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Zero-Shot Day-Night Domain Adaptation with a Physics Prior
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Abstract

We explore the zero-shot setting for day-night domain
adaptation. The traditional domain adaptation setting is to
train on one domain and adapt to the target domain by ex-
ploiting unlabeled data samples from the test set. As gath-
ering relevant test data is expensive and sometimes even
impossible, we remove any reliance on test data imagery
and instead exploit a visual inductive prior derived from
physics-based reflection models for domain adaptation. We
cast a number of color invariant edge detectors as train-
able layers in a convolutional neural network and evalu-
ate their robustness to illumination changes. We show that
the color invariant layer reduces the day-night distribu-
tion shift in feature map activations throughout the network.
We demonstrate improved performance for zero-shot day to
night domain adaptation on both synthetic as well as nat-
ural datasets in various tasks, including classification, seg-
mentation and place recognition.

1. Introduction

Deep image recognition methods are sensitive to illumi-
nation shifts caused by accidental recording conditions such
as camera viewpoint, light color, and illumination changes
caused by time of day or weather [1, 16, 78], as for example
a model trained with daylight will not generalize to night
time. Robustness to such recording conditions is essen-
tial for autonomous driving and other safety-critical com-
puter vision applications. An illumination shift between
train and test data is typically addressed by unsupervised
domain adaptation [55, 57, 76] where the labeled training
set is from one domain and the test set is from a different
domain. The main assumption is that the test data is readily
available and the challenge is how to make use of the un-
labeled test data in an unsupervised setting to address the
domain shift. However, adding test data is often non-trivial
as it may be expensive and time consuming to obtain and
due to the long tail of the real world is impossible to collect
for all possible scenarios in advance.

Instead of adding more data, prior knowledge can be
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Figure 1: Feature map activations in various layers of a
baseline ResNet-18 and a color invariant W -ResNet-18, av-
eraged over all samples in a ‘Normal’ and ‘Darker’ test set
(samples on right). The intensity change between the test
sets causes an internal distribution shift throughout all lay-
ers of the baseline model. W normalizes the input resulting
in more domain invariant features.

built-in as a visual inductive bias. The champion of such
a bias is the convolution operator added to a deep net-
work which yields a Convolutional Neural Network (CNN).
The CNN is translation invariant, and thus saves a massive
amount of data as the deep network no longer needs train-
ing samples at all possible locations. Here, we replace data
by an inductive photometric bias. We introduce a novel
zero-shot domain adaptation method for addressing day-
night domain shifts exploiting learnable photometric invari-
ant features as a physics-based visual inductive prior. In
contrast to unsupervised domain adaptation, our zero-shot
method reduces the data dependency by removing any re-
liance on the availability of test data.

Ilumination changes to the source domain induce a dis-
tribution shift of feature map activations throughout all lay-
ers of a CNN. This is shown as the baseline in the top row
of Fig. 1, where the activations of a CNN trained on day-
time data are shown for a ‘Normal’ (source) and ‘Darker’
(target) test set. Such a distribution shift, in turn, has a se-
vere detrimental effect on the accuracy of the CNN [39].
Because the distribution shift is between the training data
and unavailable test data, this shift cannot be addressed in
a data-driven manner using, for example, variants of Batch
Normalization [29, 39]. Instead, we normalize feature map
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activations in a data-free setting by exploiting photomet-
ric invariant features which are explicitly designed to tackle
distribution shifts caused by illumination changes.

Photometric invariant features, or color invariants, repre-
sent object properties irrespective of the accidental record-
ing conditions [24, 25], including 1) scene geometry, which
affects the formation of shadows and shading, the 2) color
and 3) intensity of the light source, which changes the over-
all tint and brightness of the scene, and 4) Fresnel reflec-
tions occurring on shiny materials where the incoming light
is directly reflected from the surface without interacting
with the material color. Thanks to their robustness to these
lighting changes, color invariants have been widely used
in classical computer vision applications [0, 46], yet their
use in a deep learning setting has remained largely unex-
plored. We implement the color invariant edge detectors
from [24] as a trainable Color Invariant Convolution (CI-
Conv) layer which can be used as the input layer to any
CNN to transform the input to a domain invariant represen-
tation. Fig. 1, bottom row, shows that CIConv reduces the
distribution shift between the source and target test set in all
network layers, improving target domain performance.

