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APPENDIX 10
Example of the determination

of a design storm

A10.1 Statistics of individual observations

In this computational example we will look for the design storm in front of the coast
of the Netherlands. We will try to find a storm with an exceedance frequency of
1/225 per year. This storm yields 20% probability of failure in a lifetime of 50 years
as has been explained in Chapter 3. It is stressed again that the use of these values
does not constitute a recommendation on the part of the authors.

Figure A10-1  The Noordwijk measuring station

As described in Section 5.3.3, we start from a series of wave observations with a
fixed interval, made at "Meetpost Noordwijk", off the Dutch coast (Figure A10-1).
Each observation (e.g. with a duration of 20 minutes) results in a given value of the
Hs. When an observation programme is continued during a long time, a time series is
created of H s-values. This time series is the basis of the statistical operations
explained in this section.
In the example case we use, we have 20 years of data available from observations off
the Dutch coast1. Every half hour a wave observation is made, but in the file used in

                                                
1 The dataset is provided by the Netherlands Ministry of Public Works, the location Meetpost
Noordwijk is at a waterdepth of approximately 18 m. Data from this, and other Dutch sites, can be
downloaded from http://www.golfklimaat.nl
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this example, these data are reduced to one observation every three hours. A one-
month sample is plotted in Figure A10-2.

In Table A10-1 the clustered data are presented. The number of observations of each
wave height bin is given both per bin as well as cumulatively. The probability of any
wave height ¢Hs  being equal or less than a specific wave height Hs is defined as:

P P H Hs s= ¢ £( ) (A10.1)
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Figure A10-2 Data from Meetpost Noordwijk for one month (January 1979)

A probability of exceedance that ¢Hs  is greater than a specific wave height Hs may
also be defined as:

Q Q H H Ps s= ¢ > = -( ) 1 (A10.2)

Because a log relation is assumed, in the table also the value of –ln(Q) is given.
Analysis shows that the correlation between Hs and –ln(Q) is 98.8 %. Plotting these
data results in Figure A10-3. Although the correlation coefficient is quite large, it is
clear that a log-distribution is not fully correct. The data are not on a straight line.
For a small extrapolation this is not really a problem.  The values from the regression
line can be used to calculate the  probability of exceedance of a given Hs. For
example, a value of Hs = 6 m gives:
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Wave height
class Hs (cm)

Number of
observations

P Q –ln(Q)

per bin cumulative

0 25 35 35 0.000599 0.999401 0.000599

25 50 8260 8295 0.141940 0.858060 0.153082
50 75 11424 19719 0.337423 0.662577 0.411618

75 100 10004 29723 0.508607 0.491393 0.710511

100 125 7649 37372 0.639493 0.360507 1.020245

125 150 5563 42935 0.734685 0.265315 1.326838

150 175 4389 47324 0.809788 0.190212 1.659615

175 200 3167 50491 0.863980 0.136020 1.994954

200 225 2360 52851 0.904363 0.095637 2.347200

225 250 1671 54522 0.932957 0.067043 2.702419

250 275 1234 55756 0.954073 0.045927 3.080692

275 300 851 56607 0.968634 0.031366 3.462047

300 325 556 57163 0.978149 0.021851 3.823487

325 350 392 57555 0.984856 0.015144 4.190168

350 375 276 57831 0.989579 0.010421 4.563938

375 400 206 58037 0.993104 0.006896 4.976819

400 425 136 58173 0.995431 0.004569 5.388507

425 450 82 58255 0.996834 0.003166 5.755400

450 475 66 58321 0.997964 0.002036 6.196632

475 500 38 58359 0.998614 0.001386 6.581307

500 525 30 58389 0.999127 0.000873 7.043930

525 550 20 58409 0.999470 0.000530 7.541769

550 575 22 58431 0.999846 0.000154 8.778531

575 600 9 58440 1.000000 0.000000

Total 58440

Table A10-1: Wave data from Meetpost Noordwijk

Figure A10-3 Cumulative data for Noordwijk
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This means that a wave height Hs > 6 m will occur during 0.02 % of the time.
This result can also be obtained in a more direct manner. Plotting the values of Q on
log-paper gives Figure A10-4. In this graph the exceedance of an observation larger
than ¢Hs  is given. The advantage of this plot is that the exceedance values can be read
from the graph. (The statistical analysis and the plotting of data can easily be carried
out using a spreadsheet software package. In this case, MS Excel has been used. It is
beyond the scope of this book to outline the settings of the software). It is evident
that the upper boundaries of the wave height bin should be used on the wave height
axis (in this example 86% of the waves is higher than 50 cm, 99% is higher than 25
cm and 100% is higher than 0 cm).

Figure A10-4 Exceedance graph for Noordwijk

However, for design purposes, these values have no real meaning. It means that, if
one goes at a random moment to the sea, there is at that given moment a probability
of 0.0002 (i.e. 0.02%) of observing a Hs of 6 m or more. But this has nothing to do
with a design storm with a Hss of 6 m.
This form of statistics can be applied for the assessment of workability. In fact the
above example means that 0.02 % of the time a wave condition can be met in which
Hs is larger than 6 m. Suppose that for a port in this area pilot service has to be
suspended when Hs > 3.5 m, it can easily be read that during 1% of the time there is
no pilot service.
For the design of structures, we need the exceedance of a design storm and not the
exceedance of an individual wave condition.

