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A B S T R A C T   

Investing in low-carbon technologies, including light-duty vehicles, is a strategy to decarbonize the residential 
sector and private mobility. This work aims to assess the parameters driving the economic convenience of battery 
electric vehicles (BEVs) for a household, and what are the economic implications of BEV adoption on the total 
cost of the residential energy system in case of house renovation. An archetypal household energy system has 
been modelled for the Italian context, where strong residential energy efficiency incentives have been put in 
place in recent years. Adopting a least-cost-oriented energy system optimization model, 33’600 residential en-
ergy system configurations have been analysed through an extensive sensitivity analysis carried out focusing on 
crucial input parameters, classified as behavioural (annual travelled distance, expected ownership time of the 
car), energy-related (electricity and heating demand, house location, PV installed capacity), and economic (grid 
electricity price, gasoline prices and incentives on BEV purchase). Results show that integration with PV 
installation is the parameter most strongly correlated with BEV adoption, followed by annual travelled distance 
and ownership time. Moreover, results suggest that an increase in electricity prices has a lower impact on dis-
incentivizing BEVs adoption compared to how much an equivalent increase in gasoline prices disincentivizes 
ICEVs adoption. Valuable insights reveal that, within the range of the Italian average gasoline price, BEV-based 
energy systems remain competitive. This holds even with a high electricity price, provided a minimum of 3 kW 
photovoltaic capacity is installed. In light of the ongoing energy crisis in Europe, these findings are promising for 
BEV adoption, particularly if accompanied by BEV incentive policies.   

1. Introduction 

1.1. Background and objectives 

The shift towards low-carbon technology is becoming increasingly 
important due to the need to limit global temperature rise. While pre-
vious energy transitions have been characterised by technological in-
novations and market dynamics which led naturally to improved living 
standards and economic margins for companies, the one we are 
currently facing needs to be accelerated and supported by governmental 
action. According to the IPCC, it is paramount to commit to achieve a 45 
% reduction in carbon dioxide emissions by 2030 compared to 2010 
levels (IPCC, 2022a). In light of this objective, actions and efforts shall 

be directed to sectors with the greatest impact, such as transport. 
According to the European Environment Agency, European road 

transport and residential sectors accounted respectively for 13 % and 6 
% of CO2 emissions in 2020 (European Environment Agency, 2023). 
Considering the transport sector, 57 % of its CO2 emissions come from 
light-duty vehicles. These data highlight that individual responsibility in 
choosing the means of transport could play a significant role in the 
decarbonization of this sector, which is worth to be analysed. Consid-
ering the absence of tailpipe emissions, Battery Electric Vehicles (BEVs) 
are a promising solution to be deployed at large scale for decarbonizing 
private passenger mobility (IPCC, 2022b; Hoekstra, 2019). In its Global 
EV Outlook (IEA, 2023a), the IEA reports that the global electric cars 
stock tripled during the last three years, reaching 16.5 million units in 
2021: specifically, 55 % and 27 % of the global fleet of passenger BEVs 
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circulate in China and Europe respectively. However, BEVs still repre-
sent only 2.3 % of European passenger cars stock and to support the 
households towards the purchase of an electric vehicle, in the last years 
an average of 5 to 6 thousand USD have been invested by the govern-
ment for each vehicle as public expense (IEA, 2023a). 

Although public subsidies represented a substantial enabler towards 
BEVs adoption at a mass scale, it is also relevant to investigate the in-
fluence of other possible drivers which are widely discussed in litera-
ture: this paper aims to provide a quantitative assessment of the impact 
of a set of parameters over the economic sustainability of a BEV to be 
purchased in residential context concerning an Internal Combustion 
Engine Vehicle (ICEV) of the same segment. 

1.2. Literature review 

Among the factors driving the economic viability of BEVs, it is worth 
mentioning Ling et al (Ling et al., 2021). and Brückmann et al (Brück-
mann et al., 2021)., which already focused on assessing how social and 
behavioral factors, together with vehicle performances and political 
frameworks, may influence on BEV adoption; however, they overlooked 
on exploring how potential synergies among the vehicle and other en-
ergy technologies may correlate with the vehicle purchase in residential 
contexts. 

With this in mind, a critical literature analysis was performed on 37 
articles published from 2015 to 2023, which are presented in Table 1 
and clustered according to their methodology and whether they apply 
such methodology to a single household unit or a district/community. 
Regarding the methodologies, four main approaches are identified, 
namely agent-based and system-dynamics models, demand simulation 
models, energy system optimization models and predictive control 
models. 

