
MSc thesis in Geomatics

Procedural Modelling of Tree Growth
Using Multi-temporal Point Clouds

Noortje van der Horst

2022

MSc thesis in Geomatics

Procedural Modelling of Tree
Growth Using Multi-temporal Point

Clouds

Noortje van der Horst

June 2022

A thesis submitted to the Delft University of Technology in partial
fulfillment of the requirements for the degree of Master of Science in

Geomatics

Noortje van der Horst: Procedural Modelling of Tree Growth Using Multi-temporal Point
Clouds (2022)
cb This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Dr. Liangliang Nan
Prof.dr. Jantien Stoter

Co-reader: Dr. Sören Pirk

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

A digital reconstruction of real-life trees could provide many benefits in fields such
as botany, forestry management, biology, and urban planning. Plant growth mod-
elling in particular would enable the analysis of plant structure and behaviour in a
customizable, widely applicable and non-destructive manner. Although many data-
driven plant reconstruction methods exist, it remains a complex problem due to the
intricate branching systems of trees and the need for balancing model soundness
with adherence to the often incomplete input data. Modelling plant growth cur-
rently proves difficult as well due to the large number of factors involved in the
growth process and the level of prior botanical knowledge and/or detailed field
data that is often required.

This work uses an automatic MST (Minimum Spanning Tree)-based reconstruction
method to obtain tree skeleton models from LiDAR input data. Multiple scans of
the same tree, gathered at different years, are related to each other to improve and
expand upon the reconstruction. A procedural model is used to simulate the growth
in the tree tips using a lobe-based approach and a region-growing algorithm. The
growth-based models provide a temporally informed reconstruction that is visually,
geometrically and topologically sound. Establishing correspondences in the main
structure between timestamps can assist the reconstruction of the tree at a time for
which the input data was noisier or incomplete, as well as provide an estimate of
the tree’s structure in between known data points. This type of reconstruction can
be used to both model and study the growth behaviour of trees, for multi-temporal
visualisations, and to provide more informed tree models for reconstruction pur-
poses.

v

Acknowledgements

Here I would like to express my gratitude for the people who assisted and supported
me during the process of this research.

Firstly, I would like to thank my 1st supervisor Dr. Liangliang Nan for always
being available to offer help and feedback. I would also like to thank my co-reader
Dr. Sören Pirk for taking the time to share his knowledge and ideas with us. The bi-
weekly meetings with these supervisors provided me with many valuable insights
and interesting discussions. I express my gratitude to Prof.dr. Jantien Stoter as well
as my 2nd supervisor, for their inspiring questions, comments and feedback. My
thanks also goes to Dirk Voets, Tim Jak and the Cobra Groeninzicht company, who
despite not being directly involved with this particular project, provided me with a
knowledgeable background and piqued my interest in the topic by participating in
the Synthesis project and allowing me the opportunity to intern with them.

Lastly, I would like to thank my parents, my friends and family, and my partner
for always supporting and encouraging me.

vii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research objective . 2
1.3. Research scope and challenges . 3
1.4. Thesis outline . 3

2. Background 5
2.1. Procedural modelling . 5
2.2. Data-driven modelling . 9
2.3. Growth modelling . 10

3. Methodology 13
3.1. Pre-processing . 14

3.1.1. Raw point cloud cleaning and segmentation 14
3.1.2. Point cloud processing of individual tree data 14
3.1.3. Dataset validation . 15

3.2. Tree structure representation . 15
3.2.1. Skeleton representation for tree branches 17
3.2.2. Lobe representation for tree crowns 19

3.3. Correspondence between the main structures of multi-temporal data . 19
3.3.1. The merged main skeleton . 20
3.3.2. Merged main skeleton refinement 20
3.3.3. Individual timestamp correspondence 21

3.4. Regional growth modelling . 22
3.5. Growth between timestamps . 25

3.5.1. Correspondence between timestamp-specific skeletons 25
3.5.2. Correspondence consistency . 27
3.5.3. Smooth interpolation and animation 31

3.6. Geometry reconstruction . 33
3.7. Implementation details . 34

3.7.1. Test datasets . 34
3.7.2. Tools and software . 34

4. Results and discussion 37
4.1. Visual results . 37

4.1.1. Merged main branches and lobes reconstruction 37

ix

Contents

4.1.2. Timestamp specific reconstruction 39
4.1.3. Topological visualisation . 44
4.1.4. Growth inside the lobes . 46
4.1.5. Growth interpolation between timestamps 48

4.2. Quantitative analysis and evaluation . 56
4.2.1. Topological distance . 56
4.2.2. Geometric distance . 58

5. Conclusion 63
5.1. Conclusion . 63
5.2. Contribution . 64
5.3. Future work and recommendations . 64

A. Reproducibility 67

B. Region growth direction algorithm 69

C. Geometric distance reconstructed skeletons 73

D. Topological distance reconstructed skeletons 79

x

List of Figures

2.1. Radial bounding volumes of two trees at different resolutions. Each
radial slice denotes the maximum extent of the tree’s branches at that
height and direction (Li et al. [2021]). 7

2.2. Space colonization: different models of influence distance. 8

3.1. The most important steps in the pipeline of the research methodology.
First, a set of cleaned, segmented point clouds is generated for each
tree. A tree skeleton is generated per timestamp using a Delaunay
triangulation (DT), Minimum Spanning Tree (MST) and simplification
method. Another skeletonization is performed on merged data of
all timestamps, from which a corresponding merged main skeleton
is made (relatively the top and bottom image of this pipeline step).
Smaller branches in the tree crown are generated with a procedural
lobe-based region growing model. Lastly, geometry is generated with
cylinder-fitting. 13

3.2. The main parts of the structure of a tree: trunk (purple), main branches
(green), secondary branches (orange), and tree twig/leaf canopy shape
(red line yellow fill). 16

3.3. Schematic representation of the main steps of the skeletonization method
as proposed by Du et al. [2019]. 18

3.4. The perception cone with perception distance di, kill distance dk, and
optimal growth vector V⃗opt as used in space colonization (Guo et al.
[2020]). 23

3.5. Schematic representation of the criteria determining initial correspon-
dences between a base and target timestamp skeleton graph. 26

3.6. Reconstructions of timestamp 0 and 1 for tree E, with an interme-
diate interpolation in between. When not all vertices in the target
graph correspond coherently, gaps in the growing structure can oc-
cur. Corresponding branch segments are shrunk and then regrown if
the number of vertices in the base and target graph is not equal. . . . 28

3.7. Schematic representation of how the bifurcation points of the base and
target graph are made to correspond coherently. 30

3.8. Schematic representation of how the number of vertices between known
correspondences in the target graph (ti and tc) are made equal to the
number of vertices in the base graph for the same segment (bi′ and bc′). 31

xi

List of Figures

4.1. Visualisation of the reconstructed timestamp models with branch and
lobe geometry, for Tree A, B C and D respectively. 38

4.2. Visualisation of the reconstructed branch geometry of all timestamps
of Tree A. Both the corresponding (bottom) as the timestamp-specific
main skeleton reconstruction (top) are displayed. The corresponding
reconstruction contains a shared main structure over all timestamps,
with differing grown structures in the lobes. The timestamp-specific
reconstruction does not have any branches reconstructed in the lobes,
and its main structure differs between timestamps. 40

4.3. Visualisation of the reconstructed branch geometry of all timestamps
of Tree B, with both the corresponding (bottom) as the timestamp-
specific main skeleton (top). 41

4.4. Visualisation of the reconstructed branch geometry of all timestamps
of Tree C, with both the corresponding (bottom) as the timestamp-
specific main skeleton (top). 41

4.5. Visualisation of the reconstructed branch geometry of all timestamps
of Tree D, with both the corresponding (bottom) as the timestamp-
specific main skeleton (top). 42

4.6. The reconstructed merged main skeleton compared to the original
point cloud data of all timestamps as well as the merged main skele-
ton, Tree D. 43

4.7. Visualisation of the topological differences between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree D. Node positions do not correspond to the actual 2D positions
of the point, but rather to the Kamada-Kawai force-directed layout of
NetworkX. 45

4.8. Visualisation of the reconstructed lobe geometry of a certain lobe of
Tree D, for all timestamps. 46

4.9. Visualisation of the reconstructed lobe geometry of a certain lobe of
Tree D, for all timestamps. 47

4.10. Visualisation of the interpolation between the reconstructed timestamp-
specific structures with branch geometry. Top: interpolation from
timestamp 0 to ts 1, bottom: interpolation from timestamp 1 to times-
tamp 2, with 5 intermediary frames shown at equal intervals. For test
tree D. 49

4.11. Visualisation of the interpolation between the reconstructed timestamp-
specific structures. Top: interpolation from timestamp 0 to ts 1, bot-
tom: interpolation from timestamp 1 to timestamp 2, with 5 interme-
diary frames shown at equal intervals. For test tree D. 50

4.12. Corresponding timestamp reconstructions for Tree G. The stem in
timestamp 1 was not detected at the same location as timestamp 0
and 2, resulting in a illogical corresponding structure for timestamp 1
and 0. 51

xii

List of Figures

4.13. Visualisation of the interpolation between the reconstructed timestamp-
specific structures, superposed against the original point cloud data
of the latest timestamp. Top: interpolation from timestamp 0 to ts 1,
bottom: interpolation from timestamp 1 to timestamp 2, with 2 inter-
mediary frames shown at equal intervals. For test tree D. 52

4.14. Intermediary keyframes at 1/3 (4.14a) and 2/3 (4.14b) respectively of
the interpolation between the second and third timestamp. For test
tree D. 52

4.15. Reconstructions for timestamp 1 for test Tree D, with (4.15a) and with-
out (4.15b) noise clusters present in the input point cloud. 53

4.16. Close-up of the reconstruction of the main branches of Tree D, for
the reconstruction of timestamp 2 (left) and the merged main skeleton
reconstruction (right). Both are depicted with the input point cloud
of timestamp 2, also pictured below. 55

4.17. Visualisation of the geometric distances between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree A. Red is a larger distance, green a smaller one. 59

4.18. Visualisation of the geometric distances between the skeleton struc-
ture of the latest timestamp (ts 2) and the merged main skeleton of
Tree A. Red is a larger distance, green a smaller one. Brightest green:
distance = 0 cm, brightest red: distance >= 10 cm. 60

C.1. Visualisation of the geometric distances between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree A. Red is a larger distance, green a smaller one. 74

C.2. Visualisation of the geometric distances between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree B. Red is a larger distance, green a smaller one. 75

C.3. Visualisation of the geometric distances between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree C. Red is a larger distance, green a smaller one. 76

C.4. Visualisation of the geometric distances between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree D. Red is a larger distance, green a smaller one. 77

D.1. Visualisation of the topological differences between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree A. Node positions do not correspond to the actual 2D positions
of the point, but rather to the Kamada-Kawai force-directed layout of
NetworkX. 80

xiii

List of Figures

D.2. Visualisation of the topological differences between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree B. Node positions do not correspond to the actual 2D positions
of the point, but rather to the Kamada-Kawai force-directed layout of
NetworkX. 81

D.3. Visualisation of the topological differences between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree C. Node positions do not correspond to the actual 2D positions
of the point, but rather to the Kamada-Kawai force-directed layout of
NetworkX. 82

D.4. Visualisation of the topological differences between the skeleton struc-
ture of the different timestamps and their merged main skeleton of
Tree D. Node positions do not correspond to the actual 2D positions
of the point, but rather to the Kamada-Kawai force-directed layout of
NetworkX. 83

xiv

List of Tables

4.1. Edit distances between the reconstructed tree graphs of Tree A. Rows:
the graph used as base, columns: the approximated graph. 56

4.2. Edit distances between the reconstructed tree graphs of Tree B. Rows:
the graph used as base, columns: the approximated graph. 56

4.3. Edit distances between the reconstructed tree graphs of Tree C. Rows:
the graph used as base, columns: the approximated graph. 56

4.4. Edit distances between the reconstructed tree graphs of Tree D. Rows:
the graph used as base, columns: the approximated graph. 57

xv

List of Algorithms

B.1. Pseudocode for optimal growth direction computation 70

xvii

Acronyms

DT Delaunay triangulation . xi
MST Minimum Spanning Tree . xi
GIS geographical information system . 1
PCA Principal Component Analysis . 21
LoD Level of Detail . 17
LiDAR Light Detection and Ranging . 1
GED Graph Edit Distance . 56
AHN Actueel Hoogtebestand Nederland . 3

xix

1 Introduction

1.1 Motivation

Creating a digital reconstruction of real-life plants could provide many benefits to
several fields of interest. It would allow not only for realistic looking virtual rep-
resentations, but also for applications in the field of forestry management, envi-
ronmental analysis, city planning, and biology. With the continuing development
of data capturing methods such as digital image capturing or Light Detection and
Ranging (LiDAR) point cloud scanning, it has become possible to reconstruct real-
life specimens more and more accurately. However, reconstructing plants is still an
open problem due to their inherent complex branching structure, and the need for
balancing model soundness with adherence to the often incomplete or noisy input
data. A particularly relevant topic in plant modelling is plant growth. An accurate,
virtual, data-driven model of plant growth would enable the study and analysis of
plant traits and behaviour in a customizable, widely applicable and non-destructive
manner (Chaudhury and Godin [2020]). However, estimating real-life tree growth is
a difficult process due to the large number of factors influencing the growth process,
the inherent complexity of plant growth and architecture, and the frequent need for
prior botanical knowledge and/or accurate multi-temporal field data.

Currently, virtual plant models are developed both for simulating realistic-looking
plants and for reconstructing real-life plants. Trees are ubiquitous and one of the
most dynamic virtual modelling components. They tend to grow and change fre-
quently, and come in a wide variety of shapes and sizes. In the field of geographical
information system (GIS), trees are often modelled as static and with a low level of
detail. Accurately reconstructed trees subject to dynamic growth could inform urban
analyses and provide a more accurate visual representation of real-life vegetation in
urban scenes. Reconstruction methods can be divided into three categories: interac-
tive, procedural, and data-driven models (Chaudhury and Godin [2020], Guo et al.
[2020]). Interactive models are based on user assistance. Procedural models can be
used to generate the branching structure of plants automatically. Data-driven mod-
els use sensor data in order to represent a plant’s real-life counterpart as accurately
as possible. Unlike when creating realistic-looking plants, modelling with the goal
of plant reconstruction introduces additional constrains: the model has to represent
a specific tree, with specific topology, geometry, and botanical characteristics.

1

1. Introduction

Using a combined data-driven and procedural approach, this thesis will balance
accuracy, processing speed, and botanical and spatial soundness to generate tree
models as realistic as possible using multi-temporal LiDAR data of trees. The main
branches of the trees will be identified, registered for each time stamp, and corre-
spondingly converted to a skeleton graph-based representation. The overall crown
shape of the tree, being its smaller branches, will be represented as polygonal hulls
attached to the main branches within which the twigs and leaves of the tree can be
synthesized using a procedural model. Procedural modelling will be used to in-
fer tree growth at lobe level, taking into account detailed botanical knowledge. A
correspondence-based interpolation method will visualise the structural changes of
the tree’s main branches in between known data points. The tree growth models
will be validated using LiDAR time-series data and a validation algorithm measuring
geometric and topological distance (Stava et al. [2014]).