A10.2 The Peak over Threshold method

In order to transform these individual observations into storms, we may use the fact
that sequential wave height observations are not random (see also Figure A10.2).
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When we measure at 12:00 hrs a Hs of 4 m, it is very unlikely that we measure at
15:00 hrs a Hs of 0.4 m. Usually the observations of 12:00 hrs and 15:00 hrs will
belong to the same storm. So we will define a certain threshold, e.g. Ht = 1.5 m. And
we will look in our record when the wave height exceeds 1.5m. The threshold-value
of Ht = 1.5 m is arbitrarily selected. Later we will investigate the sensitivity of this
choice. The month of the record in Figure A10-2 (Jan 1979) shows 9 storms,
providing 9 data points.
The reason for introducing a threshold is to avoid that small variations in wave
height during long, calm periods have significant influence on the final result.
Basically one should assume the threshold as high as possible, as long as the base for
statistics contains sufficient data for a reliable analysis. Later it will be shown that
the final answer is not very sensitive to the choice of the threshold value.
When we process the whole data set of 20 years, we find 1746 storms in total with a
Hss higher than 1.5 m. The 1746 storms are classified in wave height bins, according
to the maximum Hss of each storm which results in Table A10-2.

Wave
height class

Number of
storms a =1.24

Hss (m) per bin cum. P Q ln(Qs) –ln(H) Qs G W

1.50 1.75 384 384 0.21993 0.78007 4.22098 -0.56 68.10 -0.415046 0.32522
1.75 2.00 381 765 0.43814 0.56186 3.89284 -0.69 49.05 0.192121 0.64136
2.00 2.25 266 1031 0.59049 0.40951 3.57655 -0.81 35.75 0.640938 0.91261
2.25 2.50 157 1188 0.68041 0.31959 3.32863 -0.92 27.90 0.954366 1.11202
2.50 2.75 148 1336 0.76518 0.23482 3.02042 -1.01 20.50 1.318085 1.34858
2.75 3.00 111 1447 0.82875 0.17125 2.70471 -1.1 14.95 1.672191 1.58094
3.00 3.25 81 1528 0.87514 0.12486 2.38876 -1.18 10.90 2.014645 1.80552
3.25 3.50 63 1591 0.91123 0.08877 2.04769 -1.25 7.75 2.375535 2.04065
3.50 3.75 31 1622 0.92898 0.07102 1.82455 -1.32 6.20 2.608194 2.19099
3.75 4.00 32 1654 0.94731 0.05269 1.52606 -1.39 4.60 2.916351 2.38832
4.00 4.25 23 1677 0.96048 0.03952 1.23837 -1.45 3.45 3.210883 2.57486
4.25 4.50 11 1688 0.96678 0.03322 1.06471 -1.5 2.90 3.387796 2.68590
4.50 4.75 20 1708 0.97824 0.02176 0.64185 -1.56 1.90 3.816515 2.95184
4.75 5.00 9 1717 0.98339 0.01661 0.37156 -1.61 1.45 4.089424 3.11883
5.00 5.25 7 1724 0.98740 0.01260 0.09531 -1.66 1.10 4.367707 3.28731
5.25 5.50 9 1733 0.99255 0.00745 -0.43078 -1.7 0.65 4.896399 3.60263
5.50 5.75 8 1741 0.99714 0.00286 -1.38629 -1.75 0.25 5.854211 4.15922
5.75 6.00 5 1746 1 0 -1.79 0.00

1746

Table A10-2: Data from Noordwijk using PoT of 1.5 m

Using the same data, one can also determine the wave steepness. Without presenting
the analysis, we found when looking at only those storms with a HT ≥ 5 m, a total of
29 storms in 20 years. The average duration of these heavy storms is 6.6 hrs, and the
average wave steepness in these storms is 5.8 %, with a standard deviation of 0.6%.
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These figures will be used in Section A10.4.3, where the probabilistic approach will
be discussed.

The exponential distribution

Like was done before in equations (A10.1) and (A10.2) for Hs, the values of P and Q
are computed for Hss:

P P H Hss ss= ¢ £( ) (A10.3)

Q Q H H Pss ss= ¢ >( ) = -1 (A10.4)

Plotting the values of Q logarithmically results in Figure A10-5, which gives the
probability of exceedance of a storm. On can read this graph as: Given there is a
storm (according to our definition Hs>1.5 m), then the probability that that storm has
an Hss of more than 4 m is 0.05 (or 5%). [4 = 0.78 ln(x) + 1.63]

Figure A10-5 Wave exceedance using a threshold

Still we do not know the probability of a storm that occurs with a probability of for
example 1/225 per year. In the analysis done so far we looked only at the probability
of a single storm. We still need to transform our information to a probability per
year. This can only be done when we know the number of storms per year. This
number is known, since we have 1746 storms in 20 years, the average number of
storms per year Ns = 1746/20 = 87.3. When we have 87.3 storms per year, a storm
with a probability of exceedance of 1/87.3 has to be the “once-per-year” storm (in
correct statistical terms: the storm with a probability of exceedance of once per year).
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For transformation of the general probability of exceedance (Q) to the probability of
exceedance of a storm in a year (Qs), we multiply Q with the number of storms in a
year.
Thus:

Q N Qs s=

The values of Qs are also given in Table A10-2. Values of Qs > 1 should not be called
a “probability”, because probabilities cannot be larger than 1. Physically however,
these values do have a meaning. They represent the expected number of storms in a
year.
The values of Qs can again be plotted on log-paper. This results in Figure A10-6. In
fact, Figure A10-6 is the design graph to be used. So we can calculate our 1/225 per
year storm with:

H Qss s= -

= - Ê
ËÁ

ˆ
¯̃ +

=

0 785

0 785
1

225
5 141

9 39

. ln( )

. ln .