Schwarz et al (Schwarz et al., 2020). adopt an agent-based model to 
investigate how BEV owners’ charging habits are influenced by varying 
the electricity price in case of high renewables penetration. Golinucci et 
al (Golinucci et al., 2023)., instead, propose a consumer-oriented 
emission reduction mechanism developing a system-dynamic model in 
which the main drivers behind the purchase of a BEV compared to an 
equivalent ICEV are modelled. Regarding studies adopting demand 
simulation models, the article from Muratori (Muratori, 2018) stems out 
as one of the first-of-its-kind case studies building on the modelling of 
both electricity and transport demands of households to determine how 

the electricity grid is impacted by uncoordinated plug-in electric vehi-
cles charging. Gottwalt et al (Gottwalt et al., 2017)., instead, analyse the 
possible strategies of demand-side management practices to increase the 
stability of district microgrids with a high share of renewable genera-
tion: by simulating both electricity and transport demand with a simu-
lation model they conclude BEVs are among the most promising 
residential technologies for this purpose. A third approach identified in 
the literature, which allows to modelling integrated power and transport 
residential needs, is the model predictive control: Yousefi et al (Yousefi 
et al., 2021)., Mirakhorli and Dong (Mirakhorli and Dong, 2017) and 
Guo et al (Guo et al., 2019). adopt model predictive control algorithms 
to minimize the electricity costs in residential and district applications 
while optimizing the provision of electricity and transport services. 

While all the previously cited works focus on integrating BEVs as a 
synergic technology within the residential or community energy system 
framework, adopting different methodologies, the most adopted 
approach in the analysed literature is represented by the energy system 
optimization models. Such models are usually mathematically formu-
lated as linear systems of equations including an objective function 
(usually the minimization of the total cost of the system) and other 
constraints. Among the many applications found, it is worth mentioning: 
Brahman et al (Brahman et al., 2015)., who model a residential energy 
system optimizing electricity, thermal and transport dispatch and 
technology sizing both using single- and multi-objective models oriented 
to least-cost and least emissions criteria; the application of Sun et al (Sun 
et al., 2019)., where a least-cost oriented energy system optimization 
model is set up to analyse the benefits of vehicle-to-grid power exchange 
in different feed-in tariffs scenarios; the analysis conducted by Kwon et 
al (Kwon et al., 2020). assesses the impact of different electricity tariffs 
on behaviour change by BEV owners in residential context regarding 
charging strategies. 

The findings coming from the scientific literature drove the moti-
vation for selecting an energy system optimization model as the best- 
fitting methodology for the present work. Although such approach is 
demonstrated to be commonly used to mathematically describe inte-
gration between transport and other (i.e. power, heat) demands, it seems 
none of the reviewed studies aim at assessing which the parameters that 
mostly affect the choice of purchasing a BEV or an ICEV are, except for 
some contributions that analyse the impact of lower or higher grid 
electricity prices. Other tools are found in scientific and grey literature 
which are considered close to the scope of this study. The Climobil 
application (Gibon and Chion, 2019) allows to compare two models of 
BEV and ICEV in terms of environmental performance, giving the pos-
sibility to change parameters such as lifetime, mileage and electricity 
mix. While the focus of Climobil is on the emission side only, the Car-
boncounter tool (Miotti and Trancik, 2021), compares both costs and 
lifecycle greenhouse gas emissions of different models of electric and 
internal combustion engine vehicles. It also allows the user to change the 
price of fuels or the level of taxes and/or subsidies (for the USA only). 
However, these tools do not explore the parametric viability of BEVs 
under other external conditions which include the integration of the 
vehicles within a residential energy system. 

The lack of studies addressing both the integration of transport 
technologies within residential energy systems and the quantitative 
assessment of the influence of different parameters on BEVs economic 
convenience represents a gap in the literature that the present study 
aims to bridge. 

