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A high-order model for in-plane vibrations of rotating rings on
elastic foundation

T. Lu∗, A. Tsouvalas, A.V. Metrikine

Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The
Netherlands

Abstract

A new high-order model for in-plane vibrations of rotating rings is developed in this paper.
The inner surface of the ring is connected to an immovable axis through an elastic foundation
(distributed springs), whereas the outer surface is traction free. The developed model enables
the dynamic analysis of the rings on stiff elastic foundation that rotate with a high speed. The
traction force at the inner surface of such rings is so high that it influences significantly the
through-thickness stress distribution. This boundary effect cannot be captured by the classical
low order theories while the model proposed in this paper can account for this effect. Nonlinear
equations of motion are first derived, considering the geometrical nonlinearity of the system
while assuming the linear elastic behaviour of the ring material. The formulation accounts for
the stress caused by rotation and the significant normal and tangential traction forces at the inner
surface of the ring. The displacement fields are assumed to be polynomials of the through-
thickness coordinate in both the radial and circumferential directions. The derivation is generic
and can yield ring theories of different order, i.e. of the Timoshenko-type and beyond, with
proper consideration of both the internal state of the body and the boundary effects at the surfaces.
Two types of critical speeds are investigated, namely the one at which the free vibrations become
unstable and the one at which the forced vibration of a rotating ring subjected to a constant
stationary point load experiences resonance. A comparison is presented of the predictions of the
developed model to those of the lower order theories. It is shown that even for thin rings on
elastic foundation, high order corrections, beyond the ones of the Timoshenko theory, need to be
considered for an accurate estimation of the critical speeds of rotating rings. The new high-order
model is superior to the existing ring models in predicting dynamic behaviour of either stationary
or rotating rings. Without loss of generality, the model is applicable to both plane strain and plane
stress configurations.
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1. Introduction

The vibration of rotating rings on an elastic foundation is a classical topic in solid mechanics.
Various models have been developed after the first work accomplished by Bryan in 1890 [1].
The studies on the rotating ring dynamics thrived in the field of tyre research approximately
half a century ago when such models were widely used to describe the in-plane vibrations of
the pneumatic tyres [2–4]. The research on tyres using rotating rings is still ongoing [5–8]
despite the availability of detailed finite element models. Other applications of rotating rings
include flywheel energy storage systems [9], rate sensors [10], flexible train wheels [11, 12] and
compliant gears [13]. Most studies to date focus on the in-plane vibrations of rotating thin rings,
in which classical low-order theories apply [2–7, 13–15]. Attention to other aspects has been
paid as well, among which are the influence of shear deformation and rotatory inertia [16–18],
out-of-plane vibrations [10, 19], and nonlinear vibrations [20, 21].

In the references mentioned above, the equations of motion were derived assuming the inner
and outer surfaces of the ring to be traction-free. However, when one considers a ring whose
inner surface is elastically restrained by distributed springs, this assumption is violated. The
traction force at the inner surface can significantly influence the stress distribution in the ring and
affect its dynamics. This is especially important in the case of rings rotating at high speeds and
supported by stiff foundation. Besides the neglect of the non-zero tractions at the inner surface,
most of the previous studies did not account for the centrifugal force associated with the radial
expansion due to rotation. Notable exceptions are the works [13, 18–20], in which nonlinear
governing equations are first derived and subsequently linearised around the static equilibrium to
obtain the linear dynamic equations of motion.

Although various models exist, the theoretical predictions for critical speeds are in striking
disagreement. There are two kinds of critical speeds of interest in the case of a rotating ring.
One corresponds to possible instabilities of the divergence type of mode n = 0 and flutter type
of higher modes (the corresponding ring displacements increase exponentially when applying
a set of initial conditions) [22], whereas the other one corresponds to resonances of a rotating
ring subjected to a stationary load of constant magnitude. To the authors’ knowledge, the onset
of instability was not properly addressed in the scientific literature prior to recent publication
[22] in which the existence of divergence instability of high-speed rotating ring is thoroughly
addressed. Recently, divergence instability of a similar type is theoretically predicted in mag-
netically levitated rotating rings by Arena and Lacarbonara [23]. The condition of resonance of
a stationary ring subjected to a constant moving load is well-known [24, 25]. In contrast, the
existence of resonances in the reciprocal problem, namely a rotating ring subjected to a station-
ary load of constant magnitude, is still debated. The most commonly used Endo-Huang-Soedel
model [14, 26, 27] does not predict resonance for a rotating ring subjected to a constant stationary
load. Lin and Soedel [17, 28] argued that the incapability of predicting resonance speeds is due
to the employment of the Green-Lagrange strain-displacement relation, which causes cancella-
tion of rotation effects. The resonance speeds were investigated including shear deformation and
rotatory inertia by Lin and Soedel [28]. However, the linearisation procedure adopted in [28] is
discussable. Recent contributions to the discussion on the existence of resonance speeds can be
found in [29–31].

In this paper, a new geometrically nonlinear model for rotating rings on elastic foundation is
proposed. It is well accepted nowadays that the effect of the rotation-induced hoop stress needs
to be incorporated to accurately predict the dynamic behaviour of rotating rings. To capture this
effect, a nonlinear strain-displacement relation needs to be employed. However, the choice of
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the nonlinear strain-displacement relation is ambiguous in the literature despite the fact that this
choice influences the predictions of the dynamic behavior of rings rotating at high speeds. A re-
cent discussion on the influence of the choice of different strain measures on dynamic behaviours
of rotating toroidal shells can be found in [32]. In this work, the engineering nonlinear strain-
displacement relations are adopted from [33], retaining both the nonlinear circumferential and
shear strains. The reason for the choice of engineering strain is clearly explained in [34, 35].

To account for the boundary effects (tractions) at the inner and outer surfaces of the ring, the
radial and circumferential displacements are approximated by polynomials, the degree of which
can be adjusted to consider different complexity of the deformation pattern. For example, lin-
ear polynomials in both radial and circumferential displacements yield the classical low order
thin ring theory in which only the displacements at the middle surface of the ring is considered.
Retaining more terms yields the Timoshenko-type theory and other higher order theories. By
introducing these nonlinear displacement distributions and consequently through-thickness vari-
ations of stresses, the influence of the tractions at the inner and outer surfaces of the ring on the
internal state of the body are addressed. In contrast, other models available in the literature, e.g.
[5, 13, 14, 18, 26, 28], cannot deal with the boundary effects in question. Note that although the
influence of boundary effects on the internal body of the ring is treated in a proper manner, the
boundary conditions themselves are not strictly satisfied.

The developed high-order model (upon linearisation) is verified by comparing the predicted
frequency spectra with those resulting from linear elasticity of the corresponding stationary ring
case. It is shown that the high-order theory is superior to the existing classical thin ring model
[13] and the Timoshenko-type ring model [18]. Contrary to the most commonly used Endo-
Huang-Soedel model [14, 26, 27], the model presented in this paper does predict the existence
of resonances of a rotating ring subjected to a stationary load of constant magnitude, as well as
instability of free vibrations. This conclusion is based on rigorous analysis and is considered by
the authors as a novel contribution of this paper.