. m

Figure A10-6 Storm exceedance using a threshold

The Gumbel distribution

A more detailed inspection of Figures A10-4 and A10-5 reveals that, like in Figures
A10-2 and A10-3, the points are not exactly on a straight line. This is caused by the
fact that a simple exponential relation has been used. Because we deal with extreme
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values, an extreme value distribution like Gumbel or Weibull may result in
predictions that are more reliable.
The Gumbel distribution is given by:

P
Hss= - -
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(A10.5)

The coefficients b and g can be found by regression analysis on the data. In order to
do so, one has to reduce the equation of the Gumbel distribution to a linear equation
of the type y = Ax + B. After that, standard regression will provide the values A and
B, and subsequently values of b and g. Taking two times the log, the Gumbel
distribution can be reduced to:
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The left-hand side of equation (A10.6) we call the reduced variate G:

G
P

= - Ê
ËÁ

ˆ
¯̃ln ln

1

The values of G can be calculated for all P-values in Table A10-2. The values of G
and Hss are plotted in Figure A10-7. A linear regression leads to:

G AH Bss= +

For the given dataset A = 1.365 and B = –2.535

So: b = 1/A = 1/1.365 = 0.733

      g = – bB = –0.733 · – 2.535 = 1.877

Like with the exponential distribution, the analysis given so far results in an absolute
exceedance of a storm, not in a probability per year. As given before:

Q N Qs s=
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Figure A10-7 The Gumbel exceedance graph

From the Gumbel distribution it follows:
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So:
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A disadvantage of this approach is that in Figure A10-7 on the horizontal axis the
reduced variable G is plotted, and not the probability of exceedance Qs. Of course
this can be transformed by:
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So, for this given example (with Ns = 87.3 storms/year) this results in:

Qs G

1/10
1/100

1/1000
1/10000

6.77
9.07

11.38
13.68

Table A10-3

These values can be inserted in Figure A10-7. One should realize that when the
number of storms per year (Ns) changes, also the units on the converted horizontal
axis will have to be changed.

The Weibull distribution

Instead of a Gumbel distribution, we also may try a Weibull distribution. The
Weibull distribution is given by
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Also here, in order to find the values a, b and g from regression analysis, we have to
reduce the equation.
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So the reduced Weibull variate is

W Q= - ( )ln
1

a (A10.11)

The Weibull distribution has three variables (a, b  and g). Linear regression will
provide only two constants, A  and B  (and subsequently b and g ). So the
determination of the third coefficient (a) will require some trial and error. Assuming
different values of a will change the curvature of the points in the plot of W vs. Hss.
The calculation can be carried out quite easily in a spreadsheet. Changing the a
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immediately provides a new graph and a new value of the correlation coefficient.
The value of a that provides the straightest line and the highest correlation
coefficient is the best value for a. In our example this proves to be a = 1.24,
resulting in b = 1.17 and g = 1.22. See also Table A10-2 and Figure A10-8. (Note: b
and g are not the values given in the regression line in Figure A10-8, because in this
figure Hss is plotted on the vertical axis; if one plots Hss on the horizontal and W on
the vertical, on gets the values of b and g also directly).

Figure A10-8 The Weibull exceedance graph

Also here the exceedance has to be transformed to a probability per year. From the
Weibull distribution it follows:

H Qss = + -{ }g b aln
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(A10.12)

Using Qs = Hs Q gives
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Again, a manual plot has to be made of Hss as a function of W (see also Figure A10-
8). This can be transformed using

W
Q

N
s

s
= -
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ˆ
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ln

1
a

(A10.14)

So, for the given example (with Ns = 87.3 and a = 1.24), Qs and W are:

Qs W

1/10
1/100
1/1000

1/10000

4.68
5.92
7.11
8.24

Table A10-4

Summary

The coefficient g theoretically has the meaning of the threshold value HT as used in
the PoT-analysis. So as a check, we can compare these values:

HT threshold value 1.50 2.00 2.50 3.00 3.50 4.00
g  Exponential

g  Gumbel
g  Weibull

1.63
1.86
1.23

1.65
2.37
1.77

1.65
2.84
2.29

1.65
3.44
2.93

1.65
3.98
3.51

1.65
4.52
4.10

Table A10-5

Figure A10-9: Relation between g and the selected threshold
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In this respect it is clear that the Gumbel and the Weibull distribution give a much
better result. This becomes more relevant when the number of available storms in the
database is lower.
Summarizing we find the following Hss values for our 1/225 design storm for
different threshold values:

HT 1.50 2.00 2.50 3.00 3.50 4.00

Ns 87.3 59.6 38.9 19.4 10.5 5.3

Hss 1/225 Exponential
Hss 1/225 Gumbel
Hss 1/225 Weibull

9.39
9.10
8.64

9.30
8.95
8.55

9.00
8.66
8.32

8.85
8.46
8.20

8.58
8.11
7.97

8.31
7.81
7.77

Table A10-6

In this comparison for the Weibull distribution a value a = 1.24 has continuously
been used. As explained before, a has to be determined by optimizing the correlation
coefficient and visually on the fact that the points are on a straight line as much as
possible. For easy reference we have continued to use a= 1.24 as derived for a HT of
1.5 m. For large values of HT the number of wave height bins available for use in the
analysis becomes lower. Consequently, the calculation becomes less reliable.