In summary, the main scientific contributions of this thesis include:

• A tree reconstruction method informed by real-world multi-temporal data
• Interpolation between measured growth stages of trees
• A data-driven tree growth model
• A representation of tree growth based on a corresponding main structure and

procedural growth in the tree crown

1.2 Research objective

The main question this research aims to answer is:

How can multi-temporal point clouds be used to model tree growth?

This research will investigate the feasibility of using a procedural growth model to
reconstruct tree model as realistically as possible, as well as fill in the gaps for which
no reliable ground truth data exists with plausible tree structures. To reach this goal,
the following sub-questions are explored:

1. What digital representation of a tree is best suited to model growth?

2. To what extent can a procedural growth model accurately reconstruct the
growth of a tree based on known ground-truth data models at different times?

3. How can a plausible reconstruction be made in areas for which no reliable
ground-truth data exists?

2

1.3. Research scope and challenges

1.3 Research scope and challenges

Many different methods exist for modelling plants. This research will focus on data-
driven reconstruction, using only aerial LiDAR scan point clouds from the Actueel
Hoogtebestand Nederland (AHN) as input (Stuurgroep AHN [2021]). The age of
the trees will not be classified, but instead computed with a simple formula based
on main tree shape characteristics. Only oaks will be considered. The method
developed will thus be specific to oak trees from Dutch urban areas. Robustness to
various tree species, trees of other geographic regions, or tree growth in the context
of natural ecosystems will not be considered. However, the method proposed could
be generalized to other tree species. Similarly, only urban regions will be considered,
as these trees will be easier to segment as well as validate based on images form
Google Maps. The methodology is however general and may be applied to forest
regions, as long as the trees can be automatically segmented. In theory, a point cloud
of any tree of any species may be used as input, as long as it can be segmented and
cleaned, all timestamps capture at least most of the main branching structure and
the trunk, and the timestamp data forms a consistent series of captures of the same
tree.

1.4 Thesis outline

This work is organized as follows:

• Chapter 2 discusses the related work used as a theoretical base.

• Chapter 3 describes the proposed methodology and workflow. The proposed
pipeline consists of pre-processing the input point clouds, skeletonization of
the cleaned tree point clouds, merged main skeleton extraction, construction
and attachment of the lobes, growing branches procedurally inside the lobes,
and lastly the reconstruction of both branch and lobe geometry.

• Chapter 4 presents the main results, analysis and discussion.

• Chapter 5 concludes the work, as well as gives a consideration of the future
work.

3

2 Background

This chapter considers the current state-of-the-art methods in procedural plant mod-
elling, plant reconstruction, and plant growth modelling. When reconstructing a
plant model, one can in general take two approaches: modelling based on a proce-
dural approximation of a real-world plant, or based on real-world data. Modelling
based on real-world data will give an accurate representation of real-world scenar-
ios, but is heavily subject to data inaccuracies and noise. Procedural modelling on
the other hand is more robust, but takes more liberties in simulating plant struc-
tures. Lastly, several methods for plant growth modelling have been considered,
which often vary greatly in scale and research goal. This chapter focuses mainly on
single plant reconstruction, as it is most relevant for this work.

2.1 Procedural modelling

Rule-based models There is a variety of ways to control procedural models, with
varying levels of conformity to the input data and a priori knowledge needed. One
of the most simple ones is the rule-based model. The L-system (Honda [1971],
Prusinkiewicz and Lindenmayer [1990]) was the first rule-based model describing
the branching patterns of plants. In an L-system, a set of botanically informed rules
are recursively applied to a base in order to create a plausible plant structure. Rule-
based models are often complicated due to the large number of parameters and
extensive user knowledge required.

Parametric models More recent procedural approaches do not apply a set of rules
on an initial base, but develop an algorithm shaped by a certain set of parameters.
The Xfrog method developed by Lintermann and Deussen [1999] was the first hybrid
approach, using a rule-based system to combine procedural components in order to
achieve faster modelling times. While the Xfrog method is proven to be able to
handle a variety of complex plant structures, the model still requires a large number
of parameters, as well as extensive user knowledge. Weber and Penn [1995] propose
a parametricized algorithm designed to generate geometric tree models using user-
supplied parameters. Their system requires no expert user knowledge in botany

5

2. Background

or mathematics, instead focusing on creating plausible geometry only. However,
they still require numerous input parameters. Gobeawan et al. [2019] attempt to
lower the amount of required user knowledge by supplying a 12-parameter species
profile template. The remaining 10 growth parameters used are then estimated
automatically by the algorithm via optimization.

Sketch-based models A more user-friendly method is sketched-based tree mod-
elling, where the user is provided with a more intuitive input method to control the
tree model. In the work of Okabe et al. [2006] and Chen et al. [2008] a biologically
informed set of rules is used to generate the 3D tree branching structure from 2D
sketches. Instead of requiring the user to draw the desired branching structure, Ijiri
et al. [2006] uses L-systems to grow the procedural model along a simple drawn
stroke. Sketched-based methods can generate plausible tree models quickly, but
require extensive adjustment to resemble specific tree shapes.

Modelling based on biological processes Some method base their branch gener-
ation on biological processes. Neubert et al. [2007] use multiple images to fill a 3D
voxel grid with density values. Attractor graphs based on each 2D image can then
be used to create a 3D directional field. Using the directional field and the density
voxel grid, a final particle simulation generates the 3D skeleton. This method can
reconstruct botanically sound tree models. However, because particle flows do not
exactly model tree branching structure and the generated structure is dependent on
the location of the (random) seed points, it is not guaranteed to follow the original
branches of the tree.

Self-organizing models and space colonization Different methods exist to fill a
certain space with procedural plant generation. Gobeawan et al. [2019] voxilize
an input point cloud scan of a tree in order to constrain their procedural model.
Their model is non-stochastic (meaning no randomness is introduced), and lead by
botanically informed L-system growth rules. The growth space filling optimization
algorithm terminates when the measured error drops below 10%, or after a certain
run time. Their cost function is based on the ratio of filled/unfilled voxels, extra
space occupied, bounding box differences, tree stem girth, and crown shape differ-
ences.

A common option to constrain space colonization is to define a polygonal volume.
Kim and Cho [2012] use a user-defined conical volume to describe the general tree
crown shape. This volume is then used not only for bounding a botany-based self
organizing procedural model, but also for detecting and responding to collisions
with other tree models. This method is able to model several different species of
realistic looking trees in real time, with minimal user input, although their models
are thus not a reconstruction of real-life trees.

6

2.1. Procedural modelling

Li et al. [2021] use a data-driven bounding volume instead. The radial bounding
volume (RBV) is based on single-view images of trees, where neural networks are
used to mask out trees and construct the RBV. The RBV is a set of layers of radial
volumes noting the extend of branches at each level and radial direction (Figure
2.1).

Figure 2.1.: Radial bounding volumes of two trees at different resolutions. Each radial slice
denotes the maximum extent of the tree’s branches at that height and direction (Li et al.
[2021]).

They then employ two different options to fill these volumes with a procedural
branching model. One is similar to the method used by Gobeawan et al. [2019],
based solely on knowledge about biological processes. The second is self-organizing,
growing towards randomly inserted attraction points within the radial bounding
volumes. Runions et al. [2007] first described this space colonization algorithm,
where the growth direction of new nodes at each edge tip is determined by the
vectors of one or more attraction points within a certain distance threshold (radius
of influence). After each iteration, attraction points that are within a certain distance
of the tree nodes (kill distance) will be removed, thus modelling space competition
as the dominant factor determining tree growth (Figure 2.2a).

7

2. Background

(a) Space colonization algorithm as per Runions et al.
[2007]

(b) Perception cone, influence distance
di, and kill distance dk (Guo et al.
[2020])

Figure 2.2.: Space colonization: different models of influence distance.

Palubicki et al. [2009] adapt this theory to use perception cones as areas of influence
instead of radii (Figure 2.2b). The points of a point cloud can also be used directly
to guide procedural growth within a growth volume. Guo et al. [2020] use a simple
L-system rule-based procedural model with a space colonization method adapted
from Palubicki et al. [2009]. Instead of randomly generated points, they use point
cloud data as attraction points. To model the fact that plants grow faster when
they are young and slow down as they age, they use a well-known logistic model
to adapt the influence distance at each iteration. They also assign weights to the
points, taking into account their location and local density, in order to assign more
importance to points on branches (as opposed to leaves) and/or in sparser areas.
Lastly, a tropism vector is added into the growth direction formula to simulate the
sagging of branches caused by gravity.

Inverse procedural models While self-organizing models offer intuitive user con-
trol to generate plausible plants, possibly in real-time, it remains difficult to validate
the final shape. Interactions between parameters is another factor that is difficult to
oversee. An alternative method to control the shape of the procedural tree model
is to try to automatically retrieve the parameters by fitting the resulting procedu-
ral model to the input data. Stava et al. [2014] uses Monte Carlo Markov Chain
optimization to fit a botanically informed inverse procedural model to a polygonal
reference model. Their method produces realistic models based approximating the
reference data. However, because the model is stochastic, it will produce different
results each time. It also does not model tree species characteristics explicitly, or
capture the often repetitive nature of tree branches.

8

2.2. Data-driven modelling

Machine learning Machine learning is widely applicable. Recently, methods are
being developed using machine learning to reconstruct trees from input data com-
pletely automatically. As mentioned before, Li et al. [2021] use it for processing
single images into a 3D radial bounding volume representation of a tree. Liu et al.
[2021] use a neural network to generate a polygonal model from point clouds. Their
network first segments the data into branch parts and branching points, after which
a cylindrical representation can be learned on the clusters. Lastly, the representation
is reduced to a set of generalized cylinders. The method works well even for incom-
plete or noisy pint clouds. However, it relies heavily on the availability and quality
of labeled (synthetic) training data. It also cannot be applied to point clouds that are
very large.

2.2 Data-driven modelling

Single image reconstruction Guénard et al. [2013] use only a single image to re-
construct a 3D tree. Supplemented with a-priori tree species knowledge, they use an
analysis-by-synthesis method to generate tree branches based on the foliage struc-
ture. A 3D model is generated by rotating the 2D convex hull around the trunk
axis to get a 3D hull, after which the depth information of the branches is changed.
Branches not touching the convex hull are put either in the front or back of the
model, maximizing the angles between the branches projected onto the ground
plane. A more recent work on single-image reconstruction by Li et al. [2021] uses
neural networks to mask out trees, classify tree species, and construct a custom 3D
representation (the radial bounding volume). Generating a 3D model from a 2D
image is challenging, as the depth information will have to be inferred.

Multiple image reconstruction Reconstruction based on multiple images is more
common. Shlyakhter et al. [2001] use a series of images to construct the visual hull
of a tree. The skeleton of the tree is constructed by approximating the medial axes
of the tree shape. The volume of the visual hull is filled with branches and foliage
by means of a rule-based procedural model. Images can also be used to generate
dense point clouds. Structure from motion (SFM) can be used to generate a set
of matched points, after which patch-based multi-view stereo (PMVS) densifies the
point clouds (Tan et al. [2007]). The drawback of using multiple images is that
it cannot be applied to large datasets, because of the number of images required.
Matching features could also prove difficult because plants are repetitive in nature,
potentially producing many points with similar features. Guo et al. [2020] solve the
second issue by generating depth maps for each view, which are then combined into
a dense point cloud using visibility.

9

2. Background

Point cloud reconstruction Another source of point cloud data is LiDAR scanning.
While terrestrial LiDAR is commonly much denser than aerial LiDAR, it is less openly
available and more costly to obtain for large areas. Hu et al. [2017] use areal LiDAR
scans to reconstruct tree geometry. After segmentation and skeletal graph construc-
tion, they use a directional field and an angle constraint to guide the growth di-
rection of branches. They were able to reconstruct tree models efficiently from the
often incomplete aerial LiDAR data. However, their method does not take tree species
into account and can thus reconstruct plausible models, but not necessarily accurate
ones. The method of Du et al. [2019] is based on aerial LiDAR as well, and encounters
the same issues. Accounting for missing data remains a difficult topic.

2.3 Growth modelling

Virtual models of plant growth are mainly used in two ways: either to gain an un-
derstanding of the biological processes involved, or as a method to model and/or
animate realistic looking trees. Li et al. [2013] model the growth of a single plant
from 4D temporal point cloud data. They use forward-backward analysis to accu-
rately locate topological events such as the generation of new leaves or branches.
They track registered events back in time in order to achieve spatio-temporal event
detection. The model is then used to animate virtual models of the plant.

On a larger scale, growth modelling can be used to gain information about ecosys-
tems. Based on two-date terrestial LiDAR scans, Luoma et al. [2021] monitor the tree
stem form and volume allocation of trees in several forest areas. Makowski et al.
[2019] use a multi-scale representation of plants to model large-scale ecosystems
with realistic individual plants. A set of branch prototypes defines the branches.
Plants are then represented by sets of these branch modules, and ecosystems are
then sets of plants. The geometry of the modules is adapted to environmental ef-
fects such as gravity and competition for light. They successfully model biologically
sound realistic plants on ecosystem scale. Masson et al. [2021] predict the effect of
the environment on single plant growth behaviour, using a neural net to predict
environment parameters based on a botanically sound plant model.

Growth modelling is also used to create dynamic plant models. Beneš et al. [2009]
use both a biologically-informed development model and space colonization to
achieve interactive modelling of plants. Plants generate new buds and branches
within their associated envelope if no collisions with either other buds or the envi-
ronment take place. This is checked by means of bud radii of interest and a voxel
grid respectively. Pirk et al. [2012] use growth modelling to dynamically adapt plants
to their environment as well. By transforming parts of the skeletal structure of the
main branches only when needed, they achieve interactive realistic plant modelling.
Leaves and smaller branches are procedurally generated. However, this method does
not produce any new branches and cannot be used for large scenes. Both methods

10

2.3. Growth modelling

mentioned are aimed at producing realistic trees, not tree reconstruction. This usage
of plant growth modelling has been able to generate dynamic responsive models,
but verification of the final shape remains an open problem.

11

3 Methodology

Figure 3.1 shows the proposed pipeline of the research methodology.

Figure 3.1.: The most important steps in the pipeline of the research methodology. First,
a set of cleaned, segmented point clouds is generated for each tree. A tree skeleton is
generated per timestamp using a DT, MST and simplification method. Another skeletoniza-
tion is performed on merged data of all timestamps, from which a corresponding merged
main skeleton is made (relatively the top and bottom image of this pipeline step). Smaller
branches in the tree crown are generated with a procedural lobe-based region growing
model. Lastly, geometry is generated with cylinder-fitting.

Staring from raw input LiDAR point clouds from three different AHN datasets, each
gathered at a different point in time, a region containing adult trees is first selected
by visual inspection and comparison with Google Maps images. An automatic script
then cleans, segregates and processes the region into point clouds containing only
points of a singular tree. This data from three different timestamps is then used to

13

3. Methodology

obtain three skeletonizations, one for each timestamp. Merging this data, the main
branch segments with correspondence to every timestamp data is then constructed.
This merged main skeleton is then used as a base for the individual timestamp re-
construction. Lobe clusters are attached to the corresponding main skeleton, which
are then procedurally filled with simulated branch growth using a region grow-
ing algorithm. Lobe geometry is made using the convex hull of the original points
within it. Branch geometry is reconstructed using a cylinder fitting algorithm.