To examine the influence of higher order corrections on the critical speeds, predictions of
the new model are compared with those obtained using the other models in which the same
procedure of obtaining the static equilibrium and the same nonlinear strain-displacement relation
are applied. These models are: the classical rotating thin ring model [13], the improved classical
model including a through-thickness variation of the radial stress [22], and the Timoshenko-type
model [18]. It is shown that in the case of thin rings rotating at a high speed, the classical
low-order theory is inapplicable. The effects of shear deformation and rotatory inertia need
to be considered, as a minimum, to obtain qualitatively accurate results. Due to these effects,
resonances of bending-dominated motions always occur at lower speeds than those of extensional
or shear motions. Although the Timoshenko-type theory [18] improves the predictions of critical
speeds, it is insufficient when the ring rests on a stiff foundation or rotates at high speeds. The
proper considerations of boundary effects at both surfaces and the variation of through-thickness
radial and shear stresses are of significance for rings connected to stiff foundation especially
when the ring dynamics is governed by the long-wave processes.

The paper is structured as follows. Section 2 deals with the derivation of the high-order
nonlinear governing equations. Subsequently, linearisation is accomplished around the static
equilibrium considering the nonlinear equations. The proposed model can deal with both plane
strain and plane stress situations by adjusting a single parameter. The applicability of high-
order theory is examined in Section 3 for the stationary ring case. Critical speeds predicted by
the proposed model are compared with those predicted by other models in Section 4. Finally,
Section 5 summarises all the important conclusions of this paper.
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Figure 1: A rotating ring on an elastic foundation

2. High-order rotating ring model

2.1. Derivation of the nonlinear governing equations

In this section, the governing equations of a rotating ring of rectangular cross-section are
derived taking into account the through-thickness variation of displacements and stresses. The
model under consideration is shown in Fig. 1. It consists of a flexible rotating ring and distributed
radial and circumferential springs that connect the inner surface of the ring to an immovable axis.
The ring rotates at an angular speed Ω. To describe the motion of a differential element of the
ring, one can use either a coordinate system that rotates at angular speed Ω or a space-fixed,
non-rotating coordinate system. In this paper, a space-fixed coordinate system (r, θ) is adopted.

It is assumed that the mean radius of the ring is R. To simplify mathematical expressions,
an auxiliary coordinate z is introduced as z = r − R, in which r defines the radial coordinate,
i.e. the ring occupies the space R − h/2 ≤ r ≤ R + h/2, in which h is the radial thickness of the
ring. The radial and circumferential displacements of the ring with respect to the undeformed
configuration are designated by w(z, θ, t) and u(z, θ, t), respectively. The stiffnesses of the radial
and circumferential springs per unit area are designated as kr and kc (N/m3), respectively. Fur-
thermore, ρ is the mass density of the ring, E is the Young’s modulus, A is the cross-sectional
area and I is the cross-sectional moment of inertia. In addition, b is the width of the ring.

The nonlinear strain-displacement relation for the circumferential strain εθ, the radial strain
εr and the shear strain γθr of a differential element in the ring are given by [33]

εθ = ε0 +
1
2

(β)2,

εr = w,r +
1
2

(u,r)2,

γθr = (1 − w,r)u,r − β η,

(1)
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in which:

ε0 =
u′

r
+

w
r
, β =

u
r
−

w′

r
, η = 1 − ε0,

u,r =
∂u
∂r

=
∂u
∂z
, w,r =

∂w
∂r

=
∂w
∂z
.

(2)

Hereafter, the prime stands for the partial derivative with respect to θ whereas the subscript (, r)
stands for the partial derivative with respect to r. Since r = R + z the derivative with respect to r
equals that with respect to z. All strain components are functions of (z, θ, t), e.g. εθ → εθ(z, θ, t).

The in-plane motions of the ring can either be considered within the plane strain or plane
stress formulations, depending on the ring geometry. Without loss of generality, the isotropic
linear elastic stress-strain relations can be written as [36]:

σr

σθ
τrθ

 =

2µ + λ̄ λ̄ 0
λ̄ 2µ + λ̄ 0
0 0 µ



εr

εθ
γrθ

 (3)

in which the coefficient λ̄ is defined as

λ̄ = λ (plane strain), (4a)

λ̄ =
2µλ

2µ + λ
=

E ν
1 − ν2 (plane stress) (4b)

where λ and µ are the Lamé constants which can be expressed by

λ =
E ν

(1 + ν)(1 − 2ν)
, µ = G =

E
2(1 + ν)

(5)

in terms of Poisson’s ratio ν and Young’s modulus E and G is the shear modulus.
The velocity vector of a differential element of the ring in the space-fixed frame reads

ṙ =
[
ẇ + (w′ − u)Ω

]
er +

[
u̇ + (r + w + u′)Ω

]
eθ

= v1 er + v2 eθ.
(6)

The vectors er and eθ are unit vectors in the radial and circumferential directions, respectively.
The overdot represents partial derivative with respect to time.

To derive the equations of motion, the Hamilton’s principle is used, i.e.

δ

∫ t2

t1
(S + V − T ) dt =

∫ t2

t1
(δS + δV − δT ) dt = 0 (7)

where S is the strain energy, T is the kinetic energy and V is the potential energy stored in the
elastic foundation.

The variation of strain energy is given by

δS = δS 1 + δS 2 + δS 3 (8)

in which δS 1 is the variation of the strain energy associated with circumferential strain, δS 2 is
the addition to that due to a non-zero radial strain, and δS 3 is the strain energy related to shear
strain.
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Integrating δS 1 between two time instants, t1 and t2, yields∫ t2

t1
δS 1 dt = b

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
(σθ δεθ)r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
σθ δ

[
ε0 +

1
2

(β)2]r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
σθ(δε0 + β δβ)r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0

{
[σθ + (σθ β)′]δw

− [(σθ)′ − σθ β]δu
}
dθdzdt

+ b
∫ t2

t1

∫ h/2

−h/2

[
(σθδu)

∣∣∣2π0 − (σθβδw)
∣∣∣2π0

]
dzdt.

(9)

The last integral in Eq. (9) vanishes because the displacements at θ = 0 and at θ = 2π are equal.
The integration of δS 2 from t1 to t2 gives∫ t2

t1
δS 2 dt = b

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
(σr δεr)r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
σr δ

[
w,r +

1
2

(u,r)2]r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
(rσr δw,r + rσr u,r δu,r) dθdzdt

= −b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0

[
(rσr),r δw + (rσr u,r),r δu

]
dθdzdt

+ b
∫ t2

t1

∫ 2π

0

[
(rσrδw)

∣∣∣∣h/2−h/2 +
(
rσr u,rδu

) ∣∣∣∣h/2−h/2

]
dθdt

(10)
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The integration of δS 3 from t1 to t2 reads∫ t2

t1
δS 3 dt = b

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
(τθr δγθr)r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
τθr δ[u,r(1 − w,r) − β η]r dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0

{
r τθr(1 − w,r)δu,r − r τθr u,r δw,r

+ r
[τθr β

r
−

(τθr η)′

r
]
δw − r

[τθr η
r

+
(τθr β)′

r
]
δu

}
dθdzdt

= b
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0

{[
τθr β − (τθr η)′ + (r τθru,r),r

]
δw

−
[
τθr η + (τθr β)′ + (r τθr(1 − w,r)),r

]
δu

}
dθdzdt

+ b
∫ t2

t1

∫ 2π

0

{ (
−τθru,r δw

) ∣∣∣∣h/2−h/2 + [r τθr(1 − w,r)δu]
∣∣∣∣h/2−h/2

}
dθdt

+ b
∫ t2

t1

∫ h/2

−h/2

[
(τθrβ δu)

∣∣∣2π0 + (τθrη δw)
∣∣∣2π0

]
dzdt.