We have the following contributions: (i) we introduce
CIConv, a learnable color invariant CNN layer that re-
duces the activation distribution shift in a CNN under an
illumination-based domain shift; (ii) we evaluate several
color invariants in the day-night domain adaptation setting
on our two carefully curated classification datasets; and (iii)
we demonstrate performance improvements on tasks related
to autonomous driving, including classification, segmenta-
tion and place recognition. All datasets and code will be
made available on our project page.'

2. Related work

Domain Adaptation The aim of domain adaptation [76]
is to train a model on a source domain dataset such that
it performs well on a different but similar target domain
dataset. This alleviates the burden of annotating datasets for
applications in new domains where insufficient training data
is available. Popular approaches rely on generative adver-
sarial networks (GANS) to generate synthetic target domain
samples [27] or aim to minimize the feature divergence be-
tween the two domains through an adversarial term [28, 65]
or a discrepancy metric [66, 45] in the loss function. The
day-night domain adaptation setting is particularly impor-
tant due to the promise of self-driving cars and thus in-
cludes much work [13, 16, 18, 55, 56, 57, 58, 69, 73, 78]
for semantic segmentation, and [7, 32, 51] for place recog-
nition. However, all aforementioned methods (except [13])
require either training data from the target domain or ad-
ditional modalities, whereas our approach uses only source

lhttps://qithub.com/Attila94/CIConv

domain image data. Our approach requires no extra infor-
mation sources and thus preempts expensive data gathering
costs.

Zero-shot Domain Adaptation Research on zero-shot
learning [2, 37, 48, 49, 79, 83] has been readily extended
from unseen classes to unseen domains, where domain
adaptation is performed without having access to the tar-
get domain. However, current zero-shot domain adapta-
tion methods require additional information in the form of:
(1) extra task-irrelevant source and target domain data pairs
to adapt to the task-relevant target domain [50, 75]; (ii) a
parametrization of the domain shift by an attribute, where
the attribute probability distribution for the unseen target
domain is required to be known [30]; (iii) additional data
from domains besides the source and target domain to learn
a domain-invariant subspace projection [80], or; (iv) ex-
tra data in a partially labelled target domain [77]. These
four types of information are generally not known for day-
night domain shifts and are therefore not directly applica-
ble. AdaBN [39] argues that domain-specific knowledge
is stored in the batch normalization (BN) [29] layers of a
model and performs domain adaptation by resampling BN
statistics from the target domain. This again requires ac-
cess to the target domain dataset. AdaBN [39] can be con-
sidered zero-shot if only the statistics of the current batch
are used. However, this makes the method reliant on large
batch sizes where classes are evenly represented. In con-
trast, our method does not require any information from the
target domain other than the task agnostic physics-based il-
lumination prior given by color invariants which are readily
available from literature.

Physics-Guided Neural Networks Adding prior knowl-
edge from physical models in a neural network has the po-
tential to improve performance without additional training
data. The canonical example is adding translation equiv-
ariance through a convolutional prior [33, 68] where recent
work shows benefits from adding prior knowledge, for ex-
ample in line detection [43], spectral leakage [601] and anti-
aliasing in CNNs [82]. In the case of physical image for-
mation models, recent examples include intrinsic image de-
composition [10], underwater image enhancement [84], or
rain image restoration [38]. Here, we add an physical im-
age formation prior to compensate for the lack of data in
zero-shot domain adaptation. We investigate a relatively
unexplored direction combining deep learning with physi-
cal color and reflection invariants.