3.1 Pre-processing

3.1.1. Raw point cloud cleaning and segmentation

In order to detect changes over time in the tree structure from LiDAR data, a set of
clean point clouds of single trees are needed, one for each time stamp. The trees
ideally stand further apart so that their LiDAR point clouds are more dense and
complete, as well as easier to segment. Some general cleaning can be done prior to
generating point clouds of individual trees. If the point clouds are classified (such is
the case for AHN3 and AHN4), only the "other" class, which contains the tree points,
will be kept. Vegetation points are often characterized by having multiple returns
for the same pulse. This information is used to project the densest, most recent point
cloud (AHN4) onto a grid (5cm x 5cm), keeping only the grid cells containing points
that were the 3rd or higher return. The selected cells are then merged and processed
in such a way that a set of polygons is created which approximates the projection
of the tree crowns in 2D. These polygons are then used to clip the data of all three
timestamps, resulting in 3 corresponding individual point clouds per tree, for all
available timestamps. A drawback of this method is that there may be too many
points selected for the earlier timestamps, as the AHN4 trees are likely to be larger
due to being older. The tree cleaning algorithm as described in the following section
was able to remove most of the noise from the lower region of the trees, where it
would be most problematic.

3.1.2. Point cloud processing of individual tree data

The individual point clouds per tree can be processed further to produce more ac-
curate results. Especially the area around the trunks of the trees requires further
inspection. The points on the tree stem are often relatively very sparse, and the
area often contains noise due to other vegetation being present. To combat this, the
point cloud processing algorithm enforces a trunk boundary in the lower region of
the point cloud of each tree. The lower region is set as a certain height from the
lowest point up, with the height dependent on the average trunk height of the trees
in the current area (around 2 - 4m, determined by visual inspection). Within this
boundary, a 2D clustering is performed using the FME ConvexHull transformer by

14

3.2. Tree structure representation

setting the alpha value to the desired density of the clusters. The convex hull clus-
ters are merged, smoothed, simplified, and assessed on having a realistic area. For
each tree bounding polygon, only one cluster is kept as the most likely tree trunk
center. Drawing a circle around this center with a fairly large radius (0.5m), the
lower region points belonging to the cluster can be extracted. The clusters are then
evaluated on the likelihood of these points belonging to a tree trunk (median height,
height range, number of points). The most likely cluster center is then chosen as the
tree trunk area. If no likely clusters can be found, the barycentric mean of the lower
region is used as cluster center instead. At the cluster center, a tree base point is in-
serted with the height of the original lowest point in the lower region of the tree, to
enforce a likely trunk base point. This point is often missing as the tree trunk base
is occluded or too noisy. The next step of the method will extract a tree skeleton
from the generated point cloud per tree, an accurate base point is therefore highly
desirable to improve the accuracy of this step.

3.1.3. Dataset validation

To see if valid point clouds capturing a single, real-life tree were obtained, all used
point clouds were inspected visually. They were compared with images of the tree
in real life via google maps to validate them. The point clouds were also inspected
more closely and any obvious outliers or noise were handled. In the next step of the
pipeline, distant singular points or small clusters were disallowed. If a tree point
cloud showed large clusters obviously not belonging to the tree but to nearby other
vegetation, this unfortunately had to be cleaned manually. The need for manual
intervention however minimized with this method, and a dataset of point clouds
capturing singular, adult trees over multiple years was created.

3.2 Tree structure representation

After obtaining datasets with cleaned point clouds of individual trees, the trees
should be reconstructed in order to enable further analysis. The trees of all times-
tamps are represented as a skeleton graph for the main structure of trees, and a
so-called "lobes" concept for the many small twigs that populate the branch tips
of the tree crown. Figure 3.2 shows a sketch of the different structural parts of a
tree.

15

3. Methodology

Figure 3.2.: The main parts of the structure of a tree: trunk (purple), main branches (green),
secondary branches (orange), and tree twig/leaf canopy shape (red line yellow fill).

Inspecting the available AHN4 data revealed that all main structural branches can be
detected, with enough point density to gather information about branch diameters
(this is not true for the AHN2 and AHN3 clouds). The assumption was made that
the most important structural branches (green in the image, also counting the stem
(purple)) mostly change in diameter over time, and will retain their overall shape.
A significant increase in length for existing branch segments was also not expected,
due to the assumption that all processed trees would be already adult specimens.
Due to their girth, these main parts are very likely to be described well by the
AHN4 point clouds. For these reasons, it is also likely that relatively many points
belonging to these branches are present in the AHN2 and AHN3 data. It is assumed
that if a LiDAR point is close to these branches, it belongs to the main structure
of the tree and can therefore be used to compute branch correspondences between
timestamps.

Secondary main branches (orange in Figure 3.2) are also likely to be described by
the AHN4 data. However, because these branches are younger, they are more likely
to be detected incompletely, as well as differ significantly between timestamps. It is
especially interesting to reconstruct them well, as they could share more information
about branch shedding during growth.

16

3.2. Tree structure representation

The remaining space in the tree crown is populated by smaller branches, mostly at
branch tips and as smaller lateral branches (yellow with a red outline in Figure 3.2).
As these twigs are thin, they are more difficult to detect with LiDAR scanning. They
will also sway in the wind, break off more easily, and be more often shed due to a
lack of resources. It is therefore less important to detect the exact shape and length
of these elements in order to model tree growth. They are instead modelled as
polygonal volumes ("lobes") belonging to specific main branches, within which the
branching structure can be generated by means of a procedural model. The idea of
using lobes was adapted from Livny et al. [2011], who use it to compactly represent
the complex branching structures of a tree crown. Lobes can be generated from
point cloud and polygonal input data. The tree’s branching structure and foliage
can then be synthesized using the lobe representation. Livny et al. populate the lobe
hulls with sub-branch templates from a pre-generated species library. This results in
visually realistic and species-specific tree models, although a species library would
have to be constructed first. Li et al. [2021] populate a hull with both a procedural
region growing algorithm and a procedural model based on botanical knowledge.
In this work, a region growing algorithm is used to populate the hulls. One of the
biggest advantages of these hull-based representations is that they are both compact
and inherently support Level of Detail (LoD)-dependent rendering. They are thus
very suitable for rendering large areas with may trees. The biggest disadvantage is
that the lobes will not result in a direct reconstruction of the tree’s branches. Inside
the lobes will be a synthesized branching structure that follows the general shape of
the tree crown from the input data. Alternatives for the lobe method commonly are:
incorporating all branches in the skeletonization (e.g. Du et al. [2019]), generating
polygonal models with no branching structure within, or synthesizing the entire
branching structure of the tree with a procedural model (e.g. Stava et al. [2014]).
Fully reconstructed tree models may need to be simplified or adapted to support
LoD-based rendering, and are often problematic when using in large scenes due to
their complexity. Polygonal models are more easily used in LoD-based rendering
and can be far less complex, but generalize a significant part of the tree structure.
Fully procedural models may, depending on the application, better approach the
real tree structure while still being compact, but can require a significant computing
time. For this work, the lobe-based representation was deemed most suitable for
balancing adherence to the input data with compactness and being faithful to the
overall tree shape.

3.2.1. Skeleton representation for tree branches

The skeletonization of the major tree branching structure is mainly based on the
method described by Du et al. [2019]. Additions and alterations were made to refine
the structure and prepare it for establishing correspondence. The AdTree method
automatically models trees from LiDAR point clouds. Part of its method is a complete
skeletonization, which was used for this work. Figure 3.3 gives a schematic overview

17

3. Methodology

of the method. Firstly, for robustness purposes any potential duplicate points are
removed from the imported point clouds. Then, a DT is made between all points.
A MST graph is then constructed from it using Dijkstra’s shortest path algorithm,
weighted by the length of the edges in Euclidean space.

(a) Input LiDAR
point cloud.

(b) DT of all the
points.

(c) Minimum span-
ning tree.

(d) Simplified skele-
ton graph.

Figure 3.3.: Schematic representation of the main steps of the skeletonization method as
proposed by Du et al. [2019].

An initial representation of the tree’s structure has now been constructed. It is based
on the assumptions that points that are close together would belong to the same
branch, and that constructing a minimum-cost path between all points approaches
the intrinsic structure of a tree. This initial representation however contains many
redundant elements. It also displays a "zigzagging" inaccuracy, caused by the fact
that an MST will form a path between the detected points on the exterior surface of
the branches, but the real skeleton structure would lie in the center of these points.
Both these issues can be relieved by simplifying the graph. This is done with the
Douglas-Peucker line simplification algorithm. Starting from the root, the entire
skeleton is traversed until no more simplifications can be made. The method used
in this work differs from the one in AdTree, since the goal here is not to construct
a skeletonization as accurately as possible, but rather one that can be used to detect
and merge corresponding branches in the skeleton of other timestamps. AdTree uses
the summed length of a vertex’ subtree to compute weights, and uses the weight
ratio between a vertex and its parent to remove noisy points. Since the skeletons of
multiple timestamps will be combined and refined into a shared main skeleton, and
vertex weights based on structural importance will be used in this step, the choice
was made not to refine with weights here. Instead noisy points will be handled
when all points from the timestamps are merged into a single main skeleton.

18

3.3. Correspondence between the main structures of multi-temporal data

The way in which points with multiple child edges are handled differs as well.
Where AdTree merges multiple children into one if they are close in Euclidean
space, this work instead splits branches up into subbranches whenever a multi-
child branching point is detected. This way, only straight segments are simplified.
Additionally, very small branch tips are removed with a minimum branch tip length
threshold.

A skeletonization of the entire LiDAR point cloud, including the points that would be
in the lobes, has now been established. With these skeletons, one for each timestamp,
one can now begin seeing how to connect them in time.

3.2.2. Lobe representation for tree crowns

In order to model the groups of smaller branches in the tree crown, a lobe model
is used. Each lobe will attach to the shared main skeleton of the timestamps. The
lobe model consists of a 3D surface mesh continuing from a branch on the main
structure, which describes the general region and the detected points of the smaller
branches within. The point set describing a certain lobe cluster is established using
the correspondence skeletonization of the timestamp, which will be detailed below
(Section 3.3). The method used for constructing a lobe is simply to take the convex
hull of the point set. The growing algorithm used to model the branches within
the lobe is configured in such a way that the hull will not form a hard constraint,
since it is but an estimation of the lobe shape (see Section 3.4). To prevent using
unrealistically small lobes, a minimum number of points is enforced inside a lobe,
as well as a minimum volume. Because the lobe is not a hard constraint, lobes with
enough volume and vertices but with inconvenient shapes (very big/very small
angles, slivers, very thin lobes, etc.) are expected to be handled by the growth
algorithm.

3.3 Correspondence between the main structures of
multi-temporal data

In order to model growth, it is essential to model how measurements of different
timestamps relate to each other. To achieve this, all timestamp data is first merged
into a shared model. The individual timestamp skeletons are then constrained using
the information from this model. Lastly, correspondence is established between the
groups of smaller twigs in the crown of the tree.

19

3. Methodology

3.3.1. The merged main skeleton

In order to merge the main skeleton of all timestamps into one, an additional skele-
tonization is completed. All points from all timestamps are combined into a single
point cloud, which is then skeletonized in the same manner as those of the individ-
ual timestamps. This structure will from here on out be described as the merged
main skeleton. Comparing the timestamps with this merged structure will give in-
formation about how the tree differs, and what elements stay the same, over time.
For each edge of this skeleton, the timestamps are searched for nearby points. If any
points are within a certain threshold of the edge’s endpoints, the edge is set to cor-
respond to this timestamp. If an edge corresponds to all timestamps, meaning in all
timestamps there are points close enough to it, it is accepted as a main merged edge.
The complete set of merged edges detected as main, is then connected to the root.
This means any edges between a main edge and the root previously not flagged as
main are now included into the main corresponding skeleton, creating a continuous
connected sub-tree of edges.

3.3.2. Merged main skeleton refinement

The merged main skeleton can now be refined. Because fewer points on the trunk
can be detected by arial LiDAR scanning, thus far the trunk reconstruction has been
relatively inaccurate. The choice was made to simplify the base of the trunk into a
single line. Since the trunk is the oldest and thickest part of the tree, it is assumed
no significant changes in its geometry occur over time, other than an increase in
girth. Due to the relatively low point density and low expected change over time,
it is advantageous to use the trunk points of all timestamps together to fit the most
accurate line through them. So far, the base of the trunk has been simply set as the
lowest point in the dataset. However, the lowest few points often capture not only
the base of the trunk, but also the terrain/vegetation around it. It was therefore
advantageous to average the X and Y coordinates of the points in the trunk base
region. The Z coordinate was kept the same to prevent shortening the tree trunk.
It was assumed the lowest point measured, even if it were to be a terrain point,
would correspond enough with the actual height of the tree base to keep its height.
The first main bifurcation point is used as the tip of the trunk line. This point is
the first location moving up from the main trunk where the skeleton branches out
into multiple big sub-trees. Starting from the root point, the skeleton is traversed
and each node with multiple children is checked. If two or more children lead to
edges previously flagged as part of the main skeleton, several additional conditions
are checked. The number of steps that can be taken further up the tree should be
higher than a certain threshold, the branching level of all these edges should be low
enough, and lastly all these edges should have been flagged as also part of the main
structure. A maximum height difference threshold with the root point is used to
assign the last bifurcation candidate point if no bifurcation point is found before

20

3.3. Correspondence between the main structures of multi-temporal data

this height is reached. This way, the algorithm will not continue to look for the first
main branching point at an unrealistically high vertical distance from the root point.
A simple line is formed between the found root and main bifurcation point. All
vertices below the height of the bifurcation point are then removed. This potentially
removes some smaller branches that were detected here, but since the trunk area has
a tendency to be noisy, it was preferred to simplify the entire area into a single trunk
line.

After simplifying the trunk, the main skeleton as a whole can be refined. Firstly,
all non-main edges are removed. The remaining structure is then simplified using
Douglas-Peucker line simplification, with the same method that was used to simplify
the MST structure during skeletonization. The result is a sub-skeleton describing the
generalized shape of the large branches that could be detected in all individual
timestamp data.

3.3.3. Individual timestamp correspondence

Next, each of the individual timestamp skeletons are processed. The goal is to
constrain their skeletonizations with the main merged correspondence structure, so
all timestamps share the same base skeleton for their trunks and main branches.
To achieve this, an altered version of the skeletonization process is run. Firstly,
all edges (and vertices) from the main merged skeleton are added to the point set
that is to be triangulated. Next, all vertices suspected to correspond to one of the
merged main edges need to be excluded, so that no (parts of) the merged main
branches are included twice. To decide if a vertex from the timestamp skeleton
corresponds to a main edge of the merged main skeleton, it is first checked to be
within a maximum distance tolerance (δupper). If the vertex is deemed relatively very
close to the edge using another, smaller distance tolerance (δlower), it is immediately
determined to correspond. If it is further away than δlower bit still within δupper,
the point normal of the vertex is checked as well. Guo et al. [2020] use Principal
Component Analysis (PCA) to find the eigenvector of points. In their case, they use
this information to assign an importance weight to point cloud vertices based on the
amount of close neighbours with similar principal directions. In this work, the PCA
method is used to compute a normal for each graph vertex. A PCA is made for the
neighbouring points within a certain search radius of a point, which is then stored
as the point’s normal. In summary, the ordered cirterai used are:

1. d <= δlower
2. d <= δlower AND θ <= α

Where d is the distance between the main merged edge and the point in the timestamp-
specific skeleton, θ is the angle between the edge and the point normal, and α is the
maximum angle difference allowed.

