
DaisyRiot: Radiosity, spectral rendering and fluorescent materials

Honours programme 2019
V. Hoveling
M. Roelvink



Abstract

This report documents the DaisyRiot global illumi-
nation renderer. The renderer applies the radiosity
method and uses spectral rendering in order to sim-
ulate fluorescent materials: materials can reflect en-
ergy of a given frequency at another frequency. Ren-
dering is accelerated by NVIDIA OptiX and Cuda
parallelization. In this document you will find de-
tails of the design of the renderer, its architecture, a
discussion of its results and performance and a reflec-
tion on its future. All source code is released online:
github.com/asylunatic/DaisyRiot.
Keywords— radiosity, global illumination, spectral ren-

dering, fluorescence

1 Introduction

The radiosity approach to global illumination has
been studied for over three decades [4]. With the rise
of new frameworks such as NVIDIA Optix [8], which
put real time raytracing on the horizon, we see good
reason to bring new life to radiosity as a solution for
global illumination and explore it’s possiblities fur-
ther.

1.1 Research problem & approach

Our research focused on the question: How can we
enable new materials in radiosity rendering? Materi-
als in radiosity are notoriously hard, as the radiosity
equation is based on the assumption of perfectly dif-
fuse materials. Properties such as specularity violate
that assumption directly.

We have therefore focused on modeling a property
that does not violate the assumption of diffuse ma-
terials, yet allows us to bring a new range of images.
We do this by enabling materials that can influence
the wavelengths of the energy they reflect: fluores-
cence. We use the newest frameworks to speed up
the renderer and enable an interactive experience.

2 Related work
2.1 Radiosity rendering
Radiosity is a global illumination algorithm based
on thermodynamics: it models how energy moves
through a space. In radiosity, all surfaces are sub-
divided into small ’patches’. Any two patches I and
J have a view factor FI→J that describes how much
energy is reflected off of patch I to J. It is modeled
by the following integral:

FI→J =
1

AI

∫
AI

∫
AJ

cos θI cos θJ
πs2

dAIdAJ (1)

The two patches have a reciprocity relation:

Ai ∗ FI→J = AJ ∗ FJ→I

or : FJ→I =
Ai ∗ FI→J

AJ

(2)

The radiosity of a patch is the energy per unit area
leaving the patch surface per discrete time interval
and is the combination of emitted and reflected en-
ergy. The radiosity of a patch I is formalized as:

BI = EI +

n∑
J=1

FJ→IBJρI (3)

in which B is the radiosity, E the emissiveness and ρ
the reflectiveness of the surface. This is the radios-
ity equation, which we can also represent as a linear
system of equations:

B = E + ρKB (4)

where K is a square matrix of view factors. Solving
this system yields the radiosity of each patch.

2.2 Spectral rendering
In spectral rendering, a scene’s light transport is
modeled after individual or small bands of wave-
lengths, as opposed to, for example, the tristimulus
values model (in which color measurement relies on a
system of only three values). Simulation of the light
spectrum enables a more physically accurate simula-
tion of the scene. To display any image to screen,
the spectral color space must be converted to screen
color space (sRGB).

1

https://github.com/asylunatic/DaisyRiot


2.3 Fluorescence
Fluorescence is the emission of light by a substance
that has absorbed light or other electromagnetic ra-
diation. Generally, the emitted light has a longer
wavelength (lower energy) than the absorbed radia-
tion. In other words: fluorescent materials can bend
light from one wavelength to another. [3] developed a
mathematical model for fluorescence, which was im-
plemented in the Rayshade raytracer. To the best
of our knowledge, the model has not been combined
with radiosity rendering before.

2.4 Cuda & Optix
Both CUDA and Optix are frameworks for parallel
computing created by NVIDIA. CUDA is an API
which allows for use of the GPU for general purpose
processing. It is designed to work with programming
languages such as C and C++. CUDA gives direct
access to the GPU’s virtual instruction set and paral-
lel computational elements, for the execution of com-
pute kernels. Optix is a ray tracing API that builds
on top of CUDA: instructions regarding what a ray
should do are supplied in in the form of CUDA ker-
nels, enabling the ray tracing process to be simulated
in parallel.