(11)

The last integral in Eq. (11) over time and z vanishes due to the equivalence of the displacements
and stresses at θ = 0 and at θ = 2π.

Integration over time of the kinetic energy variation can be evaluated as∫ t2

t1
δT dt =

ρb
2

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
δ(ṙ · ṙ)r dθdzdt

=
ρb
2

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
δ(v1

2 + v2
2)r dθdzdt

=
ρb
2

∫ t2

t1

∫ h/2

−h/2

∫ 2π

0
(2v1 δv1 + 2v2 δv2)r dθdzdt

= ρb
∫ t2

t1

∫ h/2

−h/2

∫ 2π

0

[
(−v̇1 −Ω v′1 + v2 Ω)δw

− (v̇2 + Ω v′2 + v1 Ω)δu
]
r dθdzdt

(12)

in which v1 and v2 are given in Eq. (6).
The variation of the potential energy due to the elastic foundation is given by

δV = δV1 + δV2 (13)

in which δV1 is related to the potential energy stored in the radial springs which connect the inner
surface of the ring to its hub while δV2 to that of the tangential springs. The integration over time
of δV1 and δV2 yields ∫ t2

t1
δV1 dt = b

∫ t2

t1

∫ 2π

0

[
(kr w r δw)

∣∣∣z=−h/2

]
dθdt (14)
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and ∫ t2

t1
δV2 dt = b

∫ t2

t1

∫ 2π

0

[
(kc u r δu)

∣∣∣z=−h/2

]
dθdt. (15)

Upon substitutions of Eqs. (9-15) to Eq. (7) and after consideration of variational calculus, the
governing equations are obtained.

First, after substitutions of Eqs. (9-15) to Eq. (7), the double integrals which are associated
with the effects of the boundaries at z = ±h/2 are collected, i.e.:

b
∫ t2

t1

∫ 2π

0

{[
(rσr − r τθru,r )δw

] ∣∣∣z=h/2

}
dθdt

− b
∫ t2

t1

∫ 2π

0

{[
(rσr − r τθru,r − kr w r)δw

] ∣∣∣z=−h/2

}
dθdt

+ b
∫ t2

t1

∫ 2π

0

{[
(rσr u,r + r τθr(1 − w,r ))δu

] ∣∣∣z=h/2

}
dθdt

− b
∫ t2

t1

∫ 2π

0

{[
(rσr u,r + r τθr(1 − w,r ) − kc u r)δu

] ∣∣∣z=−h/2

}
dθdt

= b
∫ t2

t1

∫ 2π

0

(
f1 δw

∣∣∣z=h/2 − f2 δw
∣∣∣z=−h/2 + f3 δu

∣∣∣z=h/2 − f4 δu
∣∣∣z=−h/2

)
dθdt

(16)

in which

f1 =
{
r
(
σr − τθru,r

)} ∣∣∣z=h/2 , (17a)

f2 =
{
r
(
σr − τθru,r − kr w

)} ∣∣∣z=−h/2 , (17b)

f3 =
{
r
[
σr u,r + τθr(1 − w,r )

]} ∣∣∣z=h/2 , (17c)

f4 =
{
r
[
σr u,r + τθr(1 − w,r ) − kc u

]} ∣∣∣z=−h/2 . (17d)

Second, the displacement fields are expressed as polynomials in both radial and circumfer-
ential directions:

w(z, θ, t) =

l=N1∑
l=0

wl(θ, t) zl, u(z, θ, t) =

q=N2∑
q=0

uq(θ, t) zq (18)

in which l, q are integers and l ≥ 0, q ≥ 0. This results at

δw =

l=N1∑
l=0

δwl zl, δu =

q=N2∑
q=0

δuq zq (19)

and

δw
∣∣∣z=±h/2 =

l=N1∑
l=0

δwl (±h/2)l, δu
∣∣∣z=±h/2 =

q=N2∑
q=0

δuq (±h/2)q. (20)

Combining Eqs. (7-20) and collecting coefficients of δwl and δuq, the nonlinear governing
equations can be obtained by setting the coefficients of δwl and δuq equal to zero. The equations
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of motion (the coefficient of δwl, contains N1 + 1 equations) that govern the dynamic equilibrium
in the radial direction read∫ h

2

−h
2

(I1 zl) dz + ρ

∫ h
2

−h
2

[
r(v̇1 + Ω v′1 −Ω v2)zl] dz +

[
f1 − f2(−1)l

] (h
2

)l

= 0,

(l = 0, 1, 2, 3...N1).

(21)

The equations of motion (the coefficient of δuq, contains N2 + 1 equations) that govern the cir-
cumferential equilibrium are given as∫ h

2

−h
2

(I2 zq) dz + ρ

∫ h
2

−h
2

[
r(v̇2 + Ω v′2 + Ω v1)zq] dz +

[
f3 − f4(−1)q] (h

2

)q

= 0,

(q = 0, 1, 2, 3...N2)

(22)

in which

I1 = σθ + (σθβ)′ − (rσr),r − (τθr η)′ + τθr β + (r u,r τθr),r, (23a)
I2 = −(σθ)′ + σθ β − (rσr u,r),r − τθr η − (τθr β)′ −

[
r τθr(1 − w,r)

]
,r . (23b)

The Eqs. (21-22) present the new mathematical description of the dynamics of a rotating ring on
an elastic foundation that takes into account the effect of the tractions on the boundaries of the
ring.

Up to now, the derivation is generic and one may truncate the number of terms in Eq. (18) as
deemed appropriate. For instance, if one retains w0, u0 and u1 in the series expansion in Eq. (18),
the Timoshenko-type model is obtained and a shear correction coefficient needs to be introduced
[18]. When one chooses a higher truncation limit, no shear correction coefficient needs to be
introduced separately because the proper distribution of shear stress is considered implicitly by
the model. This is the same as in the Carrera unified formulation [37–40].

2.2. Static equilibrium

To derive the linear governing equations, the static equilibrium needs to be obtained first
from the nonlinear equations. As shown in [13, 22] an angle-independent static equilibrium will
be reached when the ring rotates at a constant angular velocity. The static expansion we(z) of the
ring can be found by substitution of

w(z, θ, t) = we(z) =

l=N1∑
l=0

wel zl,

u(z, θ, t) = 0

(24)

into the governing equations, i.e. Eqs. (21-22). Upon substitution, the following N1 +1 equations
can be used to determine wel:∫ h

2

−h
2

(I0
1 zl) dz − ρ

∫ h
2

−h
2

r Ω2(r + we)zl dz +
[
f 0
1 − f 0

2 (−1)l
] (h

2

)l

= 0, (25)

9



where

I0
1 = 2µ

(
we

r
−
∂we

∂r

)
− r

[
(2µ + λ̄)

(
∂2we

∂r2

)
+
λ̄

r
∂we

∂r

]
,

f 0
1 =

{[
(2µ + λ̄)

∂we

∂r
+ λ̄

we

r

]
r
} ∣∣∣z=h/2 ,

f 0
2 =

{[
(2µ + λ̄)

∂we

∂r
+ λ̄

we

r
− krwe

]
r
} ∣∣∣z=−h/2 .

(26)

Each wel of the total N1 + 1 terms can be obtained separately as a function of the rotational speed
Ω. Subsequently, we(z) is obtained by applying Eq. (24).

