Tmin (3.1)

where Pvalue is the pixel value in normalised thermal image, Tmin and
Tmax are configured temperature range for the FLIR Lepton 3.5 respect-
ively (�10� and 40� C in our case).

Then, as per (2.2), CTD is calculated as:

CTD = Tpixel � Tair (3.2)

where Tpixel is the average canopy temperature for all segmented pixels in
the image and Tair is the air temperature respectively.

To calculate the mean NDVI, each RGN pixel in the image is split into
its 3 constituting channels (red, green and near infrared). The raw NDVI
value for each pixel is calculated from red and near infrared channels as
per (2.1). To compensate for the aperture adjustment, focal adjustment
and other mechanical adjustments performed by the multispectral imaging
sensor, this raw NDVI is normalised by dividing with a correction factor
similar to the dynamic range of a camera [11].

Mathematically, our corrected NDVI is calculated as:

NDV Icorrected =
NDV Iraw

|NDV Imax|
⇤ |NDV Imin| (3.3)

where NDV Iraw is the raw NDVI of a pixel, NDV Imax and NDV Imin are
maximum and minimum NDVI values among all pixels in the segmented
image.

Finally, the corrected NDVI for the entire canopy is computed by taking
the mean over all the corrected NDVI for all pixels in the segmented
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image. While this approach of adding a correction factor does not calibrate
the corrected NDVI to the absolute ground truth NDVI, it can be used
for relative comparison between the calculated values (thus meeting our
system requirements).

The final calculated CTD and NDVI values along with other intermediate
calculations such as raw NDVI, Canopy temperature and related indexes
like GNDVI (Green NDVI: same as NDVI but with replacement of red
band by green in (2.1), SR (Simple Ratio: NIR/Red), PercentHealthy0.1
(% canopy with raw NDVI > 0.1) are stored on the raspberry pi in a .csv
file.

3.3 Visual Image Processing Pipeline

A visualization showcasing the processing of both thermal and RGN images in
each module is shown in Figure 3.5. As discussed above, the images from the
thermal and multispectral imaging sensors are fetched using the control module
based on the event trigger which begins this processing of images in a sequential
manner.

3.4 Development of Custom Mask R-CNN

As discussed briefly in the previous section, after the image registration of the
thermal and RGN images, we need to segment the canopy of a tree even if
the image contains multiple trees from the RGN image. For our system to
operate completely autonomously, the images captured on the basis of an event
trigger will be unsupervised and may contain other objects in the image such
as cars, buildings, grass, snow in addition to multiple trees. Hence, it becomes
imperative to individually identify all the tree canopies in an image and feed
them to the calculation and analysis module. The custom mask R-CNN aims
to solve this problem by providing instance segmentation of the tree canopies
in the image.

3.4.1 Motivation for a custom instance segmentation model

In our knowledge, there is no pre-exisiting model available for instance seg-
mentation of tree canopies or even trees for the standard RGB (red, green,
blue) images. Our problem is further complicated as our input is RGN im-
ages from the multispectral imaging sensor instead of standard RGB images.
For instance, pre-trained models like Deeplabv3 [40] which are able to perform
semantic segmentation of trees and vegetation on standard RGB images per-
form poorly on RGN images as shown in Figure 3.6. These models are trained
either using CityScapes [7] or ADE20k [105] datasets. Further, these models
only allow semantic segmentation of trees so detecting the health of individual
tree canopies in the image is not feasible using them. Hence, it becomes imper-
ative develop a custom model from scratch which works well on RGN images
and can detect individual instances of tree canopies.
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Figure 3.5: A visualisation of how the images are processed at each
step

3.4.2 Dataset Creation

Any deep learning model requires training data in order to optimise the weights
and activations of the layers. However, there does not exist any dataset with
labels for instances of trees or tree canopies in RGN images. Hence, we manually
created the dataset using the RGN images collected during the data collection
experiments (See Section 3.6). Here, each tree canopy in the image was manually
annotated using the popular image annotation tool called LabelMe [99]. During

32



(a) Input RGN Image captured
from MAPIR Survey 3W

(b) Segmentation output from
DeepLabv3 (semantic segmenta-
tion model) trained on ADE20k

Figure 3.6: Performance of pre-trained DeepLabv3 model (Semantic
Segmentation). Notice how the model overestimates the segmenta-
tion of trees by including buildings, sky and snow as vegetation

annotation, only tree canopies which were completely present in the image were
labelled. After this process, our dataset consisted of 51 annotated RGN images
with 2 classes namely tree canopies and background.

3.4.3 Training

Our dataset consists of a relatively small number of images to train a deep learn-
ing model like Mask R-CNN from scratch. Recall from Section 2.4.3, transfer
learning combined with data augmentation can be theoretically employed in or-
der to develop a custom model by re-training an existing model pre-trained on a
di↵erent dataset. For our purposes, we used a Mask R-CNN model pre-trained
[29] on COCO[8] (a dataset with 330K images) with ResNet101 as the back-
bone. Tensorflow was used as the framework of choice. We retrained only the
head layers (the top layers without the backbone) on our dataset. We also gen-
erated synthetic data by augmenting the original dataset with flips in horizontal
and vertical directions and further applying Gaussian blur. This increased our
training dataset size by 50% and also acts as a regularizer. The configuration
parameters used for training are shown in Section A.1. The visual output results
from our model are shown in Figure 3.7.

3.4.4 Model Quantization

Mask R-CNN is a relatively heavy model from both training and inference point
of view. While this model can be deployed on the cloud servers like Amazon
Web Services or Google cloud platform during inference for fast processing, raw
image data would need to be sent to the server. However, our system require-
ments includes data privacy constraints. Thus, the developed Mask R-CNN
was optimized to run on the edge at the cost of possible minute performance
reductions. To achieve this, the model built on Tensorflow was converted to
Tensorflow-lite with dynamic range quantization [23]. Dynamic range quantiz-
ation means that only the weights of the layers consisting of 32 bit Floats in are
stored as 8 bit ints in the converted model whereas the activations of the layers
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(a) Input RGN Image captured
from MAPIR Survey 3W

(b) Segmentation output from our
Custom Mask R-CNN (instance
segmentation model) trained us-
ing transfer learning

Figure 3.7: Performance of our Custom Mask R-CNN. Notice how
the model detects each instance of the tree canopy in the image and
considers all the other objects as background

are quantized during runtime. Our custom Mask R-CNN built over Tensorflow
took around 15 seconds per inference of an image on a raspberry pi 4 while the
tensorflow-lite model reduced the inference time to 7 seconds with one-fourth
of the CPU usage as the original tensorflow model.

3.5 (Ground truth) Tree Health Dataset

Municipalities in cities obtain ground truth tree health data through city wide
surveys every few years. For instance, in the city of Cambridge, USA, this survey
is performed every 5 years whereas in the city of Delft, The Netherlands, this
survey is performed every 2 years. To help with the evaluation of our system,
we obtained ground truth tree health dataset for the city of Cambridge, USA
through Cambridge Urban Forest Master Plan. This dataset is from the summer
of 2018 and was created through a combination of manual in-person arborists,
satellite based remote sensing and aerial LiDAR incorporation [1]. The dataset
classifies the health conditons of trees in three categories namely good, poor
and fair. It contains information about 47,063 trees out of which 35,821 are in
good health, 5,176 are in fair health and 6,066 are in poor health. Hence, most
of the trees (> 75%) are rated as having good health condition. In addition
to this, the dataset contains information about the tree species, the satellite
based NDVI, the latitude and the longitude, whether located on a street or not,
the shape length and shape area of the canopy, flood tolerance and drought
tolerance. This dataset was provided as Shapefiles (.shp, a dataformat used by
Geographical Information Systems (GIS)) and was loaded to the online platform
CARTO [37] (a GIS and spatial analysis tool) as shown in Figure 3.8.

While this dataset is from 2018 and the tree health conditions are subject to
variability in four years, this is the most accessible ground truth dataset that
was obtained during this work. Further, the staleness of data also necessitates
the need for advancements in this field of tree health monitoring to ensure faster
remedial actions to save trees in poor health.
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Figure 3.8: Tree health dataset after importing to the CARTO platform

3.6 Data Collection Experiments

We collected RGN and thermal images through our developed system on three
separate days in Cambridge, USA during the month of February, 2022. A
push button was used as the event trigger for the system. Hence, we used the
developed system in a citizen science paradigms with the 3D printed casing. In
total, we collected data for 49 trees spread over two species namely Red pine
and Eastern White Pine trees. The multispectral imaging sensor was configured
with shutter speed of 1/60s and ISO of 50. The thermal imaging sensor was
configured to measure temperature in range of (-10, 40). On the first day of data
collection, the raspberry pi had to be restarted due to a loose power connection.
Since the thermal cameras requires at least 10 minutes before stable readings
can be taken again, 9 data points concerning CTD had to be removed from the
dataset. This is elaborated more in Chapter 4.

Species Constraints: There are two types of trees namely evergreen and
deciduous trees. During winters, deciduous trees loose their leaves, thus ham-
pering NDVI calculation. Hence, our analysis was constrained only to evergreen
trees due to data collection in the winters. The species namely Red pine and
Eastern White Pine were selected because they still have leaves in the winter
(evergreen) and they are the most widespread and easily accessible evergreen
trees found from CARTO in the city of Cambridge around MIT. The sites of
data collection experiments are shown in Figure 3.9.

A distribution of the data collected on each of the three separate days is
shown in Table 3.1.
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Figure 3.9: The trees were analyses in these locations. The red boxes
indicate the Red Pine trees and the blue boxes indicate the Eastern
White Pine trees.

Date Species Area Number
of Trees

Health
Distri-
bution

Weather

23/2/22 Red Pine Gore
Field,
John
Ahern
Field

33 Good:20
Fair:7
Poor:5

8�C,
Sunny

24/2/22 Eastern
White
Pine

Columbia
Park,
Cherry
Street

4 Good:1
Fair:0
Poor:3

�3�C,
Cloudy

1/3/22 Eastern
White
Pine

Danehy
park,
Garden
Street

13 Good:6
Fair:1
Poor:6

0�C,
Cloudy

Table 3.1: Data collection experiments undertaken in Cambridge,
USA. The health refers to the health condition from ground truth
dataset.
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Figure 3.10: Using the system with push button trigger
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Chapter 4

Analysis and Results

In this chapter, we will evaluate the custom Mask R-CNN model and discuss
the main takeways from this evaluation in Section 4.1. This is followed by the
analysis of the tree health parameters namely NDVI and CTD measured by our
system and their comparison with the ground truth dataset in Section 4.2 along
with the main takeaways from this analysis.

4.1 Mask R-CNN analysis

4.1.1 Training Curve

As discussed in Section 3.4.3, the model was trained on Google Cloud Platform
on a N1 Instance with 2 vCPUs and 13 GB memory. Our manually annotated
dataset (refer Section 3.4.2) consisting of 51 images was split in the ratio of 70:30
for training : testing. During retraining, each epoch took approximately 3 hours
on the N1 instance. The configuration settings during training the model are
elaborated in Appendix A.1. The model weights were saved at end of every
epoch.

The training curve of the model is shown in Figure 4.1. It is seen from the
training curve that only a small number of epochs (3 in our case) are su�cient
to reach the optimal validation loss on the test set owing to retraining of only
the head layers of Mask R-CNN.

4.1.2 Performance

Full Model

To measure the performance of our model, we calculated the standard evaluation
metrics [9] as recommended by COCO. Specifically, we measured mean Average
Precision (mAP) / Average Precision (as per [9]) at di↵erent IoU thresholds.
The performance of our custom Mask R-CNN without quantization is shown in
the first entry of Table 4.1. Recall from Section 2.4.1 that increasing the IoU
means that the segmentation mask generated by the model should intersect more
strictly with the ground truth mask, thus requiring the model to have better
object localization. The same behaviour is seen in Figure 4.2 where increasing
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Figure 4.1: The Training curve of Mask R-CNN with epochs=10 and
batch size=4, the red point indicates point of minimum loss

Model AP
(IoU=0.5:0.95:0.05)

AP
(IoU=0.5)

AP
(IoU=0.75)

Custom Mask
R-CNN TF

0.489 0.938 0.500

Custom Mask
R-CNN TF-
lite (Dynamic
Quantization)

0.491 0.938 0.500

Table 4.1: Performance of custom R-CNN model (Full and Quantized
model)

the IoU from 0.5 to 0.95 leads to a decrease in Average Precision of the model
as expected.

For context, the originally published Mask R-CNN [55] achieved an AP
(IoU=0.5:0.95:0.05)

of 33.1 on COCO where the problem is more complex and involves segmenting
81 di↵erent objects. Our AP

(IoU=0.5:0.95:0.05) is higher than the originally pub-
lished Mask R-CNN [55]. However, our problem is much more simple with the
segmentation of only 2 objects (tree canopy and background). Nevertheless,
Mask R-CNN being state-of-the-art model for instance segmentation and our
high AP values inspire confidence in usage of this model for real world deploy-
ments in uncontrolled environments.

In order to measure the stability of our results, a k-fold cross validation was
also performed with k=3, in order to evaluate the performance of the model on
di↵erent training and test splits. The results of the k-fold cross validation are
shown in Table 4.2 further showcasing the stability of our results.

Cross Validation Fold 1 2 3
AP

(IoU=0.5) 0.82 0.87 0.75

Table 4.2: Results of 3-Fold cross validation of custom Mask R-CNN
model
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Figure 4.2: The AP scores with increasing IoU thresholds as per COCO
metrics [8] for the full model

Quantized Model

As discussed in Section 3.4, the full model was optimized to run on the edge
(raspberry pi 4 in our case) using dynamic quantization as data privacy is an
important requirement of our system. A comparison of inference time and model
size comparing both the full model and the quantized model are shown in Table
4.3. Most importantly, as expected from [23], the inference time was reduced
from 15 seconds to 7 seconds on the raspberry pi 4.

An example of segmentation outputs generated by the full model and quant-
ized model on the same image is shown in Figure 4.3. Since our system does
not need to be real time, batch processing can be applied once all the images
are collected at the end of the day in a real world large scale deployment.