21

3. Methodology

All timestamp points that are suspected to belong to a main branch are thus replaced
by the edges of the main merged skeleton. A DT constrained with the main edges
is applied to the remaining points. An MST is made out of the triangulation, which
is then simplified according to the previously discussed methods. An additional
constraint is added to ensure no main edges are deleted or omitted during this
process. The result is a new skeletonization for each timestamp, with a complete
shared structure for all main branches and a unique subset of non-main branches
attached to it.

To establish a similar correspondence in the lobes, the vertices used as connector
points of the nodes are detected solely on the main skeleton. Any vertex of the main
skeleton can thus be a connector node for any of the timestamps. The way these
connectors are assigned is by simply selecting any main skeleton vertex that has
enough non-main branches attached to it in the timestamp specific corresponding
skeleton. By using the node indices from the main skeleton for each timestamp,
correspondence can be established between lobe connector points of all timestamp
skeletonizations.

3.4 Regional growth modelling

The regional growth algorithm makes use of a simple rule-based L-system encoding
to model the most important botanical factors in (oak) tree growth. The system
grows in iterations, until either no more active buds exist or the maximum number
of iterations is reached. The following summarizes the used L-system rules:

A = N internode T OR D
T = M internode A OR D
N = 2 * [internode A] OR [D]
M = 2 * [internode T] OR [D]

The term internode here encodes the L-system string description of the relative move-
ment from one branch node to the next, effectively describing the direction and
length of the following internode. This can be done by rotating (around the Y-axis)
with "+" or "-" (positive or negative angle respectively), rolling (around the Z-axis)
with ">" or "<", and/or moving forward with "F". After any of these movement
characters the value with which to move (angle or distance) is passed by enclosing
it in "()". The letters AT and MN represent apical and lateral buds respectively. The
A and T, and M and N, encode almost the same concept, the only difference being
they enforce alternation between M and N. This encoding is used to alternate the
starting angles of the lateral nodes, thus achieving the phyllotaxy arrangement ob-
served in most trees. An apical or lateral bud will each iteration grow into either a
new internode with a new apical bud at its tip and a marker for creating two new
lateral buds at its base, or will not grow and become dormant instead (D).

22

3.4. Regional growth modelling

In order to model the smaller branches around the branch tips of the tree, a space
colonization method was developed to fill the regions inside the tree lobes. Space
colonization can simulate space competition between growing branches. Distribut-
ing attraction points within the region where growth should take place, the algo-
rithm iteratively searches for the optimal growth direction and eliminates attraction
points too close to already grown branches Palubicki et al. [2009]. A grown branch
node is modeled with a kill distance around it, within which attraction points are re-
moved so that no other buds will be attracted to the same area. A new bud’s growth
direction is computed with a perception cone. The optimal growth direction is the
average of the normalized vectors to all the attraction points within the perception
cone , and the distance is the distance to their centroid (Figure 3.4).

Figure 3.4.: The perception cone with perception distance di, kill distance dk, and optimal
growth vector V⃗opt as used in space colonization (Guo et al. [2020]).

Because the points measured on branch tips are more inaccurate and are more sub-
ject to change, it was decided that the growth model near the branch endings of the
tree should not follow the input points exactly, but should still be guided by them.
Region growing can facilitate this if instead of randomized points, the original LiDAR
points inside the lobes are used as attraction points Guo et al. [2020]. The algorithm
will favour growing close to originally detected points, but can be made to not fol-
low them exactly. Inherently, this already happens when multiple attraction points
are found within a perception cone and the growth direction is averaged.

Additionally, alterations were made to take into account growth behaviour when
only a single or no attraction points could be found, as the tree point clouds inside
the lobes often had a density so low that little or no points cloud be found within
realistic search distances. When a potential bud is found during growth, its optimal

23

3. Methodology

growth direction is calculated by first trying to detect attraction points within the
perception cone. If any points are found, the optimal growth direction is computed
with the averaging method as described above. However if no points are found,
the direction and length of the previous internode are used to calculate a potential
point if the branch were to simply continue straight forward. The length of the new
branch is set as the length of the previous one reduced by a certain factor (the op-
timal value was empirically set to 0.95) This potential straight point is treated as an
attraction point. Further attraction points are then detected within a search radius
(a perception "orb" instead of a cone), with a radius of half the length of the original
perception cone.

The result of this is that if attraction points exist in line with the direction of the
previous branch, they are used to compute the growth direction and branch length
of the next bud. If there are no attraction points, the previous branch direction and
length is taken into account, as well as any points that are close but not in line,
to compute a new direction. If no attraction points are found at all, the branch is
simply continued straight onwards.

Another alteration to the region growing algorithm was the way in which the convex
hull mesh is used to constrain the growth region. Because the algorithm was set to
continue growing even if no attraction points could be found, the growth region
needed to be constrained manually to ensure growth would not continue outside
the lobe’s convex hull. Just like with the branches themselves, the hull should not
be a hard constraint due to the inaccuracies and uncertainties of the detected points.
Additionally, the hull and lobe cluster algorithms introduce additional inaccuracies.
The lobe hulls should therefore be treated as guides, instead of hard constraints.

This was done by using them as inverse attraction objects. During optimal growth
direction computation, the closest point (ph) on the convex hull to the current branch
tip point (pb) is found. If the distance to this point is smaller than the length of the
perception cone, the hull is considered to be within influencing range. The influence
of the hull inverse attraction point increases the closer the branch tip is to it. The
weight of the hull wh is calculated as follows:

wh = 1 − (dh/di) (3.1)

Where dh is the distance of the current branch tip to the hull, and di the depth of the
perception cone. The hull attraction point pha is then calculated as:

v⃗ha =
p⃗b − p⃗h

|| p⃗b − p⃗h||
(3.2)

pha = ph − (⃗vha ∗ wh)

24

3.5. Growth between timestamps

The direction from the bud to the closest point point is inverted, weighted with wh
and added to the average direction, and pha is added to the centroid. This effectively
adds an attraction point pushing the growth direction away from the convex hull,
the force of which gets stronger as the current branch tip gets closer to the hull
mesh.

Lastly, a maximum and minimum internode length is enforced to constrain new
branches within realistic bounds. Algorithm B.1 in Appendix B shows the pseu-
docode for the entire growth direction computation algorithm.

3.5 Growth between timestamps

A shared, corresponding main structure and a growth model for the tree crown
lobes have now been established for the multi-temporal data. However, it is also
interesting to see how the original timestamp-specific reconstructions relate to each
other over time. To attempt to visualise what happens in between known data, a
smooth interpolation between the original timestamp skeletons was made. For this
to be possible, a complete and consistent correspondence needed to be established
between all timestamp skeletons and that of the next known data point. The follow-
ing section will discuss how this was accomplished.

3.5.1. Correspondence between timestamp-specific skeletons

In order to be able to interpolate between timestamps, correspondence needs to
be established between the nodes and edges of each consecutive pair of timestamp
data. Starting from the latest timestamp, correspondence is established between the
current timestamp (called target) and the previous step (the base). Since the latest
timestamp is the densest and oldest one, it was assumed that it would provide the
most accurate description of the tree’s main structure. As a result, any deviations in
branching structure in the base timestamp will be assumed as incorrect in relation
to the target data. In this section the target graph is noted as T = {ti=0, ..., ti=n}
with n = the number of target nodes −1, and the base graph as B = {bj=0, ..., bj=m}.
The parent of a node ti will be written as ti−1, although it should be noted that the
exact index of the parent in practice depends on the node insertion order during
graph construction. The corresponding base node of target node ti will be written
as bi′ .

25

3. Methodology

The first step in establishing correspondence between the base and target graphs is to
enforce correspondence between the two roots. Assuming these two vertices always
correspond provides a starting point from which the rest of the tree structures can
be searched. Initially, the base skeleton is traversed depth-first. For each base node
bj, the k nearest neighbours in the target graph are found using a k-d tree index. For
each nearest neighbour, several checks are made to see if it corresponds to the base
node. The following ordered criteria are used:

1. distance (bj, tk) <= δlower
2. distance (bj, pk) <= δupper AND angle (bj, tk) <= α

With δlower the maximum distance at which the two nodes are immediately assumed
to correspond, δupper the maximum distance at which correspondence can still occur,
and α the maximum angle between the parent edge to bj (edge ebj−1,j) and the parent
edge to tk (etk−1,k) for the nodes to be considered corresponding. This means that if
the nodes are very close to each other, they are immediately assumed to correspond.
If they are further apart than δlower but still closer than the upper tolerance, a sec-
ondary check is made to ensure the angle between ebj−1,j and etk−1,k is not too large.
If another nearest neighbour is found to correspond after one was already found, it
is chosen over the first only if both the distance and angle are smaller. Figure 3.5
shows a schematic representation of the process.

Figure 3.5.: Schematic representation of the criteria determining initial correspondences be-
tween a base and target timestamp skeleton graph.

26

3.5. Growth between timestamps

After establishing initial correspondences between the base and target node, the
correspondence is improved by processing each corresponding base node’s children.
For each base node that was found to correspond, its leaf node children are verified
as well. If the child already corresponds, the correspondence is checked to be correct
and removed if not. Established correspondence is assumed faulty if the parent of
the target child is not the same as the target node the base parent corresponded to.
If a child does not correspond yet, a suitable partner is attempted to be found from
the children of the target node the parent base node corresponded to. If a leaf node
is found, it is assigned to the base leaf child, even if it already had a correspondence
to another base node. If the target child is not a leaf, correspondence is established if
the node does not correspond yet and the angle between the respective parent edges
is below α.

3.5.2. Correspondence consistency

With initial correspondences established, it is possible to establish a consistent path
of corresponding nodes back to the root node. This is necessary for each corre-
sponding target node, because the smooth interpolation will fail otherwise. For each
corresponding target sub-branch, a sub-branch of base has to be assigned, which in
turn has to be attached to a parent branch that corresponds to the parent branch of
the target tree. This way, no branches are connected to the wrong part of the main
stem, have their vertices corresponding in the wrong order, or correspond to mul-
tiple base branches. Additionally, a corresponding base vertex is needed between
each corresponding target vertex and the root. This way, no gaps in the base struc-
ture will arise during the interpolation. Figure 3.6 shows an example of such a gap.
In this case, one of the vertices in the target graph was not assigned a counterpart
in the base graph. This lead to the deletion/shrinking of the one edge between the
unassigned vertex’ parent and child corresponding base vertices, and the simultane-
ous growth of the two target edges surrounding it. This issue is fixed by adding and
removing base vertices where necessary. It is important to note that the target graph
is not altered at any point in the current iteration. This would cause the algorithm
to fail since in the next iteration, the base graph will be seen as the target graph and
could therefore be altered later in that case.

27

3. Methodology

(a) Timestamp 0 (b) Intermediate time (c) Timestamp 1

Figure 3.6.: Reconstructions of timestamp 0 and 1 for tree E, with an intermediate interpo-
lation in between. When not all vertices in the target graph correspond coherently, gaps
in the growing structure can occur. Corresponding branch segments are shrunk and then
regrown if the number of vertices in the base and target graph is not equal.

To ensure all established correspondences are coherent, the target tree’s nodes are
traversed in a depth-first manner. The current node ti is evaluated to detected
whether or not it is a correspondence tip, meaning it is the last node on a sub-branch
that corresponds. This is done by first checking if the target node as a correspon-
dence to a base node assigned. If it does and it is also a leaf node, ti is detected as
a tip: since it has no more children, none of them can have any further correspon-
dences. If the node corresponds and does have further children, another depth-first
search is performed of each of the children. All subsequent steps originating from
each child are checked for correspondence. If no correspondence is detected in any
of the steps, ti is detected as being a tip. If there is a correspondence detected, the
search of the children is stopped and ti is not assigned as being a tip. The algorithm
will continue its depth-first search and find the child with correspondence later, at
which point the child will be assessed as well to see if it is a tip or not.

If a node is detected as being a tip, it is flagged as such in the node’s properties, after
which the base node it corresponds to is made coherent. The algorithm walks back
using the nodes’ parents all the way to either the root node or the first node that
was flagged as having being made coherent. For each step back, correspondence
coherence is checked and corrected. This is done by taking steps back towards the
root of the trees and finding the first previous correspondence for both the target
node (tc) and the base node it corresponds to. If these two previous correspondences
do not refer to each other, the correspondence is assumed as faulty. This is fixed by
altering the base edge between the corresponding base node of bi′ and its parent
bi′−1. Edge ebi′,i′−1 is removed, and a new edge ebc′,i′ is created to connect bi′ to the

28

3.5. Growth between timestamps

corresponding base node of the previous target correspondence tc. After a step back
is taken, the target parent node is flagged as coherent, and its parent is traversed
next.

The last step in making each correspondence so far coherent is to make sure that any
bifurcation point in the target graph leading off into multiple different sub-branches
with correspondence is coherent as well. Figure 3.7 gives an overview of the process.
All bifurcation points with correspondence already assigned have been made coher-
ent in the previous step, but any bifurcation points without correspondence may be
assigned faulty correspondences. The marking of bifurcation points was done dur-
ing the previous coherence checking algorithm. While traversing back from a tip to
the first coherent vertex, all vertices with a degree of more than two had the index
of the tip vertex stored as a property. If a previous tip index was already stored,
it was additionally flagged as a bifurcation point leading to multiple corresponding
sub-branches. Using yet another depth-first traversal of the target graph, any empty
bifurcation points are assigned a coherent correspondence in the base graph. The
path from each tip back to the bifurcation point is corrected as well. For each sub-
branch tip, the first corresponding vertex tc that can be reached from the bifurcation
point is found. For the first sub-branch, a bifurcation point is assigned in base. If
bc′−1 has no correspondence, it is chosen as bi′ (the base vertex corresponding to the
current bifurcation point). A vertex between bc′−1 and bc′ is inserted otherwise. For
the rest of the sub-branch tips, their first corresponding vertices are connected to
the found bi. This is done by simply removing the edge between bc′ and bc′−1, and
adding ebi′,c′ . Because the traversal is depth-first, any consecutive unassigned bifur-
cation points will be updated coherently as well. At any point it can be assumed that
the route back to the root from any corresponding parent vertex is coherent.

29

3. Methodology

Figure 3.7.: Schematic representation of how the bifurcation points of the base and target
graph are made to correspond coherently.

Now that all initial correspondences are coherent and all target tip nodes have been
detected, the intermediary steps between the target’s corresponding nodes can be
assigned a correspondence as well. This is done by both adding to and removing
vertices from the base graph until a fully coherent correspondence network from the
root to every tip node is created. Using two more depth-first traversals of the target
graph, all intermediary unassigned target nodes are assigned a correspondence. For
each corresponding target node, the path back to the first corresponding parent tc is
detected. The same is done for the path between bi′ and bc′ . At this point it can be
assumed that a coherent path exists between these nodes in both target and base. If
any unassigned nodes are found in the target path, any unassigned base points are
first assigned to the closest nodes in the target path. If more unassigned target nodes
exist after that, new nodes are inserted into the base graph until the same number
of nodes exist in both the base and target paths (Figure 3.8a). The location of the
new node is the closest point to the target intermediary on the line between the next
corresponding node and its parent. If there are more base nodes than target nodes
instead, base nodes are deleted until the path lengths are the same. If there are no
intermediary target nodes while there are nodes in the base path, the redundant
nodes in the base graph are deleted as well (Figure 3.8b).