1.3. Research contributions and outline 

Drawing from the considerations coming from the literature review, 
this paper is innovative because of two reasons: (i) it adopts an intrinsic 
model-based instead of survey-based methodological approach; (ii) it 
extends the scope of the analysis to the integration between BEV and 
other technologies which may be installed within the domestic energy 
system. While this is not the first study addressing reason (i) or (ii), it can 

Nomenclature 

BEV Battery Electric Vehicle 
ICEV Internal Combustion Engine Vehicle 
IEA International Energy Agency 
HBS Home Battery System 
HP Heat pump 
GB Gas boiler 
GS Gas Stove 
IS Induction stove 
LP Linear Programming 
MILP Mixed-Integer Linear Programming 
NG National Grid 
NPC Net Present Cost 
PV Photovoltaic panels 
RES Reference Energy System 
sp Sensitivity parameters 
SM Supplementary Material 
STP Solar Thermal Panel 
TI Thermal Insulation 
V0–6 Sensitivity values  
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be counted among the first to explore both. 
For this purpose, this study couples the adoption of energy systems 

optimization modelling with an extensive sensitivity analysis ranging 
over a set of multi-dimensional parameters, classified as follows:  

• behavioural, such as the annual travelled distance or the expected 
ownership time (e.g. how many years the user is expected to possess 
the vehicle);  

• energy-related: different house size archetypes have been classified 
according to their energy demands, with a particular focus on elec-
tricity and heat. Moreover, the influence of the presence of other 
domestic energy technologies (PV and heat pumps) and the solar 
radiation profiles are investigated;  

• economic-related, the national grid electricity and gasoline prices, the 
presence of national subsidies for the purchase of a BEV. Such pa-
rameters may be interpreted as externalities since they are not 
typically under the control of the household. 

The paper comes with a supplementary material document con-
taining additional information on input data preparation and comple-
mentary results. Such supplementary material is henceforth indicated as 
“SM” and is available on GitHub (Rinaldi et al., 2022). 

2. Methods and materials 

2.1. Energy system optimization model 

This paragraph provides an overview of the optimization model 
adopted for this study. The source code of the model is available on 
Github (Golinucci et al., 2022). 

An archetypal household reference energy system has been 
modelled, considering a set of multiple technologies, including storage 
technologies, supplying a number of energy commodities. Such com-
modities can be consumed by technologies themselves (intermediate 
demand) and by the household (final demand). Multiple commodities 

Table 1 
Relevant studies on energy-transport comprehensive systems, classified by methodology and application focus.  

Year Authors Ref Methodology Application focus 

Agent-based and 
System dynamics 
models 

Demand 
simulation 
models 

Energy system 
optimization 
models 

Model 
predictive 
control 

Household 
energy system 

District-scale or 
community energy 
system  

2015 Brahman F. et al. (Brahman et al., 2015)   x  x    
van der Kam M. 
et al. 

(van der Kam and van 
Sark, 2015)   

x   x   

Zhang Y. et al. (Zhang et al., 2015)   x   x   
Yousefi M. et al. (Yousefi et al., 2021)    x x    
Atia R., Yamada N. (Atia and Yamada, 

2015)   
x   x  

2016 Coelho V.N. et al. (Coelho et al., 2016)   x   x  
2017 Gottwalt S. et al. (Gottwalt et al., 2017)  x   x    

Melhem F.Y. et al. (Melhem et al., 2017)   x  x    
Li G. et al. (Li et al., 2017)   x   x   
Calvillo C.F. et al. (Calvillo et al., 2017)   x   x   
Mirakhorli A., Dong 
B. 

(Mirakhorli and Dong, 
2017)    

x  x  

2018 Muratori M. (Muratori, 2018)  x   x    
Sedighizadeh M. 
et al. 

(Sedighizadeh et al., 
2018)   

x   x   

Mohammadkhani N. 
et al. 

(Mohammadkhani 
et al., 2018)   

x   x   

Akram U. et al. (Akram et al., 2018)   x   x   
Kamal T. et al. (Kamal et al., 2018)   x   x   
Calvillo C.F. et al. (Calvillo et al., 2018)   x   x  

2019 Mazzeo D. (Mazzeo, 2019)   x  x    
Sun Y. et al. (Sun et al., 2019)   x  x    
de Souza Dutra M.D. 
et al. 

(de Souza Dutra et al., 
2019)   

x  x    

Aoun A. et al. (Aoun et al., 2019)   x   x   
Guo X. et al. (Guo et al., 2019)    x  x  

2020 Farrokhifar M. et al. (Farrokhifar et al., 
2020)   

x   x   

Khemakhem S. et al. (Khemakhem et al., 
2020)   

x   x   

Foroozandeh Z. 
et al. 

(Foroozandeh et al., 
2021)   

x   x   

Foroozandeh Z. 
et al. 