Model Inference Time Model Size
Custom Mask R-CNN
TF

15s 255.9 MB

Custom Mask R-CNN
TF-lite (Dynamic
Quantization)

7s 65 MB

Table 4.3: Comparison between full and quantized model

The performance of the quantized model in terms of Average Precision is
shown in the second entry of Table 4.1. From Table 4.1, it is seen that there is
no significant reduction in performance using quantization.

In fact, it may appear that the AP
(IoU=0.5:0.95:0.05) for quantized model is

slightly increased compared to the full model. On further exploring this anom-
aly, it was found that this behaviour is exhibited due to our annotated dataset,
where most images contain only one full tree canopy as ground truth. Thus,
a model (non-quantized model) generalising better to find partially visible tree
canopies in addition to the full tree canopy is penalised in terms of precision
(False Positive). Further, it is seen from Figures 4.2 and 4.4, that the perform-
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(a) Segmentation output from
Mask R-CNN using full Tensorflow
model

(b) Segmentation output from
Mask R-CNN using Tensorflow-
lite (quantized)

Figure 4.3: Outputs from custom Mask R-CNNs in Tensorflow and the
quantized Tensorflow-lite model showcasing no major visual perform-
ance reductions

ance of the quantized model decreases more than the full model at higher IoUs
(IoU= 0.85 for the quantized model compared to IoU=0.90 for the full model)
signifying it is marginally poorer at object localisation compared to the full
model.

Figure 4.4: The AP scores with increasing IoU thresholds as per COCO
metrics [8] for the quantized tf-lite model

4.1.3 Takeaways

Our custom Mask R-CNN was found to be suitable for segmenting tree can-
opies from multispectral (RGN) images with high AP values despite the small
dataset size. A larger dataset for training will further allow for even improved
generalisations. Further, no performance reduction was observed on quantiz-
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ing the model. The inference time of the quantized model is half compared to
the non-quantized model. Given our use case and system requirements (Section
1.2), batch processing of the captured data is su�cient to maintain data privacy
as well as system performance. For instance, in case the system is deployed on
moving vehicles, the captured data can be processed while the vehicle is waiting
at tra�c lights.

4.2 Analysis of Tree Health

In this section, we will evaluate the data measured by our system during the
data collection experiments (Section 3.6) with the ground truth dataset obtained
from the municipality of Cambridge. We used three parameters from the ground
truth dataset namely Ground Truth Condition (Health), Remote NDVI and
Area of tree (measured using aerial LiDAR) out of all the parameters present in
the dataset. The choice of comparison with these three parameters is justified
and explained here:

• Ground Truth Condition (health): The ground truth dataset classifies tree
health condition in three categories namely good, fair and poor. For eval-
uation purposes, these parameters were converted to 3, 2, 1 respectively.
This parameter will function as the ground truth health condition that
our system serves to identify.

• Remote NDVI: NDVI using satellites was measured in the summer of 2018.
Since we are measuring NDVI terrestrially instead of from overhead like
satellites as well in winters than summers, a comparison and correlation
with this parameter served to give interesting results. Unless otherwise
stated, our system measured NDVI will always refer to corrected NDVI
as discussed in Section 3.2.

• Area of tree (measured using aerial LiDAR): The tree canopy area from
overhead was measured using aerial LiDAR. Recall from the Chapter 2,
in earlier works [44], the usefulness of aerial LiDAR measured attributes
was questioned and a correlation with this parameter will help future
researchers in this field regarding the incorporation of LiDAR.

Data Cleaning: During the first day of data collection experiment, the
raspberry pi hung up due to unknown reasons leading to a forced restart. On
the third day of the experiments, owing to cold temperatures, the power supply
had to be changed during data collection. These interruptions and restarts
resulted in unstable readings of the canopy temperature by the thermal imaging
sensor for 9 trees. As a result, these 9 data points were removed from our
dataset generated using data collection experiments. A scatter plot of CTD
and NDVI before and after data cleaning is shown in Appendix Figure A.1.
The distribution of trees after data cleaning is shown in Appendix Table A.1.

4.2.1 High-level analysis

A comparison of our system measured NDVI and Remote NDVI is shown in
Figure 4.5. As seen in the Figure, our measured NDVI varies in a similar way
to the Remote NDVI.
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Further, a comparison showing the variation of raw NDVI (NDVI without
correction), measured NDVI and Remote NDVI is shown in Appendix Figure
A.3.

Figure 4.5: Variation of measured NDVI vs Remote NDVI for trees
observed during data collection experiments. Tree index refers to
tree ID in our dataset.

Pearson’s correlation coe�cient (r) was measured to calculate the strength of
linear relationship between our measured parameters and ground truth data.

The correlation matrix comprising of all of our measured parameters with the
three ground truth parameters namely Ground Truth Condition, Remote NDVI
and Area is shown in Figure 4.6. Further, the correlation results between our
measured NDVI and CTD with the ground truth parameters is shown in Table
4.4.

Figure 4.6: Correlation matrix between our measured values and
ground truth parameters
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Variables
Pearson Correlation

(r)
Significant at

(p <0.05)
NDVI Remote NDVI 0.54 Yes
CTD Remote NDVI -0.38 No

NDVI
Ground Truth

Health
0.11 No

CTD
Ground Truth

Health
0.28 Yes

NDVI
Area (m2)
(LiDAR)

0.28 Yes

CTD
Area (m2)
(LiDAR)

-0.15 No

Table 4.4: The correlation between our measured parameters and
ground truth parameters

From the correlation matrix, it is clear that there is almost no correlation
between NDVI and CTD. Thus, they are independently measuring two di↵erent
attributes related to tree health and useful to incorporate in the system. From
Table 4.4, it is seen that there is a moderately strong and significant correla-
tion (r=0.54 with p < 0.05) between our measured NDVI and remote NDVI. For
context, in recent works [42], the correlation between NDVI measured using two
di↵erent satellites was found to be 0.74. Even though our NDVI and the ground
truth Remote NDVI were measured four years apart and the former was meas-
ured from the ground while later was measured from overhead, this strong cor-
relation shows the validity of our approach as well as motivates further research
in ground based NDVI measurements. Further, a Bland-Altman plot widely
used in clinical diagnosis to showcase the agreement between two methods (in-
stead of strength of relationship like pearson’s coe�cient) is shown in Appendix
Figure A.4. From the Bland-Altman plot, it is seen that there is strong agree-
ment between the two methods (Remote NDVI and Terrestrial NDVI) with 98%
(more than 95%) points lying between the di↵erence ±1.96SDdifference range.

Further, it is seen that the CTD has weak-moderate correlation (r=0.28 with
p < 0.05) with ground truth tree health condition. However, we infer that
this correlation can also be attributed to the skewed distribution of the dataset
where more trees are rated as having good condition compared to poor and fair
conditions with more trees being measured with high canopy temperatures on
a hot day. This is explored in depth in the next subsection.

Interestingly, due to unknown reasons, NDVI is found to have significant and
weak correlation (r=0.28 with p < 0.05) with the Area of tree canopy obtained
from the ground truth dataset.

4.2.2 Low-level health condition analysis

The distribution of CTD and NDVI with respect to health conditions from the
ground truth dataset is shown in Figure 4.7. Further visualisation of these
distributions with respect to health conditions for both the species observed is
also shown in Figures 4.8 and 4.9. The mean NDVI and CTD for each species
with respect to their ground truth health conditions is also shown in Tables 4.5
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and 4.6.

(a) The distribution of NDVI for
all trees

(b) The distribution of CTD for
all trees

Figure 4.7: The distribution of NDVI and CTD for all trees with re-
spect to health

Species / Health Good Fair Poor
Red Pine 0.37 ± 0.07 0.28 ± 0.05 0.28 ± 0.03
Eastern White Pine 0.49 ± 0.08 0.46 0.43 ± 0.12

Table 4.5: The mean measured NDVI for each species with respect to
the ground truth health condition

Species / Health Good Fair Poor
Red Pine 4.63 ± 3.64 2.89 ± 1.78 6.99 ± 4.85
Eastern White Pine �9.1 ± 1.88 -8.59 �9.1 ± 1.88

Table 4.6: The mean measured CTD for each species with respect to
the ground truth health condition

(a) The distribution of NDVI for
Red Pine trees with respect to
ground truth health condition

(b) The distribution of NDVI for
Eastern White Pine trees with re-
spect to ground truth health con-
dition

Figure 4.8: The species-wise distribution of NDVI with respect to
ground truth health condition
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(a) The distribution of CTD for
Red Pine trees with respect to
ground truth health condition

(b) The distribution of CTD for
Eastern White Pine trees with re-
spect to ground truth health con-
dition

Figure 4.9: The species-wise distribution of CTD with respect to
ground truth health condition

From the NDVI distribution in Figure 4.7, it is seen that the distribution of
NDVI is mostly in agreement with the ground truth health conditions. This
implies that the trees in good health have higher measured NDVI values than
trees in poor and fair condition as expected (refer Section 2.3). From the CTD
distribution in Figure 4.7, it is seen that CTD is higher for trees in good condi-
tion than trees in poor and fair condition but a species wise analysis following
up contradicts this result.

Species Wise Analysis

Moving on to species-wise analysis, it is inferred from Table 4.5 and Figure
4.8, that the distribution of NDVI values is in agreement with health condition
of trees for both Red Pine and Rastern White Pine species. In fact, mean
NDVI values for Red pine as shown in Table 4.5 are significant (p < 0.05)
for good and poor condition trees. The mean NDVI values for eastern white
pine are insignificant (p > 0.05). However, from the NDVI distributions for
Eastern White pine in Figure 4.8, it is seen that majority of distribution for
good conditions trees still have higher NDVI values than poor and fair condition
trees.

From the species wise CTD distributions as shown in Figure 4.9 and Table
4.6, no significant relations could be determined except that the CTD values
for poor condition red pine trees tended to be higher than red pine trees in fair
and good condition. However, the relations were insignificant (p > 0.05).

4.2.3 Takeaways

The NDVI measured by our system was found to have significant and moder-
ately strong correlation (r=0.54 with p < 0.05) with remote NDVI from ground
truth dataset. Further, the Bland-Altman plot in Appendix Figure A.4 shows
strong agreement between the remote NDVI approach and our terrestrial NDVI
approach. This illustrates the validity of our method to measure NDVI ter-
restrially even though the ground truth dataset is four years old. A comparison
with a more recent dataset in the future will be very interesting. Further, for
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both Red pine and Eastern White Pine species, the measured NDVI distribu-
tions were also found to be in theoretical agreement with their ground truth
health conditions. While a higher CTD was found for Red Pine trees in poor
condition than good and fair health condition trees, the same patterns were not
applicable for Eastern White Pine trees. This inference about CTD is similar to
earlier work such as [60] [32], where it was concluded that the tree species under
observation has an important influence in determining correlation with ground
truth water stress. However, it is also possible that the data collection for Red
Pine trees being performed on a hot day compared to sub-zero temperatures
during data collection of Eastern White Pine trees; the applicability of CTD
might be questionable for extremely cold temperatures.

From the correlation matrix, it was also observed that both NDVI and CTD
have no correlation with each other. Hence, they are independently measuring
two di↵erent attributes related to tree health and are useful to incorporate in
system. Using the NDVI and CTD values, it is straightforward to assign a
continuous comparative ranking for the health of trees under observation.
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Chapter 5

Discussion and Future

Work

In this chapter, we expand on the discussions of the obtained results from
Chapter 4. Further, we discuss our methodology including the data collection
experiments and point out the limitations of our work. From these discussions,
possible research directions for future work are derived in Section 5.2.

5.1 Discussion and limitations of our approach

5.1.1 Generalisation of Mask R-CNN performance

From Section 4.1, our custom Mask R-CNN developed using transfer learning
was found to be suitable for segmenting tree canopies from multispectral (RGN)
images despite the small dataset used for training along with its quantized
version. While its di�cult to say with certainty about its generalisability in
di↵erent lighting conditions other than those encountered in our dataset (cloudy
and sunny), theoretically, we believe that an increase in number of images in
the dataset will further help to improve its performance. Further, the inference
time of the quantized model is still seven seconds. However, our use case allows
for batch processing of images such as when the taxi is not moving or when
the garbage truck is at a halt to collect garbage at a site. Also, in order to
significantly improve the inference time of Mask R-CNN if needed, the raspberry
pi can be replaced with single board computers containing a TPU like NVIDIA
Jetson.

5.1.2 Generalisation of tree health results

As discussed in Section 4.2, the NDVI measured by our system has significant
correlation with remote NDVI from ground truth dataset along with the Bland-
Altman plot showcasing the validity of our system. Our analysis constrained
to evergreen trees belonging to two di↵erent species gave similar agreement
between tree health and the NDVI measured by our system. However, due time
constraints, we collected data for 40 trees (data collected for 49 trees). Hence, it
is di�cult to generalise this performance with certainty to di↵erent tree species
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in di↵erent seasons spread across di↵erent parts of the world. Further, our
ground truth dataset is four years old and tree health is expected to change at
a higher temporal resolution. Therefore, a comparison with more recent ground
truth data set along with a more extensive study will be very interesting. (While
we do advocate an extensive study, in the field of tree health monitoring, an
evaluation on limited number of trees is widespread as displayed in Tables 2.2
and 2.3 of Chapter 2. Hence, we recommend a deeper collaboration between
environmental and computer scientists to find the optimal variety and number
of trees for evaluation for large-scale generalisation of a technology)

5.1.3 Comparison with comparable earlier works

Our work is unique in the sense that it is suitable to be deployed for large-scale
monitoring of trees without any human intervention. Further, our main results
as discussed extensively in Chapter 4 showcase the validity of our approach.
Earlier works in the field which measured tree health terrestrially and used low
cost sensors are shown concisely in Table 5.1 (they are elaborated in Chapter 2 in
conjunction with the sensors used by them) along with the research gaps in them
and how our works fills this research gap. The two utmost comparable works
[64] lacks in requiring manual human based analysis of images and [47] lacks
in outputting only raw values without ground truth validation combined with
controlled upward facing deployment respectively. Our work fulfills this research
gap by being completely autonomous and suitable to deployed for opportunistic
sensing along with validated ground truth directly provided by a municipality.