30

3.5. Growth between timestamps

(a) If there is more vertices in target: add vertices
in base.

(b) If there is more vertices in base: remove base
vertices.

Figure 3.8.: Schematic representation of how the number of vertices between known corre-
spondences in the target graph (ti and tc) are made equal to the number of vertices in the
base graph for the same segment (bi′ and bc′).

3.5.3. Smooth interpolation and animation

In order to interpolate between timestamps, the previously established correspon-
dence is stored in files, processed, and rendered. Per set of base and target graphs,
two files noting how each node corresponds and how each edge corresponds are
written. For each timestamp, a .ply file describing the original graph is stored as
well. Using these files, an intermediary correspondence graph (noted as I) can be
made, which in turn can be animated by interpolating between base and target
node positions. The intermediary graph can resemble both a base and target graph
depending on the coordinates of its nodes, both sets of which are stored as node
properties. Interpolation between the base and target node positions is achieved
using a cubic spline curve interpolation algorithm supplied by Easy3D.

Each line in the node correspondence file notes either how a base node is deleted,
how a base node is transformed into a target node, or how a target node is added.
The same pattern of insertion, transformation and deletion steps is followed for the
edge correspondences. The writing order in the files matters and was written in
such a way that base nodes (or edges) are always deleted or transformed before
target nodes are added or transformed to. Since the base and target graphs use
a different index, this makes sure no nodes sharing the same index by chance are
faultily assigned to correspond. To construct the intermediary graph, the node cor-
respondences are processed first. Placeholder nodes are inserted into the base graph

31

3. Methodology

to prevent indexing issues. The intermediary graph is initiated as a copy of the base
graph to start with. Since the target graph usually has more vertices, the target index
will be used for the intermediary graph. The mapping between the base and target
index is stored for later use when processing the vertex correspondences. The base
and target indices, as well as their respective coordinates, are stored as properties of
each node in the target, base and intermediary graphs as well. Processing the node
correspondences, if a target node is to be added a new node is inserted into the base
graph. The respective indices and coordinate properties are assigned in the base and
intermediary graph as well. If a base node is to be deleted, a placeholder vertex is
inserted into both the intermediary and the target graph. These nodes will be used
to animate the deletion of the vertex. If a base node corresponds directly to a target
node, no vertex insertions are necessary. Only the respective node properties are
updated.

After the node correspondences have been processed, the edges are processed as
well. This step is more involved than the node correspondences, since any edge
deletion or addition needs to be animated as well. This means placeholder vertices
need to be inserted at either the starting position in the base graph or end position
in the target graph respectively. The new vertices then need to be connected to the
graph by means of new edges, that will be used for showing the smooth disappear-
ance or appearance of edges. For this step, two additional graph structures are used
in addition to the intermediary graph. One structure will resemble the base rendi-
tion of I (IB), the other the target version (IT). Firstly, the vertex indices of IB are
updated to their corresponding target indices using the previously established index
mapping. Deleted and inserted vertices have been assigned to placeholder vertices,
the index of which is also mapped. The original base edges are then redrawn using
the new indices. The result of this is that graph TB now uses the same index as
IT and IB, but looks exactly the same as the original base graph B. Next, all edge
correspondence steps are applied to the target intermediary graph IT, which at this
point is still a copy of B (after its vertex correspondences were stored as node at-
tributes). Applying the edge correspondence will transform all edges from the base
to the target index, as well as now resemble target graph T. Any edges in B that
are not in T will be removed, any edges in T that do not exist yet in B are added,
and base edges that have an exact target counterpart will be moved to their target
indices.

For the placeholder vertices in I, not all correct node positions may be known yet.
For the placeholders used for insertion, any inserted vertex with a parent that will
be kept in the target timestamp has both its target and base coordinates known.
However, this is not the case for consecutive insertions (meaning a connected set
of nodes that will all grow during the interpolation). Each consecutively inserted
node should start at the first parent node that will also exist in the target graph,
so that the interpolation will not start with the placeholder nodes already floating
at their new positions because no valid base coordinate is known. This is done by

32

3.6. Geometry reconstruction

checking all children of any insertion placeholder node and setting all their base
coordinates to the parent of the already connected node. Consecutive deletions
(meaning a connected set of nodes that will all "shrink" to disappear during the
interpolation) are handled in a similar manner, the only difference being that the
base coordinates in this case are known, and the target coordinates they should
collapse to are found.

At this point, there are two variants of the intermediary graph I, one resembling the
tree at the base timestamp, and one resembling the same tree at the next consecu-
tive timestamp. Additionally, every node in I has both its correct base and target
coordinates stored. The last step is now to ensure I can be transformed into both
variants simply by setting all node positions to either their coordinates in the base
or target variant. This means that it should contain all edges, both the ones for the
base and the target timestamp (all in the target index). This is where the constructed
IB and IT come into play. All previous edges are removed from I, after which the
edges of IB and IT can simply all be added (using placeholder vertices for inserted
and deleted edges).

After all correspondences have been processed, all node positions are set to the base
coordinates. The intermediary steps until the target coordinates are reached are
animated using the easy3D viewer with OpenGL.

3.6 Geometry reconstruction

In order to realistically display the reconstructed structures visually, geometry needs
to be added to the models. Each timestamp reconstruction will be represented by
a set of lobe meshes and the branch geometry. The lobe rendering method is quite
simple. The convex hull constructed in the region growing process is taken as a
surface mesh using CGAL (The CGAL Project [2022]). This mesh is then imported
into a custom viewer based on the work of Easy3D (Nan [2021] and AdTree.

Visualising the tree branches is more complicated, as currently only the tree skele-
tons have been reconstructed. Nothing is yet known about branch geometry, al-
though an estimation can be made using inherent tree information (tree height,
crown width, etc.). A commonly used tactic for extracting geometry from a tree
skeleton is cylinder fitting. The method as defined by AdTree was adapted for this
visualisation. Based on several formulae using inherent tree statistics, as well as the
original point cloud points at the tree base, an estimation can be made about the
girth of the tree trunk. The radius of the branches further up the tree can then be
derived with a formula, decreasing their width as they branch further away from
the tree trunk by a certain factor. Geometry can then be constructed by smoothing
the tree skeleton and fitting cylinders based on the tree girth estimation and an al-
lometric rule. For the exact method used the reader is best referred to the work of

33

3. Methodology

AdTree (Du et al. [2019]), since only minor alterations were made for this work. The
main change that was made was to more strictly bind the radius of the tree trunk.
Since the trunk of the main merged skeleton was approximated by a single line, and
the area around the tree trunk base is likely very noisy, the cylinder fitting of AdTree
originally often lead to unrealistic tree widths and trunk angles. To improve upon
this, several more allometric rules based on the tree height and width were adapted
and tightened to fit the growing tree data better.

3.7 Implementation details

3.7.1. Test datasets

The proposed method was tested with LiDAR point cloud datasets containing trees
from urban regions in the Dutch city of Almere. The three most recent dates from
the AHN dataset (Stuurgroep AHN [2021]) were used as input (AHN2, AHN3, and
AHN4 respectively). Only areas for which AHN data is available were considered,
as this dataset is yet to be completed for the entire county. At the time of writing,
such data was only found for the Dutch urban areas of Spijkenisse and Almere.
Additionally, it is assumed that the three available AHN time stamps capture the
natural aging of the same tree consecutively. It is thus assumed each tree is captured
for all three time stamps, no trees were removed and then replanted, and no human
intervention influenced the growth process. For the most recent (ie. densest) time
stamp, it is assumed that although occlusion and missing data cannot be prevented,
the biggest branches as well as the main trunk have been captured. If a main branch
was detected in an earlier time stamp, but is not present in the latest, it will be
assumed as shed. For all time stamps the year of capture is known. Because all
scans were done in winter and of a deciduous species, the data is presumed to not
contain any points belonging to leaves.

3.7.2. Tools and software

The programming language used in this work is mainly C++. Python was used for a
part of the validation method, namely the computation of the Graph Edit distances
and the visualisation of the topological structure of the reconstructed graphs. In
addition, several main C++ libraries were used for the proposed method:

• Boost Graphic Library: all graph structures used were constructed using the
boost adjacency list. Custom properties for nodes and edges were added to
the base structure.

• CGAL: the Computational Geometry Algorithms Library for efficient geomet-
ric algorithms, mainly used in this work for convex hull computation and
mesh-based geometric computations.

34

3.7. Implementation details

• OpenGL: for GPU-based rendering, used in the rendering pipeline of this
work.

• NetworkX: complex network processor, used for visualising and analyzing the
topological structure of the reconstructed skeletons.

• Easy3D: for 3D processing, geometry modelling, and rendering. It was used
as the main rendering base for visualising the point clouds, skeleton graphs,
and geometric meshes.

• AdTree: the skeletonization and branch geometry generation methods of this
library were adapted and used in this method.

The point cloud cleaning and segmentation was done with FME. For visualisation
purposes, the point cloud processing tool CloudCompare was used to inspect in-
termediate results. The reconstructed geometries were inspected with the mesh
processing tool MeshLab.

35

4 Results and discussion

4.1 Visual results

Due to the difficulty comparing complex branching structures, the results of this
work are validated both visually and quantitatively. Multiple measures are needed
to assess the validity of the reconstructions, as the trees should both be a visually
plausible representation of reality and have an accurate branching structure.

4.1.1. Merged main branches and lobes reconstruction

Figure 4.1 shows the reconstructed growing tree for 4 of the tested trees. Both branch
and lobe geometry have been reconstructed. From these figures, it can be seen that
the timestamp reconstructions are visually plausible. The tree starts from a simple
stem structure and branches out into more detailed secondary main branches. The
set of lobes form a realistic looking tree crown shape, which also corresponds to
the general shape to be expected from the original point clouds. Besides being
visually plausible reconstructions by themselves, the consecutive timestamps also
show a growth which seems visually correct. The tree stem diameter increases at a
plausible rate, as do the number and sizes of the lobes describing the tree crown.
The main skeleton of the trees does not significantly change, instead it grows bigger
in diameter to support the increasing size of the tree crown.

One limitation that can be seen from Figure 4.1, is the small number of lobes in the
first timestamp reconstruction. Assuming the trees were healthy, they should have
a set of lobes spanning the entire crown of the tree. One possible explanation is
that the LiDAR data was captured when the tree had lost (most of) its leaves. After
constructing a main skeleton that corresponds with the other timestamps, and thus
is big enough to support the older trees, it could be that there were simply not
enough points left in the tree crown to detect lobes confidently. Tree C displays a
more plausible number and distribution of lobes than the other trees. This could be
because this data contained more points than the other tested trees, either because
the tree was older and thus larger than the others, or because it was captured better
by the LiDAR scanner.

37

4. Results and discussion

(a) Timestamp 0 (AHN2). (b) Timestamp 1 (AHN3). (c) Timestamp 2 (AHN4).

Figure 4.1.: Visualisation of the reconstructed timestamp models with branch and lobe geom-
etry, for Tree A, B C and D respectively.

38

4.1. Visual results

4.1.2. Timestamp specific reconstruction

It is worth noting that the main skeleton used for this reconstruction is the shared
merged main skeleton, thus the unchangeability of the main structure is in fact
enforced by the reconstruction itself. To validate whether or not the enforced as-
sumption of no significant change occurring in the main structure is correct, the
original main branching structure of the individual timestamps was also detected
and reconstructed. Section 4.2 contains quantitative analyses of the difference be-
tween reconstructed main branching structures. Visually, all timestamp specific re-
constructions resemble the merged main skeleton quite well. As can be seen in
Figures 4.2 to 4.5, most branches seen in the timestamp unique data can also be
recognised in the merged reconstruction. Most differences stem from the fact that
the shortest path between points may differ slightly depending on the distribution
of the other points on that timestamp. Some main branches may take a slight detour
in one timestamp (see for example the center part of the tree stem in timestamp 2
of Figure 4.5), and some smaller parts may or may not be reconstructed at all. The
main branches however, are reconstructed in roughly the same location for all times-
tamps. No major bending or other deformations can be seen. It seems that indeed
no significant changes in the main skeleton of an adult tree occur during its aging
process. Of course, some major changes can still be expected. Even large branches
may be shed when the environment of the tree or the tree itself changes in such a
way that they are no longer viable for the tree. Additionally, since the sample trees
all exist in a monitored urban environment, humans may change the structure of the
main skeleton with artificial interventions.

39

4. Results and discussion

(a) Timestamp 0: time specific. (b) Timestamp 1: time specific. (c) Timestamp 2: time specific.

(d) Timestamp 0: correspond-
ing.

(e) Timestamp 1: correspond-
ing.

(f) Timestamp 2: correspond-
ing.

Figure 4.2.: Visualisation of the reconstructed branch geometry of all timestamps of Tree A.
Both the corresponding (bottom) as the timestamp-specific main skeleton reconstruction
(top) are displayed. The corresponding reconstruction contains a shared main structure
over all timestamps, with differing grown structures in the lobes. The timestamp-specific
reconstruction does not have any branches reconstructed in the lobes, and its main struc-
ture differs between timestamps.

40

4.1. Visual results

(a) Ts 0: time specific. (b) Ts 1: time specific. (c) Ts 2: time specific.

(d) Ts 0: corresponding. (e) Ts 1: corresponding. (f) Ts 2: corresponding.

Figure 4.3.: Visualisation of the reconstructed branch geometry of all timestamps of Tree B,
with both the corresponding (bottom) as the timestamp-specific main skeleton (top).

(a) Ts 0: time specific. (b) Ts 1: time specific. (c) Ts2: time specific.

(d) Ts 0: corresponding. (e) Ts1: corresponding. (f) Ts 2: corresponding.

Figure 4.4.: Visualisation of the reconstructed branch geometry of all timestamps of Tree C,
with both the corresponding (bottom) as the timestamp-specific main skeleton (top).

41

4. Results and discussion

(a) Timestamp 0: time specific. (b) Timestamp 1: time specific. (c) Timestamp 2: time specific.

(d) Timestamp 0: correspond-
ing.

(e) Timestamp 1: correspond-
ing.

(f) Timestamp 2: correspond-
ing.

Figure 4.5.: Visualisation of the reconstructed branch geometry of all timestamps of Tree D,
with both the corresponding (bottom) as the timestamp-specific main skeleton (top).

The other three trees shown do not correspond as well between their unique times-
tamp reconstructions as Tree D. Tree B for example forks its main structure at a
different height in timestamp 1 as timestamp 0 and 2. The same phenomenon can
be seen in the other tested trees, where branches split at different places or branch
tips can be connected to different parts of the main skeleton in different timestamps.
These inconsistencies are to be expected, especially when comparing the relatively
sparse timestamp 0 data with the much more dense timestamp 2, and expecting
the same accuracy. Tree B and C seem to be "floating" as well. The root position
of the trunk has not been detected correctly for timestamp 1 of these trees. Upon
inspection of the particular input data for these timestamps, it seems that no point
cloud vertices were present in this region at all for either tree. Despite attempting
to correct such tree trunk inconsistencies at various steps in the proposed method,
it seems that if there is no input data available at all, parts of the trunk will still be
missing from the reconstruction. This issue could perhaps be resolved by applying
an in-depth tree trunk estimation algorithm, which would artificially fill in gaps in
the tree trunk data when it is largely inconsistent with the other data available of the
tree. These type of inconsistencies are in fact exactly the reason why the choice was
made to use information from all timestamps to construct a shared main structure.
The root position of the merged main skeleton seems to correspond much more
reliably to the real position of the tree.