(Foroozandeh et al., 
2020)   

x   x   

Schwarz M. et al. (Schwarz et al., 2020) x    x    
Kwon Y. et al. (Kwon et al., 2020)   x  x   

2021 Liu J. et al. (Liu et al., 2021)   x   x   
Zeynali S. et al. (Zeynali et al., 2021)   x   x   
Wang N. et al. (Wang et al., 2021)   x   x   
Momen H. et al. (Momen et al., 2021)   x   x   
Gil G.O. et al. (Gil et al., 2021)   x   x   
Higashitani T. et al. (Higashitani et al., 

2021)   
x  x    

Muthiah-Nakarajan 
V. et al. 

(Muthiah-Nakarajan 
et al., 2021)   

x  x   

2022 Wei H. et al. (Wei et al., 2022)   x  x   
2023 Golinucci et al. (Golinucci et al., 2023) x    x   
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may compete with one another for the fulfilment of the same energy 
need. The demand of energy needs is modelled as a time-dependent 
variable: in this application, a multi-year hourly resolution has been 
considered. 

The model is based on a mixed-integer linear programming (MILP) 
algorithm. The choice of the optimization algorithm was based on two 
aspects: (i) linear programming (LP) algorithms are a standard for en-
ergy system models, as reported by many reviews such as those by Prina 
et al (Prina et al., 2020). and by Dominković et al (Dominković et al., 
2022).; (ii) focusing of a household energy system application, a MILP 
algorithm was preferred to standard LP, since the model must provide 
discrete outputs in terms of resulting technological capacities. The 
objective is to minimize the total discounted cost (net present cost, NPC) 
of the energy system over a period of y years. The objective function of 
the model is reported in Eq. 1, where the total investment cost of the 
capacity deployed is represented by the term ktDt; particularly kt rep-
resents a vector of specific investment costs per unit of installed capacity 
of technology t. The specific operation costs of activities oa are multi-
plied by the related hourly production Xh, then summed over the hourly 
time-steps h and annualized according to discount rate r. 

NPC = min
∑

t

[

ktDt +
∑

y

∑
hoaXh

(1 + r)y

]

(1) 

The optimization algorithm operates in perfect foresight mode, 
therefore all the demand profiles throughout the time horizon are 
known from the start of the model’s run period. 

The model is then subject to a constraint over the energy need supply 
(R) and demand (Sn) balance, as described by Eq. 2. The two supply and 
demand terms are respectively defined as follows in Eq. 3 and Eq. 4. The 
energy balance is complemented by two additional terms: 

R = Sn (2)  

R = Y+ I • [u • (s • X) ] (3)  

Sn = I • Xn (4) 

The total demand R, in turn, is equal to the summation of the final 
demand of needs Y and of the intermediate demand. The latter 

represents the energy needed by each technology to operate and is built 
upon the specific intermediate demand matrix u, which is multiplied by 
the production matrix Xn. 

To manage the state of charge of the storage technologies, two 
different constraints are set. The first one, Eq. 5, avoids overcharging 
beyond the nominal capacity D̂s Cs, the second instead, Eq. 6, fixes a 
minimum state of charge (depth of discharge, DoD) in order not to 
overexploit the capacity. The nominal capacity of each storage tech-
nology is indicated henceforth as Cs. It is worth noting that all storage 
technologies are able to perform two activities: to charge and to 
discharge. In the next two Equations, the subscripts ch and dis identify 
these two activities. 

Xs,ch − Xs,dis ≤ D̂s Cs (5)  

Xs,ch − Xs,dis ≥ D̂s Cs DoD (6) 

Being the BEV modelled as a storage technology, these last two 
constraints are also adopted to describe the charge and discharge dy-
namic of the vehicle battery. The household reference energy system 
(RES) considered for the present work includes multiple energy needs 
and technologies. A schematic representation is proposed in Fig. 1. 

In particular, the electricity, heating, cooling, domestic hot water 
(DHW) and cooking energy needs were considered. The demand time 
series have been calculated considering seasonality and hourly time 
resolution.  

– Electricity can be satisfied alternatively by different technologies, 
respectively: the national grid (NG), domestic solar photovoltaic 
(PV) modules of 1 kW capacity and a home battery storage system 
(HBS) of 7 kW; PV is modelled to sell the extra-production to the 
national grid. 

The electricity demand has been obtained by adopting RAMP, an 
open-source model useful to generate stochastic electricity de-
mand profiles (Prina et al., 2020). Further information about the 
electricity demand model is provided in Section 2.1.1 of the SM.  

