
Towards the
Industrialization
of MDAO
D. De Vries

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft





Towards the
Industrialization

of MDAO
by

D. De Vries
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday December 11, 2017 at 09:30 (CET).

Student number: 4132033
Thesis registration number: 174#17#MT#FPP
Project duration: February 2, 2017 – November 8, 2017

Thesis committee: Prof.dr.ir. L.L.M. Veldhuis, TU Delft, FPP, Chair Flight Performance
Dr.ir. G. La Rocca, TU Delft, FPP, Supervisor
Dipl.-Ing. S. Binder, Airbus, Aeromechanic Systems, Supervisor
Dr.ir. M.B. Zaayer, TU Delft, Wind Energy

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface
Multidisciplinary Design Analysis and Optimization (MDAO) promises major advances in aircraft de-
sign. However, judging from todays aircraft, MDAO is clearly not fully embraced by the industry yet.
This is due to technical difficulties (coupling incompatible tools) and non-technical barriers (intellectual
property).

Recent research, such as the AGILE project, aims at enabling 3rd generation MDO, where collab-
oration of distributed teams is key. Maturing MDAO is important to eventually make Overall Aircraft
Design possible. However, the industry is still in the early days of 1st generation MDO application.

This thesis proposes a new 1st generation MDO ’pipeline’ benefiting from the latest tools developed
for 3rd generation MDO. This open-source tool-chain makes it easy to connect analyses and include
gradient information. It is shown that gradient inclusion yields dramatically reduced computational
costs. Rapid (re)configuration and inclusion of gradient information using this pipeline is demonstrated
by considering the Sellar problem and a wing optimization.

This report represents the culmination of all the work done over the course of the nine months
between February and November 2017. During this time, I was supported by experts, colleagues,
friends, family members, and loved ones. I would like to express my thanks to my academic supervisor,
Gianfranco La Rocca, supervisor in the industry, Simon Binder, and expert advisor, Imco van Gent.
Their advice and knowledge was invaluable to my work. A special thanks goes out to my colleague and
friend, Jasper Bussemaker, who supported me not only with many stimulating discussions about the
work, but also by getting into trouble with my on many Friday nights out. Next, two people without whom
I would never have been able to even consider ever writing a thesis deserve my deepest gratitude: my
mom and dad, Maarten and Yvonne de Vries. Finally, I want to thank my fiancée and the love of my
life, Sarah Rucker, who is always there for me when I need it the most.

Daniël de Vries
Delft, December 2017

iii





Contents

List of Figures vii

List of Tables ix

List of Code Fragments xi

1 Introduction 1

2 Background 7
2.1 Aircraft Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 History and Current Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Design Process Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 The Multidisciplinary Nature of Aircraft Design . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Design Requirements and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Wing Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Multidisciplinary Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Birth of MDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 MDO Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Difficulties of MDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 The AGILE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.6 The OpenMDAO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Methodology 35
3.1 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 High Level Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Coupling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Construction Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Architectural Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Core Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2 Utilities Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.3 Recorders Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Results 51
4.1 Scalable Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Sellar Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Aerostructural Wing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions & Recommendations 63
5.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Code 67
A.1 OpenLEGO core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1.1 openlego.core.abstract_discipline . . . . . . . . . . . . . . . . . . . . . 67
A.1.2 openlego.core.discipline_component . . . . . . . . . . . . . . . . . . . . 70
A.1.3 openlego.core.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.1.4 openlego.core.xml_component . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



vi Contents

A.2 Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2.1 XMLSchema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2.2 openlego.partials.partials . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Recorders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3.1 openlego.recorders.base_iteration_plotter . . . . . . . . . . . . . . . 93
A.3.2 openlego.recorders.base_lane_plotter . . . . . . . . . . . . . . . . . . 98
A.3.3 openlego.recorders.constraint_plotter . . . . . . . . . . . . . . . . . .101
A.3.4 openlego.recorders.normalized_desvar_plotter . . . . . . . . . . . .103
A.3.5 openlego.recorders.simple_objective_plotter . . . . . . . . . . . . .104
A.3.6 openlego.recorders.voi_plotter . . . . . . . . . . . . . . . . . . . . . . .106

A.4 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
A.4.1 openlego.utils.general_utils . . . . . . . . . . . . . . . . . . . . . . . .109
A.4.2 openlego.utils.xml_utils . . . . . . . . . . . . . . . . . . . . . . . . . . .114

A.5 Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
A.5.1 Sellar Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
A.5.2 Wing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Bibliography 251



List of Figures

1.1 Fleet of of the largest North American and European airlines: American Airlines and
Lufthansa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 First, second and third generation MDAO frameworks. Edited from [62] . . . . . . . . . 2

2.1 Traditional design process schematic. Based on [92]. . . . . . . . . . . . . . . . . . . . 10
2.2 Example of a DSM for the design process of an electric car. Taken from [89]. . . . . . . 11
2.3 Example of an XDSM for a MDF MDO architecture. Taken from [52]. . . . . . . . . . . . 11
2.4 Example of an XDSM involving stacked blocks. Taken from [52]. . . . . . . . . . . . . . 12
2.5 Typical aircraft design disciplines and their connections. Taken from [88]. . . . . . . . . 13
2.6 XDSM representation of fig. 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 The four monolithic MDO architectures. Taken from [60]. . . . . . . . . . . . . . . . . . . 21
2.8 Commutative diagram of the four monolithic architectures. Edited from [60]. . . . . . . . 22
2.9 MDO architecture classification diagram. Edited from [60]. . . . . . . . . . . . . . . . . . 24
2.10 Time of different activities performed during the design process using MDO or legacy

project management. Copied from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11 The general MDO based process and its three phases. Copied from [15]. . . . . . . . . 26
2.12 The concept of the AGILE Paradigm. Copied from [15]. . . . . . . . . . . . . . . . . . . 27
2.13 The collaborative architecture within AGILE. Copied from [15]. . . . . . . . . . . . . . . 28
2.14 Top-level overview of the KADMOS framework. Copied from [97]. . . . . . . . . . . . . 30
2.15 The lifecycle of an OpenMDAO ticket. Copied from [32]. . . . . . . . . . . . . . . . . . . 31
2.16 Class diagram of the core OpenMDAO classes (pre 1.0). Based on [33]. . . . . . . . . . 31
2.17 Class diagram of the core OpenMDAO classes. Derived from the source code of v.1.7.3. 33

3.1 Workflow diagram for OpenLEGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Coupling strategy which keeps the link detached from OpenMDAO. . . . . . . . . . . . 39
3.3 Coupling strategy which ties the link directly into OpenMDAO. . . . . . . . . . . . . . . . 39
3.4 OpenLEGO strategy schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Simplified class diagram of the most important classes of OpenMDAO 2.0 . . . . . . . . 42
3.6 Simplified class diagram of OpenLEGO’s architecture and its connections with OpenMDAO 43
3.7 Sequence diagrams of the creation and computation of DisciplineComponents . . . 44
3.8 N2 diagram showing the dependency of all computed properties on one another. . . . . 47
3.9 Part of the design variable lane plot during the wing optimization test case run. . . . . . 49
3.10 Part of the constraint variable lane plot during the wing optimization test case run. . . . 49

4.1 XDSM and N2 diagram of the Sellar problem using the MDF architecture . . . . . . . . 56
4.2 XDSM and N2 diagram of the Sellar problem using the IDF architecture . . . . . . . . . 56
4.3 XDSM of the wing optimization problem using MDF, generated by KADMOS . . . . . . . 58
4.4 N2 diagram of the wing optimization problem using MDF, generated by OpenMDAO . . 59
4.5 XDSM of the simplified wing optimization problem using MDF, generated by KADMOS . 60
4.6 Wing geometry and lift distributions of the initial and final wings . . . . . . . . . . . . . . 61

vii





List of Tables

2.1 Terminology and correspondingmathematical notation for MDO problems. Adopted from
[60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Meaning of the MDO architecture acronyms . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Average number of discipline function evaluations for across 100 complete optimization
runs using finite differencing (upper left hand corners), and using analytical gradients
(lower right hand corners) for all combinations of 𝑛፱ and 𝑛፲. . . . . . . . . . . . . . . . . 52

4.2 Differences between the average number of discipline function evaluations per configu-
ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Percent differences between the average number of discipline function evaluations per
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Number of function evaluations of the dAEDalus SteadyModel Initializer (dSMI), Aerody-
namic Model Initializer (dSAMI), Aerodynamic Analysis (dSAA), and Structural Analysis
(dSSA) for one gradient evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Geometric design variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Structural design variables. Note: The second to last row corresponds to the initial val-

ues, the last to the final values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Constraint values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix





List of Code Fragments
3.1 Generic structure of a partials XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 Example implementation of discipline 𝐷ኻ of the Sellar problem in OpenLEGO . . . . . . 55
4.2 Minimal example for the Sellar test case . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.1 Code of the openlego.core.abstract_discipline Python module. . . . . . . . . 70
A.2 Code of the openlego.core.discipline_component Python module. . . . . . . . 72
A.3 Code of the openlego.core.model Python module. . . . . . . . . . . . . . . . . . . . 82
A.4 Code of the openlego.core.xml_component Python module. . . . . . . . . . . . . 89
A.5 Partials XSD schema code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.6 Code of the openlego.partials.partials Python module. . . . . . . . . . . . . . 93
A.7 Code of the openlego.recorders.base_iteration_plotter Python module. . . 98
A.8 Code of the openlego.recorders.base_lane_plotter Python module. . . . . . . 101
A.9 Code of the openlego.recorders.constraint_plotter Python module. . . . . . 103
A.10 Code of the openlego.recorders.normalized_desvar_plotter Python module. 104
A.11 Code of the openlego.recorders.simple_objective_plotter Python module. 106
A.12 Code of the openlego.recorders.voi_plotter Python module. . . . . . . . . . . 109
A.13 Code of the openlego.utils.general_utils Python module. . . . . . . . . . . . . 114
A.14 Code of the openlego.utils.xml_utils Python module. . . . . . . . . . . . . . . . 119
A.15 Code of the test_sellar Python script. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.16 Sellar problem IDF CMDOWS file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.17 Sellar problem MDF-GS CMDOWS file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.18 Sellar problem MDF-J CMDOWS file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.19 Sellar problem input XML file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.20 Code of the Sellar D1 Python module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.21 Code of the Sellar D2 Python module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.22 Code of the Sellar F1 Python module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.23 Code of the Sellar G1 Python module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.24 Code of the Sellar G2 Python module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.25 Data schema of the Sellar problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.26 Code of the wing optimization test Python script. . . . . . . . . . . . . . . . . . . . . . . 165
A.27 CMDOWS file for the simplified wing optimization problem. . . . . . . . . . . . . . . . . 201
A.28 Input XML file for the simplified wing optimization problem. . . . . . . . . . . . . . . . . 202
A.29 Code of the wing optimization Aeroelastics Python module. . . . . . . . . . . . . . . 203
A.30 Code of the wing optimization ConstraintFunctions Python module. . . . . . . . . 204
A.31 Code of the wing optimization dLC (load collector) Python module. . . . . . . . . . . . . 204
A.32 Code of the wing optimization FWE (fuel weight estimator) Python module. . . . . . . . . 205
A.33 Code of the wing optimization ObjectiveFunctions Python module. . . . . . . . . . 205
A.34 Code of the Python module containing the dAEDalus disciplines. . . . . . . . . . . . . . 216
A.35 Code of the Matlab script of the geometric and structural model initializer discipline (dSMI).217
A.36 Code of the Matlab script of the aerodynamic model initializer discipline (dSAMI). . . . . 218
A.37 Code of the Matlab script of the aerodynamic analysis discipline (dSAA). . . . . . . . . . 218
A.38 Code of the Matlab script of the structural analysis discipline (dSSA). . . . . . . . . . . . 219
A.39 Code of the Matlab script of the lift distribution calculation discipline (dSLD). . . . . . . . 220
A.40 Code of the Matlab script of the full aerostructural loop of dAEDalus. . . . . . . . . . . . 220
A.41 Code of the Python module containing the fuel weight estimator discipline. . . . . . . . . 223
A.42 Code of the Python module containing the constraint and objective function disciplines. 227
A.43 Code of the Python module containing the collapsed, integrated aerostructural analysis

discipline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.44 Code of the Python module containing the wing object model discipline. . . . . . . . . . 246
A.45 Code of the Python module containing all the XPaths of the disciplines. . . . . . . . . . 249

xi





1
Introduction

How can MDAO be made more applicable for conceptual design in the industry? This is the question
this thesis attempts to answer. This section expands on this question and provides the reader with a
non-technical overview of the thesis.

Taking aeronautical engineering as an example, it is obvious from the product that MDAO is not fully
embraced yet in the conceptual design phase: the tube-and-wing configuration is still the standard,
fig. 1.1. This design makes it relatively easy to decouple the many disciplines that govern the design of

(a) American Airlines fleet [5] (b) Lufthansa fleet [57]

Figure 1.1: Fleet of of the largest North American and European airlines: American Airlines and Lufthansa

an aircraft into smaller chunks which are easier to analyze and design in isolation [34]. This approach
still relies heavily on scientific breakthroughs and incremental technological improvements on the level
of the individual disciplines [34]. However, as the science and technology of the disciplines mature,
the tube-and-wing configuration reaches the summit of its potential. The only way forward from there
with true potential improvement of the product and its lifecycle is to focus on interdisciplinary synergies.
In the long run, this means abandoning the relative safety of the tube-and-wing configuration in favor
of unconventional aircraft configurations. In fact, is expected that unconventional configurations arise

1



2 1. Introduction

Figure 1.2: First, second and third generation MDAO frameworks. Edited from [62]

naturally when the aircraft is analyzed optimized as a truly multidisciplinary system; that is, whenOverall
Aircraft Design (OAD) can be achieved using an MDAO system.

Recent work has been focused on developing tools and procedures for third generation MDAO
frameworks [62], fig. 1.2. In these 3rd generation frameworks collaboration of scientifically - but also
physically - separated teams of experts is key [14]. When a system being designed is considered as
a whole and in more detail, the complexity reaches a point where it makes less and less sense to
attempt to create a framework with tightly coupled analysis tools. Instead it becomes important that
knowledge is managed by those who are expert in their respective field, and for them to disseminate
their knowledge to the rest of the team. The analysis tools which are part of a design study stay within
the respective domains of each team’s expertise. They are connected to one another with a networking
strategy which allows for the transfer of data needed as input for, and resulting as output from each
team’s tools [9, 16]. As such the knowledge of each expert team can be shared with the others to
achieve a common goal without sacrificing control over their analysis tools. Hence, this approach
helps to protect intellectual property and respects the borders between corporate (network) domains
[9, 16]. It is a possible solution to overcome these important non-technical barriers encountered when
attempting to apply MDAO in the industry [11].

An example of a project taking this approach is AGILE: Aircraft 3rd Generation MDO for Innovative
Collaboration of Heterogeneous Teams of Experts [1, 14]. AGILE’s main target is the reduction of the
time needed to setup and solve an MDO problem by 40% [1]. The envisioned solution lies in the de-
velopment of a framework and frame of mind to support the move to 3rd generation MDAO [14]. The
frame of mind proposed by the project is known as the AGILE Paradigm [16]. Three concepts are for-
malized by the paradigm: Design Competence (DC), Knowledge Architecture (KA), and Collaborative
Architecture (CA). DCs represent analysis tools; KAs use the knowledge encapsulated by DCs to cre-
ate an architecture of multidisciplinary analyses; and CAs, in turn, make it possible to use knowledge
from distributed teams of experts without having to tightly couple their DCs. AGILE tries to enable the
move from 2nd to 3rd generation MDAO frameworks. If a system can be developed which allows for
this loose coupling whilst still achieving fast iteration turnaround times, MDAO can truly take center
stage in the engineering industry.

During conceptual design, it is of particular importance that an MDAO system can be configured
and reconfigured rapidly. At this stage of the design process the design freedom is maximal. This
means the design space is large, and the analysis tools are of relatively low fidelity. This phase of the
design process involves smaller teams of design engineers, which have to identify major options and
trade them off to one another. An MDAO system suitable for this phase of the design process looks
very differently than one targeting the detail design or even preliminary design phases. The engineers
using such a system during this early phase of the design need to have the freedom to extend and
modify the framework and architecture on the fly in order to enable them to quickly tradeoff different
approaches and find the best strategy. From this it can be deduced that extensibility and ease of use
are key requirements of an MDAO system suitable for conceptual design.

At the same time, high performance and fast turnaround times with respect to performing an MDA or
MDO run are required, as this will allow engineers to investigate more design options within a shorter
amount of time. Thus, greatly increasing the coverage of the full design space during a campaign.
However, when a sufficiently large design space needs to be covered by an optimization problem, and



3

hence the number of design variables increases, computational cost of function evaluations quickly
increases as well. In order to optimize a system using a gradient-based algorithm, gradients of inputs
to outputs are required. If tools are considered so called ‘black boxes’ – that is, simple in-/output
blocks – the only way to obtain the gradients is through finite differencing. This makes an already
expensive system even more expensive to optimize, since the number of function evaluations needed
at each design point scales directly with the number of inputs of each block in the system. To avoid the
computational cost from blowing up as the number of analysis tools and design variables increases it
is essential to utilize analytical gradients whenever they are available.

Hence, three key points can be identified. An MDAO system targeting the conceptual design phase
needs to:

1. be easily extensible;

2. allow for rapid (re)configuration of analysis tools and architecture;

3. make use of gradient information whenever it is available.

These three points answer the main question of how MDAO can be made more applicable to the
conceptual design phase in an industrial setting. They are in themselves also three sub-questions that
need to be answered:

1. How can an MDAO system be developed to be extensible?

2. How can a system allow for rapid (re)configuration of analysis tools and architecture?

3. How can gradient information be incorporated into such a system without sacrificing extensibility
and the ability of rapid (re)configuration?

Within AGILE, tools are considered to be black boxes. These black boxes are then coupled to
one another within a Process Integration and Design Optimization (PIDO) system. Two such systems
are targeted, namely the Remote Component Environment (RCE), which DLR develops, and Optimus,
developed by Noesis [96]. These PIDO systems are especially suitable for 3rd generation MDAO
frameworks, because they fully support remote analysis tools. Through a special protocol developed
within AGILE, known as BRICS, these tools can be used within large, integrated workflows in PIDO
environment, whilst remaining under full control of the team of experts that owns them [9]. BRICS is an
implementation of the networking strategy that was mentioned before, where data needed as input for
or resulting as output from analysis tools can be shared, without having to sacrifice intellectual property
and respecting the borders between domains. Furthermore, these systems have the advantage of
allowing the user to interact with their models intuitively through a Graphical User Interface (GUI). In it,
tools are represented by blocks, which can be dragged-and-dropped easily to rearrange the system.
However, the inputs and outputs of these blocks have to be connected to one another manually. This
makes reordering them or changing the MDO architecture actually very work intensive.

Recent work within the AGILE project, by Gent et al., has provided a solution to these shortcomings
in the form of KADMOS [95, 97]. This software allows the user to formulate and manipulate an MDO
problem from a higher, abstract level. In order to analyze how tools can be coupled to one another, and
how they can be part of various MDAO strategies, KADMOS uses graph theory [cite]. The software
uses a neutral data format as in- and output. This data format takes the form of the XML schema known
as CMDOWS [94, 96]. Within a CMDOWS XML file information about a repository of tools (DCs), the
Knowledge Base (KB), can be stored. Using KADMOS this information can then be used to construct
an overview of the possible connections between the DCs within the KB, known as the Repository
Connectivity Graph (RCG). Tools can then be easily removed and rearranged, the user canmark design
variables, constraints, and objective, and the user can specify the MDAO strategy using KADMOS’
API. The result is an overview of the fundamental problem, known as the Fundamental Problem Graph
(FPG). Finally, KADMOS can automatically add optimizer blocks, MDA converger blocks, meta-model
blocks, a coordinator block, and all connections between them and the DCs. The final overview of
the problem, cast in a specific solution strategy, is represented by a MDAO Problem Graph (MDG),
describing the tools and special blocks, their connections, and which variables are design variables,
constraints, and objectives, and a MDAO Process Graph (MPG), which describes in which order they
are to be executed.



4 1. Introduction

The true power of KADMOS/CMDOWS comes into the light after these graphs have been created
and stored in a CMDOWS file. The PIDO systems RCE and Optimus have been extended to allow the
user to parse a CMDOWS file, yielding a runnable workflow representative of the problem exactly as
it was formulated. In this thesis, this toolchain and workflow, taking a repository of tools through KAD-
MOS to an executable workflow, will be referred to as ‘the AGILE pipeline’ or simply as ‘the pipeline’.
Regardless of the choice between RCE and Optimus, the pipeline clearly satisfies the requirement
of rapid (re)configurability set before. However, the other two requirements are not (fully) satisfied.
This will be described next. Regardless, the notion of the Knowledge Base together with the abilities
of KADMOS and its neutral data format, CMDOWS, are an answer to the question of how to rapid
(re)configuration of MDAO problems can be achieved.

The pipeline as it exists presently does not, however, adequately answer the question of how to
achieve extensibility in such a system on all accounts. This is mainly due to Optimus being a proprietary,
closed source package. Because its code is not publically available, it is not possible to add to or change
functionality of the core of Optimus. The user is also not free to use parts of Optimus in any derivative
work, since the proprietary license agreement will not permit this. In contrast, KADMOS, CMDOWS,
and RCE enable extensibility by default, because they are made available as open-source software.
Open-source software naturally lends itself to extensibility, because anyone can obtain a copy of the
code and make changes/additions where they please. The concept of the Knowledge Base by itself,
being a concept, is easily extensible too, because anyone is free to add new definitions to it or derive
ideas from it.

Thus, being open-source is an important enabler of extensibility. However, it does not automat-
ically ensure that a software framework actually is extensible. For any software to be extensible its
architecture and codebase need to be developed with this requirement at its roots. If done properly,
Object-Oriented Programming (OOP) makes it easy to achieve reusable, extensible code [30]. KAD-
MOS follows this approach as well [95]. Therefore, it is proposed in this thesis that an open-source,
OOP framework would be the most suitable solution to the question of how an MDAO system can be
developed to be extensible.

Despite its disadvantage of being proprietary/closed source, Optimus does have an important ad-
vantage over the open-source RCE framework: it allows for analysis tools to specify gradients, whereas
RCE does not. Hence, the pipeline satisfies the requirement of utilizing analytical gradients if Optimus
is used. This comes at the cost of sacrificing the first requirement, however. Furthermore, there are
no provisions for dealing with analytical gradients in the current concept of the Knowledge Base and
within KADMOS/CMDOWS. Therefore, an extension to the concept of the KB would be required.

From this discussion, it is clear that the AGILE pipeline as it exists presently does not fully satisfy
the requirements listed before. Therefore, in order to truly convince the industry that MDAO can be
a valuable and useful tool in the conceptual design phase, a third end to the AGILE pipeline, next to
RCE and Optimus, is needed. This new end needs to be able to parse CMDOWS files containing
the definition of an MDO problem, automatically turn it into a representative, executable problem, and
make it easy to use gradient information whenever it is available. All the while, this system should be
open-source, object-oriented, and should be developed with extensibility and reusability at its core.

An optimization framework that fits the requirements is OpenMDAO, developed by the NASA Glenn
Research Center [31, 41, 63, 69, 70]. It is an open-source, object-oriented framework, written in Python,
which allows the user to decompose models into a set of smaller components (analogous to DCs).
The main advantage of OpenMDAO over RCE and Optimus is its powerful mathematical architecture,
Modular Analysis and Unified Derivatives

(MAUD), which enables efficient automatic multidisciplinary gradient evaluation [45]. OpenMDAO
has a clear and easy to use API allowing the user expose gradient information of any or all components
to the framework. Instead of performing the finite differences for these components to estimate the
gradients, the information provided directly by the tools is then used. The system level gradients are
computed automatically by OpenMDAO, by carrying out the chain rule from the individual components
to the top level. All the while, it remains possible to use black boxes as well. That is; supplying gradients
is optional on the discipline level, and not an all or nothing situation.

Furthermore, OpenMDAO allows a problem to be run on High Performance Computing (HPC) envi-
ronments easily using the Message Passing Interface (MPI). No extra code is needed to achieve this;
using OpenMDAO a problem can be set-up to run monolithically, parallel, and distributed with the same
codebase. This makes the framework perfectly suited to handle problems on an industrial scale, while



5

at the same time remaining extensible and easy to use.
This thesis proposes a solution to make MDAO more applicable for the conceptual design phase

in an industrial setting in the form of a new open-source software framework, bringing together the
strengths of the AGILE pipeline and OpenMDAO. An extension to the notion of the Knowledge Base
as proposed within the AGILE project is proposed, which allows for Discipline Components to specify
and communicate gradient information. Despite this extension, KADMOS will still be used to formu-
late and manipulate an MDO problem in this enhanced pipeline, yielding valid CMDOWS files. Then,
the extended definition of the KB, along with the definition of the CMDOWS schema, are used to au-
tomatically construct a fully functioning OpenMDAO representation of the problem by the proposed
framework. What sets the framework apart from the abilities of RCE and Optimus is that is uses the
extended notion of the KB to automatically supply analytical gradients to the OpenMDAO framework
whenever a DC provides them. The proposed system will benefit from the powers of the tools devel-
oped for 3rd generation MDAO, such as KADMOS, and uses them to improve the state-of-the-art of 1st
generation frameworks in order to warm the industry to the idea of widespread application of MDAO.
This solution is therefore the proposed answer to the main research question of this thesis.

The rest of this report is structured as follows. First, a detailed background of relevant research
and technology will be given. This overview is contained in chapter 2. Next, the technical work of the
thesis will be presented, in chapter 3. This chapter will describe the strategy and implementation of the
proposed software framework meant to answer the main question of the thesis. The capabilities of the
framework will be demonstrated by means of two use cases: the Sellar problem and an aerostructural
wing optimization problem. These will be described and their results presented in chapter 4. The report
will finally be concluded in chapter 5. Attached to this report is a list of references, ??, and an appendix,
appendix A. Parts of these will be referred to throughout the text.





2
Background

2.1. Aircraft Design
Aircraft design, as is true for any design process, involves trading off different characteristics against
one another to arrive at a final package that is able to perform all desired features within given limits
and with a satisfactory performance. The main focus of this thesis is the development of an MDO
architecture that should make this trading off more efficient than it is in a traditional design process.
More so, the goal is to develop and architecture that is more effective than the current state of the art
MDO techniques. It should be applicable to any design process involving multiple disciplines. However,
before discussing these abstract concepts, it is important to realize that it was problems related to
aircraft design that gave birth to what is now known as MDO [36–38, 40, 60, 78–81]. Furthermore, the
test case to asses the performance and abilities of the techniques developed in this thesis will be an
aircraft design problem. Therefore it is important to have a solid base overview of what aircraft design
is, when and where MDO arises from it, and how this test case fits in the overall design of the aircraft.

This chapter will start by giving a brief overview of the birth of aviation and aircraft design in sec-
tion 2.1.1. Then an overview is given of the steps that are taken to get from the conception of a new
design to the final aircraft, identifying the different phases of aircraft design, and what is taken into ac-
count during these, in section 2.1.2. A high-level overview of the different disciplines required to design
an aircraft will be given thereafter, in section 2.1.4, along with how these are connected to one another.
This will directly show where MDO can be used for aircraft design. Then the driving requirements and
objectives of aircraft design are discussed in section 2.1.5. This section will explain that wing design
has a large impact on the overall aircraft design, and will therefore be considered as benchmark during
this thesis. Finally, section 2.1.6 discusses the current approach of wing design and its shortcomings,
the design requirements of wings, as well as recent developments. This section will show that it is
important to appreciate the multidisciplinary nature of the design process, and that benefits can be
expected if this is done early in the design.

2.1.1. History and Current Work
The first flying contraptions created by man were kites, invented by the ancient Chinese around 1000
B.C. [19]. During the ages that followed the invention of the Kite, visionaries did not stop dreaming about
achieving human flight. However, it was not until the late 1700s and 1800s that the aerodynamics of
flight was starting to be understood and investigated within the modern scientific method.

In the 1890s Otto Lilienthal, a German engineer and aviation pioneer, became known as ”the father
of flight” after he became the first man to have flown a heavier than air aircraft in sustained flight.
What is more significant about Lilienthal, however, is his rigorous scientific approach. He studied the
flight of birds, and documented their wings’ aerodynamics. His observations lead him to write his
book ”Der Vogelflug als Grundlage der Fliegekunst”, which translates to ”Birdflight as the Basis of
Aviation” [55]. His book describes the fundamentals of flight, the design and aerodynamics of wings,
and even discusses the pressure distributions along sections and surfaces. Along with his earlier
scientific publications, books, and experiments, Lilienthaler’s work is considered instrumental in the
advent of aviation.

7



8 2. Background

The Wright Brothers were well aware of Lilienthal’s work, and recognized the importance of his
contribution to aviation [104]. However, the Wrights developed their theory of flight based on their own
wind tunnel experiments when they found the aeronautical data of Lilienthal’s did not give them correct
results. Their determination and scientific rigor let to their world famous first powered fights in 1903
[103].

An revolutionary aerodynamic discovery was made in 1904 by Ludwig Prandtl [6]. He presented
his concept of the viscous boundary layer at a mathematical congress in Heidelberg, Germany. A
publication followed describing the mathematics and implications of this new theory soon thereafter
[71]. Prandtl’s theory was incredibly important for our understanding of aerodynamics and is still applied
today in wing design.

Before World War I aircraft were constructed with wood and fabric [19]. Towards the end of the war,
however, metal started to make its way into aircraft construction. In 1915 the first all-metal aircraft took
flight for the first time: the Junkers J 1. Adopting metals as the main construction material for aircraft
brought a revolution to aircraft design. It vastly increased the possibilities of the designs.

The period between the first and second world wars became known as the ”Golden Age of Aviation”
[19]. During World War II flight speeds were pushed to the limit by both sides. However, the wing
designs of the time, being straight wings, produced excessive amounts of drag at high speeds. The
Germans were onto a solution to the problem, though, as early as 1930. Under the lead of Adolph
Bussemann, wing sweep was first investigated in 1935. This concept would enable higher speeds
than ever before and remains a standard in modern wing designs.

The next big advance in aviation can be ascribed to another German scientist: Dietrich Küchemann
[19]. He played an important part in the development of supersonic flight, helped develop the concept of
the delta wing, and is known for his work on the Concorde. His 1978 book ”The Aerodynamic Design of
Aircraft” [50] is still considered a standard textbook on aerodynamic design. Küchemann is also known
for his work on the transonic area rule and his ”Coke bottle” area distribution to minimize wave drag.
However, the transonic area rule is usually attributed to Whitcomb [99]. Furthermore, something even
more relevant to this work, both Küchemann and Whitcomb also did important work on novel wingtip
designs to reduce drag. Küchemann gives name to his invention, the Küchemann tip, and Whitcomb
is the man behind the winglet.

There are many discoveries, revolutions, and advances that were not covered in this short, selected
overview of the history of aviation and aircraft design. As mentioned before, the main focus of this work
is on novel techniques that use existing knowledge and analysis methods to design complex systems
such as aircraft. The interested reader is referred to works such as [19] that focus specifically on the
history of the aeronautical industry. However, standard textbooks on aircraft design, such as [46, 50,
72, 74, 92, 93], usually contain a more engineering overview of this history as well. Before concluding
this section a selection of state of the art areas of research will be discussed. Once more, only a few
topics are highlighted, because the focus is not on the development of these analysis methods.

Active boundary layer control, active flutter control, active gust load alleviation, natural laminar
wings, and advanced automated optimization are such areas that are actively being researched in
the industry. Active boundary layer control is actually a topic that was already being investigated in the
1920s [42] in the form of suction on airfoils to prevent flow separation. This concept is now actively
being investigated in the industry [13, 22, 51, 54, 58, 77].

Active flutter control and gust load alleviation are concepts that promises reduced wing structural
weights by actively using the control surfaces to prevent flutter and reduce the excess loads introduced
into the structure by gusts, turbulence, and as an effect of maneuvering. Once more, these concepts
are not new, but are becoming increasingly important because aircraft designs move to increasingly
slender, high aspect ratio wings or reduced sweep angles. The industry is investigating whether these
concepts are feasible and if they show enough promise to apply in commercial aviation [100, 101].

Natural laminar wings offer the promise of dramatically reduced drag by increasing the fraction of
the wing that experiences laminar flow; hence, moving the transition line as far aft as possible. This
concept is not new and has been investigated for decades. The most notable commercial aircraft
manufacturer actually looking into NLF in practice is HondaJet [28, 29]. However, it is still investigated
today [4].

Last, but certainly not least, advanced automated optimization techniques are being investigated,
benchmarked and applied widely. Of course this topic deserves some attention, because it is especially
relevant for this thesis. The key idea is to consider many of a designs parameters as design variables



2.1. Aircraft Design 9

and to define a function of these that ranks designs. Then advanced computer algorithms are applied
to change the design variables automatically and repeatedly to seek an improved design point. The
crux of automated, computer controlled aircraft design optimization, however, is the excessive compu-
tational cost of adequately high fidelity analysis software, as well as the large amount of highly coupled
disciplines that need to be taken into account if a somewhat detailed study is to be performed. This is
the topic of the next chapter. A notable research group on this topic is the MDO lab at the University
of Michigan [59] lead by Joaquim Martins. Martins and his team perform high fidelity aerostructural
optimizations of wings using full blown CFD and FEM analyses [48].

2.1.2. The Design Process
Most well established aircraft design textbooks divide the traditional design process in three phases
[46, 72, 74, 92, 93]

1. Conceptual design phase;

2. Preliminary design phase;

3. Detailed design phase.

The following description of the three design phases is based on [93]. In the conceptual phase largely
creative decisions are made w.r.t the configuration and overall layout of a new aircraft. Usually multiple
possibilities are explored and compared to one another according to some figures of merit. Crude,
empirical relations are employed to get rough estimates of a concepts’ viability and performance. Once
a promising concept is selected, the design progresses to the preliminary design phase. There is some
overlap at the start of the preliminary design phase with the conceptual design phase, where the overall
layout can still be adjusted based on early findings from the preliminary phase. In the preliminary phase
the configuration is designed and evaluated using predominantly analytical, medium fidelity methods. In
this phase, a large amount of iterations are usually required to arrive at a final configuration. Therefore,
high fidelity methods are generally avoided in the traditional process. At the end of the preliminary
design phase, the configuration is frozen and the detailed design phase is started. This last design
phase uses high fidelity methods to determine the exact performance of all the parts of the aircraft. All
parts of the aircraft, down to the bolts and rivets, have to be sized and analyzed here. At some point
during the detailed design phase, parts of the aircraft as it is at that point are build and subjected to
physical tests. This can be seen as the maximum fidelity analysis method one could employ to evaluate
the performance of a (part of the) design - it is also the most costly.

The classical schematic that is often shown to summarize this subdivision and the design process
as a whole is shown in fig. 2.1, with the three main design phases highlighted.

Indeed, there is some overlap between the different phases of the process. This allows for some
back-propagation of findings in more detailed analyses to earlier phases, but overall it is an inflexible
and unidirectional process. Themain downfall is the fact that the configuration is frozen at the end of the
preliminary phase. This means the detailed design phase cannot make adjustments to the configuration
if it is found this would be beneficial from more detailed analysis. This can lead to increased detailed
design cycle times, dramatically increased cost of manufacturing and, ultimately, unit cost [34].

Grose describes that the traditional design process is functionally oriented [34]. He explains fig. 2.1
as follows. Research and development is a constant, ongoing effort. The different disciplines that af-
fect the performance of aircraft are researched by teams both in-house within an aircraft manufacturer,
and independently from one another. The goal of this ongoing R&D is to discover and develop game
changing technology. These new technologies are pushed downward by the researches and incorpo-
rated into new aircraft designs. By operating as such, aircraft manufacturers tried to always have the
latest cutting edge technology and stay ahead of the competition. Grose explains that this approach
becomes less and less suitable as the industry matures, and most there is to know about the different
disciplines has already been mastered. Solely relying on new technological breakthroughs to remain
competitive is then no longer a viable business model. Instead, improvements can be made by attack-
ing the design process itself. As explained before, the traditional process is inflexible and unidirectional.
If, on the other hand, the complete design, including the configuration, were still being modified during
the detail design phase of the traditional process, or even during manufacturing, the process would of
course be extremely hard to control. However, if the vast majority or even the entirety of the process



10 2. Background

Figure 2.1: Traditional design process schematic. Based on [92].

were digital and automated, it would in theory be possible to take into account high fidelity details in
the overall design of new aircraft.

In this 1994 paper, Grose proposes a new model for the process of aircraft design. He calls it
a system oriented approach [34]. The main idea is to fuse the different disciplines as early on as
possible. Sharing knowledge and techniques amongst them. Furthermore, a dedicated team is put in
charge of combining the knowledge from all disciplines into a single, best design. This team is now
aware of all the disciplines and can take all of them into account, including their interactions. The
expertise of the individual disciplines is seen as a set of competences, rather than a set of pipelines,
in this new model. This enables the design integration team to direct the different competence teams
in a much more collaborative, reactive, and flexible manner. Hence, it is possible to (back-)propagate
findings from one discipline to the others in order to account for the interdisciplinary influences. In other
words: the multidisciplinary nature of the design process is embraced rather than compartmentalized.
Interestingly, this interdisciplinary corporation was not new; scientists like Schmit [78–81] and Haftka
[36–38, 40] already realized that better performance could be attained by fusing disciplines starting in
1960. This will be elaborated on in greater detail in ??, however. What is important to take away from
this notion is the fact that MDO automatically arises here from this improved design process model.

2.1.3. Design Process Management
In 1981 Steward introduced the Design Structure Matrix (DSM) to the engineering community [89].
The purpose of this concept was to visualize and manage the design process of complex systems like
aircraft. Figure 2.2 shows the final example Steward gives of a DSM for the design of an electric car
concept.

This is a tool still used by engineers today to organize, plan, and manage the design process of
complex systems involving multiple, interacting disciplines. Disciplines are listed by name below one
another on the left side of thematrix. They inhabit the position in thematrix that is in their respective row,
and on the diagonal. In fig. 2.2 these locations are marked with a circle and a cross. The off diagonal
crosses and numbers represent variables passed between the disciplines. In Steward’s original DSM
concept, variables below the diagonal are passed forward, whereas those above the diagonal are
passed backward. This is opposite from the modern implementation, where feed-forward variables
are above, and feed-back variables are below the diagonal. In the ideal situation only feed-forward
variables would be present. If this were the case, no loops would be required to obtain a converged,
consistent set of variables. All disciplines would only have to be executed once and in the oder in which
they appear in the DSM. However, often there will be disciplines that need input from disciplines that
are executed after them, and hence loops are necessary. By partitioning the DSM it can be made clear



2.1. Aircraft Design 11

Figure 2.2: Example of a DSM for the design process of an electric car. Taken from [89].

where these loops exist. This is shown in fig. 2.2 with the rectangles. Feed-back variables and loops
are encapsulated by these partitions.

The name ”Design Structure Matrix” is often interchanged arbitrarily with the name N2-chart (from
𝑁 ×𝑁). The original description of the N2 diagram was first described by Lano in 1977 [53]. The main
difference is that it included descriptions of variables passed between the different disciplines.

Recently, Lambe and Martins proposed an extension to the DSM/N2-chart called Extended Design
Structure Matrix (XDSM) [52]. An example is shown in fig. 2.3.

Figure 2.3: Example of an XDSM for a MDF MDO architecture. Taken from [52].

Like the DSM’s/N2-charts, analysis/disciplines are shown on the diagonal and connecting variables
are shown on the off diagonal positions. Note that feed-forward variables are always above, and feed-
back variables always below the diagonal in XDSM’s, as with modern DSM’s/N2-charts. The definition
of the XDSM scheme adds the use of colors and block shapes, and the formalization thereof, to make
clear how they differ in function. Variables are represented by parallelograms. White variable blocks
represent system in- and output variables (design variables), whereas gray blocks represent internal



12 2. Background

variables passed between disciplines (coupling variables). Green rectangles represent analysis mod-
ules; for example, an aerodynamics tool that calculates the drag based on the wing shape. Generally,
these modules are considered black boxes, the internal workings of which are not known and/or not
of interest to the system integrator. Red rectangles represent function blocks. These do not perform
analyses of their own, but instead use output from one or more analysis modules in some form of
numerical formula; e.g., to compute objective and/or constraint function values. The orange rounded
rectangles represent so called multi-discipline analyses (MDA). In a sense, they combine multiple dif-
ferent analyses modules to yield one, consistent set of variables. Hence, they do not execute any
analyses internally, but call their child analysis modules and gather their output until some predefined
condition is satisfied; for example, convergence criteria. Effectively, an MDA block with one or more
child analysis modules could be replaced by a single analysis block performing the work of the MDA
and all the containing analyses. This can be seen as the equivalent of a partition in the DSM. Finally,
blue rounded rectangles represent optimizer blocks. They are similar to MDA’s: they do not perform
any analyses of their own, but instead call all child blocks repetitively until an optimum set of design
variables is obtained.

Another important addition that the XDSM scheme describes are the thick, gray data channels and
thin, black data flow lines. The data channels make clear how data flows through the system, whereas
the data flow lines show the order of execution. Along with these two definitions, the numbers inside
the variable and execution blocks are formalized. These numbers indicate the order of execution/use
of the respective blocks, starting from 0. Two numbers separated by a comma, followed by a rightward
arrow towards a third, signify a loop. The first two numbers are the first and last time the block is
executed during the loop, and the number following the arrow is the block to be executed first interior
of the loop. The XDSM of fig. 2.3 has two such loops: the optimizer loops between indices 0 and 7,
and calls 1 within the interior of its loop first; the MDA block loops between 1 and 5 and starts 2 in its
interior loop.

Finally, it is also possible to stack multiple blocks to summarize the XDSM if they are executed
in parallel. An example of an XDSM featuring this is shown in fig. 2.4. Here an arbitrary number

Figure 2.4: Example of an XDSM involving stacked blocks. Taken from [52].

of analysis modules are executed in parallel within an optimization loop. This is an example of an
Individual Discipline Feasible, or IDF MDO architecture [60], but more will be said about this in ??.

2.1.4. The Multidisciplinary Nature of Aircraft Design
A general overview of systems design processes has been given (section 2.1.2) and a means to man-
age them has been discussed (section 2.1.3). Now it is time to discuss aircraft design specifically within
those frameworks.

Figure 2.5 shows the typical disciplines involved in the design of an aircraft and the connections
between them as presented by Sobieszczanski [88]. He also shows a corresponding N2-chart. How-
ever, it is not representative of all the connections in fig. 2.5. Instead a XDSM representative of all the



2.1. Aircraft Design 13

Figure 2.5: Typical aircraft design disciplines and their connections. Taken from [88].

connections is shown in fig. 2.6. The central ”Aircraft program” block from fig. 2.5 is represented by

Aircraft
program

Aerodynamics

Stress

Propulsion

Performance

Systems

Controls

Structural
dynamics

Certification

Figure 2.6: XDSM representation of fig. 2.5.

an MDA block here. This block can be seen as a common database containing both geometrical and
performance characteristics of the aircraft that can be used and fed by the different disciplines. When
used in an optimization, this block could be in charge of delivering a consistent design to the optimizer,
for example. All the other disciplines are represented by analysis blocks. The connections between
them are represented by empty data channels, since the exact variables that are passed between the
disciplines and the aircraft program were not specified in [88]. However, from these figures it is directly
apparent that aircraft design is indeed very multidisciplinary and that there are a lot of interdisciplinary
interactions.



14 2. Background

2.1.5. Design Requirements and Objectives
Like any design, aircraft design is driven by design requirements. These requirements are imposed
by government regulations, such as the Federal Aviation Regulations (FAR) [24] and the European
airworthiness requirements (CS25) [23], as well as by the market/customer. Certification requirements
put lower limits on performance and safety aspects. New aircraft have to fulfill all of these to be allowed
entry into service. Market/customer requirements are generally not directly imposed on the design
by customers. Instead the manufacturers make an assessment of what what they predict the market
desires in a new aircraft. The market requirements can be put into the following categories [49]:

• Community acceptance;

• Airport compatibility;

• Economic efficiency;

• Reliability and robustness.

Community acceptance mainly has to do with how well passengers evaluate the aircraft, as well as
how noisy the aircraft is. Airport compatibility determines which airports an aircraft can service, putting
requirements and restrictions on, for example, landing/takeoff distance, airport gate space, etc. Eco-
nomic efficiency mainly refers to how cost effective operating an aircraft is. This depends on factors
like fuel usage, turnaround time and maintenance costs. However, the latter is also captured by the
reliability and robustness. For this thesis the main driver for the economic efficiency category is consid-
ered to be fuel efficiency, which is valid especially during conceptual/early preliminary design. Finally,
reliability and robustness refer to maintainability. A reliable aircraft will require less maintenance, and
a robust design makes maintenance simpler and cheaper.

After the hard requirements imposed by governmental regulations, economic efficiency is usually
considered the most important driver of aircraft design and optimization. As was just mentioned, in
this thesis the main economic factor for aircraft operators is considered to be fuel efficiency. A good
measure for the fuel efficiency of aircraft is the specific range (SR). This is a measure used by Airbus
internally as well when determining and optimizing the Direct Operating Costs (DOC) [7]. The specific
range is defined as the ratio of the distance covered and the fuel burned. According to [7] the specific
(ground) range can be written as

SR =
𝑎ኺ (𝑀 ፋ

ፃ)
SFC

√ᑋ/ᑋᎲ
𝑊
, (2.1)

where SR is the specific range considering the ground distance covered in mNዅ1, 𝑎ኺ is the speed of
sound at sea level in msዅ1, 𝑀 is the Mach number, 𝐿/𝐷 is the aerodynamic efficiency, SFC is the
specific fuel consumption in N sዅ1 Nዅ1, 𝑇/𝑇ኺ is the temperature fraction at the flight altitude, and 𝑊
is the weight of the aircraft in N. However, a measure that is more useful when comparing the fuel
efficiency of different aircraft with potentially different missions, can be obtained by multiplying both
sides of eq. (2.1) with the payload weight, 𝑊PL. Let this parameter be known as the payload specific
range (PSR). It can be written as

PSR =
𝑎ኺ (𝑀 ፋ

ፃ)
SFC

√ᑋ/ᑋᎲ

ፖ
ፖPL

. (2.2)

This new quantity expresses how far a given payload weight can be flown per unit fuel burned, its units
are NmNዅ1. It depends on three factors that can be influenced to increase efficiency:

• The aerodynamic characteristics of the aircraft, 𝑀 ፋ
ፃ ;

• The engine characteristics, SFC

√ᑋ/ᑋᎲ
;

• The weight to payload weight fraction, ፖ
ፖPL

.



2.1. Aircraft Design 15

The engine characteristics are fully captured by the fraction of the SFC and the temperature fraction,
and not by the SFC alone, because the operation of the engine depends heavily on the temperature and
hence the external environment. Installing a more efficient engine means this fraction becomes smaller,
which leads to an increased PSR. The term 𝑀 ፋ

ፃ fully captures the aerodynamic characteristics of the
aircraft. The fraction 𝐿/𝐷 by itself is the aerodynamic efficiency, but it depends on the Mach number,𝑀.
Therefore the product of the two is amore accuratemeasure of the aircraft’s true aerodynamic efficiency
taking into account this Mach number dependence. An aerodynamically more efficient aircraft has a
higher value for this term, and therefore a higher PSR. Finally, the weight fraction captures how efficient
the aircraft has been designed in terms of weight. Reducing the structural, systems, and fuel weight
reduces this fraction and therefore increases the PSR.

In this thesis engine characteristics are not taken into account. Thus the aerodynamic and weight
characteristics of the aircraft are considered the driving factors in the design of an economically efficient
aircraft. As will be discussed in the next section these two should not be considered separately of one
another, because they are highly coupled.

2.1.6. Wing Design
Traditionally the wing design process is as follows, as outlined by Roskam in [75]. First a number of
different configurations are thought up by a small group of engineers. Then, in the conceptual design
phase, the general planform parameters such as the surface area, aspect ratio, span, etc. are deter-
mined through an iterative process. The design is based on regression analysis of data from reference
aircraft that perform similar missions as the new design is intended and low fidelity analysis tools, as
was explained for general aircraft design in section 2.1.2. The most promising configuration is then
selected from the available options.

Next, the aerodynamics team designs the wing in more detail, based on higher fidelity analyses
methods. The end results is a refined set of wing design parameters along with a description of the so
called ”cruise flight shape” [102]. The cruise flight shape shape is the shape the wing assumes under
design cruise loads. It is the shape for which the wing has been optimized by the aerodynamicists; it
is what they intend the wing to look like during cruise.

Then the design is handed over to the other design teams. The structures team is put in charge
of designing a wing structure able to handle the loads imposed on the wing during on- and off-design
conditions, as specified by FAR/CS25 [23, 24], and transfer those into the rest of the airframe. Load
conditions such as a 2.5𝑔 pull-up maneuver, high speed dive, and ground loads are taken into ac-
count, for example. Regardless of these load cases and the structural requirements introduced onto
the structural design by these, the structures team has to design the structure in such a way that the
wing assumes the intended cruise flight shape specified by the aerodynamics team during cruise con-
ditions. Obviously this greatly limits the design freedom and agility. However, the process is linear and
easy to manage with limited technology and resources, which is why it made its way into the standard
commercial design process.

This static, unidirectional process not only has the potential to lead to suboptimal designs, it can
also lead to a number of dangerous instabilities caused by the interaction of the structural deformations
and aerodynamics during off-design operation if these are not taken into account. This interaction
between structural deformations and aerodynamics is what is known as aeroelasticity. Airworthiness
requirements put stringent limits and margins on the aircraft’s performance during these off-design
conditions. An important example of this are the specified gust loads that the aircraft has to be able to
sustain. During gusts the loads on the airframe can fluctuate violently. High loads can be imposed on
the structure that need to be absorbed without failure. In the traditional design process mathematical
methods are employed to predict the effect of these loads. Based on the predicted stresses and torque
resulting from these loads the structure is stiffened to avoid failure, often with a relatively large safety
factor.

Luckily there are also success stories of endeavors to attack the problem in a more fruitful manner.
Passive load alleviation, also referred to as aeroelastic tailoring, is a concept that uses a clever wing
structure design that neutralizes the feedback between the aero loads and structural deformations
causing excessive stresses and torque in the structure. More effort is required to be put into the design,
and intensive, two-way communication and feedback between the aerodynamics and structures teams
is required to achieve this. However, in return the final weight of the wing structure can be reduced.

Gust load alleviation can be taken a step further still. Active aeroelstic wings use control surfaces



16 2. Background

to purposefully twist and deflect the wing at will. By doing so, not only gust load alleviation can be
achieved, but maneuver loads can be reduced, and dynamic phenomena such as flutter can be con-
trolled as well. The latter is known as active flutter control. Furthermore, active aeroelastic control can
be used to increase the maneuverability of the aircraft beyond classical limits. Successful flight tests
were performed by a joint team of the US Airforce, Boeing’s research division Phantom Works, and
NASA with a modified F/A-18, the X-53, displaying the advantage of even more cooperation between
structural and aerodynamic design teams.

Besides gust and maneuver loads several aeroelastic instabilities need to be considered as well.
What follows is a summary of the most common instabilities. They can be put into two categories: static
and dynamic.

Static instabilities are caused by a positive feedback between aerodynamic loads and the resulting
structural deformations. Two such instabilities are observed in aircraft: divergence and control reversal.
Divergence occurs when positive wing bending induced by aerodynamics loads increases the wing
twist (positive, nose up). A larger wing twist causes the load to move further outboard and also further
increases the lift. This in effect leads to an increased bending moment which bends the wing further,
and increases the twist even more, etc. This leads to a theoretically infinite bending moment, which
of course leads to structural failure of the wing. Control reversal is in a way the opposite effect. It
occurs when a trailing edge control surface deflection causes the wing to twist in the opposite direction.
This can happen when a downward deflected trailing edge locally moves the application point of the lift
vector aft and behind the elastic axis of the section. This causes a negative bending moment about the
y-axis, twisting the affected part of the wing with its leading edge downward. The local angle of attack
is then reduced, which leads to the opposite effect that was expected and intended when the control
surface was deflected.