2.3. Linearised equations of motion
Considering small vibrations around the static equilibrium, the displacements can be ex-

pressed as

w(z, θ, t) = wd(z, θ, t) + we(z) =

l=N1∑
l=0

wdl(θ, t) zl +

l=N1∑
l=0

wel zl,

u(z, θ, t) = ud(z, θ, t) =

q=N2∑
q=0

udq(θ, t) zq,

(27)

in which all time dependent terms are assumed small. The linearised governing equations are
obtained by dropping all the nonlinear terms in Eqs. (21-22).

Linearising Eq. (21), the equations of motion that govern the small vibrations about the static
equilibrium in the radial direction read∫ h

2

−h
2

(Ilin
1 zl) dz + ρ

∫ h
2

−h
2

[
r(v̇1 + Ω v′1 −Ω v2)zl

]
dz +

[
f lin
1 − f lin

2 (−1)l
] (h

2

)l

= 0, (28)

The linearised equations of motion in the circumferential direction are given as∫ h
2

−h
2

(Ilin
2 zq) dz + ρ

∫ h
2

−h
2

[
r(v̇2 + Ω v′2 + Ω v1)zq] dz +

[
f lin
3 − f lin

4 (−1)q
] (h

2

)q

= 0. (29)

after linearisation of Eq. (22). In Eqs. (28-29),

Ilin
1 = σlin

θ + σ0
θ(β)′ − (rσlin

r ),r −
[
(τθr η)′

]lin , (30a)

Ilin
2 = −(σlin

θ )′ + σ0
θ β −

[
r(σ0

r )u,r
]
,r
− (τθr η)lin −

{[
r τθr(1 − w,r)

]
,r

}lin
, (30b)

f lin
1 =

[
r(2µ + λ̄)

∂w
∂r

+ λ̄(u′ + w)
] ∣∣∣z=h/2 , (30c)

f lin
2 =

[
r(2µ + λ̄)

∂w
∂r

+ λ̄(u′ + w) − krw r
] ∣∣∣z=−h/2 , (30d)

f lin
3 =

{
G(r − we)(1 − we,r)

r
(w′ − u) +

[
Gr(1 + (we,rr)2) + λ̄(rwe,r + we)

]
u,r

} ∣∣∣z=h/2 , (30e)

f lin
4 =

{
G(r − we)(1 − we,r)

r
(w′ − u) +

[
Gr(1 + (we,rr)2) + λ̄(rwe,r + we)

]
u,r − kcu r

} ∣∣∣z=−h/2 .

(30f)
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The expressions with superscript lin are the linearised versions of the earlier introduced nonlinear
expressions. The stresses σ0

r and σ0
θ are caused by rotation and can be found in Appendix A. For

brevity, in all the expressions above, w and u stand for wd and ud, respectively. The velocities v1
and v2 are now related solely to the vibrational velocities, namely

v1 =
[
ẇd + (w′d − ud)Ω

]
, v2 =

[
u̇d + (u′d + wd)Ω

]
. (31)

To obtain the characteristic equation one needs to first substitute

wdl(θ, t) = Wdl einθ+iωt, udq(θ, t) = Udq einθ+iωt, (l = 0, 1, 2, 3...N1, q = 0, 1, 2, 3...N2), (32)

into Eqs. (28-29). In Eq. (32) ω is the natural frequency in space-fixed reference system, n is
the circumferential mode number and i =

√
−1. This substitution yields the following matrix

equation
Da = 0 (33)

in which a =
[
W0,W1, ...,WN1 ,U0,U1, ...,UN2

]T and D is the coefficient matrix of order (N1 +

N2 + 2) × (N1 + N2 + 2). The characteristic equation can be obtained by setting the determinant
of the coefficient matrix equal to zero:

f (ω, n,Ω) = det
〈
D
〉

= 0. (34)

In this paper, no approximations are introduced for the integrations along the thickness coordinate
“z”. Instead, the exact integral form of the governing equations is considered.

To derive the non-dimensional form of the governing equations, the following dimensionless
parameters are introduced [41]:

k =
√

EI/(EA), k̄ = k/R, γ̄ = n k̄, ω̄ = ω k/c0, v̄ = R Ω/c0,

(k̄r, k̄c) = (kr, kc)k2/(Eh), W0e = w0e/R,
(35)

in which c0 =
√

E/ρ is the speed of the longitudinal wave in the rod, I = bh3/12 is the cross
section area moment of inertia and k̄ is the non-dimensional radius of gyration. Thus, the dimen-
sionless form of the characteristic equation Eq. (34) reads

f (ω̄, γ̄, v̄) = 0. (36)

The model developed can deal with both plane strain and plane stress problems by choosing
the parameter λ̄ in Eq. (4). Naturally, the model is also applicable for stationary rings when
Ω = 0.

3. Applicability of the present model: the case of a stationary ring

In this section, the applicable wavenumber range of the present high-order model is exam-
ined. Predictions using the classical ring model [13], the Timoshenko-type model [18] and the
model presented in this paper are compared with the exact solution obtained from elasticity the-
ory for Ω = 0 (stationary ring case). A comparison of the stationary ring case suffices for the
following reason. Once it is shown that boundary effects are important for stationary rings, one
may conclude that the latter will also be of importance for rotating rings since the tractions at the
inner surface in the latter case are larger than those of the stationary ring case.
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3.1. Three qualitatively different wave dispersion characteristics of stationary thin rings on elas-
tic foundation

Before proceeding to the high order theory, the classical theory of thin rings on elastic foun-
dation is briefly reviewed. For the classical theory, only the in-plane flexural and extensional
motions are considered. Based on the classical thin ring theory, there are three qualitatively dif-
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Figure 2: Frequency-wavenumber (left) and phase speed-wavenumber (right) dependencies for h/R = 0.1, k̄c = 0.1:
(a)(b) k̄r = 0.01; (c)(d) k̄r = 0.2; (e)(f) k̄r = 0.5. Note that the wavenumber ranges in the plots exceed the applicable
range of the classical theory. However, the range is kept for the convenience of explanation.
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ferent dispersive characteristics, depending on the foundation stiffness and the elastic properties
of the ring. The presence of elastic foundation alters the cut-off frequencies of the ring and
wave dispersion characteristics. The characteristic equation for the classical thin ring on elastic
foundation model is

(ω̄2 − k̄2 − γ̄4 − k̄r)(ω̄2 − γ̄2 − k̄2 γ̄2 − k̄c) − (k̄ γ̄3 + k̄ γ̄)2 = 0. (37)

Eq. (37) is the one given in [41], except for the terms k̄r, k̄c which are related to the elastic foun-
dation. The phase speed-wavenumber curves in Fig. 2(b)(d)(f) are equivalent to the resonance
speed-mode number relations of a circumferentially constant moving point load on the same ring
if one considers only discrete wavenumbers γ̄ = nk̄ [25]. These three cases are illustrated in Fig.
(2). The red solid lines represent rings, and the black dashed lines are related to the correspond-
ing beam cases predicted by Eq. (37) after setting k̄ = 0 because R→ +∞ for a beam. Note that
the corresponding beam consists of the decoupled transverse (bending) and longitudinal (exten-
sion) motions as shown by the degenerated Eq. (37) after setting k̄ = 0. In Fig. 2, the letter “B”
in each subplot means bending-dominated motions whereas “E” stands for extension-dominated
motions. For all the three cases, h/R = 0.1 is used, c̄ is the dimensionless phase speed of waves
and c̄ = c/c0 (c0 =

√
E/ρ). The assumed parameters fall into the three cases below:

• Case 1: k̄c = 0.1, k̄r = 0.01

The bending-dominated motion has lower natural frequencies and phase speeds until γ̄ ≈
1, when frequency veering happens and the eigenfunctions associated with the two fre-
quency branches interchange [42].