– Heating need is satisfied by heat pumps (HPs) or gas boilers (GBs), 
while heat pumps are the only technology serving the Cooling need. A 
thermal insulation (TI) technology has been also modelled which, if 

Fig. 1. Schematic representation of the household reference energy system (RES) considered. Legend of acronyms, from top left to bottom right – NG: national grid, 
PV: photovoltaic panels; HP: heat pump; GB: gas boiler; HBS: home battery system; BEV: battery electric vehicle; TI: thermal insulation; STP: solar thermal panel; GS: 
gas stove; IS: induction stove; ICEV: internal combustion engine vehicle. 
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installed, causes a reduction of heating demand or an increase in 
cooling demand. Regarding the demand profiles, heating demand 
has been calculated in line with the climatic zone and governmental 
regulation. Further information about the heating demand model is 
provided in Section 2.1.2 of the SM.  

– For the transport need, the study compares a 37 kWh BEV with a full 
starting price of 27’300 € to an ICEV with a price of 17’000 €. The 
hourly transport demand was built based on typical driving behav-
iours, using statistical data. Different profiles have been generated 
for different yearly driven distances.  

– Domestic hot water could be supplied by both gas boilers and by solar 
thermal panels (STP).  

– In the end, both gas stoves (GS) and induction stoves (IS) could be 
adopted for cooking. 

The carbon footprint of each technology installed is determined by 
its CO2 emissions factor. The emissions related to the operation of each 
technology are calculated by multiplying its direct emissions factor by 
its activity production. Each technology also has an investment cost 
specific to its installed capacity, and a production-specific operation cost 
is associated with each activity. The operation cost is time-dependent 
and expressed on an hourly basis, while the investment cost is not 
time-dependent and is assumed to occur in the first year of the time 
horizon. Further details about the technical and economic parameters 
used in the study can be found in Section 2.2 of the SM. 

2.2. Sensitivity analysis 

An extensive sensitivity analysis was performed, following a similar 
approach as Jing et al (Jing et al., 2022)., to assess the influence of 
crucial parameters on BEV preferability (pBEV) together with other 
second-order economic implications. pBEV is defined as the ratio be-
tween the number of cases in which the BEV is selected as the preferred 
transport technology within the household energy system (nBEV), and 
the total number of cases (n). pBEV has been expressed as a function of 
each sensitivity parameter (sp) and its general definition is given by Eq. 
7. 

pBEVsp =
nBEVsp

nsp
(7) 

The investigation around the BEV preferability indicator is further 
complemented by analysing the impact of specific couples of sensitivity 
parameters on the Net Present Cost (NPC) of the residential energy 
system, deepened in the next paragraphs. 

A schematic overview of the workflow of the analysis is represented 
in Fig. 2. In particular, Fig. 2a shows each of the m sensitivity parameters 
(sp) can range among n sensitivity values (V), generating k possible 
combinations of input data feeding the core model runs. The 
geographical scope of the analysis was set in the Italian context. 

Therefore, the input data and sensitivity values of some parameters were 
targeted accordingly. Given recent Italian policies on energy efficiency 
in buildings mentioned in Section 1, it is important to note that the 
technological configurations proposed by the model are not intended as 
an addition or partial replacement to the baseline residential energy 
system. Instead, the model accounts for a complete renovation of the 
household energy system: in more technical terms, the model works 
with a green- and not with a brown-field assumption. The full list of the 
parameters subject to sensitivity analysis and their associated values are 
reported in Table 2: henceforth, the least and the most favourable 
conditions for BEV selection will be indicated by referring to V0 and V6 
respectively. It is worth noting that this analysis is limited to the values 
within its boundaries, therefore the concepts of “least” and “most 
favourable conditions” are to be intended in relative and not absolute 
terms. The energy system optimization model is solved for each of the k 
combinations of inputs (Fig. 2b): a total number of 33’600 sets of final 
results (Fr, Fig. 2c) are discussed in Section 4. 

2.2.1. Behavioural parameters 
Behavioural parameters considered in the analysis include the annual 

travelled distance and the expected ownership time.  

– According to data from the Italian National Statistics Office (ISTAT, 
2019), the annual travelled distance of Italians ranges from 
5’000-25’000 km per year. Larger distances are typical of company 
car drivers (ISTAT, 2022).  

– The average expected ownership time of a private Italian passenger 
car is 11.8 years, as reported by ACEA (ACEA); this sensitivity 
analysis considers more conservative ownership times of 3, 5, 7, and 
10 years. 

It is important to clarify other widely discussed behavioural aspects, 
such as range anxiety, are considered out of the scope of the method-
ology selected for this work. 