3 Design
We will outline the most important design choices in
our presented renderer. We have identified five areas
in which important design decisions were made. We
will discuss each of those in the following subsections:

3.1 View factor calculation

The integral that describes the view factor in Equa-
tion 1 can only be computed directly for very simple
cases, for most cases it cannot. There exists a large
body of work on approximating the view factors. We
have considered three approaches:

1. Nusselt analog: With this method, the view
factor FI→J is calculated by projecting J onto
the hemisphere of the I, and then projecting
further from the hemisphere onto a unit circle

around the center of I, as illustrated in Figure
1. The percentage of the unit circle covered by
J is equivalent to FI→J . However geometrically
pleasing and intuitive, the Nusselt analog is not
perfect: any patch has only one center against
which all other patches are measured and ignores
the rest of the surface. This means that if I is
very large and J is very small, but perfectly cen-
tered above the center of I, then FI→J would be
disproportionally large.

2. Riemann sum approximation: The integral
that describes the view factor (Equation 1) can
be approximated with a Riemann sum: to obtain
the differential areas of any patches I and J, both
I and J are subdivided first. As we use triangles
for patches (see Section 4), I and J are each split
up into four triangles, as illustrated in Figure
2. The integrands between all of the subdivided
patches are calculated and weighted by the area
of I.

3. Stochastic approach: From a patch I, a set
of rays is shot according to a probability dis-
tribution that models reflected light off diffuse
surfaces. The view factor FI→J for any patch J
in the scene is then retrieved by calculating the
percentage of rays from I that hit J. This works
for simple scenes. However, the amount of rays
required for a good estimate of the view factor
grows with the amount of patches in the scene
and becomes very large very quickly. Therefor is
this an undesirable approach for complex scenes.

Take note that for both the Nusselt analog and the
Riemann sum approximation, an additional visibility
factor was taken into account: to determine whether
any two patches I and J can also actually ’see’ each
other (and can therefor transfer energy by radiation),
a set of rays is shot from random points on I to ran-
dom points on J, according to a uniform random dis-
tribution. The visibility factor boils down to the ratio
of rays that hit J over the total amount of rays. The
view factor FI→J is multiplied by the visibility factor.

After having considered and tried all three ap-
proaches, the Riemann sum approximation came out
as the most accurate and reliable method. Thus we

2



Figure 1: Nusselt analog

Figure 2: Subdivided triangle

used this approach to calculate the view factors in
the program.

3.2 Matrix representation
For each patch, the view factors to all other patches
are stored as a row in the radiosity matrix. This
matrix describes the flow of energy through the scene: 0 F0→1 F0→2

F1→0 0 F1→2

F2→0 F2→1 0


The radiosity matrix takes up a quadratic amount of
space: n2 for any scene with n triangles. For larger
scenes, this grows to problematic numbers. A char-
acteristic of the matrix is that for complex scenes, it
is rather sparse: many more triangles are occluded to
one another, than visible [2]. This provides a conve-
nient opportunity to compress the matrix, by storing
only the non-zero entries. We chose a sparse matrix
representation that used this storage-efficient solu-

tion (see also Section 4).

3.3 Solving the equation
There are several ways to solve the linear system to
obtain the radiosity values for each patch. We have
chosen to implement the progressive approach: We
iteratively calculate an approximate solution, based
each time on the previous approximation [10]. Each
iteration corresponds to a light bounce in the scene.
We then formulate the radiosity in the scene as

B = E +
∑

ρKB (5)

in which B, E and ρ are vectors containing the radios-
ity values, emission and reflectiveness, respectively, of
the surface for each patch. K represents the radios-
ity matrix. With each pass, the system converges
towards the solution, this convergence is ensured by
the property of diagonal dominance in the radiosity
matrix. The convergence of the calculations and the
iterations of light bounces in the scene is illustrated
in Figure 3.

Figure 3: The first three light bounces in a scene
(from left to right)

3.4 Spectral rendering & fluorescence
To facilitate spectral rendering in radiosity, wave-
lengths are sampled discretely [7]. The larger the
number of sampled wavelengths, the closer the ap-
proximation. When we assume that all wavelengths
are decoupled, the solution for the radiosity at wave-
length λ would be independent of the solution at
some other λ̀. So to find the radiosity values, we’d
solve a set of linear equations for each individual λ.