Works

Autonomous
(No human
intervention
needed)

Approach
Ground
Truth
Comparison

Evaluation

[47] Yes Mobile
(Cars)

No 172 trees,
only system
output

[32] and [60] Yes Handheld Yes 44 Images
(trees not
mentioned)

[65] Yes Handheld No 8 trees
[33] and [93] Yes Mobile (Ro-

bot)
Yes 2 trees in

controlled
lab environ-
ment

[64] No Mobile
(Cars)

Yes 20 trees

Our work Yes Mobile
(Cars) and
Citizen
Science

Yes 40 trees

Table 5.1: A concise comparison of our work with comparable ealier
works in the field. A comprehensive summary of earlier related works
is also displayed in Tables 2.2 and 2.3 of Chapter 2
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5.1.4 CTD analysis

While the measured CTD was found to be higher for poor health condition Red
Pine trees than good and fair health condition Red Pine trees, the same pattern
was not seen for Eastern White Pine trees. Due to time and seasonal constraints,
we could not collect data for Eastern White Pine trees when the ambient air
temperature was above zero. A further research is required in this aspect to
find if the CTD applicability for water stress is species dependent as inferred
in [60] and [32] or if the applicability of CTD is questionable for extremely
cold temperatures. (We question the applicability of CTD for extremely cold
temperatures due to: in case the behaviour of tree canopy follows the behaviour
of human body. Then in in extreme cold temperatures, the human body tries
to raise the body temperature. A similar behaviour pattern in trees implies that
a good health condition tree will have a higher CTD in cold temperatures and
vice-versa in hot temperatures. We consulted a tree expert to peruse this insight
and are awaiting for confirmation.)

5.1.5 Deployment: low speed citizen science data collec-

tion vs high speed vehicles

Our data collection was performed in a science based paradigm where a person
moving at low speed was carrying the system. For opportunistic moving vehicles
like taxis and garbage trucks, this can be equated to instances when the vehicle
is stationary at a tra�c light or at very low speeds after resuming from a halt.
If we deploy the same system on moving vehicles, we expect the multispectral
imaging sensor to still capture blur-free images at urban city level speeds
as it was configured to capture images at 60 fps (frames per second) in our
experiments. Further, a lot of algorithms are already available for blur reduction
in high resolution images [90]. A speed threshold can also be incorporated so
that the system will capture the images only when the speed of the vehicle is
below a certain threshold speed. However, the thermal imaging sensor used
in the system was frame limited to 8.7 fps (frames per second) as per U.S.
government export regulations. Hence, a di↵erent thermal sensor with higher
frame rate might be needed to be incorporated into the system for high speed
moving vehicles. We plan a follow up study in the summer of 2022 where the
system is deployed on moving vehicles for large scale data collection.

5.1.6 Thermal imaging for detecting internal decay in trunks

Our analysis of tree health was limited to evaluating the canopy part of the trees
only. However, during the course of this thesis, we also employed the thermal
cameras to try and identify internal cavities and decay in the trunk of the tree
as per earlier works discussed in Section 2.2.3. The earlier works employing this
technology to detect internal cavities are contradictory where some works [65]
[38] [39] advocate using thermal imaging to detect internal decays in trunks while
others [36] reject the usefulness of thermal imaging for the same. During our
thesis, we found thermal imaging to be useful in identifying superficial surface
occlusions generated using broken branches. However, we could not detect any
temperature gradients on the trunk of trees indicating presence of cavities or
internal decay with varying health conditions. Thus, we align with the findings
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of [36] where it is inferred that only very large cavities with cross-sectional
area of around 76% of the trunk are visible using thermal imaging and usually,
thermal images are not useful to detect internal decays in the trunk of trees. To
help the arboriculture community, we have open-sourced our dataset comprising
of 140 thermal images of tree trunks collected during this thesis.

5.2 Future Work

5.2.1 Feasibility of modelling based classification

From the correlation matrix in Figure 4.6, it is seen that is no correlation
between CTD and NDVI values. Hence, to develop an autonomous model to
classify tree health, both these measured parameters are useful. A scatter plot
between NDVI and CTD values for Red Pine trees in shown in Appendix A.5.
From the scatter plot, it is seen that most of the fair and poor condition trees
are concentrated around a cluster between NDVI (0.20-0.35) and CTD (0-7).
Hence, a simple white-box machine learning algorithms like SVMs with kernel
or unsupervised clustering based algorithms can be used to distinguish between
good, poor and fair health condition trees. While we do not advocate this
approach on small size datasets such as the one collected in this work, future
research building on this work with large datasets can incorporate such models
to screen the health of trees based on these measured parameters.

5.2.2 Mapping relation between UHI e↵ect with Tree health

Urban surfaces like road pavements, building facades and vegetation play an
important role in the urban heat island e↵ect. For instance, studies such as [43]
and [34] found that increased greenery is associated with reduction in land sur-
face temperatures (LST). Similarly, Venter et al. [91] use satellite derived land
surface temperature and NDVI to find a link between them in the city of Oslo.
It is found that increasing vegetation is correlated with reducing LST, thus re-
ducing health risk from heat exposure. However, all these studies use satellite
derived parameters for both vegetation quantification and land surface temper-
ature measurements. Since our system is developed to be deployed terrestrially,
a study extending our system with sensors measuring ambient air temperature
and mean radiant temperature along with tree health can be interesting to find
an answer to the research question: how much the health of trees (instead of
the quantity) influences the urban heat island e↵ect and a↵ects human thermal
comfort.

5.2.3 Follow up study with large-scale evaluation

Following up from our discussions in the previous section, a future study em-
ploying this system is planned in the summer of 2022. The main aim of this
study will be to evaluate the system on a large scale with deployment on un-
controlled moving vehicles and automated collection of large datasets. Also,
the system would be evaluated on a varied species of trees and we are in talks
for collaboration with a leading arboriculture company for ground truth data
provision.

52



5.2.4 Selective and Smart Irrigation

Currently, trees in urban cities are irrigated at regular fixed intervals which res-
ults in some trees being over irrigated and some trees being under irrigated. A
high temporal and spatial resolution data related to urban tree health derived
from our system can help in precise selective watering of trees and optimize
irrigation as a function of their water use. This will help in optimal water re-
source management and contribute to the existing e↵orts in the field of selective
irrigation.
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Chapter 6

Conclusions

In this chapter, we will summarise the problem statement, the research questions
and the research gap that this work identified and built upon. We will briefly
describe the methodology used to tackle the problem and summarise the results
obtained. We also enlist the main research contributions of this work and finally,
conclude by presenting a brief discussion of limitations of this work and future
research paths originating naturally based on this thesis.

Urban greenery is essential for developing resilient cities in the face of climate
change. Nowadays, urban trees are experiencing atypical amount of natural
and human-induced stresses which a↵ects their functionality, productivity and
survival. The current major methods of monitoring urban tree health relies
on inspection by arborists (a tree expert), satellite based imagery and airborne
sensing by UAVs or aeroplanes. The assessment by arborists while providing
highest quality of inspection involves high costs leading to a low temporal and
spatial resolution at a city wide scale. Satellite based imagery has high spa-
tial resolution with low spatial granularity and data quality being dependent
on availability of clear skies. Airborne sensing involves high operational costs
and is unsuitable for highly urbanised environments due to aviation regulations.
Further, both airborne sensing and satellite imagery can only capture an over-
head view of urban tree canopies, thus missing or misinterpreting vegetation
elements present below the canopies. Given the recent investigations in oppor-
tunistic sensing at low costs, the goal of this thesis was to answer the following
research question: How can we terrestrially measure the health of urban trees at
both high spatial and temporal resolutions autonomously in a low cost fashion?.
The main measurable attributes of the developed method included suitability
for mobile sensing, assurance of data privacy, low cost and assessment qual-
ity capable of distinguishing between trees with varying health conditions and
validated using ground truth.

6.1 Methodology and Results

To tackle the research question, we performed an in-depth survey of the current
state-of-the art technologies employed for tree health monitoring and identified
a research gap in them. A comparative analysis articulated thermal and hy-
perpectral/multispectral imaging sensors as a promising technologies to employ
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in our system due to low costs, quality of assessment and the flexibility of tree
parameters measured by them.

A prototype system consisting of thermal imaging sensor, multispectral ima-
ging sensor and raspberry pi was developed from ground up. Complementing
software consisted mainly of four modules namely control module for controlling
the sensors, image registration module for data fusion of these sensors, image
segmentation module for identifying the tree canopies from raw sensor data in
uncontrolled environments and analysis & calculation module to generate the
two independent tree health parameters namely NDVI and CTD. A custom
Mask R-CNN model was developed using transfer learning for image segment-
ation on multispectral images and the model was quantized to process images
on the edge ensuring data privacy.

The system was evaluated by collecting data for 49 trees in Cambridge, USA
and comparing the measured parameters of the developed system with ground
truth dataset for the same city. The developed Mask R-CNN performed admir-
ably with an AP

IoU=0.50 = 0.938 despite the small dataset used for training.
The tree health analysis revealed significant and moderately-strong correlation
(r=0.54 with p � value < 0.05) between our measured NDVI and the remote
NDVI from the ground truth dataset. Also, our measured NDVI and remote
NDVI were in agreement with each other as per the Bland-Altman test. Fur-
ther, for both the species of trees analysed, our measured NDVI distributions
were found to be in theoretical agreements with ground truth tree health condi-
tions. For CTD, a pattern with a theoretical agreement was applicable for one
of the species observed, but the same pattern was not seen in the other species
examined. Using the measured NDVI and CTD values, it is straightforward to
assign a continuous ranking of trees under observation. The significant results
illustrated the validity of our approach which involves measuring the health of
trees terrestrially through a system developed for opportunistic low cost sensing
capable of collecting data at high temporal and spatial resolutions on a city-wide
scale.

6.2 Research Contributions

The main research contributions originating from our work are briefly summar-
ised below.

Our work led to the development of a novel system capable of measuring the
health of urban trees terrestrially at high temporal and spatial resolutions in a
low cost opportunistic fashion. In the process of development of this system,
we developed a custom Mask R-CNN which can perform instance segmentation
of tree canopies in multispectral images with processing on the edge. This
mask R-CNN based approach allowed us to extract useful information from low
resolution thermal images.

We also reviewed and performed a comparative analysis of the state of the
art methods and technologies used to measure the health of trees. Further, we
elaborate and discuss on our experience of using two of these technologies and
address the research gap of large-scale opportunistic sensing based urban tree
health monitoring.
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6.3 Limitations

We elaborated and discussed some assumptions and choices made during this
work, the main ones of which are briefly described here.

The main limitation of our work is the generalisability of tree health results
obtained. Due to winter season, our analysis was only limited to two species of
evergreen trees. Further, our ground truth dataset is from the summer of 2018
and a comparison with a more recent dataset along with arborist interaction
will be interesting. It is possible and expected that some trees in the dataset
might have di↵erent health conditions than in the ground truth dataset. Thus,
the quality of our results specifically regarding CTD values could have been
improved by incorporating the new health labels in the ground truth dataset.

Further, we collected data using our system in a citizen science based paradigm
where a person moving at low speed was carrying the system. While our system
and method is suitable to be deployed on moving vehicles, the thermal ima-
ging sensor used in the system might need to be replaced with another thermal
imaging sensor with a higher frame rate.

6.4 Future work

We discussed and identified several future research paths originating from this
work, the most interesting ones of which are briefly summarised as follows.

Naturally originating from our main limitation, a follow up study with de-
ployment on moving vehicles with large scale data collection is scheduled in the
summer of 2022. A large scale data collection will also allow the employment of
white box model-based classification techniques.

Further, the developed system can be extended by adding ambient air temper-
ature and mean radiant temperature sensors in order to quantify a relationship
between tree health (rather than quantity of trees) with the Urban Heat Island
e↵ect and human Thermal Comfort in cities.

In essence, a comprehensive urban platform measuring the quantity of trees,
their health, quantifying the urban heat island e↵ect and air pollution at high
spatio-temporal resolutions can be substantially useful in improving the resili-
ence of urban cities in the face of climate change.
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Chapter 7

Scientific Papers

The work presented in this thesis has led to two papers, the drafts of which
are attached herewith. These will be submitted for publication in the coming
weeks.
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1 Introduction

Urban forests, parks and greenery increase cities’ resilience due to their ability to mitigate the e↵ects
of climate change [53] such as the Urban Heat Island (UHI), a phenomenon that leads to an air
temperature di↵erence as high as 10� C [29] in highly urbanized cities compared to the rural or
sub-urban surrounding.

In cities, urban canopies and vegetation provide a wide range of ecosystem services such as air
filtering, carbon sequestration, reduced energy consumption (via direct cooling and shading) and lower
local temperatures [24, 32]. Trees mainly reduce the local heat index by both shading, decreasing the
direct incoming net radiation; and transpiration, transferring latent heat energy from the leaf to the
atmosphere which in turn reduces the amount of hot air trapped in its surroundings [29]. Both these
factors compound their e↵ects to enhance the cooling benefits of trees [29], improving the perceived
tolerance of the pedestrians with the environment (Human Thermal Comfort) [29, 15].

However, urban trees are experiencing an ample amount of abiotic (external, non biological factors
e.g. drought, salinity) and biotic (Biological factors, e.g. Insects, bacteria etc.) stressors that are
being exacerbated due to climate change [25, 50, 5]. As a result, their functionality, productivity, and
survival are of increasing concern [77]. Indeed, trees with poor health cannot provide most of the
aforementioned ecosystem services [28, 30]. For instance, trees with low transpiration rates do not
cool the environment su�ciently and trees with low growth rate have reduced shading e↵ect.

Although frequent inspections can identify and correct stresses, keeping trees healthy; the greenery
is a high-maintenance asset because it is constantly changing due to natural and human-induced causes.
Globally, the total cost of inspection, maintenance and settlement of tree damages is estimated to be
more than $2 trillion USD [79]. Maintaining sarge trees is particularly costly [28]; yet large trees can
provide up to 8 times more ecosystem benefits compared to smaller ones [47]. In addition, large trees
also have higher economic value than young tree, due to their historical-cultural values and due to
their size that improves their cooling e�ciency.