2.2.2. Energy-related parameters 
The sensitivity analysis encompasses the variation of electricity and 

heating demand profiles based on house size archetypes of 60, 120, 180, 
and 240 m2. Different electricity and heating demand profiles are 
modelled for each house size, taking into account different electric ap-
pliances and wall surfaces for thermal exchange. Three cities in different 
geographical locations (Milan in the north, Rome in the centre, and 
Syracuse in the south) are selected to model heating demand. The yearly 
values of electricity and heating demands adopted are provided in  
Table 3. The study also focuses on the impacts of other energy-system- 
related parameters on the BEVs preferability, including the integration 
with PV panels. The geographical location of the house affects solar 
radiation availability, which is generated using the Renewable Ninja 
application (Staffell and Pfenninger, 2016; Pfenninger and Staffell, 

Fig. 2. Schematic overview of the workflow of the analysis. a) Input data are provided as m sensitivity parameters to which n values are assigned in each model run. 
b) Each of the k resulting combinations of inputs feeds the core of the energy system model. c) Finally, each of the k model runs provides a set of final results. 
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2016). The average daily radiation peak, from the northern to southern 
region, is respectively equal to 0.12 kW/m2, 0.14 kW/m2 and 
0.16 kW/m2. 

2.2.3. Economic parameters 
This category includes parameters outside of household control, 

specifically:  

– the national grid electricity price, which has been volatile in recent 
years due to the COVID-19 pandemic and Russia-Ukraine conflict, 
ranging from 0.15 €/kWh to 0.45 €/kWh on the Italian market 
(Gestore Mercati Energetici, 2022; Pfenninger and Staffell, 2016): 
extreme values and intermediate values stepped by 0.05 €/kWh have 
been considered;  

– the national gasoline price, whose trends have also been fluctuating, 
with extreme values ranging from 1.504 €/litre to 2.154 €/litre 
(MInistero della Transizione Ecologica, 2022): values of 1.4, 1.6, 1.8, 
2.0, and 2.2 €/litre have been accounted for;  

– the presence of subsidies for BEV purchase, which in the Italian 
context amounted to 650 million euros starting from May 2022 
(Ministero dello Sviluppo Economico, 2022): in case of BEV pur-
chase, the final consumer is subsidized up to 5’000 €. This work 
considers an interval between 1’000 € and 5’000 € with a 1’000 € 
step. 

3. Results discussion 

3.1. Drivers of BEV preferability 

Among the 33’600 set of results obtained, BEV has been selected as 
the preferred passenger transport technology in 30.1 % of the cases.  
Fig. 3 highlights the trends of BEV preferability driven by each of the 
sensitivity parameters. 

Starting from the less impactful parameters, it seems the influence of 
solar radiation and house size (used as a proxy of electricity and heating 
demand) is negligible. While the former may be more impactful where 
solar availability fluctuates more than in Italy, it is relevant to consider 
how the BEV selection is strongly independent of the energy consump-
tion patterns associated with each house size, despite the significant 
variation (46 %) yearly electricity demand experiences between V0 and 
V6. 

Grid electricity price is among the least affecting drivers: BEV pref-
erability varies between 27 % and 36 % within the sensitivity range of 
this parameter which, in turn, shifts from 0.45 €/kWh (V0) to one-third 
of this value (0.15 €/kWh, V6). On the contrary, a variation of 57 % in 
gasoline price (ranging from 1.4 to 2.2 €/litre) affects BEV preferability 
much more: in the least favourable condition V0 (gasoline price set at 
1.4 €/litre), BEV preferability corresponds to 17 %, while V6 (2.2 

Table 2 
List of sensitivity parameters along with category, unit of measures and list of sensitivity values assumed along the sensitivity analysis.     

Sensitivity values 

Sensitivity parameters Category Unit V0 V1 V2 V3 V4 V5 V6 

sp0: Annual trav. Distance Behavioural km/y 5’000   10’000   2’0000   25’000 
sp1: Ownership time Behavioural y 3   5   7   10 
sp2: House size* Energy-rel m2 60   120   180   240 
sp3: Solar radiation Energy-rel kW 0.12     0.14    0.16 
sp4: National grid electricity price Economic €/kW 0.45  0.4 0.35  0.3 0.25  0.2 0.15 
sp5: National gasoline price Economic €/litre 1.4   1.6  1.8 2   2.2 
sp6: BEV purchase subsidies Economic k€ 1   2  3 4   5  

Table 3 
Yearly electricity and heating demand by house size archetypes and geograph-
ical location.  