• Case 2: k̄c = 0.1, k̄r = 0.2

At low wavenumbers, the bending-dominated motion is characterised by higher natural
frequencies till frequencies veer at a certain wavenumber. At γ̄ ≈ 1, frequencies veer
again.

• Case 3: k̄c = 0.1, k̄r = 0.5

The bending-dominated motion occurs at higher natural frequencies and has higher phase
speeds.

A general observation is that the curvature coupling is weak for thin rings since the dispersion
curves of rings are quite close to their corresponding straight beam cases except for frequencies
at which curve veering occurs. Consider a straight beam on elastic foundation, the minimum
phase speed of the bending motion in the dimensionless form is [43]

c̄min =
4
√

4krEI/(ρA)2/c0 =
4
√

4k̄r. (38)

The minimum phase speeds of rings of Case 1 and Case 2 can be reasonably well approximated
by straight beams using Eq. (38). However, for Case 3, the minimum phase speed obtained by
the classical thin ring theory equals to the longitudinal wave speed

√
E/ρ.

Note that the dimensionless values k̄r = 0.01, k̄r = 0.2, k̄r = 0.5 represent stiff foundation
with respect to the bending stiffness of the ring itself. For example, k̄r = 0.01 represents a
foundation whose stiffness is approximately equal to the Young’s modulus of a ring of rectangular
cross-section if h = 0.1m and R = 1m. However, in the context of this paper, k̄r = 0.01, k̄r =

0.2, k̄r = 0.5 will be termed “soft”, “medium stiff” and “stiff” when referred to for convenience
of description.
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Figure 3: A rotating ring with b >> h.

3.2. Comparisons between various ring models and the elasticity theory for a stationary ring
To illustrate the significance of the through-thickness variation of stresses and the boundary

effects, the proposed model is compared with the Timoshenko-type model [18] and the two-
dimensional elasticity theory for the stationary ring case (Ω = 0). Plane strain is assumed since
a ring whose out-of-plane thickness b is much larger than the in-plane thickness h is considered
as shown in Fig. 3. For the Timoshenko-type theory, the shear coefficient is adopted from [44]

K =
10(1 + ν)
12 + 11ν

(39)

for a rectangular cross-section.
The dispersion curves are plotted in Fig. 4 for the three sets of foundation stiffness discussed

previously. The two-dimensional elasticity theory employed to obtain the exact solution can be
found in Appendix B. Throughout this paper, the Poisson’s ratio ν = 0.4 is employed. In each
plot of Fig. 4, results obtained from the Timoshenko-type theory [18] consist of three branches,
representing bending-dominated motion, extension-dominated motion and shear-dominated mo-
tion, respectively. The first four branches of the dispersion curves calculated from the elasticity
theory are drawn to compare with the results from the Timoshenko-type theory and the high-order
theory proposed in this paper. The truncation orders in Eq. (18) are chosen to be N1 = N2 = 5.

Comparison of Figs. 2(a)(c)(e) in which the dispersion curves resulting from the classical
thin ring model are present, and Fig. 4 shows that the applicability range of the new model
is much wider than the existing classical thin ring model [13] and the Timoshenko-type model
[18]. The classical thin ring model cannot predict the dispersion curves when the foundation
stiffness increases. This also holds for the Timoshenko model the predictions of which deviate
significantly from the exact solution for increased foundation stiffness. In contrast, the current
model can accurately predict the first four branches of the dispersion curves in the whole range
of wavenumbers also in the case of stiff foundation (and thus strong through-thickness variation
of the stress components) with the choice of quintic polynomials (N1 = N2 = 5) for both the
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Figure 4: Dispersion curves (plane strain) for h/R = 0.1, k̄c = 0.1 and Ω = 0: (a) k̄r = 0.01; (b) k̄r = 0.2; (c) k̄r = 0.5.

radial displacement and circumferential displacement fields. More dispersion curves can be ac-
curately predicted by increasing the degrees of the polynomial displacements accordingly. To
conclude, the high-order theory which considers the boundary effects at the surfaces and the
through-thickness variations of stresses is shown to be superior to the existing ring models.

4. Critical speeds of rotating rings

In this section, critical speeds of a rotating ring are calculated using different models to illus-
trate the importance of different factors. As discussed in Section 1, there are two kinds of critical
speeds of interest for a rotating ring. One corresponds to possible instability of free vibrations,
whereas the other corresponds to resonances of a rotating ring subjected to a stationary load of
constant magnitude.

4.1. Applicable rotational speed range

Rotation leads to axi-symmetric radial expansion of the ring. This expansion causes prestress
in the ring in both circumferential and radial directions. Thus, there should be a threshold of the
rotational speed to avoid the material failure caused by the rotation-induced prestress. As is
shown in [22], there are two kinds of prestress which should be examined, namely, the hoop
prestress σθ0 and the radial prestress σr

0. The expressions for σθ0 and σr
0 can be found in
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Appendix A. One should always keep in mind that the model is valid when the material is in
the linearly elastic range and therefore the principal stress caused by rotation does not exceed the
yield stress.

4.2. Resonance speeds

Resonance speeds are defined as the speeds at which resonances of a rotating ring subjected to
a constant stationary load occur, i.e. the speeds which satisfy the condition ω̄ = 0 [22, 28, 45, 46].
By substituting ω̄ = 0 into the characteristic equation (36), one can solve for the resonance
speeds for each circumferential wavenumber. Not that these speeds are altered in the presence of
damping and can disappear altogether provided the damping is sufficiently high.

4.2.1. Models considered
In order to illustrate the importance of the boundary effects (non-zero tractions at the in-

ner surface) and through-thickness variation of stresses, predictions made by four models are
compared. Table 1 shows the classical thin ring model and the meliorated models with differ-
ent improvements considered. “R. stress variation” means that the through-thickness variation of
radial stress is considered. To achieve this, at least a quadratic polynomial for the radial displace-
ment field is needed. “S. stress variation” stands for the consideration of the through-thickness
variation of shear stress. Model 1 is the classical theory [13]; Model 4 is the one developed in this
paper. Model 2 [22] accounts for the through-thickness radial stress variation on the basis of the
classical ring model. Model 3 is the one adopted from [18] in which the shear deformation and
rotatory inertia are included, resulting in a Timoshenko-type model. In analogy to Timoshenko’s
beam theory, the shear coefficient in Model 3 is given by Eq. (39) for a rectangular cross-section.

4.2.2. Predictions of the various models
The critical speeds of rotating rings are considered in this subsection. The three sets of pa-

rameters used to plot Fig. 2 in Section 3 are adopted. In all figures hereafter, the letter “B”
means bending-dominated motions, “E” stands for extension-dominated motions, and “S” rep-
resents shear-dominated motions. Note that only waves predicted by the lower order Model 1,
Model 2 and Model 3 are distinguished in this way. The lower abscissa in each plot is the dimen-
sionless wavenumber, whereas the upper abscissa is the corresponding discrete circumferential
mode number. In Figs. 5(d), 6(d) and 7(d), the solid lines correspond to results from the proposed
high-order Model 4. For the purpose of comparison, the curves in Figs. 5(d), 6(d) and 7(d) are
replicated in Figs. 5(a)(b)(c), 6(a)(b)(c) and 7(a)(b)(c) in grey color.