Dynamic instabilities are caused by a delayed interaction between structural deformations and aero-
dynamic loads, leading to oscillatory motion. Flutter and buffeting are two examples of such instabilities
that can occur during flight. Flutter is a direct coupling between loads and deformations of the wing.
Buffeting happens when shocks on the top and bottom surface of the wing oscillate back-and-forth,
which in turn leads to an oscillation in the magnitude and action point of the local aero loads. Both
lead to an up-and-down shaking or vibrating and/or back-and-forth twisting of the wing, making control
difficult or impossible and lead damage to the aircraft and its payload. Besides the dangers of these
effects, they are to be avoided when designing a commercial jet in particular as well, because they
cause dismal ride quality.

The airworthiness requirements stipulate limits within which an aircraft should never experience
these instabilities. For example, CS25 stipulates that transport aircraft should not experience buffet
at speeds of up to 15% above the dive speed [23]. In the traditional wing design process divergence
was originally solved by simple trial and error. Control reversal was a phenomenon that was often
encountered by test pilots, leading to accidents more than once. The same goes for flutter and buffet.
American test pilots of experimental aircraft would often report that the aircraft would start shaking and
trembling uncontrollably when flying it at or above certain speeds. The shaking would stop once the
speed was reduced. Obviously this all revealed a lack of knowledge and appreciation for the intricate
interaction of aerodynamics and structures in the traditional design process. As a remedy models were
deviced to predict when these instabilities would occur. Aircraft were designed to stay well within these
limits within the full anticipated range of the flight envelope, often with heavy safety factors. The net
effect of this approach is a heavier structure and/or limited wing designs.

Modern aircraft designs use new materials and techniques that are much lighter and stronger, such
as composites and composite-hybrid materials. If not properly designed, these materials hold the
potential to make an aircraft more sensitive to gust and maneuver loads, and more susceptible to
aeroelastic instabilities. The unidirectional design process has already proven to be problematic in this
context. For example, during data review the FAA concluded that Boeing’s new version of the 747, the
747-8, had a flutter problem at certain load cases [25]. If there had been more interaction and feedback
between the aerodynamics and structures departments, this could have been foreseen and avoided.
To address the issue without having to redesign the entire aircraft, Boeing modified the control system
to actively combat the flutter at the affected flight/load conditions. They successfully convinced the
authorities that the system was sufficiently capable of removing the flutter and sufficiently reliable to
justify a controller approach to solving the problem [56]. In effect, the safety margin on the requirements
of a the structure alone to handle flutter had been pushed back.



2.2. Multidisciplinary Design Optimization 17

This trend has been continued since, allowing manufacturers to save weight on the structural design
by implementing active load alleviation controllers. An interesting question can be posed at this, though:
would it be possible to realize even more savings by fully embracing the aeroelastic nature of wings
early in the design process and tailoring the wing, both passively and actively, given the possibility of
pushing back the margins? This is the question being addressed by, for example, the Flexop project,
funded by the EU [27].

2.2. Multidisciplinary Design Optimization
Designing a new, complex system almost always involves more than one discipline - usually a wide
range of them. This was highlighted in section 2.1. This multidisciplinary nature has led to the birth
of Multidisciplinary Design Optimization (MDO), which, according to Martins and Lambe [60], can be
attributed to Schmitt [78–81] and Haftka [36–38, 40], who involved more than one discipline in structural
optimization studies. Since then it has evolved into a mature, separate field of research. Aircraft design
in particular is an excellent example of a highly coupled, multi-objective and multidisciplinary practice.
These three markers, high level of coupling between disciplines, multiple objectives, and large number
of disciplines, are the main reasons for using MDO [60].

One of the most extensive reviews of multidisciplinary design optimization approaches is the work
of Joaquim R. R. A. Martins and Andrew B. Lambde [60]. This work could very well be used as a
textbook for scientists and engineers seeking an introduction into the field of MDO, and as a reference
for those experienced with it in the field. It is cited by nearly all authors in the field of MDO that published
after its publication, that were surveyed for this literature study. This makes it one of the most relevant
references within the entire field of MDO, even though it was published four years ago as of writing this
thesis - in 2013.

The paper starts with an overview multidisciplinary design optimization. It describes what MDO is
in the most generic sense:

”[...] a field of engineering that focuses on the use of numerical optimization for the
design of systems that involve a number of disciplines or subsystems.” [60]

The paper explains that the need to use MDO arises from the fact that the performance of complex
systems has a strong dependency on the interactions of the disciplines that govern them. Hence, solely
considering each governing discipline separately leads to suboptimal designs. This was also discussed
in section 2.1. Furthermore, the design process can be sped up by employing automated design tools
and applying MDO from the beginning.

Next, a brief history of MDO is given. Matins and Lambe attribute the birth of MDO to eight papers
coauthored by Schmit [78–81] between 1960 and 1984, and by Haftka [36–38, 40] between 1973 and
1979. By doing this, Martins and Lambe recognize the importance of Schmit’s and Haftka’s early work
for what would evolve into one of the most important engineering fields in modern engineering design.

What follows is an account of this history, by review of the papers by Schmit and Haftka that Martins
and Lambe mention. These works are the first contributions to creating the field of multidisciplinary
design optimization. Therefore they bear important historical significance to MDO and therefore to
this thesis. Although the actual optimization usecases described in these papers are outdated, these
papers introduce and define concepts and terminology still used in the current state-of-the art research.
In this respect they are relevant to this thesis because of more than their historical value, because they
define the common point of departure still employed by scientists and engineers today.

2.2.1. The Birth of MDO
Lucien A. Schmit researched aeroelasticity and structural analysis. He approached designing and an-
alyzing structural systems by what he called ”systematic synthesis”, as he describes in [80]. This is
significant, because it is a first description of numerical optimization for engineering problems. Schmit
was also interested in aerodynamic analysis and design. He published a book on supersonic airfoil
design in 1965 [79]. In this book Schmit describes design methods that also account for aeroelas-
tic effects in the design of hypersonic airfoils. It is the first work that describes engineering design
techniques combining multiple disciplines. Hence, it is a very important, first reference for the advent
of multidisciplinary design optimization. In his 1981 and 1984 works [78, 81] he details his concept
of structural synthesis further. He defines the concepts of design variables, objective and constraint



18 2. Background

functions. These definitions form the cornerstone of all optimization approaches now. However, it
is significant to realize that this was one of the first works to list these definitions so that readers of
the paper and researchers in the field would have, as Schmit writes himself, ”[...] a common point of
departure” [78].

Raphael T. Haftka also contributed greatly to the development of MDO. Like Schmit, Haftka was
interested in coupling advanced analysis software, like Finite Element Methods (FEM), to optimization
codes. In 1973 Haftka published a paper titled ”Automated Procedure for Design of Wing Structures
to Satisfy Strength and Flutter Requirements” [36]. The indications of this paper are pristine, as it de-
scribes a true multidisciplinary design optimization of wings, taking into account aerodynamics, struc-
tures, and even control. Then in 1975 he published another paper in which he compares two different
optimization procedures taking into account flutter requirements [40]. This is a move towards treating
MDO in a more abstract manner, discussing possible ways to approach an optimization problem, as is
done in the modern literature about MDO architectures such as this thesis. In 1977 Haftka coauthored
yet another paper on wing optimization [37]. In this paper the wing planform shape is also taken into
account, and aerodynamic characteristics are constrained and optimized. This problem is still attacked
today by scientists and engineers. Haftka’s paper is therefore profoundly important historically, since
it is the first of its kind in this large research field. Later, in 1979, thermal analysis is added as another
discipline to his optimization studies [38]. Haftka authored and coauthored countless other papers and
books on the matter. In fact, in 2016 a paper was published by the title ”Parallel surrogate-assisted
global optimization with expensive functions – a survey” [39], which is precisely one of the techniques
this thesis focuses on.

2.2.2. Definitions and Terminology
As was mentioned in section 2.2.1, Schmit’s 1981 paper, [78], is one of the first papers to list the
definitions and concepts still in use today when describing optimization problems. It is fitting to use this
paper as reference for listing the definitions and terminology of MDO.

Two types of parameters are defined by [78]:

• Preassigned parameters;

• Design variables.

The first denote constant parameters of a design that are either not allowed to be changed, or param-
eters which cannot be controlled. Design variables, on the other hand, are parameters that can be
changed, and should be changed, in order to find an improved or optimal design.

Next, Schmit describes the role of load conditions and failure modes. In the context of his work,
which is in the field of structural engineering, load conditions refer to a combination of mechanical and/or
thermal loads to which the design will be subjected. Failure modes are described as ”[...] structural
behavior characteristic subject to limitation” [78]. The combination of load conditions and failure mode
limitations enter into an optimization problem in the form of (in)equality constraints. These constraints
depend on the design variables, and determine whether a set of design variables is feasible or not.

Finally, an optimization algorithm needs a means to evaluate and compare designs. This is done
by defining an objective function, which is dependent on the design variables, and attributes a score to
each combination of design variables.

A slightly different/extended terminology and classifications of parameters will be used here, follow-
ing the example of Martins and Lambe [60]. Table 2.1 summarizes both the different named parameters
and the corresponding mathematical notation. This table has been adopted directly from [60]. The spe-
cific terminological terms have been printed in bold.

Design variables have the same definition as described by Schmit [78]. These could be parameters
such as the wingspan and aspect ratio. Schmit’s preassigned parameters are not explicitly mentioned
in this terminology. They are considered non-present in the optimization problem formulation. They
could, however, consistently be put under the header of state variables within this terminology.

Coupling variables are considered part of the design variables by Schmit. Here, however, they
are considered separately because they play a different role in the MDO architectures than regular
design variables do. Furthermore, the ratio of the amount of coupling variables and the number free
design variables can be an indication of how highly coupled an MDO problem is. This indication can
aid the selection of a suitable MDO architecture, since some architectures are better suited for highly



2.2. Multidisciplinary Design Optimization 19

Table 2.1: Terminology and corresponding mathematical notation for MDO problems. Adopted from [60].

Symbol Definition
𝑥 Vector of design variables
𝑦 Vector of coupling variables (outputs from discipline analyses)
𝑦̄ Vector of state variables (variables used inside only one discipline analysis)
𝑓 Objective function
𝑐 Vector of design constraints
𝑐፜ Vector of consistency constraints
ℛ Governing equations of a discipline analysis in residual from (discipline analysis

constraints)
𝑁 Number of disciplines
𝑛() Length of a given variable vector
𝑚() Length of a given constraint vector
()ኺ Functions or variables that are shared by more than one discipline
()። Functions or variables that apply only to discipline 𝑖
()∗ Functions or variables at their optimal value
̃() Approximations of a given function or vector of functions
̂() Independent copies of variables distributed to other disciplines

coupled problems than others [60]. An example of a set of coupling variables when performing an
aeroelastic optimization of a wing are deformations of the structure. These are calculated by a structural
analysis module given a loading distribution, and are needed by an aerodynamic module to calculate
the aerodynamic forces and moments for the deflected wing shape.

The state variables were already mentioned and require little attention. They are contained within
a single discipline analysis. These values are generally not returned as outputs by analyses and are
not of interest to the rest of the MDO architecture. Especially when a discipline analysis module is
a black box, these variables are even unaccessible from the outside. For example, if a vortex lattice
method (VLM) is used to calculate the lift and induced drag of a wing, influence coefficient matrices are
calculated by the tool. These are generally only used inside the VLM and can thus be considered state
variables.

Objective functions take design variables and coupling variables as input and return a scalar value.
These values can then be used by optimizers to find an optimal design point. This could be a function to
calculate the amount of fuel required to perform amission given the aerodynamic, structural, and engine
characteristics, for example. Design constraints are similar to objective functions. They also process
design and coupling variables into scalar values. Generally an MDO problem has multiple constraints.
These are then grouped in a vector of the constraint values. In [60] only inequality constraints are
considered. This convention is adopted in this thesis as well. An example of a design constraint in
aircraft design is a minimum cruise velocity or the requirement that stresses in the structure always be
lower than the yield stress of the material.

When disciplines are connected by one or more coupling variables, they have to be run in sequence.
However, they can be decoupled by making a copy of the involved coupling variables such that they can
be run in parallel. The result is that the coupling variables calculated by one module and the copies
from the previous iteration used as input by another may be different, or inconsistent. To drive the
optimizer towards convergence a set of equality constraints are put in place that are satisfied when the
copies of the coupling variables match their actual, updated values. These constraints are referred to
as consistency constraints.

Finally, sometimes it is possible to exploit knowledge of the internal structure of an analysis disci-
pline. In this case the previous statements about state variables are not necessarily true and they can
be controlled by the optimizer directly. To describe how the modules function internally the discipline
analysis constraints are defined. These constraints pertain to the link between the coupling variables
state variables inside the disciplines. That is ℛ። = 0 if the state variables 𝑦̄። are the solution of the
governing equations of a discipline analysis for a given set of input variables 𝑦።. If this construction is
possible, then the optimizer is fully in control of convergence, even within the discipline analyses.



20 2. Background

2.2.3. MDO Architectures
Martins and Lambe define an MDO architecture as the ”[...] combination of problem formulation and
organizational strategy [...]” [60]. They describe that an architecture both describes how different mod-
els are coupled to one another, as well as how the optimization problem as a whole is solved. MDO
architectures are put into two different categories:

• Monolithic architectures;

• Distributed architectures.

Monolithic architectures solve only one optimization problem, which is in fact the main problem to be
solved. Distributed architectures, on the other hand, split the overall problem into smaller subproblems
and delegate optimizing those to dedicated optimizers. A system optimizer directs these sub-optimizers
and is in charge of controlling the overall system optimization.

Selecting an MDO architecture and optimization algorithm(s) may seem arbitrary and an issue of
semantics, however it can have a large impact on the successful execution and optimality of the fi-
nal design. Depending on the type of problem to be solved not all MDO architectures and algorithms
are suitable, whereas some may be especially inclined towards a certain problem [60]. Martins and
Lambe explain that, for example, the choice between a gradient-based and gradient-free optimization
algorithm should be driven by the possibility to execute the analysis module(s) in parallel within the
framework of a given MDO architecture. Generally, a gradient-free algorithm may be capable of find-
ing a global optimum, whereas a gradient-based algorithm does not guarantee that, but at the price of
an increased number of function evaluations. If gradient information can be calculated efficiently, then
gradient-based algorithms should be preferred if parallelization is not feasible. However, if paralleliza-
tion is supported then gradient-free algorithms are of interest. This could be the case, for example, for
distributed architectures, as explained by Martins and Lambe.

Themain contribution of Martins and Lambe’s paper is the uniform terminology they use to described
vastly different MDO architectures and how they use this to define an overarching classification of
architectures. As has undoubtedly become apparent to the reader by this point, this paper is used as
the backbone of this chapter and, in fact, of the thesis. As has been mentioned before, this work has
been cited time and time again by publications about MDO related topics. This strongly underlines
the importance and scientific relevance of this work - not just for this thesis, but for the field of MDO in
general. Martins and Lambe’s MDO architecture classification will therefore be summarized here. It will
be used as a road map onto which the architecture to be developed during this thesis will be overlain.
By doing so a clear picture will be given of the place of this thesis work within the field of MDO in a well
established framework.

Martin and Lambe’s classification of MDO architectures is based on the difference between two
well known monolithic architectures known as the Individual Discipline Feasible (IDF) and Multiple
Discipline Feasible (MDF) architectures. These can themselves be linked to the All At Once (AAO) and
Simultaneous Analysis and Design (SAND) architectures respectively, as described in [60]. All four of
these are monolithic architectures. Since these four architectures from the departure point of Martins
and Lambe’s classification they will be described in some detail first. This should give the reader new
to the field of MDO a good stating point and will therefore ensure a common point of departure to go
forward from.

Monolithic Architectures
Example XDSM’s of the fourmonolithic architectures, AAO, SAND, IDF, andMDF are shown in figs. 2.7a
to 2.7d respectively. These have been taken directly from [60]. Indeed, as was described to be the
property that all monolithic architectures share before, in all of these figures there is only one optimizer
present. Besides this similarity, however, they are otherwise quite different.

The AAO architecture can be described as the most basic, straightforward approach to solving a
multidisciplinary design optimization problem. It could be said to be the ”brute force” way of translating
the mathematical formulation of an optimization problem directly into MDO. As can be seen from its
XDSM, the optimizer is given control of all design, coupling, and state variables. Consistency of cou-
pling variables between different disciplines is not directly guaranteed by the sequence of operations
of the architecture and are under the control of the optimizer. Likewise, consistency between cou-
pling and state variables is directly controlled by the optimizer as well. Overall system consistency and



2.2. Multidisciplinary Design Optimization 21

(a) AAO (b) SAND

(c) IDF (d) MDF

Figure 2.7: The four monolithic MDO architectures. Taken from [60].

feasibility are likewise controlled by the optimizer directly. According to Martins and Lambe this archi-
tecture is never implemented in reality. Their explanation for this is the fact that the (linear) consistency
constraints can easily be eliminated [60].

In fact, if the consistency constraints are eliminated from the AAO architecture an equivalent SAND
architecture is obtained. In fig. 2.7b this is obvious: the parameters 𝑐፜ and 𝑦̂። have been removed w.r.t.
fig. 2.7a. What this means mathematically is also quite straightforward. Instead of making copies of
the coupling variables, one consistent set is used. Thus the copies are removed and the consistency
constraints become redundant and obsolete. Like the AAO architecture, the SAND architecture gives
control of the state variables to the optimizer. This allows for the optimizer to explore infeasible regions
of the design space that would otherwise be inaccessible. As Martins and Lambe describe, this has
the potential to lead to quick solutions.

The problem with both of these architectures is twofold. First of all, it needs to be possible to
directly control the values of the analyses’ state variables. This is a major restriction, because this
is certainly almost never possible. As mentioned before, most analysis tools are presented as black
boxes. The internal process is obscured and cannot be influenced. If such modules are present in
the MDO problem it is not possible to apply AAO or SAND architectures. Secondly, there is a risk of
obtaining an infeasible and inconsistent design when the optimizer stops prematurely. This is due to
the fact that the optimizer is directly responsible for the internal consistency of the analysis modules.
If the optimizer stops before their residuals have been brought (close) to zero, the design point is in
fact nonexistent. The computational expenses have then been in vain, because the design cannot be
used in any way [60]. For these reasons these architectures are very seldomly applied in practice. As
Martins and Lambde describe, however, they form the basis from which the IDF and MDF architectures
depart, and subsequently form the basis of their classification of distributed architectures. Therefore it
is worthwhile to discuss them.

Like the SAND architecture was obtained from the AAO architecture by eliminating the consistency
constraints, so the IDF architecture is obtained from it by removing the discipline analysis constraints.
Again this is clearly visible by comparing fig. 2.7c to fig. 2.7a and concluding that, indeed, the residuals,
ℛ።, and state variables, 𝑦̄።, have been removed. Furthermore, the functions block has been put in
sequence and behind the analyses blocks. This reflects what has been done to achieve the elimination
of the residuals and state variables: the state variables, 𝑦̄።, and coupling variables, 𝑦።, of an analysis



22 2. Background

module are considered functions of the design variables, 𝑥ኺ and 𝑥።, and copies of the coupling variables
not pertaining to that analysis module, 𝑦̂፣ጽ።. The analysis modules can now be considered black boxes
that respond to an input with an output. Like in the AAO architecture, consistency on the system level
is kept under the control of the optimizer. This still allows the optimizer to explore infeasible regions
of the design space, which can potentially aid convergence. However, the problem remains that an
infeasible design can be obtained when the optimizer stops prematurely. Nevertheless, unlike with the
SAND architecture, such a situation is not completely worthless, because the individual disciplines are
at least consistent and feasible individually. Note that this is precisely where this architecture gets its
name: Individual Discipline Feasible.

Finally, the MDF architecture is obtained by eliminating both the consistency constraints and the
discipline analysis constraints. Once more it can by observed that the corresponding parameters are
indeed all absent in fig. 2.7d. However, it is less obvious how the XDSM of the MDF architecture follows
from that of the AAO under these eliminations. The way to understand this transition, is to consider the
three example analyses along with the new Multi Discipline Analysis (MDA) block as one, combined
analysis module. In that case the shape of the XDSM is exactly equivalent that of the IDF architecture.
This is not just a trick to comprehend the changes: it is exactly the point of the MDF architecture. By
eliminating both the consistency constraints and the discipline analysis constraints from the system
problem formulation, the overall system being handled by the optimizer is always fully consistent. This
is an important advantage that the MDF architecture holds over the other three. Unlike the other three,
a premature stop of the optimizer still returns a consistent design.

At discipline level consistency is achieved by switching from the residual formulation to the implicit
functional, or black box formulation. At the interdisciplinary level, however, something external needs
to be done to ensure overall consistency. This task is delegated from the optimizer to the MDA block
in the MDF architecture. The MDA block internally works similarly to what the optimizer would do to
control system consistency. However, it lacks the task to do this in the direction of an improved design.
For example, the MDA block could perform a simple Gauss-Seidel iteration to converge the analyses.
The obvious disadvantage is that this convergence iteration has to be performed for every single op-
timization increment, leading to an increased number of function evaluations. However, by properly
arranging the analysis modules and selecting an appropriate convergence algorithm this process can
be much improved [60]. Martins and Lambe note that another obvious advantage of the MDF architec-
ture over the other three is the fact that it is the smallest problem formulation possible. The optimizer
only controls the design variables, objective function, and design constraints.

As described, the SAND, IDF, and MDF architectures can be obtained from the AAO architecture
by removing certain combinations of constraints and variables from its formulation. To clarify and sum-
marize these relationships a commutative diagram can be drawn with the four monolithic architectures
at its four corners. Such a diagram is shown here in fig. 2.8, which has been modified from [60].

Figure 2.8: Commutative diagram of the four monolithic architectures. Edited from [60].

Distributed Architectures
Now that an overview has been given of the four different monolithic architectures the distributed ar-
chitectures can be discussed. Once more this section follows the flow of Martins and Lambe’s paper
[60].

As was mentioned before, one of the most relevant contributions that Martins and Lambe made with
their paper is the classification of distributed MDO architectures. Paragraph 2.2.3.2.2 describes this.



2.2. Multidisciplinary Design Optimization 23

Before describing this classification, however, it is important to explain what the motivations are for
turning away from the relative simplicity of monolithic architectures in favor of distributed architectures.
This will be discussed in paragraph 2.2.3.2.1.

2.2.3.2.1 Motivations Martins and Lambe start by explaining that the original motivation to switch
from monolithic to distributed architectures is to decrease solution time by making smart use of the
structure of the problem [60]. Problems that are especially geared towards this exploitation of their
structure are network flow problems and resource allocation problems, according toMartins and Lambe.

To be able to decompose an optimization problem the structure of the problem has to be understood
first. Martins and Lambe explain that problems that are suitable for decomposition usually fall within
one of two categories:

• Problems with complicating constraints;

• Problems with complication variables.

In the ideal situation a problem exhibits neither one of these complications. In that case the problem can
directly be decomposed into 𝑁 separate subproblems, one for each discipline. However, this means
the true nature of the problem was most likely misunderstood or mis-explained at first. Because if a
problem can simply be decomposed into one optimization problem per discipline it would not be an
MDO problem anymore. Equations (2.3) and (2.4) show generic optimization problems that fall into the
first and second category respectively. These equations have been adopted from [60] and follow the
mathematical notation introduced in table 2.1.

min.
ፍ

∑
።዆ኻ
𝑓። (𝑥።)

w.r.t. 𝑥ኻ, … , 𝑥ፍ
s.t. 𝑐ኺ (𝑥ኻ, … , 𝑥ፍ) ≥ 0

𝑐ኻ (𝑥ኻ) ≥ 0,… 𝑐ፍ (𝑥ፍ) ≥ 0.

(2.3)
min.

ፍ

∑
።዆ኻ
𝑓። (𝑥ኺ, 𝑥።)

w.r.t. 𝑥ኺ, 𝑥ኻ, … , 𝑥ፍ
s.t. 𝑐ኻ (𝑥ኺ, 𝑥ኻ) ≥ 0,… 𝑐ፍ (𝑥ኺ, 𝑥ፍ) ≥ 0.

(2.4)

By observing these equations the names complicating constraint and variables become obvious. Equa-
tion (2.3) has multidisciplinary constraints, 𝑐ኺ, and eq. (2.4) has multidisciplinary design variables. Both
of these features complicate the decomposition of the problem. The first allows for a separation of the
objective function into 𝑁 independent factors, but the presence of 𝑐ኺ, which is a function of all discipline
design variables, does not allow the complete problem to be separated into 𝑁 separate subproblems.
The second has global design variables, 𝑥ኺ, which means the objective function and constraint func-
tions cannot simply be separated.

In engineering settings problems rarely exhibit obvious means to exploit their structure to efficiently
decompose them. This is mainly due to the fact that nonlinear problems, which real world engineering
problems almost exclusively are, are hard to decompose in an advantageous manner. Despite this
limitation, decomposing design (optimization) problems is standard practice in the engineering industry.
The main motivation for doing so lies in the organizational structure of the industry. Different teams
are traditionally given some degree of autonomy on executing their part of the design, as has been
discussed in section 2.1.6 for wing design. This is precisely an example of a decomposition of an
overall design (optimization) problem. Hence, distributed MDO architectures conform better to the
current industrial environment.

Finally, another motivation to decompose MDO problems is to balance computational costs. The
example that Martins and Lambe give to explain this is apt and relevant to this thesis: aerostructural
optimization. Often a fairly sophisticated aerodynamic analysis is performed, but only a linear structural
solver is employed. In this case the aerodynamic analysis can take several orders of magnitude more
time to run than the structural solver. If they were executed in sequence and executed the same num-
ber of times, the computational load would be poorly distributed between them. Instead, the problem
could be decomposed such that the computationally cheap structural solver performs its own, internal
optimization for each computationally expensive aerodynamic analysis. A system optimizer then com-
mands the aerodynamic analysis and the internal sub-optimization loop of the structure to bring the
overall design to an optimum. In this case the architecture can be tweaked to achieve a fair balance of
the computational load taken by the aerodynamic and structural analyses.



24 2. Background

2.2.3.2.2 Classification Aswasmentioned before, in section 2.2.3.1, the classification of distributed
MDO architectures presented by Martins and Lambe is based on the monolithic architectures. More
specifically, the classification is based on which constraints are removed from the originally AAO prob-
lem, as was depicted schematically in fig. 2.8.

Specifically the main difference between IDF and MDF is the use of the MDA block. The first level
of Martin and Lambe’s classification of distributed architectures is based on this principle. That is,
distributed architectures that use some form of an MDA loop inside the architecture to control system
consistency are labeled distributed MDF architectures, whereas those without it, that use coupling vari-
ables in the system formulation, are labeled distributed IDF architectures. Distributed IDF architectures
are further divided into two categories: those using multilevel optimization, and those using penalty
functions. Martins and Lambe show the connection between the different classes of architectures with
arrows that related them to the IDF and MDF architectures. This is a very clear, geometric way to keep
them apart. Figure 2.9 is a compact version of the diagram shown in [60]. To compactify this diagram,

Figure 2.9: MDO architecture classification diagram. Edited from [60].

the names and descriptions of the different example architectures have been removed. Therefore, the
meaning of the acronyms of the different architecture are listed in table 2.2. The interested reader is
referred to [60] for the full descriptions.

2.2.4. Difficulties of MDO
To achieve the most optimal design and increase the iteration frequency it would be beneficial to im-
plement a competent MDO framework from the very start of the design process. However, in practice
MDO is not widely applied [3, 96, 97]. The reasons for this are technical difficulties/limitations [2] (e.g.
computer power, availability of analysis tools) and non-technical, organizational aspects [11, 85, 87].

Gent et al. [3] refer to the work of Flager and Haymaker [26]. They made an account of how long
different activities of the design process took for an MDO process as compared to a legacy design
process, applied to the design of a hypersonic vehicle. Gent et al. show a figure from [26] displaying
thesemetrics side by side. It is shown here in fig. 2.10. As can be seen, the specification time needed to
set-up an MDO project is almost triple that of the legacy process. In return, however, both the execution
time and management time have been dramatically reduced. This leaves more time to interpret the
results and making design decisions. What is also striking is the iteration duration and the number of
iterations that could be performed during the design process. For the legacy process iterations were



2.2. Multidisciplinary Design Optimization 25

Table 2.2: Meaning of the MDO architecture acronyms

Acronym Meaning
CO Collaborative Optimization
BLISS(-2000) Bilevel Integrated Systems Synthesis
QSD Quasiseparable Decomposition
ATC Analytical Target Cascading
IPD Inexact Penalty Decomposition
EPD Exact Penalty Decomposition
ECO Enhanced Collaborative Optimization
CSSO Concurrent Subspace Optimization
MDOIS MDO of Independent Subspaces
ASO Asymmetric Subspace Optimization

Figure 2.10: Time of different activities performed during the design process using MDO or legacy project management. Copied
from [3].

slow, in the order of multiple weeks to more than a month, and so only a few iterations were possible.
The MDO process, on the other hand, took more than twice as long to perform the first iteration as
compared to the legacy process, but then obliterated the time it took to perform subsequent iterations,
bringing it down from weeks to the order of hours. This allowed for over 400 times more iterations than
the legacy process.

The reduction in management costs is also impressive; it was reduced by 84% by applying MDO.
This shows what automation can do for any process in general. If managing the project becomes too
expensive, automation can cut it down to the minimal effort possible. Of course an initial investment
has to be made to set this automation up, which will increase costs in the short term first.

2.2.5. The AGILE Project
A number of workshops have recently identified and specified what is necessary for MDO to become
more readily applicable in the industry [87, 105]. This led to the conception of the EU funded AGILE
project (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts)
[1, 14]. The project is described by Ciampa and Nagel in [15]. The scope of the development within
AGILE is three fold, as listed on the project website [1]:

• Advanced optimization techniques and strategies;

• Techniques for collaboration;

• Knowledge-enabled information technologies.



26 2. Background

Recent efforts within and related to the project [3, 14, 16, 64, 96, 97] as well as in different projects
[8, 17, 35, 91] have put a lot of thought and work into the last two points, progressing them beyond
the previous state of the art. Of course the first point is a research field of its own and a lot of work is
being done there. However, there is still a need for new optimization algorithms and strategies that are
robust and efficient [96].

AGILE Paradigm
Of course new software is developed as part of the AGILE project to aid MDO processes. However
the most important proposition put forth by the project is not a set of tools. Rather it is a philosophy
of how to approach MDO processes in order to overcome the difficulties faced in the industry. This
philosophy is referred to as the AGILE Paradigm [15]. Its purpose is not limited to any specific industry
where MDO might be applied. It does not limit the usecase.

Being a paradigm, the AGILE paradigm approachesMDO processes within a predefined framework.
In [15] the description of this framework starts with the definition and terminology of the general MDO
based process. Ciampa and Nagel describe that three phases can always be identified in such a
process: setup, operation, and solution. These three phases are shown in fig. 2.11, which has been
taken from [15]. The figure shows, that over the course of the design process abstraction is exchanged

Figure 2.11: The general MDO based process and its three phases. Copied from [15].

for knowledge. A nice analogy for this is the exchange of potential for kinetic energy during freefall. An
object starting at rest at a finite altitude has only potential energy (abstraction; the potential to innovate)
and no kinetic energy (knowledge; the ability to attain a solution). When it is released it gains speed
(knowledge) in exchange for altitude (abstraction) until it hits the ground (solution). When it does hit
the ground, the kinetic energy is released again until it is at a full stop (convergence to the solution).
When a solution is approached the knowledge that was gained during the process is invested until a
final design is obtained. At this point all abstraction has been removed. Hence, the three phases of
the design process: first a framework has to be set-up to drive the process. This limits the possibilities
(abstraction) slightly, but yields an increment in the knowledge of the problem(s). Then, during the
operational phase, a large amount of knowledge is gained about the design, and the design space
(abstraction) is shrunk more and more. Finally, the design has been fully specified and no abstraction
is left. All knowledge then accumulates into the final design.

These phases were also discussed in section 2.2.4. It was noted that the time spent in the setup
phase increases when applying MDO. Ciampa and Nagel explain that the main challenges of this phase
lie in the design task and MDO problem formulation, pre-selecting the design drivers, identifying and
tying together all of the different analysis competencies that are required, and deploying the necessary
IT infrastructure [15]. The AGILE Paradigm aims to overcome exactly these challenges and thereby
reduce the setup time. In fact, one of the high level objectives of the AGILE project is to reduce the
time needed to setup and solve MDO problems in a team of heterogeneous experts [15] by 40%. Next
to this, the project aims to reduce the time needed to converge the optimization of an aircraft by 20%.

To achieve these goals and tackle the practical problems of MDO in the aerospace industry the
AGILE paradigm attacks the three topics listed at the start of this section. Extracted from these, three
main supporting pillars are defined [15]:

• Design Competences;



2.2. Multidisciplinary Design Optimization 27

• Knowledge Architecture;

• Collaborative Architecture;

The entire concept of the paradigm is summarized in fig. 2.12, which was copied from [15]. In this

Figure 2.12: The concept of the AGILE Paradigm. Copied from [15].

figure a modified version of the general MDO based design process that was depicted in fig. 2.11 can
be seen. These modifications represent what the AGILE project aims to attack in the design process. It
pushes all three phases back, thereby reducing the total time required to obtain a solution. It does so by
making the setup phase more efficient. The setup phase is not only streamlined in terms of time costs,
but it also dramatically reduces the abstraction very early in the process. It is able to do this, because
a wealth of knowledge can immediately be utilized from the pre-existing design competences. Those
were previously hard to or even impossible to tap into, at least in such an early phase of the process,
because there was a lack of a robust knowledge database and collaborative environment. Next, by
investing in new, smart architectures and algorithms, by making it easier to store knowledge, and to
communicate between different actors in the design process, the operational phase is accelerated
as well. Finally, by developing and deploying advanced optimization techniques the solution time is
reduced furthermore. The figure indicates which chunk of the process the AGILE paradigm aims to
remove, which is quite significant.

Knowledge Architecture
The knowledge architecture begins by modeling the product development as a hierarchic structure. An
interface between the product development and automated design formalizes hows this hierarchy can
be translated into an executable workflow. This workflow, in turn, utilizes the design competences. A
special interface allows the automated design layer to communicate with the design competences in a
unified language.

The latter is important and deserves some attention. A crucial difficulty in setting up anMDOprocess
that combines the knowledge of different disciplines is to tie the different disciplines to one another. This
mainly stems from the fact that they do not speak the same language; i.e., they require input and give
output in different forms.

To give a relevant example, consider the definition of an aircraft. Perhaps its design is stored in the
form of some CAD file. Now if we want to analyze its induced drag with a Vortex Lattice Method (VLM)
we need to discretize and represent the aircraft in an entirely different way. The geometry contained in



28 2. Background

the CAD file somehow needs to be translated into a set of panels. If, on the other hand, a CFD analysis
would have to be performed, the geometry would have to be translated to a proper grid, boundary
conditions, etc.

Without a uniform interface definition the tying together of the different design competences in an
automated manner becomes impractical, inefficient, and basically a mess. To address this problem,
the AGILE paradigm defines a common language that forms a uniform interface between the different
design competences and the automated design layer. Within the AGILE project this common language
takes the form of the Common Language for Aircraft Design, or CPACS for short [18]. CPACS is
an XML schema that allows for all the properties of an aircraft to be described. It has a broad base
definition that captures all common parameters and utilities to fully specify the design and configuration
of an aircraft. On top of geometrical parameters, CPACS also allows for performance related data to
be recorded within the same unified data schema. Finally, CPACS is also flexible and expandable,
because it allows for software specific data to be recorded within the same XML file as well. These
properties make CPACS a powerful tool to improve communication between tools, disciplines, and
engineers.

Collaborative Architecture
The collaborative architecture enables the distribution of an automated design workflow over multiple,
separated collaborators. This separation can be organizational (different team or division) but also
physical (different office). An important notion in the AGILE paradigm is the control of knowledge. It
should be possible to have extensive collaboration between different companies while still protecting
each company’s intellectual property [16]. To achieve this, it has to be possible to execute parts of the
worlflow at physically different locations. Furthermore, such a part, which can be a design competence
or a sub-workflow, should always remain under the control and authority of the owner. Therefore,
the collaborative architecture needs to offer the possibility of granting and/or revoking licenses. As
described by Ciampa et al. in [16], a framework has been developed for this purpose. Figure 2.13
shows how it works schematically. This figure describes what happens in the situation that a simula-

Figure 2.13: The collaborative architecture within AGILE. Copied from [15].

tion workflow integrator from one administrative domain wants to use a remote service, provided by
a tool specialist operating in a different administrative domain. Both domains are shielded from the
outside by a firewall. Two channels are now defined that cross the administrative domain borders: a
data communication channel, and a messaging channel. The first is mediated by agreeing to store
data on a central data server in a neutral domain, accessible to both parties. This server allows two
way communications of data to and from it, but does not allow a direct connection between two admin-
istrative domains. The messaging channel can be mediated by, for example, an email server/service.



2.2. Multidisciplinary Design Optimization 29

Regardless of its packaging, this channel should be based on a messaging protocol that, again, does
not allow direct connections between the sending and receiving end. The Bricks protocol forms an
interface between the data communication and messaging channels [9]. This is where the tool spe-
cialist enters the loop. It gives the tool specialist full control over if, how, when, and where to provide
the requested service. Conceptually, this could mean the tool specialist gets a prompt asking him/her
to approve the a service he/she provides to run at the request of a simulation workflow integrator. If
he/she does, the data required to run the service is automatically downloaded from the central data
server and the tool is run. Then the output is uploaded to the central data server, and a message is
send to the workflow integrator through the messaging channel. This message is picked up by the
Bricks interface on the simulation workflow integrator’s end, which automatically downloads the output
data from the central data server and injects it back into the workflow. During this process the borders
between the administrative domains are never violated and the tool specialist’s intellectual property is
protected, but the knowledge of the tool specialist is still shared with the workflow integrator.

Figure 2.13 displays the logo’s of three software products that are used extensively in the AGILE
project. The blue and gray intertwined half-circles within a white circle is the logo of CPACS, which
was already described. This logo is shown as in- and output, as well as along the data communication
channel. The two logos in the bottom right corner of the gray areas within either administrative domains
belong to the Process Integration and Design (PIDO) environments Optimus [65], a proprietary envi-
ronment developed by NOESIS, and RCE [21] (Remote Component Environment), developed by the
DLR. The gray areas in fact represent the inside of a PIDO environment. The red rounded rectangles
represented services/workflows defined within these environments. The green or blue blocks within
these, in their turn, represent an actual analysis tool (design competence).

KADMOS
To bridge the gap from the design competences, via the product development hierarchy, to the auto-
mated design workflows, and to provide tools for visualization and manipulation of MDO architectures
a system named KADMOS is being developed by Delft University of Technology and RWTH Aachen
University based on graph theory [3, 96, 97]. It is a framework written in Python that is aimed at the
reducing the time required for the setup phase as discussed before. It has five levels or layers. It starts
with a repository of analysis tools/design competences and ends with an executable workflow.

Figure 2.14 shows a top-level, conceptual overview of KADMOS, depicting these five layers. From
top to bottom the five layers operate as follows [97].

1. The Repository Connectivity Graph (RCG) allows for the potential connections between all design
competences to be visualized. To allow for this to work, the requirement is that all tools specify
their in- and outputs in CPACS format. If done so, this layer of KADMOS is able to generate a
directed graph representing the possible ways to couple one or more analysis tools to another.
This allows the user to get a clear overview of the possibilities and shortcomings of the repository.
It immediately becomes clear which tools could be used together in anMDO architecture and what
additional knowledge is required;

2. The second layer allows for a user to specify which tools will be used within the MDO problem
that is to be solved. Basically, the user makes a selection from the repository of available tools
that will form a sub-repository for the MDO problem at hand. By removing unused tools from this
sub-repository the RCG can be uncluttered and the unused tools and variables cleared from it.
The resulting, problem specific graph is referred to as the MDO Problem Graph (MPG);

3. The next layer allows a user to label in- and outputs as belonging to the different categories
present in an MDO problem; e.g., design variables, coupling variables, etc., as discussed in
section 2.2.2. After doing so KADMOS is able to wrap any given MDO architecture available
from a predefined database around the problem automatically. This step yields two graphs: the
MDO Data Graph (MDG), which is the MPG augmented with the necessary architectural blocks
(optimizers, MDA’s, etc.), and the MDO Process Graph, which is in fact an N2 diagram describing
the order in which the different nodes of the MDG are executed. When combining the MDG and
MDO Process Graph, one obtains an XDSM describing the specific MDO problem to be solved,
with the specified disciplines and function blocks, cast into the specified MDO architecture;



30 2. Background

Figure 2.14: Top-level overview of the KADMOS framework. Copied from [97].

4. Layer four has the task of automatically translating the combination of the MDG andMDO process
graph to an Simulation Workflow (SWF) Graph. This means the KADMOS representation of the
problem and its architecture are translated to a specific PIDO environment (RCE, Optimus, etc.);

5. The fifth and final layer exports the translated SFW Graph to an executable workflow. This work-
flow can directly be opened in the corresponding PIDO environment that was targeted in the fourth
layer.

2.2.6. The OpenMDAO Framework
In [97], Gent et al. describe that the challenges of integrating tools into an MDO architecture hinder the
implementation of new tools and the reuse of existing tools. The reason being, according to [97], that
all tools need to be refitted for every new MDO workflow. This means an MDO architecture has to be
selected early and cannot easily be swapped later on, disallowing MDO engineers to explore different
architectures in search for the one most suitable for the problem. Gent et al. make the side note that
there is one framework for performing MDO that is an exception to this: OpenMDAO [32].

The development of the Open-source Multidisciplinary Design Analysis and Optimization (Open-
MDAO) framework was first described in a 2008 paper by Moore, Naylor, and Gray [63]. Although
the framework had not received its final name yet at this point, this paper contains a detailed account
of its development process. First the authors discuss the context and motivation for developing an
MDAO framework. The project was founded by NASA’s Fundamental Aeronautics Program and aimed
at developing MDAO capabilities to aid ”[...] a seamless transition between single-discipline and mul-



2.2. Multidisciplinary Design Optimization 31

tidisciplinary analyses by providing systematic process and an intelligent computational environment
for managing multidisciplinary variable-fidelity tools that enable system analysis and optimization at
primarily the conceptual and preliminary design stages for all flight regimes of conventional and uncon-
ventional vehicle classes.” [63]. This description fits well into the general aim of the AGILE project as
well. The developers of OpenMDAO define two areas where work will be performed: developing anal-
ysis tools, and developing an underlying framework that interconnects different analysis tools. Again,
this can easily be translated into the lingo of the AGILE paradigm as the design competences and the
knowledge architecture. Next the paper provides the reader with an extensive account of the require-
ments set and decisions made during the development of the framework. In the authors’ own words, it
provides an overview ”[...] of the ideas that will form the backbone of the open source MDAO framework
[...]” [63]. They also mention that a lot of work still needs to be performed.

In 2010 the same authors report on their progress in the development of the OpenMDAO framework
[32]. This is the first time the framework is referred to by this specific name. This paper is a very interest-
ing and useful document. It starts with a detailed description of the general Open-Source development
process. To the author’s knowledge, such an account has not been published in a scientific publication
focusing on MDAO and computer aided engineering (CAE) in general. Besides the author’s personal
interest in open source development, it is relevant to this thesis, since all tools developed as part of it
will be published under open-source licenses as well. Therefore a short summary of the description as
given in [32] will be given here.

Figure 2.15 shows the lifecycle a ticket goes through within the open source development process
of OpenMDAO.

Figure 2.15: The lifecycle of an OpenMDAO ticket.
Copied from [32].

1

1...*

11

1...*comp. list 1...*

1

Component

+ inputs
+ outputs

+ execute()

Assembly

+ configure()
+ run()

Driver

+ add_parameter()
+ add_objective()
+ add_constraint()
+ add_objective()

WorkFlow

+ add()

OptProblem

+ solution

+ add_local_parameter()
+ add_global_parameter()
+ add_objective()
+ add_constraint()
+ add_coupling_var()
+ check_solution()

Architecture

+ data_recorders
+ param_types
+ constraint_types
+ num_allowed_objectives
+ has_coupling_vars
+ has_global_des_vars

+ configure()

Figure 2.16: Class diagram of the core OpenMDAO classes (pre 1.0). Based
on [33].

A ticket is a database entry describing some problem or desired improvement/addition to the code,
a number of which are stored in a database. These tickets can be created by anyone with access to
the open source development platform. Tickets can then be picked up by anyone in the development
community to be worked on. Once a developer has completed the work required by the ticket he
requests for his work to be merged into the main branch of the code. Before this request is accepted
other developers review the proposed changes/additions to the code. If the work is accepted the work
is merged with the existing code so it becomes available in the main branch. If not, the developer
can redo his code, or the code can be blocked from entering the main branch. In this way anyone is
able to contribute to the project, but the project is protected from people intentionally or unintentionally
breaking it by the very same community that contributes.



32 2. Background

After describing the open source development process [32] discusses the capabilities of the frame-
work. The OpenMDAO infrastructure as it was at the time [32] was published, defines 4 entities:

• Components;

• Drivers;

• Assemblies; and

• Sockets.

Components are the basic building blocks of a problem in OpenMDAO. They are entities that have
inputs and outputs that perform some operation on the inputs to calculate the outputs. Drivers can
direct a chain of events within the problem. They are capable of performing optimizations, convergence
iterations, and design of experiments. Drivers use Components to perform the analyses during these
iterations. A system of Drivers and Components can make up an Assembly. As described by [32],
Assemblies and Drivers are actually sub-classes of Components themselves, which allows nesting
several of these to create more complex blocks of operations that take inputs to outputs. Finally, a
Socket is an interface that can be held by Components, Drivers and Assemblies to perform parts of
their internal operation. By implementing this interface, users can influence the way Components,
Drivers, and Assemblies function. The OpenMDAO framework clearly makes extensive use of the
Object Oriented Paradigm (OOP), which makes it flexible and robust. In the generalized MDO lingo,
Components and Drivers correspond to discipline analyses/function blocks and optimizer/MDA blocks
respectively.

In a second layer of abstraction, OpenMDAO defines one more important object: the WorkFlow
class. A WorkFlow determines in which order a group of Components will be executed [32]. As such,
every Driver contains precisely one WorkFlow object. Following the OOP fashion, it is possible to
contain Drivers inside WorkFlows, which contain WorkFlows of their own, to created intricate, nested
iterations.

The next noteworthy paper about OpenMDAO is a 2012 work by Gray et al. [33]. It describes using
OpenMDAO as a standard platform to benchmark different MDO architectures. Being from 2012, this
paper describes a more recent version of the OpenMDAO framework. Two more classes were added
to the core: the OptProblem class and the Architecture class. The OptProblem class is a sub-class
of the Assembly class which allows for an optimization problem to be explicitly defined in terms of the
mathematical entities of table 2.1 (design variables, coupling variables, constraints, etc.). As described
in [33], this class wraps all the necessary functionality to be able to optimize a given problem. Every
OptProblem object has exactly one instance of the Architecture class. This class is able to take an
optimization problem in the fundamental form and transform it into an equivalent problem formulation
wrapped in the specific MDO architecture it defines.

In [33] the complete class diagram with these two additional classes is shown. It also includes some
of the important functions of the classes. It is shown here in fig. 2.16.

After describing these two new classes the paper turns to describe the different architectures they
implemented for the benchmark: IDF, MDF, CO, BLISS, and BLISS-2000. The meaning of these
acronyms was already listed in table 2.2. To compare there architectures to one another the well
known Sellar problem is solved [82]. Furthermore, a scalable problem is defined that has a variable
number of variables, constraints, coupling variables, and disciplines. The latter has been developed by
Martins et al. in 2002 [61]. The rest of [33] describes the results of the benchmark. Their overall con-
clusion is that the classic monolithic architectures (IDF and MDF) generally outperform the three tested
distributed architectures (CO, BLISS, and BLISS-2000). Their performance metrics are proximity to the
optimum at termination, and the number of iterations till convergence. Nonetheless, there are cases
where the distributed architectures start to overtake the monolithic architectures’ performance. The
main purpose of the paper, however, was to demonstrate that OpenMDAO can be used as a common
testbed for evaluating the performance of MDO architectures.

The final paper that will be addressed here in relation to the OpenMDAO framework is the 2012
work by Heath and Gray [41]. This paper describes how the OpenMDAO framework is suitable as well
for more advanced architectures, involving adaptive sampling and surrogate modeling. This is relevant
for this thesis, because these techniques are often applied when performing global optimizations, as is
part of the aim here. The paper describes that two new concepts have been added to the framework



2.2. Multidisciplinary Design Optimization 33

to provide these functionalities. First of all, the concept of iteration hierarchies are introduced. These
ease the definition of complex processes in MDO architectures, and can be maintained during runtime,
making the problem setup more flexible [41]. The second concept introduced are MetaModels. These
are components that can mimic the behavior of an expensive analysis module by employing a meta
model such as a response surface. Both of these concepts are very relevant to this thesis, as they will
offer the flexibility and tools to develop new, complex architectures.

Finally, some recent changes in the OpenMDAO framework have to be addressed. The version
of OpenMDAO as described by the four papers [32, 33, 41, 63] was deprecated after its final release,
version 0.13.0, in April of 2015. On July 14th, 2015 the release of version 1.0 Alpha was announced
on the OpenMDAO website [66]. Then, on July 20th another announcement was made describing this
new release [67]. In this announcement it was described that this version departed from the previous
versions. It had been moved to a new repository, and brought significant, backwards-incompatible
API changes. As far as the author knows, no paper has been published describing this new release.
However, it is important to discuss how it is different from the deprecated version, because it will be
used in this thesis. The reference for this description is the source code of the latest version as of
writing this section, taken directly from the public repository of the framework, version 1.7.3 [70].

Figure 2.17 shows a class diagram of the core classes of the new OpenMDAO framework. As can

1

1

0..*

1

1

solve

Problem

+ setup()
+ run()

Group

+ connections

+ add()
+ connect()

Driver

+ iter_count
+ options
+ supports
- desvars
- objs
- cons

+ add_desvar()
+ add_param()
+ add_constraint()
+ add_objective()
+ run()

System

+ params
+ unknowns
+ states

+ solve_linear()
+ solve_nonlinear()

Component

+ connections

+ add_param()
+ add_output()
+ add_state()

LinearSolver

NonLinearSolver

+ supports

SolverBase

+ iter_count
+ options

+ setup()
+ solve()

Figure 2.17: Class diagram of the core OpenMDAO classes. Derived from the source code of v.1.7.3.

be seen, it is indeed quite different from the old version presented in fig. 2.16. Note that only the most
important classes have been shown, and only a selection of their variables and methods. This diagram
serves the purpose of aiding the description of the main framework class hierarchy and to compare it
to the old version of OpenMDAO.

Within the new framework an MDAO problem is set-up by defining a Problem object. This object
contains one Driver and one Group. The Driver basically has the same functionality as the original
Driver class in the old framework; it drives the iterative solution process of, for example, an optimization.
The Group class takes the place of the Assembly class from the old framework. It can contain any



34 2. Background

number of Components and Groups. Its main difference from Assembly is that it can only be run if
it exists within a Problem and only after the Problem’s setup() method has been called. The System
class is the common interface for Groups and Components. This level of abstraction allows Group
and Component to have different interfaces and behave much differently. That is, in the old model
Assemblies are Components that can hold Components, in the new model Groups are Systems that
can hold Systems, but Groups are not Components and cannot have their own variables. Finally, in
the old model a Driver can describe any iterative process, such as an optimizer or a solver. In the new
model the Solver is completely decoupled from the Driver. Only a Problem has a Driver, and each
Group has a LinearSolver and NonLinearSolver. The last two have a common interface by inheriting
from SolverBase. The latter is not, however, used explicitly by any of the other classes.

There are a number of things about the OpenMDAO framework that have not been addressed here,
such as how data flow is modeled and handled and the concept of Recorders, to name a few. These
concepts are important to fully understand how OpenMDAO works, but are not considered relevant
for this literature review. The interested reader is referred to the website of OpenMDAO for more
information on these topics [32].



3
Methodology

As mentioned in chapter 1, the proposed solution to the research questions is a third end to the AGILE
pipeline. In this thesis a new software framework is proposed to take this place. From a high level
point of view, this framework has the purpose of connecting KADMOS/CMDOWS with OpenMDAO.
Since both KADMOS and OpenMDAO are written in Python, the new framework was written in Python
as well. At the time of writing, the latest version of OpenMDAO that was released was version 2.0.2.
This version was targeted by the new framework. The framework was named OpenLEGO, which is
an acronym for Open-source Link Between AGILE and OpenMDAO. It also has a symbolic meaning,
however, referring to the plastic building bricks, because it effectively enables a process integration
engineer to plug-and-play analysis modules as if they were LEGO bricks.