Color invariants The use of physics-based reflection
models to improve invariance to illumination changes is a
well-researched topic in classical computer vision [8, 11,
]. Early work includes invariants derived

bl s s s
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from the Kubelka-Munk (KM) reflection model [36, 24].
Based on the image formation model introduced in [20] var-
ious methods have been proposed for shadow removal or
intrinsic image decomposition [19, 21] with applications in
place recognition [ 15, 46], road detection [5, 6, 34, 35] and
street image segmentation [67]. Recent works have shown
improved segmentation performance by applying a color
invariant transformation as a preprocessing step [3, 4, 47]
or using the ground truth albedo as input on a synthetic
dataset [9]. [I] demonstrates the sensitivity of CNNs to
changes in white balance (WB) settings and shows how ro-
bustness can be improved using an auto-WB preprocessing
step. Our work further explores the use of classical color
invariants as a trainable deep network layer.

3. Method

Our color invariant layers make use of the invariant edge
detectors from [24]. The edge detectors are derived from the
image formation model based on the Kubelka-Munk the-
ory [36] for material reflections, which describes the spec-
trum of light E reflected from an object in the viewing di-
rection as

E(\x)=-¢e()\x) ((1 — pf(x))2Roo(/\,X) + pf(x)) (D

where x denotes the spatial location on the image plane, A
the wavelength of the light, e(\, x) the spectrum of the light
source, 7o, the material reflectivity and p; the Fresnel re-
flectance coefficient. Partial derivatives of F with respect to
x and A are denoted by subscripts F, and E, respectively.

A color invariant representation does not rely on acci-
dental scene properties such as lighting and viewing direc-
tion and depends only on the material property R.,. By
exploring simplifying assumptions in Eq. (1), we can derive
various invariant representations, as summarized in Table 1.
The derived invariants E, W, C, N and H represent edge
detectors that are invariant to various combinations of illu-
mination changes, including scene geometry (i.e. does not
detect shadow and shading edges), Fresnel reflections, and
the intensity and color of the illuminant. For the complete
derivations of the color invariants in Table 1, we refer to
Section 1 of the supplementary material.

The Gaussian color model [24] is used to estimate F, /),
and Fy) from the RGB camera responses as

E(z,y) 0.06 0.63 0.27 | |R(z,y)
Ex(z,y) |=103 004 -035||G(z,y)| @)
Ex(z,y) 0.34 —0.6 0.17 | |B(z,v)

where x, y are pixel location in the image. Spatial deriva-

tives I, and E, are calculated by convolving E with a

Gaussian derivative kernel g with standard deviation o, i.e.

dg(x —t,0)

EfE ) ) = E t? - 9.
(,9,0) =Y _ B(t,y)==—-

teZ

3)

o= 2.00

Input o =0.50

Figure 2: Color invariant representation ¥ of the input im-
age for two different values of 0. Note the trade-off between
detail (small o) and noise robustness (large o).

and similarly for £, Ey;, Exxg, Eyy and Eyy,. Finally,
the color invariant edge map is defined as the gradient mag-
nitude of all relevant spatial derivatives as shown in Table 1.

The o parameter in Eq. (3) determines the scale at which
the image is convolved with the Gaussian derivative filters
and as such the amount of detail preserved in the color in-
variant representation of an image. A small o results in a
detailed edge map but is more sensitive to noise, whereas
a large o is more robust but may omit important details. A
visualization is given in Fig. 2 for color invariant W. Rather
than fixing o a-priori we implement the edge detector as a
trainable layer to learn the task-specific optimal scale. The
resulting Color Invariant Convolution (CIConv) is used as
the input layer of the CNN and outputs a single channel
representation onto which subsequent convolutional layers
can be stacked. For computational simplicity we omit the
square root from the gradient magnitude of the color in-
variants, and apply a log transformation and sample-wise
normalization such that the distribution of the edge maps
is close to standard normal. Furthermore, instead of di-
rectly optimizing o, we train a scale parameter s such that
o = 2°. This stabilizes training by reducing the backprop-
agation gradient for small values of s and ensures that o is
always positive. CIConv is thus defined as

log (CI(z,y,0 = 2°) 4 €) — pus
s

CIConv(z,y) = 4)

with CI the color invariant of choice from Tab. 1, us and os
the sample mean and standard deviation over log (CI° + ),
and € a small term added for numerical stability.