A10.3 What to do if only random data are available?

The above PoT-analysis can only be carried out in case a sequential database with
observations is available. In case only the grouped statistics of observations are
available (like Table A10-1) a PoT-analysis is not possible. The same problem
occurs when data are collected by random observations, like the visual observations
from the Global Wave Statistics2. Often the number of observations in each wave
class bin is normalized in such a way that the total is 100% or 1000 ‰.
A typical sample of such a table is given in Table A10-7 (In fact the input data are
identical to Table A10-1). In such a case, one can determine the exceedance
frequency of a single Hs, as indicated in the section before. Because the data are not
sequential, and because the number of storms per year (Ns) is not known, the PoT-
analysis is not possible. Some of the data in the table may come from the same
storm.

                                                
2 The Global Wave Statistics [HOGBEN & LUMB, British Maritime Techonology, 1986] is a book
containing visual observations collected by ships at given times, but random locations (i.e. the
position of the ship at that moment). This makes that all observations in a given area are completely
uncorrelated.
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12 hrs storm duration a = 0.8

Hs-bin
Class
Obs Cumul P Q

LN(Q
) s/y ln() ln(H) W

0 25 35 35 0.00060 0.99940 0.00 729.56 6.592 3.219 -10.564

25 50 8260 8295 0.14194 0.85806 0.15 626.38 6.440 3.912 -10.259

50 75 11424 19719 0.33742 0.66258 0.41 483.68 6.181 4.317 -9.747

75 100 10004 29723 0.50861 0.49139 0.71 358.72 5.883 4.605 -9.161

100 125 7649 37372 0.63949 0.36051 1.02 263.17 5.573 4.828 -8.562

125 150 5563 42935 0.73469 0.26531 1.33 193.68 5.266 5.011 -7.978

150 175 4389 47324 0.80979 0.19021 1.66 138.85 4.933 5.165 -7.353

175 200 3167 50491 0.86398 0.13602 1.99 99.29 4.598 5.298 -6.733

200 225 2360 52851 0.90436 0.09564 2.35 69.81 4.246 5.416 -6.095

225 250 1671 54522 0.93296 0.06704 2.70 48.94 3.891 5.521 -5.464

250 275 1234 55756 0.95407 0.04593 3.08 33.53 3.512 5.617 -4.808

275 300 851 56607 0.96863 0.03137 3.46 22.90 3.131 5.704 -4.165

300 325 556 57163 0.97815 0.02185 3.82 15.95 2.770 5.784 -3.573

325 350 392 57555 0.98486 0.01514 4.19 11.05 2.403 5.858 -2.992

350 375 276 57831 0.98958 0.01042 4.56 7.61 2.029 5.927 -2.422

375 400 206 58037 0.99310 0.00690 4.98 5.03 1.616 5.991 -1.822

400 425 136 58173 0.99543 0.00457 5.39 3.34 1.205 6.052 -1.262

425 450 82 58255 0.99683 0.00317 5.76 2.31 0.838 6.109 -0.801

450 475 66 58321 0.99796 0.00204 6.20 1.49 0.396 6.163 -0.315

475 500 38 58359 0.99861 0.00139 6.58 1.01 0.012 6.215 -0.004

500 525 30 58389 0.99913 0.00087 7.04 0.64 -0.451 6.263 0.369

525 550 20 58409 0.99947 0.00053 7.54 0.39 -0.949 6.310 0.936

550 575 22 58431 0.99985 0.00015 8.78 0.11 -2.185 6.354 2.657

575 600 9 58440 1 0 0 0 0 0 0

Table A10-7 Uncorrelated data (example from Noordwijk, but not taking into accout the fact
that they are observed every three hours)

In order to solve this problem, we assume that we can divide the year in Ns periods of
ts hours, during which the wave height Hs does not vary. The basic idea behind this
assumption is that, because of the persistence of winds, storm periods will have
more-or-less the same duration. Therefore, the assumed time interval ts is called
“storm duration”. Now, one can stipulate that each of the random observations
describe an observation of one such storm.
This means that we usually have an unknown number of observations, however we
know the percentage of exceedance of each observation. Because such an
observation does in fact not represent the wave height of one (half-hour) sample
(which we called Hs), but represents the average Hs during a ts-hour storm, we will
use the symbol Hss. for this observation
Let us assume for the time being that we have a storm-duration of 12 hours. This
means that we have 365 · 24/12 = 730 periods of 12 hours in a year (Ns = 730).
This means that a “once-per-year” storm occurs in 1/730 times of the cases
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(=1.37 · 10
–3