This chapter will describe the concepts and implementation of the OpenLEGO framework, referring
back to the concepts and problems described in the previous chapters.

3.1. Requirements
It is important to establish a common starting point before OpenLEGO’s implementation is discussed.
Therefore, a set of requirements are put in place. They are listed below.

• CMDOWS: OpenLEGO should operate on a CMDOWS file. A CMDOWS file is the main output
of a KADMOS run, however, it should be emphasized that the CMDOWS file need not have been
created by KADMOS, as CMDOWS is a standalone, neutral data schema;

• OpenMDAO: OpenLEGO should interface with OpenMDAO through its API. OpenLEGO should
use this API, not change it. Initially it is intended for OpenLEGO to function as a package which
depends on OpenMDAO, but is separate from it;

• Architecture: OpenLEGO should have a robust, well-defined architecture. It should be modular,
with clear, definite tasks for each part of the larger system. This is important to increase code
reusability and make it easier to maintain as well as update the code [30];

• Usability: OpenLEGO’s API should be clear and easy to use. The user should be able to parse
a CMDOWS file with a single line of code. After a CMDOWS file has been parsed into an Open-
MDAO problem, the user should be able to use the result together with any standard OpenMDAO
tools and procedures;

• Representativity: The OpenLEGO tools need to ensure the OpenMDAO problem parsed from a
CMDOWS file always represents the problem defined in the CMDOWS file. The user should be
able to change anything which is not specified in the CMDOWS file, however, without affecting
the structure of the underlying problem.

The first two requirements follow from the description of the the problem. That is, a new end to
the AGILE pipeline is required, because the current ends do not provide a satisfactory answer to the
main research question of this thesis. As was discussed before, OpenMDAO is proposed as a third

35



36 3. Methodology

end to the pipeline, because it is Open-source and because of its strength when it comes to handling
analytical gradients. Since the before-last link in the chain that is the AGILE pipeline is KADOS’ output,
CMDOWS, it logically follows that the proposed solution should interface with this file, as the current
two ends, RCE and Optimus, do.

As was mentioned in chapter 1, the choice for OpenMDAO as the optimization framework to end the
new pipeline in itself is motivated by first and third requirements and sub-questions listed in chapter 1.
OpenMDAO, like RCE, KADMOWS, and CMDOWS, naturally lends itself to extensibility, because it
is open-source. Furthermore, OpenMDAO’s codebase is clearly object-oriented, as was discussed in
section 2.2.6. Its features are encapsulated within a clear set of Python classes. Therefore OpenMDAO
holds promise to answer the question of how an MDAO system can be developed to be extensible; the
first sub-question of this thesis.

As was mentioned in chapter 1 and elaborated on in section 2.2.6, OpenMDAO is especially power-
ful in terms of system level gradient evaluation. It allows the user to specify analytical gradients for any
or all components of a model. The framework then automatically performs finite differencing where no
gradients are provided and carries out all the chain rules to obtain the system level gradients. Hence,
the the question of how gradient information can be incorporated into a system is answered adequately
by OpenMDAO.

The second and third requirement listed above come from the first requirement listed in chapter 1,
namely, the requirement of extensibility. Having a clear, well defined software architecture is key to
creating extensible software [cite, design patterns]. Furthermore, having a clear, easy to use API is
attractive to users, because it makes it easier to understand how the framework can be used. It also
lowers the threshold for new developers to dive into the code, because a clear API should allow them
to quickly discover how the framework fits together and functions.

The fifth and final requirement may seem trivial, but is nonetheless important. In order to attract
users with little to no programming background, the framework needs to be as fool-proof as possible.
Users need to be able to prod and probe a parsed problem, without accidentally breaking it. Anything
not specified in a CMDOWS file needs to be changeable, but these changes should never change the
underlying problem description unexpectedly.

3.2. Workflow
The tasks that OpenLEGO will have to perform in order to take a CMDOWS file and yield a runnable
OpenMDAO problem were identified and ordered. The resulting worlfow diagram for OpenLEGO is
shown in fig. 3.1. First the CMDOWS XML file needs to be read and parsed. As can be seen, four

Figure 3.1: Workflow diagram for OpenLEGO

different sub-tasks are defined for this part. First, all Discipline Components defined in the CMDOWS
file need to be identified by name. Then their order has to be read and stored. If a coupled group
is defined in the CMDOWS file, its members need to be identified and ordered properly. Finally, the
parameters which are part of the problem need to be identified.

Next, the information from the CMDOWS file along with a given Knowledge Base need to be used



3.3. Knowledge Base 37

to construct an OpenMDAO Component for each DC in the KB. To achieve this, the DCs specified in
the CMDOWS file need to be found in the given KB first. Then, their in- and outputs need to be iden-
tified. Once this information is known, the functions of each DC should be wrapped in an OpenMDAO
Component subclass.

Then, a feedback loop has to be handled, if it exists. To do this, an instance of OpenMDAO’s Group
class needs to be created. Then the OpenMDAO Component representations of the DCs which are
part of this coupled group need to be added to the OpenMDAO Group. They need to be ordered and
coupled to one another correctly. Finally, the convergence settings of the Group should be set such
that the group is representative of the information specified in the CMDOWS file.

The next step in the process is the identification of free system variables. In OpenMDAO, these
need to be handled separately and specified as part of an IndepVarComp (IVC) class. From the
information stored in the CMDOWS file, it should be determined which variables should be marked
as free variables. An instance of the IVC should then be created, and the free variables should be
declared on it.

Following these first four steps, the problem is assembled in step 5. The IVC, coupled group, pre-
coupling DCs, and post-coupling DCs are added to an instance of OpenMDAO’s Group class. The in-
and outputs of all subclasses of the Component class added in this way need to be properly connected.
Furthermore, they should be ordered in the same way as is specified in the CMDOWS file.

Finally, in step 6, the variables of interest should be marked. Thus, the design variables, along
with their lower and upper bounds, should be marked as specified in the CMDOWS file. Then, the
constraints should be marked, along with the correct reference values and type (inequality, equality).
Finally, the objective of the problem should be marked.

3.3. Knowledge Base
As was mentioned in chapter 1, the notion of the Knowledge Base (KB) as it was put forward within
AGILE had to be extended, adding provisions for analytical gradients. Within AGILE a KB is populated
with a set of analysis tools, or Discipline Components (DCs). A DC consists of four parts:

1. Input template XML file;

2. Output template XML file;

3. Meta information JSON file;

4. Analysis tool executable.

In- and output of a DC is specified by two XML files. Each valued XML element in these files corre-
sponds to an input, resp. output. A similar approach is taken to define the gradients of a DC. That is,
a third template XML file is defined, specifying the partial derivatives from which output with respect to
which input variables are supplied by the DC.

Such an XML file needs to link specific outputs and inputs to one another. In order to formalize how
this is done, an XML schema was specified. Since partial derivatives are defined in the form ”derivative
of y w.r.t. x”, where y is a dependent variable (output) and x a free variable (input), the XML schema
lists outputs first, and inputs as their dependencies. In other words, a ’partials’ XML file contains a list
of output variables, each of which lists the input s it depends on.

Within the AGILE pipeline, in- and output data is stored in XML files with the same structure as the
template in- and output XML files that define the in- and output variables of DCs. Once more, the same
approach is followed for the partials XML files. As such, a template partials XML file qualifies which
outputs depend on which inputs by listing them with dummy values. In turn, a data carrying partials
XML file, with the exact same structure as the template file, quantifies the partial derivatives of the
same set of outputs w.r.t. the same set of inputs by storing their magnitudes as values in the XML tree.

In the partials XML schema, inputs and outputs are represented with the same complex type: pa-
rameterType. A parameterType must contain a single text valued child element with the tag name
uid declaring the Unique Identifier (UID) of the parameter. The type can optionally contain a value,
represented by a child element with value as tag name.

A valid partials XML file has a single root element with tag name partials. The root element con-
tains any number of dependentParameterType elements with tag name parameter. A depen-
dentParameterType is an extension to the parameterType, adding an obligatory child element of



38 3. Methodology

complex type with tag name partials. The partials element, in turn can contain any number of
elements with tag name partial of type parameterType. This setup allows for a list of dependent
parameters, which each list the parameters they depend.

The generic structure of a partials XML file is shown in code frag. 3.1.

<partials>
<parameter>

<uid>output1_uid</uid>
<value>output1_value</value>
<partials>

<partial>
<uid>input1_uid</uid>
<value>output1_input1_value</value>

</partial>
.
.
.
<partial>

<uid>inputN_uid</uid>
<value>output1_inputN_value</value>

</partial>
</partials>

</parameter>
.
.
.
<parameter>

<uid>outputM_uid</uid>
<value>outputM_value</value>
<partials>

<partial>
<uid>input1_uid</uid>
<value>outputM_input1_value</value>

</partial>
.
.
.
<partial>

<uid>inputN_uid</uid>
<value>outputM_inputN_value</value>

</partial>
</partials>

</parameter>
</partials>

Code frament 3.1: Generic structure of a partials XML file

The partial XML schema has been formalized using the XSD format. The contents of this XSD file
are listed in appendix A.2.1.

A Python class, Partials, has been created to simplify handling partials XML files. Instances of
this class can be written to an XML file or instantiated from an XML file The class exposes a function
to declare partial derivatives of outputs w.r.t. inputs, including their values. The data of the class can
also be turned into a text representation of the XML file, and a Python dictionary representation of the
XML file. The code of the Partials class can be found in appendix A.2.2.



3.4. High Level Strategy 39

3.4. High Level Strategy
Despite the requirements and constraints imposed on the link, and regardless of the workflow, there is
still a lot of design freedom. To reduce the design space further a high level strategy for OpenLEGOwas
devised. The overall focus during the design and development of the link was to maximize re-usability
an modularity. All new components and features developed for this link need to be truly functional
tools, which also have meaning outside of just this bridge between CMDOWS and OpenMDAO. This
approach increases the impact and overall relevance of the link beyond a single purpose.

3.4.1. Coupling Strategy
The first decision that was made was whether the link should operate closer to the KADMOS end or
the OpenMDAO end of the pipeline. This statement requires clarification: one can imagine a setup
where a CMDOWS file is parsed and the outcome is some sort of executable, fully independent and
self sufficient, containing all logic of an OpenMDAO problem’s creation and execution. For example,
the parser could output a Python script which sets up an OpenMDAO Problem and executes it. In this
case the link can be said to be closer to KADMOS’ side of the gap than it is to OpenMDAO, because the
parser does not use OpenMDAO’s API when parsing the CMDOWS file. Only once the created Python
script is run is the API evoked. In other words, the link is further removed from OpenMDAO in this case,
because the CMDOWS parser by itself does not have a direct dependency on the actual OpenMDAO
Python package during execution, but it does directly depend on the CMDOWS file. Of course in reality
it does depend on the OpenMDAO package, because knowledge of its API is still necessary to write
the output Python script. However, no special code or classes are written in this case extending or
enriching OpenMDAO’s functionality. This coupling strategy is shown schematically in fig. 3.2.

Figure 3.2: Coupling strategy which keeps the link detached
from OpenMDAO.

Figure 3.3: Coupling strategy which ties the link directly into
OpenMDAO.

If, on the other hand, the link would reside closer to OpenMDAO the result would be quite different.
In this case the result of the parser would not be some form of an executable file. Instead special classes
could be written inheriting functionality from OpenMDAO, constructing themselves based on a given
CMDOWS file. For example, a subclass of OpenMDAO’s Problem class could be written which is a di-
rect representation of a CMDOWS file it is provided with. Such a setup would be intrinsically connected
to and intertwined with OpenMDAO’s API endpoints through inheritance and aggregation. Instead of
having a notion of executing a tool which simply transforms a CMDOWS file into an executable file, this
approach has the notion of using new classes to setup and manipulate an OpenMDAO problem using
the CMDOWS file as direct input. In other words, the first approach in essence hard-codes the setup of
an OpenMDAO problem in a script, whereas the second approach constructs the problem dynamically
with a CMDOWS file as starting point. This second approach is shown schematically in fig. 3.3.

Another way to describe the difference between these two approaches, is that the first yields a
kind of converter or translator between CMDOWS and OpenMDAO, whereas the second provides
a front-end for OpenMDAO able to take CMDOWS directly as input. Both of these approaches have



40 3. Methodology

advantages and disadvantages. A clear disadvantage of the first approach is that it yields a hard-coded
script file. The user can only adjust the OpenMDAO problem by manually editing this file. However,
this is also an advantage, because in this way the problem can be stored and shared independently of
KADMOS and CMDOWS and can be run directly at any time. A disadvantage of the second approach
is that it is directly dependent on OpenMDAO. Furthermore, the OpenMDAO problem is not stored
directly, and needs to be regenerated from the CMDOWS file every time a new session is started.
Hence, the CMDOWS file remains the primary definition of the problem. However, this also has major
advantages over the first approach. For example, after the an OpenMDAO problem is constructed from
a CMDOWS file, the user has the opportunity to manipulate it directly using OpenMDAO’s API, without
the need to edit a hard-coded file. The CMDOWS file which is written by KADMOS already encodes
the full problem and solution strategy. The script generated by the link in the first approach therefore
contains no new information, making it a redundant step. For this reason the second approach is clearly
the cleaner, more direct approach of the two, if only because it needs less intermediate steps to get
from KADMOS to a functioning OpenMDAO run. Therefore, the second approach was selected as the
coupling strategy for the link.

3.4.2. Construction Strategy
Viewed from a high level, the function of the link is to construct an OpenMDAO problem from a CM-
DOWS file. Within OOP, there are two major strategies to construct objects: encapsulating the con-
struction in a class’ constructor, using inheritance, or encapsulating the construction in a factory pattern.
In essence, the difference between these two approaches is comparable to the difference between the
two coupling strategies that were just discussed. A factory pattern is most akin to the first coupling
strategy, whereas the constructor method is most akin to the second coupling strategy. However, in
this context the advantages and disadvantages of these two approaches are different.

In the factory pattern approach the construction is detached from the classes being constructed. In
the context of OpenMDAO, the construction of an optimization problem involves populating a tree hier-
archy of Group and Component classes. The first of these is itself a collection of Components and/or
other Groups. More precisely, both the Group and Component classes are subclasses of the System
class. This is a clear example of a composition pattern (also known as a tree and leaf pattern) [30].
This setup is very suitable for the purpose of OpenMDAO, because it is a direct model of a multidis-
ciplinary design optimization problem. That is, each Component represents a discipline, and multiple
disciplines can be connected to one another to form multi-discipline analyses, which themselves can in
turn be connected to other multi-discipline analyses and/or other disciplines, forming complex analysis
systems. If the factory pattern approach would be used to construct an OpenMDAO problem given a
CMDOWS file, it would be straightforward to create a Component for every design competence listed
in the CMDOWS file, and tie them together as specified. However, it would be a very code intensive,
linear, functionally oriented type of programming. For example, every Component would have to be
supplied with code individually to wrap the analysis tool it represents. The advantage of this approach
is that no special, extra classes are needed besides the factory. That is, vanilla OpenMDAO classes
would be used to build the entire problem with. In that sense this is a very clean approach, be it not a
very elegant one due to the code-heavy construction.

The other approach, on the other hand, offers muchmore opportunities to exploit the object-oriented
nature that Python has to offer. If done in a clever way, inheritance allows for the same end result with
much less code. Not only does this lead to more intuitive code bases, it also makes the result much
more robust because code duplication and boilerplate code can be avoided. One of the strengths of
this approach which makes it so powerful, is the concept of delegation [30]. By delegating certain
tasks to others, the responsibilities of a single class can be limited. This division of responsibility is
protected by encapsulation. This makes it easier to understand what a single class does and does
not do. It is also more intuitive in the sense that it models real world multi-part systems. A famous
example of delegation in software development is the model-view-controller (MVC) pattern [30] which
is applied when implementing graphical user interfaces (GUI). In this patters the model is responsible
for handling and storing data, the view is responsible for using this data to display something to the
user, and the controller is responsible for responding to user input by manipulating the model. In the
interest of minimizing code duplication while maximizing the robustness of the link, this strategy favoring
inheritance over the factory pattern was chosen.



3.4. High Level Strategy 41

3.4.3. Architectural Strategy
Having defined how the link will tie into OpenMDAO and how it will construct the problem from a given
CMDOWS file, the architecture of the link can be described. Having decided to tightly couple the link
with OpenMDAO, making extensive use of inheritance and delegation, the centerpiece of the link will
be a subclass of the OpenMDAO Problem class. The Problem class lies at the heart of OpenMDAO.
It therefore makes sense to stick to this approach, and create a specialized OpenMDAO Problem
class representing a given CMDOWS file: a CMDOWSProblem class. This class will be responsible
for constructing and assembling the OpenMDAO problem when given a CMDOWS file. Besides the
CMDOWS file, the class also needs to be told where it can find the knowledge base in which all the
disciplines used by the problem reside, since this information is not included in the CMDOWS file.

With this in mind, the next big question to address is how to handle the disciplines. That is: how
should each discipline be turned into an OpenMDAO Component, such that it can be connected and
included in the problem? Within AGILE, specifically within KADMOS, a discipline (also referred to as a
design competence), should be represented by four files: an input XML file, an output XML file, a JSON
file containing meta-data about the tool, and an executable [96]. The first three are straightforward and
well defined. The in- and output XML files should contain only those elements which are read, resp.
written, by a discipline during execution. The JSON file contains information like the name of the tool
and its author, a version number, description, etc. However, it is not prescribed how the executables
should be defined. That is, there is no uniform, standard interface prescribed for them. This is critical,
because without a uniform interface there is no way a software package can interact with a discipline
without prior knowledge of how it works. Therefore it was decided to define such a standard interface for
the purpose of creating this link: the AbstractDiscipline class. However, to make this interface usable
outside of the link as well, the requirement was put on it that it should not be dependent on OpenMDAO.
Hence, the interface needs to be neutral.

Using this strategy, a first picture can be drawn of what the overall architecture will look like. From
a bird’s eye view there are two parts to the link. On the one hand the link provides a standard, neutral
interface for all disciplines, independent of OpenMDAO, but following the definition of a design compe-
tence as seen within KADMOS. As such, every discipline will be represented by a class implementing
this interface. On the other hand, the link provides a specialized OpenMDAO Problem class which
is able to interact with all disciplines in the same way through their shared interface, and is able to
connected them to one another as such. The last piece of the puzzle to be put into place is what hap-
pens in between these two ends, transforming the neutral disciplines into representative OpenMDAO
Components. In the interest of modularity and re-usability, this step is split up into two parts. Firstly
a specialized OpenMDAO Component will be made which is able to use XML for the definition and
storage of its variables: an XMLComponent. This component, in contrast to the standard interface for
the disciplines, should be neutral within the context of OpenMDAO and independent of CMDOWS and
KADMOS. As such, this component can also be used directly by the user within OpenMDAO when the
need arises to incorporate an XML component in a problem. Clearly this indeed achieves the goal of
increasing the links relevance outside of tying CMDOWS to OpenMDAO.

The last part is actually fairly straightforward. A class will be made that brings together the added
functionalities of both the standard discipline interface and the XMLComponent: the DisciplineCompo-
nent. It does so through a combination of inheritance and composition. This class is an inherit part of
the link between CMDOWS and OpenMDAO. Therefore, following the link’s overall coupling strategy
as described before, it inherits from the XMLComponent class, and is given an instance of a discipline
class, which in turn implements the standard interface. The class uses the XML files of the specific
discipline it is given to define its own in- and outputs, and uses the functions exposed by the discipline’s
standard interface to execute it. As such any discipline, given it has been implemented using the stan-
dard interface provided by the link, can be effortlessly represented by an OpenMDAO component by
giving an instance of it to an instance of this coupling class. This approach has the advantage that all
disciplines look and behave exactly the same way as seen from OpenMDAO’s perspective.

This high level strategy of OpenLEGO is shown schematically in fig. 3.4. As can be seen, the do-
mains of OpenMDAO and KADMOS/CMDOWS overlap in the vertical middle of the diagram due to
the bridge connecting the XML OpenMDAO executable to the standard DC interface and the parsing
core connecting a CMDOWS file to the OpenMDAO problem API. In contrast, the standard DC inter-
face and XML OpenMDAO component parts depend only on KADMOS/CMDOWS and OpenMDAO
respectively. The CMDOWS file and KADMOS DC representation are part of the KADMOS/CMDOWS



42 3. Methodology

Figure 3.4: OpenLEGO strategy schematic

domain only; the OpenMDAO executable and problem are part of the API of OpenMDAO only. They are
unaffected by OpenLEGO. Finally, OpenLEGO’s domain is shown to contain the standard DC interface,
XML OpenMDAO executable, DC OpenMDAO executable, and OpenLEGO core parts.

3.5. Software Architecture
Given the high level strategy described in the previous section, and given the fact that OpenMDAO is
an Object-Oriented Programming (OOP) framework, it is immediately apparent that the XML OpenM-
DAO executable and OpenLEGO core can inherit from classes exposed by OpenMDAO’s API to patch
into OpenMDAO. A simplified class diagram of the core of OpenMDAO 2.0 is shown in fig. 3.5. The

Figure 3.5: Simplified class diagram of the most important classes of OpenMDAO 2.0

Problem class is at the heart of OpenMDAO. It holds an instance of the Driver and Group classes.
The latter is part of a structural software design pattern known as the composite or tree-and-leaf pat-
tern, together with the System and Component classes [30]. This is a powerful design pattern, which
simplifies the definition and construction of complex hierarchies of objects. In the case of OpenMDAO
(in the context of MDAO architectures) this pattern allows for the definition of hierarchies of individual
analyses (represented by the Component class) and Multi-Disciplinary Analyses (MDA) (represented
by the Group class). Note that groups are also referred to as models in the following.

In OpenMDAO 2.0, variables of interest (VOI), such as design variables, constraints, and objectives,
are defined on the Group class. Therefore, everything except for the solution strategy of the problem,
such as a specific optimization algorithm, is fully contained within the Group class. This means no
extra functionality is needed by OpenLEGO from the Problem and Driver classes. Therefore, the
OpenLEGO core part of the high level strategy was chosen to be a subclass of OpenMDAO’s Group
class. This subclass was called LEGOModel.

Without a Driver class, the model of a Problem can only be used as a simple input-output exe-
cutable block. That is, it is only possible to simply run all the analyses and MDA’s once to get outputs
for a given set of inputs. In order to perform more complex runs, such as an optimization, a spe-
cific subclass of Driver needs to be attached to the Problem. For example, the ScipyOptimizer



3.6. Implementation 43

class, included in the OpenMDAO package, which inherits from the base Driver class and wraps the
optimization algorithms exposed by the SciPy package [47].

The selection of an optimization algorithm or other solution strategy, however, is not prescribed in
a CMDOWS file. Therefore this is left completely up to the user and no subclasses of the Driver
class are needed directly by OpenLEGO. The same is true for the BaseRecorder class, instances
and subclasses of which can be attached to Drivers and/or Groups to perform tasks like saving data
to a file or displaying a plot during a run.

The OpenMDAO executable part of the high level strategy corresponds to the Component class.
Therefore the XML OpenMDAO executable part is represented by a subclass of the Component class:
the XMLComponent class. On the other end, the standard DC interface part will be represented by an
Abstract Base Class (ABC) named AbstractDiscipline in OpenLEGO.

There is an ambiguity for the definition of the DC OpenMDAO executable part. It could be a sub-
class of either XMLComponent, AbstractDiscipline, or even both. However, multiple inheritance
was chosen to be avoided. The main purpose of the DC OpenMDAO executable part is to automati-
cally construct an XMLComponent using the in- and output files from a given DC, using the standard
DC interface to obtain these. More so, the LEGOModel class uses the DC OpenMDAO executable
part to define its OpenMDAO Components. Therefore, it was decided that the DC OpenMDAO exe-
cutable part should behave just like an XMLComponent, but that is should be constructed and executed
using a subclass of AbstractDiscipline. This subclass of XMLComponent was called Disci-
plineComponent. It is connected to the AbstractDiscipline through aggregation. An instance
of DisciplineComponent holds precisely one subclass of AbstractDiscipline.

Figure 3.6 shows a simplified class diagram of this architecture and how it connects to OpenMDAO.
As can be seen, this architecture corresponds well with the the schematic of the high level strategy. In

Figure 3.6: Simplified class diagram of OpenLEGO’s architecture and its connections with OpenMDAO

the remainder of this section, the implementation of OpenLEGO’s four core classes, AbstractDisci-
pline, XMLComponent, DisciplineComponent, and LEGOModel, will be discussed in more detail.

To clarify the collaboration between these four core classes, sequence diagrams depicting the cre-
ation and computation of a DisciplineComponent instance by the LEGOModel class are shown in
fig. 3.7a and fig. 3.7b respectively.

3.6. Implementation
After having discussed the software architecture of OpenLEGO in the previous section, the implemen-
tation of OpenLEGO will be discussed now. The code of OpenLEGO has been divided into 3 Python
modules: openlego.core, openlego.partials, openlego.recorders, and openlego.util.
The four code classes of OpenLEGO, which were introduced in the previous section, are stored in the
first module. These classes rely heavily on the last two utility modules. The structure of this section
follows the file structure of the OpenLEGO code base. That is, a sub-section has been dedicated to
each of the six Python modules. Each of these sub-sections will give a general overview of the contents
and purpose of its corresponding module first. Then a paragraph is dedicated to each important class
and function contained in it. All source code of the project is attached to this report in appendix A.

This section will describe the openlego.core module first, in section 3.6.1. Then the XML utility
functions of the openlego.utils.xml_utils module will be described, in section 3.6.2. Finally,
the recorder classes will be described in section 3.6.3. The openlego.partials module will not be



44 3. Methodology

(a) Construction sequence (b) Computation sequence

Figure 3.7: Sequence diagrams of the creation and computation of DisciplineComponents

discussed here. The Partials class was already introduced in section 3.3.

3.6.1. Core Module
The openlego.core module contains the core of the OpenLEGO API. That is, the four main classes
are contained within this module. Each class has its own sub-module. The source code of all sub-
modules of the openlego.core module can be found in appendix A.1.

openlego.core.abstract_discipline:
Including the extension of the notion of the Knowledge Base described in the previous section, a Design
Competence (DC) is formally represented by a set of 5 separate entities:

1. Input template XML file;

2. Output template XML file;

3. Partials template XML file;

4. Meta information JSON file;

5. Analysis tool executable.

The DC is further formalized by defining a standard interface, wrapping the properties and content of
these 5 files. This interface comes in the form of an abstract Python class: AbstractDiscipline.

The openlego.abstract_discipline module contains the definition of this class. As was de-
scribed before, the AbstractDiscipline class is independent from the OpenMDAO API. Therefore
it is defined in a dedicated module. In this way this module can be imported even if OpenMDAO has
not been installed.

The AbstractDiscipline class forms the Abstract Base Class (ABC) for all DCs within Open-
LEGO. It standardizes the definition of a DC as prescribed by KADMOS. In this definition a DC is
comprised of four parts: an input XML file, an output XML file, a JavaScript Object Notation (JSON) file
with meta information about the DC, and an executable. KADMOS actually only handles the first three
of these four parts directly; that is, it only deals with the in- and outputs, as well as meta-information
(such as the name and execution time of a tool), but does not actually need the executable. Therefore,
no specifications were given as to how this executable should be represented. However, OpenLEGO
will need to be able to run the executables of all DCs. If there is no standard representation for them,
then OpenLEGO cannot know how to execute a DC. This is the main reason why a standard interface
in the form of the AbstractDiscipline class was created.

The class defines a set of properties (using Python’s @property decorator) corresponding to the
most common entries of the information JSON files of DCs, such as the name, creator, version, and
description of the DC. These properties have standard implementations defined for them, but can be
overridden by a specific subclass to better represent the DC it wraps.



3.6. Implementation 45

Besides the information JSON file properties, the class also defines properties for the locations of
the in-/output XML and information JSON files, as well as the path at which the DC is stored. These
properties have standard implementations pointing to the directory in which the Python module of the
implementing is stored, with standard names based on the name property of the subclass for the in-
/output XML and information JSON files. Furthermore, three abstract methods are declared by Ab-
stractDiscipline: generate_input_xml(self) -> str, generate_output_xml(self)
-> str, and execute(in_file, out_file). These methods must be implemented by all sub-
classes. The first two should return a string with the contents of the in- and output XML files of the
DC respectively. The last is a static method, which should run the DC the subclass wraps using given
in- and output files. The execute(in_file, out_file) method is static to reflect the fact that
it represents an isolated tool. A fourth method, generate_info_json(self) -> str, returns a
string representing the DCs information JSON file. This method is not abstract, however, because it
uses the properties of the class as well as default values to generate a standard information JSON
file for the DC. It should be overridden by a subclass if more specific, custom information should be
included in the file. Finally, the AbstractDiscipline class defines the deploy(self) method,
which calls the three generation methods and stores the results in files at the paths specified by the
three corresponding path properties.

Due to the file generation methods, the interface can be used to generate the in-/output and info
files dynamically. This enables the possibility of defining DCs which depend on high level parameters
or settings for their in- and/or output XML files. An example of this is a tool performing an analysis
based on the geometry of an aircraft defined in a CPACS file. Because of the strict definition that a
given input XML file contains only those XML elements read by the tool, and the output file only those
written, the topology of the geometrical model cannot change. That is, if an input CPACS file of a DC
contains just one wing, with just one wing segment, and a second file contains the same one wing, but
with two wing segments, then they will have different variables. However, the analysis tool behind the
DC is most likely able to handle CPACS files with an arbitrary number of wings and wing segments.
To reconcile the strict in-/output variable definition and the flexibility of a tool, it should be possible to
generate different in- and output XML files based on some parameters. By using bound class methods
to dynamically generate these files, this is can easily be achieved by using extra class properties.

openlego.core.xml_component:
The XMLComponent class is a subclass of OpenMDAO’s ExplicitComponent class. Two new con-
crete methods are added: set_inputs_from_xml(self, file_path) and set_outputs_f ⌋
rom_xml(self, file_path). They allow for input and output OpenMDAO variables to be de-
fined given in- and output XML files respectively. These methods are used in the __init__(self,
in_file, out_file) method to immediately define in- and output variables if in- and output XML
files are supplied to it, but can be called at any time before the setup(self) method is called to
overwrite these. The in- and output variable names and sizes are stored in simple Python dictionaries
until the setup(self) method is called.

XMLComponent implements the setup(self) method to actually add OpenMDAO in- and output
variables to the Component given the dictionaries created earlier. Furthermore, an abstract method,
execute(self, in_file, out_file), is declared which must be implemented by a subclass
to perform the computation of the component given an input and an output XML file. Finally, the ab-
stract compute(self, inputs, outputs) method declared by the ExplicitComponent class
is implemented. It writes all inputs to a temporary XML file, calls the abstract execute(in_file,
out_file) method with this input file, and parses the resulting output XML file, storing the new val-
ues in the appropriate OpenMDAO output variables.

This class is a straightforward translation of the high level description of the XML OpenMDAO ex-
ecutable part into an actual implementation. As was prescribed by the requirements, it only depends
on OpenMDAO and works for any valid XML file. It is not specific to KADMOS/CMDOWS. Therefore
it can be used outside of the context of KADMOS/CMDOWS as well when a tool is used which uses
XML in- and output files.

openlego.core.discipline_component:
Because of the robust definition of the AbstractDiscipline and XMLComponent classes, the im-
plementation of the DisciplineComponent is the simplest of the four core classes of OpenLEGO.



46 3. Methodology

As was mentioned before, this class is a subclass of the XMLComponent class. Therefore it inherits
all of its functionality automatically. It holds an instance of a subclass of AbstractDiscipline to
define its in- and outputs and uses it to execute. As such, the __init__(self, discipline)
method is overridden and extended to take an instance of AbstractDiscipline as input, storing
it in a class attribute. The __init__(self, in_file, out_file) of the XMLComponent class
it inherits from is then called using the in- and output XML file paths defined by the instance of Ab-
stractDiscipline as input arguments. Corresponding OpenMDAO in- and output variables are
then automatically created. Finally, the abstract execute(in_file, out_file) method of the
XMLComponent class is implemented. It simply calls the execute(in_file, out_file) method
of the instance of AbstractDiscipline the DisciplineComponent holds.

openlego.core.model:
In contrast to the DisciplineComponent class, the LEGOModel class has the most elaborate imple-
mentation of the four core classes. This is to be expected, because it performs most of the parsing and
construction tasks listed in section 3.2. It is a subclass of OpenMDAO’s Group class. It defines no new
methods which should be used directly by OpenMDAO. Therefore it can be treated and used like any
other instance or subclass of Group. To construct itself, the LEGOModel’s __init__(self, cm-
dows_file, kb_path) method allows the user to specify the path to a CMDOWS file which should
be parsed, as well as the path at which the KB of the problem is stored. The latter should point to the
folder containing the Python files in which the subclasses of AbstractDiscipline are stored.

The strategy used to implement the LEGOModel class relies heavily on the concept of dependent/-
computed properties. For the majority of these, it uses a simple subclass of Python’s builtin property
decorator class called CachedProperty. This class stores the value of a computed property and
bypasses its actual computation as long as it is still marked as valid. This avoids recomputation of
properties which only need to be computed once, but are accessed repeatedly. This is especially
beneficial for properties who’s computation is time and/or resource expensive.

All of these dependent/computed properties depend on the the CMDOWS file, KB path, or both.
Therefore, if either of those two is set all dependent/computed properties are automatically invalided
and will be recomputed the next time they are read. Furthermore, if any of them is attempted to be read
when either no CMDOWS file and/or no KB path is set, an exception is raised. This approach ensures
the requirement of representativity whilst minimizing computational cost. It also has the advantage of
allowing the code to be split up into smaller, isolated sub-tasks, which reduces code duplication.

3.6.2. Utilities Module
OpenLEGO relies heavily on the ability to read and write the values of OpenMDAO variables to and
from XML files. This ability is required throughout the core classes, and should be available to the user
as well, to make it easier to wrap external analysis tools in subclasses of AbstractDiscipline.
Therefore a suite of shared XML utility functions have been written and stored in a dedicated module:
openlego.utils.xml_utils.

Besides the XML utilities, a set of general utility functions have been written as well. These are
stored in the openlego.utils.general_utils module. However, these function will not be ex-
plicitly discussed here. The interested reader is referred to the source code, given in appendix A.4.1.

This section will discuss the important functions defined in the openlego.utils.xml_utils
module. The source code of this module can be found in appendix A.4.2.

xpath_to_param & param_to_xpath
The xpath_to_param(xpath) -> str and param_to_xpath(param) -> str functions perform
the necessary operations to convert a valid XPath to a valid OpenMDAO variable name and vice versa.
These functions are actually remnants of the version of OpenLEGO targeting OpenMDAO 1.x. They
were necessary there, because OpenMDAO 1.x put restrictions on what characters could be used in
variable names. In OpenMDAO 2.0, however, these restrictions were lifted.

The decimal point, however, still needs to be replaced if it appears in an XPath in the new version,
because OpenMDAO uses decimal points as path separators between subsystems. In the interest
of backward compatibility with the version of OpenLEGO targeting OpenMDAO 1.x, and to yield the
minimum impact on the rest of the code, these functions were kept to perform this one translation.



3.6. Implementation 47

cmdows_path
kb_path

elem_cmdows
elem_problem_def

elem_params
elem_arch_elems

has_converger
discipline_components

variable_sizes
coupling_vars

coupling_var_cons
block_order

coupled_blocks
system_inputs
design_vars
constraints
objective

coupled_group
consistency_constraint_group

system_order
coordinator

setup()

Figure 3.8: N2 diagram showing the dependency of all computed properties on one another.

In this version of OpenLEGO, decimal points appearing in XPaths are replaced with the sequence
’:_:’. This sequence was chosen because it is unlikely to appear directly within an XPath, even
though it is a legal sequence within an XPath. Therefore it is unlikely that an XPath cannot be translated
to a valid OpenMDAO variable name in a reversible way.

xml_to_dict
The xml_to_dict(xml) -> OrderedDict function is the key to turning an XML file into a set of
OpenMDAO variables. It takes either the path of an XML file, or an instance of the _ElementTree
class from the lxml.etreemodule and returns a representative instance of the OrderedDict class.
The dictionary returned by this function contains an entry for each simple, valued XML element in the
XML tree, with its full XPath as key.

This function uses the etree.XPath function to quickly obtain a list of all text elements in a given
XML tree using the XPath expression ’//text()’. It then iterates over the list of all elements that
are returned. To obtain the full XPath of an element, the function backtracks from the text element up
the tree until the XML file’s root element is reached. At each node all XML attributes and indices are
appended to the node’s tag using the square bracket notation of XPaths. This ensures that the final
XPath points to exactly the right element, which is especially important if there are multiple nodes
sharing the same tag under a single parent. The value of each text element is parsed using the
parse_cmdows_value(value) -> Union[str,float,np.ndarray] function.

xml_safe_create_element
The xml_safe_create_element(tree, xpath, value=None) -> _Element function is used
to create an XML element in a given XML tree at a specific, absolute XPath. All intermediate elements
- that is, every node between the root element and target element - are created if they do not yet exist.
If an integer index is specified at a given node in the XPath, the correct number of sibling elements are
created correspondingly to ensure the integer index position exists in the tree. If attributes are specified
at a given node these are created accordingly as well. Finally, the given value is written to the target of
the XPath, if one is supplied. As such, this function ensures that the specified XPath exists in the given



48 3. Methodology

XML tree when it returns. It finally returns an instance of the _Element class from the lxml.etree
module corresponding to the target element that was created.

xml_merge
The xml_merge(base, merger, out_file=None) function can be used to merge two XML files
into one. This function is used regularly by the XMLComponent class to merge the outputs of a one
analysis tool into a base XML file. The function merges the content of the merger into the base. By
default the merged XML is written to the base file, but if the out_file argument is given, it will leave
the base alone and instead write to this file. If there are conflicting elements which appear both in the
base and in the merger, the values in the merger will overwrite those of the base.

This function makes use of the xml_to_dict function, section 3.6.2.2, to create a dictionary of the
tree of the merger. Then it iterates over all key-value pairs and uses the xml_safe_create_element
function, section 3.6.2.3, to write them to the base or out_file tree.

3.6.3. Recorders Module
Aside from the core functionality of OpenLEGO a set of OpenMDAO recorders have been developed.
These have been stored in the openlego.recorders module, following OpenMDAO’s naming con-
vention. The concept of recorders was discussed briefly at the start of this section. The leftmost two
classes in the class diagram of OpenMDAO’s core, which was shown in fig. 3.5, represent this con-
cept. As can be seen, recorders are managed by instances of RecordingManager held by both the
Driver and System classes. The RecordingManager can hold any number of subclasses of the
BaseRecorder ABC. Specific recorders can be created by defining a subclass of this ABC.

During the course of the development and testing of OpenLEGO a set of recorders was used repeat-
edly to monitor optimizations as they progressed. Matplotlib was used to generate and update plots for
this purpose [44]. This Python plotting library is powerful, but has some important disadvantages. The
most challenging issue that was encountered was that Matplotlib’s figure windows freeze when they are
used in interactive, non-blocking mode. The figures work well when they are used to display a single
window to the user, pausing the code until the user closes the window. However, when a figure needs
to be continually updated and refreshed the window becomes unresponsive and therefore unusable.

Eventually a general solution was found to this problem using Python’s multiprocessing toolbox. The
loop handling the figure window was moved to a dedicated, separate process. The Tkinter library was
used to control the figure, which allows for direct control of the figure’s main loop [86]. In order to allow
the main process to send updates to the process handling the plot, a pipe and polling mechanism was
used. This mechanism polls one end of a Python multiprocessing Pipe in a loop, handling any input as
it is received. The added benefit of this approach is that all the code handling and updating the figure
is run on a separate process. Therefore plotting does not block the computational thread performing
the optimization. This method was found to work so well that it was generalized and wrapped within a
subclass of OpenMDAO’s BaseRecorder, BaseIterationPlotter, such that it can be reused to
simply create a non-blocking, non-freezing, continually updated plot during an optimization run.

A set of specialized iteration plotters were created, building on the capabilities of BaseItera-
tionPlotter. Because these recorders are generally useful, and because they solve common prob-
lems, they were considered relevant enough to include in the OpenLEGO package. They are listed
and described briefly below.

VOIPlotter:
This recorder allows the user to plot any number of VOIs as a function of the number of iterations. The
user can specify which VOIs need to be recorded by using the nativeOpenMDAO options[’includes’]
options for recorders. Each VOI gets its own vertical axis to allow for VOIs of different ranges and scales
to be displayed clearly in one figure.

SimpleObjectivePlotter:
This is a simple convenience recorder which automatically plots the normalized objective function value
as a function of the number of iterations when it is attached.

BaseLanePlotter:
This recorder implements the concept of the lane plot, such as the ones shown by Bartoli et al. in
[10]. This type of plot uses a colormap to map values of variables to a color range. Each variable



3.6. Implementation 49

Figure 3.9: Part of the design variable lane plot during the
wing optimization test case run.

Figure 3.10: Part of the constraint variable lane plot during
the wing optimization test case run.

which is plotted is represented by its own horizontal lane. In the context of optimizations, the horizontal
axis corresponds to the number of iterations and each lane gets a colored rectangle at each iteration
corresponding to its value at that point. These plots are particularly useful to display the design vectors
of optimization problems, normalized to their bounds, or the values of the constraints as a function of
the number of iterations. Examples of this are shown in figs. 3.9 and 3.10. The BaseLanePlotter is
an ABC which should be implemented to make a specific plot, such as the next two in this list.

NormalizedDesignVarPlotter:
This is a subclass of the BaseLanePlotter ABC which plots all the design variables of the optimiza-
tion problem using the lane plot style. All design variables are normalized to their bounds. That is, a
variable at its upper bound maps to 1 and a variable at its lower bound maps to 0.

An example of such a lane plot depicting the design variables of an optimization problem is shown
in fig. 3.9. This plot was created during the first part of the aeroelastic wing optimization problem test
case, which will be described in section 4.3. This example uses the default settings for the Nor-
malizedDesignVarPlotter recorder. It uses the perceptually uniform sequential colormap Viridis,
which comes with matplotlib [44].

ConstraintsPlotter:
This is also a subclass of the BaseLanePlotter ABC which plots all the constraint values of the
optimization problem using the lane plot style. All constraints are assumed to be satisfied if they are
zero. It is up to the user whether inequality constraints are considered satisfied when they are ≤ or
≥ than zero. A symmetric logarithmic colormap is used by default in order to capture the variation
constraints’ values equally well when they are close to zero and further away from it.

An example of a plot created with this recorder is shown in fig. 3.10. Like fig. 3.9, this plot was cre-
ated during the first part of the aeroelastic wing optimization problem test case described in section 4.3.
This example plot was created using the default settings of the ConstraintsPlotter recorder. As
can be seen, a symmetric logarithmic scale is used with a diverging colormap called ’RdBu’, which
comes with standard matplotlib [44]. The lighter the color, the closer to active a constraint is consid-
ered to be like this.





4
Results

To demonstrate the capabilities of OpenLEGO two test cases were set up: the Sellar problem and a
low-fidelity aerostructural wing optimization problem. This section will present these test cases and
their implementations in OpenLEGO.

The Sellar test case will be discussed first, in section 4.2. This test case serves as a proof of concept
of OpenLEGO. Besides constructing and solving the optimization problem, the Sellar problem will be
used to demonstrate OpenLEGO’s ability to handle different MDO architectures. Next, in section 4.3,
the wing optimization test case will be discussed. This case demonstrates the applicability of Open-
LEGO to a more realistic MDO problem in the context of aircraft design. Although this is still a problem
with a relatively small number of disciplines, it has a much larger number of variables and serves as a
first demonstration of OpenLEGO’s ability to handle bigger problems using external tools.

4.1. Scalable Optimization Problem
To demonstrate the advantage of making use of analytical gradients if they are made available by
analysis tools, a scalable, mathematical optimization problem was studied. The approach and setup
presented in [90] was followed. The mathematical description of the optimization problem studied here
is given in eq. (4.1).

minimize 𝑓 = zፓz+
፧ᑕ
∑
።዆ኻ

yፓ። y። ,

w.r.t. x። ,z,
subject to g። = 1 − 𝐶፠,።y። ≥ 0,

where 𝐷። ∶ 𝐶̂፲,።y። = 𝐶፱,።x። −
፧ᑕ
∑

፣዆ኻ,፣ጽ።
𝐶፲,፣y። + 𝐶፳z,

𝐶̂፲,። = [(𝑛፲ + 𝑛፱) 𝑛፝ + 𝑛፳] 𝐶∘ዅኻ፲,። ,
𝐶፱,። ∈ ℝ፧ᑪ×፧ᑩ ,
𝐶፲,። , 𝐶፠,። ∈ ℝ፧ᑪ×፧ᑪ ,
𝐶፳ ∈ ℝ፧ᑪ×፧ᑫ ,
𝑖 ∈ [1, 𝑛፝] ,
𝑛፝ , 𝑛፱ , 𝑛፲ , 𝑛፳ ∈ ℝ,

(4.1)

where 𝐶፱,።, 𝐶፲,።, 𝐶፠,።, and 𝐶፳ are matrices with random coefficients, determined prior to the start of an
optimization. The notation 𝐴∘ዅኻ represents the Hadamard inverse [73], defined by eq. (4.2).

𝐵 = 𝐴∘ዅኻ ⟺ 𝐵።፣ = 𝐴ዅኻ።፣ , (4.2)

i.e., the element-wise inverse of a matrix. The number of disciplines, 𝑛፝, local design variables per
discipline, 𝑛፱, local coupling variables per discipline, 𝑛፲, and global design variables, 𝑛፳, can be varied.

51



52 4. Results

This allows the problem to be tweaked to any given characteristic. For this study, as was done in
[90], the coefficients of all matrices but the ones related to the coupling variables were set to unity.
Furthermore, all off-diagonal coefficients of 𝐶፠,። were set to zero. Hence, the equation was simplified
to eq. (4.3):

minimize 𝑓 = zፓz+
፧ᑕ
∑
።዆ኻ

yፓ። y። ,

w.r.t. x። ,z,
subject to g። = 1 − diag (c፠,።)y። ≥ 0,

where 𝐷። ∶ 𝐶̂፲,።y። = 𝐽፧ᑪ ,፧ᑩx። −
፧ᑕ
∑

፣዆ኻ,፣ጽ።
𝐶፲,፣y። + 𝐽፧ᑪ ,፧ᑫz,

𝐶̂፲,። = [(𝑛፲ + 𝑛፱) 𝑛፝ + 𝑛፳] 𝐶∘ዅኻ፲,። ,
𝐶፲,። ∈ ℝ፧ᑪ×፧ᑪ ,
𝑖 ∈ [1, 𝑛፝] ,
𝑛፝ , 𝑛፱ , 𝑛፲ , 𝑛፳ ∈ ℝ,

(4.3)

where the notation 𝐽፦,፧ denotes an 𝑚 × 𝑛 matrix of ones [43], and c፠,። is a vector of length 𝑛፲ with
random values.

For this study, the number of disciplines and the number of global design variables were fixed to
𝑛፝ = 𝑛፳ = 3, as was done in [90]. The number of local design variables and coupling variables per
discipline were varied. All combinations of the values 2, 20, and 200 for each of them were analyzed,
making for 9 different configurations. With each of these combinations, 100 random problems were
generated and solved once with analytical gradients and once using finite differencing to approximate
the gradients. The amount of function evaluations of each discipline was recorded for both the run with
and without analytical gradients. An MDF architecture was used for all runs. All ’analysis’ disciplines,
𝐷።, are coupled to one another due to the coupling variables, y።. Therefore they are all part of the
MDA of the MDF architecture. Since they all have the same number of local design variables, x።, non-
local coupling variables, y፣ጽ።, and global design variables, z, as inputs, they are all executed the same
number of times as each other, regardless of whether analytical gradients are used or not. Therefore
it was sufficient to note only the amount of function evaluations of the first discipline.

The average number of function evaluations across all 100 runs of every configuration are tabulated
in table 4.1. The differences between the two runs for each configuration are tabulated in table 4.2.

Table 4.1: Average number of discipline function evaluations for across 100 complete optimization runs using finite differencing
(upper left hand corners), and using analytical gradients (lower right hand corners) for all combinations of ፧ᑩ and ፧ᑪ.

𝑛፱
𝑛፲ 2 20 200

2 1086.24
102.97

3191.95
96.10

8743.15
31.30

20 2994.13
89.51

4816.18
95.74

16051.50
65.88

200 36735.18
93.89

46133.00
99.29

51671.79
100.85

Finally, the fractions of these differences w.r.t. the numbers corresponding to the runs using finite

Table 4.2: Differences between the average number of discipline function evaluations per configuration

𝑛፱
𝑛፲ 2 20 200

2 983.27 3095.85 8711.85
20 2904.62 4720.44 15985.62

200 36641.29 46033.71 51570.93



4.2. Sellar Problem 53

differencing are given in table 4.3. It is immediately clear from these results that making use of analytical

Table 4.3: Percent differences between the average number of discipline function evaluations per configuration

𝑛፱
𝑛፲ 2 20 200

2 90.52% 96.99% 99.64%
20 97.01% 98.01% 99.59%
200 99.74% 99.78% 99.80%

gradients has a dramatic, positive impact on the number of discipline function evaluations required to
complete an optimization run. Even in the lightest case, with the smallest number of local design and
coupling variables per discipline, the average number of discipline function evaluations is reduced by
more than 90%. As can be seen, the reduction is larger the more complex the configurations get. For
all configurations where the number of local design variables or the number of coupling variables per
discipline were set to 200, the reduction is well over 99%.

Hence, making use of analytical gradients if they are provided by analysis tools can profoundly re-
duce the computational cost of any optimization run. Therefore it is indeed very important to make it
easier to achieve analytical gradient utilization in any modern MDAO system, such as the one devel-
oped as part of this thesis. This serves as further justification of the work done.

4.2. Sellar Problem
The Sellar problem is a common test problem used to demonstrate and test MDO solution strategies
[82]. It is used as an example by both OpenMDAO [68] as well as KADMOS [95]. It is a purely mathe-
matical problem which can be written as eq. (4.4).

minimize 𝑓ኻ (𝑥ኻ, 𝑦ኻ, 𝑦ኼ, 𝑧ኼ) = 𝑥ኼኻ + 𝑧ኼ + 𝑦ኻ + eዅ፲Ꮄ

w.r.t. 𝑥ኻ, 𝑧ኻ, 𝑧ኼ,
for 0 ≤ 𝑥ኻ ≤ 10,

− 10 ≤ 𝑧ኻ ≤ 10,
0 ≤ 𝑧ኼ ≤ 10,

subject to 𝑔ኻ (𝑦ኻ) = 1 − 𝑦ኻ
3.16 ≤ 0,

𝑔ኼ (𝑦ኼ) = 𝑦ኼ
24 − 1 ≤ 0,

where 𝑦ኻ = 𝐷ኻ (𝑥ኻ, 𝑦ኼ, 𝑧ኻ, 𝑧ኼ) = 𝑥ኻ + 𝑧ኼኻ + 𝑧ኼ − 0.2𝑦ኼ,
𝑦ኼ = 𝐷ኼ (𝑦ኻ, 𝑧ኻ, 𝑧ኼ) = 𝑧ኻ + 𝑧ኼ + √𝑦ኻ.

(4.4)

When written in this way, it can be understood as a single objective, constrained, multidisciplinary
optimization problem with two coupled disciplines, 𝐷ኻ and 𝐷ኼ. This problem has two local minima,

𝑥∗ኻ = 0.11, 𝑦∗ኻ = 3.16, 𝑦∗ኼ = 0.20, 𝑧∗ኻ = −1.72, 𝑧∗ኼ = 0.14, 𝑓∗ = 4.13, 𝑔∗ኻ = 0.00, 𝑔∗ኼ = −0.99, and
𝑥∗ኻ = 0.00, 𝑦∗ኻ = 3.16, 𝑦∗ኼ = 3.76, 𝑧∗ኻ = +1.98, 𝑧∗ኼ = 0.00, 𝑓∗ = 3.18, 𝑔∗ኻ = 0.00, 𝑔∗ኼ = −0.84,

the second of which is the problem’s global minimum. At both local minima the first constraint, 𝑔ኻ, is
active and the second, 𝑔ኼ, is inactive. Both 𝑥ኻ and 𝑧ኼ are at their respective lower bounds at both
minima. Being defined purely in terms of simple algebraic functions, the Sellar problem can be solved
quickly on any modern computer. However, its solution is not trivial, because of the strong coupling
between 𝐷ኻ and 𝐷ኼ through coupling variables 𝑦ኻ and 𝑦ኼ. Together, these qualities make the Sellar
problem a good test case for MDO systems.