However, as mentioned in Section 2.3, fluorescence
breaks the assumption of decoupled wavelengths. To
facilitate this, each material is modeled with a param-
eter M, which is a matrix that represents the transfer

3



of energy from one wavelength to another [9]. M is an
m x m matrix for m number of samples. For a non-
fluorescent material, this matrix has non-zero values
only on the diagonal. For fluorescent materials, M is
a triangular matrix, as the radiated energy is lower
than the absorbed energy.

We adjust the solution to the linear equations (Sec-
tion 3.3) to take fluorescence into account:

B = E + ρ
∑

KM̀B (6)

in which B is an n x m matrix for n number of patches
and m number of wavelength samples, E is an n x m
matrix containing the emissive values, ρ an n x m ma-
trix with the reflectivity of each sampled wavelength
per patch, K is the n x n radiosity matrix, and M̀
a 3d matrix of dimensions m x n x m, containing
the matrix M for each patch. Take note that for each
sampled wavelength, the dimension m is incremented,
so with more samples comes a higher computational
cost[2].

For simplification, we have chosen ignore time de-
pendence between frames (as fluorescent materials
cease to glow nearly immediately when the radiation
source stops).

3.5 Rendering the model
To display the scene on screen, it is first traced with
primary rays from a given camera and view direc-
tion. For each pixel, we obtain the patch index and
barycentric coordinates. The pixels’ color values are
interpolated between the adjecent patches (see also
Section 4). To render the image to screen, the spec-
tral color model is converted to CIE XYZ color space
[11] and consequently to RGB.

4 Implementation
The renderer is implemented in C++ and CUDA.
What follows is a high level overview of the imple-
mentation of the program.

First, a Wavefront object, specified in a config
file, is loaded into the program. It is required that
the object is triangulated and sufficiently subdivided:
the triangles are interpreted as the radiosity patches.
From the materials file, corresponding to the object

file, the reflective and emissive colors are read in RGB
color space. From these RGB values, the spectral val-
ues are sampled, as described and provided by [5]. A
triangle-adjacency lookup table is built for the geom-
etry, in which the adjacent triangles for any triangle
can be found. This facilitates interpolation over ad-
jacent triangles when rendering.

Next, the radiosity matrix is constructed. Given
the independent and repetitive nature of the calcu-
lations, this part was perfect for parallelization and
has been implemented in CUDA. The ray shooting
to determine the visibility of all patches (see Section
3.1), is parallelized too, by the NVIDIA OptiX frame-
work. The view factors are stored in a sparse matrix
data structure provided by the Eigen library. As the
sparse matrix representation of the Eigen library was
used to efficiently handle the large size, it seemed
a natural consequence to apply Eigen as well for the
consequtive calculations for solving the linear system.
This would also be a convenient way to obtain vec-
torisation, by representing arrays of patch values per
sampled wavelength as a matrix. However, the per-
formance of Eigen relied so much on compiler specific
optimization, that we opted to implement the vector-
ization ourselves.

After converging radiosity equations for the scene,
the spectral values of each patch are converted to
and cached in RGB color space, to save on the costly
color conversions otherwise required with each frame
update. To render the scene to screen, it is traced
with primary rays in OptiX. Then, for each pixel, the
color is interpolated over its corresponding triangle
and the adjecent triangles. The resulting image is
rendered as a texture on a plane using OpenGL.

5 Results
Figure 4 shows a selection of images that demonstrate
some typical features of the renderer:

5.1 Wavelength sampling
For visual comparison, we show two renderings of
the Cornell box with different sets of sampled wave-
lengths: Figures 4a and 4b. As described in Section
3.4, there is a tradeoff between the number of sam-

4



pled wavelengths and the computational costs. We
started with a suggestion by [7], that a set of four
samples can in most cases provide a good balance:
456.4, 490.9, 557.7, and 631.4 nm. Unfortunately,
we found that these did not work very well for our
case, as one can see in Figure 4a. Eventually, we
found good results when sampling wavelengths be-
tween 350 and 650 nm with uniform intervals of 50
nm (7 samples in total), as seen in Figure 4b.