Nowadays, a tree’s health can be inspected by arborists (a tree expert) with good quality results,
but usually at high costs, leading to an assessment that has a low spatial and temporal resolution.
However, in recent years, a few technology-assisted screening methods have been developed to com-
plement manual methods. Satellite-based imagining can cover large areas although at a low space
granularity [21], with data quality depending on the availability of clear skies [21] and low-time reso-
lution because satellites revisit the same spot only every few days. Airborne sensing using Unmanned
Aerial Vehicles (UAVs) or aeroplanes leads to an increased spatial granularity [21]; yet it involves high
operational costs and may be not suitable in highly urbanized environments due to aviation authority
regulations. Further, both airborne sensing and satellite imagery can only capture the overhead view
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of the urban canopy. As a result, vegetation elements such as green walls, short trees or shrubs present
under the tree canopy are often missed [43].

Recently, a number of projects have investigated the use of low-cost technological alternatives
to survey the amount of urban greenery present. For instance, by using Google street view (GSV)
images to detect the presence of trees [42, 64], or to calculate the the species diversity and changes in
urban cities [11]. These projects are set within the field of opportunistic and low-cost sensing aimed
at developing environmental platforms that can be deployed and operated without the need of an
established, expensive infrastructure.

In this paper, we review the state of the art of low-cost and opportunistic technologies to detect
and map the health of urban greenery. We aim at understanding what type of health information
can be captured, and how those methods compare with traditional ones. We discuss how tree health
conditions impact on the expected ecosystem services and we discuss how di↵erent stakeholders can
utilize greenery health data for the design of cities. We conclude the paper highlighting existing
research gaps and discussing design choices for the development of new approaches.

2 Characterizing greenery attributes and health

Trees consist of (i) below-ground root system, serving as nutrient, water allocator and transporter, and
as a mechanic stabiliser, (ii) a woody trunk and branches, that transfer water (via the xylem conduits)
from the soil to the leaves and allocate soluble sugars (products of photosynthesis) to the required
locations in the tree; and (iii) leaves, the main site of the plant gas exchange with the atmosphere -
the photosynthesis machinery sequestering carbon dioxide and transpiring water vapor.

Early detection of conditions such as cavities, wounds, diseases etc. in trees can help in taking
preemptive action to save the tree and prevent damage to human lives as well as property and to
maintain the tree functionality [38]. Unlike the simple visual detection of tree damage, tree physi-
ological stress and damage is often undetectable to human eyes and the ’point of no return’ can be
long after the visual evidence to a human eye [57, 26, 27]. Further, trees under stress reduce their
transpiration rate to prevent excessive water loss, and as a result store less CO2 and decrease their
growth rate. Such trees have a weak defensive mechanism and their general health state is damaged,
making them vulnerable to insect attack and diseases as well as increasing the chances of mortality.
If a tree health state is poor, its e↵ective contribution to the urban environment is limited, and unlike
rural environments, fast measures are needed to improve its health. Urban trees experience ongoing
stress due to a unfavourable habitat, mainly originated by; soil limitations, energy limitations and
management constrains. Thus, the ability to continuously monitor the tree for its health, water use,
growth rate and greenness together with understanding the soil quality trends, is crucial for identifying
early signs of stress and allowing early intervention and management in order to save trees, money,
and reduce environmental damage.

Soil limitations Urban soils can be highly variable within small spatial scales and have typical
characteristics such as di↵erent bulk densities due to soil compaction, the contents of organic matter, or
the patchy distribution of coarse natural or human-made materials such as large gravel or construction
waste, as often even the parent material is anthropogenic in origin. Urban-forest soil health is the
primary determinant of urban-tree health. Soil limitations and quality lead to restricted space for
roots to develop, preventing trees to have proper growth and eventually reduce the tree lifespan
significantly [31]. The limited soil volume usually available to the urban tree (with respect to forest
trees) also su↵er from polluted runo↵ - containing hazardous elements, and increasing the soil salinity
thus reducing the root ability to extract water from the soil. Occasional flooding event, that are
projected to increase with climate change, will also leads to root oxygen limitation (Anoxia).

Energy limitation The main energetic sources required for a tree to function and grow, are radiation,
heat, and water. The urban environment has limited sunlight availability due the buildings around it
(urban canyon), allowing only short times spans of su�cient sunlight. Heat energy is crucial for most
developmental stages and for all biochemical process in the photosynthesis process, according to each
species thermal optimum [20]. The main driving force for the water movement in the tree stem, from
the roots to the top of the canopy, is the vapor pressure gradient between the air (unsaturated) to the
leaves (usualy in near saturation of water vapor) [51], also called as the atmospheric demand for water
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(VPD - Vapor Pressure Deficit). Above-average air temperatures and heatwave events, which both
often occurs in urban environments [63], can lead to an excessive water loss due to high VPD. Trees
under drought stress, mainly resulted from high temperatures or low soil water availability, close their
stomata (the small pores in the leaf that allow gas exchange CO2 uptake and H2O evaporation) to
regulate water loss via transpiration and as a result reduce their local cooling e↵ect. Another outcome
of this ’life saving’ stomatal regulation, is a reduced photosynthesis that leads to reduced growth.
Water availability for urban trees can be unlimited, mainly thanks to irrigation solutions, but the
demand for water, is very high and therefore, it is important to match the supply to the increasing
demand - to preserve tree health.

Management constrains Trees in urban environment, experience intensive pruning, physical dam-
ages and poor maintenance due to high competition on land by the other urban residents’ constraining
also the canopy crown volume. Urban trees also su↵er from pollution of vehicles, industry, runo↵ etc.

2.1 Inspection Techniques

In general, arborists measure tree health firstly by visual inspection and non-invasive techniques
for screening, diagnostic or evaluation purposes [41] [71].. Soil quality, and soil water quality can be
measured by soil sampling and laboratory physical and chemical analysis, by soil sensors that measures
electrical conductivity, temperature and water content. Water limitation can be detect by the same
soil moisture sensors, by sensing the air dryness (RH and temperature), and by measuring the tree
water consumption and status (using sap flow sensors or various leaf scale temporal measurements).
Insect and physical damage to leaves and other organs can be visually manually detected, and also by
using image analysis deep learning [60, 49, 52].

However, these techniques may not provide su�cient information about the presence of damages
and their extent. For instance, external symptoms of decay may be absent even in the presence of
internal decay [41]. This in turn may lead to delayed action, when the tree has already reached its
terminal stages [10]. In order to verify the health and provide complete information about the extent
of damage in trees, visual inspection is sometimes combined with more invasive methods like electrical
resistance (involves calculating voltage di↵erence by attaching electrodes and passing electric current
through the trunk) or destructive instruments like increment borers (a wooden core from the tree
is extracted and analysed). Methods that require drilling and penetration in the sapwood (living
wood), thus creating an entry for pathogens or altering the structural integrity of. However, both
invasive and non-invasive methods require intensive manual human labour with low spatial scalability
as the analysis is done one tree at a time. Overall, the general rule is to start with the least damage
causing method for screening the health of trees such as stress wave velocity [71] and then apply a
more aggressive technique such as boroscope to get more information about the damage or decay
[54]. Currently, various manual inspection methods exist and they are summarised based in Table 2.1.
More details can be found in References [71], [41] and [23].

3 Inspection strategies for Greenery health

In this section, we review new techniques for low cost opportunistic sensing of urban tree health. The
aim in these methods is to generate an accurate representation of single or multiple parameters of a
tree such such as chlorophyll, water transpiration etc. Herewith, each approach was further analysed
to critically to determine its advantages and disadvantages.

3.1 Material and Methods

The reviewed works were scouted by performing a query search on the Google Scholar and Web of
Science portals between June 2021 to February 2022. The keywords used in the search were: tree, tree
health, vegetation health, vegetation index, mapping, monitoring, inspection, methods, techniques,
sensing, sensor, mobile, thermal camera, thermal imaging, infrared, thermography, drive-by, vehicle,
vehicular sensor network. The keywords were combined with ”AND” and ”OR” operations as well
as the use of brackets (”()”). Amongst the results generated, the abstracts of the works were read
to select relevant papers which were further analysed. The reference list of relevant works was also
taken into account and repeated references were also examined. Works older than the year 2000 were
excluded from the study; although only two works have been found in the period 2000-2010. After
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Method Property Mea-
sured

Output De-
tail/Resolu-
tion/Quality of
Assessment

Cost* Level of inva-
siveness

Increment
borer

Visual inspection Low $ Invasive

Boroscope Internal visual in-
spection from in-
side

Moderate $$ Invasive

Resistograph Penetration resis-
tance

Moderate $$ Invasive

Shigometer Single probe elec-
trical resistivity

Moderate $ Invasive

Fractometer Strength and
sti↵ness

Moderate $ Invasive

Stress wave ve-
locity

Single path
acoustic wave
velocity

Low $$ Non-Invasive

Electrical resis-
tance

Multi-probe elec-
trical resistivity

Moderate $$ Non-Invasive

Stress wave to-
mography

Multi-path
acoustic wave
velocity

High $$$ Non-Invasive

Electromagnetic
tomography

Electromagentic
wave permittivity

High $$$ Non-Invasive

Nuclear mag-
netic resonance
(NMR)

Magnetic prop-
erty

High $$$$$ Non-Invasive

Electronic nose Odour Low $$ Non-Invasive
Gamma-ray
computed To-
mography

Gamma ray
transmissivity

High $$$$$ Non-Invasive

Table 1: Summary of manual techniques for detecting tree damage (* refers to relative cost where $
is lowest cost and $$$$$ is highest )

this process, we retained fifty-one papers that were read in depth. After this process, nine papers
were found to be irrelevant in the bigger context of the problem and were excluded. Each paper was
annotated as well as relevant interesting parts were digitally highlighted for later analysis.

Each of the methods reviewed is classified based on the primary and secondary sensors used and
is summarized briefly in Table 2 and 3.

3.2 Embedded sensing methods

Embedded methods involves the use of static sensors which are directly attached to the trees or
are placed near the trees to measure a property at regular intervals. Usually, they generate data
at high temporal resolution with little or no human supervision required. The physical property
measured by these methods can vary from detection of sudden vibrations to measure of water uptake
and transpiration. Potamitis et al. [56] explores the use of an accelorometer-based sensor which is
attached to the tree to monitor the presence of movement of insects or larvae in the internal part
of the tree by transmitting the internal vibrations of the trunk. This approach is deemed to be cost
e�cient as it reduces repeated visits by a human to examine the tree for presence of insects at regular
intervals. Shabandri et al. [65] uses various sensors to detect a multiple physical phenomenon such as
sudden tree movements, availability of su�cient sunlight and soil moisture; and it sends the gathered
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data to a centralised server to shows real time alerts in an app. In [76] and [3], sensors are installed in
the surrounding of the tree which are used as input features for developing a machine learning based
algorithm to classify between healthy and unhealthy trees. In these works, various features such as
air temperature, humidity, soil humidity and soil acidity are fed into a neural network based model
in case of [76] and regression model in case of [3]. In a follow up work [73], the same approach is
extended with real-time transmission of the sensor data to a server using low-energy wireless networks.
In a similar approach, Wu et al. [79] use the bifurcation of features into static and dynamic categories
and feed them to a neural network to output a new index namely Urban Tree Health Index (UTHI).
The static features are composed of parameters such as tree species, age, rooting area etc. whereas
dynamic features consists of parameters such as air temperature, air humidity, soil moisture, tilt angle
etc. The dynamic features are fed into a recurrent based neural network (RNN) layer and the static
features are fused with the output of the RNN into fully connected neural network layers.

In all these works [76] [3] [73] [79], the ground truth tree health data is obtained using manual
inspection. In other works, Borges et al. [10] propose an Electrical Impedance Spectroscopy (EIS
system) to assess the physiological stress in the trees. In this work, a pair of electrodes are placed
in the trunk of the trees at diametric positions and an alternating current or a voltage with varying
frequencies is passed and the resulting impedances are measured. It is found that there is a strong
correlation with the ratio of impedances at predefined frequencies with the physiological stress in the
trees. In [35] dendrometers (a analog or digital tool to measure trunk growth and shrinkage) are
used to detect long term seasonal growth patterns, daily cycles of water uptake and shorter patterns
like swelling after rainfall and subsequent drying [18, 61]. Further, dendrometers can be combined
with sap flow sensors, which measure water flux through the stem, to estimate both transpiration as
well as hydration at tree level and to detect early signs of tree mortality [57]. A throughout review
of additional static sensors is provided in [69]. In general, all these methods require installation of
a sensor either on or near the trees. Thus, leading to high cost of deployment on a per tree basis
with the benefits of reduced human labour thereafter. Further, with the development of new types of
sensors, new tree properties can be measured in future.

3.3 Imaging Based Methods

In this section, we discuss imaging based techniques such as thermal imaging, hyper spectral imaging
and LiDAR based methods to measure the health of trees. The works are classified into each section
based on the primary sensor used. A subset of the works reviewed were found to use a a combination
of multiple approaches and they are classified as multi-sensory methods. The methods in this section
allow analysis of multiple trees using a single sensing equipment. This makes them suitable for low
cost sensing at the expense of varying quality of sensing. However, it is seen that the analysis of data
collected for trees is usually done manually and deterministically by a human.

3.3.1 Thermal Imaging Thermal imaging based on IR (InfraRed) radiation emitted from biological
materials is one of the most emerging technological approaches for tree health monitoring. It has been
mainly used for either detecting cavities in tree trunks or measuring the water stress in trees.

Early works in this field [13, 14] relied on experts manually reviewing thermal images to identify
conditions such as cavities and zones of decay in the bark or branches of a tree (wooden part). The
areas with cavities appear cooler in thermal footprint than the rest of the bark surface. However, the
extent as well the cause of the decay can hardly be estimated using thermal images alone. Moreover, to
provide reliable results, the tree surface has to be shielded from direct sunlight since the sun-exposed
areas may show higher temperature in the thermal images; hiding potential damages. Further, since
water absorbs the IR radiation, the part which is examined cannot be wet. Also, the surface of the
tree being examined has to be free of moss or other vegetation.