House size 
(m2) 

Yearly electricity demand 
[kWh/y] 

Yearly heating demand 
[kWh/y] 

North Centre South  

60  2856  540  435  153  
120  3782  1200  968  340  
180  3866  1919  1548  544  
240  4172  2559  2064  726  

Fig. 3. BEV preferability (y-axis %) with respect to alternative same-segment ICEV: sensitivity around different parameters. Values codes for each parameter (from 
V0 to V6, x-axis, described in Table 2) are sorted from least to most favourable towards BEV adoption. PV capacity is indicated with a dotted line being an 
endogenous parameter of the model, unlike all the other exogenous ones represented with solid lines. 
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€/litre) leads to a BEV preferability of 42 %. 
The presence of different levels of subsidies for BEV (BEV incentives) 

has almost the same impact as the variation of gasoline price, leading to 
almost the same value in the most favourable conditions (42 % in V6). It 
is relevant to remind that the V6 value (5’000 €) is assumed according to 
the current state of policies, while higher values are expected to impact 
more significantly. 

As foreseeable, the household driving attitude resulted in strongly 
influencing the selection of the transport technology: BEV preferability 
range is among the highest concerning the variation of both ownership 
time and annual travelled distance: in case of a very short expected 
ownership time horizon (3 years, V0) or a very low yearly travelled 
distance (5’000 km/y, V0), ICEV is the preferred technology in almost 
the totality of the cases. Moving towards V6, these BEV preferability 
reaches 59 % for the ownership time and 61 % for the annual travelled 
distance. 

The most impactful parameter is, in the end, PV capacity, both in 
terms of maximum value of BEV preferability and in BEV preferability 
range between V0 and V6. In fact, solutions without PV installed (V0) 
include BEV just in 12 % of the cases, while it is included in 92 % of the 
cases when PV capacity is at least 6 kW (V6). 

By analysing the outcomes of other studies, some similarities can be 
identified: for instance, the IEA estimates a payback period for BEVs 6.1 
and 12 years assuming an annual mileage between 10’000 and 
17’000 km/year (between the V2 and V4 values considered in these 
paper), also highlighting a strong influence of petrol price (IEA, 2023b). 
Moreover, the synergy between BEVs and PV installation emerges from 
many of the works analysed in Table 1 such as those of Schwarz et al 
(Schwarz et al., 2020). and Kwon et al (Kwon et al., 2020). While it 

seems the findings of this and other studies are overall aligned, it is also 
true, however, that the different underlying methodologies, assump-
tions, and scope of application may make them difficult to compare. 
However. the main contribution of this paper is not only to qualitatively 
highlight which parameters drive BEVs economic convenience but also 
to quantitatively assess how this latter is affected by a variation of each 
parameter, which is the aim of the next section. 

3.2. Economics insights of BEV adoption in light of sensitivity parameters 

Annual travelled distance and ownership time of the vehicle have 
been highlighted as two of the most impactful parameters on BEV 
adoption in our sensitivity. Fig. 4 shows the distribution of the NPC for 
all the cases represented by each couple of these two parameters, dis-
tinguishing into two different violin plots for cases in which a BEV 
(yellow) or an ICEV (blue) is adopted. 

As anticipated, the NPC strongly increases from shorter to longer 
ownership time horizons as well as from smallest to largest travelled 
distances due to the higher costs to be sustained to operate the whole 
residential energy system. It is interesting to notice BEVs are never 
preferred to ICEVs when the expected travelled distance is 5’000 km/y. 
This holds also in the case of very short time of ownership, up to 5 years. 

However, for all the other combinations of annual travelled distance 
and ownership time, the mean and median NPC of the cases where BEV 
is preferred is always lower with respect to the corresponding ICEVs 
counterparts. In particular, considering average values, the solution 
adopting a BEV can be from 2.19 % to 12.2 % cheaper than the one 
adopting an ICEV. Furthermore, in the case of 10 years of ownership 
time and 25’000 travelled km/y, BEV preferability is 100 %. 