4. Experiments
4.1. Illumination robustness of CNNs

We investigate to what degree CIConv improves a
CNN’s robustness to accidental recording conditions by
performing a classification experiment on a synthetic im-
age dataset where we have accurate control over the illumi-
nation of the scene. The images are rendered from a subset
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Table 1: Overview of color invariant edge detectors [

] and their invariance properties to Scene Geometry, Fresnel

Reflections, Illumination Intensity, Illumination Color. E is a baseline intensity edge detector and is not invariant to any
changes. Subscripts denote partial derivatives, where A is the spectral derivative and x the spatial derivative of Eq. (1).
Spatial derivatives for the y direction follow directly from the ones given for the x direction.

of the ShapeNet [ 12] dataset using the physically based ren-
derer Mitsuba [3 1]. The scene is illuminated by a point light
modeled as a black-body radiator with temperatures rang-
ing between [1900, 20000] K and an ambient light source.
The training set contains 1,000 samples for each of the 10
object classes recorded under “normal” lighting conditions
(T = 6500K). Multiple test sets with 300 samples per class
are rendered for a variety of light source intensities and col-
ors. Fig. 3 shows an overview of the illumination conditions
represented in the test set.

CIConv improves illumination robustness We train a
baseline ResNet-18 [26] and five models with the CIConv
layer with invariants £, W, C, N and H, respectively.
Training is done for 175 epochs with a batch size of 64 using
SGD with momentum 0.9, weight decay 1e-4 and an initial
learning rate of 0.05 with stepwise reduction by factor 0.1,
step size 50. Data augmentation is performed in the form
of random horizontal flips, random cropping and random
rotations. The models are evaluated on both test sets and
the average classification accuracy over three runs is shown
in Fig. 4. The accuracy of the baseline RGB model quickly
drops as lighting conditions start to diverge from the train-
ing set. The performance of the color invariant networks
remains more stable with W consistently outperforming all
others.

CIConv reduces feature map distribution shift The ro-
bustness of the color invariant networks compared to the
baseline can be explained by analyzing the feature map ac-
tivations of the networks. We calculate the mean feature
map activation in different layers of the networks, averaged

over all samples in the Normal and Dark test sets. The his-
tograms in Fig. 1 show that the intensity change between
the normal and low light test sets caused a clear distribution
shift throughout all network layers of the baseline model. In
contrast, the CIConv layer with invariant W produces a do-
main invariant feature representation and consequently the
distributions in the network are more aligned between the
two domains. We quantify the distribution shift as the L2
distance between feature maps for the two domains, where
again W yields the smallest distance. The L2 distances as
well as histograms of the distributions of feature map acti-
vations for other color invariants are provided in section 2
of the supplementary material.

4.2. Day-night natural image classification

To verify that the properties of the color invariants also
generalize to natural images we perform a classification ex-
periment on a novel day-to-night dataset. We present the
Common Objects Day and Night (CODaN) dataset, con-
sisting of images from 10 common object classes recorded
in both day and nighttime. It contains a daytime training
set of 1,000 samples per class, a daytime validation set of
50 samples per class, and separate day and night test sets of
300 samples per class. CODaN is composed from the Ima-
geNet [17], COCO [42] and ExDark [44] datasets. Samples
of the day and night test sets are shown in Fig. 5.

Performance on natural images We trained color invari-
ant versions of ResNet-18 on CODaN using the same set-
tings as in 4.1, but without random cropping and with ran-
dom brightness, contrast, hue and saturation augmentations.
Table 2 shows the accuracy of the baseline and the color in-
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Figure 3: Sample from the synthetic classification dataset rendered from ShapeNet [12], shown in all illumination conditions
represented in the test set. The five leftmost samples correspond to a varying light source intensity, whereas in the five
rightmost samples a range of light source temperatures is shown. “Normal” and “6500K” are equivalent.
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Figure 4: Classification accuracy of ResNet-18 with var-
ious color invariants on the synthetic ShapeNet dataset.
RGB (not invariant) performance degrades when illumina-
tion conditions differ between train and test set, while color
invariants remain more stable. W performs best overall.