5.2 Colored light sources

Figures 4e and 4f demonstrate the application of col-
ored light sources in the renderer. In Figure 4e, a
model is lit from two sides, allowing the shadow on
the right to contain more red, and the shadow on
the left to contain more blue. Figure 4f illustrates a
pink and a green light source, which are both par-
tially obscured by a structure, allowing for colorful
light patterns on the walls.

5.3 Fluorescence

As illustrated in Figure 4c and 4d, the emissiveness of
the fluorescent materials differs from any other emis-
sive surface, as the light is only emitted from where
it can see the blacklight. It is literally a reflection of
invisible light: only the reflection is visible. Observe
the faint violet tint of the black light sources: The
black light was sampled with an emissive peak at 350
nm, well outside of the visible range, however we also
sampled a smaller peak at 400 nm, as is often found
in the spectra of black light sources: their dark blue
filters often leak a bit around 400nm, causing the vi-
olet glow.

5.4 Typical artefacts

Most notable artifacts in the images are visible
gouraud shading when the scene is not sufficiently
subdivided. Objects can also appear as slightly float-
ing when the scene is not sufficiently subdivided, as
one can observe in Figure 4b. Adaptive subdivision
[1] should be an appropriate solution to this.

6 Evaluation
The program has had many cycles of improvement.
Multiple implementations have been tried and im-
proved, providing a good opportunity to compare
some of the approaches empirically.

6.1 View factor calculation

Three different approaches to calculating the view
factor have been implemented, as described in Sec-
tion 3.1. We provide a visual comparison in Figure
5. It is clear that the Riemann approximation gives a
better result than the stochastic approach. The Nus-
selt analog produces a good result in this comparison,
but starts giving skewed results when presented with
not equally subdivided scenes.

(a) Riemann ap-
proximation.

(b) Stochastic
approach.

(c) Nusselt ana-
log.

Figure 5: The rendering of a temple using three dif-
ferent approaches

6.2 Implementation performance

All view factor calculations were initially imple-
mented on the CPU. For any scene containing more
detailed geometry (>7000 triangles), the program
would take over two hours to compute the radios-
ity matrix for the scene. Implementing this part in
CUDA resulted in a calculation time of 1.7 minutes
for that same scene: a speedup of approximately 70.
Table 1 shows a more detailed overview of the perfor-
mance of the calculations when accelerated by CUDA
and when executed on the CPU.

7 Future work
We suggest briefly three areas for future work on the
project that we consider particularly exciting.

5



CUDA CPU
Setup 1,60 1,69

Calculating matrix: 112,00 8292,72
View factors 33,15

Visibility factors 78,85
Solving linear system 4,15 5,83

Rendering 0,21 0,33
Total time 229,97 8300,57

Table 1: Performance CUDA vs cpu implementation:
Calculation times are in seconds, for a scene of 7712
triangles. Take note that the CPU implementation
does not separate the calculations of the view fac-
tors from the visibility, hence only the total time for
calculating the matrix is provided

7.1 Interactive materials editor
Currently, the spectral values for the materials are
sampled from RGB values, which provides a conve-
nient way to define materials: the materials can be
inspected visually in an editor such as Blender, and
then read from a materials file. However, it would
be a great addition to have an interactive materi-
als editor with the renderer itself. In the editor, the
materials could be previewed and the scene updated
(relatively) quickly. The manipulation of materials
could be done by allowing manual adjustments to
the curves that represent the reflective and emissive
spectra of a material. The fluorescent color could
be edited in a similar fashion. Alternatively, the flu-
orescent properties could also be edited with more
detail for how and which wavelengths bend to what
frequency, even enabling materials that might not be
fully physically correct, but perhaps visually interest-
ing.

7.2 Additional spectral light sources
The only light sources currently emitting UV light
are the custom defined blacklight sources. Of course
these are not the only sources of UV light in the real
world. Actually, most emissive sources have com-
plex emissive spectra with peaks, that are not as nice
and smooth as the curves that we now use to sam-

ple from RGB to spectral values. Adding sources
for, for example, sunlight would be a major addition
to the program, as fluorescence also happens in day-
light, which makes the color of a neon shirt pop so
bright. These light sources would best be integrated
together with the materials editor as descibed in Sec-
tion 7.1, as that could provide a framework to assign
such specific materials.