Since the problem is purely mathematical, the gradients can be expressed as simple mathematical
functions as well. To obtain these, the derivatives of the objective function, 𝑓ኻ, constraint functions, 𝑔ኻ
and 𝑔ኼ, and the two coupling variables (disciplines), 𝑦ኻ and 𝑦ኼ, need to be carried out. They are given
in eqs. (4.5a) to (4.9c).



54 4. Results

𝜕𝑓ኻ
𝜕𝑥ኻ

= 2𝑥ኻ (4.5a)

𝜕𝑓ኻ
𝜕𝑦ኻ

= 1 (4.5b)

𝜕𝑓ኻ
𝜕𝑦ኼ

= −eዅ፲Ꮄ (4.5c)

𝜕𝑓ኻ
𝜕𝑧ኼ

= 1 (4.5d)

𝜕𝑔ኻ
𝜕𝑦ኻ

= − 1
3.16 (4.6)

𝜕𝑔ኼ
𝜕𝑦ኼ

= 1
24 (4.7)

𝜕𝑦ኻ
𝜕𝑥ኻ

= 1 (4.8a)

𝜕𝑦ኻ
𝜕𝑦ኼ

= −0.2 (4.8b)

𝜕𝑦ኻ
𝜕𝑧ኻ

= 2𝑧ኻ (4.8c)

𝜕𝑦ኻ
𝜕𝑧ኼ

= 1 (4.8d)

𝜕𝑦ኼ
𝜕𝑦ኻ

= 1
2√𝑦ኻ

(4.9a)

𝜕𝑦ኼ
𝜕𝑧ኻ

= 1 (4.9b)

𝜕𝑦ኼ
𝜕𝑧ኼ

= 1 (4.9c)

To create a KB with which the Sellar problem can be solved, six subclasses of OpenLEGO’s
AbstractDiscipline class were created: D1, D2, F1, G1, and G2. They represent the two coupled

disciplines, the objective function, and the two constraint functions respectively. An example
implementation of D1 is shown in code frag. 4.1.

1 from lxml import etree
2 from openlego.api import AbstractDiscipline
3 from openlego.xml import xml_safe_create_element
4 from openlego.partials.partials import Partials
5

6

7 class D1(AbstractDiscipline):
8

9 @property
10 def supplies_partials(self):
11 return True
12

13 def generate_input_xml(self):
14 return ’<data>’ + \
15 ’<x1>0.0</x1>’ + \
16 ’<y2>0.0</y1>’ + \
17 ’<z1>0.0</z1>’ + \
18 ’<z2>0.0</z2>’ + \
19 ’</data>’
20

21 def generate_output_xml(self):
22 return ’<data>’ + \
23 ’<y1>0.0</y1>’ + \
24 ’</data>’
25

26 def generate_partials_xml(self):
27 partials = Partials()
28 partials.declare_partials(x_y1, [x_x1, x_y2, x_z1, x_z2])
29 return partials.get_string()
30

31 @staticmethod
32 def execute(in_file, out_file):
33 doc = etree.parse(in_file)
34 x1 = float(doc.xpath(’/data/x1’)[0].text)
35 y2 = float(doc.xpath(’/data/y2’)[0].text)
36 z1 = float(doc.xpath(’/data/z1’)[0].text)
37 z2 = float(doc.xpath(’/data/z2’)[0].text)
38

39 y1 = x1 + z1**2 + z2 - .2*y2
40

41 root = etree.Element(’data’)



4.2. Sellar Problem 55

42 doc = etree.ElementTree(root)
43 xml_safe_create_element(doc, ’/data/y1’, y1)
44 doc.write(out_file)
45

46 @staticmethod
47 def linearize(in_file, partials_file):
48 doc = etree.parse(in_file)
49 z1 = float(doc.xpath(x_z1)[0].text)
50

51 partials = Partials()
52 partials.declare_partials(x_y1,
53 [x_x1, x_y2, x_z1, x_z2],
54 [ 1., -.2, 2*z1, 1.])
55 partials.write(partials_file)

Code frament 4.1: Example implementation of discipline ፃᎳ of the Sellar problem in OpenLEGO

This class implements the three abstract methods of AbstractDiscipline, generate_inpu ⌋
t_xml(), generate_output_xml(), and execute(). The first two return simple, static Python
strings representing XML files with elements corresponding to the discipline’s four inputs, x1, y2,
z1, z2, and single output, y1, respectively. The execute() method uses the lxml Python package
and the xml utilities module, included in the OpenLEGO package, to read the input values from the
given input XML file, in_file, calculate the value of y1, and write the resulting value of y1 to the
given output XML file, out_file.

The class also overrides the standard behavior of the supplies_partials property, gener-
ate_partials_xml() function, and linearize() function. The first is simply set to True, to sig-
nify that analytical gradients are provided by the discipline. In the second, the Partials class is used
to generate a template partials XML file declaring which partials the discipline provides. Finally, the
linearize function calculates the values of the gradients given an input XML file.

The other disciplines were implemented similarly. Note that this implementation is very verbose and
inefficient for the simple disciplines of the Sellar problem, but is required because generally analysis
tools are more complex and are often represented by external programs.

After generating all in-, output, and information files, KADMOS was used to define the problem and
generate a corresponding CMDOWS file. For this test case, the Multi-Discipline Feasible (MDF) MDO
architecture was used with a Gauss-Siedel (GS) converger [60]. An eXtended Design Structure Matrix
(XDSM) [60] of the resulting problem definition, generated by KADMOS, is shown in fig. 4.1a.

The resulting CMDOWS file could then be used to generate the OpenMDAO model using a single
line of code (second line of code frag. 4.2). Finally, in order the solve the optimization problem, this
model was attached to an instance of OpenMDAO’s Problem class, along with an appropriate

subclass of Driver. A minimal example using the ScipyOptimizer driver with the default settings
is given in code frag. 4.2.

1 prob = Problem()
2 prob.model = LEGOModel(’path/to/cmdows/file.xml’, ’path/to/kb’)
3 prob.driver = ScipyOptimizer()
4

5 prob.setup()
6 prob.run_driver()

Code frament 4.2: Minimal example for the Sellar test case

Once theOpenMDAO Problemwas properly constructed and set up, theOpenMDAO view_model()
function was used to generate an N2 diagram of the problem, shown in fig. 4.1b. Comparing this with
the XDSM diagram generated by KADMOS, it is clear that the OpenMDAO representation corresponds
perfectly with the intended problem definition. The OpenMDAO problem was run with initial values
𝑥ኺኻ = 5, 𝑧ኺኻ = 0, 𝑧ኺኼ = 5, and converged to the known global minimum after 5 iterations. Hence, Open-



56 4. Results

0, 8:
COOR

1: x10

z10

z20
2: y2c0

8: x1∗

z2∗

z1∗

1, 7 → 2:
OPT

3: x1

z2

z1

4: z2

z1

6: x1

z2

2, 5 → 3:
CONV

3: y2c

3:
D1

4: y1 6: y1 6: y1

8: y2∗ 5: y2
4:
D2

6: y2 6: y2

8: f1∗ 7: f1
6:
F1

8: g1∗ 7: g1
6:
G1

8: g2∗ 7: g2
6:
G2

(a) XDSM, generated by KADMOS (b) N2 diagram, generated by OpenMDAO

Figure 4.1: XDSM and N2 diagram of the Sellar problem using the MDF architecture

0, 5:
COOR

1: y1c0

x10

y2c0

z10

z20

5: x1∗

z2∗

z1∗

1, 4 → 2:
OPT

2: x1

z2

z1

y2c

2: y1c

z2

z1

3: x1

z2

3: y1c

y2c

5: y1∗
2:
D1

3: y1 3: y1 3: y1

5: y2∗
2:
D2

3: y2 3: y2 3: y2

5: f1∗ 4: f1
3:
F1

5: g1∗ 4: g1
3:
G1

5: g2∗ 4: g2
3:
G2

4: gc_y2

gc_y1
3:
Gc

(a) XDSM, generated by KADMOS (b) N2 diagram, generated by OpenMDAO

Figure 4.2: XDSM and N2 diagram of the Sellar problem using the IDF architecture

LEGO was able to generate a correct and functioning OpenMDAO representation of the CMDOWS file,
which converges to the correct solution when run.

The problem can also be solved using an Individual Discipline Feasible (IDF) [60] MDO architecture.
KADMOS is able to generate a CMDOWS file for the problem wrapped in the IDF architecture by simply
changing the mdao_architecture setting, and OpenLEGO can handle the resulting file just as well
as the MDF variant. An XDSM of the problem using the IDF architecture is shown in fig. 4.2a alongside
the N2 diagram generated by the OpenMDAO model constructed by OpenLEGO, fig. 4.2b. When
running this problem using 𝑦፜ኺኻ = 5, 𝑦፜ኺኼ = 5 as initial values of the coupling variables, and the same
initial values for the design variables as for the MDF case, this problem converges to the global optimum
after 6 iterations.

When comparing fig. 4.2b to fig. 4.1b, it can be seen that OpenLEGO has added two new design
variables, corresponding to 𝑦፜ኻ and 𝑦፜ኼ , and a new group, consistency_constraints, with two new
components, Gc_data_y1 and Gc_data_y2, corresponding to the consistency constraint functions
represented by theGc block in fig. 4.2a. The feedback between disciplines D1 and D2, which is present
in the MDF architecture (represented by the single black circle positioned below the diagonal of the N2
diagram of fig. 4.1b) has been removed by the addition of copies of the coupling variables and the
consistency constraint functions. Indeed, no feedback connections are present in the N2 diagram of
the IDF architecture, as can be seen in fig. 4.2b. This lack of feedback between the coupled disciplines
is also precisely the difference between the MDF and IDF architectures [60], and is evident as well
when comparing the XDSMs in figs. 4.1a and 4.2a. This proves OpenLEGO is able to handle both the



4.3. Aerostructural Wing Optimization 57

MDF and the IDF architectures.

4.3. Aerostructural Wing Optimization
The aerostructural wing optimization test case is a low-fidelity, conceptual/preliminary design space
exploration of a wing. The problem uses planform and structural parameters as design variables. The
dAEDalus framework is used to perform the aerostructural analyses [12, 83, 84]. This is an open-
source tool written for Matlab, which uses a Vortex Lattice Method (VLM) as aerodynamic, and a linear
structural model, based on straight, connected beam segments.

New functions were written for dAEDalus first, allowing it to be initialized using the CPACS data
schema. Next, Matlab functions were written to wrap the functionality of dAEDalus and yield a set of
distinct operations which could in turn be used to define distinct disciplines for the MDO problem. The
dAEDalus framework uses a hierarchy of Matlab objects to store the model of an aircraft. Functions
can be called on these objects to perform analyses. These analyses then enrich the objects with their
results, after which they can be retrieved. For example, when performing the aerodynamic analysis on
the model, the aerodynamic forces and moments are imposed on the grid, and stored on each panel
of the aerodynamic model.

Within dAEDalus, the aircraft is represented by three related, but distinct objects representing a
geometric, structural, and aerodynamicmodel respectively. The geometric model is constructed directly
from the input file and is the basis for the construction of the other two. The structural model is created
from the geometric model given a set of discretization settings, such as the maximum spanwise length
of beam elements. By imposing forces and moments on each beam element, the structural model
computes the resulting displacements of the grid points. The aerodynamic model is created from the
geometric model, taking into account the deflections computed by the structural model. Given a set
of panels, the aerodynamic model computes the aerodynamic forces and moments acting on each.
These can then be used to compute the new resulting deflections. Each time the grid is deflected, the
aerodynamic model needs to be updated and the aerodynamic forces and moments change slightly,
leading in turn back to slightly different deflections. This strong coupling between the aerodynamics
and structures is, the phenomenon known as aeroelasticity [56].

The construction of the dAEDalus models is costly in terms of computation time andmemory. There-
fore they should be created as least often as possible and should preferably not be moved around in
memory. Much of the data contained in these models is not used directly by the optimization, but rather
by Matlab to perform the analyses. Since communicating large amounts of data between Matlab and
Python would lead to a lot of overhead, it was decided to store the models created by dAEDalus during
a run in the Matlab workspace and only communicate the data needed by the optimization. With this
in mind, four DCs were created to encapsulate the generation of the models and the performance of
dAEDalus’ analyses:

1. dSMI (dAEDalus Steady Model Initializer), which constructs the geometric and structural models
and returns the initial structural grid and the weight of the wing;

2. dSAMI (dAEDalus Steady Aerodynamic Model Initializer), which constructs the aerodynamic
model and returns the lift coefficient and friction drag coefficient of the wing;

3. dSAA (dAEDalus Steady Aerodynamic Analysis), which runs the VLM on the aerodynamic model
and returns the induced drag coefficient; and

4. dSSA (dAEDalus Steady Structural Analysis), which runs the structural analysis and returns the
stresses and deflected structural grid.

For this low-fidelity test case, a very simple model of the wing was used, based on a fixed number,
𝑛ws, of tapered wing segments. In this reduced model, the geometry of a single wing segment at index
𝑖 is completely described by two chord lengths, 𝑐። and 𝑐።ዄኻ, two twist angles, 𝜖። and 𝜖።ዄኻ, two thickness
over chord ratios, (፭/፜)። and (

፭/፜)።ዄኻ, a span, 𝑏።, sweep angle, Λ።, and dihedral angle, Γ።. The structure
of each wing segment is comprised solely of a wingbox with a trapezoidal cross-section. This wingbox
has constant front spar, rear spar, top skin, and bottom skin thicknesses along each segment, 𝑡fsᑚ , 𝑡rsᑚ ,
𝑡tsᑚ , and 𝑡bsᑚ . The cross-sections are defined at each end of a wing segment by front and rear spar
chordwise locations, 𝜉fsᑚ , 𝜉fsᑚᎼᎳ , 𝜉rsᑚ , and 𝜉rsᑚᎼᎳ . Furthermore, it is prescribed that two adjacent wing



58 4. Results

segments share the same section. Hence, there cannot be a jump in chord length, and spars cannot
have cuts, for example. Additionally, a set of reference values are used, namely: a non load-bearing
skin thickness and density, 𝑡skin and 𝜌skin, a fixed aircraft mass, 𝑚fixed, payload mass, 𝑚PL, maximum
landingmass,𝑚MLW, a systemsmass fraction, 𝑓፦sys. , and a wingsmass fraction, 𝑓፦wings . These are used
to estimate the new total weight of the aircraft as the weight of the wing changes during the optimization.
A discipline named WOM (Wing Object Model) was created which takes all of these parameters as input
and yields the aircraft in CPACS format as output.

The objective of the optimization problem is to minimize the fuel burn for a given range and payload
by changing the geometric and structural wing parameters. A simple estimation of the fuel burn based
on the Breguet range equation is used [76]. The mission is simplified to a single, constant speed,
constant altitude cruise leg. A discipline named FWE (Fuel Weight Estimator) was created to perform
this estimation.

The stresses are calculated at three different load cases: 1g cruise flight, a 2.5g symmetric pull-
up maneuver, and a -1.0g symmetric push-over maneuver. They are collected by a load collector
discipline, dLC, which computes the maximum stress out of all cases in each part of the wingbox, in
each wing segment. These collected stresses are then constrained to be below a given yield stress,
𝜎yield. Additionally, the wing loading (𝑊/𝑆) is constrained to be smaller than or equal to the original
value.

The innermost twist angle is considered to be the wing’s overall incidence angle. It is subtracted
from all the other twist angles and kept fixed at its initial value. If it were not fixed, there would be an
ambiguity between it and the angle of attack of the wing. Furthermore, the effect of the incidence angle
on the longitudinal stability as well as any interference effects between the wing and the fuselage are
not captured by the analyses. The thickness over chord ratios are kept constant as well, because their
impact on the aerodynamic characteristics of the wing cannot be captured with a VLM. The same is true
for the sweep angles, because compressibility effects are not captured accurately. Finally, directional
stability is not considered, so the dihedral angles are also left unchanged too. Therefore the design
vector is comprised of the variables 𝑐።, 𝜖፣, 𝑏፣, 𝜉fsᑚ , 𝜉rsᑚ , 𝑡fsᑛ , 𝑡rsᑛ , 𝑡tsᑛ , and 𝑡bsᑛ , for 𝑖 ∈ [0, 𝑛ws + 1] and
𝑗 ∈ [0, 𝑛ws].

Once all disciplines were defined in OpenLEGO by creating a subclass of the AbstractDis-
cipline class for each, the problem could easily be constructed using KADMOS. An XDSM of the
problem using the MDF architecture, generated by KADMOS, is shown in fig. 4.3. Note the feedback

Figure 4.3: XDSM of the wing optimization problem using MDF, generated by KADMOS

from the model initializer, dSMI, structural analysis, dSSA, and fuel weight estimator, FWE. The first
calculates the wing weight, and the latter calculates the fuel weight. Both of these need to be used by
the wing object model, WOM, to calculate the updated takeoff weight. The aerodynamic and structural
analyses are coupled to one another, which is, of course, the crux of the aeroelastic problem. As such,
the feedback from the structural analysis block corresponds to the deflected grid, which is used by the
aerodynamic model to compute the forces for the updated, deflected wing shape. As can be seen,



4.3. Aerostructural Wing Optimization 59

these feedbacks all connect to the converger block, and the coupled analyses are run consecutively,
since an MDF architecture is used. As such, all coupled analyses can be seen as sub-disciplines of a
higher-level multidisciplinary analysis (MDA).

Also note that the black lines indicating the order of execution in this diagram are actually incorrect
for the last four blocks. According to the XDSM, all three post-coupling blocks can be run in parallel.
Yet, the load collector discipline, dLC, supplies inputs to the ConstraintFunctions, and the fuel
weight estimator, FWE, supplies inputs to the ConstraintFunctions and ObjectiveFunctions
blocks. Therefore they would have to be run sequentially and not in parallel. This is a mistake made
by KADMOS, because it assumes post-coupling blocks do not provide input to one another. However,
when parsing a CMDOWS file OpenLEGO does not use this information. Therefore it is not affected by
this mistake and the CMDOWS file can still be used to generate a correct OpenMDAO representation
of the problem.

OpenLEGO was able to generate a representative OpenMDAO problem from the CMDOWS file
created by KADMOS. A collapsed view of the N2 diagram created by OpenMDAO’s view_model()
method of this problem is shown in fig. 4.4. When comparing fig. 4.4 with fig. 4.3 it is evident that

Figure 4.4: N2 diagram of the wing optimization problem using MDF, generated by OpenMDAO

the disciplines were ordered correctly, and connections were created between the correct couples
of disciplines. Upon closer inspection of the model, it was concluded that it matched the problem
description.

Unfortunately, no gradient information was available for the dAEDalus tools. Therefore this part of
the pipeline can not be demonstrated with this problem. The importance of having gradient information
available, however, was made apparent by this problem with fervor. Note the number of connections
between the coupled analyses in fig. 4.3. Especially between WOM and dSMI there are 217 connections
listed. This is more than the maximum number of coupling variables that were studied with the scalable
optimization problem, as was described in section 4.1, which went up to 200. There each discipline
had to execute up to tens of thousands of times to complete an optimization. To demonstrate the
significance of this issue with an industrially relevant problem, the gradients of the full wing optimization
model, corresponding to the XDSM of fig. 4.3, were estimated once using OpenMDAO’s functions. The
number of function evaluations of the four dAEDalus analyses, dSMI, dSAMI, dSAA, and dSSA, were
recorded. They are given in table 4.4. As can be seen, these numbers are very large. Especially the

Table 4.4: Number of function evaluations of the dAEDalus Steady Model Initializer (dSMI), Aerodynamic Model Initializer
(dSAMI), Aerodynamic Analysis (dSAA), and Structural Analysis (dSSA) for one gradient evaluation.

Discipline dSMI dSAMI dSAA dSSA total
Number of evaluations 9244 24 24963 16668 50899

aerodynamic and structural analysis stand out. This is due to the deflected grids being passed between
them as a result of the structural deformations. These are represented by vectors in the model, which
is why the number of connections between dSAA end dSSA are listed as only 9 (𝑥, 𝑦, and 𝑧 vectors for



60 4. Results

Table 4.5: Geometric design variables

symbol 𝑐r 𝑐k 𝑐t 𝜖k 𝜖t 𝑏ib 𝑏ob
units m m m rad rad m m
initial 13.71 7.26 2.73 −0.10 −0.18 12.72 22.70
final 14.63 8.51 2.21 −0.004 −0.035 8.76 24.97

three load cases). However, to calculate the gradients, each individual element of these vectors are
varied independently, leading to the enormous amounts of evaluations listed in the table.

On the system that this run was performed on, this single gradient evaluation took 5 hours and
25 minutes. If the gradients need to be computed 150 times for a single optimization, a conservative
amount for an optimization of this size, it would take more than a month to complete. This demonstrates
the importance of making gradient information available, and using it in an optimization framework.

In order to be able to run the problem within a feasible amount of time, the problem was simplified.
This was done by collapsing all of the4 coupled disciplines, except for the fuel weight estimator, into a
since, multidisciplinary analysis tool. This has the effect of removing the thousands of coupling variables
between the aerodynamic and structural analysis, and between the wing object model and the model
initializers. As such, the number of function evaluations required for the estimation of the gradients was
reduced drastically. An XDSM of the simplified problem is shown in fig. 4.5.

0, 8:

COOR

1: c0, b0, ϵ0

ξ0fs, ξ
0
rs

t0fs, t
0
rs, t

0
ts, t

0
bs

2: mc0
fuel

3: ncruise, Mcruise, Hcruise,

n2.5g, M2.5g, H2.5g,

n-1g, M-1g, H-1g,

i, Γ, Λ, t/c, tskin, ρskin,

mfixed, mPL, fmsys.
, fmwings

4: ncruise, Mcruise, Hcruise,

CDfus.
, CDother

, R, SFC,

mfuelres. , mfixed

6: CLbuffet
, W/Sinit, σyield 6: mwinginit , mfuelinit

8: c∗, b∗, ϵ∗

ξ∗fs, ξ
∗
rs

t∗fs, t
∗
rs, t

∗
ts, t

∗
bs

1, 7 → 2:

OPT

3: c, b, ϵ

ξfs, ξrs
tfs, trs, tts, tbs

2, 5 → 3:

CONV
3: mc

fuel

3:

Aeroelastics

4: CLcruise , CDi,cuirse ,

CDf,cuirse
, mwing

6: (σfs, σrs, σts, σbs)cruise,

(σfs, σrs, σts, σbs)2.5g,

(σfs, σrs, σts, σbs)-1g

6: S, CLcruise
6: mwing

8: m∗
fuel 5: mfuel

4:

FWE
6: MTOW 6: mfuel

6:

dLC
6: σfs, σrs, σts, σbs

8: con∗σfs
, con∗σrs

,

con∗σts
, con∗σbs

,

con∗W/S

7: conσfs
, conσrs

,

conσts , conσbs
,

conW/S

6:

ConstraintFunctions

8: obj∗mfuel
7: objmfuel

6:

ObjectiveFunctions

Figure 4.5: XDSM of the simplified wing optimization problem using MDF, generated by KADMOS

The optimization problem was run using an initial design based on the NASA Common Research
Model (CRM) [98], using 𝑛ws = 2. The run had to be started back up three times due to the memory
overflows. Unfortunately, the optimization finally exited abnormally due to a positive derivative in the
search direction after 201 iterations, having run continuously for over a week. The final design point
was infeasible, with most constraints violated.

The geometric and structural design variables at the initial and final point are tabulated in table 4.5
and table 4.6 respectively. The initial and final deflected wing shape and lift distributions (1g cruise
flight) are shown in figs. 4.6a and 4.6b. As can be seen, the overall taper ratio of the wing was
increased. This is to be expected when a VLM is used, because this increases the Oswald efficiency
factor and consequently the aerodynamic efficiency. The twist was increased both at the kink and at the
tip, increasing the local angle of attack. The inboard span of the wing was decreased, but the outboard
span was increased. Overall, the optimizer clearly tried to make the lift distribution more elliptical,
judging from fig. 4.6b, and moved the generation of lift further outboard. In a high-fidelity optimization,
however, it is expected that the wing span would increase, but previous design studies using a VLM
have also yielded a short, increased taper ratio wing [20]. In table 4.6 it can be seen that the optimizer
Did not move the the spars by much. The front spar was moved aft slightly, whereas the rear spar
was left nearly identical. The thicknesses of the outboard front spar and rear spar were increased;
the thicknesses of all skins were decreased. However, as was mentioned before, most constraints



4.3. Aerostructural Wing Optimization 61

(a) Wing geometry (b) Lift distributions

Figure 4.6: Wing geometry and lift distributions of the initial and final wings

Table 4.6: Structural design variables. Note: The second to last row corresponds to the initial values, the last to the final values.

𝜉fsr 𝜉fsk 𝜉fst 𝜉rsr 𝜉rsk 𝜉rst 𝑡fsib 𝑡fsob 𝑡rsib 𝑡rsob 𝑡tsib 𝑡tsob 𝑡bsib 𝑡bsob
− − − − − − mm mm mm mm mm mm mm mm

0.10 0.19 0.35 0.60 0.80 0.60 4.5 4.6 4.5 4.6 25.5 22.4 25.5 22.4
0.17 0.20 0.32 0.62 0.80 0.60 4.5 5.4 4.5 5.9 19.3 20.8 19.3 20.8

were violated. This includes almost all the stress constraints. Therefore these thicknesses are in no
way sufficient to support this design. In table 4.7, a set of performance characteristics are listed for
the initial and final design point. As can be seen, both the fuel and wing mass have been reduced
significantly. The lift coefficient during cruise is reduced slightly due to the reduced total weight. There
is a very slight decrease in the friction drag estimate, but since this parameter is determined using a
very crude estimation method, this can be disregarded. The real improvement comes from the induced
drag coefficient, which the VLM is able to predict well. It was reduced by 28.3%, and the aerodynamic
efficiency during cruise was increased by 5.2%. Despite the smaller wing, the wing loading was reduced
by 4.2%. This is due to the reduction in takeoff weight, caused by the reductions in fuel and wing weight.

Finally, the values of the constraints are listed in table 4.8. As can be seen, the front spar stress, rear
spar stress, and wing loading constraints are all inactive and satisfied. However, the top and bottom
skin stress constraints are significantly violated. Hence, the final design is clearly infeasible indeed.

Table 4.7: Performance characteristics

symbols 𝑚fuel 𝑚wing 𝐶L 𝐶Df 𝐶Di 𝐶D 𝐿/𝐷 𝑊/𝑆
units kg kg − − − − − kgmዅ2

initial 108508 49591 0.4229 0.0048 0.0060 0.0218 19.4 537.7
final 96758 37603 0.4088 0.0047 0.0043 0.0200 20.4 515.1

Table 4.8: Constraint values

symbols con᎟fs con᎟rs con᎟ts con᎟bs conፖ/ፒ
segment i.b. o.b. i.b. o.b. i.b. o.b. i.b. o.b. −
initial 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
final −0.07 −0.26 −0.07 −0.32 0.64 0.56 0.64 0.56 −0.04





5
Conclusions & Recommendations

We have come to the end of the main content of this thesis report. At this point it is worthwhile to reflect
back on the report and on the work done, and draw conclusions from it. Section 5.1 is dedicated to
this.

Of course, research is never done. So too this work is only a lap in the much longer race. Advances
have been made, questions have been answered, but there are also open ends to this work. These
provide provide opportunities for future research. Therefore it is important to reflect on this shortly. This
will be done in the form of a brief set of recommendations, presented in section 5.2.

5.1. Conclusions
After having studied the field of MDAO extensively for the 9 months of this thesis, the author has
to conclude that the maturity of MDAO is not industry ready yet as this point. As was discussed in
chapter 1, the problems lie in both technical and non-technical difficulties and barriers. However, as
became apparent when investigating the literature of this field, as presented in chapter 2, a lot of
research has been and is being done to improve this. Projects like AGILE are helping to evolve MDO
towards a point where the industry can no longer ignore it. Hence, it can be concluded that this field
has the potential to reach an adequate level of maturity to entertain the idea of widespread industrial
implementation in the very near future.

As was discussed in chapters 1 and 2, the AGILE project focuses mainly on moving from 2nd to
3rd generation MDO frameworks. These frameworks rely heavily on supporting physically separated
teams of experts, working together on an integrated multidisciplinary design study. AGILE’s role as an
enabler of this move to distributed systems, where human engineers are being put back into the loop,
involves the development and dissemination of new tools and protocols. Still, from experience gained
in the industry over the past months, the author has to conclude that the industry is actually not even
fully convinced of 1st generation MDO at this point. The first generation is, of course, the foundation
upon which the technology is built. Therefore it is important that the technology is matured at its base
as well.

It was found that many of the tools developed within AGILE and other projects could help achieve
this. This is a powerful notion: methods developed for higher level MDO systems can help evolve
lower level systems as well! This conclusion lead to the development of a new software framework,
which consequently formed the last link in a end-to-end 1st generation MDO ’pipeline’. The concept
of this pipeline was inspired upon the 3rd generation tool-chain developed within AGILE, which takes
a database of analysis tools through several protocols and software frameworks to yield a runnable
optimization workflow. The difference between this pipeline as it is meant within AGILE and the one de-
veloped in this thesis, is that the first is geared towards distributed, collaborative frameworks, whereas
the latter considers only local, monolithic frameworks.

At this point, it is important to reflect back on the research questions posited in chapter 1. The main
question to be answered was:

How can MDAO be made more applicable for conceptual design in the industry?

63



64 5. Conclusions & Recommendations

The answer should now be clear:

By maturing its foundation, that is, by evolving the state-of-the-art of 1st generation
MDAO frameworks.

The author found that the extensible, open-source frameworks are most suitable and wanted by the
industry. So it was concluded that, regardless of its form, for any new framework to be a move in the
right direction it should be extensible and open-source. Furthermore, from previous research it was
concluded that it is important that any new framework would allow the user to rapidly (re)configure
MDAO problems. And finally, as was proofed experimentally in section 4.1, it was concluded that the
inclusion of gradient information is key. To achieve these goals, a new software framework was devel-
oped, adding to the tools coming from the AGILE project, and the OpenMDAO optimization framework.
The strategy, architecture, and implementation of this new pipeline and software framework were dis-
cussed in chapter 3.

From the investigation into the effect of including analytical gradient information, presented in sec-
tion 4.1, it has to be concluded that this is indeed essential to the successful industrialization of an
MDAO system, as was posited in chapter 1. Using gradient information allowed for dramatic reduc-
tions in computational costs for a wide range of different problems. In the next two section, sections 4.2
and 4.3, the application of the new framework was demonstrated. From these results, it can be con-
cluded that the high level requirements put forth in chapter 1 and the detailed software requirements
listed in section 3.1, were successfully translated into a functioning software system. Section 4.2 show-
cased the software’s ability to allow for an optimization problem to be easily (re)configured. This comes
cutesy of the interface with the KADMOS/CMDOWS tools from AGILE, and the seamless integration
with the OpenMDAO framework. After having completed the KADMOS link of the chain, an OpenMDAO
model could be constructed with a single line of code.

The new framework was also used successfully to construct an OpenMDAO problem representing
an aeroelastic wing optimization use case, as was discussed in section 4.3. The dAEDalus framework
for aeroelastic analysis was integrated into this framework. From this it can be concluded that the
new tool can be used for industry relevant problems too. Unfortunately no feasible results could be
presented from this optimization. However, the author would like to stress that this was never the main
goal here. What was demonstrated with the problem, is that it is possible to configure an optimization
relevant to aircraft design using the new pipeline. Regardless of the outcomes of the optimization run,
it has to be concluded that this was indeed done successfully.

5.2. Recommendations
As was said at the start of this chapter, the author recognizes his role as only a part of a much lager
process. Based on the results presented in this report, it can be said the work done during the nine
months of this thesis have helped evolve the field of MDO a step closer towards widespread industri-
alization. As such, important questions have been answered. However, the answering of questions
rarely does not lead to new questions.

One of these questions is the following: could the extension to the notion of the knowledge base pro-
posed in this thesis be better integrated into the AGILE pipeline? As it stands now, the extension to add
support for analytical gradient specification exists completely separated from the KADMOS/CMDOWS
definition of the knowledge base. Ideally, this idea should be integrated deeply within the definition
of KADMOS and the structure of CMDOWS. If this were done, the extended notion of the knowledge
base could even be adopted in the 3rd generation MDO tool-chain AGILE provides. As was seen in
section 4.1, this could have dramatically positive effects on the computational cost of optimizations.
Therefore this could help the AGILE project attain, or even surpass its goal of a 40% reduction in the
time required to converge a large-scale optimization problem. It is therefore strongly recommended
this be investigated in the near future.

The author is aware of a more elaborate aircraft design problem, using a much larger suite of
analysis tools, described within the AGILE project. To investigate the true potential of the pipeline
described and software developed during this thesis, it is recommended that this much larger problem
be implemented and run with these new tools. Not only should this demonstrate whether the tools
developed are truly scalable, but it should also serve as an import showcase of the powers of modern
MDO systems. This couldmove the industry a step closer to true acceptance of MDO in their processes.



5.2. Recommendations 65

As was mentioned in sections 4.3 and 5.1, the wing optimization test case performed considered in
this work did not yield a feasible solution. It goes without saying that the author recommends that this
problem is adjusted and properly seen to conclusion if resources are available for this.

Last, but certainly not least, the author recommends possible additions to the software framework
OpenLEGO, developed as part of this thesis. In this thesis, the main function of OpenLEGO is to
connect a 1st generation, monolithic version of the full 3rd generation MDO pipeline developed within
AGILE to the OpenMDAO framework. As was discussed in chapters 1 and 2, OpenMDAO has ad-
vantages over PIDO systems such as RCE and Optimus. However, as it stands now it has one major
disadvantage: it cannot make use of AGILE’s full suite of tools enabling 3rd generation MDO, such as
the BRICS protocol. It would be interesting to investigate if OpenLEGO could be extended to bring it
from the 1st generation MDO domain into the 3rd generation MDO domain that AGILE targets. En-
abling BRICS capabilities is seen by the author as an important step for this, because it would open
up the realm of collaborative optimization within OpenMDAO. The author would like to make two sug-
gestions for making this possible. Firstly, a special OpenMDAO component could be developed which
allows for BRICS analyses to be easily included in models. The author is aware of the remote com-
ponent provisions already existent in OpenMDAO currently, so it should be possible to target BRICS
too. Secondly, an interface between OpenMDAO and the PIDO systems RCE and Optimus could be
developed. This would give users the freedom to use the powers of the graphical user interfaces of
the PIDO systems to create workflows of cooperating tools and engineer, while allowing them to tap
into the strengths of the OpenMDAO framework. This would effectively also enable the link between
OpenMDAO and the BRICS protocol, because the latter is already available in these PIDO systems.





A
Code

A.1. OpenLEGO core
A.1.1. openlego.core.abstract_discipline

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the AbstractDiscipline interface class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import abc
23 import inspect
24 import json
25 import os
26

27 from openlego.partials.partials import Partials
28

29

30 class AbstractDiscipline(object):
31 ”””Defines the common interface for all disciplines within ‘‘OpenLEGO‘‘.”””
32 __metaclass__ = abc.ABCMeta
33

34 @property
35 def name(self):
36 # type: () -> str
37 ”””:obj:‘str‘: Name of this discipline.”””
38 return self.__class__.__name__
39

40 @property
41 def version(self):
42 # type: () -> float
43 ”””:obj:‘str‘: Version number of this discipline.”””
44 return 1.0
45

46 @property
47 def creator(self):

67



68 A. Code

48 # type: () -> str
49 ”””:obj:‘str‘: Name of the person that created this discipline.”””
50 return ’Placeholder’
51

52 @property
53 def description(self):
54 # type: () -> str
55 ”””:obj:‘str‘: Description of this discipline.”””
56 return ’Abstract discipline’
57

58 @property
59 def precision(self):
60 # type: () -> int
61 ”””:obj:‘int‘: Precision of this discipline.”””
62 return 0
63

64 @property
65 def path(self):
66 # type: () -> str
67 ”””:obj:‘str‘: Path at which this discipline resides.”””
68 return os.path.dirname(inspect.getfile(self.__class__))
69

70 @property
71 def in_file(self):
72 # type: () -> str
73 ”””:obj:‘str‘: Path of the template input XML file of this discipline.”””
74 return os.path.join(self.path, self.name + ’-input.xml’)
75

76 @property
77 def out_file(self):
78 # type: () -> str
79 ”””:obj:‘str‘: Path of the template output XML file of this discipline.”””
80 return os.path.join(self.path, self.name + ’-output.xml’)
81

82 @property
83 def json_file(self):
84 # type: () -> str
85 ”””:obj:‘str‘: Path of the information JSON file of this discipline.”””
86 return os.path.join(self.path, self.name + ’-info.json’)
87

88 @property
89 def partials_file(self):
90 # type: () -> str
91 ”””:obj:‘str‘: Path of the partials XML file of this discipline.”””
92 return os.path.join(self.path, self.name + ’-partials.xml’)
93

94 @property
95 def supplies_partials(self):
96 # type: () -> bool
97 ”””Set to True to indicate this discipline supplies gradients.”””
98 return False
99

100 @abc.abstractmethod
101 def generate_input_xml(self):
102 # type: () -> str
103 ”””Generate the template input XML for this discipline.
104

105 This method should be implemented to define the input template of a specific
discipline.↪

106

107 Returns
108 -------
109 str
110 String representation of the template input XML.
111 ”””
112 raise NotImplementedError
113

114 @abc.abstractmethod
115 def generate_output_xml(self):
116 # type: () -> str
117 ”””Generate the template output XML for this discipline.



A.1. OpenLEGO core 69

118

119 This method should be implemented to define the output template of a specific
discipline.↪

120

121 Returns
122 -------
123 str
124 String representation of the template output XML file.
125 ”””
126 raise NotImplementedError
127

128 def generate_info_json(self):
129 # type: () -> str
130 ”””Generate the information JSON file for this discipline.
131

132 This method should be overridden or extended to specify a non-standard info JSON file
for a specific discipline.↪

133

134 Returns
135 -------
136 str
137 String representation of the info JSON file
138 ”””
139 return json.dumps({’general_info’: {’name’: self.name,
140 ’version’: self.version,
141 ’creator’: self.creator,
142 ’description’: self.description},
143 ’execution_info’: [{’mode’: ’main’,
144 ’description’: ’main execution mode’,
145 ’precision’: self.precision}]}, indent=4)
146

147 def generate_partials_xml(self):
148 # type: () -> str
149 ”””Generate the template partials XML file for this discipline.
150

151 This method should be implemented to define for which inputs this discipline can
provide the sensitivities.↪

152

153 Returns
154 -------
155 str
156 String representation of the template partials XML file.
157 ”””
158 return Partials().get_string()
159

160 def deploy(self):
161 # type: () -> None
162 ”””Deploy this discipline’s template in-/output, partials XML files and its

information JSON file.”””↪
163 with open(self.in_file, ’w’) as f:
164 f.write(self.generate_input_xml())
165 with open(self.out_file, ’w’) as f:
166 f.write(self.generate_output_xml())
167 with open(self.json_file, ’w’) as f:
168 f.write(self.generate_info_json())
169 with open(self.partials_file, ’w’) as f:
170 f.write(self.generate_partials_xml())
171

172 @staticmethod
173 @abc.abstractmethod
174 def execute(in_file, out_file):
175 # type: (str, str) -> None
176 ”””Execute this discipline with the given in- and output XML files.
177

178 This method should be implemented to define the execution of a specific discipline.
179

180 Parameters
181 ----------
182 in_file : str
183 Path to the input XML file.
184



70 A. Code

185 out_file : str
186 Path to the output XML file.
187 ”””
188 raise NotImplementedError
189

190 @staticmethod
191 def linearize(in_file, partials_file):
192 # type: (str, str) -> None
193 ”””Compute the sensitivities of a given input XML file and write them to a given

partials XML file.↪
194

195 This method should be implemented to define the linearization of a specific
discipline. By default a discipline↪

196 is considered a ’black box’, and no sensitivities are provided.
197

198 Parameters
199 ----------
200 in_file : str
201 Path to the input XML file.
202

203 partials_file : str
204 Path to the sensitivities XML file.
205 ”””
206 Partials().write(partials_file)

Code frament A.1: Code of the openlego.core.abstract_discipline Python module.

A.1.2. openlego.core.discipline_component
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition the ‘DisciplineComponent‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from typing import Optional
23

24 from .abstract_discipline import AbstractDiscipline
25 from .xml_component import XMLComponent
26

27

28 class DisciplineComponent(XMLComponent):
29 ”””Specialized ‘XMLComponent‘ wrapping an ‘AbstractDiscipline‘.
30

31 This version of ‘XMLComponent‘ defines in- and output variables based on the in- and
output template XML files↪

32 generated by a subclass of ‘AbstractDiscipline‘. The ‘execute()‘ method simply forwards to
that of the discipline.↪

33

34 Attributes
35 ----------
36 discipline
37 ”””
38

39 def __init__(self, discipline, data_folder=’’, keep_files=False, base_file=None):



A.1. OpenLEGO core 71

40 # type: (AbstractDiscipline, Optional[str]) -> None
41 ”””Initialize a ‘Component‘ using a given ‘discipline‘.
42

43 Stores a reference to the given ‘discipline‘. The in- and output XML templates should
already exist at the paths↪

44 specified in the ‘discipline‘. This constructor uses those files to create the
‘‘OpenMDAO‘‘ ‘params‘ and↪

45 ‘unknowns‘ using the methods exposed by the ‘XMLComponent‘ class this class inherits
from.↪

46

47 Parameters
48 ----------
49 discipline : :obj:‘AbstractDiscipline‘
50 Instance of a subclass of ‘AbstractDiscipline‘ this ‘Component‘ will represent.
51

52 data_folder : str(’’), optional
53 Path to a folder in which to store (temporary) data of this ‘Component‘ during

execution.↪
54

55 keep_files : bool(False), optional
56 Set to ‘True‘ to keep the data files generated by this ‘Component‘ during

execution.↪
57

58 base_file : str, optional
59 Path to an XML file which should be kept up-to-date with the latest data, if

required.↪
60

61 Notes
62 -----
63 Although this constructor could use the supplied ‘discipline‘ to also

automatically generate its in- and↪
64 output XML templates on the fly, the user is left in control of their generation.

This is to allow for a↪
65 ‘discipline‘ to generate different in- and output templates dynamically based on

certain parameters. During↪
66 execution only the static methods of the ‘discipline‘s are used. Hence, any

instance variables will not be↪
67 accessible then. Therefore it is impossible to guarantee consistency if the in-

and output XML files are↪
68 generated here.
69 ”””
70 self._discipline = discipline
71 if discipline.supplies_partials:
72 super(DisciplineComponent, self).__init__(self._discipline.in_file,
73 self._discipline.out_file,
74 self._discipline.partials_file,
75 data_folder, keep_files, base_file)
76 else:
77 super(DisciplineComponent, self).__init__(self._discipline.in_file,
78 self._discipline.out_file,
79 None,
80 data_folder, keep_files, base_file)
81 self.partials_from_xml = None
82

83 @property
84 def discipline(self):
85 # type: () -> AbstractDiscipline
86 ”””:obj:‘AbstractDiscipline‘: Read-only reference to the specific discipline this

‘Component‘ wraps.”””↪
87 return self._discipline
88

89 def execute(self, input_xml=None, output_xml=None):
90 # type: (str, str) -> None
91 ”””Call the ‘execute()‘ method of this ‘Component‘’s discipline.
92

93 Parameters
94 ----------
95 input_xml : str
96 Path to the input XML file.
97

98 output_xml : str



72 A. Code

99 Path to the output XML file.
100

101 Raises
102 ------
103 ValueError
104 If either no ‘input_xml‘ or ‘output_xml‘ path was specified.
105

106 Notes
107 -----
108 Since this class inherits from ‘XMLComponent‘ the interface, including the

optionality of its arguments, are↪
109 left untouched. For this method this means the ‘input_xml‘ and ‘output_xml‘

parameters are strictly↪
110 optional. However, in the context of the ‘DisciplineComponent‘ they should always

be given. Therefore an↪
111 exception is raised here when one of them or both are omitted.
112 ”””
113 if input_xml is None or output_xml is None:
114 raise ValueError(’Both an input_xml and output_xml path are expected.’)
115 self.discipline.execute(input_xml, output_xml)
116

117 def linearize(self, input_xml=None, partials_xml=None):
118 # type: (str, str) -> None
119 ”””Call the ‘linearize()‘ method of this ‘Component‘’s discipline.
120

121 Parameters
122 ----------
123 input_xml : str
124 Path to the input XML file.
125

126 partials_xml : str
127 Path to the partials XML file.
128

129 Raises
130 ------
131 ValueError
132 If either no ‘input_xml‘ or ‘partials_xml‘ path was specified.
133 ”””
134 if self.discipline.supplies_partials:
135 if input_xml is None or partials_xml is None:
136 raise ValueError(’Both an input_xml and a partials_xml path are expected.’)
137 self.discipline.linearize(input_xml, partials_xml)

Code frament A.2: Code of the openlego.core.discipline_component Python module.

A.1.3. openlego.core.model
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ‘LEGOModel‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import imp
23 import re



A.1. OpenLEGO core 73

24 import warnings
25

26 import numpy as np
27 from lxml import etree
28 from lxml.etree import _Element, _ElementTree
29 from openmdao.api import Group, IndepVarComp, LinearBlockGS, NonlinearBlockGS,

LinearBlockJac, NonlinearBlockJac, \↪
30 LinearRunOnce, NonLinearRunOnce, ExecComp
31 from typing import Union, Optional, List, Any, Dict, Tuple
32

33 from openlego.utils.general_utils import CachedProperty, parse_cmdows_value
34 from openlego.utils.xml_utils import xpath_to_param, xml_to_dict
35 from .abstract_discipline import AbstractDiscipline
36 from .discipline_component import DisciplineComponent
37

38 re_sys_name_char = re.compile(r’[^_a-zA-Z0-9]’)
39 re_sys_name_starts = re.compile(r’^[a-zA-Z]’)
40

41

42 class LEGOModel(Group):
43 ”””Specialized OpenMDAO Group class representing the problem specified by a CMDOWS file.
44

45 An important note about this class in the context of OpenMDAO is that the aggregation
pattern of the root Group↪

46 class the base Problem class has is changed into a stronger composition pattern. This is
because this class directly↪

47 controls the creation and assembly of this class by making use of Python’s @property
decorator. It is not possible,↪

48 nor should it be attempted, to manually inject a different instance of Group in place of
these, because the↪

49 correspondence between the CMDOWS file and the Problem can then no longer be guaranteed.
50

51 Attributes
52 ----------
53 cmdows_path
54 kb_path
55 discipline_components
56 block_order
57 coupled_blocks
58 system_order
59 system_variables
60 system_inputs
61 driver
62 coordinator
63

64 data_folder : str, optional
65 Path to the folder in which to store all data generated during the ‘Problem‘’s

execution.↪
66

67 base_xml_file : str, optional
68 Path to an XML file which should be kept up-to-date with the latest data

describing the problem.↪
69 ”””
70

71 def __init__(self, cmdows_path=None, kb_path=None, data_folder=None, base_xml_file=None,
**kwargs):↪

72 # type: (Optional[str], Optional[str], Optional[str], Optional[str]) -> None
73 ”””Initialize a CMDOWS Problem from a given CMDOWS file and knowledge base.
74

75 It is also possible to specify where (temporary) data should be stored, and if a base
XML↪

76 file should be kept up-to-data.
77

78 Parameters
79 ----------
80 cmdows_path : str, optional
81 Path to the CMDOWS file.
82

83 kb_path : str, optional
84 Path to the knowledge base.
85



74 A. Code

86 data_folder : str, optional
87 Path to the data folder in which to store all files and output from the problem.
88

89 base_xml_file : str, optional
90 Path to a base XML file to update with the problem data.
91 ”””
92 self._cmdows_path = cmdows_path
93 self._kb_path = kb_path
94 self.data_folder = data_folder
95 self.base_xml_file = base_xml_file
96

97 super(LEGOModel, self).__init__(**kwargs)
98 self.linear_solver = LinearRunOnce()
99 self.nonlinear_solver = NonLinearRunOnce()

100

101 def __getattribute__(self, name):
102 # type: (str) -> Any
103 ”””Check the integrity before returning any of the cached variables.
104

105 Parameters
106 ----------
107 name : str
108 Name of the attribute to read.
109

110 Returns
111 -------
112 any
113 The value of the requested attribute.
114 ”””
115 if name != ’__class__’ and name != ’__dict__’:
116 if name in [_name for _name, value in self.__class__.__dict__.items() if

isinstance(value, CachedProperty)]:↪
117 self.__integrity_check()
118 return super(LEGOModel, self).__getattribute__(name)
119

120 def __setattr__(self, name, value):
121 # type: (str, Any) -> None
122 ”””Bypass setting coordinator and coupled_group attributes.
123

124 Parameters
125 ----------
126 name : str
127 Name of the attribute.
128

129 value : any
130 Value to set the attribute to.
131 ”””
132 if name not in [’coordinator’, ’coupled_group’]:
133 super(LEGOModel, self).__setattr__(name, value)
134

135 def __integrity_check(self):
136 # type: () -> None
137 ”””Ensure both a CMDOWS file and a knowledge base path have been supplied.
138

139 Raises
140 ------
141 ValueError
142 If either no CMDOWS file or no knowledge base path has been supplied
143 ”””
144 a = self._cmdows_path is None
145 b = self._kb_path is None
146 if a or b:
147 raise ValueError(’No ’ + a * ’CMDOWS file ’ + (a & b) * ’and ’ + b * ’knowledge

base path ’ + ’specified!’)↪
148

149 def invalidate(self):
150 # type: () -> None
151 ”””Invalidate the instance.
152

153 All computed (cached) properties will be recomputed upon being read once the instance
has been invalidated.”””↪



A.1. OpenLEGO core 75

154 for value in self.__class__.__dict__.values():
155 if isinstance(value, CachedProperty):
156 value.invalidate()
157

158 def does_value_fit(self, name, val):
159 # type: (str, Union[str, float, np.ndarray]) -> bool
160 ”””Check whether a given value has the correct size to be assigned to a given variable.
161

162 Parameters
163 ----------
164 name : str
165 Name of the variable.
166

167 val : str or float or np.ndarray
168 Value to check.
169

170 Returns
171 -------
172 bool
173 ‘True‘ if the value fits, ‘False‘ if not.
174 ”””
175 return (isinstance(val, np.ndarray) and val.size == self.variable_sizes[name]) \
176 or (not isinstance(val, np.ndarray) and self.variable_sizes[name] == 1)
177

178 @property
179 def cmdows_path(self):
180 # type: () -> str
181 ”””:obj:‘str‘: Path to the CMDOWS file this class corresponds to.
182

183 When this property is set the instance is automatically invalidated.
184 ”””
185 return self._cmdows_path
186

187 @cmdows_path.setter
188 def cmdows_path(self, cmdows_path):
189 # type: (str) -> None
190 self._cmdows_path = cmdows_path
191 self.invalidate()
192

193 @property
194 def kb_path(self):
195 # type: () -> str
196 ”””:obj:‘str‘: Path to the knowledge base.
197

198 When this property is set the instance is automatically invalidated.
199 ”””
200 return self._kb_path
201

202 @kb_path.setter
203 def kb_path(self, kb_path):
204 # type: (str) -> None
205 self._kb_path = kb_path
206 self.invalidate()
207

208 @CachedProperty
209 def elem_cmdows(self):
210 # type: () -> _Element
211 ”””:obj:‘etree._Element‘: Root element of the CMDOWS XML file.”””
212 return etree.parse(self.cmdows_path).getroot()
213

214 @CachedProperty
215 def elem_problem_def(self):
216 # type: () -> _Element
217 ”””:obj:‘etree._Element‘: The problemDefition element of this problem’s CMDOWS file.”””
218 return self.elem_cmdows.find(’problemDefinition’)
219

220 @CachedProperty
221 def elem_params(self):
222 # type: () -> _Element
223 ”””:obj:‘etree._Element‘: The problemRoles/parameters element of the CMDOWS file.”””
224 params = self.elem_cmdows.find(’problemDefinition/problemRoles/parameters’)



76 A. Code

225 if params is None:
226 raise Exception(’cmdows does not contain (valid) parameters in the problemRoles’)
227 return params
228

229 @CachedProperty
230 def elem_arch_elems(self):
231 # type: () -> _Element
232 ”””:obj:‘etree._Element‘: The architectureElements element of the CMDOWS file.”””
233 arch_elems = self.elem_cmdows.find(’architectureElements’)
234 if arch_elems is None:
235 raise Exception(’cmdows does not contain (valid) architecture elements’)
236 return arch_elems
237

238 @CachedProperty
239 def has_converger(self):
240 # type: () -> bool
241 ”””:obj:‘bool‘: True if there is a converger, False if not.”””
242 if self.elem_arch_elems.find(’executableBlocks/convergers/converger’) is not None:
243 return True
244 return False
245

246 @CachedProperty
247 def discipline_components(self):
248 # type: () -> Dict[str, DisciplineComponent]
249 ”””:obj:‘dict‘: Dictionary of discipline components by their design competence ‘‘uID‘‘

from CMDOWS.↪
250

251 Raises
252 ------
253 RuntimeError
254 If a ‘‘designCompetence‘‘ specified in the CMDOWS file does not correspond to

an ‘AbstractDiscipline‘.↪
255 ”””
256 _discipline_components = dict()
257 for design_competence in self.elem_cmdows.iter(’designCompetence’):
258 uid = design_competence.attrib[’uID’]
259 name = design_competence.find(’ID’).text
260 try:
261 fp, pathname, description = imp.find_module(name, [self.kb_path])
262 mod = imp.load_module(name, fp, pathname, description)
263 cls = getattr(mod, name) # type: AbstractDiscipline.__class__
264 if not issubclass(cls, AbstractDiscipline):
265 raise RuntimeError
266 except Exception:
267 raise RuntimeError(
268 ’Unable to process CMDOWS file: no proper discipline found for design

competence with name %s’↪
269 % name)
270 finally:
271 if ’fp’ in locals():
272 fp.close()
273

274 component = DisciplineComponent(cls(), data_folder=self.data_folder,
base_file=self.base_xml_file)↪

275 _discipline_components.update({uid: component})
276 return _discipline_components
277

278 @CachedProperty
279 def variable_sizes(self):
280 # type: () -> Dict[str, int]
281 ”””:obj:‘dict‘: Dictionary of the sizes of all variables by their names.”””
282 variable_sizes = {}
283 for component in self.discipline_components.values():
284 for name, value in component.variables_from_xml.items():
285 variable_sizes.update({name: np.atleast_1d(value).size})
286 return variable_sizes
287

288 @CachedProperty
289 def coupling_vars(self):
290 # type: () -> Dict[str, Dict[str, str]]
291 ”””:obj:‘dict‘: Dictionary with coupling variables.”””