42

4.1. Visual results

In all figures, the latest timestamp shows relatively much similarity with the shared
main structure, while the other timestamps, especially 0, tend to deviate much more.
This is again likely caused by the relatively high density of this data, as well as the
fact that the tree here has aged the most, and thus has thicker and larger branches
that are easier to detect. Comparing with the original point cloud as well (Figure
4.6), it seems timestamp 2 captures the branching structure of the tree the best. The
merged main skeleton captures most structures even in timestamp 0, confirming
the assumption that an established shared main branching structure will not change
much in location between timestamps.

(a) Timestamp 0 (b) Timestamp 1.

(c) Timestamp 2. (d) Merged main.

Figure 4.6.: The reconstructed merged main skeleton compared to the original point cloud
data of all timestamps as well as the merged main skeleton, Tree D.

43

4. Results and discussion

Further inaccuracies can certainly be seen in the timestamp specific reconstruction.
The branch thickness estimation is much more inaccurate. It varies unrealistically
between timestamps, where timestamp 1 for example can be much thicker than both
0 and 2. The thickness of all branches is derived from a trunk diameter estimation
and a decreasing factor down the skeleton into the tree tips. If the trunk diameter es-
timation fails, it directly leads to an inaccurate estimation of the rest of the branches
as well. The trunk diameter estimation is based on the points found at the base of
the tree reconstruction. This explains the much higher inaccuracy compared to the
merged model. Where the trunk of the merged model is approximated by a single
line up until the first main branching point, the timestamp specific reconstruction
is made by using the original point cloud points in that region. The merged main
trunk’s thickness is still based upon points within the lower region of the tree, but
since these are only used for thickness estimation, not the trunk location directly,
the trunk reconstruction seems to be much more accurate. Although the timestamp
specific skeleton is simplified and only the main structure is kept, using the point
cloud points directly still leads to inaccuracies as the region around the trunk base
is often especially noisy. This can be seen in an unrealistically thick trunk, a crooked
trunk, a trunk that splits into multiple stems right at the trunk base that do not lead
to further branches of the tree, and in the case of Tree C the first part of the trunk is
even missing altogether.

4.1.3. Topological visualisation

With the help of NetworkX (Hagberg et al. [2008]), the topological structures of the
main tree skeletons can also be visualized. Figure 4.7 shows this visualisation for
Tree D, where the main skeleton of all timestamps are compared to each other and
to the merged main skeleton (other trees can be fond in Appendix D). A layout
based on the Kamada-Kawaii cost-length function was used to schematically show
the topological layout of the trees. The location of the nodes in Figure 4.7 thus do not
respond to their actual Cartesian coordinates, but instead to their relative position
in the graph’s paths from the root to the tree tips (in 2D).

44

4.1. Visual results

(a) Timestamp 0 and merged main. (b) Timestamp 1 and merged main.

(c) Timestamp 2 and merged main. (d) All timestamps together

Figure 4.7.: Visualisation of the topological differences between the skeleton structure of the
different timestamps and their merged main skeleton of Tree D. Node positions do not
correspond to the actual 2D positions of the point, but rather to the Kamada-Kawai force-
directed layout of NetworkX.

As can be seen from the figure, the merged main skeleton contains significantly more
nodes and edges than the timestamp graphs. The further in time, the more simi-
lar the branching structure between the timestamp and the main merged skeleton.
Timestamp 0 shows only the main branching structures, where the other timestamps
gain more detail over time but seem to still adhere to the same base structure. The
paths of timestamp 0 and the merged main are notably similar. This supports the
notion that as the tree grows, more detail is added, but the main structural branches
stay the same. Comparing the three timestamps together, the same phenomenon
can be seen where timestamp 0 (light blue) captures the main branching structures
of timestamp 1 and 2.

45

4. Results and discussion

4.1.4. Growth inside the lobes

In order to approximate the branching structure in the lobes, a regional growth
model was used. Figure and 4.9 shows some of the branching structures inside a the
lobes of Tree D. Figure 4.8 shows another.

(a) Timestamp 0. (b) Timestamp 0 mesh.

(c) Timestamp 1. (d) Timestamp 1 mesh.

(e) Timestamp 2. (f) Timestamp 2 mesh.

Figure 4.8.: Visualisation of the reconstructed lobe geometry of a certain lobe of Tree D, for
all timestamps.

46

4.1. Visual results

(a) Timestamp 0. (b) Timestamp 0 mesh.

(c) Timestamp 1. (d) Timestamp 1 mesh.

(e) Timestamp 2. (f) Timestamp 2 mesh.

Figure 4.9.: Visualisation of the reconstructed lobe geometry of a certain lobe of Tree D, for
all timestamps.

47

4. Results and discussion

As can be seen from the figure, this lobe grows consistently in size throughout the
timestamps. It should be noted that this is not true for all lobes, some lobes decrease
in size or do not exist in all timestamps (the lobe in Figure 4.9 for example does
not exist in the first timestamp). This is likely due to the differences in distribution
and thus in MST, where sometimes points are not registered to the same branches,
as well as simply the fact that the lobe did not exist yet in a younger tree. Many
lobes however can be found that correspond consistently between timestamps like
in Figure 4.8. Apart from the lobe size itself increasing, it can also be noticed that
the branching complexity increases as the tree grows. This is desired behaviour, and
models the real way in which a tree grows. In reality, branches would also be shed
according to their viability, but here it was decided not to model this.

The structure in the lobe splits into two main structures at roughly the same location
in all timestamps. This is very likely due to the distribution of the points inside the
lobe, where the branching structure would grow towards clusters present in these
points. As far as following the actual points exactly, this is significantly less present.
It is desirable that the lobe is filled with realistic looking branching structures, and
less follows the actual, often inaccurately detected small branch points. They should
be used as a rough guide. However, the used model clearly heavily leans towards
constructing recursive structures according to the procedural model. When actual
branching structure is expected to be captured by the points in the lobe, one could
consider favouring attraction to these points over composing realistic structures. In
this case, the structure inside the lobes was mostly captured as clusters or rough lines
from the thickest branches, and few smaller branches could be recognised.

4.1.5. Growth interpolation between timestamps

First of all, it should be noted that interpolating between multi-temporal graphs
is an open problem. The proposed method focuses on generating a growth in-
terpolation based on branch correspondences and data-driven tree reconstructions.
Unfortunately, it cannot be expected that the interpolated graphs are biologically
faithful.

Figure 4.10 shows several keyframes from the interpolation between the timestamp-
specific reconstructions of Tree D. The branch geometry has been reconstructed for
the known timestamps as well as the interpolated structures in between. It can be
seen that the interpolation is smooth (the number of keyframes can be defined by
the user). At any time, the structure overall resembles not only that of a botanical
tree, but the main structure of — in this case — Tree D can be recognised.

48

4.1. Visual results

Examining the result more closely however, the biological soundness of the model
becomes less absolute. The trunk thickness increases and decreases non-coherently
over time. This is due to the fact that the cylinder-fitting method used for generating
the geometry estimates the stem thickness based on either the vertices around the
trunk base that can be found, or, if there is not enough vertices, the tree crown size.
During the interpolation, no point cloud of the intermediate tree structure is avail-
able. This leads to there only being at most a handful of points near the trunk base,
and zero between the trunk’s main edge’s endpoints. It is therefore very likely that
the trunk diameter is based on the tree crown measurements every time. During
growth, the tree crown is especially subject to changes in its overall shape, as its
smaller branches are less likely to have been reconstructed and corresponded accu-
rately and completely. The trunk diameter estimate in between known times is thus
less accurate than the estimate for times for which ground truth data exists. Esti-
mating a coherent trunk diameter based on the complete input point cloud dataset
should alleviate the issue. However, the quality of the estimate will always be de-
pendent on the quality of the input data, which often is sparser and more inaccurate
especially in the trunk region.

Base 1 2 3 4 5 Target

Figure 4.10.: Visualisation of the interpolation between the reconstructed timestamp-specific
structures with branch geometry. Top: interpolation from timestamp 0 to ts 1, bottom:
interpolation from timestamp 1 to timestamp 2, with 5 intermediary frames shown at
equal intervals. For test tree D.

49

4. Results and discussion

Figure 4.11 shows the same interpolation as is displayed in Figure 4.10, now with
the skeleton graph visible. Some branches can be seen growing longer at their
tips with plausible length. Other side branches can be seen as shed. However,
some major branches suddenly grow large distances, or are transformed to rela-
tively far away positions in the main structure. As it can be assumed the main
branches of an adult tree only show minor deformations as the tree grows (barring
the shedding/pruning of larger branches), this behaviour is not very plausible. It oc-
curs when (part of) a major branch is incompletely detected/reconstructed between
timestamps. The algorithm will struggle with finding a complete set of correctly
corresponding branches when the branch reconstruction between timestamps is in-
complete. This is unfortunately a fault of the reconstruction method itself, which
in turn is entirely dependent on whether or not main branches were captured com-
pletely in the input point clouds. The growth model described in this work could
become much more sound in its detail as well when the individual timestamps it is
based on are guaranteed to accurately describe at least all major branches of the tree.
A deeper strategy for making correspondences between timestamp reconstructions
could be considered. A possible approach could be to represent earlier timestamp
graphs as a deformation of the graph of the most recent time. The deformations
could be computed using an optimization scheme.

Base 1 2 3 4 5 Target

Figure 4.11.: Visualisation of the interpolation between the reconstructed timestamp-specific
structures. Top: interpolation from timestamp 0 to ts 1, bottom: interpolation from times-
tamp 1 to timestamp 2, with 5 intermediary frames shown at equal intervals. For test tree
D.

Figure 4.12 shows an issue detected in the interpolation of one of the trees tested
(Tree G). This issue did not occur in any of the other test data, but resulted in a
failed interpolation for Tree G. In this case, the stem and root node for the second
timestamp (timestamp 1) was not detected at a plausible location, and differs from

50

4.1. Visual results

those of the first and third timestamp. When the correspondence computation al-
ters the graph of timestamp 1 to coherently correspond to timestamp 2, it creates
a nonsensical structure because no good starting point exists. As a result, the cor-
respondence between timestamp 1 and 0 is skewed as well. The interpolation will
still be able to animate smoothly between all timestamps, but the reconstruction
no longer properly resembles the structure of the tree. Unfortunately, this issue is
entirely dependent on the quality of the original timestamp reconstruction. If any
of the timestamp reconstructions failed majorly, the interpolation algorithm can no
longer fix the inconsistencies by corresponding to the next timestamp.

(a) Timestamp 0 (b) Timestamp 1 (c) Timestamp 2

Figure 4.12.: Corresponding timestamp reconstructions for Tree G. The stem in timestamp
1 was not detected at the same location as timestamp 0 and 2, resulting in a illogical
corresponding structure for timestamp 1 and 0.

It is interesting to try and visualise how the timestamp-specific reconstructions and
the interpolation between them relate to the original point cloud input data as well.
Figure 4.13 shows the reconstructions of the original timestamps and some inter-
mediate interpolations against the point cloud of the latest timestamp. Figure 4.14
shows the intermediate steps between timestamp 1 and 2 of Figure 4.13 in greater
detail. Showing how a 3D graph relates to a 3D point cloud is challenging, espe-
cially when the result can only be communicated in 2D. Inspecting this result in the
original 3D viewer gave a slightly better view. It can be seen that the further the
interpolation grows, the more large branches in the point cloud are also described
in the growing main skeleton.

51

4. Results and discussion

Base 1/3 2/3 target

Figure 4.13.: Visualisation of the interpolation between the reconstructed timestamp-specific
structures, superposed against the original point cloud data of the latest timestamp. Top:
interpolation from timestamp 0 to ts 1, bottom: interpolation from timestamp 1 to times-
tamp 2, with 2 intermediary frames shown at equal intervals. For test tree D.

(a) Step 1/3 (b) Step 2/3

Figure 4.14.: Intermediary keyframes at 1/3 (4.14a) and 2/3 (4.14b) respectively of the inter-
polation between the second and third timestamp. For test tree D.

52

4.1. Visual results

Figure 4.15 shows one of the major issues that occur when not all noise was com-
pletely removed from the input data. A large branch grows into the timestamp that
is only supported by vertices at its start and end. In this particular dataset, the
point cloud for timestamp 2 was not completely clean and still contained two small
clusters of points not belonging to the tree. This phenomenon was rare in the used
test dataset. It can be alleviated by better cleaning of the point clouds, for example
manual intervention for data for which this behaviour is observed or an automatic
method that detects small isolated clusters and removes them. An algorithm that de-
tects long branches that are not supported by points for a large part of their length
could also be applied. However, this has a strong chance of interfering with estab-
lishing a complete reconstruction for less dense point clouds and was therefore not
applied in this work.

(a) Timestamp 2, with noise. (b) Timestamp 2, noise removed.

Figure 4.15.: Reconstructions for timestamp 1 for test Tree D, with (4.15a) and without
(4.15b) noise clusters present in the input point cloud.

For the trees tested, most large branches are present in the last reconstruction. The
missing branches are often relatively close to other main branches, and could there-
fore have likely been merged into one structure, especially considering the point
clouds of earlier timestamps are less dense and therefore are even less likely to de-
scribe an accurate distinction between two very near main structures. Particularly
interesting is making a visual comparison with the merged main reconstruction as
described above. Figure 4.16 shows a closer view of the first main branching areas
of Tree D. Both the merged main and the timestamp specific reconstruction are com-

53

4. Results and discussion

pared to the original input point cloud of the latest timestamp. The two reconstruc-
tions show may similarities. Most of the main branches that can be seen in the input
point cloud are described by the edges of both graphs. The most striking difference
seems to be in the exact bifurcation points in the skeleton structures. It could be
easier to detect the general location of a branch segment than to detect exactly how
it connects to the rest of the structure. Bifurcation points are often noisy areas with
points from multiple branches. Compared to the larger branch segments that are
often more isolated and contain more points describing its location, it makes sense
the reconstruction of bifurcation points is less accurate. The question remains which
of the two versions is a more accurate representation of the tree’s main branching
structure. The edges of the timestamp-specific reconstruction follow the point cloud
more closely. Since the bifurcation points of all timestamps have been fully corre-
sponded, it is likely their location in the earlier timestamps are more accurate than
for the merged main skeleton at those times. A main bifurcation point in the latest
timestamp should logically exist in any previous timestamp as well, since the loca-
tion of where a main branch is attached to the rest of the structure does not change
over time. However, the geometric location of the bifurcation points is not guaran-
teed to be similar, only the topological location remains the same. Merging the data
from all timestamps into a single point cloud to base a main structure reconstruc-
tion could be a promising future step into improving the interpolation algorithm.
Starting from this merged structure, instead of solely the latest timestamp, may pro-
vide a stronger base to compute correspondences from than only using the latest
timestamp, which may still not provide a complete and accurate reconstruction of
the tree’s main branching structure. Merging the main structure however also has
an obvious downside: it will be much more challenging to detect if branches were
shed. Additionally, the timestamp specific reconstructions will be less unique, and
likely lose some of their detail.