Leong et al. [41] argued that while thermal imaging is a good technique to screen trees for possible
damage (binary classification), more advanced techniques are needed for an accurate health inspection.
A recent review on thermal imaging techniques for tree health assessment by Vidal and Pitarma [71]
found that there is no generalised temperature gradient pattern in terms of shape and size, along the
bark to detect damage across various species of trees. Although the area near a deteriorated tissue
might have a lower temperature, di↵erent conditions can generate di↵erent temperature gradients

7



along the trunk of two di↵erent trees even if they belong to the same species. The main works
analysed by the authors are also summarised concisely in Figure 1 in appendix (As shown from [71]).

Pitarma et al. [54] give an overview of the intricacies as well as the complexities of thermal imaging
to detect the health of branches and the trunk taking into account the atmospheric temperature, the
exposure to sun and the thermal environment of observations. The method used in this work again
relies on the temperature di↵erences between various parts of the tree. Specifically, it is illustrated
that even if a part of the tree is exposed to sun, inferences can still be made about the health of a
branch by comparing its temperature to atmospheric temperature. However, these inferences require
expert knowledge.

On a separate note, while most of previous works focus on identifying colder parts in the tree’s
trunk as an indicator of poor health, others [67][45] argue that the early onset of diseases in trees is
in-turn associated with temperature increase. For instance, Smigaj et al. [67] used a thermal camera
mounted on a UAV to detect sub-degree temperature rise in the leaf and canopy temperature of trees
a↵ected by red band needle blight ; a common disease. The infection level of each tree was manually
assessed at ground level for validation. Similarly, Majdak et al. [45] found that infected trees have
higher trunk temperature than un-infected trees and the di↵erences are more noticeable on warm and
sunny days than on cold and cloudy days. In a study that leveraged a drive-by sensing approach,
Fuentes et al. [21] mounted both thermal and visible imaging cameras on top of moving vehicles to
monitor the green infrastructure of Melbourne, Australia, at a tree-by-tree scale. The tree growth
was estimated in terms of Leaf Area Index (LAI) and Tree Water Stress Index (TWSI). The LAI
was measured by applying computer vision algorithms to the RGB images of tree canopy to segment
leaves from the rest of the environment. The TWSI was measured using the canopy temperatures
obtained by the thermal camera. The approach was also deemed privacy preserving as the cameras
were mounted in an upward looking fashion facing towards the sky and the images are captured above
the pedestrian level.Other work employing thermal cameras for water stress detection include [48],
[68] and [37].

Finally, Kwok et al. [38] proposed a machine learning based method to automatically extract ab-
normal tree parts potentially containing cavities from thermal images installed at static positions.
The method used k-mean clustering and Sobel gradient filter to identify potential cavities and the
evaluation was performed on a dataset specifically created for this study and consisted of four tree
species along with manual verification by an arborist. Similarly, Jiménez-Bello et al. [34] developed
an automated method to calculate plant water stress by using a fusion of RGB (visible) and thermal
imaging. It was found that the type of tree under examination had an important influence in de-
termining the correlation with ground truth water stress results. Interestingly the process was fully
automated using unsupervised classification in RGB images. In the follow study [7], further intricacies
involved in usage of thermal imaging to detect water stress are enlightened. It was seen that the size
of leaves may have a significant e↵ect on the performance of thermal imaging. Futher, the absolute
values of CWSI and canopy temperature do not yield accurate correlation with actual water stress
and thus, relative comparison with control trees is required. On a seperate note, Burcham et al. [12]
suggest that thermal imaging does not provide accurate results about the internal condition of trees
containing decay and cavities and can only be used to detect superficial bark surface damage damage
like detached bark or mechanical damage.

3.3.2 Hyperspectral/Multispectral Imaging In Hyerspectral and multispectral imaging, various
bands in the electromagnetic spectrum are captured which may or maynot be in the visible range.
This captured data is then used to calculate various vegetation indexes, the most popular of which
is NDVI.NDVI stands for Normalized Di↵erence Vegetation Index (NDVI). NDVI relies on the ratio
between visible red band and the near infrared (NIR) signals reflected by the vegetation and is widely
used for vegetation health assessment. The NDVI index relies on the property of the chlorophyll
present in the leaves which absorb red light and the cell structure of the leaves which reflects NIR.
Higher NDVI values symbolise healthy photosynthetic capacity while lower values symbolise poor
health or presence of stress in trees or absence of vegetation. This technique, while already being
measured using satellites and drones can also be measured terrestrially to give an estimate of tree
health. This terrestrial measurement can be done using either active NDVI sensors which have their
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own energy source or passive NDVI sensors such as hyperspectral or multispectral cameras. Both of
these types of sensors are readily available in the market from various manufacturers [78] [2]. Huang
et al. [33] give a comprehensive review on the e↵ectiveness of NDVI as a measure of the health of
vegetation, but they also argue for the need of calibration of NDVI sensors. Further, Bahe et al. [6]
suggest evidence that NDVI values can give accurate stress detection results when comparing data
within one species and not across diverse species.

In recent works, Bietresato et al. [8] uses a mobile robot with NDVI and LiDAR sensors to detect
health of five plants in a controlled environment. LiDAR is used to model the plant volume whereas
NVDI sensors by OptRx [78] (popular in literature) are used to measure plant health and discriminate
between vegetation, flower pots and background. The preceding work is continued in [72] and the
vegetation thickness and NDVI index are combined to give a diagnostic matrix to give region wise
vegetation index map. The approach of combining NVDI and LiDAR is also used in [19] where
individual tree are identified from point clouds using both hyperspectral and depth information. Then,
for health analysis, geometric parameters of the trees such as height, inclination and crown diameter
are determined using LiDAR data and physiological parameters to be determined from hyper-spectral
data are left to be explored in a further study. In [74], in order to reduce the cost associated with
NDVI sensors, the NDVI index is calculated by modifying a regular RGB camera to remove the NIR
rejection filters. In [4], the authors provide the design and implementation of a handheld generic
sensor that can configured to give various characteristics of a plant such as NDVI, LAI and nutrient
requirements. The maximum distance of the target under measurement from the sensor in this study
is 4m.

As discussed earlier, NDVI is also measured using satellites or other airborne approaches, e.g.
employing aeroplanes or UAVs. In [36], the NDVI index calculated using satellite data is correlated
with Land Surface Temperature (LST). Degerickx et al. [17] utilised LiDAR data for individual tree
segmentation and hyperspectral imaging from an aeroplane to detect tree health. The authors in [81]
used multispectral remote sensing data to measure health of trees at both pixel level and whole tree
level. Lausch et al. [39] gave an overview of various remote sensing strategies available for sensing
forest health and advocate the fusion of terrestrial data along with remote sensing based approach to
achieve a better health assessment.

3.3.3 LiDAR LiDAR stands for Light detection and and ranging. It is used to determine variable
distances to an object under consideration or surface by targeting it with a pulsed laser and measuring
the time for the reflected light to return to the receiver. In [46], the authors used a mobile LiDAR
system in a two stage process. In the first stage, the species of the tree is identified by first determining
if the tree is coniferous or deciduous and then examining the branching behaviour. In the second
stage, the health of the tree is calculated by analysing the point density of the tree which involves
an estimation of the leaves surrounding each branch in the tree. Wu et al. [80] compares LiDAR
based airborne laser scanning (ALS) and LiDAR ground based mobile laser scanning (MLS) for tree
detection, tree species classification and vitality classification. It is found that while ALS in general,
gives better performance to MLS, the combination of both ALS and MLS surpasses the performance
achieved by only either of them. For tree health alone, more useful features were extracted from MLS
compared to ALS. Degerickx et al. [17] derive Leaf Area Index (LAI) for tree health quantification
using laser penetration metric of LiDAR. It is found that specifically for LAI, LiDAR performed better
than hyperspectral data. Similarly, [62] also uses low cost LiDAR sensor ($129) for ground based LAI
measurement to quantify health of oil palm trees using intensity data.

3.3.4 Multi-Sensory Approaches The works discussed in this section use a combination of pre-
viously discussed methods. This enables them to measure more than one parameter related to tree
health than is possible with a single sensor or overcome the drawbacks of a single sensor.

Kim and Glenn [37] uses a multi modal system comprising of thermal camera, IR thermometers,
multi spectral camera and NDVI sensors to detect plant water stress. The use of multiple sensors is
based on the hypothesis that water stress causes: 1. leaf temperature changes which are identified
using thermal camera and IR thermometers 2. leaf color changes which are identified using multispec-
tral camera and NDVI sensors. The sensors were mounted on a mobile vehicle and evaluation was
performed in a controlled environment consisting of irrigated and non irrigated trees. It was found
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that the array IR thermometer can serve as low cost alternative to thermal camera, at the expense of
bulkiness. Further, the NDVI sensor was found to perform better than the multispectral camera to
distinguish between dry and irrigated trees.

Qu [58] proposed two methods to detect tree health based on the leaf area index (LAI). The
first approach uses fixed light sensors installed above and below the canopy to measure received
and transmitted solar radiation and quantify the LAI. The second approach uses handheld device
containing two smartphones which determine the LAI by applying object segmentation on the captured
image. Both the methods were evaluated in a controlled environment and the measured LAI values
were compared against a commercially available handheld device (LAI-2000) which is used to measure
LAI.

Further, Google and Baidu panoramic street view images have also been used to quantify the extent
of urban greenery. Li et al. [44] quantified the shading e↵ect of urban trees using panoramic google
street view (GSV) images. In [82], the authors used custom hemispherical view panoramic photos
and employed image processing on the resulting photos to give a quantification of urban greenery at
pedestrian level. The resulting quantification of urban greenery called panoramic green cover index
(PGCI) was also correlated with land surface temperatures and NDVI of the urban areas. A similar
approach is used in [1] and [75] where the authors used panoramic images from Google and Baidu
respectively. However, these street view based approaches have only been used to quantify the spread
of urban greenery rather than it’s health.

4 Discussion

4.1 Preliminary Comparison

A comparison of the surveyed methods in terms of working mechanism, cost and quality of tree health
assessment and level of invasiveness is shown in Table 4.

While manual methods like nuclear wave resonance or stress wave tomography have high quality
of assessment, they are time consuming and infeasible in terms of cost for analysing each and every
tree in the urban area. Further, the amount of labour involved is also huge. Terrestrial static methods
again lead to high cost for analysing each and every tree due to sensors costs with the benefit of
reduced human labour. The quality of analysis is also lower than manual methods. On the other
hand, although infrared thermography has been used to compute TWSI [21] [48], most of the perused
literature [71] [14] uses it for detection of presence or absence of decay only (binary classification).
NDVI sensors give more quantitative information about the health of trees, however, commercially
available NDVI sensors (OptRx) are more expensive (cost > $3000 per sensor) than thermal cameras
($300-$3000). Sometimes, the NDVI may reach the maximum value due to the chlorophyll content
causing peak greenness. Hence, any health issue may become di�cult to detect until the problem
progresses enough to reduce the NDVI value from the peak maximum value [22]. This may delay the
detection of the problem and prohibit gauging the health accurately. LiDAR based detection methods
as discussed in [17] [62] are mostly used to calculate LAI. However, the LAI value varied with respect
to commercial handheld LAI measurement devices. Street view based methods [44, 82, 1, 75] while
cost e↵ective are only able to quantify the extent of urban greenery at pedestrial level rather than its
health.

4.2 Privacy Aspects

Thermal cameras are susceptible to privacy invasion, however, a number of techniques are available to
tackle this. A subset of these include: [55] where the authors enforce privacy at sensor level. The main
idea relied on the assumption that the human facial skin temperature lies in a particular temperature
range. Based on this assumption, all the parts of the thermal image lying in this temperature range
are blurred out by appropriate modifications to the sensor hardware and firmware. Compared to
the traditional and straightforward approach of capturing facial features first and then running post
processing on the image to blur the face, this idea is interesting in the sense that no facial features
are actually captured in the first place. Similarly, another approach to preserve privacy that was used
in [21] to measure tree health was to mount the cameras so that they are mostly upward looking and
the frame level is always above the pedestrian height as shown in Figure 5 [21].
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Approach Working
Mechanism

Quality of As-
sesment

Cost Level of inva-
siveness

Manual Methods Depends on
Method

Varying on
method, gener-
ally high

$$$$ Depends on the
method

Terrestrial static methods Depends on
Method

Lower than
manual meth-
ods

$$$ Depends on
method

NDVI Properties of
Chlorophyll

High quality
Quantitative
Value

$$ low

Thermal Imaging Cavities, tem-
perature gradi-
ent and water
stress

Cavities, temp.
gradient:
Mostly Binary
Classification,
Water Stress:
Quantitative
Value

$ low

LiDAR Uses laser pen-
etration metrics
for parameters
like LAI and
leaf density

Low quality
quantitative
Value

$ to $$$ low

Street view based methods Image process-
ing to detect
greenery

No health asses-
ment, only ex-
tent of greenery

$ low

Remote Sensing Satellite Im-
agery

Top level view
only

$ low

Table 4: A comparison of approaches to analyse tree health

4.3 Use cases

4.3.1 Healthy greenery and Urban Heat Island E↵ect Urban surfaces like road pavements,
building facades and green vegetation play an important role in UHI e↵ect. Some of the existing works
[40][9] in this domain use an infrared thermal camera to measure the temperature of surface at the
pedestrian height. However, these works are based on the assumption that, there is a high correlation
between land surface temperature (LST) and ambient air temperature [16]. The City Scanner nodes
already contain the ambient temperature & humidity sensors and the addition of a sensor to detect
vegetation health can provide a quantitative relation of these parameters with the UHI e↵ect at hyper
localised level. The remainder part of this section will give a brief overview of the works perused
related to the UHI e↵ect.

Lee et al. [40] analysed three streets in South Korea using a manually held infrared camera and
concluded the e↵ect of various urban elements on UHI. Interestingly, while trees provide a shading
e↵ect during daytime to reduce temperatures, they also retain more heat during night time. Further,
they found that surface temperature were higher near restaurant buildings.