variant networks, averaged over three runs. Additionally,
other color invariants (luminance, normalized RGB, com-
prehensive normalization [22] and others [6, 46]) are evalu-
ated, which are implemented as a preprocessing step. We
also consider a slightly adjusted version of AdaBN as a
possible zero-shot domain adaptation method, which pro-
vides a significant performance increase by sampling the
batch statistics for the Batch Normalization layers during
test time for each individual batch. This is opposed to the
original AdaBN method, where the batch statistics are cal-
culated from the target domain dataset a priori. W outper-
forms all other models on the nighttime test set by a large
margin. The luminance baseline performs surprisingly well,
whereas the other non-trainable color invariants even result
in a performance drop.

Color invariant transformations on natural images We
visualize the 2, W, C, N and H color invariant transforma-
tions of a day and night test sample (RGB) in Fig. 6. E be-
ing a non-invariant edge detector has low edge strengths in
low intensity parts of the dark image. W on the other hand
normalizes for intensity, yielding a more constant edge map.
C, N and H are invariant to changes in scene geometry and

Method Day Night

Baseline 80.39 + 0.38 48.31 £1.33
E 79.79 £ 0.40 49.95 £ 1.60
w 81.49 +0.49 59.67 £+ 0.93
C 78.04 +1.08 53.44 +1.28
N 77.44 £0.00 52.03 +0.27
H 7520 £0.56 50.52 +1.34
Luminance 80.67 £0.32 51.37 +£0.58
Normalized RGB 63.44 +1.52 41.66 £+ 1.56
Comprehensive norm. [22]  70.52 £ 1.10 44.34 4+ 1.57
Alvarez and Lopez [0] 64.41 +£0.74 30.06 £+ 0.57
Maddern et al. [46] 60.83 £0.98 33.04 +1.28
AdaBN [39] 79.72 £ 0.59 55.55 £1.07
Ablations Day Night

Baseline + norm. 6343 £1.32 421540098
Baseline + log + norm. 63.49 +0.55 41.90 + 0.69
Baseline w/o color aug. 78.99 + 0.59 36.00 £ 0.59
W wlo color aug. 79.71 £ 0.57 53.62 £0.88

Table 2: CODaN classification accuracy of a ResNet-18 ar-
chitecture with various color invariants (top). W performs
best. Ablation studies (bottom) show the individual effect of
normalization, log scaling and photometric augmentations.

therefore do not detect edges with low color saturation, re-
sulting in significant information loss. In addition, these
invariants seem to be more amplifying the noise in low in-
tensity parts of the image. Overall, W is able to 1) detect
low intensity and low saturation edges and 2) suppress noise
in low-intensity parts of the image, and therefore produces
the most robust and informative edge map.

Learned vs. fixed scale We verify that CIConv learns the
optimal scale by training the model with a range of fixed
o values, using invariant W. Fig. 7 shows the average ac-
curacy over five runs. We observe that selecting the wrong
scale o has a detrimental effect on accuracy. When the scale
is learnable, it converges to the optimal value for the day-
time dataset, as indicated by the red cross in the figure. This
value proves also optimal for the nighttime domain.

4403



Bicycle Boat Bottle Bus Car

Cat Chair Cup Dog Motorbike

Figure 5: Samples from the day (source domain) and night (target domain) test sets of the CODaN dataset.
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Figure 6: Color invariant visualizations of day and night samples from CODaN (red: positive; blue: negative values). E does
not detect low intensity edges, whereas C, N and H do not detect edges that have low color saturation. W produces the most

robust and informative edge map.
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Figure 7: Performance on CODaN day (left y-axis) and
night (right y-axis) test sets for various fixed values of o.
Learned o and corresponding accuracies are indicated by
crosses. CIConv learns the optimal value.