Fig. 4. NPC of the residential energy system in cases where ICEVs (blue) and BEVs (yellow) are the preferred transport technology, broken down by different values 
of annual travelled distance (x-axis) and years of ownership of the vehicle (subplots). The violins’ shape represents the kernel density while the horizontal line within 
each violin represents the mean value of NPC of the cases represented. 
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Limiting to the cases with long ownership times (at least 7 years) and 
with many travelled km per year (at least 20’000 km/y), it is also 
interesting to highlight the influence that fuel prices (both electricity for 
BEVs, and other energy services which may be electrified, and gasoline 
for ICEVs) have on the NPC of the household energy system. Fig. 5a 
shows low gasoline prices lead to lower NPCs for ICEV-based energy 
systems: this holds for all the cases ranging from 1.4 to 1.6 €/litre gas-
oline price, even though the difference between the mean NPC of the 
BEV- and ICEV-based configurations reduces when electricity price de-
creases. When gasoline price increases above 1.6 €/litre, the NPCs 
become more and more similar, until the point where only BEV is 
selected as a transport technology. 

A focus box has been provided in Fig. 5b on the most representative 
match for the Italian situation, namely 0.3 €/kWh for electricity price 
(Gestore Mercati Energetici, 2022; Pfenninger and Staffell, 2016) and 
1.8 €/litre for gasoline price (MInistero della Transizione Ecologica, 
2022). It is interesting to note that the integration with PV plays a sig-
nificant role also in this case since BEV is preferred only in case the 
capacity of PV installed in the household energy system is at least 3 kW. 
Under these conditions, the mean NPC of BEV-based systems is lower 
than the one of ICEV-based. The distribution of NPCs of the latter is 
indeed limited within a much smaller range, however, the very high NPC 
of BEV-based solutions are related to solutions with very high installed 
capacity of PV. 

4. Conclusions 

This work underscores the relevance of synergies among technolo-
gies within the residential energy system on BEV adoption: indeed, the 
results of this study show that the strongest positive correlation with 
BEV preferability is PV capacity installation. Additionally, PV and BEV 
joint installation lead generally to lower costs than ICEV-based systems, 
emphasizing the importance of comprehensive and integrated modelling 
for residential applications. 

The results also highlight the limited impact of grid electricity prices 
on the preference towards BEVs, whereas a limited rise in gasoline prices 
impedes the adoption of ICEVs. The research provides valuable insights, 
indicating that, within the range of Italian average gasoline prices (1.4 
to 1.6 €/litre), the net present cost of BEV-based energy systems remains 
competitive, even with a high electricity price (0.3 €/kWh) if a mini-
mum photovoltaic capacity of 3 kW is installed. 

Given the high cost of fossil fuels resulting from the ongoing energy 
crisis in Europe, these outcomes are particularly encouraging for BEV 
adoption. This is especially true if the socio-economic context is sup-
plemented with more robust policies on BEV incentives. 

Beyond price considerations, the decision to electrify the transport 
demand is driven by the opportunity to reduce costs and leverage self- 
generated solar power. Notably, factors such as fuel prices and photo-
voltaic integration significantly influence the net present cost of 
household energy systems, with electric vehicle configurations 

Fig. 5. a) NPC of the residential energy system in cases where ICEVs (blue) and BEVs (yellow) are the preferred transport technology, broken down by different 
values of gasoline price (x-axis) and grid electricity price (subplots). All the represented NPCs are referred to cases where vehicle ownership time is at least 7 years 
and annual travelled distance is at least 20’000 km. b) Zoom on the most representative combination of electricity and gasoline prices for the Italian case 
(respectively 0.3€/kWh and 1.8€/litre), broken down by installed PV capacity lower or larger than 3 kW. The violins’ shape represents the kernel density while the 
horizontal line within each violin represents the mean value of NPC of the cases represented. 
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becoming more favourable as gasoline prices rise and photovoltaic ca-
pacity increases. 

It is worth noticing one of the assumptions of the study is that only 
green field cases are considered in the analysis: moving to practical 
terms, this means that all the considerations drawn from this work are 
valid mostly in case of new constructions or renovations, when the do-
mestic energy system needs to be designed from scratch. It is in the 
authors’ belief the green field assumption allows for a neutral starting 
point, therefore it is necessary to lead to a fair comparison in the se-
lection of an ICEV or BEV vehicle. Also, even for short time horizons, no 
residual value of the vehicle has been considered, which is actually a 
conservative assumption since BEVs generally suffer less from depreci-
ation over time with respect to ICEVs. As a final note, despite focusing on 
the Italian context, the adopted methodology is context-agnostic since it 
can be applied to different contexts by updating the input data. 

Further developments of this work may broaden the scope in terms of 
BEV models to be accounted for, since in this case just one model for 
ICEV and BEV have been considered and the possibility of charging from 
third-party charging stations and not only at home. 
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