). And a “once-in-ten-year” storm occurs in 0.137 · 10
–3

 times of the
cases.
In the example one can see that observations with Hss > 4.75 m occur in 0.001386 of
the cases. It is clear that the “once-a-year” storm is approximately 4.75 m. The value
Qss = Qs · 730 indicates the probability of a storm in a year.
It is obvious that from a statistical point of view values of Qs > 1 have no meaning.
However, physically this number indicates the number of storms per year.
The values of Qss can be plotted on log paper, which results directly in a design line,
showing the probability of exceedance of a given design storm.
Statistically one can process the values of Qs in the same way as has been done
before with Q. Practically this computation can be done in a spreadsheet in a simple
way. In fact, Table A10-3 is a print from a spreadsheet. A multiplier is computed
with the value:

M = ◊ = =
number  of  observations

storm duration
365 24

58440
730

80

Now we calculate the total number of storms smaller than our bin-value by taking
{total-(cumulative number)} and divide that by M. The result is given in the column
with the heading s/y (storms per year). And this value can be plotted, resulting in
Figure A10-10.
Also in this case, we calculate the slope and intercept of the regression line. In our
example the slope (A) is 1.02, and intercept (B) equals 4.16. (In order to calculate
these values, one should either make an extra column with ln Qs or make a plot
where Qs is on the y axis and Hss on the x-axis). For extrapolation one can use the
equation:

Q Hss= - -( ){ }exp b g (A10.15)

or in reversed order:

H
Q

Ass = -g ln
(A10.16)

in which A = slope of regression line  and g  = -B/A (= 4.16/1.02 = 4.07).
So, the 1/225 storm-height is
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4 07

1
225

1 02
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Figure A10-10  Storm exceedance graph using Random Observations

The value of 9.39 found in this way should be compared with the values between
8.31 and 9.39 found in the PoT analysis. This analysis too, can be improved by using
the Weibull distribution instead of a simple log-distribution.
As was done with the PoT-analysis, the value of Ws is calculated using

W
Qs

s

=
Ê

ËÁ
ˆ

¯̃
ln

1
1 a

(A10.17)

See Table A10-3. At some place in the spreadsheet, a value of a is given and the data
of the last column are calculated using that value of a. One can easily calculate
slope, intercept and correlation. With trial and error, one can find that value of a
which results in the highest correlation. In this example a value of a = 0.85 (which is
different than from the previous case) gives a correlation of 99.8 %. The parameters
of b and g follow from the slope and intercept of the regression line:

b

g

=

= -

1
A

B
A

The values of a, b and g  can be used directly in the equation to calculate the
probability:
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(A10.18)
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or in reversed order:

H Wss s= + -( )g b aln
1

(A10.19)

So, the 1/225 storm height is:

H m
ss1

225

1
0 854 62 0 43 1

225 8 16= + - ( ){ } =. . ln ..

One can make a plot of Hss vs. Ws,. This indicates that all points are nicely on a
straight regression line. However, the value of Ws has no direct technical meaning. It
becomes useful in case Ws is translated into Qs using:

W
Qs

s

=
Ê

ËÁ
ˆ

¯̃
ln

1
1

a
(A10.20)

This means that one has to redefine the horizontal axis. Be aware that values of W <
0 do not represent probabilities, but are only used to have a sufficient basis for
extrapolation.
The resulting value of Hss = 8.16 m should be compared with the values between
7.77 and 8.64 found in the PoT analysis. As stated before, the anticipated storm
duration was 12 hours. Different durations result in different values for Hss.

3 hrs 6 hrs 9 hrs 12 hrs
Exponential

Weibull
5.41
8.48

6.73
8.32

8.06
8.23

9.39
8.16

Table A10-8

From this example it follows  that in case a PoT-analysis is not possible, an analysis
on the basis of tabulated (random) data can very well be done. The choice of the
storm duration however remains a problem. Given the accuracy of the final answer,
this choice is not extremely sensitive, at least  when using the Weibull distribution.

A10.4 Computation of the armour units

A10.4.1 The classical computation

The classical way of computing the required block size is using the design formula,
applying a design wave height with an exceedance of Pf  during the lifetime of the
structure. For example a lifetime of 50 years and a probability of failure of 20%
during lifetime gives the following exceedance:
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f
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Using the Weibull distribution from Section A10.2 for the example of Noordwijk,
this results in a Hss  of 8.64 m. The design formula, as given by Van der Meer for
cubes is:
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For Nod Van der Meer recommends a value of 0.5. The wave analysis in Chapter 5
has shown a wave steepness of 5.6%. There are approximately 4000 waves in a
storm. For cubes with normal concrete one may use a concrete density of 2400
kg/m3, which results in a value of D = 1.75.
Substituting these values in the above design formula yields a dn of 2.4 m, or a block
weight of 91 tons. In case one applies the Hudson formula with a KD value of 5
(head) and a slope of 1:1.5, one gets a dn of 3.3 m, and a weight of 83 tons (realise
that the use of basalt split in the concrete may increase the density to 2800 kg/m3,
which will give with Van der Meer a block weight of "only" 50 tons).

Because the depth in front of the Scheveningen breakwater is limited to 6 m below
MSL (i.e. 9.5 m below design level), one may assume that waves never can become
larger than 0.5 · 9.5 = 4.75 m (see Figure 5-26). Filling in these values results in a
block weight of 15 tons.