Ablation studies We evaluate whether simple log scal-
ing and sample-wise normalization of RGB images, without
applying a color invariant transformation, can achieve the

same improved performance on the nighttime test set. Fur-
thermore, we investigate how the baseline and W networks
perform when trained without brightness, contrast, hue and
saturation augmentations. The results are shown in the bot-
tom part of Table 2. Normalization, both with and with-
out log scaling, does not yield better performance for the
baseline model. This indicates that addressing the distribu-
tion shift between the source and target domain observed in
the feature map activations of a network requires more than
simple intensity normalization of the input sample. More-
over, photometric augmentations mostly seem to benefit the
baseline network, whereas the model with color invariant
W is inherently more robust to illumination changes. Both
results underscore the importance and effectiveness of the
color invariant transformation.

4.3. Semantic segmentation

We perform a semantic segmentation experiment us-
ing the RefineNet [41] architecture with ResNet-101 and
W-ResNet-101 feature extractors pre-trained on the Ima-
geNet [17] dataset. The segmentation model is trained on
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Nighttime Dark

Method Driving Zurich

Trained on source data only

RefineNet [41] 34.1 30.6
W -RefineNet [ours] 41.6 34.5
RefineNet-AdaBN [39] 36.3 31.3
Trained on source and target data

ADVENT [74] 34.7 29.7
BDL [40] 34.7 30.8
AdaptSegNet [64] 34.5 304
DMAda [16] 41.6 32.1
Day2Night [58] 45.1 -
GCMA [56] 45.6 42.0
MGCDA [57] 49.4 42.5

Table 3: Segmentation performance on Nighttime Driv-
ing [16] and Dark Zurich [56], reported as mloU scores.
W-RefineNet outperforms other methods trained only on
daytime data and has competitive performance to methods
also using nighttime images.

the training set of the CityScapes [14] dataset containing
2,975 densely annotated daytime street images and evalu-
ated on the 50 coarsely annotated street images from Night-
time Driving [16] and the 151 densely annotated images
from the Dark Zurich [56] test set. We perform training
using SGD with momentum 0.9, weight decay le-4 and an
initial learning rate of 0.1 which is step-wise reduced by
a factor 0.1 after every 30 epochs. All input images are re-
sized to 1024x512 pixels and randomly cropped to 768x384
pixels, allowing a batch size of 6 on 2 GeForce GTX 1080
Ti GPUs. Data augmentation is applied by random scal-
ing, brightness-, contrast- and hue-shifting, and horizontal
flipping. Inference is done on 1024x512 samples without
cropping.

Results are shown in Table 3 as the mean Intersection-
over-Union (mloU). Results for other methods are taken
from their corresponding papers. The color invariant W -
RefineNet significantly outperforms the vanilla RefineNet
and RefineNet-AdaBN models, which are also trained only
on source domain data, and has competitive performance
compared to methods trained on both source and target do-
main data. Qualitative segmentation results are shown in
Fig. 8. Detailed per-class scores are included in section 4 of
the supplementary material.

4.4. Visual place recognition (VPR)

We present results for VPR task in two phases: first, we
compare against a similar work for place recognition based
on a learnable normalisation of images [32], and then we

Method Tokyo 24/7 (mAP)

Trained on source data only

VGG GeM [52] 79.4
W-VGG GeM |ours] 83.3
ResNet101 GeM [52] 85.0
W -ResNet101 GeM [ours] 88.3
EdgeMAC [53] 75.9
U-Net jointly [32] 79.8
CLAHE [85] 84.1
EdgeMAC + VGG GeM [32] 85.4
Trained on source and target data

VGG GeM [52] 79.8
U-Net jointly [32] 86.5
CLAHE [85] 87.0
EdgeMAC + CLAHE [32] 90.5
EdgeMAC + U-Net jointly [32] 90.0

Table 4: Place recognition results on the Tokyo 24/7
dataset [62]. VGG GeM with our CIConv layer outperforms
all other methods trained on daytime data. + denotes an en-
semble of different models.

benchmark place representations based on color-invariant
trained CNNs on an additional dataset, evaluation metric,
and descriptor type to show broader applicability within
VPR.