A.1. OpenLEGO core 77

292 coupling_vars = dict()
293

294 # First create a map between related param and coupling copy var
295 for var in self.elem_arch_elems.iter(’couplingCopyVariable’):
296 related_param = var.find(’relatedParameterUID’).text
297 coupling_vars.update({xpath_to_param(related_param):

xpath_to_param(var.attrib[’uID’])})↪
298

299 # Then update dict with corresponding consitency constraint var
300 for convar in self.elem_arch_elems.iter(’consistencyConstraintVariable’):
301 param = xpath_to_param(convar.find(’relatedParameterUID’).text)
302 if param not in coupling_vars:
303 raise RuntimeError(’invalid cmdows file’)
304

305 coupling_vars.update({param: {’copy’: coupling_vars[param], ’con’:
xpath_to_param(convar.attrib[’uID’])}})↪

306 return coupling_vars
307

308 @CachedProperty
309 def coupling_var_copies(self):
310 # type: () -> Dict[str, str]
311 ”””:obj:‘dict‘: Dictionary with coupling variable copies.”””
312 coupling_var_copies = dict()
313 for var, value in self.coupling_vars.items():
314 coupling_var_copies.update({var: value[’copy’]})
315 return coupling_var_copies
316

317 @CachedProperty
318 def coupling_var_cons(self):
319 # type: () -> Dict[str, str]
320 ”””:obj:‘dict‘: Dictionary with coupling variable constraints.”””
321 coupling_var_cons = None
322 if ’con’ in self.coupling_vars.values()[0]:
323 coupling_var_cons = dict()
324 for var, value in self.coupling_vars.items():
325 coupling_var_cons.update({var: value[’con’]})
326 return coupling_var_cons
327

328 @CachedProperty
329 def block_order(self):
330 # type: () -> List[str]
331 ”””:obj:‘list‘ of :obj:‘str‘: List of executable block ‘‘uIDs‘‘ in the order specified

in the CMDOWS file.”””↪
332 positions = list()
333 uids = list()
334 for block in

self.elem_problem_def.iterfind(’problemFormulation/executableBlocksOrder/executableBlock’):↪
335 uid = block.text
336 positions.append(int(block.attrib[’position’]))
337 uids.append(uid)
338 return [uid for position, uid in sorted(zip(positions, uids))]
339

340 @CachedProperty
341 def coupled_blocks(self):
342 # type: () -> List[str]
343 ”””:obj:‘list‘ of :obj:‘str‘: List of ‘‘uIDs‘‘ of the coupled executable blocks

specified in the CMDOWS file.”””↪
344 _coupled_blocks = []
345 for block in

self.elem_problem_def.iterfind(’problemRoles/executableBlocks/coupledBlocks/coupledBlock’):↪
346 _coupled_blocks.append(block.text)
347 return _coupled_blocks
348

349 @CachedProperty
350 def system_inputs(self):
351 # type: () -> Dict[str, int]
352 ”””:obj:‘dict‘: Dictionary containing the system input sizes by their names.”””
353 system_inputs = {}
354 for value in self.elem_cmdows.xpath(
355

r’workflow/dataGraph/edges/edge[fromExecutableBlockUID=”Coordinator”]/toParameterUID/text()’):↪



78 A. Code

356 if ’architectureNodes’ not in value or ’designVariables’ in value:
357 name = xpath_to_param(value)
358 system_inputs.update({name: self.variable_sizes[name]})
359

360 return system_inputs
361

362 @CachedProperty
363 def design_vars(self):
364 # type: () -> Dict[str, Dict[str, Any]]
365 ”””:obj:‘dict‘: Dictionary containing the design variables’ initial values, lower

bounds, and upper bounds.”””↪
366 desvars = self.elem_params.find(’designVariables’)
367 if desvars is None:
368 raise Exception(’cmdows does not contain (valid) design variables’)
369

370 design_vars = {}
371 for desvar in desvars:
372 name = xpath_to_param(desvar.find(’parameterUID’).text)
373

374 # Obtain the initial value
375 initial = desvar.find(’nominalValue’)
376 if initial is not None:
377 initial = parse_cmdows_value(initial)
378 if not self.does_value_fit(name, initial):
379 raise ValueError(’incompatible size of nominalValue for design variable

”%s”’ % name)↪
380 else:
381 warnings.warn(’no nominalValue given for designVariable ”%s”. Default is all

zeros.’ % name)↪
382 initial = np.zeros(self.variable_sizes[name])
383

384 if name in self.coupling_vars:
385 # If this is a coupling variable the bounds are -1e99 and 1e99 and it should

not be normalized↪
386 design_vars.update(
387 {self.coupling_vars[name][’copy’]: {’initial’: initial,
388 ’lower’:

-1e99*np.ones(self.variable_sizes[name]),↪
389 ’upper’:

1e99*np.ones(self.variable_sizes[name]),↪
390 ’ref0’: None, ’ref’: None}})
391 else:
392 # Obtain the lower and upper bounds
393 bounds = 2 * [None] # type: List[Optional[str]]
394 limit_range = desvar.find(’validRanges/limitRange’)
395 if limit_range is not None:
396 for index, bnd, in enumerate([’minimum’, ’maximum’]):
397 elem = limit_range.find(bnd)
398 if elem is not None:
399 bounds[index] = parse_cmdows_value(elem)
400 if not self.does_value_fit(name, bounds[index]):
401 raise ValueError(’incompatible size of %s for design variable

%s’ % (bnd, name))↪
402

403 # Add the design variable to the dict
404 design_vars.update({name: {’initial’: initial,
405 ’lower’: bounds[0], ’upper’: bounds[1],
406 ’ref0’: bounds[0], ’ref’: bounds[1]}})
407 return design_vars
408

409 @CachedProperty
410 def constraints(self):
411 # type: () -> Dict[str, Dict[str, Any]]
412 ”””:obj:‘dict‘: Dictionary containing the constraints’ lower, upper, and equals

reference values.”””↪
413 convars = self.elem_params.find(’constraintVariables’)
414 constraints = {}
415 if convars is not None:
416 for convar in convars:
417 con = {’lower’: None, ’upper’: None, ’equals’: None}
418 name = xpath_to_param(convar.find(’parameterUID’).text)



A.1. OpenLEGO core 79

419

420 if self.coupling_var_cons is not None and name in
self.coupling_var_cons.values():↪

421 # If this is a coupling variable consistency constraint, equals should just
be zero↪

422 for key, value in self.coupling_var_cons.items():
423 if name == value:
424 size = self.variable_sizes[key]
425 if size == 1:
426 con[’equals’] = 0.
427 else:
428 con[’equals’] = np.zeros(self.variable_sizes[key])
429 break
430 else:
431 # Obtain the reference value of the constraint
432 constr_ref = convar.find(’referenceValue’) # type: etree._Element
433 if constr_ref is not None:
434 ref = parse_cmdows_value(constr_ref)
435 if isinstance(ref, str):
436 raise ValueError(’referenceValue for constraint ”%s” is not

numerical’ % name)↪
437 elif not self.does_value_fit(name, ref):
438 warnings.warn(’incompatible size of constraint ”%s”. Will assume

the same for all.’ % name)↪
439 ref = np.ones(self.variable_sizes[name]) * np.atleast_1d(ref)[0]
440 else:
441 warnings.warn(’no referenceValue given for constraint ”%s”. Default is

all zeros.’ % name)↪
442 ref = np.zeros(self.variable_sizes[name])
443

444 # Process the constraint type
445 constr_type = convar.find(’constraintType’)
446 if constr_type is not None:
447 if constr_type.text == ’inequality’:
448 constr_oper = convar.find(’constraintOperator’)
449 if constr_oper is not None:
450 oper = constr_oper.text
451 if oper == ’>=’ or oper == ’>’:
452 con[’lower’] = ref
453 elif oper == ’<=’ or oper == ’<’:
454 con[’upper’] = ref
455 else:
456 raise ValueError(’invalid constraintOperator ”%s” for

constraint ”%s”’ % (oper, name))↪
457 else:
458 warnings.warn(
459 ’no constraintOperator given for inequality constraint.

Default is ”&lt;=”.’)↪
460 con[’upper’] = ref
461 elif constr_type.text == ’equality’:
462 if convar.find(’constraintOperator’) is not None:
463 warnings.warn(’constraintOperator given for an

equalityConstraint will be ignored’)↪
464 con[’equals’] = ref
465 else:
466 raise ValueError(’invalid constraintType ”%s” for constraint ”%s”.’

% (constr_type.text, name))↪
467 else:
468 warnings.warn(’no constraintType specified for constraint ”%s”. Default

is a <= inequality.’)↪
469 con[’upper’] = ref
470

471 # Add constraint to the dictionary
472 constraints.update({name: con})
473 return constraints
474

475 @CachedProperty
476 def objective(self):
477 # type: () -> str
478 ”””:obj:‘str‘: Name of the objective variable.”””
479 objvars = self.elem_params.find(’objectiveVariables’)



80 A. Code

480 if objvars is None:
481 raise Exception(’cmdows does not contain (valid) objective variables’)
482 if len(objvars) > 1:
483 raise Exception(’cmdows contains multiple objectives, but this is not supported’)
484

485 return xpath_to_param(objvars[0].find(’parameterUID’).text)
486

487 @CachedProperty
488 def coupled_group(self):
489 # type: () -> Optional[Group]
490 ”””:obj:‘Group‘, optional: Group wrapping the coupled blocks with a converger

specified in the CMDOWS file.↪
491

492 If no coupled blocks are specified in the CMDOWS file this property is ‘None‘.
493 ”””
494 if self.coupled_blocks:
495 coupled_group = Group()
496 for uid in self.coupled_blocks:
497 # Get the correct DisciplineComponent
498 discipline_component = self.discipline_components[uid]
499

500 # Change input variable names if they are provided as copies of coupling
variables↪

501 promotes = [’*’] # type: List[Union[str, Tuple[str, str]]]
502 if not self.has_converger:
503 for i in discipline_component.inputs_from_xml.keys():
504 if i in self.coupling_vars:
505 promotes.append((i, self.coupling_vars[i][’copy’]))
506

507 # Add the DisciplineComponent to the group
508 coupled_group.add_subsystem(uid, self.discipline_components[uid], promotes)
509

510 # Find the convergence type of the coupled group
511 if self.has_converger:
512 conv_type = self.elem_problem_def.find(’problemFormulation/convergerType’).text
513 if conv_type == ’Gauss-Seidel’:
514 coupled_group.linear_solver = LinearBlockGS()
515 coupled_group.nonlinear_solver = NonlinearBlockGS()
516 elif conv_type == ’Jacobi’:
517 coupled_group.linear_solver = LinearBlockJac()
518 coupled_group.nonlinear_solver = NonlinearBlockJac()
519 else:
520 raise RuntimeError(’Specified convergerType ”%s” is not supported.’ %

conv_type)↪
521 else:
522 coupled_group.linear_solver = LinearRunOnce()
523 coupled_group.nonlinear_solver = NonLinearRunOnce()
524 return coupled_group
525 return None
526

527 @CachedProperty
528 def consistency_constraint_group(self):
529 # type: () -> Optional[Group]
530 ”””:obj:‘Group‘, optional: Group containing ExecComps for the consistency

constraints.”””↪
531 elem_ccf =

self.elem_arch_elems.find(’executableBlocks/consistencyConstraintFunctions’)↪
532 if elem_ccf is not None:
533 group = Group()
534

535 # Loop over all consistencyConstraintFunction elements
536 for child in elem_ccf:
537 uid = child.attrib[’uID’]
538 xpaths = []
539

540 # Loop over all coupling variables which need to be constraint by this
consistencyConstraintFunction↪

541 for value in self.elem_cmdows.xpath(
542 ’workflow/data-

Graph/edges/edge[toExecutableBlockUID=”{}”]/fromParameterUID/text()’.format(uid)):↪
543 # Only add a given variable once



A.1. OpenLEGO core 81

544 if ’architectureNodes’ not in value and value not in xpaths:
545 xpaths.append(value)
546

547 name = xpath_to_param(value)
548 size = self.variable_sizes[name]
549 coupling_var = self.coupling_vars[name]
550

551 if size == 1:
552 val = 0.
553 else:
554 val = np.zeros(size)
555

556 sys_name = re_sys_name_char.sub(’’, self.elem_arch_elems.xpath(
557 ’parameters/consistencyConstraintVariables/’ +
558

’consistencyConstraintVariable[@uID=”{}”]/label/text()’.format(coupling_var[’con’]))[0])↪
559 while not re_sys_name_starts.match(sys_name):
560 sys_name = sys_name[1:]
561

562 # Add an ExecComp to the Group for this equality constraint
563 group.add_subsystem(
564 sys_name,
565 ExecComp(’g = y_c - y’, g=val, y_c=val, y=val),
566 [(’g’, coupling_var[’con’]), (’y_c’, coupling_var[’copy’]), (’y’,

name)])↪
567 return group
568 return None
569

570 @CachedProperty
571 def system_order(self):
572 # type: () -> List[str]
573 ”””:obj:‘list‘ of :obj:‘str‘: List system names in the order specified in the CMDOWS

file.”””↪
574 _system_order = [’coordinator’]
575 coupled_group_set = False
576 for block in self.block_order:
577 if block in self.coupled_blocks:
578 if not coupled_group_set:
579 _system_order.append(’coupled_group’)
580 coupled_group_set = True
581 elif block in self.discipline_components:
582 _system_order.append(block)
583 if self.consistency_constraint_group is not None:
584 _system_order.append(’consistency_constraints’)
585 return _system_order
586

587 @CachedProperty
588 def coordinator(self):
589 # type: () -> IndepVarComp
590 ”””:obj:‘IndepVarComp‘: An ‘IndepVarComp‘ representing the system’s ‘‘Coordinator‘‘

block.↪
591

592 This ‘IndepVarComp‘ takes care of all system input parameters and initial values of
design variables.↪

593 ”””
594 coordinator = IndepVarComp()
595

596 # Add design variables
597 for name, value in self.design_vars.items():
598 coordinator.add_output(name, value[’initial’])
599

600 # Add system constants
601 for name, shape in self.system_inputs.items():
602 if name not in self.design_vars.keys():
603 coordinator.add_output(name, shape=shape)
604

605 return coordinator
606

607 def setup(self):
608 # type: () -> None
609 ”””Assemble the LEGOModel using the the CMDOWS file and knowledge base.”””



82 A. Code

610 # Add the coordinator
611 self.add_subsystem(’coordinator’, self.coordinator, [’*’])
612

613 # Add all pre-coupling and post-coupling components
614 for name, component in self.discipline_components.items():
615 if name not in self.coupled_blocks:
616 self.add_subsystem(name, component, [’*’])
617

618 # Add the coupled group
619 if self.coupled_group is not None:
620 self.add_subsystem(’coupled_group’, self.coupled_group, [’*’])
621

622 # Add the consistency constraint group
623 if self.consistency_constraint_group is not None:
624 self.add_subsystem(’consistency_constraints’, self.consistency_constraint_group,

[’*’])↪
625

626 # Put the blocks in the correct order
627 self.set_order(list(self.system_order))
628

629 # Add the design variables
630 for name, value in self.design_vars.items():
631 self.add_design_var(name, lower=value[’lower’], upper=value[’upper’],

ref0=value[’ref0’], ref=value[’ref’])↪
632

633 # Add the constraints
634 for name, value in self.constraints.items():
635 self.add_constraint(name, lower=value[’lower’], upper=value[’upper’],

equals=value[’equals’])↪
636

637 # Add the objective
638 self.add_objective(self.objective)
639

640 def initialize_from_xml(self, xml):
641 # type: (Union[str, _ElementTree]) -> None
642 ”””Initialize the problem with initial values from an XML file.
643

644 This function can only be called after the problem’s setup method has been called.
645

646 Parameters
647 ----------
648 xml : str or :obj:‘etree._ElementTree‘
649 Path to an XML file or an instance of ‘etree._ElementTree‘ representing it.
650 ”””
651 for xpath, value in xml_to_dict(xml).items():
652 name = xpath_to_param(xpath)
653 if name in self._outputs:
654 self._outputs[name] = value
655 elif name in self._inputs:
656 self._inputs[name] = value

Code frament A.3: Code of the openlego.core.model Python module.

A.1.4. openlego.core.xml_component
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and



A.1. OpenLEGO core 83

16 limitations under the License.
17

18 This file contains the definition the ‘XMLComponent‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import abc
23 import os
24 from abc import abstractmethod
25 from datetime import datetime
26

27 import numpy as np
28 from lxml import etree
29 from openmdao.api import Group, IndepVarComp, ExplicitComponent
30 from openmdao.vectors.vector import Vector
31 from typing import Optional, List, Union, Iterable
32

33 from openlego.utils.xml_utils import xml_safe_create_element, xml_to_dict, xpath_to_param,
param_to_xpath, xml_merge↪

34 from openlego.partials.partials import Partials
35

36 dir_path = os.path.dirname(os.path.realpath(__file__))
37

38

39 class XMLComponent(ExplicitComponent):
40 ”””Abstract base class exposing an interface to use XML files for its in- and output.
41

42 This subclass of ‘PromotingComponent‘ can automatically create ‘‘OpenMDAO‘‘ inputs and
outputs based on given in-↪

43 and output XML template files. For maximum flexibility it is possible to only specify
inputs from an XML file and↪

44 retain direct control over the definition of the outputs, or vice versa. It is also
perfectly valid to add inputs↪

45 even when an XML file is used to generate a set of inputs, or outputs when an XML file it
used to generate outputs.↪

46 It is even possible to generate in- and/or output parameters based on more than one XML
file.↪

47

48 This class exposes the functions ‘set_inputs_from_xml()‘ and ‘set_outputs_from_xml()‘ for
this purpose. Lists of all↪

49 parameters obtained from XML files are stored by this class for later inspection.
50

51 The ‘solve_nonlinear()‘ method of the ‘Component‘ class is implemented to wrap the XML
related operations such as↪

52 reading in- and output data from the corresponding XML files during execution and storing
it in this ‘Component‘’s↪

53 parameter dictionaries.
54

55 A new abstract method is defined by this class, ‘execute()‘, which assumes the role of the
‘solve_nonlinear()‘↪

56 function, in essence. A specific case of this class should implement this method to
perform the actual calculations↪

57 of an analysis tool using XML in- and/or output.
58

59 Attributes
60 ----------
61 inputs_from_xml, outputs_from_xml, partials_from_xml : dict
62 List of inputs, resp. outputs, resp. partials, taken from XML.
63

64 data_folder : str(’’)
65 Path to a folder in which to store data generated during the execution of this

‘XMLComponent‘.↪
66

67 keep_files : bool(False)
68 Set to ‘True‘ to keep all temporary XML files generated by the ‘XMLComponent‘

during execution.↪
69

70 This attribute is ‘False‘ by default, in which case all temporary in- and output
XML files will be deleted↪

71 after they are no longer needed by this component.
72



84 A. Code

73 base_file : str, optional
74 Path to an XML file to keep up-to-date with the latest data from executions.
75 ”””
76 __metaclass__ = abc.ABCMeta
77

78 def __init__(self,
79 input_xml=None, # type: Optional[Union[str, etree._ElementTree]]
80 output_xml=None, # type: Optional[Union[str, etree._ElementTree]]
81 partials_xml=None, # type: Optional[Union[str, etree._ElementTree]]
82 data_folder=’’, # type: str
83 keep_files=False, # type: bool
84 base_file=None # type: Optional[str]
85 ):
86 # type: (...) -> None
87 ”””Initialize the ‘XMLComponent‘.
88

89 Parameters
90 ----------
91 input_xml, output_xml, partials_xml : str or :obj:‘etree._ElementTree‘, optional
92 Paths to or an ‘etree._ElementTree‘ of input, resp. output, resp. partial, XML

files.↪
93

94 data_folder : str
95 Path to the folder in which to store temporary data files generated by this

‘XMLComponent‘.↪
96

97 keep_files : bool(False)
98 Set to ‘True‘ to keep the temporary XML files after they are no longer needed.
99

100 base_file : str, optional
101 Path to a base XML file to keep up-to-date with all latest data from this

‘XMLComponent‘.↪
102 ”””
103 super(XMLComponent, self).__init__()
104

105 self.inputs_from_xml = dict()
106 self.outputs_from_xml = dict()
107 self.partials_from_xml = dict()
108

109 if input_xml is not None:
110 self.set_inputs_from_xml(input_xml)
111

112 if output_xml is not None:
113 self.set_outputs_from_xml(output_xml)
114

115 if partials_xml is not None:
116 self.declare_partials_from_xml(partials_xml)
117

118 self.data_folder = data_folder
119 self.keep_files = keep_files
120 self.base_file = base_file
121

122 def set_inputs_from_xml(self, input_xml):
123 # type: (Union[str, etree._ElementTree]) -> None
124 ”””Set inputs to the ‘Component‘ based on an input XML template file.
125

126 Parameter names correspond to their XML elements’ full XPaths, converted to valid
‘‘OpenMDAO‘‘ names using the↪

127 ‘xpath_to_param()‘ method.
128

129 Parameters
130 ----------
131 input_xml : str or :obj:‘etree._ElementTree‘
132 Path to or an ‘etree._ElementTree‘ of an input XML file.
133 ”””
134 self.inputs_from_xml.clear()
135 for xpath, value in xml_to_dict(input_xml).items():
136 name = xpath_to_param(xpath)
137 self.inputs_from_xml.update({name: value})
138

139 def set_outputs_from_xml(self, output_xml):



A.1. OpenLEGO core 85

140 # type: (Union[str, etree._ElementTree]) -> None
141 ”””Set outputs to the ‘Component‘ based on an output XML template file.
142

143 Parameter names correspond to their XML elements’ full XPaths, converted to valid
‘‘OpenMDAO‘‘ names using the↪

144 ‘xpath_to_param()‘ method.
145

146 Parameters
147 ----------
148 output_xml : str or :obj:‘etree._ElementTree‘
149 Path to or an ‘etree._ElementTree‘ of an output XML file.
150 ”””
151 self.outputs_from_xml.clear()
152 for xpath, value in xml_to_dict(output_xml).items():
153 name = xpath_to_param(xpath)
154 self.outputs_from_xml.update({name: value})
155

156 def declare_partials_from_xml(self, partial_xml):
157 # type: (Union[str, etree._ElementTree]) -> None
158 ”””Declare partials to the ‘Component‘ based on a partials XML template file.
159

160 Parameters
161 ----------
162 partial_xml : str or :obj:‘etree._ElementTree‘
163 Path to or an ‘etree._ElementTree‘ of a partials XML file.
164 ”””
165 self.partials_from_xml.clear()
166 if partial_xml is not None:
167 partials = Partials(partial_xml)
168 self.partials_from_xml = partials.get_partials().copy()
169

170 @property
171 def variables_from_xml(self):
172 # type: () -> dict
173 ”””:obj:‘dict‘: Dictionary of all XML inputs and outputs.”””
174 variables = self.inputs_from_xml.copy()
175 variables.update(self.outputs_from_xml.copy())
176 return variables
177

178 def setup(self):
179 for name, value in self.inputs_from_xml.items():
180 if not isinstance(value, float) and not isinstance(value, np.ndarray):
181 # TODO: pass_by_obj
182 # raise NotImplementedError(’pass-by-object variables are not yet supported by

OpenMDAO 2.0’)↪
183 pass
184 else:
185 self.add_input(name, value)
186

187 for name, value in self.outputs_from_xml.items():
188 if not isinstance(value, float) and not isinstance(value, np.ndarray):
189 # TODO: pass_by_obj
190 # raise NotImplementedError(’pass-by-object variables are not yet supported by

OpenMDAO 2.0’)↪
191 pass
192 else:
193 self.add_output(name, value)
194

195 if self.partials_from_xml:
196 for src, partials in self.partials_from_xml.items():
197 if src is not None and partials is not None:
198 self.declare_partials(src, partials.keys())
199 else:
200 self.declare_partials(’*’, ’*’, method=’fd’)
201 # if self.outputs_from_xml and self.inputs_from_xml:
202 # for src in self.outputs_from_xml.keys():
203 # self.declare_partials(src, self.inputs_from_xml.keys(), method=’fd’)
204

205 @abstractmethod
206 def execute(self, input_xml=None, output_xml=None):
207 # type: (Optional[str], Optional[str]) -> None



86 A. Code

208 ”””Execute the tool using the given input XML file. Write the results to the given
output XML file.↪

209

210 Parameters
211 ----------
212 input_xml, output_xml : str, optional
213 Path to the input, resp. output, XML file.
214 ”””
215 raise NotImplementedError
216

217 @abstractmethod
218 def linearize(self, input_xml=None, partials_xml=None):
219 # type: (Optional[str], Optional[str]) -> None
220 ”””Compute the partials of a tool using the given XML file. Write the results to the

given partials XML file.↪
221

222 Parameters
223 ----------
224 input_xml, partials_xml : str, optional
225 Path to the input, resp. partials, XML file.
226 ”””
227 raise NotImplementedError
228

229 def generate_file_names(self):
230 # type: () -> (str, str, str)
231 ”””Generate temporary file names for the input, output, and partials XML files.
232

233 Returns
234 -------
235 str
236 Input XML file path.
237

238 str
239 Output XML file path.
240

241 str
242 Partials XML file path.
243

244 ”””
245 salt = datetime.now().strftime(’%Y%m%d%H%M%f’)
246 input_xml = os.path.join(self.data_folder, self.name + ’_in_%s.xml’ % salt)
247 output_xml = os.path.join(self.data_folder, self.name + ’_out_%s.xml’ % salt)
248 partials_xml = os.path.join(self.data_folder, self.name + ’_partials_%s.xml’ % salt)
249

250 return input_xml, output_xml, partials_xml
251

252 def write_input_file(self, file, inputs):
253 # type: (Union[str, etree._ElementTree], Vector) -> None
254 ”””Write the current input values to an input XML file.
255

256 Parameters
257 ----------
258 file : str or :obj:‘etree._ElementTree‘
259 Path to or :obj:‘etree._ElementTree‘ of an input XML file.
260

261 inputs : Vector
262 Input vector of this ‘Component‘.
263 ”””
264 # Create new root element and an ElementTree
265 root = etree.Element(param_to_xpath(self.inputs_from_xml.keys()[0]).split(’/’)[1])
266 doc = etree.ElementTree(root)
267

268 # Convert all XML param names to XPaths and add new elements to the tree correspondingly
269 for param in self.inputs_from_xml:
270 if param in inputs:
271 xml_safe_create_element(doc, param_to_xpath(param), inputs[param])
272

273 # Write the tree to an XML file
274 doc.write(file, pretty_print=True, xml_declaration=True, encoding=’utf-8’)
275

276 def read_outputs_file(self, file, outputs):



A.1. OpenLEGO core 87

277 # type: (Union[str, etree._ElementTree], Vector) -> None
278 ”””Read the outputs from a given XML file and store them in this ‘Component‘’s

variables.↪
279

280 Parameters
281 ----------
282 file : str or :obj:‘etree._ElementTree‘
283 Path to or :obj:‘etree._ElementTree‘ of an output XML file.
284

285 outputs : Vector
286 Output vector of this ‘Component‘.
287 ”””
288 # Extract the results from the output xml
289 for xpath, value in xml_to_dict(file).items():
290 name = xpath_to_param(xpath)
291 if name in self.outputs_from_xml and name in outputs:
292 outputs[name] = value
293

294 def read_partials_file(self, file, partials):
295 # type: (Union[str, etree._ElementTree], Vector) -> None
296 ”””Read the partials from a given XML file and store them in this ‘Component‘’s

variables.↪
297

298 Parameters
299 ----------
300 file : str or :obj:‘etree._ElementTree‘
301 Path to or :obj:‘etree._ElementTree‘ of a partials XML file.
302

303 partials : Vector
304 Partials vector of this ‘Component‘.
305

306 ”””
307 _partials = Partials(file)
308 for src, partial in _partials.get_partials().items():
309 for tgt, val in partial.items():
310 if [src, tgt] in partials:
311 try:
312 partials[src, tgt] = val
313 except Exception as e:
314 print(e.message)
315

316 def compute(self, inputs, outputs):
317 # type: (Vector, Vector) -> None
318 ”””Write the input XML file, call ‘execute()‘, and read the output XML file to obtain

the results.↪
319

320 Parameters
321 ----------
322 inputs : ‘Vector‘
323 Input parameters.
324

325 outputs : ‘Vector‘
326 Output parameters.
327 ”””
328

329 input_xml, output_xml, _ = self.generate_file_names()
330

331 if self.inputs_from_xml:
332 self.write_input_file(input_xml, inputs)
333 if self.base_file is not None:
334 xml_merge(self.base_file, input_xml)
335

336 # Call execute
337 if self.base_file is not None:
338 self.execute(self.base_file, output_xml)
339 xml_merge(self.base_file, output_xml)
340 else:
341 self.execute(input_xml, output_xml)
342

343 # If files should not be kept, delete the input XML file
344 if not self.keep_files:



88 A. Code

345 try:
346 os.remove(input_xml)
347 except OSError:
348 pass
349

350 if self.outputs_from_xml:
351 self.read_outputs_file(output_xml, outputs)
352

353 # If files should not be kept, delete the output XML file
354 if not self.keep_files:
355 try:
356 os.remove(output_xml)
357 except OSError:
358 pass
359

360 def compute_partials(self, inputs, partials):
361 # type: (Vector, Vector) -> None
362 ”””Write the input XML file, call ‘linearize()‘, and read the sensitivities from the

resulting XML file.↪
363

364 Parameters
365 ----------
366 inputs : ‘Vector‘
367 Input parameters.
368

369 partials: ‘Vector‘
370 Partials.
371 ”””
372 if self.partials_from_xml:
373 input_xml, _, partials_xml = self.generate_file_names()
374

375 self.write_input_file(input_xml, inputs)
376 self.linearize(input_xml, partials_xml)
377

378 if not self.keep_files:
379 try:
380 os.remove(input_xml)
381 except OSError:
382 pass
383

384 self.read_partials_file(partials_xml, partials)
385

386 if not self.keep_files:
387 try:
388 os.remove(partials_xml)
389 except OSError:
390 pass
391

392 def xml_params_as_indep_vars(self, group, params, values, aliases=None):
393 # type: (Group, List[str], Union[np.ndarray, Iterable], Optional[List[str]]) -> None
394 ”””Create ‘IndepVarComp‘s for given input params of this ‘XMLComponent‘.
395

396 Parameters
397 ----------
398 group : :obj:‘Group‘
399 ‘Group‘ to add the ‘IndepVarComp‘s to.
400

401 params : list of str
402 List of param names. These need to exist in this ‘XMLComponent‘.
403

404 values : :obj:‘np.ndarray‘ or list of numbers
405 List of (initial) values for all ‘IndepVarComp‘s.
406

407 aliases : list of str, optional
408 List of aliases (promoted names) to give the ‘IndepVarComp‘s.
409 ”””
410 if len(params) != len(values) or (aliases is None and len(params) != len(aliases)):
411 raise ValueError(’number of params, values and optionally aliases needs to be the

same’)↪
412

413 for param in params:



A.2. Partials 89

414 if param not in self.inputs_from_xml:
415 raise ValueError(’at least one param given is not a param of this XMLComponent

(%s)’ % param)↪
416

417 for index, param in enumerate(params):
418 if aliases is None:
419 alias = ’INDEP_’ + param_to_xpath(param).split(’/’)[-1].split(’[’)[0]
420 else:
421 alias = aliases[index]
422

423 group.add(alias, IndepVarComp(alias, val=values[index]), promotes=[alias])
424 group.connect(alias, param)

Code frament A.4: Code of the openlego.core.xml_component Python module.

A.2. Partials
A.2.1. XMLSchema

1 <?xml version=”1.0” encoding=”UTF-8” ?>
2 <xs:schema
3 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
4 elementFormDefault=”qualified”
5 >
6

7 <!-- parameterType: an element with a parameterUID child element -->
8 <xs:complexType name=”parameterType”>
9 <xs:sequence>

10 <xs:element name=”uid” type=”xs:string”>
11 <xs:annotation>
12 <xs:documentation xml:lang=”en”>
13 Unique identifier of the parameter this element refers to.
14 </xs:documentation>
15 </xs:annotation>
16 </xs:element>
17 <xs:element name=”value” minOccurs=”0”>
18 <xs:annotation>
19 <xs:documentation>
20 Value of the sensitivity of the current parameter to this variable.
21 </xs:documentation>
22 </xs:annotation>
23 <xs:complexType>
24 <xs:simpleContent>
25 <xs:extension base=”xs:string”>
26 <xs:attribute name=”mapType” />
27 </xs:extension>
28 </xs:simpleContent>
29 </xs:complexType>
30 </xs:element>
31 </xs:sequence>
32 </xs:complexType>
33

34 <!-- dependentParamType: an extended parameterType with a number of partialType children
-->↪

35 <xs:complexType name=”dependentParamType”>
36 <xs:annotation>
37 <xs:documentation>
38 This element defines the sensitivities of a parameter.
39 </xs:documentation>
40 </xs:annotation>
41 <xs:complexContent>
42 <xs:extension base=”parameterType”>
43 <xs:sequence>
44 <xs:element name=”partials”>
45 <xs:annotation>
46 <xs:documentation>
47 A list of sensitivities of this parameter w.r.t. parameters it

depends on.↪
48 </xs:documentation>
49 </xs:annotation>



90 A. Code

50 <xs:complexType>
51 <xs:sequence>
52 <xs:element name=”partial” minOccurs=”0” maxOccurs=”unbounded”

type=”parameterType” />↪
53 </xs:sequence>
54 </xs:complexType>
55 </xs:element>
56 </xs:sequence>
57 </xs:extension>
58 </xs:complexContent>
59 </xs:complexType>
60

61 <!-- Definition of the overall schema -->
62 <xs:element name=”partials”>
63 <xs:complexType>
64 <xs:sequence>
65 <xs:element name=”parameter” minOccurs=”0” maxOccurs=”unbounded”

type=”dependentParamType” />↪
66 </xs:sequence>
67 </xs:complexType>
68 </xs:element>
69

70 </xs:schema>

Code frament A.5: Partials XSD schema code.

A.2.2. openlego.partials.partials
1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 import os
6 import warnings
7

8 from lxml import etree
9 from typing import Union, List, Optional, Any

10

11 from openlego.utils.general_utils import parse_string
12 from openlego.utils.xml_utils import value_to_xml
13

14

15 dir_path = os.path.dirname(os.path.abspath(__file__))
16 xsd_file_path = os.path.join(dir_path, ’partials.xsd’)
17 xsi_schema_location = ’file:///’ + xsd_file_path
18

19 schema = etree.XMLSchema(file=xsi_schema_location)
20 parser = etree.XMLParser(schema=schema)
21

22

23 class Partials(object):
24

25 def __init__(self, file=None):
26 # type: (Optional[str]) -> None
27 ”””Initialize ‘Partials‘ object.
28

29 Parameters
30 ----------
31 file : str, optional
32 Path to the partials XML file to initialize from.
33 ”””
34 super(Partials, self).__init__()
35

36 if file is None:
37 self._tree = etree.ElementTree(etree.Element(’partials’), parser=parser) #

type: etree._ElementTree↪
38 else:
39 self._tree = etree.parse(file, parser)
40

41 @property



A.2. Partials 91

42 def _elem_root(self):
43 # type: () -> etree._Element
44 ”””Root ‘_Element‘ of the partials XML file.”””
45 return self._tree.getroot()
46

47 def get_partials(self, src=None):
48 # type: (Optional[src]) -> dict
49 ”””Get a dictionary with the partials stored in the XML file.
50

51 Parameters
52 ----------
53 src : str, optional
54 Name of the source parameter to get the partials from
55

56 Returns
57 -------
58 dict
59 In the form partials[’from_param_name’][’to_param_name’] = sensitivity_value

if no ‘src‘ is given, or↪
60 in the form partials[’to_param_name’] = sensitivity_value if ‘src‘ is given.
61 ”””
62 partials = dict()
63

64 if src is not None:
65 elem_param = self._tree.xpath(’/partials/parameter[uid=”{}”]’.format(src))
66 if len(elem_param):
67 for elem_partial in elem_param[1]:
68 param = elem_partial[0].text
69 value = parse_string(elem_partial[1].text)
70 partials.update({param: value})
71 else:
72 for elem_param in self._elem_root:
73 uid = elem_param[0].text
74

75 if uid not in partials:
76 partials.update({uid: dict()})
77

78 for elem_partial in elem_param[1]:
79 param = elem_partial[0].text
80 if len(elem_partial) > 1:
81 value = parse_string(elem_partial[1].text)
82 else:
83 value = 0.
84 partials[uid].update({param: value})
85

86 return partials
87

88 def declare_partials(self, src, tgt, val=None):
89 # type: (str, Union[str, List[str]], Optional[Any]) -> None
90 ”””Declare a set of partials that is provided.
91

92 Parameters
93 ----------
94 src : str
95 Name of the source parameter.
96

97 tgt : str or Iterable[str]
98 Name(s) of target parameters.
99

100 val : any, optional
101 Optional value(s) of partials.
102

103 Notes
104 -----
105 If ‘val‘ is given and ‘tgt‘ is a list, ‘val‘ should have the same length as ‘tgt‘.
106 ”””
107 if not isinstance(tgt, list):
108 tgt = [tgt]
109 if val is not None:
110 val = [val]
111



92 A. Code

112 elem_root = self._elem_root
113

114 x_param = ”/partials/parameter[uid=’{}’]”.format(src)
115 elem_param = self._tree.xpath(x_param)
116

117 if not len(elem_param):
118 elem_param = etree.SubElement(elem_root, ’parameter’)
119 elem_param_uid = etree.SubElement(elem_param, ’uid’)
120 elem_param_uid.text = src
121

122 elem_partials = etree.SubElement(elem_param, ’partials’)
123 else:
124 elem_partials = elem_param[0][1]
125

126 for i, t in enumerate(tgt):
127 x_partial = ’/’.join([x_param, ”partials/partial[uid=’{}’]”]).format(t)
128 elem_partial = self._tree.xpath(x_partial)
129

130 if not len(elem_partial):
131 elem_partial = etree.SubElement(elem_partials, ’partial’)
132 elem_param_uid = etree.SubElement(elem_partial, ’uid’)
133 elem_param_uid.text = t
134 else:
135 warnings.warn(
136 ’Partial from {} to {} is defined more than once. Last occurrence take

precedence.’↪
137 .format(src, t))
138

139 if val is not None:
140 elem_value = etree.SubElement(elem_partial, ’value’)
141 value_to_xml(elem_value, val[i])
142

143 def add_partials(self, partials):
144 # type: (dict) -> None
145 ”””Add a set of partials to the XML file.
146

147 Parameters
148 ----------
149 partials : dict
150 Dictionary of the partials.
151 ”””
152 for param_uid, param in partials.items():
153 self.declare_partials(param_uid, param.keys(), param.values())
154

155 def write(self, file):
156 # type: (str) -> None
157 ”””Write the current state of the class to a partials XML file.
158

159 Parameters
160 ----------
161 file : str
162 Path of the file to write to.
163 ”””
164 if not schema.validate(self._tree):
165 raise RuntimeError(’Something is wrong.. XML is not a valid partials file.’)
166

167 self._tree.write(file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
168

169 def get_string(self):
170 # type: () -> str
171 ”””Return the current state of the class as a partials XML string.
172

173 Returns
174 -------
175 str
176 String representation of a partials XML file.
177 ”””
178 if not schema.validate(self._tree):
179 raise RuntimeError(’Something is wrong.. XML is not a valid partials file.’)
180



A.3. Recorders 93

181 return etree.tostring(self._tree, encoding=’utf-8’, pretty_print=True,
xml_declaration=True)↪

Code frament A.6: Code of the openlego.partials.partials Python module.

A.3. Recorders
A.3.1. openlego.recorders.base_iteration_plotter

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definitions of the ‘BaseIterationPlotter‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import sys
23

24 if sys.version_info[0] == 3:
25 import tkinter as tk
26 else:
27 import Tkinter as Tk
28 tk = Tk
29

30 import abc
31 import time
32 import matplotlib
33

34 from abc import abstractmethod
35 from multiprocessing import Process, Pipe
36 from openmdao.core.driver import Driver
37 from openmdao.solvers.solver import Solver
38 from openmdao.core.system import System
39 from openmdao.recorders.base_recorder import BaseRecorder
40 from typing import Optional, Any, Union
41

42 matplotlib.use(’TkAgg’)
43 from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
44 from matplotlib import pyplot as plt
45 from matplotlib.figure import Figure
46

47 from openlego.utils.general_utils import try_hard
48

49

50 class BaseIterationPlotter(BaseRecorder):
51 ”””Base class enabling continually updated plots.
52

53 This is an abstract base class which enables data from an OpenMDAO run to be plotted and
for that plot to be updated↪

54 for each iteration/function evaluation. This class uses matplotlib for all the plotting
functions. A separate↪

55 process is used to host and manage the plot. This avoids the blocking and stalling
behavior of the main loop by↪

56 matplotlib.
57

58 Attributes



94 A. Code

59 ----------
60 save_settings : dict
61 Default setting sused when saving the plot as an image file.
62 ”””
63 __metaclass__ = abc.ABCMeta
64

65 def __init__(self):
66 # type: () -> None
67 ”””Initialize the class.”””
68 super(BaseIterationPlotter, self).__init__()
69 self.options.declare(’save_on_close’, False, desc=’Set to True to save figure when

closing the Recorder’)↪
70 self.save_settings = {’path’: self.__class__.__name__ + ’_figure.png’,
71 ’dpi’: 600, ’ar’: 1.61803398875, ’width’: 4000}
72

73 self._in, self._out = Pipe()
74 self._callback_in, self._callback_out = Pipe()
75 self._process = None
76

77 self._tk = None
78 self._canvas = None
79 self._toolbar = None
80 self._fig = None
81

82 self.options[’record_objectives’] = True
83 self.options[’record_constraints’] = True
84

85 @abstractmethod
86 def init_fig(self, fig):
87 # type: (Figure) -> None
88 ”””Initialize the figure.
89

90 A plotting recorder implementing this method should use it to setup parts of the
figure that should only be↪

91 initialized once, such as titles, labels, and legends.
92

93 Parameters
94 ----------
95 fig : :obj:‘Figure‘
96 Instance of ‘Figure‘ on which the plot should be initialized.
97 ”””
98 raise NotImplementedError
99

100 @abstractmethod
101 def _update_plot(self, *args):
102 # type: (Any) -> None
103 ”””Update the plot with data from the next iteration/function evaluation.
104

105 This method should be implemented to insert new data into the plot. This method is
called within the plot↪

106 handling ‘Process‘ and should never be called directly.
107

108 Parameters
109 ----------
110 *args : any
111 Data to update or enrich the plot with.
112 ”””
113 raise NotImplementedError
114

115 def startup(self, object_requesting_recording):
116 # type: (Union[Driver, System, Solver]) -> None
117 ”””Call the ‘BaseRecorder‘ ‘startup()‘ method and start the ‘Process‘ handling the

figure.↪
118

119 Parameters
120 ----------
121 object_requesting_recording : Union[Driver, System, Solver]
122 The Object to which this recorder is attached.
123 ”””
124 super(BaseIterationPlotter, self).startup(object_requesting_recording)
125



A.3. Recorders 95

126 self._process = Process(target=self._process_run)
127 self._process.daemon = True
128 self._process.start()
129

130 def _process_run(self):
131 # type: () -> None
132 ”””Perform the figure handling operations.
133

134 This funciton is the entry point for the plot handling ‘Process‘. It should not be
used directly.↪

135

136 Notes
137 -----
138 This function is executed within a separate ‘Process‘. Any parameters assigned

from within this scope can↪
139 only be accessed by function also running on this ‘Process‘.
140 ”””
141 self._tk = tk.Tk()
142 self._tk.protocol(’WM_DELETE_WINDOW’, self._tk.quit())
143

144 def plt_figure():
145 # type: () -> Figure
146 ”””Open a ‘Figure‘ and wait for a short time.
147

148 This is part of a workaround to ensure a figure window always opens.
149

150 Returns
151 -------
152 :obj:‘Figure‘
153 Instance of the openened ‘Figure‘.
154 ”””
155 fig = plt.figure()
156 time.sleep(1e-4)
157 return fig
158 self._fig = try_hard(plt_figure, try_hard_limit=4) # type: Figure
159

160 self._canvas = FigureCanvasTkAgg(self._fig, master=self._tk)
161 self._toolbar = NavigationToolbar2TkAgg(self._canvas, self._tk)
162 self._toolbar.update()
163 self._canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
164

165 self.init_fig(self._fig)
166

167 self._tk.after(1, self._loop())
168 self._tk.mainloop()
169

170 def _loop(self):
171 # type: () -> None
172 ”””Continually handle the figure on the dedicated ‘Process‘.
173

174 This function is the loop of the ‘Process‘ handling the plot. It is executed on the
dedicated ‘Process‘ handling↪

175 the figure and therefore has access to the parameters that were assigned in
‘_process_run()‘.↪

176

177 Notes
178 -----
179 This method should never be called directly. Any instructions to manipulate the

figure are communicated↪
180 through ‘Pipe‘s. Convenience methods have been set up for this purpose.
181 ”””
182 while self._out.poll():
183 out = self._out.recv()
184 if out is None or not isinstance(out, tuple):
185 raise ValueError(’packet sent to _update() is not a tuple’)
186 elif ’update’ in out[0] or ’save’ in out[0]:
187 if ’update’ in out[0]:
188 self._update_plot(*out[1:])
189 elif ’save’ in out[0]:
190 path, dpi, ar, width = out[1:]
191 self._fig.set_size_inches(ar * width / dpi, ar * width / dpi)



96 A. Code

192 self._fig.savefig(path, dpi=dpi)
193

194 if ’block’ in out[0]:
195 self._callback_in.send(True)
196 elif ’close’ in out[0]:
197 self._tk.destroy()
198 if ’block’ in out[0]:
199 self._callback_in.send(True)
200 return
201

202 self._canvas.draw()
203 self._tk.after(1, self._loop)
204

205 def _blocking_call(self, instr, *args):
206 # type: (str, *Any) -> Any
207 ”””Send an instruction to the ‘Process‘ handling the plot and wait for a reply.
208

209 Parameters
210 ----------
211 instr : str
212 Instruction to send to the ‘Process‘.
213

214 *args
215 Any arguments to send along with the instruction.
216

217 Returns
218 -------
219 any
220 A reply from the ‘Process‘.
221 ”””
222 self._in.send((’block %s’ % instr,) + args)
223 while not self._callback_out.poll():
224 time.sleep(1.e-4)
225 return self._callback_out.recv()
226

227 def record_metadata_driver(self, object_requesting_recording):
228 pass
229

230 def record_metadata_system(self, object_requesting_recording):
231 pass
232

233 def record_metadata_solver(self, object_requesting_recording):
234 pass
235

236 def record_iteration_driver_passing_vars(self, object_requesting_recording, desvars,
responses, objectives,↪

237 constraints, sysvars, metadata):
238 super(BaseIterationPlotter,

self).record_iteration_driver_passing_vars(object_requesting_recording,↪
239 desvars,

responses, objectives,↪
240 constraints,

sysvars, metadata)↪
241 self._record_iteration_driver(metadata)
242

243 def record_iteration_driver(self, object_requesting_recording, metadata):
244 super(BaseIterationPlotter,

self).record_iteration_driver(object_requesting_recording, metadata)↪
245 self._record_iteration_driver(metadata)
246

247 def record_iteration_system(self, object_requesting_recording, metadata):
248 super(BaseIterationPlotter,

self).record_iteration_system(object_requesting_recording, metadata)↪
249 self._record_iteration_system(metadata)
250

251 def record_iteration_solver(self, object_requesting_recording, metadata, **kwargs):
252 super(BaseIterationPlotter,

self).record_iteration_solver(object_requesting_recording, metadata, **kwargs)↪
253 self._record_iteration_solver(metadata)
254

255 def _record_iteration_driver(self, metadata):



A.3. Recorders 97

256 self._in.send((’update’,
257 self._desvars_values,
258 self._responses_values,
259 self._objectives_values,
260 self._constraints_values,
261 metadata))
262 self.save_figure()
263

264 def _record_iteration_system(self, metadata):
265 self._in.send((’update’,
266 self._inputs,
267 self._outputs,
268 self._resids,
269 metadata))
270 self.save_figure()
271

272 def _record_iteration_solver(self, metadata):
273 self._in.send((’update’,
274 self._abs_error,
275 self._rel_error,
276 self._outputs,
277 self._resids,
278 metadata))
279 self.save_figure()
280

281 def save_figure(self, path=None, dpi=None, ar=None, width=None):
282 # type: (Optional[str], Optional[int], Optional[float], Optional[int]) -> None
283 ”””Save the current plot to an image file.
284

285 Parameters
286 ----------
287 path : str, optional
288 Path of the image file.
289

290 dpi : int, optional
291 Resolution of the image file in dots per inch.
292

293 ar : float, optional
294 Aspect ratio of the image file.
295

296 width : int, optional
297 Width of the image file in pixels.
298

299 Notes
300 -----
301 If any of the parameters are not given the defaults stored in the ‘save_settings‘

dictionary will be used.↪
302

303 This function makes a blocking call to the ‘Process‘ to ensure the figure really
is saved once this function↪

304 returns.
305 ”””
306 if path is None:
307 path = self.save_settings[’path’]
308 if dpi is None:
309 dpi = self.save_settings[’dpi’]
310 if ar is None:
311 ar = self.save_settings[’ar’]
312 if width is None:
313 width = self.save_settings[’width’]
314 self._blocking_call(’save’, path, dpi, ar, width)
315

316 def save_and_close(self, path=None, dpi=None, ar=None, width=None):
317 # type: (Optional[str], Optional[int], Optional[float], Optional[int]) -> None
318 ”””Save the current plot to an image file and close this ‘Recorder‘.
319

320 Parameters
321 ----------
322 path : str, optional
323 Path of the image file.
324



98 A. Code

325 dpi : int, optional
326 Resolution of the image file in dots per inch.
327

328 ar : float, optional
329 Aspect ratio of the image file.
330

331 width : int, optional
332 Width of the image file in pixels.
333

334 Notes
335 -----
336 If any of the parameters are not given the defaults stored in the ‘save_settings‘

dictionary will be used.↪
337

338 This function makes a blocking call to the ‘Process‘ to ensure the figure really
is saved once this function↪

339 returns.
340 ”””
341 self.save_figure(path, dpi, ar, width)
342

343 # Prevent save_on_close option from saving the figure again, then call self.close()
344 self.options[’save_on_close’] = False
345 self.close()
346

347 def close(self):
348 ”””Close the figure, then calls the ‘BaseRecorder‘ ‘close()‘ method.
349

350 If the option ‘‘save_on_close‘‘ is set to ‘True‘, this function first saves the figure
and waits for↪

351 confirmation before it closes it and this ‘Recorder‘.
352 ”””
353 # Potentially save the figure before closing
354 if self.options[’save_on_close’]:
355 self.save_figure()
356

357 # Close the figure and call super
358 self._blocking_call(’close’)
359 super(BaseIterationPlotter, self).close()

Code frament A.7: Code of the openlego.recorders.base_iteration_plotter Python module.