54

4.1. Visual results

(a) Timestamp-specific reconstruction (b) Merged main reconstruction

(c) Point cloud input

Figure 4.16.: Close-up of the reconstruction of the main branches of Tree D, for the recon-
struction of timestamp 2 (left) and the merged main skeleton reconstruction (right). Both
are depicted with the input point cloud of timestamp 2, also pictured below.

55

4. Results and discussion

4.2 Quantitative analysis and evaluation

The difference between two graphs is inherently difficult to capture, as many fac-
tors play a role in describing a tree’s shape. Currently, there is no consensus on
how to quantitatively measure the difference between reconstructed trees. In this
work, in order to attempt to validate the reconstruction results two different kinds
of distances were computed. The topological distance is calculated using the Graph
Edit Distance (GED): the number of insertion, deletion and substitution operations to
transform one graph into an isomorphic equivalent of another. The geometric dis-
tance was calculated as the closest Euclidean distance between all edges of a graph
to the closest edge of the other graph. Together, these two distance measures should
give an indication of the difference between two graphs.

4.2.1. Topological distance

Tables 4.1 to 4.4 show the tested edit distances between the graphs of 4 trees.

Tree A time 0 time 1 time 2 merged # nodes # edges
time 0 - 218 338 450 59 58
time 1 216 - 326 440 122 121
time 2 336 326 - 414 180 179

merged 448 434 412 - 235 234

Table 4.1.: Edit distances between the reconstructed tree graphs of Tree A. Rows: the graph
used as base, columns: the approximated graph.

Tree B time 0 time 1 time 2 merged # nodes # edges
time 0 - 100 128 236 60 59
time 1 102 - 132 246 39 38
time 2 126 132 - 230 76 75

merged 236 246 230 - 134 133

Table 4.2.: Edit distances between the reconstructed tree graphs of Tree B. Rows: the graph
used as base, columns: the approximated graph.

Tree C time 0 time 1 time 2 merged # nodes # edges
time 0 - 192 324 442 88 87
time 1 190 - 322 444 103 102
time 2 324 230 - 438 177 176

merged 442 442 434 - 233 232

Table 4.3.: Edit distances between the reconstructed tree graphs of Tree C. Rows: the graph
used as base, columns: the approximated graph.

56

4.2. Quantitative analysis and evaluation

Tree D time 0 time 1 time 2 merged # nodes # edges
time 0 - 244 346 520 80 79
time 1 244 - 332 500 132 131
time 2 338 330 - 494 185 184

merged 518 500 494 - 275 274

Table 4.4.: Edit distances between the reconstructed tree graphs of Tree D. Rows: the graph
used as base, columns: the approximated graph.

The edit distance between the timestamp specific main and the merged main struc-
tures was computed, as well as the distance between the timestamps themselves.
The edit distance describes the number of operations necessary to transform a cer-
tain graph into a graph isomorphic to a certain other graph. For the sake of sim-
plicity, the cost of all operations (node and edge deletion, insertion and substitution)
has been kept equal, and set to 1. The computation of the edit distance is a complex
operation. In this case it was run iteratively for a set number of maximum seconds.
This ensured that each computation had at least one or multiple results, without tak-
ing extremely long. Running it for much longer (10 minutes instead of 10 seconds)
resulted in a difference of perhaps a few operations. It was thus decided a longer,
more accurate runtime would not yield enough relevant benefit. The edit distance
between a timestamp and the merged main will tell how topologically similar it is
compared to the graphs of the other timestamps. Similarly, edit distances between
timestamps describe relative similarity between the different captures of the tree.
Because the edit distance is entirely dependent on the number of edges and nodes
in the graphs, it cannot be compared between different timestamps. The number of
nodes and edges has been added to the tables above. The rows describe the graph
to start from, and the columns the graph to approximate. Although many of the
distances are similar, the tables are not symmetric because changing graph A into
graph B is not the same as changing graph B into A.

The merged skeleton has a similar number of vertices and edges for Trees A, C and
D. The edit distance for these trees is also very similar. Tree B has significantly
fewer nodes and edges in all timestamps, leading to lower differences between edit
distances. This suggest the magnitude of the edit distance is strongly related to the
number of nodes and edges. Comparing graphs with similar numbers of edges/ver-
tices will thus likely lead to capturing mostly the actual structural difference between
them. This should be taken into account when discussing these results.

The first thing that can be noticed from these tables is that the edit distance from
the merged main skeleton to each timestamp is very similar for every tested tree.
In general, timestamp 0 has the highest distance, which could be explained by its
relative low number of vertices and edges, thus needing more insertion operations
than the other two timestamps. The difference between timestamps being so low

57

4. Results and discussion

is a promising sign that the merged main skeleton is a good topological average
descriptor of the main structure of all timestamps.

Changing from timestamp 0 or 1 to timestamp 2 has a similar edit distance for
each tree. It is about equally difficult to morph the main skeleton of timestamp
0 into that of timestamp 2 as it is to morph timestamp 1 into 2. In other words,
the topological distance between the main skeleton of timestamp 2 and those of the
other timestamps is roughly the same.

Changing to timestamp 2 from timestamp 0 or 1 has a relatively high edit dis-
tance compared to morphing timestamp 0 into 1, even if the increase of number
of nodes/edges is similar. This is interesting especially since the time difference in
years between timestamp 0 and 1 is almost double the time between 1 and 2 (7 and 4
years respectively). The tree has had roughly half the time to grow to timestamp 2 as
to 1, but shows more structural difference. As the original point cloud data of times-
tamp 2 was significantly denser than timestamp 0 and 1, a hopeful explanation could
be that this skeleton is more accurate than the other two, and thus is more topolog-
ically different. Comparing with the visual reconstructions as discussed above, it
does not seem likely that this higher structural distance is due to effects like branch
shedding or pruning, as this is barely noticeable in the reconstructions. The re-
construction of the latest timestamp does seem to be more detailed, supporting the
theory that it is simply a more accurate capture of the structure.

4.2.2. Geometric distance

Figure 4.17 shows a visualisation of the geometrical distance between the timestamp
graphs of Tree A (an example of some of the other trees can be found in Appendix
C). It can be seen that the overall distance to the merged main skeleton is low.
Especially in Figure 4.17d, where the merged main skeleton is displayed together
with the distances of timestamp 2, it is clear that they are very similar. This is
another support of the notion that as the tree grows, the main structural skeleton
remains mostly the same.

58

4.2. Quantitative analysis and evaluation

(a) Timestamp 0 (AHN2). (b) Timestamp 1 (AHN3).

(c) Timestamp 2 (AHN4).
(d) Timestamp 2 with the merged main skele-

ton.

Figure 4.17.: Visualisation of the geometric distances between the skeleton structure of the
different timestamps and their merged main skeleton of Tree A. Red is a larger distance,
green a smaller one.

59

4. Results and discussion

A few inaccuracies can be found. Timestamp 0 shows more edges with a high dis-
tance than the other two timestamps. This can likely be attributed to the coarseness
of the input data, but also to the fact that this tree is younger and thus does not
contain all branches present in the later timestamps. It can be seen the main branch
forks off earlier, although the branch connected to this fork is present in all times-
tamps. There is thus no shedding of a lower branch, but instead a more accurate
detection of the connecting point of this main branch in later timestamps. Another
thing that can be noticed is the presence of a few long, straight edges with a high
distance. This issue happens in all timestamps, and is likely due to the way the MST
is constructed during skeletonization. The vertex that the long edge connects to was
assigned to a different branch in the other timestamps, but due to the particular dis-
tribution of the timestamp in question the shortest path to this vertex was through
an edge not present in the other reconstructions. This issue could be alleviated by
disallowing long, straight edges during MST construction. However, this would also
constrain valid main edge detection when the data is sparser. Another variant of
this issue can be seen in Figure 4.18, which contains a close-up of a part of Figure
4.17d.

Figure 4.18.: Visualisation of the geometric distances between the skeleton structure of the
latest timestamp (ts 2) and the merged main skeleton of Tree A. Red is a larger distance,
green a smaller one. Brightest green: distance = 0 cm, brightest red: distance >= 10 cm.

60

4.2. Quantitative analysis and evaluation

The long, distant edge lies in between two branch parts that are much closer to
the merged main skeleton. It is likely the two branch parts should in reality not
be connected. However, again due to the particular distribution of vertices in this
timestamp, the shortest path from the furthest sub-structure seems to have been
through the closer sub-branches. This phenomenon was also encountered during
the computation of correspondences for the growth interpolation method. During
this step it is fixed by assuming the connections in the latest timestamp are correct,
which in this case would mean that since it is in timestamp 2, the long distant edge
is assumed to be correct and the edges of the previous timestamps will be rerouted
to reflect this connection. Figure 4.18 shows that this assumption may not always be
correct. A better method could be to consider all timestamps when different options
exist to connect part of a branch to the main branching structure, e.g. by means of a
voting system.

61

5 Conclusion

5.1 Conclusion

The goal of this research was to find how multi-temporal point clouds can be used
to model tree growth. Trees were reconstructed per timestamp capture as a main
corresponding skeleton and a set of lobes encompassing the small branch clusters
of the tree crown. Using a procedural region growth algorithm inside the lobes,
the branching structures of the tree crown could be compactly approximated. The
main corresponding skeleton was found to describe the main branching structure of
the tree well for all timestamps, even the youngest and most sparse. Additionally,
multi-temporal informed modelling was able to reconstruct the main branches of a
tree at a certain time accurately even within gaps in the data. The results show that
establishing correspondence between the main skeleton over multiple timestamps
enables a more robust reconstruction of these structures. Lastly, it is shown that a
smooth interpolation can be made between the reconstructions of each timestamp,
although the quality of the interpolation depends entirely upon the accuracy of the
original reconstructions and the established branch correspondences.

It should be noted that by establishing a shared main structure, the original detail
of individual timestamps is lost. This is not an issue when the main structure of
the tree remains constant over time, but does mean that individual branch shed-
ding, branch deformation, and other such factors are not modelled with the pro-
posed approach. Another limitation is the fact that the growth interpolation between
timestamp-specific reconstructions works with the assumption that the latest times-
tamp reconstruction represents the structure of the tree accurately and better than
those for previous timestamps. While small gaps and inconsistencies could often be
filled, major faults in the original reconstruction, such as a wrongly located stem or
entire large major branches that are missing, can not be remedied. Additionally, if
no plausible correspondence could be established for a branch segment, biological
faithfulness could not be guaranteed. Lastly, the proposed method requires clean,
segmented point clouds of individual trees as input. Automation of the cleaning and
segmentation process was complicated, and tree reconstruction will fail when this
process is not completely successful. Nevertheless, the point clouds of most trees
processed could successfully be used for multi-temporal reconstruction.

63

5. Conclusion

5.2 Contribution

With the proposed method, it is possible to reconstruct an accurate and temporally-
informed reconstruction of a tree’s major branches, as well as model the revolution
in tree crown shape over time on a sub-branch level. The proposed method could be
adapted to render a large urban scene of trees at different times, using the compact
and LoD-friendly lobe-based representation. The proposed method also opens up the
possibility of statistical analysis of tree growth behavior, for example by measuring
tree trunk girths, lobe volumes, lobe shape distributions, and branch volume at dif-
ferent times. The growth interpolation model allows for representing the structure
of a tree at any time between known multi-temporal data points, even if no ground
truth data exists at that time. While detailed biological study based on the proposed
model may not be accurate, the model could be used for more global analyses where
the overall changes in the tree’s shape are more relevant. Examples are analysis of
tree growth statistics for a large number of trees, or visualising tree growth in larger
scenes, where branch faithfulness of individual tree models is less important.

5.3 Future work and recommendations

Directions for future work could include:

• Geometry reconstruction on leaf level will add an additional level of realism.
This could be accomplished with for example the method used by Livny et al.
[2011], who use pre-defined branch elements to texture their lobes. This would
additionally be a promising method for making the reconstruction able to ren-
der LoD-dependent geometry. This would improve rendering performance and
make the model applicable on a larger scale.

• As mentioned before, the growth interpolation between timestamps is not bio-
logically faithful. The interpolation method could benefit greatly from a more
involved strategy for establishing branch correspondences. A more biologi-
cally faithful model is especially promising for the botanical field, where new
analyses about tree growth behaviour could be extracted at branch and sub-
branch level. Such a model may even be used to establish a general growth
model, which in turn could be used to model the growth of trees for which no
multi-temporal ground truth data exists.

• Structural and biological data could be used to improve the growth model as
well. Currently, the tree reconstruction is based on input point clouds alone.
Using tree shape statistics (e.g. branching angles, internode length growth
factor, etc.), reconstruction may be more biologically and structurally informed
and as such generate branches with improved plausibility.

64

5.3. Future work and recommendations

• So far, a growth interpolation has been made for the tree’s major branches.
An interpolation of the tree’s crown shape or lobes will provide additional
accuracy and realism to the growth model. This could be done for example
by finding correspondences between lobes and deforming the ones from the
latest timestamp to represent those at earlier times.

• Another avenue of exploration is machine learning. The parameters of the gen-
eral growth model as suggested before in the form of for example an inverse
procedural growth model could be learned. Additional information could be
added, for example using sets of trees from multiple locations which could
enable space-dependent growth modelling.

• As of now, data from only one tree species was used (oaks). However, the
proposed method could be extended to model different tree species. Differ-
ent parameters for the procedural region growth algorithm inside the lobes, as
well as the lobe shape construction itself, could be used to construct a species
database. This database could then be used to inform the growth model, mak-
ing it more botanically sound.

• The method used currently only processes cleaned data from singular trees.
However, in reality a tree never grows in empty space. Even in urban envi-
ronments it is usually surrounded by other plants, as well as urban structures.
Neighbouring trees influence the growth behaviour of a tree. This could be
taken into account in a future growth model by for example processing clusters
of trees at the same time, and informing the growth model with information
about sunlight intensity on leaf clusters. Additionally, since the lower regions
of forest areas are often very occluded in LiDAR data, the proposed method
currently will function poorly for dense forest areas. This could be improved
with for example better tree segmentation and tree stem, perhaps even lower
branch, estimation. Some of the extensions proposed before could even assist
in reaching this goal, a generalized or machine-learned model will perhaps
be able to inform the reconstruction of a tree’s main branches, even when the
point cloud is extremely sparse in this area.

• Lastly, another avenue of improvement could be better tree segmentation. The
proposed automatic cleaning and segmentation method could handle most of
the noise observed in the tested data, but the cleaned point clouds occasion-
ally still contained noise. This was mostly due to points not belonging to the
depicted tree being present in the point cloud. A more involved segmentation
process could improve the quality of the input point clouds and subsequent re-
construction. As trunk data was often sparse and incomplete, estimating trunk
positions would also significantly help with producing better reconstructions.

65

A Reproducibility

Input data The input data used receives the maximum score of 3. Only a subset of
the AHN datsets was used, which are openly available on the geo-information data
platform of the Dutch government Kadaster [nd] for any user.

Preprocessing While the precrocessing scripts used are published under an open
licence, they require proprietary software to open (FME, Safe Software [2022]). This
topic therefor receives a score of 1. An attempt was made to describe the major steps
taken in the method, but the preprocessing method was lengthy and involved.

Methods The method receives a score of 2. Apart from being documented in the
work itself, the source code will be available on GitLab1 under a public licence.