However, one should realize that the number of occurrence of a storm with an Hss of
more than 4.75 is much more frequent. Using the Weibull distribution, one can find
that a Hss of 4.75 is exceeded once every 0.6 years. This means that during the design
life (50 years) the breakwater will encounter 50/0.6 = 85 storms, with in total 400*85
= 33000 waves. Using this number of waves, we find a block size of 2.1 m, and a
weight of 24 tons. Because the number of waves is not included in the Hudson
formula, Hudson gives a block weight of only 14 tons.

During the design of the breakwater of Scheveningen, only the Hudson formula was
available; the design of this breakwater however was not only based on this formula
but also verified with model tests. The applied blocks in Scheveningen have a weight
of 25 tons and a density of  2400 kg/m3.
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A10.4.2 The method of Partial Coefficients

The method of partial coefficients is worked out in PIANC [1992]. In this method
safety coefficients are added to the design formula. There are safety coefficients for
load and for strength.

The partial safety coefficients for load

The probability of exceedance during service life of the design storm with a
recurrence equal to the design life

P
tf

L

L

t

-
= - -

Ê
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ˆ
¯̃lifetime

1 1
1

 (A10.23)

in which tL is the design life. For a life time of 50 years, Pf-lifetime is 0.64

The design storm to be applied has of course a much smaller probability, and
consequently a longer return interval. The probability that a construction may fail
during life time Pf is for example set to 20 %. The return period of the design storm
then becomes

t PPf f
tLL= - -

Ê
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ˆ
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1 1
1 1

( ) (A10.24)

which gives 225 years according to our example.
To determine the partial safety coefficient one has to start with an extreme value
distribution, for example the Weibull distribution. For this purpose the distribution is
given as:
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In this equation a and b are the parameters of the Weibull distribution, and g is the
threshold value. Ns is the number of observations per year.
This equation can be reworked to
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For QtL one should enter the non exceedance probability for NstL events during
lifetime. This means that QtL = Pf-lifetime. For a design life of 50 years QtL is 0.364, for
100 years QtL is 0.366.
For a practical case this leads to the following values of  Hss:
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Input from wave climate (from Meetpost Noordwijk):
a 1.24
b 1.17
g 1.22
Ns 87.3

lifetime
50 years

lifetime
100 years

Hss for t = tL (50, 100)
Hss for t = 3 tL (150, 300)
Hss for t = t20% (225, 450)

Hss
tL

Hss
3tL

Hss
tpf

7.71
8.39
8.64

8.15
8.81
9.06

Table A10-9

The safety coefficient is given as:
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In this equation Pf is the allowable failure during lifetime (not to be mistaken with
Pflifetime, which has been defined as the probability of exceedance of the “once in tL-
years storm” during the lifetime tL.
The standard deviation s¢QtL is given in PIANC report [PIANC 1992] (copied in
Table A10-10) as a function of the type of observations available. The data from
Noordwijk are based on accurate observations, so a value of s¢QtL = 0.05 is realistic.
Pf was 20%, N is the number of “storms” in the PoT-analysis, for this example it is
1746. ka = 0.027 and kb = 38 (see Table A10-2).

This leads to:
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(A10.28)

The safety coefficient consists of three parts. The first term gives the correct partial
safety coefficient, provided no statistical uncertainty and measurement errors related
to Hss are present. The second term signifies the measurement errors and the short-
term variability related to the wave data. The last term signifies the statistical
uncertainty of the estimated extreme distribution of Hss. The statistical uncertainty
treated in this way depends on the total number of wave data N, but not on the length
of the observation period.



356 Breakwaters and closure dams

Parameters Method of determination Typical
value for s¢

Wave height
Significant wave height offshore

Hss nearshore determined from offshore
Hss taking into account typical nearshore
effects (refraction, shoaling, breaking)

Accelerometer buoy, pressure cell,
vertical radar

Horizontal radar
Hindcast, numerical model

Hindcast, SMB method
Visual observation (Global wave

statistics
Numerical models
Manual calculation

0.05 – 0.1

0.15
0.1 – 0.2
0.15-0.2

0.2

0.1-0.2
0.15-0.35

Other wave parameters
Mean wave period offshore on condition

of fixed Hss

Duration of sea state with Hss exceeding a
specific level

Spectral peak frequency offshore

Spectral peakedness offshore

Mean direction of wave propagation
offshore

Accelerometer buoy
Estimates from amplitude spectra

Hindcast, numerical model
Direct measurements

Hindcast, numerical model
Measurements

Hindcast, numerical models
Measurements and hindcast with

numerical models
Pitch-roll buoy

Measurement of horizontal velocity
components and waterlevel or

pressure
Hindcast, numerical model

0.02-0.05
0.15

0.1-0.2
0.02

0.05-0.1
0.05 0.15
0.1-0.2

0.4

5∞

10∞
15-30∞

Water level
Astro tides

storm surges
prediction from constants

numerical models
0.001-0.07
0.1-0.25

Table A10-10 Typical variation coefficients for sea state parameters [from PIANC 1992]