A.3.2. openlego.recorders.base_lane_plotter
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ‘BaseLanePlotter‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import abc
23 from abc import abstractmethod
24

25 import matplotlib.colors as colors
26 import numpy as np
27 from matplotlib import ticker as ticker



A.3. Recorders 99

28 from matplotlib.figure import Figure
29 from openmdao.core.driver import Driver
30 from typing import Optional
31

32 from .base_iteration_plotter import BaseIterationPlotter
33

34

35 class BaseLanePlotter(BaseIterationPlotter):
36 ”””Specialized ‘BaseIterationPlotter‘ wrapping a ‘‘lane plot‘‘ style visualization of

variables.↪
37

38 Abstract base class enabling OpenMDAO data to be visualized using colored, horizontal
lanes. Each variable to be↪

39 visualized this way has its own lane. The x-axis corresponds to the number of
iterations/function evaluations. A↪

40 colorbar is used to indicate the value of a design variable.
41

42 Attributes
43 ----------
44 n_vars : int
45 The number variables.
46

47 var_names : :obj:‘list‘ of :obj:‘str‘
48 List of all variable names.
49

50 xs, ys, cs: :obj:‘np.ndarray‘
51 Arrays containing the x-, y-, and color data of the figure.
52

53 iter : int
54 Number of the last iteration.
55

56 ax : :obj:‘Axes‘
57 Matplotlib ‘Axes‘ of the plot.
58

59 max_iter : int
60 Maximum number of iterations.
61

62 quad : :obj:‘matplotlib.collections.QuadMesh‘
63 Instance of ‘QuadMesh‘ that represents the actual plot.
64

65 vmin, vmax : float
66 Lower and upper cutoff for values along the colorbar.
67

68 cmap : str
69 Name of the colormap to use.
70

71 norm : :obj:‘colors.Normalize‘, optional
72 Which normalization scheme to use for the colorbar.
73 ”””
74 __metaclass__ = abc.ABCMeta
75

76 def __init__(self, vmin=0., vmax=1., cmap=’viridis’, norm=None):
77 # type: (float, float, str, Optional[colors.Normalize]) -> None
78 ”””Initialize a new ‘BaseLanePlotter‘ instance.
79

80 Parameters
81 ----------
82 vmin, vmax : float
83 Lower and upper cutoff for the values along the colorbar.
84

85 cmap : str(’viridis’)
86 Name of the colormap to use for the plot.
87

88 norm : :obj:‘colors.Normalize‘, optional
89 Instance of ‘colors.Normalize‘ can be supplied to use a normalization scheme

for the colorbar.↪
90 ”””
91 super(BaseLanePlotter, self).__init__()
92

93 self.n_vars = None
94 self.var_names = None



100 A. Code

95

96 self.xs = None
97 self.ys = None
98 self.cs = None
99

100 self.iter = 0
101 self.ax = None
102 self.max_iter = 1000
103

104 self.quad = None
105

106 self.vmin = vmin
107 self.vmax = vmax
108 self.cmap = cmap
109 self.norm = norm
110

111 def startup(self, object_requesting_recording):
112 # type: (Driver) -> None
113 ”””Make sure this ‘Recorder‘ is attached to a ‘Driver‘ and obtain the maximum number

of iterations.↪
114

115 Parameters
116 ----------
117 object_requesting_recording : :obj:‘Driver‘
118 Instance of ‘Driver‘ to which this ‘Recorder‘ is attached.
119 ”””
120 if not isinstance(object_requesting_recording, Driver):
121 raise ValueError(’This Recorder should be attached to a Driver.’)
122

123 if ’maxiter’ in object_requesting_recording.options:
124 self.max_iter = object_requesting_recording.options[’maxiter’]
125

126 super(BaseLanePlotter, self).startup(object_requesting_recording)
127

128 @abstractmethod
129 def init_vars(self):
130 # type: () -> None
131 ”””Initialize the variables of the plot.
132

133 This method should be implemented by subclasses such that they can control how
variables are initialized.↪

134 ”””
135 raise NotImplementedError
136

137 def init_fig(self, fig):
138 # type: (Figure) -> None
139 ”””Initialize the figure, setting up axes, labels, the colorbar, etc.
140

141 Parameters
142 ----------
143 fig : :obj:‘Figure‘
144 Instance of the ‘Figure‘ which should be populated.
145 ”””
146 self.init_vars()
147

148 self.xs, self.ys = np.meshgrid(np.arange(0., self.max_iter+.5)-.5, np.arange(0.,
self.n_vars+.5)-.5)↪

149 self.cs = np.zeros((self.n_vars, self.max_iter))
150

151 self.ax = fig.add_subplot(111)
152 self.ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
153 self.ax.yaxis.set_ticks(np.arange(0, self.n_vars))
154 self.ax.yaxis.set_ticklabels(self.var_names)
155

156 self.ax.set_xlim([-.5, .5])
157 self.ax.set_ylim([-.5, self.n_vars-.5])
158 self.quad = self.ax.pcolormesh(self.xs, self.ys, self.cs,
159 vmin=self.vmin, vmax=self.vmax, cmap=self.cmap,

norm=self.norm)↪
160

161 fig.colorbar(self.quad)



A.3. Recorders 101

162

163 self.ax.set_xlabel(’Evaluation #’)
164

165 @abstractmethod
166 def _compute_new_data(self, desvars, responses, objectives, constraints, metadata):
167 # type: (dict, dict, dict, dict, dict) -> np.ndarray
168 ”””Return a 1D numpy.ndarray containing the new data points.
169

170 Parameters
171 ----------
172 desvars, responses, objectives, constraints, metadata : dict
173 Dictionaries of the new design, response, objective, and constraint variables,

as well as metadata.↪
174

175 Returns
176 -------
177 np.ndarray
178 A 1D numpy array containing the new data.
179 ”””
180 raise NotImplementedError
181

182 def _update_plot(self, *args):
183 # type: (dict, dict, dict, dict, dict) -> None
184 ”””Insert the new data into the plot and refresh it.
185

186 Parameters
187 ----------
188 desvars, responses, objectives, constraints, metadata : dict
189 Dictionaries of the new design, response, objective, and constraint variables,

as well as metadata.↪
190 ”””
191 if len(args) != 5 and not any([isinstance(arg, dict) for arg in args]):
192 raise ValueError(’Illegal arguments for _update_plot of %s’ % self.__name__)
193 desvars, responses, objectives, constraints, metadata = args
194

195 data = self._compute_new_data(desvars, responses, objectives, constraints, metadata)
196 self.cs[:, self.iter] = data[:]
197 self.quad.set_array(self.cs.ravel())
198 self.ax.set_xlim([-.5, self.iter+.5])
199 self.iter += 1

Code frament A.8: Code of the openlego.recorders.base_lane_plotter Python module.

A.3.3. openlego.recorders.constraint_plotter
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ‘ConstraintsPlotter‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import matplotlib.colors as colors
23 import numpy as np
24 from openmdao.core.driver import Driver
25 from typing import Optional



102 A. Code

26

27 from .base_lane_plotter import BaseLanePlotter
28

29

30 class ConstraintsPlotter(BaseLanePlotter):
31 ”””Specific case of the ‘BaseLanePlotter‘ plotting all the constraint variables of a

‘Problem.↪
32

33 A symmetric logarithmic colorbar is used by default by this plottter.
34

35 Attributes
36 ----------
37 constr_meta : dict
38 A copy of the constraint metadata of the ‘Driver‘ this ‘Recorder‘ is associated

with.↪
39 ”””
40

41 def __init__(self, vmin=-1., vmax=1., cmap=’RdBu_r’,
42 norm=colors.SymLogNorm(linthresh=1.e-3, linscale=.5, vmin=-1., vmax=1.)):
43 # type: (float, float, str, Optional[colors.Normalize]) -> None
44 ”””Initialize the ‘BaseLanePlotter‘ and store the ‘‘constraint_metadata‘‘ from the

‘Driver‘.↪
45

46 Parameters
47 ----------
48 vmin, vmax : float
49 Lower and upper cutoff for the values along the colorbar.
50

51 cmap : str(’RdBu_r’)
52 Name of the colormap to use for the plot.
53

54 norm : :obj:‘colors.Normalize‘(‘colors.SymLogNorm‘), optional
55 A symmetric logarithmic colorbar is used by default by this plottter.
56 ”””
57 super(ConstraintsPlotter, self).__init__(vmin, vmax, cmap, norm)
58 self.constr_meta = None
59

60 def startup(self, object_requesting_recording):
61 # type: (Driver) -> None
62 ”””Make sure this ‘Recorder‘ is attached to a ‘Driver‘ and obtain the constraint

variable metadata.↪
63

64 Parameters
65 ----------
66 object_requesting_recording : :obj:‘Driver‘
67 Instance of ‘Driver‘ to which this ‘Recorder‘ is attached.
68 ”””
69 self.constr_meta = object_requesting_recording._cons.copy()
70 super(ConstraintsPlotter, self).startup(object_requesting_recording)
71

72 def init_vars(self):
73 # type: () -> None
74 ”””Initialize the list of constraint variable names and obtain the number of

constraints.”””↪
75 self.var_names = list()
76 self.n_vars = 0
77 for key in self.constr_meta.keys():
78 size = self.constr_meta[key][’size’]
79 self.n_vars += size
80 self.var_names.extend([’%s[%d]’ % (key, i) for i in range(size)])
81

82 def _compute_new_data(self, desvars, responses, objectives, constraints, metadata):
83 # type: (dict, dict, dict, dict, dict) -> np.ndarray
84 ”””Compute the new data points for the lane plot from the constraints.
85

86 Parameters
87 ----------
88 desvars, responses, objectives, constraints, metadata : dict
89 Dictionaries of the new design, response, objective, and constraint variables,

as well as metadata.↪
90



A.3. Recorders 103

91 Returns
92 -------
93 np.ndarray
94 A 1D numpy array containing the new data.
95 ”””
96 parts = [constraints[key] for key in self.constr_meta.keys()]
97 for index, part in enumerate(parts):
98 parts[index] = np.atleast_1d(part).flatten()
99 return np.concatenate(parts)

Code frament A.9: Code of the openlego.recorders.constraint_plotter Python module.

A.3.4. openlego.recorders.normalized_desvar_plotter
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ‘NormalizedDesignVarPlotter‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import matplotlib.colors as colors
23 import numpy as np
24 from openmdao.core.driver import Driver
25 from typing import Optional
26

27 from .base_lane_plotter import BaseLanePlotter
28

29

30 class NormalizedDesignVarPlotter(BaseLanePlotter):
31 ”””Specific case of the ‘BaseLanePlotter‘ which plots all normalized design variables of a

‘Problem‘.↪
32

33 Design variable values are normalized using the ‘‘ref0‘‘ and ‘‘ref‘‘ properties of the
design variables as↪

34 specified in the ‘‘metadata‘‘.
35 ”””
36

37 def __init__(self, vmin=0., vmax=1., cmap=’viridis’, norm=None):
38 # type: (float, float, str, Optional[colors.Normalize]) -> None
39 ”””Initialize the ‘BaseLanePlotter‘ and stores the ‘‘desvar_metadata‘‘ from the

‘Driver‘.↪
40

41 Parameters
42 ----------
43 vmin, vmax : float
44 Lower and upper cutoff for the values along the colorbar.
45

46 cmap : str(’viridis’)
47 Name of the colormap to use for the plot.
48

49 norm : :obj:‘colors.Normalize‘, optional
50 Instance of ‘colors.Normalize‘ can be supplied to use a normalization scheme

for the colorbar.↪
51 ”””
52 super(NormalizedDesignVarPlotter, self).__init__(vmin, vmax, cmap, norm)



104 A. Code

53 self.desvar_meta = None
54

55 def startup(self, object_requesting_recording):
56 # type: (Driver) -> None
57 ”””Make sure this ‘Recorder‘ is attached to a ‘Driver‘ and obtain the design variable

metadata.↪
58

59 Parameters
60 ----------
61 object_requesting_recording : :obj:‘Driver‘
62 Instance of ‘Driver‘ to which this ‘Recorder‘ is attached.
63 ”””
64 self.desvar_meta = object_requesting_recording._designvars.copy()
65 super(NormalizedDesignVarPlotter, self).startup(object_requesting_recording)
66

67 def init_vars(self):
68 # type: () -> None
69 ”””Initialize the lists of design variable names and obtain the number of design

variables.”””↪
70 self.var_names = list()
71 self.n_vars = 0
72 for key in self.desvar_meta.keys():
73 ref0 = self.desvar_meta[key][’ref0’]
74 if isinstance(ref0, np.ndarray):
75 size = ref0.size
76 else:
77 size = 1
78 self.n_vars += size
79 self.var_names.extend([’%s[%d]’ % (key, i) for i in range(size)])
80

81 def _compute_new_data(self, desvars, responses, objectives, constraints, metadata):
82 # type: (dict, dict, dict, dict, dict) -> np.ndarray
83 ”””Compute the new data points of the plot from the design variable values.
84

85 Parameters
86 ----------
87 desvars, responses, objectives, constraints, metadata : dict
88 Dictionaries of the new design, response, objective, and constraint variables,

as well as metadata.↪
89

90 Returns
91 -------
92 np.ndarray
93 A 1D numpy array containing the new data.
94 ”””
95 parts = [(desvars[key] - self.desvar_meta[key][’lower’]) /
96 (self.desvar_meta[key][’upper’] - self.desvar_meta[key][’lower’]) for key in

self.desvar_meta.keys()]↪
97 for index, part in enumerate(parts):
98 parts[index] = np.atleast_1d(part).flatten()
99 return np.concatenate(parts)

Code frament A.10: Code of the openlego.recorders.normalized_desvar_plotter Python module.

A.3.5. openlego.recorders.simple_objective_plotter
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.



A.3. Recorders 105

15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ‘SimpleObjectivePlotter‘ class.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import numpy as np
23 from matplotlib import ticker as ticker
24 from matplotlib.figure import Figure
25 from openmdao.core.driver import Driver
26

27 from .base_iteration_plotter import BaseIterationPlotter
28

29

30 class SimpleObjectivePlotter(BaseIterationPlotter):
31 ”””Specialized ‘BaseIterationPlotter‘ which simply plots the normalized objective function

value against iteration.↪
32

33 Attributes
34 ----------
35 obj_name : str
36 Name of the objective function value.
37

38 obj_init : float
39 Initial value of the objective function
40

41 xdata, ydata : :obj:‘np.ndarray‘
42 The x- and y-data of the plot.
43

44 ax : :obj:‘Axes‘
45 The axis of the plot.
46

47 line : :obj:‘Line‘
48 The ‘Line‘ object of the plot.
49

50 first_run : bool
51 Flag signifying whether this is the first run of the ‘Recorder‘. Flipped to

‘False‘ after first iteration.↪
52 ”””
53

54 def __init__(self):
55 # type: (Driver) -> None
56 ”””Initialize the ‘SimpleObjectivePlotter‘.”””
57 super(SimpleObjectivePlotter, self).__init__()
58

59 self.obj_name = None
60 self.obj_init = None
61

62 self.xdata = None
63 self.ydata = None
64

65 self.ax = None
66 self.line = None
67

68 self.first_run = True
69

70 def startup(self, object_requesting_recording):
71 # type: (Driver) -> None
72 ”””Obtain the name of the objective function variable from the ‘Driver‘ before calling

the ‘super()‘.↪
73

74 Parameters
75 ----------
76 object_requesting_recording : :obj:‘Driver‘
77 ‘Driver‘ that owns this ‘Recorder‘.
78 ”””
79 if not isinstance(object_requesting_recording, Driver):
80 raise ValueError(’This Recorder must be attached to a Driver.’)
81

82 super(SimpleObjectivePlotter, self).startup(object_requesting_recording)



106 A. Code

83

84 def init_fig(self, fig):
85 # type: (Figure) -> None
86 ”””Initialize the axes and line of the plot.
87

88 Parameters
89 ----------
90 fig : :obj:‘Figure‘
91 Instance of the ‘Figure‘ which should be populated.
92 ”””
93 self.ax = fig.add_subplot(111)
94 self.ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
95 self.ax.set_xlabel(’Iteration #’)
96 self.ax.set_ylabel(’Normalized objective function value’)
97

98 self.line, = self.ax.plot([], [], color=’black’)
99

100 def _update_plot(self, *args):
101 # type: (dict, dict, dict, dict, dict) -> None
102 ”””Insert the new data into the plot and refresh it.
103

104 Parameters
105 ----------
106 desvars, responses, objectives, constraints, metadata : dict
107 Dictionaries of the new design, response, objective, and constraint variables,

as well as metadata.↪
108 ”””
109 if len(args) != 5 and all([isinstance(arg, dict) for arg in args]):
110 raise ValueError(’Illegal arguments for method _update_plot() of %s’ %

self.__name__)↪
111 _, _, objectives, _, _ = args
112

113 if self.first_run:
114 self.first_run = False
115 self.obj_init = objectives.values()[0]
116 self.xdata = np.array([0.])
117 self.ydata = np.array([1.])
118 else:
119 _iter = self.xdata[-1] + 1
120 self.xdata = np.append(self.xdata, [_iter])
121 self.ydata = np.append(self.ydata, [objectives.values()[0]/self.obj_init])
122 self.ax.set_xlim([0, _iter])
123 self.ax.set_ylim([0, 1])
124

125 self.line.set_data(self.xdata, self.ydata)
126 self.ax.relim()
127 self.ax.autoscale_view()

Code frament A.11: Code of the openlego.recorders.simple_objective_plotter Python module.

A.3.6. openlego.recorders.voi_plotter
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definitions of the ‘VOIPlotter‘ class.



A.3. Recorders 107

19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from collections import OrderedDict
23

24 import numpy as np
25 from matplotlib import ticker as ticker
26 from matplotlib.figure import Figure
27 from mpl_toolkits import axisartist as aa
28 from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory
29 from openmdao.core.system import System
30

31 from .base_iteration_plotter import BaseIterationPlotter
32

33

34 class VOIPlotter(BaseIterationPlotter):
35 ”””Specialized ‘BaseIterationPlotter‘ plotting several variables of interest with a

regular line plot.↪
36

37 Only those variables specified by settings this ‘Recorder‘’s ‘includes‘ property will be
plotted. If no variables↪

38 are specified this way an error is thrown.
39

40 Attributes
41 ----------
42 xdata : :obj:‘np.ndarray‘
43 Numpy array holding the x-data of the plot.
44

45 vois : dict
46 Python dictionary representing the information of all variables of interest.
47

48 lines : :obj:‘list‘ of ‘Line‘s
49 The ‘Line‘ objects of all variable of interest plots.
50

51 ”””
52

53 def __init__(self):
54 # type: () -> None
55 ”””Initializes the ‘VOIPlotter‘.”””
56 super(VOIPlotter, self).__init__()
57

58 self.options.add_option(’legend’, [],
59 desc=”List of legend entries for each VOI to be plotted. ”
60 ”If given, this list needs to have the same length as the

options[’includes’]”)↪
61 self.options.add_option(’labels’, [],
62 desc=”List of labels to give to each VOI to be plotted. ”
63 ”If given, this list needs to have the same length as the

options[’includes’]”)↪
64 self.options[’includes’] = []
65

66 self.xdata = None
67 self.vois = None
68

69 self.lines = None
70

71 def startup(self, object_requesting_recording):
72 # type: (System) -> None
73 ”””Check ‘includes‘, ‘legend‘, and ‘labels‘ options for validity and compatibility and

create ‘vois‘ dictionary.↪
74

75 Parameters
76 ----------
77 object_requesting_recording : :obj:‘System‘
78 ‘Sytem‘ that owns this ‘Recorder‘.
79

80 Raises
81 ------
82 AttributeError
83 If the ‘includes‘, ‘legend‘, and/or ‘labels‘ are not valid or incompatible

with one another.↪



108 A. Code

84 ”””
85 if not isinstance(object_requesting_recording, System):
86 raise ValueError(’This Recorder must be attached to a System.’)
87

88 includes = self.options[’includes’]
89 legend = self.options[’legend’]
90 labels = self.options[’labels’]
91 if len(includes) == 0 or includes[0] == ’*’:
92 raise AttributeError(”At least one variable needs to be put into

options[’includes’]”)↪
93 elif len(legend) > 0 and len(legend) != len(includes):
94 raise AttributeError(’Number of legend entries does not match number of included

variables’)↪
95 elif len(labels) > 0 and len(labels) != len(includes):
96 raise AttributeError(’Number of labels does not match number of included

variables’)↪
97

98 if len(labels) == 0:
99 self.options[’labels’] = includes[:]

100 if len(legend) == 0:
101 self.options[’legend’] = legend[:]
102

103 self.vois = OrderedDict()
104

105 super(VOIPlotter, self).startup(object_requesting_recording)
106

107 def init_fig(self, fig):
108 # type: (Figure) -> None
109 ”””Initialize the variables of interest figure.
110

111 Parameters
112 ----------
113 fig : :obj:‘Figure‘
114 Instance of the ‘Figure‘ which should be populated.
115 ”””
116 host_subplot_class = host_subplot_class_factory(aa.Axes)
117

118 ax_main = host_subplot_class(fig, 111)
119 fig.add_subplot(ax_main)
120 ax_main.xaxis.set_major_locator(ticker.MaxNLocator(integer=True))
121

122 offset = 60
123 flag = False
124 pos = [’left’, ’right’]
125

126 for index, key in enumerate(self.options[’includes’]):
127 if not index:
128 ax = ax_main
129 ax.set_xlim([0, 1])
130 ax.set_xlabel(’Evaluation #’)
131 else:
132 ax = ax_main.twinx()
133

134 ax.autoscale(True, ’y’)
135 ax.set_ylabel(self.options[’labels’][index])
136

137 if index > 1:
138 new_fixed_axis = ax.get_grid_helper().new_fixed_axis
139 ax.axis[pos[flag]] = new_fixed_axis(loc=pos[flag], axes=ax,

offset=((index//2)*offset, 0))↪
140 ax.axis[pos[flag]].toggle(all=True)
141

142 line, = ax.plot([], [], label=self.options[’legend’][index])
143 color = line.get_color()
144 ax.axis[pos[flag]].label.set_color(color)
145 ax.spines[pos[flag]].set_color(color)
146 ax.tick_params(axis=’y’, color=color)
147

148 self.vois.update({key: {’ax’: ax, ’line’: line, ’data’: np.array([])}})
149

150 flag ^= True



A.4. Utilities 109

151

152 ax_main.legend(bbox_to_anchor=(.5, 1.), loc=’lower center’, ncol=4)
153

154 def _update_plot(self, *args):
155 # type: (dict, dict, dict, dict) -> None
156 ”””Insert the new data into the plot and refresh it.
157

158 Parameters
159 ----------
160 inputs, outputs, resids, metadata : dict
161 Dictionaries containing inputs, outputs, residuals, and metadata of the system.
162 ”””
163 inputs, outputs, resids, _ = args
164

165 if self.xdata is None:
166 self.xdata = np.array([0.])
167 else:
168 self.xdata = np.append(self.xdata, [self.xdata[-1] + 1])
169

170 for key in self.vois.keys():
171 if key in inputs:
172 data = inputs[key]
173 elif key in outputs:
174 data = outputs[key]
175 elif key in resids:
176 data = resids[key]
177 else:
178 raise ValueError(’Variable of interest ”%s” does not belong to the System

holding this Recorder.’ % key)↪
179

180 self.vois[key][’data’] = np.append(self.vois[key][’data’], [data])
181 self.vois[key][’line’].set_data(self.xdata, self.vois[key][’data’])
182 self.vois[key][’ax’].relim()
183 self.vois[key][’ax’].autoscale_view()

Code frament A.12: Code of the openlego.recorders.voi_plotter Python module.

A.4. Utilities
A.4.1. openlego.utils.general_utils

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of general utility functions.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import re
23 import warnings
24

25 import numpy as np
26 from lxml import etree
27 from openmdao.core.driver import Driver
28 from typing import Callable, Any, Optional, Union, Type
29



110 A. Code

30

31 def try_hard(fun, *args, **kwargs):
32 # type: (Callable, *Any, **Any) -> Any
33 ”””Try repeatedly to call a function until it returns successfully.
34

35 Utility function that repeatedly tries to call a given function with the given arguments
until that function↪

36 successfully returns. It is possible to limit the maximum number of attempts by setting
the try_hard_limit argument.↪

37

38

39 Parameters
40 ----------
41 fun : function
42 The function to try to call.
43

44 *args
45 Any ordered arguments to pass to the function.
46

47 **kwargs
48 Any named arguments to pass to the function.
49

50

51 Returns
52 -------
53 any
54 The return value of the function to be called.
55

56 Notes
57 -----
58 This function is part of a workaround to deal with APIs crashing in a non-predictable

manner, seemingly random↪
59 way. It was found that, when simply trying to call such functions again, the problem

seemed to not exist↪
60 anymore.
61 ”””
62 warnings.simplefilter(’always’, UserWarning)
63 try_hard_limit = -1
64 if kwargs is not None:
65 if ’try_hard_limit’ in kwargs.keys():
66 try_hard_limit = kwargs[’try_hard_limit’]
67 del kwargs[’try_hard_limit’]
68

69 msg = None
70 return_value = None
71 successful = False
72 attempts = 0
73 while not successful:
74 try:
75 return_value = fun(*args, **kwargs)
76 successful = True
77 except Exception as e:
78 attempts += 1
79

80 if msg is None:
81 msg = ’Had to try again to evaluate: %s(’ % fun.__name__ + ’, ’.join([’%s’ %

arg for arg in args])↪
82 if kwargs is not None:
83 msg += ’, ’.join([’%s=%s’ % (key, value) for key, value in kwargs.items()])
84 msg += ’). The following exception was raised: ”%s”’ % e.message
85

86 if 0 < try_hard_limit <= attempts:
87 raise
88 else:
89 warnings.warn(msg)
90

91 return return_value
92

93

94 class CachedProperty(property):



A.4. Utilities 111

95 ”””Subclass of ‘property‘ using a cache to avoid recalculating an expensive ‘property‘
every time it is read.↪

96

97 An attribute can be decorated with this class is the same way as with a normal ‘property‘.
It adds the possibility↪

98 to invalidate the cache when necessary.
99 ”””

100

101 def __init__(self, fget=None, fset=None, fdel=None, doc=None):
102 # type: (Optional[Callable], Optional[Callable], Optional[Callable], Optional[str]) ->

None↪
103 ”””Initialize the ‘CachedProperty‘.
104

105 Parameters
106 ----------
107 fget, fset, fdel : function, optional
108 Getter, setter, and deleter functions.
109

110 doc : str, optional
111 Docstring of the property.
112 ”””
113 super(CachedProperty, self).__init__(fget, fset, fdel, doc)
114 self.__cache = None
115 self.__dirty = True
116

117 def __get__(self, instance, owner=None):
118 # type: (Any, Optional[type]) -> Any
119 ”””Get the value of the property.
120

121 This method checks if the cache of this property is still valid first. If it is, it
simply returns the cached↪

122 value. If it isn’t, it calls the ‘super()‘ to recompute the cached variable, stores
it, and then returns the↪

123 newly calculated value.
124

125 Parameters
126 ----------
127 instance : any
128 The instance through which the attribute is accessed.
129

130 owner : type, optional
131 The owner of the attribute.
132

133 Returns
134 -------
135 any
136 The value of the attribute.
137 ”””
138 if self.__dirty:
139 self.__cache = super(CachedProperty, self).__get__(instance, owner)
140 self.__dirty = False
141 return self.__cache
142

143 def invalidate(self):
144 # type: () -> None
145 ”””Marks the cache of the property as invalid, prompting its recomputation the next

time it is accessed.”””↪
146 self.__dirty = True
147

148

149 def parse_string(s):
150 # type: (str) -> Union[str, np.ndarray, float]
151 ”””Convert a string to a numpy array of floats or float if possible.
152

153 The string is returned unchanged if it cannot be converted to a numpy array of floats or
float.↪

154

155 Parameters
156 ----------
157 s : str
158 String to be converted.



112 A. Code

159

160 Returns
161 -------
162 str or np.ndarray or float
163 Parsed string or the string itself.
164 ”””
165 v = re.sub(r’[\[\]]’, ’’, s)
166

167 if ’,’ in v:
168 v = v.split(’,’)
169 elif ’;’ in v:
170 v = v.split(’;’)
171

172 try:
173 v = np.atleast_1d(np.array(v, dtype=float))
174 if v.size == 1:
175 v = v[0]
176 return v
177 except ValueError:
178 return s
179

180

181 def parse_cmdows_value(elem):
182 # type: (etree._Element) -> Union[str, np.ndarray, float]
183 ”””Convert an XML element from a CMDOWS file to a value.
184

185 Parameters
186 ----------
187 elem : :obj:‘_Element‘
188 ‘etree._Element‘ to convert.
189

190 Returns
191 -------
192 str or np.ndarray or float
193 Converted element.
194 ”””
195 if len(list(elem)) > 1:
196 return np.array([parse_string(child.text) for child in elem])
197 else:
198 return parse_string(elem.text)
199

200

201 def normalized_to_bounds(driver):
202 # type: (Type[Driver]) -> Type[NormalizedDriver]
203 ”””Decorate a ‘Driver‘ to adjust its ‘‘adder‘‘/‘‘scaler‘‘ attributes normalizing the

‘‘desvar‘‘s.↪
204

205 This decorator automatically adjusts the adder and scalar attributes of the design
variables belonging to the↪

206 targeted ‘‘OpenMDAO‘‘ ‘Driver‘ class such that the design variables are normalized to
their bounds.↪

207

208 Parameters
209 ----------
210 driver : :obj:‘Driver‘
211 ‘Driver‘ to normalize the design variables of.
212

213 Returns
214 -------
215 :obj:‘NormalizedDriver‘
216 Instance of ‘NormalizedDriver‘ which inherits from the given ‘Driver‘.
217

218 Examples
219 --------
220 @normalized_to_bounds\n
221 class MyNormalizedDriver(Driver):
222 # My design variables will now automatically be normalized to their bounds.
223 pass
224 ”””
225

226 class NormalizedDriver(driver):



A.4. Utilities 113

227 ”””Wrapper class for the ‘normalized_to_bounds‘ decorator.
228

229 This class adds a static function to the ‘Driver‘ it inherits from, which will
intercept all ‘add_desvar()‘↪

230 calls to the wrapped ‘Driver‘ class to change its ‘‘adder‘‘/‘‘scaler‘‘ attributes
depending on the given↪

231 upper and lower bounds.
232 ”””
233

234 @staticmethod
235 def normalize_to_bounds(func):
236 # type: (Callable) -> Callable
237 ”””Wrap the function handle of the ‘add_desvar()‘ function.
238

239 Parameters
240 ----------
241 func : function
242 Function handle of the ‘add_desvar()‘ function.
243

244 Returns
245 -------
246 func : function
247 Function wrapping the ‘add_desvar()‘ function, which adds logic to

calculate ‘‘adder‘‘/‘‘scaler‘‘.↪
248 ”””
249

250 def new_function(name, # type: str
251 lower=None, # type: Optional[Union[float, np.ndarray]]
252 upper=None, # type: Optional[Union[float, np.ndarray]]
253 *args, **kwargs):
254 # type: (...) -> None
255 ”””Wrap the ‘add_desvar()‘ function call.
256

257 Inner wrapper function which will set the ‘‘adder‘‘ and ‘‘scaler‘‘ ‘kwargs‘ of
the wrapped↪

258 ‘add_desvar()‘ method before calling it.
259

260 Parameters
261 ----------
262 name : str
263 Name of the design variable to add.
264

265 lower : float or list of float, optional
266 Lower bound(s) of the design variable.
267

268 upper : float or list of float, optional
269 Upper bound(s) of the design variable.
270

271 *args
272 Any extra, ordered arguments to pass to the ‘add_desvar()‘ method.
273

274 **kwargs
275 Any extra, named arguments to pass to the ‘add_desvar()‘ method.
276 ”””
277 if lower is not None:
278 adder = -lower
279 else:
280 adder = 0.
281

282 if upper is not None:
283 scaler = 1./(upper + adder)
284 else:
285 scaler = 1.
286

287 if len(args) > 4:
288 args = args[:-1]
289 elif len(args) > 3:
290 args = args[:-1]
291

292 if ’adder’ in kwargs:
293 del kwargs[’adder’]



114 A. Code

294 if ’scaler’ in kwargs:
295 del kwargs[’scaler’]
296

297 func(name, lower, upper, adder=adder, scaler=scaler, *args, **kwargs)
298

299 return new_function
300

301 def __getattribute__(self, item):
302 ”””Intercept any calls to the ‘add_desvar()‘ method of the Driver class.
303

304 This ‘‘hook‘‘ checks if ‘add_desvar()‘ is called. If so, it returns the wrapped
function instead of the↪

305 clean ‘add_desvar()‘ call.
306

307 Parameters
308 ----------
309 item : str
310 Name of the attribute.
311

312 Returns
313 -------
314 any
315 The attribute that was requested or the wrapped call to ‘add_desvar()‘ if

it is requested.↪
316 ”””
317 x = super(NormalizedDriver, self).__getattribute__(item)
318 if item in [’add_desvar’]:
319 return self.normalize_to_bounds(x)
320 else:
321 return x
322

323 return NormalizedDriver

Code frament A.13: Code of the openlego.utils.general_utils Python module.

A.4.2. openlego.utils.xml_utils
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a set of XML utility functions.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import re
23 from collections import OrderedDict
24 from shutil import copyfile
25

26 import numpy as np
27 from lxml import etree
28 from typing import Optional, Union, List
29

30 # Patterns for XML attribute names and values
31 pttrn_attr_val = r’([-.0-9:A-Z_a-z]+?)’
32 pttrn_attr_name = r’([:A-Z_a-z][0-9:A-Z_a-z]*?)’
33



A.4. Utilities 115

34 # Expressions used to replace illegal characters in an XPath to legal characters within an
OpenMDAO variable name.↪

35 repl_dot = ’:_:’ # A dot (.) becomes :_:
36 repl_dot_inv = ’.’
37

38 # Regular expressions to match attributes and indices within valid XPaths
39 re_atr = re.compile(r’\[@’ + pttrn_attr_name + ”=[’\”]” + pttrn_attr_val + ”[’\”]\]”)
40 re_ind = re.compile(r’\[([0-9]+?)\]’)
41

42 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
43 find_text = etree.XPath(’//text()’)
44

45

46 def xpath_to_param(xpath):
47 # type: (str) -> str
48 ”””Convert an XML XPath to a valid ‘‘OpenMDAO‘‘ parameter name.
49

50 Parameters
51 ----------
52 xpath : str
53 XPath to convert.
54

55 Returns
56 -------
57 str
58 Valid ‘‘OpenMDAO‘‘ parameter name.
59 ”””
60 param = xpath.replace(repl_dot_inv, repl_dot)
61 return param
62

63

64 def param_to_xpath(param):
65 # type: (str) -> str
66 ”””Convert an ‘‘OpenMDAO‘‘ parameter name to the corresponding XML XPath.
67

68 This function is the inverse of ‘xpath_to_param()‘.
69

70 Parameters
71 ----------
72 param : str
73 Valid ‘‘OpenMDAO‘‘ parameter name.
74

75 Returns
76 -------
77 str
78 Corresponding XML XPath.
79 ”””
80 xpath = param.replace(repl_dot, repl_dot_inv)
81 return xpath
82

83

84 def value_to_xml(elem, value):
85 if isinstance(value, np.ndarray):
86 value = np.atleast_1d(value).flatten()
87

88 if isinstance(value, np.ndarray):
89 if value.size == 1:
90 elem.text = str(value[0])
91 else:
92 elem.text = ’;’.join([str(v) for v in value[:]])
93 elem.attrib.update({’mapType’: ’vector’})
94 else:
95 elem.text = str(value)
96

97

98 def xml_to_dict(xml):
99 # type: (Union[str, etree._ElementTree]) -> OrderedDict

100 ”””Convert an XML file to a python dictionary with all valued elements as values with
their full XPaths as keys.↪

101

102 Parameters



116 A. Code

103 ----------
104 xml : str or :obj:‘etree._ElementTree‘
105 Path to or ‘etree._ElementTree‘ of an XML file.
106

107 Returns
108 -------
109 :obj:‘OrderedDict‘
110 ‘OrderedDict‘ representing the XML file in file order.
111 ”””
112 if isinstance(xml, str):
113 xml = etree.parse(xml, parser)
114

115 _dict = OrderedDict()
116 for text in find_text(xml):
117 # Construct ’augmented’ XPath for this element, including attributes
118 xpath = ’’
119 child = text.getparent()
120 while child is not None:
121 parent = child.getparent()
122

123 tag = child.tag
124 for name, value in child.items():
125 # Exclude special purpose attribute: mapType
126 if name != ’mapType’:
127 tag += r’[@%s=”%s”]’ % (name, value)
128

129 if parent is not None:
130 siblings = parent.findall(tag)
131 if len(siblings) > 1:
132 tag += ’[%d]’ % (siblings.index(child) + 1)
133

134 xpath = ’/’.join([tag, xpath])
135 child = parent
136

137 # Try to convert the text into a float or a list of floats
138 try:
139 value = float(text)
140 except ValueError:
141 try:
142 value = np.array(text.split(’;’), dtype=float)
143 except ValueError:
144 value = str(text)
145

146 # Update the dict with this element
147 _dict.update({’/’ + xpath[:-1]: value})
148

149 return _dict
150

151

152 def xml_safe_create_element(
153 tree, # type: etree._ElementTree
154 xpath, # type: str
155 value=None # type: Optional[Union[str, int, float, List[Union[str, int, float]],

np.ndarray]]↪
156 ):
157 # type: (...) -> etree._Element
158 ”””Create an element at the given XML XPath with the given value.
159

160 This method ensures that all elements implied by the given X-Path exist.
161

162 Supplying a value is optional. If no value is supplied an empty XML node is created at the
deepest level implied by↪

163 the XPath.
164

165 Parameters
166 ----------
167 tree : :obj:‘etree._ElementTree‘
168 ‘etree._ElementTree‘ in which to create the element.
169

170 xpath : str
171 XPath to ensure.



A.4. Utilities 117

172

173 value : str or int or float or list of str or list of int or list of float or
:obj:‘np.ndarray‘↪

174 Optional value to write at the deepest node of the ensured XPath.
175

176 Returns
177 -------
178 :obj:‘etree._Element‘
179 Instance of ‘etree._Element‘ corresponding to the newly created element.
180 ”””
181 # Split the xpath to get the intermediate nodes as a list
182 xpath_list = xpath.split(’/’)
183 n = len(xpath_list)
184

185 # Loop over the elements in the XPath from tip to root until the XPath is found to already
exist↪

186 elem = None
187 i = 0
188 for i in range(0, n - 1):
189 xpath = ’/’.join(xpath_list[0:(n - i)])
190 try:
191 elems = tree.xpath(xpath)
192 if len(elems):
193 elem = elems[0]
194 break
195 except etree.XPathError:
196 raise ValueError(’Specified XPath is invalid’)
197

198 # If no existing element was found the root elements of the tree and XPath don’t match
199 if elem is None:
200 raise ValueError(”Specified XPath is incompatible with the given XML tree: root tags

don’t match”)↪
201

202 # Loop over the part of the XPath beyond this point and create all intermediate elements
including attributes↪

203 for j in range(n - i, n):
204 tag = xpath_list[j]
205

206 # See if this node has an integer index specified
207 match_ind = re_ind.search(tag)
208 if match_ind:
209 tag = tag[:match_ind.start()] + tag[match_ind.end():]
210 index = int(match_ind.group(1)) - 1
211 else:
212 index = 0
213

214 # Find any attributes at this node
215 attrib = {}
216 match_attr = list(re_atr.finditer(tag))
217 if match_attr:
218 # Loop over all attributes on this node
219 for match in match_attr:
220 if match.start() < len(tag):
221 tag = tag[:match.start()]
222 attrib.update({match.group(1): match.group(2)})
223

224 # Check if there are siblings with the same name
225 siblings = elem.findall(tag)
226 n_siblings = len(siblings)
227

228 # Check if there’s a sibling with the same name at this index without conflicting
attributes↪

229 if index < n_siblings and not any(
230 [siblings[index].attrib[key] != attrib[key] for key in attrib.keys() if key in

siblings[index].attrib]):↪
231 # If so, use it instead of adding a new one
232 siblings[index].attrib.update(attrib)
233 elem = siblings[index]
234 elif index <= n_siblings:
235 # In this case just append a new element
236 _elem = etree.Element(tag, attrib)



118 A. Code

237 elem.append(_elem)
238 elem = _elem
239 else:
240 # In the last case, insert as many empty siblings until this node’s index
241 sibling = None
242 for i in range(index - n_siblings):
243 _sibling = etree.Element(tag)
244 if i == 0:
245 if not n_siblings:
246 elem.append(_sibling)
247 else:
248 siblings[-1].addnext(_sibling)
249 else:
250 sibling.addnext(_sibling)
251 sibling = _sibling
252

253 # Finally at a new element at the right index with all attributes
254 elem = etree.Element(tag, attrib)
255 sibling.addnext(elem)
256

257 # Finally we can update the current XPath, since it has been assured to exist at this
point↪

258 xpath = ’/’.join([xpath, xpath_list[j]])
259

260 # If a value was supplied assign it to the deepest element in the XPath
261 if value is not None:
262 value_to_xml(elem, value)
263

264 return elem
265

266

267 def xml_merge(base, merger, out_file=None):
268 # type: (Union[str, etree._ElementTree], Union[str, etree._ElementTree], Optional[str])

-> None↪
269 ”””Merge an XML file into another.
270

271 First two parameters can be either a path to an XML file or an instance of
‘etree._ElementTree‘ corresponding to an↪

272 XML tree. All content from the merger will be merger into the base. The third parameter is
optional. If set, the↪

273 result of the merger will be written to the file at this path.
274

275 This function does not return anything. If base is an instance of ‘etree._ElementTree‘
this object will be changed,↪

276 if it is a ‘str‘ the file at that location will be changed. However, if ‘‘out_file‘‘ is
set, the file at that↪

277 location will be changed instead, and not the one at base.
278

279 Parameters
280 ----------
281 base : str or :obj:‘etree._ElementTree‘
282 Path to or ‘etree._ElementTree‘ of an XML file into which the merger should be

merged.↪
283

284 merger : str or :obj:‘etree._ElementTree‘
285 Path to or ’etree._ElementTree‘ of an XML file which should be merged into the base.
286

287 out_file : str, optional
288 Path to a file into which the result of the merger should be written. If not

given, the result will↪
289 overwrite the base.
290

291 Notes
292 -----
293 If conflicting elements exist the value of the merger will overwrite the one in the

base.↪
294 ”””
295 if isinstance(base, str):
296 try:
297 doc = etree.parse(base, parser)
298 except IOError:



A.5. Test Suite 119

299 if out_file is None:
300 out_file = base
301

302 if isinstance(merger, str):
303 copyfile(merger, out_file)
304 else:
305 merger.write(out_file, encoding=’utf-8’, pretty_print=True,

xml_declaration=True)↪
306

307 return
308 else:
309 doc = base
310

311 merger_dict = xml_to_dict(merger)
312 for xpath, value in merger_dict.items():
313 xml_safe_create_element(doc, xpath, value)
314

315 if out_file is not None:
316 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
317 elif isinstance(base, str):
318 doc.write(base, encoding=’utf-8’, pretty_print=True, xml_declaration=True)

Code frament A.14: Code of the openlego.utils.xml_utils Python module.