7.3 Simulation of X-ray fluorescence
Having set up a framework for spectral rendering
with fluorescence, it would probably possible to vi-
sualize wavelengths outside of the visible spectrum
and enable simulations of phenomena such as x-ray
fluorescence. X-ray fluorescence is the emission of flu-
orescent X-rays from a material after being exposed
to high-energy X-rays or gamma rays [6].

8 Conclusion
We have given an overview of the DaisyRiot renderer,
which combines radiosity with spectral rendering and
novelly supports fluorescent materials.

Our approach to radiosity uses a Riemann sum ap-
proximation to calculate the view factors, which we
store in a sparse matrix representation. We chose an
iterative approach to solving the radiosity equation
and then modeled the solution to the equation for all
wavelengths as a set of matrix operations that takes
fluorescence into account.

We’ve parallelized parts of the implementation
with CUDA and Optix. We saw that this provided
us with a big speedup for setting up the matrix.

The results show that we found a good set of sam-
pling wavelengths at 7 uniformly spaced intervals.
We also see that fluorescent materials are emissive
in a unique way and so bring the possibility for a
new range of images. Typical artifacts appear when
the mesh is not sufficiently subdivided, for which a
solution exists.

We have enabled a new kind of material in radios-
ity and hope that brings new visualisations. This
can possibly be made easier in the future with the
roadmap we’ve laid out for the editing of materials
and light sources.

6



References
[1] Michael F Cohen, Donald P Greenberg, David S

Immel, and Philip J Brock. An efficient radios-
ity approach for realistic image synthesis. IEEE
Computer graphics and Applications, 6(3):26–
35, 1986.

[2] Michael F Cohen and John R Wallace. Radiosity
and realistic image synthesis. Elsevier, 2012.

[3] Andrew S Glassner. A model for fluorescence
and phosphorescence. In Photorealistic Render-
ing Techniques, pages 60–70. Springer, 1995.

[4] Cindy M Goral, Kenneth E Torrance, Donald P
Greenberg, and Bennett Battaile. Modeling
the interaction of light between diffuse surfaces.
In ACM SIGGRAPH computer graphics, vol-
ume 18, pages 213–222. ACM, 1984.

[5] Wenzel Jakob and Johannes Hanika. A low-
dimensional function space for efficient spectral
upsampling. Computer Graphics Forum (Pro-
ceedings of Eurographics), 38(2), March 2019.

[6] Ron Jenkins. X-ray fluorescence spectrometry,
volume 265. John Wiley & Sons, 2012.

[7] G. W. Meyer. Color calculations for and per-
ceptual assessment of computer graphic images.
1986.

[8] Steven G. Parker, James Bigler, Andreas Di-
etrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, and Martin
Stich. Optix: A general purpose ray tracing
engine. ACM Trans. Graph., 29(4):66:1–66:13,
July 2010.

[9] Georgios Sakas, Peter Shirley, and Stefan
Müller. Photorealistic rendering techniques.
Springer Science & Business Media, 2012.

[10] Francois X Sillion, Claude Puech, et al. Radios-
ity and global illumination, volume 1, pages 36–
38. Springer, 1994.

[11] Thomas Smith and John Guild. The cie colori-
metric standards and their use. Transactions of
the optical society, 33(3):73, 1931.

7



(a) Spectral rendering of the Cornell box, sampled with
wavelengths as suggested by Meyer.

(b) Spectral rendering of the Cornell box with wave-
lengths sampled in 50 nm intervals between 350 and 650
nm.

(c) Black light interpretation of the Cornell box with a
black light and blue and pink fluorescent cubes.

(d) Black light scene with a green fluorescent object lit
by two black light tubes.

(e) Scene with red and blue light sources. (f) Scene with partially occluded pink and green lights.

Figure 4: A selection of results of the renderer.
8


	Introduction
	Research problem & approach

	Related work
	Radiosity rendering
	Spectral rendering
	Fluorescence
	Cuda & Optix

	Design
	View factor calculation
	Matrix representation
	Solving the equation
	Spectral rendering & fluorescence
	Rendering the model

	Implementation
	Results
	Wavelength sampling
	Colored light sources
	Fluorescence
	Typical artefacts

	Evaluation
	View factor calculation
	Implementation performance

	Future work
	Interactive materials editor
	Additional spectral light sources
	Simulation of X-ray fluorescence

	Conclusion