If extreme wave statistics are not based on N wave data, but for example on estimates
of Hss from information about water level variations in shallow water, then the last
term disappears and instead the value chosen for s¢ must account for the inherent
uncertainty.
In Table A10-11 the values of s¢  and N have been changed to the values for simple
manual calculations and a shorter dataset. It is clear from this table that the effect of
the length of a dataset is less important than accurate observations.

base example use s¢ = 0.35 use N = 10
storms

use s¢ = 0.35
and N = 10

basic safety
coefficient 100% 87% 99% 84%

measurement and
short term errors 0% 13% 0% 13%

statistical
uncertainty 0% 0% 1% 3%

Table A10-11
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The partial safety coefficient for strength

The safety coefficient for the strength can be calculated using

g az fk P= -1 ( ln ) (A10.29)

in which ka and kb are coefficients determined by optimisation and given in the
PIANC manual [PIANC 1992]. These values are copied in Table A10-12. The value
of Pf is the allowable probability of failure during lifetime.

Formula, type of construction ka kb

Hudson, rock
Van der Meer, rock, plunging waves
Van der Meer, rock, surging waves

Van der Meer, Tetrapods
Van der Meer, Cubes

Van der Meer, Accropodes
Van der Meer, rock, low crested

Van der meer, rock, berm

0.036
0.027
0.031
0.026
0.026
0.015
0.035
0.087

151
38
38
38
38
33
42

100

Table A10-12  Coefficients used to determine the partial safety factor gz

In the Coastal Engineering Manual the same approach is followed, however in that
manual the values of gH and gz are directly given as a function of Pf and s¢.
For cubes, one can apply the Van der Meer equation:
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For the harbour of Scheveningen, one may use the wave data of Noordwijk. Filling
in values of Nod = 1 , N = 1500, D = 1.75, sm = 2.5%, this gives dn = 2.07, or 25 tons.
Notice that in the above equation for the wave height the Hss is used which has a
probability of exceedance of once in the lifetime of the structure, i.e. the “once in 50
years storm” (7.71 m). This wave height is multiplied by gH (1.13), resulting in a total
wave height of 8.71 m.
Traditionally one should use a wave height with a probability of 20% during the
lifetime of 50 years. This wave has a yearly exceedance of 1/225 = 4.4 · 10

–3
.

See also Chapter 3. The “once in 225 years wave” is 8.64 m (in the PIANC
guidelines it is called Hss

tpf) and compares quite well to the calculated value of 8.71
m.

Note that in the latter example, the limited water depth has not been taken into
account.
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A10.4.3 Probabilistic approach

Instead of the method with partial safety coefficients, one may apply a full
probabilistic computation, either on level 2 or level 3. For level 2 one may apply the
FORM method, for level 3 one may apply the Monte-Carlo method. In the examples
below the computer program VaP from ETH-Zürich has been applied.
The first step is to rewrite the design equation as a Z-function. For cubes the Z-
function is:
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In this equation seven variables are used. In a probabilistic approach one has to deter-
mine the type of distribution for each parameter.
The constant 6.7 from the Van der Meer equation is replaced here by a coefficient A
with a normal distribution. This coefficient has a mean of 6.7 and a standard
deviation describing the accuracy of the equation itself. According to Van der Meer
the standard deviation of the coefficient A is approximately 10% of its value.
Wave steepness is assumed to have a Normal distribution. The average steepness as
well as the standard deviation of the steepness can be calculated from the dataset of
Meetpost Noordwijk. If one considers only the heavier storms (i.e. storms with a
threshold of e.g. 4.5 m), the average steepness is 0.058, with a standard deviation of
0.0025.
We then have 56 storms in 20 years (i.e. 2.8 storms per year) with an average
duration of 7.2 hours. This means that the average period is 6.9 seconds, and that
there are consequently 3700 waves in a storm. However, the duration of the storms
varies quite a lot ( it may go up to 20 hours, which means that we have 10000 waves.
This means that N will have a large standard deviation. One can fit the calculated
waves in each storm and fit this to a distribution. However, the effect of the number
of waves is not that high so one may assume a Lognormal distribution (on cannot use
a Normal distribution, because the number of waves may become negative when
using high standard deviations).
Because the standard deviation in the block size (concrete cubes) is so small, this
parameter can be considered as a deterministic value. The acceptable damage level is
a target value, therefore this should also be a deterministic value.
Hss has a Weibull or Gumbel distribution. For the wave-height one may enter for
example a Weibull distribution, using the values of a, b and g as determined before.
This results in the following input table:
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parameter type mean standard
deviation

A
Nod

N
sm

D
dn

Normal
Deterministic

Lognormal
Normal
Normal

Deterministic

6.7
1

3000
0.058
1.75
2.4

0.67
-

3000
.0025
0.05

-

Table A10-13

One can compute the probability of (Z < 0), which is the probability of failure.

The target probability is 1/225 = 0.0044 per year. However, VaP gives the
probability per event. Because we have 87.3 storms per year, the target probability
per event becomes 0.0044 / 87.3 = 50*10

-6
. The weight of a cube of 2.4 m is 37.5

tons.
For this example using the FORM method a probability of failure of 45*10

-6  i s
found, which is quite near the target value. A Monte-Carlo computation gives a
probability of failure of 70*10

-6
, so quite comparable.