In [16], the authors used satellite based NVDI to suggest increased greenery being associated with
reduction in LST as also found in [9]. Binarti et al. [9] used a fusion of satellite imagery and handheld
thermal infrared cameras to get an accurate mapping of both horizontal surface temperatures (like
roofs of buildings) and vertical surface temperatures(walls, facades). The authors found that while
di↵erent thermal properties of surface materials e↵ect the LST, the e↵ect on ambient air temperature
was insignificant.

Linking UHI and urban tree canopy, Venter et al. [70] use satellite derived land surface temperature
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and NDVI to find a link between them in the city of Oslo. It is found that increasing vegetation is
correlated with reducing LST, thus reducing health risk from heat exposure. [59] evaluates di↵erent
characteristics of tree species and studies the cooling e↵ect due to various tree variables such as canopy
density, tree height, leaf thickness etc. The work relies on external reviewed studies, all of which follow
di↵erent study protocols and methodology. Nevertheless, the authors are able to suggest some context
specific planting design guidelines.

4.3.2 Selective Watering Currently, trees are irrigated at regular fixed intervals which results in
some trees being over irrigated and some trees being under irrigated, due to high heterogeneity in water
consumption by individual trees and soil hydraulic properties. A high temporal and spatial resolution
data related to urban greenery can help in precised selective watering of trees and optimize irrigation
as a function of their water use. Using precised urban irrigation (a practice that is becoming more
common in agriculture[66]), can improve cooling by transpiration, save water expenses and improve
tree health and soil fertility.

5 Conclusion

The manual methods of tree health inspection like nuclear wave resonance or stress wave tomography
have high quality of assessment, they are time consuming and infeasible in terms of cost for analysing
each and every tree in the urban area. Further, the amount of labour involved is also huge. While,
satellite and airborne based remote sensing approaches can cover large areas but with low resolution
per pixel [21], they are only able to analyse the vegetation from overhead view. Further, the presence of
background materials such as grass or shrubs within the same pixel a↵ects the reliability of observations
[76]. In contrast, ground based sensing can look at vegetation elements in a more holistic manner.
Based on the emerging technologies perused, the use of thermal imaging to analyse attributes of
tree such as water stress index and cavities in trees seems promising and suitable for future research.
Hyperpectral/multispectral imaging can be used to generate a number of vegetation indexes, the most
popular of which is NDVI. Contradictory studies were seen on the usage of LiDAR with some works
such as [62] claiming no increase in performance with its addition. It is seen that most of the works
perused which measured tree health from ground level except two [21] [37] use manual judgment and
processing by humans on the data collected. This makes them ine�cacious to be deployed on large
scale with data collection at regular time intervals. In essence, although there are ample works which
have tried to measure tree health from ground level, measuring this health autonomously without
human intervention and scaling it to be suitable for large scale deployment is an open field of research.
Given the current advances in the field of artificial intelligence, low cost sensing and edge computing
and the strong need to develop climate adaptive cities, new methods for monitoring urban greenery
need to be explored at the intersection of environmental and computational science.
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[7] C. Ballester, M. A. Jiménez-Bello, Juan R. Castel, and Diego S. Intrigliolo. Usefulness of ther-
mography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest
Meteorology, 168:120–129, 2013.

12



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Large-scale monitoring the Health of Urban Trees using Mobile
Sensing

Akshit Gupta∗
MIT Senseable City Lab
Cambridge, MA, USA
aksgupta@mit.edu

Simone Mora
MIT Senseable City Lab
Cambridge, MA, USA

moras@mit.edu

Fan Zhang
MIT Senseable City Lab
Cambridge, MA, USA
zhangfan@mit.edu

ABSTRACT
To be written

ACM Reference Format:
Akshit Gupta, Simone Mora, and Fan Zhang. 2022. Large-scale monitoring
the Health of Urban Trees using Mobile Sensing. In Proceedings of conference
Title (Conference name). ACM, New York, NY, USA, 11 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Urban forests, parks and greenery increase cities’ resilience due
to their ability to mitigate the e�ects of climate change. As per
the latest IPCC Report [8], global warming and climate change
presents multiple risks to humans as well as nature and protecting,
managing and restoring ecosystems is fundamental for climate
resilient development. In cities, urban canopies and vegetation
provide a wide range of ecosystem services such as air �ltering,
carbon sequestration, reduced energy consumption and decreasing
local temperatures [20, 25].

However, urban trees are experiencing an ample amount of abi-
otic and biotic stressors that are exacerbated due to climate change
[11, 21, 34]. As a result, their functionality, productivity, and sur-
vival are of increasing concern [40]. Trees with poor health cannot
provide most of the aforementioned ecosystem services [22, 24].
For instance, trees with low transpiration rates do not cool the envi-
ronment su�ciently and trees with low growth rate have reduced
shading e�ect.

Greenery has been a high-maintenance asset because it is con-
stantly changing due to natural and human-induced stresses. Nowa-
days, tree’s health can be inspected by arborists (a tree expert) with
good quality results, but usually at high costs, leading to an assess-
ment that has a low spatial and temporal resolution. However, in re-
cent years, a few technology-assisted screening methods have been
developed to complement inspection by arborists. Satellite-based
imaging can cover large areas although at a low spatial granularity
[18], with data quality depending on the availability of clear skies
[18] and low-time resolution because satellites revisit the same spot
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only every few days. Airborne sensing using Unmanned Aerial Ve-
hicles (UAVs) or aeroplanes leads to an increased spatial granularity
[18]; yet it involves high operational costs and is not suitable in
highly urbanized environments due to aviation authority regula-
tions. Further, both airborne sensing and satellite imagery can only
capture the overhead view of the urban canopy. As a result, vege-
tation elements such as green walls, short trees or shrubs present
under the tree canopy are missed [31] or even misinterpreted as
tree canopy [1].

Recently, a number of studies have investigated the use of low-
cost technological alternatives to monitor the environment in urban
cities; for instance, using Google Street View (GSV) images to detect
the presence of trees, such as [30, 36], or using drive-by sensing to
measure air pollution in an area [4]. These projects are set within
the �eld of opportunistic sensing and are aimed at developing
platforms that can be deployed and operated without the need of
an established, expensive infrastructure and human operator.

Following on this trend and the critical need for managing and
protecting urban ecosystems, in this work, we aim to answer the
following research question: how can we measure terrestrially the
health of urban trees in a low cost opportunistic fashion at a high
spatial and temporal resolution? Considering the advantages of
drive-by sensing and the low variability of tree health within a
day, the system developed in this work will either be suitable to
be deployed independently in a drive-by sensing approach like
CityScanner[4] or be suitable to be carried by humans in a citizen
science based approach. This system serves as the main research
contribution of our work. Deployment of this method on large scale
will contribute towards protecting and managing nature e�ectively
for cities and municipalities around the world.

2 RELATEDWORK needs
to
be
up-
dated

A comparison of the surveyed methods in terms of working
mechanism, cost and quality of tree health assessment and level of
invasiveness is shown in Table 1 from our previous work.

While manual methods like nuclear wave resonance or stress
wave tomography have high quality of assessment, they are time
consuming and infeasible in terms of cost for analysing each and
every tree in the urban area. Further, the amount of labour involved
is also huge. Terrestrial static methods again lead to high cost for
analysing each and every tree due to sensors costs with the bene�t
of reduced human labour. The quality of analysis is also lower than
manual methods. On the other hand, although infrared thermogra-
phy has been used to compute TWSI [18] [33], most of the perused
literature [37] [14] uses it for detection of presence or absence of
decay only (binary classi�cation). NDVI sensors give more quanti-
tative information about the health of trees, however, commercially
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Approach Working Mechanism Quality of Assesment Cost* Level of invasiveness

Manual Methods Depends on Method Varying on method, gen-
erally high

$$$$ Depends on the method

Terrestrial static meth-
ods

Depends on Method Lower thanmanual meth-
ods

$$$ Depends on method

NDVI Properties of Chlorophyll High quality Quantita-
tive Value

$$ low

Thermal Imaging Cavities, temperature
gradient and water stress

Cavities, temp. gradient:
Mostly Binary Classi�ca-
tion, Water Stress: Quan-
titative Value

$ low

LiDAR Uses laser penetration
metrics for parameters
like LAI and leaf density

Low quality quantitative
Value

$ to $$$ low

Street view based
methods

Image processing to de-
tect greenery

No health assesment,
only extent of greenery

$ low

Remote Sensing Satellite Imagery Top level view only $ low
Table 1: A comparison of approaches to analyse tree health
(* refers to relative cost where $ is the lowest cost and $$$$ is the highest cost for large-scale evaluation of multiple trees )

available NDVI sensors (OptRx) are more expensive (cost > $3000
per sensor) than thermal cameras ($300-$3000). Sometimes, the
NDVI may reach the maximum value due to the chlorophyll con-
tent causing peak greenness. Hence, any health issue may become
di�cult to detect until the problem progresses enough to reduce
the NDVI value from the peak maximum value [19]. This may delay
the detection of the problem and prohibit gauging the health accu-
rately. LiDAR based detection methods as discussed in [17] [35] are
mostly used to calculate LAI. However, the LAI value varies with
respect to commercial handheld LAI measurement devices. Street
view based methods [2, 32, 38, 42] while cost e�ective are only able
to quantify the extent of urban greenery at pedestrial level rather
than its health.

2.1 Research gaps and in�uence on design
From the above suvey, it is clear that the manual inspectionmethods
are infeasible due to both time and cost constraints. Further, some
of them are invasive as discussed in Section ??. While, satellite
and airborne based remote sensing approaches can cover large
areas but with low resolution per pixel [18], they are only able to
analyse the vegetation from overhead view. Further, the presence
of background materials such as grass or shrubs within the same
pixel will a�ect the reliability of observations [39]. In contrast,
ground based sensing can look at vegetation elements in a more
holistic manner. Based on the emerging technologies perused, the
use of thermal imaging to analyse attributes of tree such as water
stress index and cavities in trees seems promising and suitable for
our problem statement. Hyperpectral/multispectral imaging can
also generate a number of vegetation indexes, the most popular
of which is NDVI. Contradictory studies were seen on the usage
of LiDAR with some works such as [35] claiming no increase in
performance with its addition. It is seen that most of the works
perused which measured tree health from ground level except two
[29] [28] used manual judgment and processing by humans on the

data collected and employed handheld data collection. This makes
them ine�cacious to be deployed on large scale with data collection
at regular time intervals.

In essence, although there are ample works which have tried
to measure tree health from ground level, measuring this health
autonomously without human intervention and scaling it to be
suitable for drive-by sensing is an open �eld of research. Given the
current advances in the �eld of computer vision and availability of
low cost multispectral & thermal cameras which can be integrated
with microcontrollers and single board computers, we employed
both these technologies in the developed system and employ tra-
ditional image processing and custom computer vision models to
generate the tree health attributes automatically.

3 METHODOLOGY
3.1 System Architecture
The block diagram of the entire system architecture along with all
the modules is shown in Figure 1. A Raspberry Pi is employed as the
central brain of our system and all the other modules are interfaced
with it. Herewith, we will give a brief overview of all the other
major modules as shown in the architecture diagram. The �rst four
modules are related to hardware while the remaining modules are
related to image processing and the applied steps are visualised in
the image processing pipeline as shown in Figure.

All the hardware components were encased in a 3D printed
case as shown in Figure 2. This made it easy to carry during data
collection. Further, the case was designed such that it is suitable to
be attachable to moving vehicles using magnets as shown in Figure
3.

(1) FLIR Lepton 3.5 and OpenMV Cam H7: The thermal
imaging sensor is attached to openMV cam H7 using a FLIR
Lepton adapter module. This module communicates with
Raspberry Pi via remote procedure call over USB. The custom

2022-04-20 22:24. Page 2 of 1–11.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Large-scale monitoring the Health of Urban Trees using Mobile Sensing Conference name, Date, Location

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Architecture Diagram of the system

Figure 2: All hardware components encased with the 3D
printed case

python code running on OpenMV is con�gured to measure
temperature in range of �10� to 40� C and return grayscale
image data normalised to this temperature range. This means
that a measured temperature of �10� C or lower will be
scaled to 0 (black) as pixel value and a measured temperature
of 40� C or higher will be scaled to 255 (white) as pixel
value. This temperature range was chosen as per the as
± 10 of lowest and maximum temperature of trees found
during the data collection experiments (Section ??). A narrow
temperature range is usually preferred to decrease the e�ect
of non uniform noise across the sensor. The micropython
code running on OpenMV also handles the serving of the
callbacks initiated by the Control module.

(2) MAPIR Survey 3Wwith GPS Receiver: The multispectral
imaging sensor is attached to the raspberry pi over USB and
the mounting /unmounting of the memory card along with
capturing images is handled using PWM signals over the

(a) Concept casing for
the system with mag-
nets

(b) The system at-
tached to the top of a
car

(c) A closeup view of
the system attached to
the roof of a car

Figure 3: Concept casing with magnets attachable to moving
vehicles

micro HDMI port of MAPIR Survey. Also, a GPS receiver
is attached to MAPIR Survey in order to geo-tag all the
images captured. Further, this sensor automatically turns on
as whenever the power is supplied to the raspberry pi.

(3) Event Trigger: This indicates any event which signals the
beginning of processing on raspberry pi from capturing the
images to generating NDVI and CTD values. At the current
state of the prototype, a press of a push button connected to
GPIO 2 of raspberry pi was used as an event trigger for the
data collection experiments. Thus, as of now, it can be con-
sidered a citizen science based device. However, this trigger
can also be an event signalling the co-location of the system
with particular GPS coordinates. For instance, when the the
system is deployed on moving vehicles, GPS coordinates
fetched from a tree inventory database can be used to trigger
this processing.

(4) Control Module: This software module handles the event
trigger, signals the sensors to captures the images and trans-
fers the captured images to the raspberry pi. For the OpenMV
Cam, this involves initiation of callbacks requesting the trans-
fer of current image frame from the thermal imaging sensor.
For the multispectral imaging sensor, this involves generat-
ing PWM signals to capture an image, mounting the memory
installed in the multispectral imaging sensor with the rasp-
berry pi, transferring the captured image to raspberry pi and
�nally, unmounting the memory from the raspberry pi.