Figure 5 shows the resonance speeds for k̄c = 0.1 and k̄r = 0.01. Model 1 and Model 2
(Fig. 5(a)(b)) predict quite similar results, indicating that the through-thickness radial stress
is not that important. The minimum resonance speed is similar but slightly higher than the
minimum phase speed of the corresponding stationary ring case as approximated by Eq. (38)
due to stiffening caused by rotation-induced hoop stress. The applicable wavenumber range of
Model 1 and Model 2 is lower than γ̄ = 0.5 when compared with the present model (the thick
grey lines in Fig. 5(a)(b)) for the chosen parameters. Model 3 and Model 4 predict qualitatively
similar resonance speeds for bending-dominated motions as shown in Fig. 5(c). The minimum
resonance speeds predicted by Model 3 and Model 4 are similar to those predicted by Model 1
and Model 2. However, Model 4 predicts the highest minimum resonance speed. The resonance
speeds of bending-dominated motions approach the Rayleigh wave speed at large wavenumbers.
This convergence is reasonable since for the waves whose wavelengths are much shorter than the
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Figure 5: Resonance speeds for h/R = 0.1, k̄c = 0.1, k̄r = 0.01: (a) Model 1 (classical model [13]); (b) Model 2 [22]; (c)
Model 3 (Timoshenko-type [18]); (d) Model 4 (the present model).

thickness of the ring the effect of the inner boundary disappears. The higher branches (S,E) are
not predicted accurately by the Timoshenko-type theory.

To conclude, if the foundation is soft, one can use the classical model to compute the mini-
mum resonance speed although the latter is slightly smaller than the minimum resonance speed
predicted by the present model. However, for the resonance speeds of the bending-dominated
motions with short wavelengths (high wavenumbers), the first order Timoshenko correction is
needed should one be interested in meaningful results. Higher than Timoshenko-type theories
are not needed since their predictions are very close to those of the Timoshenko-type theory.

In Figure 6, the stiffness of radial springs is higher than the circumferential one. For this
set of parameters, the resonance speeds of bending-dominated motions are larger than those of
other branches at low wavenumbers. As the wavenumber increases, both the classical model and
Model 2 predict curve veering twice: once at γ̄ ≈ 1 and once at a smaller value of γ̄. Although
the classical model (Model 1) and Model 2 predict similar trends, the minimum resonance speed
of Model 2 is lower than that of the classical theory. It is shown in Fig. 6(c) and (d) that the
shear deformation and rotatory inertia play here a significant role; albeit the contribution of each
component is not examined separately. Similar to Model 1 and Model 2, for low wavenumbers,
bending-dominated motions have larger resonance speeds. Curves representing flexural and ex-
tensional motions veer once at the wavenumber in which the first curve veering occurs in Fig.
6(a) and (b) (the veering is not very obvious in Fig. 6(b) but the curves do veer). Beyond this
point, in Fig. 6(c), resonances of shear-dominated motions occur at highest speeds, following
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Figure 6: Resonance speeds for h/R = 0.1, k̄c = 0.1, k̄r = 0.2: (a) Model 1 (classical model [13]); (b) Model 2 [22]; (c)
Model 3 (Timoshenko-type [18]); (d) Model 4 (the present model).

by extension-dominated motions and bending-dominated motions. Similarly to Fig. 5(c) for the
Timoshenko-type model, the Rayleigh surface wave speed is the limit of the bending-dominated
motion as is shown in Fig. 6(c). Also, for Model 4, resonance speeds of the lowest wave branch
converge to the Rayleigh wave speed. Therefore, if a constant stationary load is applied to the
ring and the rotational speed of the ring reaches the Rayleigh wave speed, Rayleigh wave reso-
nance occurs. The Rayleigh wave resonance interpretation is first made by Rabier and Oden in
[47] for the standing wave phenomenon in spinning cylinder. Similar conclusions are made by
Karttunen and von Hertzen in [48] in which a viscoelastic cylinder cover under rolling contact
is considered. It is also shown that for low wavenumbers, the resonance speeds of Fig. 6(d) are
different from those of Fig. 6(a)(c) but quite close to Fig. 6(b) in which the radial stress variation
along the thickness is considered, implying that this variation is important for waves of relatively
long wavelength. Comparing Fig. 6(a), (b), (c) and (d), one can conclude that the lower-order
theories are completely inapplicable for medium stiff foundation.

In Figure 7 (k̄r/k̄c = 5), it is shown that the influence of stress variations increases. The clas-
sical theory predicts higher resonance speeds of bending-dominated motions than the extension-
dominated motions, and no curve veerings exist. However, when the through-thickness radial
stress variation is included in Fig. 7(b), curves veer twice similarly to Fig. 6(b). From the
classical theory, the minimum resonance speed corresponding to extensional motions converges
to

√
E/ρ. Again for the Timoshenko-type model in Fig. 7(c), the resonance speeds of the

bending-dominated motion approach the Rayleigh surface wave speed at high wavenumbers.
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Figure 7: Resonance speeds for h/R = 0.1, k̄c = 0.1, k̄r = 0.5: (a) Model 1 (classical model [13]); (b) Model 2 [22]; (c)
Model 3 (Timoshenko-type [18]); (d) Model 4 (the present model).

The quantitatively different resonance speeds predicted in Fig. 7(c) and (d) show the significance
of boundary effects and through-thickness variation of stresses for the case of stiff foundation.
By observing Fig. 7, it can be seen that the lower-order theories cannot predict the resonance
speeds.

For all the three sets of parameters, one can conclude that high order corrections are needed
to correctly predict the resonance speeds. For Case 1 in which k̄r/k̄c = 0.1, the minimum reso-
nance speeds predicted from all models are close. However, when the stiffness of radial springs
increases, the minimum resonance speeds predicted by different models are distinct. Shear de-
formation and rotatory inertia play an important role, as they ensure bending-dominated modes
are the ones being always excited at lowest speeds. Although the individual contribution of shear
deformation and rotatory inertia are not separately investigated, the observed differences are at-
tributed largely to the effect of shear deformation. The through-thickness variation of stresses
and the consideration of boundary effects become significant when k̄r/k̄c increases. The con-
sideration of boundary effects on dynamics of the ring is more important for waves with small
wavenumbers (long wavelength) than waves of high wavenumbers. It is important to point out
that for larger wavenumbers, the resonance speeds of the bending-dominated waves converge to
the Rayleigh wave speed. By comparing Fig. 2(b), (d), (f) with Fig. 5(a), Fig. 6(a) and Fig. 7
(a), respectively, it is concluded that for a ring on foundation whose stiffness is of the same order
or higher than the Young’s modulus, the resonance speeds of a constant load moving circum-
ferentially on the ring and the inverted problem, namely a rotating ring subjected to a constant
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stationary load, are similar according to the classical thin ring theory. However, due to stress-
stiffening, the resonance speeds of rotating ring case are larger than those of the moving load
case. In the comparison, the influence of the foundation stiffness in the circumferential direction
is not examined since this is expected to be of importance for shear-dominated motion and thus
it has limited influence on bending-dominated waves discussed here.