Figure A10-11

This computation is based on the fact that we have defined Nod = 1 as start of failure.
However, this is quite some damage. Lowering the value of Nod to 0.5 means that we
have to increase the block size to 2.65 m (39 tons) in order to obtain the same
probability of failure. Using a Nod of  0 means an increase to 3.80 m (44 tons)
In the above calculations the uncertainty in the determination of the parameters of the
Weibull distribution was not taken into consideration. Although this is common
practice, it is not fully correct. The mathematically correct way is to consider a, b
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and g as stochastic parameters with a mean and a standard deviation. One can
determine these values directly from the dataset, but it is not possible to apply these
values directly in a probabilistic computation. In practice this problem is solved by
introducing an extra variable M. This variable has a mean value of 1 and a standard
deviation which expresses the variation in the prediction of Hss using a Weibull or
Gumbel distribution. The Van der Meer formula then becomes:
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A problem is that the standard deviation of M depends on the value of Hss. On can
determine this value using the design value for Hss.
The standard deviation is given as:

¢ =
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s
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ss designH
(A10.33)

For sM an expression has been derived by Goda [Goda, 2000]:

s s sM z x= (A10.34)

in which sx is the standard deviation of all Hss values in the basic dataset and sz is
defined by:
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in which the coefficients are given by:

distribution a1 a2 c

Gumbel
Weibull, a = 0.75
Weibull, a = 1.0
Weibull, a = 1.4
Weibull, a = 2.0

0.64
1.65
1.92
2.05
2.24

9.0
11.4
11.4
11.4
11.4

0
0

0.3
0.4
0.5

Table A10-14

y is the reduced variate for the design value, our design value is a 1/225 wave, so y =
[ln(87.3*22)]1/1.24 = 6.34.
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In the example used, we have  a Weibull with a = 1.24; because this value is not in
the table, an interpolation is needed. For the example the following values were
being used: aa = 2.0, a2 = 11.4 and c = 0.35.
This results in a value of sz = 0.024. Given a sx of 6.85 (follows from dataset), this
means:
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6 85 0 024
8 64

0 02 (A10.36)

A recalculation with these figures gives a probability of failure of 157*10
-6
. In order

to bring this back to the required 50*10
-6

 we have to increase the cube size to 2.42 m.
So, this can be neglected.
However, if our dataset would have been considerably smaller (for example only 100
storms), this would change the value of sz to 0.175 and consequently sM¢ to 0.14. In
order to get a probability of failure in the order of the required 50*10

-6
 we have to

increase the cube size to 2.70 m(from 37.5 to 55 tons). Again this is for deep (18 m)
water conditions.
This shows that the size of the dataset has a considerable impact on the required
block size.

A10.4.4 Probabilistic calculation in case of a shallow foreshore

Statistical software does discard physical limitations. E.g., applying statistics in deep
water circumstances will give very high waves with very low probability. But in
shallow water these high waves cannot exist at all. In general the significant wave
height in shallow water is limited by the depth. So:

H hss b= g (A10.37)

in which the breaker index gb has a value in the order of 0.6. For individual waves gb

may have values up to 0.78, but for the significant wave height this value is much
lower, sometimes even down to 0.45.
For foreshores with a gentle slope one may assume that gb may have an average value
of 0.55, with a standard deviation of 0.05. The water depth in this equation is the
total depth, i.e. the depth below mean sea level + the rise of waterlevel due to tide
and storm surge.
With this information, one can rewrite the Van der Meer equation for cubes to:
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The water depth below mean sea level has a Normal distribution, but the standard
deviation in this parameter is usually so low, that it can be considered as a
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deterministic value. Of course in case large bed fluctuations are to be expected, one
may also enter this value as a stochastic parameter with a Normal distribution. The
surge has an extreme value distribution. For this value one can apply a Gumbel
distribution.

Figure A10-12  Extreme waterlevels in Hook of Holland

Again we look at the example of Scheveningen harbour. The water depth in front of
the breakwater in Scheveningen is 6 m below mean sea level. Long term waterlevels
are available from Hook of Holland, which are approximately identical to
Scheveningen. The exceedance can be given by:
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In this equation is g the intercept at the 100-line, and b is the slope parameter. From
the diagram one can derive that g equals 2.3 and that the slope b is 0.30.
The equation is based on the maximum surges per year, so the exceedance is also per
year, and not per storm. This implies that in this case the target probability of failure
is 1/225 = 0.0044.
This leads to dn = 1.85 m, or a block weight of 17.7 tons.
In principle one can in this case also add the statistical uncertainty by adding a factor
M in front of the surge height in the equation. However, because of the long dataset
and the limited extrapolation, this uncertainty is very small and may be neglected.
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Figure A10-13

Figure A10-14 Effect of standard deviation of gb on block weight

Changing the standard deviation in g from 0.05 to 0.1 has a considerable effect. To
obtain the same target probability of failure, one has to increase the blocks to dn =
2.2 m (30 tons).
A simplification made in this computation is that is assumed that in deep water, wave
steepness remains the same after breaking. This is probably not the case. The higher
waves will break (usually as spilling breakers) which decreases their height
considerably, but usually not the period. As a consequence the wave steepness in
broken waves is much less than the wave steepness at sea. Because in the Van der
Meer formula for cubes a low steepness gives smaller cubes than a high steepness,
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neglecting the change in steepness is a conservative approach. Be aware that in case
of natural rock the opposite is true.
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