A.5. Test Suite
A.5.1. Sellar Problem
Sellar Test Case

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the test case for the Sellar example problem.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import unittest
23

24 from openmdao.api import Problem, ScipyOptimizer
25

26 from openlego.api import LEGOModel
27 from openlego.recorders import NormalizedDesignVarPlotter, ConstraintsPlotter,

SimpleObjectivePlotter↪
28

29

30 def solve_sellar(cmdows_file):
31 ”””Solve the Sellar problem using the given CMDOWS file.”””
32 # 1. Create Problem
33 prob = Problem() # Create an instance of the

Problem class↪
34 prob.set_solver_print(0) # Turn off printing of

solver information↪
35

36 # 2. Create the LEGOModel
37 model = prob.model = LEGOModel(cmdows_file, # CMDOWS file



120 A. Code

38 ’kb’, # Knowledge base path
39 ’’, # Output directory
40 ’sellar-output.xml’) # Output file
41

42 # 3. Create the Driver
43 driver = prob.driver = ScipyOptimizer() # Use a SciPy for the

optimization↪
44 driver.options[’optimizer’] = ’SLSQP’ # Use the SQP algorithm
45 driver.options[’disp’] = True # Print the result
46 driver.opt_settings = {’disp’: True, ’iprint’: 2} # Display iterations
47

48 # 4. Setup the Problem
49 prob.setup() # Call the OpenMDAO setup()

method↪
50 model.coupled_group.linear_solver.options[’maxiter’] = 17 # Increase maxiter of the

linear solver↪
51 model.coupled_group.nonlinear_solver.options[’maxiter’] = 17 # Increase maxiter of the

nonlinear solver↪
52 prob.run_model() # Run the model once to

init. the variables↪
53 model.initialize_from_xml(’sellar-input.xml’) # Set the initial values

from an XML file↪
54

55 # 5. Create and attach some Recorders (Optional)
56 desvar_plotter = NormalizedDesignVarPlotter() # Create a plotter for the

design variables↪
57 desvar_plotter.options[’save_on_close’] = True # Should this plot be saved

automatically?↪
58 desvar_plotter.save_settings[’path’] = ’desvar.png’ # Set the filename of the

image file↪
59

60 convar_plotter = ConstraintsPlotter() # Create a plotter for the
constraints↪

61 convar_plotter.options[’save_on_close’] = True # Should this plot be saved
automatically?↪

62 convar_plotter.save_settings[’path’] = ’convar.png’ # Set the filename of the
image file↪

63

64 objvar_plotter = SimpleObjectivePlotter() # Create a plotter for the
objective↪

65 objvar_plotter.options[’save_on_close’] = True # Should this plot be saved
automatically?↪

66 objvar_plotter.save_settings[’path’] = ’objvar.png’ # Set the filename of the
image file↪

67

68 # driver.add_recorder(desvar_plotter) # Attach the design
variable plotter↪

69 # driver.add_recorder(convar_plotter) # Attach the constraint
variable plotter↪

70 # driver.add_recorder(objvar_plotter) # Attach the objective
variable plotter↪

71

72 # 6. Solve the Problem
73 prob.run_driver() # Run the optimization
74

75 # 7. Print results
76 from .kb import x_f1, x_x1, x_z1, x_z2, x_y1, x_y2, x_g1, x_g2
77 print(’Optimum found! Objective function value: f = {}’.format(prob[x_f1]))
78 print(’Design variables at optimum: x = {}, z1 = {}, z2 = {}’.format(prob[x_x1],

prob[x_z1], prob[x_z2]))↪
79 print(’Coupling variables at optimum: y1 = {}, y2 = {}’.format(prob[x_y1], prob[x_y2]))
80 print(’Constraints at optimum: g1 = {}, g2 = {}’.format(prob[x_g1], prob[x_g2]))
81

82 # 8. Cleanup the Problem afterwards
83 prob.cleanup() # Clear all resources and

close the plots↪
84 model.invalidate() # Clear the cached

properties of the LEGOModel↪
85

86

87 class TestSellar(unittest.TestCase):



A.5. Test Suite 121

88

89 def test_mdf_gs(self):
90 ”””Solve the Sellar problem using the MDF architecture and a Gauss-Siedel converger.”””
91 solve_sellar(’sellar-MDG_MDF-GS.xml’)
92

93 def test_mdf_j(self):
94 ”””Solve the Sellar problem using the MDF architecture and a Jacobi converger.”””
95 solve_sellar(’sellar-MDG_MDF-J.xml’)
96

97 def test_idf(self):
98 ”””Solve the Sellar problem using the IDF architecture.”””
99 solve_sellar(’sellar-MDG_IDF.xml’)

100

101

102 if __name__ == ’__main__’:
103 unittest.main()

Code frament A.15: Code of the test_sellar Python script.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <cmdows xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>↪
3 <header>
4 <creator>D. de Vries</creator>
5 <description>Sellar problem MPG file</description>
6 <timestamp>2017-10-09T11:33:54.624000</timestamp>
7 <fileVersion>0.1</fileVersion>
8 <cmdowsVersion>0.7</cmdowsVersion>
9 <updates>

10 <update>
11 <modification>KADMOS export of a mdao data graph (MDG).</modification>
12 <creator>D. de Vries</creator>
13 <timestamp>2017-10-09T11:33:54.624000</timestamp>
14 <fileVersion>0.1</fileVersion>
15 <cmdowsVersion>0.7</cmdowsVersion>
16 </update>
17 </updates>
18 </header>
19 <executableBlocks>
20 <designCompetences>
21 <designCompetence uID=”F1”>
22 <ID>F1</ID>
23 <modeID>main</modeID>
24 <instanceID>1</instanceID>
25 <version>1.0</version>
26 <label>F1</label>
27 <inputs>
28 <input>
29 <parameterUID>/data_schema/x1</parameterUID>
30 </input>
31 <input>
32 <parameterUID>/data_schema/y2</parameterUID>
33 </input>
34 <input>
35 <parameterUID>/data_schema/z2</parameterUID>
36 </input>
37 <input>
38 <parameterUID>/data_schema/y1</parameterUID>
39 </input>
40 </inputs>
41 <outputs>
42 <output>
43 <parameterUID>/data_schema/f1</parameterUID>
44 </output>
45 <output>
46 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</parameterUID>↪
47 </output>
48 </outputs>
49 <metadata>



122 A. Code

50 <generalInfo>
51 <description>main execution mode</description>
52 </generalInfo>
53 </metadata>
54 </designCompetence>
55 <designCompetence uID=”D2”>
56 <ID>D2</ID>
57 <modeID>main</modeID>
58 <instanceID>1</instanceID>
59 <version>1.0</version>
60 <label>D2</label>
61 <inputs>
62 <input>
63 <parame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</parameterUID>↪
64 </input>
65 <input>
66 <parameterUID>/data_schema/z2</parameterUID>
67 </input>
68 <input>
69 <parameterUID>/data_schema/z1</parameterUID>
70 </input>
71 </inputs>
72 <outputs>
73 <output>
74 <parame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</parameterUID>↪
75 </output>
76 <output>
77 <parameterUID>/data_schema/y2</parameterUID>
78 </output>
79 </outputs>
80 <metadata>
81 <generalInfo>
82 <description>main execution mode</description>
83 </generalInfo>
84 </metadata>
85 </designCompetence>
86 <designCompetence uID=”G2”>
87 <ID>G2</ID>
88 <modeID>main</modeID>
89 <instanceID>1</instanceID>
90 <version>1.0</version>
91 <label>G2</label>
92 <inputs>
93 <input>
94 <parameterUID>/data_schema/y2</parameterUID>
95 </input>
96 </inputs>
97 <outputs>
98 <output>
99 <parameterUID>/data_schema/g2</parameterUID>

100 </output>
101 <output>
102 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</parameterUID>↪
103 </output>
104 </outputs>
105 <metadata>
106 <generalInfo>
107 <description>main execution mode</description>
108 </generalInfo>
109 </metadata>
110 </designCompetence>
111 <designCompetence uID=”G1”>
112 <ID>G1</ID>
113 <modeID>main</modeID>
114 <instanceID>1</instanceID>
115 <version>1.0</version>
116 <label>G1</label>
117 <inputs>



A.5. Test Suite 123

118 <input>
119 <parameterUID>/data_schema/y1</parameterUID>
120 </input>
121 </inputs>
122 <outputs>
123 <output>
124 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</parameterUID>↪
125 </output>
126 <output>
127 <parameterUID>/data_schema/g1</parameterUID>
128 </output>
129 </outputs>
130 <metadata>
131 <generalInfo>
132 <description>main execution mode</description>
133 </generalInfo>
134 </metadata>
135 </designCompetence>
136 <designCompetence uID=”D1”>
137 <ID>D1</ID>
138 <modeID>main</modeID>
139 <instanceID>1</instanceID>
140 <version>1.0</version>
141 <label>D1</label>
142 <inputs>
143 <input>
144 <parameterUID>/data_schema/x1</parameterUID>
145 </input>
146 <input>
147 <parameterUID>/data_schema/z2</parameterUID>
148 </input>
149 <input>
150 <parameterUID>/data_schema/z1</parameterUID>
151 </input>
152 <input>
153 <parame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</parameterUID>↪
154 </input>
155 </inputs>
156 <outputs>
157 <output>
158 <parame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</parameterUID>↪
159 </output>
160 <output>
161 <parameterUID>/data_schema/y1</parameterUID>
162 </output>
163 </outputs>
164 <metadata>
165 <generalInfo>
166 <description>main execution mode</description>
167 </generalInfo>
168 </metadata>
169 </designCompetence>
170 </designCompetences>
171 </executableBlocks>
172 <parameters>
173 <parameter uID=”/data_schema/g1”>
174 <label>g1</label>
175 </parameter>
176 <parameter uID=”/data_schema/g2”>
177 <label>g2</label>
178 </parameter>
179 <parameter uID=”/data_schema/f1”>
180 <label>f1</label>
181 </parameter>
182 <parameter uID=”/data_schema/y2”>
183 <label>y2</label>
184 </parameter>
185 <parameter uID=”/data_schema/y1”>



124 A. Code

186 <label>y1</label>
187 </parameter>
188 <parameter uID=”/data_schema/x1”>
189 <label>x1</label>
190 </parameter>
191 <parameter uID=”/data_schema/z2”>
192 <label>z2</label>
193 </parameter>
194 <parameter uID=”/data_schema/z1”>
195 <label>z1</label>
196 </parameter>
197 </parameters>
198 <problemDefinition uID=”IDFNone”>
199 <problemFormulation>
200 <mdaoArchitecture>IDF</mdaoArchitecture>
201 <executableBlocksOrder>
202 <executableBlock position=”1”>D1</executableBlock>
203 <executableBlock position=”2”>D2</executableBlock>
204 <executableBlock position=”3”>F1</executableBlock>
205 <executableBlock position=”4”>G1</executableBlock>
206 <executableBlock position=”5”>G2</executableBlock>
207 </executableBlocksOrder>
208 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
209 </problemFormulation>
210 <problemRoles>
211 <parameters>
212 <designVariables>
213 <designVariable uID=”__desVar__/data_schema/y2”>
214 <parameterUID>/data_schema/y2</parameterUID>
215 <nominalValue>0.0</nominalValue>
216 </designVariable>
217 <designVariable uID=”__desVar__/data_schema/y1”>
218 <parameterUID>/data_schema/y1</parameterUID>
219 <nominalValue>0.0</nominalValue>
220 </designVariable>
221 <designVariable uID=”__desVar__/data_schema/x1”>
222 <parameterUID>/data_schema/x1</parameterUID>
223 <nominalValue>5.0</nominalValue>
224 <validRanges>
225 <limitRange>
226 <minimum>0.0</minimum>
227 <maximum>10.0</maximum>
228 </limitRange>
229 </validRanges>
230 </designVariable>
231 <designVariable uID=”__desVar__/data_schema/z2”>
232 <parameterUID>/data_schema/z2</parameterUID>
233 <nominalValue>5.0</nominalValue>
234 <validRanges>
235 <limitRange>
236 <minimum>0.0</minimum>
237 <maximum>10.0</maximum>
238 </limitRange>
239 </validRanges>
240 </designVariable>
241 <designVariable uID=”__desVar__/data_schema/z1”>
242 <parameterUID>/data_schema/z1</parameterUID>
243 <nominalValue>1.0</nominalValue>
244 <validRanges>
245 <limitRange>
246 <minimum>-10.0</minimum>
247 <maximum>10.0</maximum>
248 </limitRange>
249 </validRanges>
250 </designVariable>
251 </designVariables>
252 <objectiveVariables>
253 <objectiveVariable uID=”__objVar__/data_schema/f1”>
254 <parameterUID>/data_schema/f1</parameterUID>
255 </objectiveVariable>
256 </objectiveVariables>



A.5. Test Suite 125

257 <constraintVariables>
258 <constraintVariable uID=”__conVar__/data_schema/g1”>
259 <parameterUID>/data_schema/g1</parameterUID>
260 <constraintType>inequality</constraintType>
261 <constraintOperator>&lt;=</constraintOperator>
262 <referenceValue>0.0</referenceValue>
263 </constraintVariable>
264 <constraintVariable uID=”__conVar__/data_schema/g2”>
265 <parameterUID>/data_schema/g2</parameterUID>
266 <constraintType>inequality</constraintType>
267 <constraintOperator>&lt;=</constraintOperator>
268 <referenceValue>0.0</referenceValue>
269 </constraintVariable>
270 <constraintVariable

uID=”__conVar__/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y2”>↪
271 <parame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y2</parameterUID>↪
272 <constraintType>equality</constraintType>
273 <constraintOperator>==</constraintOperator>
274 <referenceValue>0.0</referenceValue>
275 </constraintVariable>
276 <constraintVariable

uID=”__conVar__/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y1”>↪
277 <parame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y1</parameterUID>↪
278 <constraintType>equality</constraintType>
279 <constraintOperator>==</constraintOperator>
280 <referenceValue>0.0</referenceValue>
281 </constraintVariable>
282 </constraintVariables>
283 </parameters>
284 <executableBlocks>
285 <coupledBlocks>
286 <coupledBlock>D1</coupledBlock>
287 <coupledBlock>D2</coupledBlock>
288 </coupledBlocks>
289 <postCouplingBlocks>
290 <postCouplingBlock>F1</postCouplingBlock>
291 <postCouplingBlock>G1</postCouplingBlock>
292 <postCouplingBlock>G2</postCouplingBlock>
293 <postCouplingBlock>Gc</postCouplingBlock>
294 </postCouplingBlocks>
295 </executableBlocks>
296 </problemRoles>
297 </problemDefinition>
298 <workflow>
299 <problemDefinitionUID>IDFNone</problemDefinitionUID>
300 <dataGraph>
301 <name>MDG1</name>
302 <edges>
303 <edge>
304 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</fromParameterUID>↪
305 <toExecutableBlockUID>D2</toExecutableBlockUID>
306 </edge>
307 <edge>
308 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</fromParameterUID>↪
309 <toExecutableBlockUID>Gc</toExecutableBlockUID>
310 </edge>
311 <edge>
312 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</fromParameterUID>↪
313 <toExecutableBlockUID>Gc</toExecutableBlockUID>
314 </edge>
315 <edge>
316 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</fromParameterUID>↪
317 <toExecutableBlockUID>D1</toExecutableBlockUID>
318 </edge>
319 <edge>



126 A. Code

320 <fromParame-
terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1</fromParameterUID>↪

321 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
322 </edge>
323 <edge>
324 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪
325 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
326 </edge>
327 <edge>
328 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</fromParameterUID>↪
329 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
330 </edge>
331 <edge>
332 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</fromParameterUID>↪
333 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
334 </edge>
335 <edge>
336 <fromExecutableBlockUID>Gc</fromExecutableBlockUID>
337 <toParame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y2</toParameterUID>↪
338 </edge>
339 <edge>
340 <fromExecutableBlockUID>Gc</fromExecutableBlockUID>
341 <toParame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y1</toParameterUID>↪
342 </edge>
343 <edge>
344 <fromParameterUID>/data_schema/y2</fromParameterUID>
345 <toExecutableBlockUID>F1</toExecutableBlockUID>
346 </edge>
347 <edge>
348 <fromParameterUID>/data_schema/y2</fromParameterUID>
349 <toExecutableBlockUID>Gc</toExecutableBlockUID>
350 </edge>
351 <edge>
352 <fromParameterUID>/data_schema/y2</fromParameterUID>
353 <toExecutableBlockUID>G2</toExecutableBlockUID>
354 </edge>
355 <edge>
356 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
357 <toParameterUID>/data_schema/g2</toParameterUID>
358 </edge>
359 <edge>
360 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
361 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</toParameterUID>↪
362 </edge>
363 <edge>
364 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
365 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</toParameterUID>↪
366 </edge>
367 <edge>
368 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
369 <toParameterUID>/data_schema/g1</toParameterUID>
370 </edge>
371 <edge>
372 <fromParameterUID>/data_schema/y1</fromParameterUID>
373 <toExecutableBlockUID>F1</toExecutableBlockUID>
374 </edge>
375 <edge>
376 <fromParameterUID>/data_schema/y1</fromParameterUID>
377 <toExecutableBlockUID>Gc</toExecutableBlockUID>
378 </edge>
379 <edge>
380 <fromParameterUID>/data_schema/y1</fromParameterUID>
381 <toExecutableBlockUID>G1</toExecutableBlockUID>
382 </edge>



A.5. Test Suite 127

383 <edge>
384 <fromParameterUID>/data_schema/g1</fromParameterUID>
385 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
386 </edge>
387 <edge>
388 <fromParameterUID>/data_schema/g2</fromParameterUID>
389 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
390 </edge>
391 <edge>
392 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</fromParameterUID>↪
393 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
394 </edge>
395 <edge>
396 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
397 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</toParameterUID>↪
398 </edge>
399 <edge>
400 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
401 <toParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</toParameterUID>↪
402 </edge>
403 <edge>
404 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
405 <toParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</toParameterUID>↪
406 </edge>
407 <edge>
408 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
409 <toParameterUID>/data_schema/x1</toParameterUID>
410 </edge>
411 <edge>
412 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
413 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</toParameterUID>↪
414 </edge>
415 <edge>
416 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
417 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</toParameterUID>↪
418 </edge>
419 <edge>
420 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
421 <toParameterUID>/data_schema/z2</toParameterUID>
422 </edge>
423 <edge>
424 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
425 <toParameterUID>/data_schema/z1</toParameterUID>
426 </edge>
427 <edge>
428 <fromParameterUID>/data_schema/f1</fromParameterUID>
429 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
430 </edge>
431 <edge>
432 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
433 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
434 </edge>
435 <edge>
436 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
437 <toParameterUID>/data_schema/f1</toParameterUID>
438 </edge>
439 <edge>
440 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
441 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</toParameterUID>↪
442 </edge>
443 <edge>
444 <fromParameterUID>/data_schema/x1</fromParameterUID>
445 <toExecutableBlockUID>F1</toExecutableBlockUID>



128 A. Code

446 </edge>
447 <edge>
448 <fromParameterUID>/data_schema/x1</fromParameterUID>
449 <toExecutableBlockUID>D1</toExecutableBlockUID>
450 </edge>
451 <edge>
452 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</fromParameterUID>↪
453 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
454 </edge>
455 <edge>
456 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
457 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
458 </edge>
459 <edge>
460 <fromParameterUID>/data_schema/z2</fromParameterUID>
461 <toExecutableBlockUID>F1</toExecutableBlockUID>
462 </edge>
463 <edge>
464 <fromParameterUID>/data_schema/z2</fromParameterUID>
465 <toExecutableBlockUID>D2</toExecutableBlockUID>
466 </edge>
467 <edge>
468 <fromParameterUID>/data_schema/z2</fromParameterUID>
469 <toExecutableBlockUID>D1</toExecutableBlockUID>
470 </edge>
471 <edge>
472 <fromParameterUID>/data_schema/z1</fromParameterUID>
473 <toExecutableBlockUID>D2</toExecutableBlockUID>
474 </edge>
475 <edge>
476 <fromParameterUID>/data_schema/z1</fromParameterUID>
477 <toExecutableBlockUID>D1</toExecutableBlockUID>
478 </edge>
479 <edge>
480 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
481 <toParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1</toParameterUID>↪
482 </edge>
483 <edge>
484 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
485 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</toParameterUID>↪
486 </edge>
487 <edge>
488 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
489 <toParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
490 </edge>
491 <edge>
492 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
493 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</toParameterUID>↪
494 </edge>
495 <edge>
496 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
497 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</toParameterUID>↪
498 </edge>
499 <edge>
500 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
501 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
502 </edge>
503 <edge>
504 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
505 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
506 </edge>
507 <edge>



A.5. Test Suite 129

508 <fromParame-
terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</fromParameterUID>↪

509 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
510 </edge>
511 <edge>
512 <fromParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪
513 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
514 </edge>
515 <edge>
516 <fromParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</fromParameterUID>↪
517 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
518 </edge>
519 <edge>
520 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
521 <toParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
522 </edge>
523 <edge>
524 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
525 <toParameterUID>/data_schema/y2</toParameterUID>
526 </edge>
527 <edge>
528 <fromParame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y2</fromParameterUID>↪
529 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
530 </edge>
531 <edge>
532 <fromParame-

terUID>/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y1</fromParameterUID>↪
533 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
534 </edge>
535 <edge>
536 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
537 <toParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</toParameterUID>↪
538 </edge>
539 <edge>
540 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
541 <toParameterUID>/data_schema/y1</toParameterUID>
542 </edge>
543 </edges>
544 </dataGraph>
545 <processGraph>
546 <name>MPG1</name>
547 <edges>
548 <edge>
549 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
550 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
551 <processStepNumber>4</processStepNumber>
552 </edge>
553 <edge>
554 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
555 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
556 <processStepNumber>5</processStepNumber>
557 </edge>
558 <edge>
559 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
560 <toExecutableBlockUID>D2</toExecutableBlockUID>
561 <processStepNumber>2</processStepNumber>
562 </edge>
563 <edge>
564 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
565 <toExecutableBlockUID>D1</toExecutableBlockUID>
566 <processStepNumber>2</processStepNumber>
567 </edge>
568 <edge>
569 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
570 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
571 <processStepNumber>4</processStepNumber>



130 A. Code

572 </edge>
573 <edge>
574 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
575 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
576 <processStepNumber>4</processStepNumber>
577 </edge>
578 <edge>
579 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
580 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
581 <processStepNumber>1</processStepNumber>
582 </edge>
583 <edge>
584 <fromExecutableBlockUID>Gc</fromExecutableBlockUID>
585 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
586 <processStepNumber>4</processStepNumber>
587 </edge>
588 <edge>
589 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
590 <toExecutableBlockUID>F1</toExecutableBlockUID>
591 <processStepNumber>3</processStepNumber>
592 </edge>
593 <edge>
594 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
595 <toExecutableBlockUID>Gc</toExecutableBlockUID>
596 <processStepNumber>3</processStepNumber>
597 </edge>
598 <edge>
599 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
600 <toExecutableBlockUID>G2</toExecutableBlockUID>
601 <processStepNumber>3</processStepNumber>
602 </edge>
603 <edge>
604 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
605 <toExecutableBlockUID>F1</toExecutableBlockUID>
606 <processStepNumber>3</processStepNumber>
607 </edge>
608 <edge>
609 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
610 <toExecutableBlockUID>Gc</toExecutableBlockUID>
611 <processStepNumber>3</processStepNumber>
612 </edge>
613 <edge>
614 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
615 <toExecutableBlockUID>G1</toExecutableBlockUID>
616 <processStepNumber>3</processStepNumber>
617 </edge>
618 </edges>
619 <nodes>
620 <node>
621 <referenceUID>F1</referenceUID>
622 <processStepNumber>3</processStepNumber>
623 <diagonalPosition>4</diagonalPosition>
624 </node>
625 <node>
626 <referenceUID>Optimizer</referenceUID>
627 <processStepNumber>1</processStepNumber>
628 <convergerStepNumber>4</convergerStepNumber>
629 <diagonalPosition>1</diagonalPosition>
630 </node>
631 <node>
632 <referenceUID>G2</referenceUID>
633 <processStepNumber>3</processStepNumber>
634 <diagonalPosition>6</diagonalPosition>
635 </node>
636 <node>
637 <referenceUID>G1</referenceUID>
638 <processStepNumber>3</processStepNumber>
639 <diagonalPosition>5</diagonalPosition>
640 </node>
641 <node>
642 <referenceUID>Coordinator</referenceUID>



A.5. Test Suite 131

643 <processStepNumber>0</processStepNumber>
644 <convergerStepNumber>5</convergerStepNumber>
645 <diagonalPosition>0</diagonalPosition>
646 </node>
647 <node>
648 <referenceUID>Gc</referenceUID>
649 <processStepNumber>3</processStepNumber>
650 <diagonalPosition>7</diagonalPosition>
651 </node>
652 <node>
653 <referenceUID>D2</referenceUID>
654 <processStepNumber>2</processStepNumber>
655 <diagonalPosition>3</diagonalPosition>
656 </node>
657 <node>
658 <referenceUID>D1</referenceUID>
659 <processStepNumber>2</processStepNumber>
660 <diagonalPosition>2</diagonalPosition>
661 </node>
662 </nodes>
663 </processGraph>
664 </workflow>
665 <architectureElements>
666 <parameters>
667 <initialGuessCouplingVariables>
668 <initialGuessCouplingVariable

uID=”/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1”>↪
669 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
670 <label>y1^{c0}</label>
671 </initialGuessCouplingVariable>
672 <initialGuessCouplingVariable

uID=”/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2”>↪
673 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
674 <label>y2^{c0}</label>
675 </initialGuessCouplingVariable>
676 </initialGuessCouplingVariables>
677 <finalCouplingVariables>
678 <finalCouplingVariable

uID=”/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2”>↪
679 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
680 <label>y2^*</label>
681 </finalCouplingVariable>
682 <finalCouplingVariable

uID=”/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1”>↪
683 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
684 <label>y1^*</label>
685 </finalCouplingVariable>
686 </finalCouplingVariables>
687 <couplingCopyVariables>
688 <couplingCopyVariable

uID=”/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1”>↪
689 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
690 <label>y1^c</label>
691 </couplingCopyVariable>
692 <couplingCopyVariable

uID=”/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2”>↪
693 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
694 <label>y2^c</label>
695 </couplingCopyVariable>
696 </couplingCopyVariables>
697 <initialGuessDesignVariables>
698 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1”>↪
699 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
700 <label>x1^0</label>
701 </initialGuessDesignVariable>
702 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1”>↪
703 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
704 <label>z1^0</label>
705 </initialGuessDesignVariable>



132 A. Code

706 <initialGuessDesignVariable
uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2”>↪

707 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
708 <label>z2^0</label>
709 </initialGuessDesignVariable>
710 </initialGuessDesignVariables>
711 <finalDesignVariables>
712 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1”>↪
713 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
714 <label>x1^*</label>
715 </finalDesignVariable>
716 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2”>↪
717 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
718 <label>z2^*</label>
719 </finalDesignVariable>
720 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1”>↪
721 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
722 <label>z1^*</label>
723 </finalDesignVariable>
724 </finalDesignVariables>
725 <finalOutputVariables>
726 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1”>↪
727 <relatedParameterUID>/data_schema/g1</relatedParameterUID>
728 <label>g1^*</label>
729 </finalOutputVariable>
730 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2”>↪
731 <relatedParameterUID>/data_schema/g2</relatedParameterUID>
732 <label>g2^*</label>
733 </finalOutputVariable>
734 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1”>↪
735 <relatedParameterUID>/data_schema/f1</relatedParameterUID>
736 <label>f1^*</label>
737 </finalOutputVariable>
738 </finalOutputVariables>
739 <consistencyConstraintVariables>
740 <consistencyConstraintVariable

uID=”/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y2”>↪
741 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
742 <label>gc_y2</label>
743 </consistencyConstraintVariable>
744 <consistencyConstraintVariable

uID=”/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_y1”>↪
745 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
746 <label>gc_y1</label>
747 </consistencyConstraintVariable>
748 </consistencyConstraintVariables>
749 </parameters>
750 <executableBlocks>
751 <coordinators>
752 <coordinator uID=”Coordinator”>
753 <label>COOR</label>
754 </coordinator>
755 </coordinators>
756 <optimizers>
757 <optimizer uID=”Optimizer”>
758 <label>OPT</label>
759 <designVariables>
760 <designVariable>
761 <designVariableUID>__desVar__/data_schema/x1</designVariableUID>
762 </designVariable>
763 <designVariable>
764 <designVariableUID>__desVar__/data_schema/y2</designVariableUID>
765 </designVariable>
766 <designVariable>
767 <designVariableUID>__desVar__/data_schema/z2</designVariableUID>



A.5. Test Suite 133

768 </designVariable>
769 <designVariable>
770 <designVariableUID>__desVar__/data_schema/z1</designVariableUID>
771 </designVariable>
772 <designVariable>
773 <designVariableUID>__desVar__/data_schema/y1</designVariableUID>
774 </designVariable>
775 </designVariables>
776 <objectiveVariables>
777 <objectiveVariable>
778 <objectiveVariableUID>__objVar__/data_schema/f1</objectiveVariableUID>
779 </objectiveVariable>
780 </objectiveVariables>
781 <constraintVariables>
782 <constraintVariable>
783 <constraintVariableUID>__conVar__/data_schema/g1</constraintVariableUID>
784 </constraintVariable>
785 <constraintVariable>
786 <constraintVariableUID>__conVar__/data_schema/g2</constraintVariableUID>
787 </constraintVariable>
788 </constraintVariables>
789 </optimizer>
790 </optimizers>
791 <consistencyConstraintFunctions>
792 <consistencyConstraintFunction uID=”Gc”>
793 <label>Gc</label>
794 </consistencyConstraintFunction>
795 </consistencyConstraintFunctions>
796 <coupledAnalyses>
797 <coupledAnalysis>
798 <relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
799 </coupledAnalysis>
800 <coupledAnalysis>
801 <relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
802 </coupledAnalysis>
803 </coupledAnalyses>
804 <postCouplingAnalyses>
805 <postCouplingAnalysis>
806 <relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
807 </postCouplingAnalysis>
808 <postCouplingAnalysis>
809 <relatedExecutableBlockUID>G1</relatedExecutableBlockUID>
810 </postCouplingAnalysis>
811 <postCouplingAnalysis>
812 <relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
813 </postCouplingAnalysis>
814 </postCouplingAnalyses>
815 </executableBlocks>
816 </architectureElements>
817 </cmdows>

Code frament A.16: Sellar problem IDF CMDOWS file.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <cmdows xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>↪
3 <header>
4 <creator>D. de Vries</creator>
5 <description>Sellar problem MPG file</description>
6 <timestamp>2017-10-09T11:35:18.577000</timestamp>
7 <fileVersion>0.1</fileVersion>
8 <cmdowsVersion>0.7</cmdowsVersion>
9 <updates>

10 <update>
11 <modification>KADMOS export of a mdao data graph (MDG).</modification>
12 <creator>D. de Vries</creator>
13 <timestamp>2017-10-09T11:35:18.577000</timestamp>
14 <fileVersion>0.1</fileVersion>
15 <cmdowsVersion>0.7</cmdowsVersion>
16 </update>



134 A. Code

17 </updates>
18 </header>
19 <executableBlocks>
20 <designCompetences>
21 <designCompetence uID=”F1”>
22 <ID>F1</ID>
23 <modeID>main</modeID>
24 <instanceID>1</instanceID>
25 <version>1.0</version>
26 <label>F1</label>
27 <inputs>
28 <input>
29 <parameterUID>/data_schema/x1</parameterUID>
30 </input>
31 <input>
32 <parameterUID>/data_schema/y2</parameterUID>
33 </input>
34 <input>
35 <parameterUID>/data_schema/z2</parameterUID>
36 </input>
37 <input>
38 <parameterUID>/data_schema/y1</parameterUID>
39 </input>
40 </inputs>
41 <outputs>
42 <output>
43 <parameterUID>/data_schema/f1</parameterUID>
44 </output>
45 <output>
46 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</parameterUID>↪
47 </output>
48 </outputs>
49 <metadata>
50 <generalInfo>
51 <description>main execution mode</description>
52 </generalInfo>
53 </metadata>
54 </designCompetence>
55 <designCompetence uID=”D2”>
56 <ID>D2</ID>
57 <modeID>main</modeID>
58 <instanceID>1</instanceID>
59 <version>1.0</version>
60 <label>D2</label>
61 <inputs>
62 <input>
63 <parameterUID>/data_schema/z2</parameterUID>
64 </input>
65 <input>
66 <parameterUID>/data_schema/z1</parameterUID>
67 </input>
68 <input>
69 <parameterUID>/data_schema/y1</parameterUID>
70 </input>
71 </inputs>
72 <outputs>
73 <output>
74 <parame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</parameterUID>↪
75 </output>
76 <output>
77 <parameterUID>/data_schema/y2</parameterUID>
78 </output>
79 </outputs>
80 <metadata>
81 <generalInfo>
82 <description>main execution mode</description>
83 </generalInfo>
84 </metadata>
85 </designCompetence>



A.5. Test Suite 135

86 <designCompetence uID=”G2”>
87 <ID>G2</ID>
88 <modeID>main</modeID>
89 <instanceID>1</instanceID>
90 <version>1.0</version>
91 <label>G2</label>
92 <inputs>
93 <input>
94 <parameterUID>/data_schema/y2</parameterUID>
95 </input>
96 </inputs>
97 <outputs>
98 <output>
99 <parameterUID>/data_schema/g2</parameterUID>

100 </output>
101 <output>
102 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</parameterUID>↪
103 </output>
104 </outputs>
105 <metadata>
106 <generalInfo>
107 <description>main execution mode</description>
108 </generalInfo>
109 </metadata>
110 </designCompetence>
111 <designCompetence uID=”G1”>
112 <ID>G1</ID>
113 <modeID>main</modeID>
114 <instanceID>1</instanceID>
115 <version>1.0</version>
116 <label>G1</label>
117 <inputs>
118 <input>
119 <parameterUID>/data_schema/y1</parameterUID>
120 </input>
121 </inputs>
122 <outputs>
123 <output>
124 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</parameterUID>↪
125 </output>
126 <output>
127 <parameterUID>/data_schema/g1</parameterUID>
128 </output>
129 </outputs>
130 <metadata>
131 <generalInfo>
132 <description>main execution mode</description>
133 </generalInfo>
134 </metadata>
135 </designCompetence>
136 <designCompetence uID=”D1”>
137 <ID>D1</ID>
138 <modeID>main</modeID>
139 <instanceID>1</instanceID>
140 <version>1.0</version>
141 <label>D1</label>
142 <inputs>
143 <input>
144 <parameterUID>/data_schema/x1</parameterUID>
145 </input>
146 <input>
147 <parameterUID>/data_schema/z2</parameterUID>
148 </input>
149 <input>
150 <parameterUID>/data_schema/z1</parameterUID>
151 </input>
152 <input>
153 <parame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</parameterUID>↪



136 A. Code

154 </input>
155 </inputs>
156 <outputs>
157 <output>
158 <parameterUID>/data_schema/y1</parameterUID>
159 </output>
160 </outputs>
161 <metadata>
162 <generalInfo>
163 <description>main execution mode</description>
164 </generalInfo>
165 </metadata>
166 </designCompetence>
167 </designCompetences>
168 </executableBlocks>
169 <parameters>
170 <parameter uID=”/data_schema/g1”>
171 <label>g1</label>
172 </parameter>
173 <parameter uID=”/data_schema/g2”>
174 <label>g2</label>
175 </parameter>
176 <parameter uID=”/data_schema/f1”>
177 <label>f1</label>
178 </parameter>
179 <parameter uID=”/data_schema/y1”>
180 <label>y1</label>
181 </parameter>
182 <parameter uID=”/data_schema/y2”>
183 <label>y2</label>
184 </parameter>
185 <parameter uID=”/data_schema/x1”>
186 <label>x1</label>
187 </parameter>
188 <parameter uID=”/data_schema/z2”>
189 <label>z2</label>
190 </parameter>
191 <parameter uID=”/data_schema/z1”>
192 <label>z1</label>
193 </parameter>
194 </parameters>
195 <problemDefinition uID=”MDFGauss-Seidel”>
196 <problemFormulation>
197 <mdaoArchitecture>MDF</mdaoArchitecture>
198 <convergerType>Gauss-Seidel</convergerType>
199 <executableBlocksOrder>
200 <executableBlock position=”1”>D1</executableBlock>
201 <executableBlock position=”2”>D2</executableBlock>
202 <executableBlock position=”3”>F1</executableBlock>
203 <executableBlock position=”4”>G1</executableBlock>
204 <executableBlock position=”5”>G2</executableBlock>
205 </executableBlocksOrder>
206 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
207 </problemFormulation>
208 <problemRoles>
209 <parameters>
210 <designVariables>
211 <designVariable uID=”__desVar__/data_schema/x1”>
212 <parameterUID>/data_schema/x1</parameterUID>
213 <nominalValue>5.0</nominalValue>
214 <validRanges>
215 <limitRange>
216 <minimum>0.0</minimum>
217 <maximum>10.0</maximum>
218 </limitRange>
219 </validRanges>
220 </designVariable>
221 <designVariable uID=”__desVar__/data_schema/z2”>
222 <parameterUID>/data_schema/z2</parameterUID>
223 <nominalValue>5.0</nominalValue>
224 <validRanges>



A.5. Test Suite 137

225 <limitRange>
226 <minimum>0.0</minimum>
227 <maximum>10.0</maximum>
228 </limitRange>
229 </validRanges>
230 </designVariable>
231 <designVariable uID=”__desVar__/data_schema/z1”>
232 <parameterUID>/data_schema/z1</parameterUID>
233 <nominalValue>1.0</nominalValue>
234 <validRanges>
235 <limitRange>
236 <minimum>-10.0</minimum>
237 <maximum>10.0</maximum>
238 </limitRange>
239 </validRanges>
240 </designVariable>
241 </designVariables>
242 <objectiveVariables>
243 <objectiveVariable uID=”__objVar__/data_schema/f1”>
244 <parameterUID>/data_schema/f1</parameterUID>
245 </objectiveVariable>
246 </objectiveVariables>
247 <constraintVariables>
248 <constraintVariable uID=”__conVar__/data_schema/g1”>
249 <parameterUID>/data_schema/g1</parameterUID>
250 <constraintType>inequality</constraintType>
251 <constraintOperator>&lt;=</constraintOperator>
252 <referenceValue>0.0</referenceValue>
253 </constraintVariable>
254 <constraintVariable uID=”__conVar__/data_schema/g2”>
255 <parameterUID>/data_schema/g2</parameterUID>
256 <constraintType>inequality</constraintType>
257 <constraintOperator>&lt;=</constraintOperator>
258 <referenceValue>0.0</referenceValue>
259 </constraintVariable>
260 </constraintVariables>
261 </parameters>
262 <executableBlocks>
263 <coupledBlocks>
264 <coupledBlock>D1</coupledBlock>
265 <coupledBlock>D2</coupledBlock>
266 </coupledBlocks>
267 <postCouplingBlocks>
268 <postCouplingBlock>F1</postCouplingBlock>
269 <postCouplingBlock>G1</postCouplingBlock>
270 <postCouplingBlock>G2</postCouplingBlock>
271 </postCouplingBlocks>
272 </executableBlocks>
273 </problemRoles>
274 </problemDefinition>
275 <workflow>
276 <problemDefinitionUID>MDFGauss-Seidel</problemDefinitionUID>
277 <dataGraph>
278 <name>MDG1</name>
279 <edges>
280 <edge>
281 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</fromParameterUID>↪
282 <toExecutableBlockUID>D1</toExecutableBlockUID>
283 </edge>
284 <edge>
285 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪
286 <toExecutableBlockUID>Converger</toExecutableBlockUID>
287 </edge>
288 <edge>
289 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
290 <toParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</toParameterUID>↪
291 </edge>
292 <edge>



138 A. Code

293 <fromParame-
terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</fromParameterUID>↪

294 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
295 </edge>
296 <edge>
297 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</fromParameterUID>↪
298 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
299 </edge>
300 <edge>
301 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
302 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</toParameterUID>↪
303 </edge>
304 <edge>
305 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
306 <toParameterUID>/data_schema/x1</toParameterUID>
307 </edge>
308 <edge>
309 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
310 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</toParameterUID>↪
311 </edge>
312 <edge>
313 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
314 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</toParameterUID>↪
315 </edge>
316 <edge>
317 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
318 <toParameterUID>/data_schema/z2</toParameterUID>
319 </edge>
320 <edge>
321 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
322 <toParameterUID>/data_schema/z1</toParameterUID>
323 </edge>
324 <edge>
325 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
326 <toParameterUID>/data_schema/g2</toParameterUID>
327 </edge>
328 <edge>
329 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
330 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</toParameterUID>↪
331 </edge>
332 <edge>
333 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
334 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</toParameterUID>↪
335 </edge>
336 <edge>
337 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
338 <toParameterUID>/data_schema/g1</toParameterUID>
339 </edge>
340 <edge>
341 <fromParameterUID>/data_schema/y1</fromParameterUID>
342 <toExecutableBlockUID>F1</toExecutableBlockUID>
343 </edge>
344 <edge>
345 <fromParameterUID>/data_schema/y1</fromParameterUID>
346 <toExecutableBlockUID>D2</toExecutableBlockUID>
347 </edge>
348 <edge>
349 <fromParameterUID>/data_schema/y1</fromParameterUID>
350 <toExecutableBlockUID>G1</toExecutableBlockUID>
351 </edge>
352 <edge>
353 <fromParameterUID>/data_schema/g1</fromParameterUID>
354 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
355 </edge>
356 <edge>



A.5. Test Suite 139

357 <fromParameterUID>/data_schema/g2</fromParameterUID>
358 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
359 </edge>
360 <edge>
361 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</fromParameterUID>↪
362 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
363 </edge>
364 <edge>
365 <fromParameterUID>/data_schema/y2</fromParameterUID>
366 <toExecutableBlockUID>F1</toExecutableBlockUID>
367 </edge>
368 <edge>
369 <fromParameterUID>/data_schema/y2</fromParameterUID>
370 <toExecutableBlockUID>G2</toExecutableBlockUID>
371 </edge>
372 <edge>
373 <fromParameterUID>/data_schema/y2</fromParameterUID>
374 <toExecutableBlockUID>Converger</toExecutableBlockUID>
375 </edge>
376 <edge>
377 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
378 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
379 </edge>
380 <edge>
381 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
382 <toParameterUID>/data_schema/f1</toParameterUID>
383 </edge>
384 <edge>
385 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
386 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</toParameterUID>↪
387 </edge>
388 <edge>
389 <fromParameterUID>/data_schema/x1</fromParameterUID>
390 <toExecutableBlockUID>F1</toExecutableBlockUID>
391 </edge>
392 <edge>
393 <fromParameterUID>/data_schema/x1</fromParameterUID>
394 <toExecutableBlockUID>D1</toExecutableBlockUID>
395 </edge>
396 <edge>
397 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</fromParameterUID>↪
398 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
399 </edge>
400 <edge>
401 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
402 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
403 </edge>
404 <edge>
405 <fromParameterUID>/data_schema/z2</fromParameterUID>
406 <toExecutableBlockUID>F1</toExecutableBlockUID>
407 </edge>
408 <edge>
409 <fromParameterUID>/data_schema/z2</fromParameterUID>
410 <toExecutableBlockUID>D2</toExecutableBlockUID>
411 </edge>
412 <edge>
413 <fromParameterUID>/data_schema/z2</fromParameterUID>
414 <toExecutableBlockUID>D1</toExecutableBlockUID>
415 </edge>
416 <edge>
417 <fromParameterUID>/data_schema/z1</fromParameterUID>
418 <toExecutableBlockUID>D2</toExecutableBlockUID>
419 </edge>
420 <edge>
421 <fromParameterUID>/data_schema/z1</fromParameterUID>
422 <toExecutableBlockUID>D1</toExecutableBlockUID>



140 A. Code

423 </edge>
424 <edge>
425 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
426 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</toParameterUID>↪
427 </edge>
428 <edge>
429 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
430 <toParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
431 </edge>
432 <edge>
433 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
434 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</toParameterUID>↪
435 </edge>
436 <edge>
437 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
438 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</toParameterUID>↪
439 </edge>
440 <edge>
441 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
442 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
443 </edge>
444 <edge>
445 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
446 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
447 </edge>
448 <edge>
449 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</fromParameterUID>↪
450 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
451 </edge>
452 <edge>
453 <fromParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪
454 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
455 </edge>
456 <edge>
457 <fromParameterUID>/data_schema/f1</fromParameterUID>
458 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
459 </edge>
460 <edge>
461 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
462 <toParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
463 </edge>
464 <edge>
465 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
466 <toParameterUID>/data_schema/y2</toParameterUID>
467 </edge>
468 <edge>
469 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
470 <toParameterUID>/data_schema/y1</toParameterUID>
471 </edge>
472 </edges>
473 </dataGraph>
474 <processGraph>
475 <name>MPG1</name>
476 <edges>
477 <edge>
478 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
479 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
480 <processStepNumber>7</processStepNumber>
481 </edge>
482 <edge>
483 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
484 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>



A.5. Test Suite 141

485 <processStepNumber>8</processStepNumber>
486 </edge>
487 <edge>
488 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
489 <toExecutableBlockUID>Converger</toExecutableBlockUID>
490 <processStepNumber>2</processStepNumber>
491 </edge>
492 <edge>
493 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
494 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
495 <processStepNumber>7</processStepNumber>
496 </edge>
497 <edge>
498 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
499 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
500 <processStepNumber>7</processStepNumber>
501 </edge>
502 <edge>
503 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
504 <toExecutableBlockUID>F1</toExecutableBlockUID>
505 <processStepNumber>6</processStepNumber>
506 </edge>
507 <edge>
508 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
509 <toExecutableBlockUID>G2</toExecutableBlockUID>
510 <processStepNumber>6</processStepNumber>
511 </edge>
512 <edge>
513 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
514 <toExecutableBlockUID>G1</toExecutableBlockUID>
515 <processStepNumber>6</processStepNumber>
516 </edge>
517 <edge>
518 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
519 <toExecutableBlockUID>D1</toExecutableBlockUID>
520 <processStepNumber>3</processStepNumber>
521 </edge>
522 <edge>
523 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
524 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
525 <processStepNumber>1</processStepNumber>
526 </edge>
527 <edge>
528 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
529 <toExecutableBlockUID>Converger</toExecutableBlockUID>
530 <processStepNumber>5</processStepNumber>
531 </edge>
532 <edge>
533 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
534 <toExecutableBlockUID>D2</toExecutableBlockUID>
535 <processStepNumber>4</processStepNumber>
536 </edge>
537 </edges>
538 <nodes>
539 <node>
540 <referenceUID>F1</referenceUID>
541 <processStepNumber>6</processStepNumber>
542 <diagonalPosition>5</diagonalPosition>
543 </node>
544 <node>
545 <referenceUID>Optimizer</referenceUID>
546 <processStepNumber>1</processStepNumber>
547 <convergerStepNumber>7</convergerStepNumber>
548 <diagonalPosition>1</diagonalPosition>
549 </node>
550 <node>
551 <referenceUID>G2</referenceUID>
552 <processStepNumber>6</processStepNumber>
553 <diagonalPosition>7</diagonalPosition>
554 </node>
555 <node>



142 A. Code

556 <referenceUID>G1</referenceUID>
557 <processStepNumber>6</processStepNumber>
558 <diagonalPosition>6</diagonalPosition>
559 </node>
560 <node>
561 <referenceUID>Converger</referenceUID>
562 <processStepNumber>2</processStepNumber>
563 <convergerStepNumber>5</convergerStepNumber>
564 <diagonalPosition>2</diagonalPosition>
565 </node>
566 <node>
567 <referenceUID>Coordinator</referenceUID>
568 <processStepNumber>0</processStepNumber>
569 <convergerStepNumber>8</convergerStepNumber>
570 <diagonalPosition>0</diagonalPosition>
571 </node>
572 <node>
573 <referenceUID>D2</referenceUID>
574 <processStepNumber>4</processStepNumber>
575 <diagonalPosition>4</diagonalPosition>
576 </node>
577 <node>
578 <referenceUID>D1</referenceUID>
579 <processStepNumber>3</processStepNumber>
580 <diagonalPosition>3</diagonalPosition>
581 </node>
582 </nodes>
583 <metadata>
584 <loopNesting>
585 <loopElements>
586 <loopElement relatedUID=”Optimizer”>
587 <loopElements>
588 <loopElement relatedUID=”Converger”>
589 <functionElements>
590 <functionElement>D2</functionElement>
591 <functionElement>D1</functionElement>
592 </functionElements>
593 </loopElement>
594 </loopElements>
595 <functionElements>
596 <functionElement>F1</functionElement>
597 <functionElement>G2</functionElement>
598 <functionElement>G1</functionElement>
599 </functionElements>
600 </loopElement>
601 </loopElements>
602 </loopNesting>
603 </metadata>
604 </processGraph>
605 </workflow>
606 <architectureElements>
607 <parameters>
608 <initialGuessCouplingVariables>
609 <initialGuessCouplingVariable

uID=”/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2”>↪
610 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
611 <label>y2^{c0}</label>
612 </initialGuessCouplingVariable>
613 </initialGuessCouplingVariables>
614 <finalCouplingVariables>
615 <finalCouplingVariable

uID=”/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2”>↪
616 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
617 <label>y2^*</label>
618 </finalCouplingVariable>
619 </finalCouplingVariables>
620 <couplingCopyVariables>
621 <couplingCopyVariable

uID=”/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2”>↪
622 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
623 <label>y2^c</label>



A.5. Test Suite 143

624 </couplingCopyVariable>
625 </couplingCopyVariables>
626 <initialGuessDesignVariables>
627 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1”>↪
628 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
629 <label>x1^0</label>
630 </initialGuessDesignVariable>
631 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1”>↪
632 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
633 <label>z1^0</label>
634 </initialGuessDesignVariable>
635 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2”>↪
636 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
637 <label>z2^0</label>
638 </initialGuessDesignVariable>
639 </initialGuessDesignVariables>
640 <finalDesignVariables>
641 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1”>↪
642 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
643 <label>x1^*</label>
644 </finalDesignVariable>
645 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2”>↪
646 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
647 <label>z2^*</label>
648 </finalDesignVariable>
649 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1”>↪
650 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
651 <label>z1^*</label>
652 </finalDesignVariable>
653 </finalDesignVariables>
654 <finalOutputVariables>
655 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1”>↪
656 <relatedParameterUID>/data_schema/g1</relatedParameterUID>
657 <label>g1^*</label>
658 </finalOutputVariable>
659 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2”>↪
660 <relatedParameterUID>/data_schema/g2</relatedParameterUID>
661 <label>g2^*</label>
662 </finalOutputVariable>
663 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1”>↪
664 <relatedParameterUID>/data_schema/f1</relatedParameterUID>
665 <label>f1^*</label>
666 </finalOutputVariable>
667 </finalOutputVariables>
668 </parameters>
669 <executableBlocks>
670 <coordinators>
671 <coordinator uID=”Coordinator”>
672 <label>COOR</label>
673 </coordinator>
674 </coordinators>
675 <optimizers>
676 <optimizer uID=”Optimizer”>
677 <label>OPT</label>
678 <designVariables>
679 <designVariable>
680 <designVariableUID>__desVar__/data_schema/x1</designVariableUID>
681 </designVariable>
682 <designVariable>
683 <designVariableUID>__desVar__/data_schema/z2</designVariableUID>
684 </designVariable>
685 <designVariable>



144 A. Code

686 <designVariableUID>__desVar__/data_schema/z1</designVariableUID>
687 </designVariable>
688 </designVariables>
689 <objectiveVariables>
690 <objectiveVariable>
691 <objectiveVariableUID>__objVar__/data_schema/f1</objectiveVariableUID>
692 </objectiveVariable>
693 </objectiveVariables>
694 <constraintVariables>
695 <constraintVariable>
696 <constraintVariableUID>__conVar__/data_schema/g1</constraintVariableUID>
697 </constraintVariable>
698 <constraintVariable>
699 <constraintVariableUID>__conVar__/data_schema/g2</constraintVariableUID>
700 </constraintVariable>
701 </constraintVariables>
702 </optimizer>
703 </optimizers>
704 <convergers>
705 <converger uID=”Converger”>
706 <label>CONV</label>
707 </converger>
708 </convergers>
709 <coupledAnalyses>
710 <coupledAnalysis>
711 <relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
712 </coupledAnalysis>
713 <coupledAnalysis>
714 <relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
715 </coupledAnalysis>
716 </coupledAnalyses>
717 <postCouplingAnalyses>
718 <postCouplingAnalysis>
719 <relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
720 </postCouplingAnalysis>
721 <postCouplingAnalysis>
722 <relatedExecutableBlockUID>G1</relatedExecutableBlockUID>
723 </postCouplingAnalysis>
724 <postCouplingAnalysis>
725 <relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
726 </postCouplingAnalysis>
727 </postCouplingAnalyses>
728 </executableBlocks>
729 </architectureElements>
730 </cmdows>

Code frament A.17: Sellar problem MDF-GS CMDOWS file.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <cmdows xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>↪
3 <header>
4 <creator>D. de Vries</creator>
5 <description>Sellar problem MPG file</description>
6 <timestamp>2017-10-09T11:34:39.674000</timestamp>
7 <fileVersion>0.1</fileVersion>
8 <cmdowsVersion>0.7</cmdowsVersion>
9 <updates>

10 <update>
11 <modification>KADMOS export of a mdao data graph (MDG).</modification>
12 <creator>D. de Vries</creator>
13 <timestamp>2017-10-09T11:34:39.674000</timestamp>
14 <fileVersion>0.1</fileVersion>
15 <cmdowsVersion>0.7</cmdowsVersion>
16 </update>
17 </updates>
18 </header>
19 <executableBlocks>
20 <designCompetences>
21 <designCompetence uID=”F1”>



A.5. Test Suite 145

22 <ID>F1</ID>
23 <modeID>main</modeID>
24 <instanceID>1</instanceID>
25 <version>1.0</version>
26 <label>F1</label>
27 <inputs>
28 <input>
29 <parameterUID>/data_schema/x1</parameterUID>
30 </input>
31 <input>
32 <parameterUID>/data_schema/y2</parameterUID>
33 </input>
34 <input>
35 <parameterUID>/data_schema/z2</parameterUID>
36 </input>
37 <input>
38 <parameterUID>/data_schema/y1</parameterUID>
39 </input>
40 </inputs>
41 <outputs>
42 <output>
43 <parameterUID>/data_schema/f1</parameterUID>
44 </output>
45 <output>
46 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</parameterUID>↪
47 </output>
48 </outputs>
49 <metadata>
50 <generalInfo>
51 <description>main execution mode</description>
52 </generalInfo>
53 </metadata>
54 </designCompetence>
55 <designCompetence uID=”D2”>
56 <ID>D2</ID>
57 <modeID>main</modeID>
58 <instanceID>1</instanceID>
59 <version>1.0</version>
60 <label>D2</label>
61 <inputs>
62 <input>
63 <parame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</parameterUID>↪
64 </input>
65 <input>
66 <parameterUID>/data_schema/z2</parameterUID>
67 </input>
68 <input>
69 <parameterUID>/data_schema/z1</parameterUID>
70 </input>
71 </inputs>
72 <outputs>
73 <output>
74 <parame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</parameterUID>↪
75 </output>
76 <output>
77 <parameterUID>/data_schema/y2</parameterUID>
78 </output>
79 </outputs>
80 <metadata>
81 <generalInfo>
82 <description>main execution mode</description>
83 </generalInfo>
84 </metadata>
85 </designCompetence>
86 <designCompetence uID=”G2”>
87 <ID>G2</ID>
88 <modeID>main</modeID>
89 <instanceID>1</instanceID>



146 A. Code

90 <version>1.0</version>
91 <label>G2</label>
92 <inputs>
93 <input>
94 <parameterUID>/data_schema/y2</parameterUID>
95 </input>
96 </inputs>
97 <outputs>
98 <output>
99 <parameterUID>/data_schema/g2</parameterUID>

100 </output>
101 <output>
102 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</parameterUID>↪
103 </output>
104 </outputs>
105 <metadata>
106 <generalInfo>
107 <description>main execution mode</description>
108 </generalInfo>
109 </metadata>
110 </designCompetence>
111 <designCompetence uID=”G1”>
112 <ID>G1</ID>
113 <modeID>main</modeID>
114 <instanceID>1</instanceID>
115 <version>1.0</version>
116 <label>G1</label>
117 <inputs>
118 <input>
119 <parameterUID>/data_schema/y1</parameterUID>
120 </input>
121 </inputs>
122 <outputs>
123 <output>
124 <parame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</parameterUID>↪
125 </output>
126 <output>
127 <parameterUID>/data_schema/g1</parameterUID>
128 </output>
129 </outputs>
130 <metadata>
131 <generalInfo>
132 <description>main execution mode</description>
133 </generalInfo>
134 </metadata>
135 </designCompetence>
136 <designCompetence uID=”D1”>
137 <ID>D1</ID>
138 <modeID>main</modeID>
139 <instanceID>1</instanceID>
140 <version>1.0</version>
141 <label>D1</label>
142 <inputs>
143 <input>
144 <parameterUID>/data_schema/x1</parameterUID>
145 </input>
146 <input>
147 <parameterUID>/data_schema/z2</parameterUID>
148 </input>
149 <input>
150 <parameterUID>/data_schema/z1</parameterUID>
151 </input>
152 <input>
153 <parame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</parameterUID>↪
154 </input>
155 </inputs>
156 <outputs>
157 <output>



A.5. Test Suite 147

158 <parame-
terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</parameterUID>↪

159 </output>
160 <output>
161 <parameterUID>/data_schema/y1</parameterUID>
162 </output>
163 </outputs>
164 <metadata>
165 <generalInfo>
166 <description>main execution mode</description>
167 </generalInfo>
168 </metadata>
169 </designCompetence>
170 </designCompetences>
171 </executableBlocks>
172 <parameters>
173 <parameter uID=”/data_schema/g1”>
174 <label>g1</label>
175 </parameter>
176 <parameter uID=”/data_schema/g2”>
177 <label>g2</label>
178 </parameter>
179 <parameter uID=”/data_schema/f1”>
180 <label>f1</label>
181 </parameter>
182 <parameter uID=”/data_schema/y2”>
183 <label>y2</label>
184 </parameter>
185 <parameter uID=”/data_schema/y1”>
186 <label>y1</label>
187 </parameter>
188 <parameter uID=”/data_schema/x1”>
189 <label>x1</label>
190 </parameter>
191 <parameter uID=”/data_schema/z2”>
192 <label>z2</label>
193 </parameter>
194 <parameter uID=”/data_schema/z1”>
195 <label>z1</label>
196 </parameter>
197 </parameters>
198 <problemDefinition uID=”MDFJacobi”>
199 <problemFormulation>
200 <mdaoArchitecture>MDF</mdaoArchitecture>
201 <convergerType>Jacobi</convergerType>
202 <executableBlocksOrder>
203 <executableBlock position=”1”>D1</executableBlock>
204 <executableBlock position=”2”>D2</executableBlock>
205 <executableBlock position=”3”>F1</executableBlock>
206 <executableBlock position=”4”>G1</executableBlock>
207 <executableBlock position=”5”>G2</executableBlock>
208 </executableBlocksOrder>
209 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
210 </problemFormulation>
211 <problemRoles>
212 <parameters>
213 <designVariables>
214 <designVariable uID=”__desVar__/data_schema/x1”>
215 <parameterUID>/data_schema/x1</parameterUID>
216 <nominalValue>5.0</nominalValue>
217 <validRanges>
218 <limitRange>
219 <minimum>0.0</minimum>
220 <maximum>10.0</maximum>
221 </limitRange>
222 </validRanges>
223 </designVariable>
224 <designVariable uID=”__desVar__/data_schema/z2”>
225 <parameterUID>/data_schema/z2</parameterUID>
226 <nominalValue>5.0</nominalValue>
227 <validRanges>