4.2.3. Necessity of high-order theories for rotating rings
As can be concluded from Figs. 5-7, the use of high order theories is important for predicting

resonance speeds. Even in the case of soft foundation, the predictions of waves generated are
rather different. The predicted resonance speeds change significantly for increasing stiffness
of radial springs. This statement holds also for thin rings. For the case of a rotating ring, it is
necessary to include high-order corrections, even in the case in which the ring is thin but attached
to a stiff foundation. With increasing rotational speeds, the waves excited by a constant stationary
load are completely different given the comparison of the predictions by the classical model and
the proposed one. For example, comparing Fig. 7(a) and (d), if the ring rotates at v̄ = 0.7 and is
subjected to a constant stationary load, no waves are generated according to the classical model
whereas waves will be predicted by the present model.

4.3. Critical speeds associated with the onset of instability
In a previous study [22] of the authors, it has been concluded that the stiffness of the cir-

cumferential springs is a key factor influencing the critical speed corresponding to the onset of
instability. Lower stiffness of circumferential springs results in lower critical speeds associated
with the onset of instability. Here two sets of parameters are chosen; k̄r = 0.28, which corre-
sponds to the stiffness of the radial springs K̄r = 4 × 105 as in [22] and two values of k̄c.
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Figure 8: Stability boundaries predicted by different models for h/R = 0.1, k̄r = 0.28: (a) k̄c/k̄r = 10−4; (b) k̄c/k̄r = 10−2.

The critical speeds corresponding to the onset of instability for different modes (up to n = 9)
are plotted in Fig. 8 using the models described previously. These speeds divide stable and un-
stable regions. In Fig. 8, it can be seen that divergence instability of the n = 0 rotational mode
always occurs at lower rotational speeds compared to flutter of higher modes [22]. The criti-
cal speeds obtained from Model 1, Model 2 and Model 3 are quite similar whereas the present
model predicts higher critical speeds for mode numbers n ≥ 1. The differences become larger
when the mode number increases. Nevertheless, it can be concluded that the lowest critical speed
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( corresponding to divergence of n = 0) is close regardless of the choice of models. This conclu-
sion is reasonable since higher order corrections influence modes in which elastic deformation
dominates.

4.4. On the existence of critical speeds

In the above analysis, the critical speeds calculated from different models are compared.
However, it is worth mentioning that for a rotating ring on an elastic foundation, the critical
speeds do not always exist. The existence of critical speeds depends on the contribution of the
centrifugal softening and stiffening caused by rotation induced prestress. It is argued in [22] that
only for a certain combination of stiffnesses of the radial and circumferential springs instability
may occur. The stiffness of circumferential springs plays a key role in critical speeds associated
with instability. Relatively soft circumferential springs reduce the rotational speeds at which
instability occurs. For resonances to occur, stiff radial springs are needed. On the one hand,
stiff radial springs impose restrictions on the static expansion due to rotation, and therefore the
stress-stiffening effect. The smaller the stiffening effect, the more likely resonances to occur.
Meanwhile, if resonances can occur, larger stiffness of radial springs can confine the resonance
speeds to those at which the material of the ring is still functioning linearly elastic.

5. Conclusions

In this paper, the in-plane vibration of steadily rotating rings on elastic foundation (distributed
springs) is considered. Due to rotation-induced radial expansion, the inner surface which is
connected by springs, experiences traction force because of stretching of springs at the static
equilibrium. The traction force at the inner surface can be considerably high when the ring
rotates at high speeds, resulting in non-negligible through-thickness variations of stresses from
non-zero at the inner surface to zero at the outer surface. The same situation also holds for
the dynamic forces and stresses at the ring surfaces and in the rings. The classical lower order
theories cannot account for either the boundary effects at surfaces or the variations of stresses
along the thickness of the ring whereas the developed high-order theory is able to. The present
model can precisely describe high order wave motions by increasing the degrees of displacement
polynomials.

Two types of critical speeds are discussed. The first one corresponds to resonances of a
rotating ring subjected to a constant stationary load. The second one is responsible for instability
of the free vibration of a rotating ring. By analysing the critical speeds using different models, it
is shown that the higher order corrections are important even for thin rings which are elastically
supported. The classical low-order theory becomes inapplicable when the foundation is stiff
or when the ring rotates at high speeds. The Timoshenko-type theory performs better when it
comes to the prediction of critical speeds, however, it is not accurate for rings rotating at high
speed or rings supported by stiff foundation. The influence of boundary effects at the inner
and outer surfaces, which are accounted for in the developed model, becomes significant when
the foundation is stiff, especially for waves of long wavelength. Regarding the critical speeds
associated with instability, if they exist, the developed model predicts higher values than the
ones predicted using other models for n ≥ 1. However, the critical speeds corresponding to n = 0
divergence as obtained by different models, are similar.
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Appendix A. Relation between the rotation induced prestresses and static deformation

From the Hooke’s law shown in Eq. (3), the prestress in radial direction is given by

σr
0 = 2µ εr

0 + λ̄
(
εr

0 + εθ
0
)

(A.1)

and in circumferential direction it reads

σθ
0 = 2µ εθ0 + λ̄

(
εr

0 + εθ
0
)

(A.2)

where the strains caused by rotation are

εr
0 =

∂we

∂r
, εθ

0 =
we

r
(A.3)

in which we is given by Eq. (24).

Appendix B. Exact solutions for natural frequencies of the in-plane vibrations of station-
ary rings

A ring can be considered as a circular annulus. Either plane strain [49] or plane stress [50] as-
sumption can be made according to the examined problem. Assume steady-state time-harmonic
waves in the ring, after dropping the time signature eiωt, the governing equations in polar coordi-
nate (r, θ) are

∂σr

∂r
+
σr − σθ

r
+

1
r
∂τθr
∂θ

+ ρω2 w = 0,

∂τθr
∂r

+
1
r
∂σθ
∂θ

+
2 τθr

r
+ ρω2 u = 0

(B.1)

in which w = w(r, θ), u = u(r, θ) are the radial and circumferential displacement, respectively.
Substituting the Hooke’s law Eq. (3) one obtains:

σr = 2µ εr + λ̄ (εr + εθ) = 2µ
∂w
∂r

+ λ̄

(
∂w
∂r

+
w
r

+
1
r
∂u
∂θ

)
,

σθ = 2µ εθ + λ̄ (εr + εθ) = 2µ
(

w
r

+
1
r
∂u
∂θ

)
+ λ̄

(
∂w
∂r

+
w
r

+
1
r
∂u
∂θ

)
,

τθr = µ γθr = µ

(
∂u
∂r
−

u
r

+
1
r
∂w
∂θ

)
.

(B.2)

Expression of λ̄ can be found in Eq. (4).
The Helmholtz decomposition is used to obtain two decoupled governing equations:

∇2Φ̂ +
ω2

cL
2 Φ̂ = 0, ∇2Ĥz +

ω2

cT
2 Ĥz = 0 (B.3)
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where cL =
√

(λ̄ + 2µ)/ρ and cT =
√
µ/ρ. The displacements can be expressed as

w =
∂Φ̂

∂r
+

1
r
∂Ĥz

∂θ
, u =

1
r
∂Φ̂

∂θ
−
∂Ĥz

∂r
. (B.4)

Applying separation of variables on Eq. (B.3), one will obtain

Φ̂(r, θ) =
(
An Jn(kp r) + Bn Yn(kp r)

)
cos(nθ),

Ĥz(r, θ) = (Bn Jn(ks r) + Dn Yn(ks r)) sin(nθ)
(B.5)

where kp = ω/cL and ks = ω/ cT ; Jn and Yn are the Bessel functions of the first and second kind,
respectively. The boundary conditions are