Learnable normalisation. We use the Tokyo 24/7 day-
night place recognition dataset [62] for this purpose, and
follow the evaluation procedure described in [32]. To obtain
place representations, the VGG Generalized Mean Pooling
(GeM) [52] network is prepended with our CIConv layer
(W-VGG GeM) and trained on the Retrieval-SfM dataset
as described in [52]. The train dataset contains query im-
ages as well as both positive and negative target images of
places photographed in daytime conditions. The results are
reported as the mean Average Precision (mAP) in Table 4.
Results of competing methods are borrowed from Tables 1
and 2 in [32]. It can be observed that our method outper-
forms all models trained on daytime data only and achieves
competitive results to the current state-of-the-art, which is
an ensemble of two models trained on both daytime and
nighttime data.

Broader VPR applicability. Here, we use the two out-
door day-night datasets from VPRBench [81]: Gardens
Point and Tokyo 24/7, where latter’s evaluation is similar
to the previous experiment but using Recall@1 as the eval-
uation metric in this case for both the datasets. For the Gar-
dens Point dataset, we consider two settings: A (Appear-
ance only) with only day-night variations and more chal-
lenging A+V (Appearance + Viewpoint) where viewpoint
is also laterally shifted. We consider three descriptor pool-
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Figure 8: Qualitative semantic segmentation results on the Dark Zurich [56] dataset. S and T indicate whether the model was

trained on the source or target domain, respectively.

Method GP:A+V  GP:A  Tokyo 24/7
AP-GeM [54] 0.87 0.92 0.91
DenseVLAD [63] 0.81 0.89 0.89
R101 MAC [60] 0.51 0.56 0.20
R101 Flat [59] 0.56 0.68 0.84
R101 GeM [52] 0.90 0.96 0.91
W-R101 MAC [ours] 0.53 0.70 0.20
W-R101 Flat [ours] 0.61 0.91 0.85
W-R101 GeM [ours] 0.94 0.97 0.93

Table 5: Recall@1 for VPR using different feature pooling
types on Gardens Point (GP) and Tokyo 24/7 dataset. Color-
invariant layer (W) based networks outperform their vanilla
counterparts with W-R101-GeM achieving state-of-the-art
results.

ing types here using ImageNet-trained ResNet-101 (R101)
as the backbone network: Maximum Activations of Convo-
Iutions (MAC) [60], flattened tensor (Flat) [59] and GeM,
where only GeM is further trained on image retrieval task
as described in the previous subsection. For all three de-
scriptor types, we compute results for training with and
without the prepended color invariant layer. Additionally,
we compare against state-of-the-art VPR methods: Den-
seVLAD [63] and AP-GeM [54].

In Table 5, it can be observed that W-R101 GeM
achieves state-of-the-art results for all datasets. Further-
more, all methods based on color invariant perform better
than their vanilla counterparts, including the Flat and MAC
descriptors. This shows that color invariant networks pro-
vide robust place representation for different pooling types
even without VPR-specific training.

5. Discussion

The image formation model that lies at the foundation
of the color invariants used in the CIConv layer is based on

certain simplifying assumptions, such as purely matte re-
flections, non-transparent materials and a single, spatially
uniform light source. Although most natural scenes do not
satisfy these strict conditions, our results show that CNNs
nevertheless do benefit from prior information derived from
such approximate models. Moreover, current publicly avail-
able datasets, including the ones used in our experiments,
are not appropriate for physics-based vision due to vari-
ous artifacts introduced in post-processing steps (see Dis-
cussion in [47]). CIConv and other physics based methods
can therefore only reach their full potential when sufficient
attention is paid to preserving the physical correctness of
the data during image capturing.

The robustness of color invariants to illumination
changes comes at the loss of some discriminative
power [24]. The CIConv layer transforms the input image
into an edge map representation that is no longer sensitive
to the intensity and color of the light source, but as a side ef-
fect also removes valuable color information. We found that
naively concatenating color invariants with the RGB input
degrades performance, see section 3 of the supplementary
material. Future research should therefore focus on imple-
menting an adaptive mechanism for optimally combining
color information and color invariant edge information.

Zero-shot domain adaptation is a promising method for
reducing the data dependency and the corresponding data
collection and annotation costs in computer vision. We
therefore hope that this paper inspires future research on
integrating physics priors into neural networks.
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