Computational environment The computational environment used is described
in the work. this topic gets a score of 2. The proposed method was developed
and tested on a Windows machine, and unfortunately not on any other OS. The
published code base can therefor not be guaranteed to work on e.g. Mac or Linux
machines. Aside from that, it is expected that the proposed code will be accessible
to anyone with a PC. It is not expected that any specialized hardware or software
will be required (aside from the aforementioned FME program), although the user
is required to have at least some knowledge on how to set up a C++ runtime en-
vorinment. Only open libraries were used for the development of the algorithms
used.

Results The results receive a reproducibility score of 2. While a dataset accom-
panies the publication of the developed algorithms in GitLab, unfortunately the
permanence of this publication cannot be guaranteed. A full testing dataset with
input, intermediary, and resulting models will be available.

1https://gitlab.com/NvanderHorst/treegrowthmodelling.git, the repository will become public
around the time of the P5 presentation

67

https://gitlab.com/NvanderHorst/treegrowthmodelling.git

69

B. Region growth direction algorithm

B Region growth direction
algorithm

Algorithm B.1: Pseudocode for optimal growth direction computation
Input: 3d vector p_curr, 3d vector p_parent, CGAL surface mesh

hull_mesh, Kd-tree index of original hull points
Output: 3d vector direction

1 3d vector direction = (0, 0, 0)
2 3d vector centroid = (0, 0, 0)
3 cone.startpoint = p_curr
4 cone.direction = direction previous branch
5 cone.depth = 4 * (distance p_curr to p_parent)
6 cone.angle = 45◦

7 neighbours = kdtree.search(cone)
8 neighbour_count = 0
9 if neighbours.size() > 0 then

10 for p_neighbour in neighbours do
11 centroid += p_neighbour direction += (p_curr -

p_neighbour).normalize() neighbour_count += 1

12 else
13 branch length decrease factor = 0.95
14 direction_forward = direction previous branch
15 p_forward = p_curr + (direction_forward * distance p_curr to p_parent)
16 centroid += p_forward
17 direction += (p_curr - p_forward).normalize()
18 neighbour_count = 1

19 range = 0.5 * cone.depth
20 ranged_neighbours = kdtree.search(range)
21 if ranged_neighbours.size() > 0 then
22 for p_nbor_ranged in ranged_neighbours do
23 centroid += p_nbor_ranged
24 direction += (p_curr - p_nbor_ranged).normalize()
25 neighbour_count += 1

70

Algorithm B.1: Pseudocode for optimal growth direction computation
(continuation)

26 p_hull = point on hull_mesh closest to p_curr
27 if distance p_curr to p_hull < cone.depth then
28 direction_hull = (p_hull - p_curr).normalize()
29 weight_hull = 1 - (distance p_curr to p_hull / cone.depth)
30 p_hull_attraction = (p_hull - (direction_hull * weight_hull))

31 centroid += p_hull_attraction
32 direction += -(direction_hull * weight_hull)
33 neighbour_count += 1

34 centroid /= neighbour_count
35 direction /= neighbour_count
36 if distance p_curr to centroid > max_internode_length then
37 branch_length = max_internode_length

38 if distance p_curr to centroid < min_internode_length then
39 branch_length = min_internode_length

40 else
41 branch_length = distance p_curr to centroid

42 direction *= branch_length
43 return direction

71

C Geometric distance
reconstructed skeletons

The following figures show the measured geometric distance of the reconstructed
timestamp-specific main skeletons with the merged main skeleton. Distance is mea-
sured in smallest Euclidean distance between each edge of the timestamp and its
closest edge of the merged main skeleton.

73

C. Geometric distance reconstructed skeletons

(a) Timestamp 0 (AHN2). (b) Timestamp 0 with the merged main skele-
ton.

(c) Timestamp 1 (AHN3). (d) Timestamp 1 with the merged main skele-
ton.

(e) Timestamp 2 (AHN4).
(f) Timestamp 2 with the merged main skele-

ton.

Figure C.1.: Visualisation of the geometric distances between the skeleton structure of the
different timestamps and their merged main skeleton of Tree A. Red is a larger distance,
green a smaller one.

74

(a) Timestamp 0 (AHN2). (b) Timestamp 0 with the merged main skele-
ton.

(c) Timestamp 1 (AHN3). (d) Timestamp 1 with the merged main skele-
ton.

(e) Timestamp 2 (AHN4).
(f) Timestamp 2 with the merged main skele-

ton.

Figure C.2.: Visualisation of the geometric distances between the skeleton structure of the
different timestamps and their merged main skeleton of Tree B. Red is a larger distance,
green a smaller one.

75

C. Geometric distance reconstructed skeletons

(a) Timestamp 0 (AHN2). (b) Timestamp 0 with the merged main skele-
ton.

(c) Timestamp 1 (AHN3). (d) Timestamp 1 with the merged main skele-
ton.

(e) Timestamp 2 (AHN4).
(f) Timestamp 2 with the merged main skele-

ton.

Figure C.3.: Visualisation of the geometric distances between the skeleton structure of the
different timestamps and their merged main skeleton of Tree C. Red is a larger distance,
green a smaller one.

76

(a) Timestamp 0 (AHN2).
(b) Timestamp 0 with the merged main skele-

ton.

(c) Timestamp 1 (AHN3). (d) Timestamp 1 with the merged main skele-
ton.

(e) Timestamp 2 (AHN4).
(f) Timestamp 2 with the merged main skele-

ton.

Figure C.4.: Visualisation of the geometric distances between the skeleton structure of the
different timestamps and their merged main skeleton of Tree D. Red is a larger distance,
green a smaller one.

77

D Topological distance
reconstructed skeletons

The following figures show the measured topological distance of the reconstructed
timestamp-specific main skeletons with the merged main skeleton. Distance is mea-
sured in GED.

79

D. Topological distance reconstructed skeletons

(a) Timestamp 0 and merged main. (b) Timestamp 1 and merged main.

(c) Timestamp 2 and merged main. (d) All timestamps together

(e) All graphs together.

Figure D.1.: Visualisation of the topological differences between the skeleton structure of the
different timestamps and their merged main skeleton of Tree A. Node positions do not
correspond to the actual 2D positions of the point, but rather to the Kamada-Kawai force-
directed layout of NetworkX.

80

(a) Timestamp 0 and merged main. (b) Timestamp 1 and merged main.

(c) Timestamp 2 and merged main. (d) All timestamps together

(e) All graphs together.

Figure D.2.: Visualisation of the topological differences between the skeleton structure of the
different timestamps and their merged main skeleton of Tree B. Node positions do not
correspond to the actual 2D positions of the point, but rather to the Kamada-Kawai force-
directed layout of NetworkX. 81

D. Topological distance reconstructed skeletons

(a) Timestamp 0 and merged main. (b) Timestamp 1 and merged main.

(c) Timestamp 2 and merged main. (d) All timestamps together

(e) All graphs together.

Figure D.3.: Visualisation of the topological differences between the skeleton structure of the
different timestamps and their merged main skeleton of Tree C. Node positions do not
correspond to the actual 2D positions of the point, but rather to the Kamada-Kawai force-
directed layout of NetworkX.

82

(a) Timestamp 0 and merged main. (b) Timestamp 1 and merged main.

(c) Timestamp 2 and merged main. (d) All timestamps together

(e) All graphs together.

Figure D.4.: Visualisation of the topological differences between the skeleton structure of the
different timestamps and their merged main skeleton of Tree D. Node positions do not
correspond to the actual 2D positions of the point, but rather to the Kamada-Kawai force-
directed layout of NetworkX. 83

Bibliography

Beneš, B., Andrysco, N., and Št’ava, O. (2009). Interactive modeling of virtual ecosys-
tems. In Proceedings of the Fifth Eurographics conference on Natural Phenomena, pages
9–16.

Chaudhury, A. and Godin, C. (2020). Geometry reconstruction of plants. In Intelli-
gent Image Analysis for Plant Phenotyping, pages 119–142. CRC Press.

Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., and Kang, S. B. (2008). Sketch-based
tree modeling using markov random field. In ACM SIGGRAPH Asia 2008 Papers,
SIGGRAPH Asia ’08, New York, NY, USA. Association for Computing Machinery.

Du, S., Lindenbergh, R., Ledoux, H., Stoter, J., and Nan, L. (2019). Adtree: Accurate,
detailed, and automatic modelling of laser-scanned trees. Remote Sensing, 11(18).

Gobeawan, L., Wise, D. J., Yee, A. T. K., Wong, S. T., Lim, C. W., Lin, E. S., and
Su, Y. (2019). Convenient tree species modeling for virtual cities. In Advances in
Computer Graphics, pages 304–315, Cham. Springer International Publishing.

Guénard, J., Morin, G., Boudon, F., and Charvillat, V. (2013). Reconstructing plants
in 3d from a single image using analysis-by-synthesis. In International Symposium
on Visual Computing, pages 322–332. Springer.

Guo, J., Xu, S., Yan, D.-M., Cheng, Z., Jaeger, M., and Zhang, X. (2020). Realis-
tic procedural plant modeling from multiple view images. IEEE Transactions on
Visualization and Computer Graphics, 26(2):1372–1384.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure,
dynamics, and function using networkx. In Varoquaux, G., Vaught, T., and Mill-
man, J., editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA.

Honda, H. (1971). Description of the form of trees by the parameters of the tree-like
body: Effects of the branching angle and the branch length on the shape of the
tree-like body. Theoretical Biology, 31:331–338.

Hu, S., Li, Z., Zhang, Z., He, D., and Wimmer, M. (2017). Efficient tree modeling
from airborne lidar point clouds. Computers & Graphics, 67:1–13.

85

Bibliography

Ijiri, T., Owada, S., and Igarashi, T. (2006). The sketch l-system: Global control of
tree modeling using free-form strokes. In Butz, A., Fisher, B., Krüger, A., and
Olivier, P., editors, Smart Graphics, pages 138–146, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Kadaster (n.d.). Publieke dienstverlening op de kaart. https://www.pdok.nl/.

Kim, J. and Cho, H. (2012). Efficient modeling of numerous trees by introducing
growth volume for real-time virtual ecosystems. Computer Animation and Virtual
Worlds, 23(3-4):155–165.

Li, B., Kałużny, J., Klein, J., Michels, D. L., Pałubicki, W., Benes, B., and Pirk, S. (2021).
Learning to reconstruct botanical trees from single images. ACM Transactions on
Graphics (TOG), 40(6):1–15.

Li, Y., Fan, X., Mitra, N. J., Chamovitz, D., Cohen-Or, D., and Chen, B. (2013). An-
alyzing growing plants from 4d point cloud data. ACM Transactions on Graphics
(TOG), 32(6):1–10.

Lintermann, B. and Deussen, O. (1999). Interactive modeling of plants. IEEE Com-
puter Graphics and Applications, 19(1):56–65.

Liu, Y., Guo, J., Benes, B., Deussen, O., Zhang, X., and Huang, H. (2021). Treepartnet:
Neural decomposition of point clouds for 3d tree reconstruction. ACM Trans.
Graph., 40(6):Article 232, 16 pages.

Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., and Chen, B. (2011).
Texture-lobes for tree modelling. ACM Transactions on Graphics (TOG), 30(4):1–10.

Luoma, V., Yrttimaa, T., Kankare, V., Saarinen, N., Pyörälä, J., Kukko, A., Kaartinen,
H., Hyyppä, J., Holopainen, M., and Vastaranta, M. (2021). Revealing changes
in the stem form and volume allocation in diverse boreal forests using two-date
terrestrial laser scanning. Forests, 12(7):835.

Makowski, M., Hädrich, T., Scheffczyk, J., Michels, D. L., Pirk, S., and Pałubicki,
W. (2019). Synthetic silviculture: multi-scale modeling of plant ecosystems. ACM
Transactions on Graphics (TOG), 38(4):1–14.

Masson, A. L., Caraglio, Y., Nicolini, E., Borianne, P., and Barczi, J.-F. (2021). Mod-
elling the functional dependency between root and shoot compartments to predict
the impact of the environment on the architecture of the whole plant. methodol-
ogy for model fitting on simulated data using deep learning techniques. in silico
Plants.

Nan, L. (2021). Easy3D: a lightweight, easy-to-use, and efficient C++ library for
processing and rendering 3D data. Journal of Open Source Software, 6(64):3255.

86

https://www.pdok.nl/

Bibliography

Neubert, B., Franken, T., and Deussen, O. (2007). Approximate image-based tree-
modeling using particle flows. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,
page 88–es, New York, NY, USA. Association for Computing Machinery.

Okabe, M., Owada, S., and Igarashi, T. (2006). Interactive design of botanical trees
using freehand sketches and example-based editing. In ACM SIGGRAPH 2006
Courses, SIGGRAPH ’06, page 18–es, New York, NY, USA. Association for Com-
puting Machinery.

Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch, R., and
Prusinkiewicz, P. (2009). Self-organizing tree models for image synthesis. ACM
Transactions On Graphics (TOG), 28(3):1–10.

Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch, R., Benes, B., and
Deussen, O. (2012). Plastic trees: interactive self-adapting botanical tree models.
ACM Transactions on Graphics (TOG), 31(4):1–10.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Alogirthmic Beauty of Plants.
Springer-Verlag, New York.

Runions, A., Lane, B., and Prusinkiewicz, P. (2007). Modeling trees with a space
colonization algorithm. NPH, 7:63–70.

Safe Software (2022). Fme: Maximize the value of data. /urlhttps://www.safe.com/.

Shlyakhter, I., Rozenoer, M., Dorsey, J., and Teller, S. (2001). Reconstructing 3d tree
models from instrumented photographs. IEEE Computer Graphics and Applications,
21(3):53–61.

Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., and Benes, B. (2014).
Inverse procedural modelling of trees. Computer Graphics Forum, 33(6):118–131.

Stuurgroep AHN (2021). Actueel hoogtebestand nederland: Home.

Tan, P., Zeng, G., Wang, J., Kang, S. B., and Quan, L. (2007). Image-based tree
modeling. In ACM SIGGRAPH 2007 papers, pages 87–es.

The CGAL Project (2022). CGAL User and Reference Manual. CGAL Editorial Board,
5.4 edition.

Weber, J. and Penn, J. (1995). Creation and rendering of realistic trees. In Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques, pages
119–128.

87

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The
main font is Palatino.

	Introduction
	Motivation
	Research objective
	Research scope and challenges
	Thesis outline

	Background
	Procedural modelling
	Data-driven modelling
	Growth modelling

	Methodology
	Pre-processing
	Raw point cloud cleaning and segmentation
	Point cloud processing of individual tree data
	Dataset validation

	Tree structure representation
	Skeleton representation for tree branches
	Lobe representation for tree crowns

	Correspondence between the main structures of multi-temporal data
	The merged main skeleton
	Merged main skeleton refinement
	Individual timestamp correspondence

	Regional growth modelling
	Growth between timestamps
	Correspondence between timestamp-specific skeletons
	Correspondence consistency
	Smooth interpolation and animation

	Geometry reconstruction
	Implementation details
	Test datasets
	Tools and software

	Results and discussion
	Visual results
	Merged main branches and lobes reconstruction
	Timestamp specific reconstruction
	Topological visualisation
	Growth inside the lobes
	Growth interpolation between timestamps

	Quantitative analysis and evaluation
	Topological distance
	Geometric distance

	Conclusion
	Conclusion
	Contribution
	Future work and recommendations

	Reproducibility
	Region growth direction algorithm
	Geometric distance reconstructed skeletons
	Topological distance reconstructed skeletons