σr

∣∣∣−h/2 = kr w
∣∣∣−h/2 , τθr

∣∣∣−h/2 = kc u
∣∣∣−h/2 (B.6)

at the inner surface and
σr

∣∣∣h/2 = 0, τθr
∣∣∣h/2 = 0 (B.7)

at the outer surface. The frequency equation can be obtained by substituting Eq. (B.5) into the
boundary conditions (B.6-B.7).
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[32] I. Senjanović, N. Alujević, I. Ćatipović, D. Čakmak, N. Vladimir, Vibration analysis of rotating toroidal shell
by the Rayleigh-Ritz method and Fourier series, Engineering Structures 173 (2018) 870–891. doi:10.1016/j.

engstruct.2018.07.029.
[33] M. Stein, Nonlinear theory for plates and shells including the effects of transverse shearing, AIAA Journal 24 (9)

(1986) 1537–1544. doi:10.2514/3.9477.
[34] P. Pai, A. Nayfeh, A new method for the modeling of geometric nonlinearities in structures, Computers & Structures

53 (4) (1994) 877–895. doi:10.1016/0045-7949(94)90376-X.
[35] P. F. Pai, Highly Flexible Structures: Modeling, Computation, and Experimentation, AIAA, 2007. doi:10.2514/

4.861925.
[36] H. Matsunaga, Effects of higher-order deformations on in-plane vibration and stability of thick circular rings, Acta

Mechanica 124 (1-4) (1997) 47–61. doi:10.1007/BF01213017.
[37] E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with

numerical assessment and benchmarking, Archives of Computational Methods in Engineering 10 (3) (2003) 215–
296. doi:10.1007/BF02736224.

[38] E. Carrera, A. Pagani, Analysis of reinforced and thin-walled structures by multi-line refined 1d/beam models,
International Journal of Mechanical Sciences 75 (2013) 278–287. doi:10.1016/j.ijmecsci.2013.07.010.

[39] E. Carrera, M. Filippi, E. Zappino, Laminated beam analysis by polynomial, trigonometric, exponential and zig-
zag theories, European Journal of Mechanics-A/Solids 41 (2013) 58–69. doi:10.1016/j.euromechsol.2013.
02.006.

[40] A. Pagani, M. Boscolo, J. Banerjee, E. Carrera, Exact dynamic stiffness elements based on one-dimensional higher-
order theories for free vibration analysis of solid and thin-walled structures, Journal of Sound and Vibration 332 (23)
(2013) 6104–6127. doi:10.1016/j.jsv.2013.06.023.

[41] K. Graff, Wave Motion in Elastic Solids, Dover Publications, Inc., New York, 1975.
[42] N. Perkins, C. Mote, Comments on curve veering in eigenvalue problems, Journal of Sound and Vibration 106 (3)

(1986) 451–463. doi:10.1016/0022-460X(86)90191-4.
[43] A. Metrikine, H. Dieterman, Instability of vibrations of a mass moving uniformly along an axially compressed

25

http://dx.doi.org/10.1016/S0022-460X(88)80101-9
http://dx.doi.org/10.1142/S175882511750051X
http://dx.doi.org/10.1006/jsvi.2002.5104
http://dx.doi.org/10.1006/jsvi.1993.1266
http://dx.doi.org/10.1016/0020-7462(94)90050-7
http://dx.doi.org/10.1016/j.jsv.2017.05.013
http://dx.doi.org/10.1016/j.ijmecsci.2017.07.007
http://dx.doi.org/10.1006/jsvi.1999.2756
http://dx.doi.org/10.1016/j.jsv.2008.05.021
http://dx.doi.org/10.1016/0022-460X(87)90471-8
http://dx.doi.org/10.1016/0022-460X(87)90471-8
http://dx.doi.org/10.1016/0022-460X(87)90524-4
http://dx.doi.org/10.1080/08905458808960272
http://dx.doi.org/10.1016/j.jsv.2010.05.001
http://dx.doi.org/10.1016/j.jsv.2013.06.010
http://dx.doi.org/10.1016/j.jsv.2013.08.030
http://dx.doi.org/10.1016/j.engstruct.2018.07.029
http://dx.doi.org/10.1016/j.engstruct.2018.07.029
http://dx.doi.org/10.2514/3.9477
http://dx.doi.org/10.1016/0045-7949(94)90376-X
http://dx.doi.org/10.2514/4.861925
http://dx.doi.org/10.2514/4.861925
http://dx.doi.org/10.1007/BF01213017
http://dx.doi.org/10.1007/BF02736224
http://dx.doi.org/10.1016/j.ijmecsci.2013.07.010
http://dx.doi.org/10.1016/j.euromechsol.2013.02.006
http://dx.doi.org/10.1016/j.euromechsol.2013.02.006
http://dx.doi.org/10.1016/j.jsv.2013.06.023
http://dx.doi.org/10.1016/0022-460X(86)90191-4


beam on a viscoelastic foundation, Journal of Sound and Vibration 201 (5) (1997) 567–576. doi:10.1006/jsvi.
1996.0783.

[44] G. Cowper, The shear coefficient in Timoshenko’s beam theory, Journal of Applied Mechanics 33 (2) (1966) 335–
340. doi:10.1115/1.3625046.

[45] W. Soedel, Vibrations of Shells and Plates, CRC Press, 2004.
[46] T. Lu, A. Metrikine, On the existence of a critical speed of a rotating ring under a stationary point load, in: Proceed-

ings of 43th International Summer School-Conference Advanced Problems in Mechanics (APM), SPBSPU/IPME
RAS, St. Petersburg (Russia), June 2015, pp. 237–245.

[47] P. J. Rabier, J. T. Oden, Bifurcation in rotating bodies, Vol. 11, Springer Verlag, 1989.
[48] A. T. Karttunen, R. von Hertzen, A numerical study of traveling waves in a viscoelastic cylinder cover under

rolling contact, International Journal of Mechanical Sciences 66 (2013) 180–191. doi:10.1016/j.ijmecsci.

2012.11.006.
[49] G. Liu, J. Qu, Guided circumferential waves in a circular annulus, Journal of Applied Mechanics 65 (1998) 424–

430. doi:10.1115/1.2789071.
[50] S. Bashmal, R. Bhat, S. Rakheja, Frequency equations for the in-plane vibration of circular annular disks, Advances

in Acoustics and Vibration 2010. doi:10.1155/2010/501902.

26

http://dx.doi.org/10.1006/jsvi.1996.0783
http://dx.doi.org/10.1006/jsvi.1996.0783
http://dx.doi.org/10.1115/1.3625046
http://dx.doi.org/10.1016/j.ijmecsci.2012.11.006
http://dx.doi.org/10.1016/j.ijmecsci.2012.11.006
http://dx.doi.org/10.1115/1.2789071
http://dx.doi.org/10.1155/2010/501902

	Introduction
	High-order rotating ring model
	Derivation of the nonlinear governing equations
	Static equilibrium
	Linearised equations of motion

	Applicability of the present model: the case of a stationary ring
	Three qualitatively different wave dispersion characteristics of stationary thin rings on elastic foundation
	Comparisons between various ring models and the elasticity theory for a stationary ring

	Critical speeds of rotating rings
	Applicable rotational speed range
	Resonance speeds
	Models considered
	Predictions of the various models
	Necessity of high-order theories for rotating rings

	Critical speeds associated with the onset of instability
	On the existence of critical speeds

	Conclusions
	Relation between the rotation induced prestresses and static deformation
	Exact solutions for natural frequencies of the in-plane vibrations of stationary rings