(5) Image Registration Module: Image registration is the task
of matching or aligning images taken by two di�erent sen-
sors or di�erent viewpoints into a single coordinate system
for further analysis [27]. It involves mapping points from one

2022-04-20 22:24. Page 3 of 1–11.
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image to corresponding points in another image. In our sys-
tem, both multispectral and thermal imaging sensors have
di�erent FOV (�eld of view) and are not co-aligned. This soft-
ware module registers the images taken by the thermal and
multispectral imaging sensors. In order to align both mul-
tispectral (RGN) and thermal images, this module handles
the linear translation of RGN images in both horizontal and
vertical directions. Further, to compensate for wider FOV of
multispectral sensor, this module also handles the zooming
in of the RGN images. For our prototype, in case of RGN
images, the values of translation in X and Y direction were
found to be +50 and +150 pixels respectively and zoom scale
was found to be 0.57 (1 indicates no magni�cation and 0 in-
dicates magni�cation) to perfectly overlay thermal and RGN
images. These parameters were manually found by taking
multiple RGN and thermal images and overlaying them. An
instance of inputs and outputs utilizing this module is shown
in 4. Further, in order to scale this module for large scale pro-
duction of the system in the future, we also tried automatic
image registration using three traditional image registration
algorithms namely SIFT, SURF and ORB [3]. However, none
of the algorithms were able to �nd useful keypoints or fea-
tures in the thermal images. We believe that this was due to
the low resolution of thermal images (160x120).

(6) Image Segmentation Module: The is the most compu-
tationally intensive software module of our system.
Recall that the aim of our system is to calculate NDVI and
CTD values of trees in the images. However, these values
should only be calculated for the leaves in the tree canopy
and not the wooden parts which include branches and trunk.
This is solved using a fusion of custom Mask R-CNN and
pixel-wise NDVI analysis. Hence, given a RGN image, this
task can be broken into two sub problems:
• Detecting the canopy part of the tree even if the im-
age contains multiple trees: This is solved using a cus-
tom made Mask R-CNN model. The Mask R-CNN model
is discussed in more detail in Section ?? and it outputs the
instances of the tree canopies in the image by generating
a mask (segmentation) over their canopies.

• Once the canopy of the tree is detected, the segmen-
tation of only the the leaves of the tree without the
wooden parts and sky: Non-vegetation elements such
as trunks, branches and sky have very low NDVI values
compared to vegetation elements which have signi�cantly
higher NDVI. Thus, we employ a thresholding method
which �rst calculates NDVI of each pixel over the segmen-
tation mask given by Mask R-CNN and then, eliminates
pixels with NDVI values below a certain threshold. The
calculation of NDVI for each pixel is simply computed
by deriving the raw values in the red and near infrared
channels of the pixel and plugging them in (4). In order to
eliminate noise, median �ltering is also employed.

The end result using two stage approach gives segmentation
of leaves present on the canopy of a tree while eliminating
the sky, wooden branches and trunk of the tree. Since our
multispectral imaging sensor is uncalibrated, the raw NDVI
values generated by it are relative. Hence, a value of 0.02 was

used as cuto� value to eliminate non-vegetation elements
in the image. This value was derived using the analysis of
the images captured during data collection. An instance of
inputs and outputs utilizing this module is also shown in 4.

(7) Analysis and Calculation Module: With the availability
of segmentation i.e. tree canopy mask consisting of only
leaves for RGN images, the same mask can also be used for
thermal images due to image registration. This module han-
dles the calculation of �nal NDVI and CTD for the tree. The
CTD value is computed by calculating the raw temperature
value for each pixel by converting its color intensity value
in the grayscale thermal image (See (2), computing the mean
temperature over all pixels in the canopy and subtracting the
ambient air temperature from the mean canopy temperature.
Mathematically, CTD is calculated as:

⇠)⇡ = )20=>?~ �)08A , (1)

where)20=>?~ and)08A are canopy temperature and air tem-
perature respectively. The temperature of each pixel is cal-
culated as:

)?8G4; =
%E0;D4
255

⇤ ()<0G �)<8=) +)<8= (2)

where %E0;D4 is the pixel value in normalised thermal image,
)<8= and )<0G are con�gured temperature range for the
FLIR Lepton 3.5 respectively (�10� and 40� C in our case.
Then, as per (1), CTD is calculated as:

⇠)⇡ = )?8G4; �)08A (3)

where )?8G4; is the average canopy temperature for all seg-
mented pixels in the image and )08A is the air temperature
respectively.
To calculate the mean NDVI, each RGN pixel in the image is
split into its 3 constituting channels (red, green and near in-
frared). The raw NDVI value for each pixel is calculated from
red and near infrared channels as per (4). To compensate
for the aperture adjustment, focal adjustment and other me-
chanical adjustments performed by the multispectral imag-
ing sensor, the raw NDVI is normalised by dividing with a
correction factor similar to the dynamic range of a camera
[7]. Mathematically, NDVI is mathematically calculated as:

#⇡+ � =
#�' � '43

#�' + '43
, (4)

where #�' and '43 are near infrared re�ectance and visi-
ble red relfectance from the leaves of the tree respectively.
Mathematically, our corrected NDVI is calculated as:

#⇡+ �2>AA42C43 =
#⇡+ �A0F
|#⇡+ �<0G |

⇤ |#⇡+ �<8= | (5)

where #⇡+ �A0F is the raw NDVI of a pixel, #⇡+ �<0G and
#⇡+ �<8= are maximum and minimum NDVI values among
all pixels in the segmented image.
Finally, the corrected NDVI for the entire canopy is com-
puted by taking the mean over all the corrected NDVI for
all pixels in the segmented image. While this approach of
adding a correction factor does not calibrate the corrected
NDVI to the absolute truth NDVI, it can be used for relative

2022-04-20 22:24. Page 4 of 1–11.
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comparison between the calculated values (which meets our
system requirements).
The �nal calculated CTD and NDVI along with other inter-
mediate calculations such as raw NDVI, Canopy temperature
and related indexes like GNDVI (Green NDVI: same as NDVI
but with replacement of red band by green in (4), SR (Sim-
ple Ratio: NIR/Red), PercentHealthy0.1 (% canopy with raw
NDVI > 0.1) were stored on the raspberry pi in a .csv �le.

3.2 Visual Image Processing Pipeline
A visualization of processing of images after each module is shown
in 4. As discussed above, the images from the thermal and mul-
tispectral imaging sensors are fetched using the control module
based on the event trigger which begins the processing of images
in a sequential manner.

Figure 4: A visualisation of how the images are processed at
each step

3.3 Development of Custom Mask R-CNN
For our system to operate completely autonomously, the images
captured on the basis of an event trigger will be unsupervised and
may contain other objects in the image such as cars, buildings, grass,
snow in addition to multiple trees. Hence, it becomes imperative
to individually identify all the tree canopies in an image and feed
them to the calculation and analysis module. The custom mask

R-CNN aims to solve this problem by providing instance segmen-
tation of the tree canopies in the image. In our knowledge, there
is no pre-exisiting model available for instance segmentation tree
canopies or even trees for the standard RGB images. Our problem is
further complicated as our input is RGN images from the multispec-
tral imaging sensor instead of standard RGB images. For instance,
pre-trained models like Deeplabv3 [15] which are able to perform
sematic segmentation of trees and vegetation on standard RGB
images perform poorly on RGN images.

3.4 Training Data
Any deep learning model requires training data in order to optimise
the weights and activations of the layers. However, there does not
exist any dataset with labels for instances of trees or tree canopies
for RGN Images. Hence, we manually created the dataset using
the RGN images collected during the data collection experiments
(See Section ??). Here, each tree canopy in the image was manually
annotated using the popular image annotation tool called LabelMe
[41]. During annotation, only tree canopies which were completely
present in the image were labelled. After this process, our dataset
consisted of 51 annotated RGN images with two classes namely
tree canopies and background.

3.5 Training Process and Training Curve
Our dataset consists of a relatively small number of images to train
a deep learning model like Mask R-CNN from scratch. transfer
learning combined with data augmentation can be theoretically
employed in order to develop a custom model by using an existing
model pre-trained on a di�erent dataset. For our purposes, we used
a Mask R-CNN pre-trained [10] on COCO[5] (a dataset with 330K
images) with ResNet101 as the backbone. We retrained only head
layers (the top layers without the backbone) on our dataset. The
batch size was con�gured as 4 and no. of epochs as 10. The training
was performed on Google Cloud platform with N1 instance with
13GB memory and 2vCPUS. We also generated synthetic data by
augmenting the original dataset with �ips in horizontal, vertical
direction and applying Gaussian blur. This increased our training
dataset size by 50% and also acts as a regularizer. Our manually an-
notated dataset (refer Section 3.4) consisting of 51 images was split
in the ratio of 70 : 30 for training : testing. During retraining, each
epoch took approximately 3 hours on the N1 instance. The training
curve of the model is shown in 5. It is seen from the training curve
that only a small number of epochs (3 in our case) are su�cient to
reach the optimal validation loss on the test set owing to retraining
of only head layers. The visual output results from our model are
shown in Figure 6.

3.6 Model Quantization
Mask R-CNN is a relatively heavy model from both training and
inference point of view. Hence, the developed Mask R-CNN was
optimized to run on the edge at the cost of possible minute per-
formance reduction. For this, the model built on tensor�ow was
converted to tensor�ow-lite with dynamic range quantization [9].
Dynamic range quantization means that that only the weights of
the layers in 32 bit Floats in the full model are stored as to 8 bit INTs
while the activations of the layers are quantized during runtime.

2022-04-20 22:24. Page 5 of 1–11.
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Figure 5: The Training curve of Mask R-CNN with epochs=10
and batch size=4, the red point indicates point of minimum
loss

(a) Input RGN Image captured
from MAPIR Survey 3W

(b) Segmentation output from
our Custom Mask R-CNN (in-
stance segmentation model)
trained using transfer learning

Figure 6: Performance of our Custom Mask R-CNN. Notice
how the model detects each instance of the tree canopy in
the image and considers all the other objects as background

Our custom made Mask R-CNN built over tensor�ow took around
15 seconds per inference of an image on a raspberry pi 4 while the
tensor�ow lite model reduced the inference time to 7 seconds with
one-fourth of the CPU usage as the original tensor�ow model.

4 EVALUATION
We evaluated our system using a ground truth dataset from the
municipality of Cambridge, USA. We also conducted three data
collection experiments to collect data about urban trees. In this
section, we elaborate on these datasets followed by the preliminary
results obtained.

4.1 (Ground truth) Tree Health Dataset
Municipalities in cities obtain ground truth tree health data through
city wide surveys in years. For instance, in the city of Cambridge,
USA, this survey is performed every 5 years whereas for the city
of Delft, The Netherlands, this survey is performed every 2 years.
To help with the evaluation of our system, we obtained ground
truth tree health dataset for the city of Cambridge, USA through
Cambridge Urban Forest Master Plan. This dataset is from 2018 and
was obtained through a combination of manual in person arborists,
satellite based remote sensing and aerial LiDAR [1]. The dataset
classi�es the health conditons of trees in three categories namely
good, poor and fair. The dataset contains inforimation about 47,063

trees out of which 35,821 are in good health, 5176 are in fair health
and 6066 are in poor health. Hence, most of the trees (> 75%)
are rated as having good health condition. In addition to this, the
dataset contains information about the tree species, common name,
the satellite based NDVI, the latitude and the longitude, whether
located on a street or not, the shape length and shape area of the
canopy, �ood tolerance and drought tolerance. This dataset was
provided as Shape�les (.shp, a dataformat used by Geographical
Information Systems (GIS)) and was loaded to the online platform
CARTO [13] (a GIS and spatial analysis tool).

4.2 Data Collection Experiments
We collected RGN and thermal images through our system on three
separate days in Cambridge, USA during the month of February,
2022. A push button was used as the event trigger for the system.
Hence, we used the developed system as a citizen science project
with the 3d printed casing. In total, we collected data for 49 trees
spread over two species namely Red pine and Eastern White Pine
trees. Themultispectral imaging sensor was con�guredwith shutter
speed of 1/60s and ISO at 50. The thermal imaging sensor was
con�gured to measure temperature in range (-10, 40). On the �rst
day of data collection, the raspberry pi had to be restarted due to a
loose power connection.

Figure 7: The trees were analyses in these locations. The red
boxes indicate the Red Pine trees and the blue boxes indicate
the Eastern White Pine trees.

Species Constraints: There are two types of trees namely ever-
green and deciduous trees. During winters, deciduous trees loose
their leaves, thus hampering NDVI calculation. Hence, our analysis
was constrained to evergreen trees due to data collection in the
winters. The species namely Red pine and Eastern White Pine were
selected because they are evergreen and they are the most wide-
spread and easily accessible evergreen trees found from CARTO in
the city of Cambridge. The sites of data collection experiments are
shown as Figure 7.

Data Cleaning: During the �rst day of data collection experi-
ment, the raspberry pi hung up due to unknown reasons leading
to a forced restart. On the third day of the experiments, owing to
cold temperatures, the power supply had to be changed during data
collections. These interruptions and restarts resulted in unstable
readings in a sequence of readings for the canopy temprature by
the thermal imaging sensor. As a result, these 9 data points were

2022-04-20 22:24. Page 6 of 1–11.
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removed from our dataset generated using data collection experi-
ments. In the end, our dataset was reduced to contain 40 trees. A
distribution of the data collected from each of the tree species after
data cleaning is shown in Table 2.

Species Number of Trees Health Distribution
Red Pine 26 Good: 15 Fair: 7 Poor: 4
Eastern White Pine 14 Good: 5 Fair: 1 Poor: 8

Table 2: Distribution of trees after data cleaning

4.3 Performance of custom R-CNN
To measure the performance of our custom Mask R-CNN model,
we calculated the standard evaluation metrics [6] as used by COCO.
Speci�cally, we measured mean Average Precision (mAP) / Average
Precision (as per [6]) at di�erent IoU thresholds. The performance
of our custom Mask R-CNN without quantization is shown in Table
3. In order to measure the stability of our results, a k-Fold cross
validation was also performed with k=3, in order to evaluate perfor-
mance of the model on di�erent training and test splits as shown
in Table 4.

Cross Validation Fold 1 2 3
�% (�>*=0.5) 0.82 0.87 0.75

Table 4: Results of 3-Fold Cross Validation of custom R-CNN
model

4.3.1 �antized Mask R-CNN model. As discussed earlier, the full
model was optimized to run on the edge (Raspberry Pi in our case)
using dynamic quantization. A comparison of inference time and
model size comparing both the full model and the quantized model
are shown in Table 5. Most importantly, as expected [9], the in-
ference time was reduced from 15 seconds to 7 seconds on the
raspberry pi.

An example of segmentation outputs generated by the full model
and quantized model on the same image is shown in Figure 10.The
performance of the quantizedmodel is in terms of Average Precision
is shown in Table 3.

Model �% (�>*=0.5:0.95:0.05) �% (�>*=0.5) �% (�>*=0.75)

Custom
Mask R-
CNN TF

0.489 0.938 0.500

Custom
Mask
R-CNN
TF-lite
(Dynamic
Quantiza-
tion)

0.491 0.938 0.500

Table 3: Performance of custom R-CNN model (Full and
Quantized model)

Figure 8: The AP scores with increasing IoU thresholds as
per COCO metrics [5] for the full Model

Figure 9: The AP scores with increasing IoU thresholds as
per COCO metrics [5] for the quantized tf-lite model

Model Inference Time Model Size
Custom Mask R-
CNN TF

15s 255.9 MB

Custom Mask
R-CNN TF-lite
(Dynamic Quanti-
zation)

7s 65 MB

Table 5: Comparison between full and quantized model

(a) Segmentation output from
MaskR-CNNusing full Tensor-
�ow model

(b) Segmentation output
from Mask R-CNN using
Tensor�ow-lite (quantized)

Figure 10: Outputs from customMask R-CNNs in Tensor�ow
and the quantized Tensor�ow-lite model

2022-04-20 22:24. Page 7 of 1–11.
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5 RESULTS FOR THE HEALTH OF TREES
Weextracted three parameters from the ground truth dataset namely
Ground Truth Condition (Health), Remote NDVI and Area of tree
(measured using aerial LiDAR) from all the parameters present
in the dataset as these were deemed to be the most appropriate
parameters for our evaluation.

A comparison of our system measured NDVI and Remote NDVI
is shown in Figure 11. As seen in the �gure, our measured NDVI
varies in a similar way to the Remote NDVI.

Figure 11: Variation of measured NDVI vs Remote NDVI for
trees observed during data collection experiments

Pearson’s correlation coe�cient (r) was measured to calculate
the strength of linear relationship between our measured values
and ground truth data.

The correlation matrix comprising of all of our measured values
with the three ground truth parameters namely Ground Truth Con-
dition, Remote NDVI and Area is shown in Figure 6.3.1. Further,
the correlation results between the measured NDVI and CTD with
ground truth parameters is shown in 6.

Figure 12: Correlation matrix between our measured values
and ground truth parameters

The distribution of CTD and NDVI with respect to health condi-
tions from the ground truth dataset is shown in Figure 13. Further
elaboration of these distributions for each of the species is shown
in Figures 14 and 15. The mean NDVI and CTD for each species is
also shown in Tables 7 and 8.

Variables Pearson Correlation
(r)

Signi�cant at
(p <0.05)

NDVI Remote NDVI 0.54 Yes
CTD Remote NDVI -0.38 No

NDVI Ground Truth
Health 0.11 No

CTD Ground Truth
Health 0.28 Yes

NDVI Area (m2)
(LiDAR) 0.28 Yes

CTD Area (m2)
(LiDAR) -0.15 No

Table 6: The correlation between our measured values and
ground truth parameters

(a) The distribution of NDVI
for all trees

(b) The distribution of CTD for
all trees

Figure 13: The distribution of NDVI and CTD for all trees
with respect to health

Species / Health Good Fair Poor
Red Pine 0.37 ± 0.07 0.28 ± 0.05 0.28 ± 0.03
Eastern White Pine 0.49 ± 0.08 0.46 0.43 ± 0.12

Table 7: The means of measured NDVI across species and
health

Species / Health Good Fair Poor
Red Pine 4.63 ± 3.64 2.89 ± 1.78 6.99 ± 4.85
Eastern White Pine �9.1 ± 1.88 -8.59 �9.1 ± 1.88

Table 8: The means of measured CTD across species and
health

6 DISCUSSION
6.1 Mask R-CNN performance analysis
The results of the k-fold cross validation are shown in 4 show-
case the reliability of our results. Increasing the IoU means that
the segmentation mask generated by model should intersect more
strictly with the ground truth mask, thus requiring the model to
have better object localization. The same behaviour is seen in Figure
8 where increasing the IoU from 0.5 to 0.95 leads to decrease in Av-
erage Precision of the model as expected. The originally published
Mask R-CNN [23] achieved an�% (�>*=0.5:0.95:0.05) of 33.1 on COCO
where the problem is more complex and involves segmenting 81

2022-04-20 22:24. Page 8 of 1–11.
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(a) The Distribution of NDVI
for Red Pine trees with respect
to health
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with respect to health

Figure 14: The Distribution of NDVI for Red pine and Eastern
White Pine trees with respect to health

(a) The Distribution of CTD for
Red Pine trees with respect to
health

(b) The Distribution of CTD for
Eastern White Pine trees with
respect to health

Figure 15: The Distribution of CTD for Red pine and Eastern
White Pine trees with respect to health

di�erent objects. Our AP is higher than the originally published
Mask R-CNN [23]. However, our problem is much simpler with the
detection of only 1 object (tree canopy). Nevertheless, since Mask
R-CNN being state of the art model for instance segmentation, our
AP values inspire con�dence in usage of our model for real world
scenarios.

From the table 3, it is seen that there is no signi�cant reduction
in performance using quantization. The inference time of the quan-
tized model is half compared to the non-quantized model. Since
our system does not need to be real time, batch processing can be
applied once all the images are collected at the end of a day in a real
world scenario. It may appear that the�% (�>*=0.5:0.95:0.05) for quan-
tized model is increased slightly compared to the full model. On
further exploring this anomaly, it was found that this behaviour is
exhibited due to our annotated dataset where most images contain
only one full tree canopy as ground truth. Thus, a model (non-
quantized model) generalising better to �nd partially visible tree
canopies in addition the the full tree canopy is penalised in terms
of Precision (False Positive). Further, it is seen from Figures 9 and
9, that the performance of the quantized model decreases more
than the full model at higher IoUs ( IoU= 0.85 for quanitzed model
compared to 0.90 for full model) signifying it is slightly poorer at
object localisation compared to the full model.

Neverthelss, a larger dataset for training will further allow for
even improved generalisations. Given our use case and system
requirements (Section ??), batch processing of the captured data is
su�cient to maintain data privacy as well as system performance.

For instance, the system can process the captured data while the
moving vehicle is waiting at tra�c lights.

6.2 Tree health analysis
6.2.1 High-level analysis. From the �gure 6.3.1 comprising the
correlation matrix, it is clear that there is almost no correlation be-
tween NDVI and CTD. Thus, they are independently measuring two
di�erent attributes related to tree health and useful to incorporate
in the system. From 6, it is seen that there is a moderately strong
correlation (r=0.54 with ? < 0.05) between our measured NDVI
and remote NDVI. For context, in recent works [16], the correlation
between NDVI measured using two di�erent satellites was found to
be 0.74. Even though our NDVI and the ground truth Remote NDVI
were measured four years apart and the former was measured from
the ground while later was measured from overhead, this strong
correlation shows the validity of our approach as well as motivates
further research in ground based NDVI measurements.

Further, it is seen that the CTD has weak-moderate correlation
(r=0.28 with ? < 0.05) with ground truth tree health condition.
However, we infer that this correlation can be attributed to the
skewed distribution of the dataset where more trees are rated as
having good condition compared to poor and fair conditions. Inter-
estingly, due to unknown reasons, NDVI is found to have signi�cant
and weak correlation (r=0.28 with ? < 0.05) with the area of tree
canopy obtained from the ground truth dataset.

From the NDVI distribution in Figure 13, it is seen that the
distribution of NDVI is mostly in agreement with the ground truth
health conditions. This implies that the trees in good health have
higher measured NDVI values than trees in poor and fair condition.
From the CTD distribution Figure 13, it is seen that CTD is higher
for trees in good condition than trees in poor and fair condition.

6.2.2 Species Wise Analysis. Moving on to species wise analysis,
it is inferred from table 7 and Figure 14, that the distribution of
NDVI values is in agreement with health condition of trees for
both red pine and eastern white pine species. In fact, mean NDVI
values for Red pine as shown in 7 are signi�cant (? < 0.05) for
good and poor condition trees. The mean NDVI values for eastern
white pine are insigni�cant (? > 0.05). However, from the NDVI
distributions for Eastern White pine in Figure 14, it is seen that
majority of distribution for good conditions trees still have higher
NDVI values than poor and fair condition trees.

Overall, the NDVI measured by our system was found to have
signi�cant (r=0.54 with ? < 0.05) and moderately strong correlation
with remote NDVI from ground truth dataset. This illustrates the
validity of our approach to measure NDVI terrestrially although
the ground truth dataset is four years old. Further, for both red
pines and eastern white pines, the measured NDVI distributions
were found to be in agreement with their ground truth health
conditions. While a higher CTD was found for red pine trees in
poor condition than good and fair health condition trees, the same
pattern conclusion was not applicable for eastern white pine trees.
This inference about CTD is similar to earlier work such as [26]
[12], where it was concluded that the tree species under observation
has an important in�uence in determining correlation with ground
truth water stress.

2022-04-20 22:24. Page 9 of 1–11.
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6.3 Future Work
6.3.1 Feasibility of modelling based classification. From the corre-not

sure
if
needed
to
men-
tion,
this
will
be
our
fu-
ture
work
orig-
inat-
ing
from
here

lation matrix in Figure , it is seen that is no correlation between
CTD and NDVI values. Hence, to develop an autonomous model
to classify tree health, both these measured parameters are useful.
A scatter plot between NDVI and CTD values for red pine trees in
shown in Figure 16. From the scatter plot, it is seen that most of
the fair and poor condition trees are concentrated around a cluster
between NDVI (0.20-0.35) and CTD (0-7). Hence, simple white-box
machine learning algorithms like SVMs with kernel or logistic re-
gression classi�er can be used to distinguish between good, poor
and fair condiiton trees. While we do not advocate this approach
on small size datasets such as the one collected in this work, future
research building on this work with large dataset can incorporate
such models to screen the health of trees based on these measured
parameters.

Figure 16: Scatter plot between NDVI and CTD for red pine
trees. The color of the points indicate the ground truth health
with red denoting poor, yellow denoting fair and green de-
noting good condition trees.

7 CONCLUSIONneeds
up-
dat-
ing

Nowadays, urban trees are experiencing atypical amount of nat-
ural and human-induced stresses which a�ects their functionality,
productivity and survival. The current methods for monitoring the
health of urban trees mainly comprises of manual inspection by
arborists and remote sensing. However, all these methods are rid-
dled with various challenges involving scalability, spatio-temporal
resolutions and quality of assessment.In this work, we developed a
novel system to measure tree health autonomously from ground
level in urban cities. The system can be deployed both in a drive-by
sensing paradigm on moving vehicles such as taxis and garbage
trucks or be carried by humans in a citizen science paradigm. A
custom Mask R-CNN model developed using transfer learning was
employed to fuse the data collected by low cost thermal and mul-
tispectral imaging sensors on the edge device. The approach was
evaluated through data collection experiments performed in Cam-
bridge, USA. The developed Mask R-CNN performed admirably
with an �% �>*=0.50 = 0.938 despite the small dataset used for train-
ing. The tree health analysis revealed moderately-strong correlation
(r=0.54 with ? �E0;D4 < 0.05) between our measured NDVI and the
remote NDVI from the ground truth dataset. Further, for both the
species of trees analysed, our measured NDVI distributions were

found to be in theoretical agreements with ground truth tree health
conditions. For CTD, a pattern with a theoretical agreement was
applicable for one of the species observed, but the same pattern was
not seen in the other species examined. Our work illustrates the
potential of terrestrial level tree health monitoring and motivates
further research in this �eld.
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Appendix A

APPENDIX

A.1 Settings during Mask R-CNN training

The following settings were used while training the custom Mask R-CNN model
”head” layers.

• Batch Size: 4

• Number of Epochs: 10

• Network backbone: ResNet101

• Data Augmentation: Probability (P)= 0.5. Apply Sequentially:

– Flip Left to right: P = 0.5

– Flip Up to Down: P = 0.5

– Guassian Blur: sigma = 5.0

• Train-test split: 36 : 15 images

A.2 Data Cleaning

Species Number of Trees Health Distribution
Red Pine 26 Good: 15 Fair: 7 Poor: 4
Eastern White Pine 14 Good: 5 Fair: 1 Poor: 8

Table A.1: Distribution of trees after data cleaning
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(a) The CTD of trees before data
cleaning. Notice the outlier points
at the bottom of the image

(b) The CTD of trees after data
cleaning

(c) The NDVI of trees before data
cleaning

(d) The NDVI of trees after data
cleaning

Figure A.1: The CTD and NDVI of trees before and after data clean-
ing. The color of the points indicate the ground truth health with
red denoting poor, yellow denoting fair and green denoting good con-
dition trees.

Figure A.2: Correlation between our measured values and ground truth
parameters before data clean
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A.3 Additional Results

Figure A.3: Variation of raw NDVI measured NDVI and Remote NDVI
for trees observed during data collection experiments

Figure A.4: The Bland-Altman plot showcasing the agreement between
Corrected NDVI and Remote NDVI. The dashed-middle line shows
the mean di↵erence. The top most and bottom most lines indicate
the upper and lower lines of agreement respectively.

95



Figure A.5: Scatter plot between NDVI and CTD for red pine trees.
The color of the points indicate the ground truth health with red de-
noting poor, yellow denoting fair and green denoting good condition
trees.
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Figure A.6: Thermal Imaging related works analysed in [92]
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