148 A. Code

228 <limitRange>
229 <minimum>0.0</minimum>
230 <maximum>10.0</maximum>
231 </limitRange>
232 </validRanges>
233 </designVariable>
234 <designVariable uID=”__desVar__/data_schema/z1”>
235 <parameterUID>/data_schema/z1</parameterUID>
236 <nominalValue>1.0</nominalValue>
237 <validRanges>
238 <limitRange>
239 <minimum>-10.0</minimum>
240 <maximum>10.0</maximum>
241 </limitRange>
242 </validRanges>
243 </designVariable>
244 </designVariables>
245 <objectiveVariables>
246 <objectiveVariable uID=”__objVar__/data_schema/f1”>
247 <parameterUID>/data_schema/f1</parameterUID>
248 </objectiveVariable>
249 </objectiveVariables>
250 <constraintVariables>
251 <constraintVariable uID=”__conVar__/data_schema/g1”>
252 <parameterUID>/data_schema/g1</parameterUID>
253 <constraintType>inequality</constraintType>
254 <constraintOperator>&lt;=</constraintOperator>
255 <referenceValue>0.0</referenceValue>
256 </constraintVariable>
257 <constraintVariable uID=”__conVar__/data_schema/g2”>
258 <parameterUID>/data_schema/g2</parameterUID>
259 <constraintType>inequality</constraintType>
260 <constraintOperator>&lt;=</constraintOperator>
261 <referenceValue>0.0</referenceValue>
262 </constraintVariable>
263 </constraintVariables>
264 </parameters>
265 <executableBlocks>
266 <coupledBlocks>
267 <coupledBlock>D1</coupledBlock>
268 <coupledBlock>D2</coupledBlock>
269 </coupledBlocks>
270 <postCouplingBlocks>
271 <postCouplingBlock>F1</postCouplingBlock>
272 <postCouplingBlock>G1</postCouplingBlock>
273 <postCouplingBlock>G2</postCouplingBlock>
274 </postCouplingBlocks>
275 </executableBlocks>
276 </problemRoles>
277 </problemDefinition>
278 <workflow>
279 <problemDefinitionUID>MDFJacobi</problemDefinitionUID>
280 <dataGraph>
281 <name>MDG1</name>
282 <edges>
283 <edge>
284 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</fromParameterUID>↪
285 <toExecutableBlockUID>D2</toExecutableBlockUID>
286 </edge>
287 <edge>
288 <fromParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</fromParameterUID>↪
289 <toExecutableBlockUID>D1</toExecutableBlockUID>
290 </edge>
291 <edge>
292 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1</fromParameterUID>↪
293 <toExecutableBlockUID>Converger</toExecutableBlockUID>
294 </edge>
295 <edge>



A.5. Test Suite 149

296 <fromParame-
terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪

297 <toExecutableBlockUID>Converger</toExecutableBlockUID>
298 </edge>
299 <edge>
300 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
301 <toParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1</toParameterUID>↪
302 </edge>
303 <edge>
304 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
305 <toParame-

terUID>/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2</toParameterUID>↪
306 </edge>
307 <edge>
308 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</fromParameterUID>↪
309 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
310 </edge>
311 <edge>
312 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</fromParameterUID>↪
313 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
314 </edge>
315 <edge>
316 <fromParameterUID>/data_schema/y2</fromParameterUID>
317 <toExecutableBlockUID>F1</toExecutableBlockUID>
318 </edge>
319 <edge>
320 <fromParameterUID>/data_schema/y2</fromParameterUID>
321 <toExecutableBlockUID>G2</toExecutableBlockUID>
322 </edge>
323 <edge>
324 <fromParameterUID>/data_schema/y2</fromParameterUID>
325 <toExecutableBlockUID>Converger</toExecutableBlockUID>
326 </edge>
327 <edge>
328 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
329 <toParameterUID>/data_schema/g2</toParameterUID>
330 </edge>
331 <edge>
332 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
333 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2</toParameterUID>↪
334 </edge>
335 <edge>
336 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
337 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1</toParameterUID>↪
338 </edge>
339 <edge>
340 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
341 <toParameterUID>/data_schema/g1</toParameterUID>
342 </edge>
343 <edge>
344 <fromParameterUID>/data_schema/y1</fromParameterUID>
345 <toExecutableBlockUID>F1</toExecutableBlockUID>
346 </edge>
347 <edge>
348 <fromParameterUID>/data_schema/y1</fromParameterUID>
349 <toExecutableBlockUID>G1</toExecutableBlockUID>
350 </edge>
351 <edge>
352 <fromParameterUID>/data_schema/y1</fromParameterUID>
353 <toExecutableBlockUID>Converger</toExecutableBlockUID>
354 </edge>
355 <edge>
356 <fromParameterUID>/data_schema/g1</fromParameterUID>
357 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
358 </edge>
359 <edge>



150 A. Code

360 <fromParameterUID>/data_schema/g2</fromParameterUID>
361 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
362 </edge>
363 <edge>
364 <fromParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</fromParameterUID>↪
365 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
366 </edge>
367 <edge>
368 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
369 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</toParameterUID>↪
370 </edge>
371 <edge>
372 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
373 <toParameterUID>/data_schema/x1</toParameterUID>
374 </edge>
375 <edge>
376 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
377 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</toParameterUID>↪
378 </edge>
379 <edge>
380 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
381 <toParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</toParameterUID>↪
382 </edge>
383 <edge>
384 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
385 <toParameterUID>/data_schema/z2</toParameterUID>
386 </edge>
387 <edge>
388 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
389 <toParameterUID>/data_schema/z1</toParameterUID>
390 </edge>
391 <edge>
392 <fromParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</fromParameterUID>↪
393 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
394 </edge>
395 <edge>
396 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
397 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
398 </edge>
399 <edge>
400 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
401 <toParameterUID>/data_schema/f1</toParameterUID>
402 </edge>
403 <edge>
404 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
405 <toParame-

terUID>/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1</toParameterUID>↪
406 </edge>
407 <edge>
408 <fromParameterUID>/data_schema/x1</fromParameterUID>
409 <toExecutableBlockUID>F1</toExecutableBlockUID>
410 </edge>
411 <edge>
412 <fromParameterUID>/data_schema/x1</fromParameterUID>
413 <toExecutableBlockUID>D1</toExecutableBlockUID>
414 </edge>
415 <edge>
416 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2</fromParameterUID>↪
417 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
418 </edge>
419 <edge>
420 <fromParame-

terUID>/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
421 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>



A.5. Test Suite 151

422 </edge>
423 <edge>
424 <fromParameterUID>/data_schema/z2</fromParameterUID>
425 <toExecutableBlockUID>F1</toExecutableBlockUID>
426 </edge>
427 <edge>
428 <fromParameterUID>/data_schema/z2</fromParameterUID>
429 <toExecutableBlockUID>D2</toExecutableBlockUID>
430 </edge>
431 <edge>
432 <fromParameterUID>/data_schema/z2</fromParameterUID>
433 <toExecutableBlockUID>D1</toExecutableBlockUID>
434 </edge>
435 <edge>
436 <fromParameterUID>/data_schema/z1</fromParameterUID>
437 <toExecutableBlockUID>D2</toExecutableBlockUID>
438 </edge>
439 <edge>
440 <fromParameterUID>/data_schema/z1</fromParameterUID>
441 <toExecutableBlockUID>D1</toExecutableBlockUID>
442 </edge>
443 <edge>
444 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
445 <toParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1</toParameterUID>↪
446 </edge>
447 <edge>
448 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
449 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</toParameterUID>↪
450 </edge>
451 <edge>
452 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
453 <toParame-

terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
454 </edge>
455 <edge>
456 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
457 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</toParameterUID>↪
458 </edge>
459 <edge>
460 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
461 <toParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</toParameterUID>↪
462 </edge>
463 <edge>
464 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1</fromParameterUID>↪
465 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
466 </edge>
467 <edge>
468 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1</fromParameterUID>↪
469 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
470 </edge>
471 <edge>
472 <fromParame-

terUID>/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2</fromParameterUID>↪
473 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
474 </edge>
475 <edge>
476 <fromParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</fromParameterUID>↪
477 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
478 </edge>
479 <edge>
480 <fromParameterUID>/data_schema/f1</fromParameterUID>
481 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
482 </edge>
483 <edge>



152 A. Code

484 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
485 <toParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2</toParameterUID>↪
486 </edge>
487 <edge>
488 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
489 <toParameterUID>/data_schema/y2</toParameterUID>
490 </edge>
491 <edge>
492 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
493 <toParame-

terUID>/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1</toParameterUID>↪
494 </edge>
495 <edge>
496 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
497 <toParameterUID>/data_schema/y1</toParameterUID>
498 </edge>
499 </edges>
500 </dataGraph>
501 <processGraph>
502 <name>MPG1</name>
503 <edges>
504 <edge>
505 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
506 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
507 <processStepNumber>6</processStepNumber>
508 </edge>
509 <edge>
510 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
511 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
512 <processStepNumber>7</processStepNumber>
513 </edge>
514 <edge>
515 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
516 <toExecutableBlockUID>Converger</toExecutableBlockUID>
517 <processStepNumber>2</processStepNumber>
518 </edge>
519 <edge>
520 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
521 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
522 <processStepNumber>6</processStepNumber>
523 </edge>
524 <edge>
525 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
526 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
527 <processStepNumber>6</processStepNumber>
528 </edge>
529 <edge>
530 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
531 <toExecutableBlockUID>F1</toExecutableBlockUID>
532 <processStepNumber>5</processStepNumber>
533 </edge>
534 <edge>
535 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
536 <toExecutableBlockUID>D2</toExecutableBlockUID>
537 <processStepNumber>3</processStepNumber>
538 </edge>
539 <edge>
540 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
541 <toExecutableBlockUID>G2</toExecutableBlockUID>
542 <processStepNumber>5</processStepNumber>
543 </edge>
544 <edge>
545 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
546 <toExecutableBlockUID>G1</toExecutableBlockUID>
547 <processStepNumber>5</processStepNumber>
548 </edge>
549 <edge>
550 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
551 <toExecutableBlockUID>D1</toExecutableBlockUID>
552 <processStepNumber>3</processStepNumber>



A.5. Test Suite 153

553 </edge>
554 <edge>
555 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
556 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
557 <processStepNumber>1</processStepNumber>
558 </edge>
559 <edge>
560 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
561 <toExecutableBlockUID>Converger</toExecutableBlockUID>
562 <processStepNumber>4</processStepNumber>
563 </edge>
564 <edge>
565 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
566 <toExecutableBlockUID>Converger</toExecutableBlockUID>
567 <processStepNumber>4</processStepNumber>
568 </edge>
569 </edges>
570 <nodes>
571 <node>
572 <referenceUID>F1</referenceUID>
573 <processStepNumber>5</processStepNumber>
574 <diagonalPosition>5</diagonalPosition>
575 </node>
576 <node>
577 <referenceUID>Optimizer</referenceUID>
578 <processStepNumber>1</processStepNumber>
579 <convergerStepNumber>6</convergerStepNumber>
580 <diagonalPosition>1</diagonalPosition>
581 </node>
582 <node>
583 <referenceUID>G2</referenceUID>
584 <processStepNumber>5</processStepNumber>
585 <diagonalPosition>7</diagonalPosition>
586 </node>
587 <node>
588 <referenceUID>G1</referenceUID>
589 <processStepNumber>5</processStepNumber>
590 <diagonalPosition>6</diagonalPosition>
591 </node>
592 <node>
593 <referenceUID>Converger</referenceUID>
594 <processStepNumber>2</processStepNumber>
595 <convergerStepNumber>4</convergerStepNumber>
596 <diagonalPosition>2</diagonalPosition>
597 </node>
598 <node>
599 <referenceUID>Coordinator</referenceUID>
600 <processStepNumber>0</processStepNumber>
601 <convergerStepNumber>7</convergerStepNumber>
602 <diagonalPosition>0</diagonalPosition>
603 </node>
604 <node>
605 <referenceUID>D2</referenceUID>
606 <processStepNumber>3</processStepNumber>
607 <diagonalPosition>4</diagonalPosition>
608 </node>
609 <node>
610 <referenceUID>D1</referenceUID>
611 <processStepNumber>3</processStepNumber>
612 <diagonalPosition>3</diagonalPosition>
613 </node>
614 </nodes>
615 <metadata>
616 <loopNesting>
617 <loopElements>
618 <loopElement relatedUID=”Optimizer”>
619 <loopElements>
620 <loopElement relatedUID=”Converger”>
621 <functionElements>
622 <functionElement>D2</functionElement>
623 <functionElement>D1</functionElement>



154 A. Code

624 </functionElements>
625 </loopElement>
626 </loopElements>
627 <functionElements>
628 <functionElement>F1</functionElement>
629 <functionElement>G2</functionElement>
630 <functionElement>G1</functionElement>
631 </functionElements>
632 </loopElement>
633 </loopElements>
634 </loopNesting>
635 </metadata>
636 </processGraph>
637 </workflow>
638 <architectureElements>
639 <parameters>
640 <initialGuessCouplingVariables>
641 <initialGuessCouplingVariable

uID=”/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y1”>↪
642 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
643 <label>y1^{c0}</label>
644 </initialGuessCouplingVariable>
645 <initialGuessCouplingVariable

uID=”/data_schema/architectureNodes/initialGuessCouplingVariables/data_schemaCopy/y2”>↪
646 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
647 <label>y2^{c0}</label>
648 </initialGuessCouplingVariable>
649 </initialGuessCouplingVariables>
650 <finalCouplingVariables>
651 <finalCouplingVariable

uID=”/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y1”>↪
652 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
653 <label>y1^*</label>
654 </finalCouplingVariable>
655 <finalCouplingVariable

uID=”/data_schema/architectureNodes/finalCouplingVariables/data_schemaCopy/y2”>↪
656 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
657 <label>y2^*</label>
658 </finalCouplingVariable>
659 </finalCouplingVariables>
660 <couplingCopyVariables>
661 <couplingCopyVariable

uID=”/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y1”>↪
662 <relatedParameterUID>/data_schema/y1</relatedParameterUID>
663 <label>y1^c</label>
664 </couplingCopyVariable>
665 <couplingCopyVariable

uID=”/data_schema/architectureNodes/couplingCopyVariables/data_schemaCopy/y2”>↪
666 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
667 <label>y2^c</label>
668 </couplingCopyVariable>
669 </couplingCopyVariables>
670 <initialGuessDesignVariables>
671 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/x1”>↪
672 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
673 <label>x1^0</label>
674 </initialGuessDesignVariable>
675 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z1”>↪
676 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
677 <label>z1^0</label>
678 </initialGuessDesignVariable>
679 <initialGuessDesignVariable

uID=”/data_schema/architectureNodes/initialGuessDesignVariables/data_schemaCopy/z2”>↪
680 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
681 <label>z2^0</label>
682 </initialGuessDesignVariable>
683 </initialGuessDesignVariables>
684 <finalDesignVariables>



A.5. Test Suite 155

685 <finalDesignVariable
uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/x1”>↪

686 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
687 <label>x1^*</label>
688 </finalDesignVariable>
689 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z2”>↪
690 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
691 <label>z2^*</label>
692 </finalDesignVariable>
693 <finalDesignVariable

uID=”/data_schema/architectureNodes/finalDesignVariables/data_schemaCopy/z1”>↪
694 <relatedParameterUID>/data_schema/z1</relatedParameterUID>
695 <label>z1^*</label>
696 </finalDesignVariable>
697 </finalDesignVariables>
698 <finalOutputVariables>
699 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g1”>↪
700 <relatedParameterUID>/data_schema/g1</relatedParameterUID>
701 <label>g1^*</label>
702 </finalOutputVariable>
703 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/g2”>↪
704 <relatedParameterUID>/data_schema/g2</relatedParameterUID>
705 <label>g2^*</label>
706 </finalOutputVariable>
707 <finalOutputVariable

uID=”/data_schema/architectureNodes/finalOutputVariables/data_schemaCopy/f1”>↪
708 <relatedParameterUID>/data_schema/f1</relatedParameterUID>
709 <label>f1^*</label>
710 </finalOutputVariable>
711 </finalOutputVariables>
712 </parameters>
713 <executableBlocks>
714 <coordinators>
715 <coordinator uID=”Coordinator”>
716 <label>COOR</label>
717 </coordinator>
718 </coordinators>
719 <optimizers>
720 <optimizer uID=”Optimizer”>
721 <label>OPT</label>
722 <designVariables>
723 <designVariable>
724 <designVariableUID>__desVar__/data_schema/x1</designVariableUID>
725 </designVariable>
726 <designVariable>
727 <designVariableUID>__desVar__/data_schema/z2</designVariableUID>
728 </designVariable>
729 <designVariable>
730 <designVariableUID>__desVar__/data_schema/z1</designVariableUID>
731 </designVariable>
732 </designVariables>
733 <objectiveVariables>
734 <objectiveVariable>
735 <objectiveVariableUID>__objVar__/data_schema/f1</objectiveVariableUID>
736 </objectiveVariable>
737 </objectiveVariables>
738 <constraintVariables>
739 <constraintVariable>
740 <constraintVariableUID>__conVar__/data_schema/g1</constraintVariableUID>
741 </constraintVariable>
742 <constraintVariable>
743 <constraintVariableUID>__conVar__/data_schema/g2</constraintVariableUID>
744 </constraintVariable>
745 </constraintVariables>
746 </optimizer>
747 </optimizers>
748 <convergers>
749 <converger uID=”Converger”>



156 A. Code

750 <label>CONV</label>
751 </converger>
752 </convergers>
753 <coupledAnalyses>
754 <coupledAnalysis>
755 <relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
756 </coupledAnalysis>
757 <coupledAnalysis>
758 <relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
759 </coupledAnalysis>
760 </coupledAnalyses>
761 <postCouplingAnalyses>
762 <postCouplingAnalysis>
763 <relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
764 </postCouplingAnalysis>
765 <postCouplingAnalysis>
766 <relatedExecutableBlockUID>G1</relatedExecutableBlockUID>
767 </postCouplingAnalysis>
768 <postCouplingAnalysis>
769 <relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
770 </postCouplingAnalysis>
771 </postCouplingAnalyses>
772 </executableBlocks>
773 </architectureElements>
774 </cmdows>

Code frament A.18: Sellar problem MDF-J CMDOWS file.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <data_schema>
3 <x1>5.0</x1>
4 <z1>1.0</z1>
5 <z2>5.0</z2>
6 <architectureNodes>
7 <couplingCopyVariables>
8 <data_schemaCopy>
9 <y1>5.0</y1>

10 <y2>5.0</y2>
11 </data_schemaCopy>
12 </couplingCopyVariables>
13 </architectureNodes>
14 </data_schema>

Code frament A.19: Sellar problem input XML file.

Knowledge Base
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the Sellar D1 discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from lxml import etree



A.5. Test Suite 157

23

24 from openlego.api import AbstractDiscipline
25 from openlego.utils.xml_utils import xml_safe_create_element
26 from openlego.test_suite.test_examples.sellar.kb import root_tag, x_x1, x_y1, x_y2, x_z1, x_z2
27 from openlego.partials.partials import Partials
28

29 import openlego.test_suite.test_examples.sellar.store as store
30

31

32 class D1(AbstractDiscipline):
33

34 @property
35 def creator(self):
36 return u’D. de Vries’
37

38 @property
39 def description(self):
40 return u’First discipline of the Sellar problem’
41

42 @property
43 def supplies_partials(self):
44 return True
45

46 def generate_input_xml(self):
47 root = etree.Element(root_tag)
48 doc = etree.ElementTree(root)
49

50 xml_safe_create_element(doc, x_x1, 0.)
51 xml_safe_create_element(doc, x_z1, 0.)
52 xml_safe_create_element(doc, x_z2, 0.)
53 xml_safe_create_element(doc, x_y2, 0.)
54

55 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
56

57 def generate_output_xml(self):
58 root = etree.Element(root_tag)
59 doc = etree.ElementTree(root)
60

61 xml_safe_create_element(doc, x_y1, 0.)
62

63 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
64

65 def generate_partials_xml(self):
66 partials = Partials()
67 partials.declare_partials(x_y1, [x_x1, x_y2, x_z1, x_z2])
68 return partials.get_string()
69

70 @staticmethod
71 def execute(in_file, out_file):
72 store.count[0] += 1
73 store.sleep()
74 doc = etree.parse(in_file)
75 z1 = float(doc.xpath(x_z1)[0].text)
76 z2 = float(doc.xpath(x_z2)[0].text)
77 x1 = float(doc.xpath(x_x1)[0].text)
78 y2 = float(doc.xpath(x_y2)[0].text)
79

80 y1 = z1**2. + x1 + z2 - .2*y2
81

82 root = etree.Element(root_tag)
83 doc = etree.ElementTree(root)
84 xml_safe_create_element(doc, x_y1, y1)
85 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
86

87 @staticmethod
88 def linearize(in_file, partials_file):
89 doc = etree.parse(in_file)
90 z1 = float(doc.xpath(x_z1)[0].text)
91

92 partials = Partials()
93 partials.declare_partials(x_y1, [x_x1, x_y2, x_z1, x_z2], [1., -.2, 2.*z1, 1.])



158 A. Code

94 partials.write(partials_file)

Code frament A.20: Code of the Sellar D1 Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the Sellar D2 discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from lxml import etree
23

24 from openlego.api import AbstractDiscipline
25 from openlego.utils.xml_utils import xml_safe_create_element
26 from openlego.test_suite.test_examples.sellar.kb import root_tag, x_y1, x_y2, x_z1, x_z2
27 from openlego.partials.partials import Partials
28

29 import openlego.test_suite.test_examples.sellar.store as store
30

31

32 class D2(AbstractDiscipline):
33

34 @property
35 def creator(self):
36 return u’D. de Vries’
37

38 @property
39 def description(self):
40 return u’Second discipline of the Sellar problem’
41

42 @property
43 def supplies_partials(self):
44 return True
45

46 def generate_input_xml(self):
47 root = etree.Element(root_tag)
48 doc = etree.ElementTree(root)
49

50 xml_safe_create_element(doc, x_z1, 0.)
51 xml_safe_create_element(doc, x_z2, 0.)
52 xml_safe_create_element(doc, x_y1, 0.)
53

54 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
55

56 def generate_output_xml(self):
57 root = etree.Element(root_tag)
58 doc = etree.ElementTree(root)
59

60 xml_safe_create_element(doc, x_y2, 0.)
61

62 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
63

64 def generate_partials_xml(self):
65 partials = Partials()
66 partials.declare_partials(x_y2, [x_y1, x_z1, x_z2])



A.5. Test Suite 159

67 return partials.get_string()
68

69 @staticmethod
70 def execute(in_file, out_file):
71 store.count[1] += 1
72 store.sleep()
73 doc = etree.parse(in_file)
74 z1 = float(doc.xpath(x_z1)[0].text)
75 z2 = float(doc.xpath(x_z2)[0].text)
76 y1 = float(doc.xpath(x_y1)[0].text)
77

78 y2 = abs(y1)**.5 + z1 + z2
79

80 root = etree.Element(root_tag)
81 doc = etree.ElementTree(root)
82 xml_safe_create_element(doc, x_y2, y2)
83 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
84

85 @staticmethod
86 def linearize(in_file, partials_file):
87 doc = etree.parse(in_file)
88 y1 = float(doc.xpath(x_y1)[0].text)
89

90 dy2_dy1 = .5 * float(((y1 > 0) - (y1 < 0))) / abs(y1)**.5
91

92 partials = Partials()
93 partials.declare_partials(x_y2, [x_y1, x_z1, x_z2], [dy2_dy1, 1., 1.])
94 partials.write(partials_file)

Code frament A.21: Code of the Sellar D2 Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the Sellar F1 discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from math import exp
23

24 from lxml import etree
25

26 from openlego.api import AbstractDiscipline
27 from openlego.utils.xml_utils import xml_safe_create_element
28 from openlego.test_suite.test_examples.sellar.kb import root_tag, x_x1, x_y1, x_y2, x_z2, x_f1
29 from openlego.partials.partials import Partials
30

31 import openlego.test_suite.test_examples.sellar.store as store
32

33

34 class F1(AbstractDiscipline):
35

36 @property
37 def creator(self):
38 return u’D. de Vries’
39



160 A. Code

40 @property
41 def description(self):
42 return u’Objective function of the Sellar problem’
43

44 @property
45 def supplies_partials(self):
46 return True
47

48 def generate_input_xml(self):
49 root = etree.Element(root_tag)
50 doc = etree.ElementTree(root)
51

52 xml_safe_create_element(doc, x_z2, 0.)
53 xml_safe_create_element(doc, x_x1, 0.)
54 xml_safe_create_element(doc, x_y1, 0.)
55 xml_safe_create_element(doc, x_y2, 0.)
56

57 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
58

59 def generate_output_xml(self):
60 root = etree.Element(root_tag)
61 doc = etree.ElementTree(root)
62

63 xml_safe_create_element(doc, x_f1, 0.)
64

65 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
66

67 def generate_partials_xml(self):
68 partials = Partials()
69 partials.declare_partials(x_f1, [x_x1, x_y1, x_y2, x_z2])
70 return partials.get_string()
71

72 @staticmethod
73 def execute(in_file, out_file):
74 store.count[2] += 1
75 store.sleep()
76 doc = etree.parse(in_file)
77 z2 = float(doc.xpath(x_z2)[0].text)
78 x1 = float(doc.xpath(x_x1)[0].text)
79 y1 = float(doc.xpath(x_y1)[0].text)
80 y2 = float(doc.xpath(x_y2)[0].text)
81

82 f1 = x1**2. + z2 + y1 + exp(-y2)
83

84 root = etree.Element(root_tag)
85 doc = etree.ElementTree(root)
86 xml_safe_create_element(doc, x_f1, f1)
87 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
88

89 @staticmethod
90 def linearize(in_file, partials_file):
91 doc = etree.parse(in_file)
92 x1 = float(doc.xpath(x_x1)[0].text)
93 y2 = float(doc.xpath(x_y2)[0].text)
94

95 partials = Partials()
96 partials.declare_partials(x_f1, [x_x1, x_y1, x_y2, x_z2], [2.*x1, 1., -exp(-y2), 1.])
97 partials.write(partials_file)

Code frament A.22: Code of the Sellar F1 Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9



A.5. Test Suite 161

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the Sellar G1 discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from lxml import etree
23

24 from openlego.api import AbstractDiscipline
25 from openlego.utils.xml_utils import xml_safe_create_element
26 from openlego.test_suite.test_examples.sellar.kb import root_tag, x_y1, x_g1
27 from openlego.partials.partials import Partials
28

29 import openlego.test_suite.test_examples.sellar.store as store
30

31

32 class G1(AbstractDiscipline):
33

34 @property
35 def creator(self):
36 return u’D. de Vries’
37

38 @property
39 def description(self):
40 return u’First constraint function of the Sellar problem’
41

42 @property
43 def supplies_partials(self):
44 return True
45

46 def generate_input_xml(self):
47 root = etree.Element(root_tag)
48 doc = etree.ElementTree(root)
49

50 xml_safe_create_element(doc, x_y1, 0.)
51

52 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
53

54 def generate_output_xml(self):
55 root = etree.Element(root_tag)
56 doc = etree.ElementTree(root)
57

58 xml_safe_create_element(doc, x_g1, 0.)
59

60 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
61

62 def generate_partials_xml(self):
63 partials = Partials()
64 partials.declare_partials(x_g1, x_y1)
65 return partials.get_string()
66

67 @staticmethod
68 def execute(in_file, out_file):
69 store.count[3] += 1
70 store.sleep()
71 doc = etree.parse(in_file)
72 y1 = float(doc.xpath(x_y1)[0].text)
73

74 g1 = 1. - y1/3.16
75

76 root = etree.Element(root_tag)
77 doc = etree.ElementTree(root)
78 xml_safe_create_element(doc, x_g1, g1)
79 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
80



162 A. Code

81 @staticmethod
82 def linearize(in_file, partials_file):
83 partials = Partials()
84 partials.declare_partials(x_g1, x_y1, -1./3.16)
85 partials.write(partials_file)

Code frament A.23: Code of the Sellar G1 Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the Sellar G2 discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from lxml import etree
23

24 from openlego.api import AbstractDiscipline
25 from openlego.utils.xml_utils import xml_safe_create_element
26 from openlego.test_suite.test_examples.sellar.kb import root_tag, x_y2, x_g2
27 from openlego.partials.partials import Partials
28

29 import openlego.test_suite.test_examples.sellar.store as store
30

31

32 class G2(AbstractDiscipline):
33

34 @property
35 def creator(self):
36 return u’D. de Vries’
37

38 @property
39 def description(self):
40 return u’First constraint function of the Sellar problem’
41

42 @property
43 def supplies_partials(self):
44 return True
45

46 def generate_input_xml(self):
47 root = etree.Element(root_tag)
48 doc = etree.ElementTree(root)
49

50 xml_safe_create_element(doc, x_y2, 0.)
51

52 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
53

54 def generate_output_xml(self):
55 root = etree.Element(root_tag)
56 doc = etree.ElementTree(root)
57

58 xml_safe_create_element(doc, x_g2, 0.)
59

60 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
61

62 def generate_partials_xml(self):



A.5. Test Suite 163

63 partials = Partials()
64 partials.declare_partials(x_g2, x_y2)
65 return partials.get_string()
66

67 @staticmethod
68 def execute(in_file, out_file):
69 store.count[4] += 1
70 store.sleep()
71 doc = etree.parse(in_file)
72 y2 = float(doc.xpath(x_y2)[0].text)
73

74 g2 = y2/24. - 1.
75

76 root = etree.Element(root_tag)
77 doc = etree.ElementTree(root)
78 xml_safe_create_element(doc, x_g2, g2)
79 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
80

81 @staticmethod
82 def linearize(in_file, partials_file):
83 partials = Partials()
84 partials.declare_partials(x_g2, x_y2, 1./24.)
85 partials.write(partials_file)

Code frament A.24: Code of the Sellar G2 Python module.

1 <?xml version=”1.0” encoding=”UTF-8” ?>
2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
3

4 <!-- definition of simple elements -->
5 <xs:element name=”x1” type=”xs:decimal”/>
6 <xs:element name=”z1” type=”xs:decimal”/>
7 <xs:element name=”z2” type=”xs:decimal”/>
8 <xs:element name=”y1” type=”xs:decimal”/>
9 <xs:element name=”y2” type=”xs:decimal”/>

10 <xs:element name=”g1” type=”xs:decimal”/>
11 <xs:element name=”g2” type=”xs:decimal”/>
12 <xs:element name=”f1” type=”xs:decimal”/>
13

14 <!-- definition of complex elements -->
15

16 <xs:element name=”data_schema”>
17 <xs:complexType>
18 <xs:all>
19 <xs:element ref=”x1” minOccurs=”0” maxOccurs=”1”/>
20 <xs:element ref=”z1” minOccurs=”0” maxOccurs=”1”/>
21 <xs:element ref=”z2” minOccurs=”0” maxOccurs=”1”/>
22 <xs:element ref=”y1” minOccurs=”0” maxOccurs=”1”/>
23 <xs:element ref=”y2” minOccurs=”0” maxOccurs=”1”/>
24 <xs:element ref=”g1” minOccurs=”0” maxOccurs=”1”/>
25 <xs:element ref=”g2” minOccurs=”0” maxOccurs=”1”/>
26 <xs:element ref=”f1” minOccurs=”0” maxOccurs=”1”/>
27 </xs:all>
28 </xs:complexType>
29 </xs:element>
30

31 </xs:schema>

Code frament A.25: Data schema of the Sellar problem.

A.5.2. Wing Optimization
Test Case

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);



164 A. Code

7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the test case for the wing optimization example problem.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from datetime import datetime
23 import unittest
24 from os import path
25 from shutil import copyfile
26

27 from openmdao.api import Problem, ScipyOptimizer
28 from openmdao.recorders.base_recorder import BaseRecorder
29

30 from openlego.api import LEGOModel
31 from openlego.recorders import NormalizedDesignVarPlotter, ConstraintsPlotter,

SimpleObjectivePlotter↪
32

33

34 class MyRecorder(BaseRecorder):
35 def record_metadata_system(self, object_requesting_recording):
36 pass
37

38 def record_metadata_solver(self, object_requesting_recording):
39 pass
40

41 def record_metadata_driver(self, object_requesting_recording):
42 pass
43

44 def record_iteration_driver_passing_vars(self, object_requesting_recording, desvars,
responses, objectives,↪

45 constraints, sysvars, metadata):
46 super(MyRecorder,

self).record_iteration_driver_passing_vars(object_requesting_recording, desvars,↪
47 responses,

objectives, constraints, sysvars,↪
48 metadata)
49 src = path.abspath(’base.xml’)
50 dst = path.abspath(’base-’ + datetime.now().strftime(’%Y%m%d%H%M%f’) + ’.xml’)
51 copyfile(src, dst)
52

53

54 class TestWingOptimization(unittest.TestCase):
55

56 def test_wing_opt(self):
57 ”””Solve the wing optimization problem.”””
58 # 1. Create a Problem
59 prob = Problem()
60 prob.set_solver_print(0)
61

62 base_path = path.abspath(’base.xml’)
63 copyfile(path.abspath(’input.xml’), base_path)
64

65 # 2. Create the LEGOModel
66 model = prob.model = LEGOModel(’MDG_MDF-GS-full.xml’, # CMDOWS file
67 ’kb’, # Knowledge base
68 ’’, # Output directory
69 base_path) # Output file
70

71 # 3. Create a Driver object
72 driver = prob.driver = ScipyOptimizer()
73 driver.options[’optimizer’] = ’SLSQP’



A.5. Test Suite 165

74 driver.options[’disp’] = True
75 driver.options[’tol’] = 1.0e-2
76 driver.opt_settings = {’disp’: True, ’iprint’: 2, ’ftol’: 1.0e-2}
77

78 # 4. Setup the problem
79 prob.setup()
80

81 from openmdao.api import view_model
82 view_model(prob)
83 model.coupled_group.linear_solver.options[’maxiter’] = 10 # Increase maxiter of the

linear solver↪
84 model.coupled_group.nonlinear_solver.options[’maxiter’] = 1 # Increase maxiter of the

nonlinear solver↪
85 model.coupled_group.linear_solver.options[’rtol’] = 1e-2
86 model.coupled_group.nonlinear_solver.options[’rtol’] = 1e-2
87 model.approx_totals(method=’fd’)
88 prob.final_setup()
89

90 model.initialize_from_xml(’input.xml’)
91 prob.run_model()
92

93 # 5. Attach some Recorders
94 desvar_plotter = NormalizedDesignVarPlotter() # Create a plotter for the design

variables↪
95 desvar_plotter.options[’save_on_close’] = True # Should this plot be saved

automatically?↪
96 desvar_plotter.save_settings[’path’] = ’desvar.png’ # Set the filename of the image

file↪
97

98 convar_plotter = ConstraintsPlotter() # Create a plotter for the constraints
99 convar_plotter.options[’save_on_close’] = True # Should this plot be saved

automatically?↪
100 convar_plotter.save_settings[’path’] = ’convar.png’ # Set the filename of the image

file↪
101

102 objvar_plotter = SimpleObjectivePlotter() # Create a plotter for the objective
103 objvar_plotter.options[’save_on_close’] = True # Should this plot be saved

automatically?↪
104 objvar_plotter.save_settings[’path’] = ’objvar.png’ # Set the filename of the image

file↪
105

106 driver.add_recorder(desvar_plotter) # Attach the design variable plotter
107 driver.add_recorder(convar_plotter) # Attach the constraint variable plotter
108 driver.add_recorder(objvar_plotter) # Attach the objective variable plotter
109

110 # 6. Solve the problem
111 prob.run_driver()
112 prob.cleanup()

Code frament A.26: Code of the wing optimization test Python script.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <cmdows xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>↪
3 <header>
4 <creator>D. de Vries</creator>
5 <description>Wing optimization MPG file</description>
6 <timestamp>2017-11-07T15:13:10.036671</timestamp>
7 <fileVersion>0.1</fileVersion>
8 <cmdowsVersion>0.7</cmdowsVersion>
9 <updates>

10 <update>
11 <modification>KADMOS export of a mdao data graph (MDG).</modification>
12 <creator>D. de Vries</creator>
13 <timestamp>2017-11-07T15:13:10.036671</timestamp>
14 <fileVersion>0.1</fileVersion>
15 <cmdowsVersion>0.7</cmdowsVersion>
16 </update>
17 </updates>
18 </header>



166 A. Code

19 <executableBlocks>
20 <designCompetences>
21 <designCompetence uID=”dLC”>
22 <ID>dLC</ID>
23 <modeID>main</modeID>
24 <instanceID>1</instanceID>
25 <version>1.0</version>
26 <label>dLC</label>
27 <inputs>
28 <input>
29

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_rs</parameterUID>↪
30 </input>
31 <input>
32

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_bs</parameterUID>↪
33 </input>
34 <input>
35

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_ts</parameterUID>↪
36 </input>
37 <input>
38

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts</parameterUID>↪
39 </input>
40 <input>
41

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ts</parameterUID>↪
42 </input>
43 <input>
44

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_bs</parameterUID>↪
45 </input>
46 <input>
47

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_fs</parameterUID>↪
48 </input>
49 <input>
50

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_fs</parameterUID>↪
51 </input>
52 <input>
53

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_bs</parameterUID>↪
54 </input>
55 <input>
56

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_rs</parameterUID>↪
57 </input>
58 <input>
59

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_rs</parameterUID>↪
60 </input>
61 <input>
62

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_fs</parameterUID>↪
63 </input>
64 </inputs>
65 <outputs>
66 <output>
67 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_ts</parameterUID>
68 </output>
69 <output>
70 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_bs</parameterUID>
71 </output>
72 <output>
73 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_rs</parameterUID>
74 </output>
75 <output>
76 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_fs</parameterUID>
77 </output>



A.5. Test Suite 167

78 </outputs>
79 <metadata>
80 <generalInfo>
81 <description>main execution mode</description>
82 </generalInfo>
83 </metadata>
84 </designCompetence>
85 <designCompetence uID=”FWE”>
86 <ID>FWE</ID>
87 <modeID>main</modeID>
88 <instanceID>1</instanceID>
89 <version>1.0</version>
90 <label>FWE</label>
91 <inputs>
92 <input>
93

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_f</parameterUID>↪
94 </input>
95 <input>
96 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</parameterUID>
97 </input>
98 <input>
99 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_other</parameterUID>↪
100 </input>
101 <input>
102

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</parameterUID>↪
103 </input>
104 <input>
105

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</parameterUID>↪
106 </input>
107 <input>
108

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_i</parameterUID>↪
109 </input>
110 <input>
111 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</parameterUID>
112 </input>
113 <input>
114

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_f</parameterUID>↪
115 </input>
116 <input>
117 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_fus</parameterUID>↪
118 </input>
119 <input>
120 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</parameterUID>
121 </input>
122 <input>
123 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed</parameterUID>↪
124 </input>
125 <input>
126 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_res</parameterUID>↪
127 </input>
128 <input>
129

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</parameterUID>↪
130 </input>
131 <input>
132 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</parameterUID>
133 </input>
134 <input>
135 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</parameterUID>
136 </input>
137 <input>
138 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</parameterUID>



168 A. Code

139 </input>
140 <input>
141 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</parameterUID>
142 </input>
143 <input>
144 <parameterUID>/cpacs/toolspecific/dAEDalus/m_wing</parameterUID>
145 </input>
146 <input>
147

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L</parameterUID>↪
148 </input>
149 <input>
150 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n</parameterUID>
151 </input>
152 <input>
153

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_i</parameterUID>↪
154 </input>
155 <input>
156

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</parameterUID>↪
157 </input>
158 <input>
159

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_i</parameterUID>↪
160 </input>
161 <input>
162 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</parameterUID>
163 </input>
164 <input>
165

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</parameterUID>↪
166 </input>
167 </inputs>
168 <outputs>
169 <output>
170 <parameterUID>/cpacs/toolspecific/fuel_weight_estimator/C_L</parameterUID>
171 </output>
172 <output>
173 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MTOW</parameterUID>↪
174 </output>
175 <output>
176 <parameterUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</parameterUID>
177 </output>
178 <output>
179 <parame-

terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</parameterUID>↪
180 </output>
181 </outputs>
182 <metadata>
183 <generalInfo>
184 <description>main execution mode</description>
185 </generalInfo>
186 </metadata>
187 </designCompetence>
188 <designCompetence uID=”ObjectiveFunctions”>
189 <ID>ObjectiveFunctions</ID>
190 <modeID>main</modeID>
191 <instanceID>1</instanceID>
192 <version>1.0</version>
193 <label>ObjectiveFunctions</label>
194 <inputs>
195 <input>
196 <parameterUID>/cpacs/toolspecific/dAEDalus/m_wing</parameterUID>
197 </input>
198 <input>
199 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_wing_init</parameterUID>↪
200 </input>
201 <input>



A.5. Test Suite 169

202 <parameterUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</parameterUID>
203 </input>
204 <input>
205 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_init</parameterUID>↪
206 </input>
207 </inputs>
208 <outputs>
209 <output>
210 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</parameterUID>↪
211 </output>
212 <output>
213 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</parameterUID>↪
214 </output>
215 </outputs>
216 <metadata>
217 <generalInfo>
218 <description>main execution mode</description>
219 </generalInfo>
220 </metadata>
221 </designCompetence>
222 <designCompetence uID=”ConstraintFunctions”>
223 <ID>ConstraintFunctions</ID>
224 <modeID>main</modeID>
225 <instanceID>1</instanceID>
226 <version>1.0</version>
227 <label>ConstraintFunctions</label>
228 <inputs>
229 <input>
230 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_L_buffet</parameterUID>↪
231 </input>
232 <input>
233 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_rs</parameterUID>
234 </input>
235 <input>
236 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS_init</parameterUID>↪
237 </input>
238 <input>
239 <parameterUID>/cpacs/toolspecific/fuel_weight_estimator/C_L</parameterUID>
240 </input>
241 <input>
242 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MTOW</parameterUID>↪
243 </input>
244 <input>
245 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma_yield</parameterUID>↪
246 </input>
247 <input>
248 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_fs</parameterUID>
249 </input>
250 <input>
251 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_bs</parameterUID>
252 </input>
253 <input>
254 <parameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_ts</parameterUID>
255 </input>
256 <input>
257

<parameterUID>/cpacs/vehicles/aircraft/model[@uID=”model”]/reference/area</parameterUID>↪
258 </input>
259 </inputs>
260 <outputs>
261 <output>
262 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_WS</parameterUID>↪
263 </output>



170 A. Code

264 <output>
265 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</parameterUID>↪
266 </output>
267 <output>
268 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</parameterUID>↪
269 </output>
270 <output>
271 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</parameterUID>↪
272 </output>
273 <output>
274 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</parameterUID>↪
275 </output>
276 <output>
277 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</parameterUID>↪
278 </output>
279 <output>
280 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</parameterUID>↪
281 </output>
282 <output>
283 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</parameterUID>↪
284 </output>
285 <output>
286 <parame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</parameterUID>↪
287 </output>
288 <output>
289 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</parameterUID>↪
290 </output>
291 </outputs>
292 <metadata>
293 <generalInfo>
294 <description>main execution mode</description>
295 </generalInfo>
296 </metadata>
297 </designCompetence>
298 <designCompetence uID=”Aeroelastics”>
299 <ID>Aeroelastics</ID>
300 <modeID>main</modeID>
301 <instanceID>1</instanceID>
302 <version>1.0</version>
303 <label>Aeroelastics</label>
304 <inputs>
305 <input>
306 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</parameterUID>
307 </input>
308 <input>
309 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</parameterUID>↪
310 </input>
311 <input>
312 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_wings</parameterUID>↪
313 </input>
314 <input>
315 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</parameterUID>↪
316 </input>
317 <input>
318

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</parameterUID>↪
319 </input>
320 <input>



A.5. Test Suite 171

321

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MLW</parameterUID>↪
322 </input>
323 <input>
324

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</parameterUID>↪
325 </input>
326 <input>
327

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</parameterUID>↪
328 </input>
329 <input>
330 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</parameterUID>
331 </input>
332 <input>
333 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed</parameterUID>↪
334 </input>
335 <input>
336 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_payload</parameterUID>↪
337 </input>
338 <input>
339 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</parameterUID>
340 </input>
341 <input>
342 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</parameterUID>
343 </input>
344 <input>
345 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</parameterUID>
346 </input>
347 <input>
348 <parame-

terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</parameterUID>↪
349 </input>
350 <input>
351 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_skin</parameterUID>↪
352 </input>
353 <input>
354 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</parameterUID>
355 </input>
356 <input>
357

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</parameterUID>↪
358 </input>
359 <input>
360

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</parameterUID>↪
361 </input>
362 <input>
363 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</parameterUID>↪
364 </input>
365 <input>
366 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_sys</parameterUID>↪
367 </input>
368 <input>
369

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</parameterUID>↪
370 </input>
371 <input>
372 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n</parameterUID>
373 </input>
374 <input>
375 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</parameterUID>↪
376 </input>
377 <input>



172 A. Code

378

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</parameterUID>↪
379 </input>
380 <input>
381 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</parameterUID>
382 </input>
383 <input>
384 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho_skin</parameterUID>↪
385 </input>
386 <input>
387

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</parameterUID>↪
388 </input>
389 <input>
390

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</parameterUID>↪
391 </input>
392 <input>
393 <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</parameterUID>
394 </input>
395 </inputs>
396 <outputs>
397 <output>
398

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_ts</parameterUID>↪
399 </output>
400 <output>
401

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_bs</parameterUID>↪
402 </output>
403 <output>
404

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_fs</parameterUID>↪
405 </output>
406 <output>
407

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</parameterUID>↪
408 </output>
409 <output>
410

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_bs</parameterUID>↪
411 </output>
412 <output>
413

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_i</parameterUID>↪
414 </output>
415 <output>
416

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts</parameterUID>↪
417 </output>
418 <output>
419

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_f</parameterUID>↪
420 </output>
421 <output>
422

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L</parameterUID>↪
423 </output>
424 <output>
425

<parameterUID>/cpacs/vehicles/aircraft/model[@uID=”model”]/reference/area</parameterUID>↪
426 </output>
427 <output>
428

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_rs</parameterUID>↪
429 </output>
430 <output>
431

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_fs</parameterUID>↪
432 </output>



A.5. Test Suite 173

433 <output>
434

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_rs</parameterUID>↪
435 </output>
436 <output>
437

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ts</parameterUID>↪
438 </output>
439 <output>
440 <parameterUID>/cpacs/toolspecific/dAEDalus/m_wing</parameterUID>
441 </output>
442 <output>
443

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_i</parameterUID>↪
444 </output>
445 <output>
446

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</parameterUID>↪
447 </output>
448 <output>
449

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_i</parameterUID>↪
450 </output>
451 <output>
452

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_f</parameterUID>↪
453 </output>
454 <output>
455

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</parameterUID>↪
456 </output>
457 <output>
458

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_fs</parameterUID>↪
459 </output>
460 <output>
461

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_bs</parameterUID>↪
462 </output>
463 <output>
464

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_rs</parameterUID>↪
465 </output>
466 </outputs>
467 <metadata>
468 <generalInfo>
469 <description>main execution mode</description>
470 </generalInfo>
471 </metadata>
472 </designCompetence>
473 </designCompetences>
474 </executableBlocks>
475 <parameters>
476 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs”>
477 <label>t_fs</label>
478 </parameter>
479 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_init”>
480 <label>m_fuel_init</label>
481 </parameter>
482 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs”>
483 <label>con_sigma_bs</label>
484 </parameter>
485 <parameter uID=”/cpacs/toolspecific/dAEDalus/load_collector/sigma_bs”>
486 <label>sigma_bs</label>
487 </parameter>
488 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_other”>
489 <label>C_D_other</label>
490 </parameter>
491 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts”>
492 <label>sigma_ts</label>
493 </parameter>



174 A. Code

494 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_res”>
495 <label>m_fuel_res</label>
496 </parameter>
497 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs”>
498 <label>con_sigma_rs</label>
499 </parameter>
500 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_rs”>
501 <label>sigma_rs</label>
502 </parameter>
503 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/sigma_yield”>
504 <label>sigma_yield</label>
505 </parameter>
506 <parameter uID=”/cpacs/toolspecific/dAEDalus/load_collector/sigma_rs”>
507 <label>sigma_rs</label>
508 </parameter>
509 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon”>
510 <label>epsilon</label>
511 </parameter>
512 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L”>
513 <label>C_L</label>
514 </parameter>
515 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_bs”>
516 <label>sigma_bs</label>
517 </parameter>
518 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_bs”>
519 <label>sigma_bs</label>
520 </parameter>
521 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_MLW”>
522 <label>m_MLW</label>
523 </parameter>
524 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ts”>
525 <label>sigma_ts</label>
526 </parameter>
527 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_payload”>
528 <label>m_payload</label>
529 </parameter>
530 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts”>
531 <label>con_sigma_ts</label>
532 </parameter>
533 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L”>
534 <label>C_L</label>
535 </parameter>
536 <parameter uID=”/cpacs/vehicles/aircraft/model[@uID=&quot;model&quot;]/reference/area”>
537 <label>area</label>
538 </parameter>
539 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_rs”>
540 <label>sigma_rs</label>
541 </parameter>
542 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_fs”>
543 <label>sigma_fs</label>
544 </parameter>
545 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/t_skin”>
546 <label>t_skin</label>
547 </parameter>
548 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs”>
549 <label>xsi_fs</label>
550 </parameter>
551 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_i”>
552 <label>C_D_i</label>
553 </parameter>
554 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/C_L_buffet”>
555 <label>C_L_buffet</label>
556 </parameter>
557 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/tc”>
558 <label>tc</label>
559 </parameter>
560 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_wing_init”>
561 <label>m_wing_init</label>
562 </parameter>
563 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_ts”>
564 <label>sigma_ts</label>



A.5. Test Suite 175

565 </parameter>
566 <parameter uID=”/cpacs/toolspecific/fuel_weight_estimator/C_L”>
567 <label>C_L</label>
568 </parameter>
569 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_fs”>
570 <label>sigma_fs</label>
571 </parameter>
572 <parameter uID=”/cpacs/toolspecific/dAEDalus/load_collector/sigma_fs”>
573 <label>sigma_fs</label>
574 </parameter>
575 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_wings”>
576 <label>f_m_wings</label>
577 </parameter>
578 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel”>
579 <label>obj_m_fuel</label>
580 </parameter>
581 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs”>
582 <label>t_bs</label>
583 </parameter>
584 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma”>
585 <label>Gamma</label>
586 </parameter>
587 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_f”>
588 <label>C_D_f</label>
589 </parameter>
590 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_fus”>
591 <label>C_D_fus</label>
592 </parameter>
593 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_MTOW”>
594 <label>m_MTOW</label>
595 </parameter>
596 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/SFC”>
597 <label>SFC</label>
598 </parameter>
599 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_sys”>
600 <label>f_m_sys</label>
601 </parameter>
602 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts”>
603 <label>t_ts</label>
604 </parameter>
605 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_i”>
606 <label>C_D_i</label>
607 </parameter>
608 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f”>
609 <label>C_D_f</label>
610 </parameter>
611 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_i”>
612 <label>C_D_i</label>
613 </parameter>
614 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_f”>
615 <label>C_D_f</label>
616 </parameter>
617 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/WS_init”>
618 <label>WS_init</label>
619 </parameter>
620 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs”>
621 <label>con_sigma_fs</label>
622 </parameter>
623 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS”>
624 <label>con_WS</label>
625 </parameter>
626 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/incidence”>
627 <label>incidence</label>
628 </parameter>
629 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/R”>
630 <label>R</label>
631 </parameter>
632 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs”>
633 <label>xsi_rs</label>
634 </parameter>
635 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L”>



176 A. Code

636 <label>C_L</label>
637 </parameter>
638 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_fs”>
639 <label>sigma_fs</label>
640 </parameter>
641 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_bs”>
642 <label>sigma_bs</label>
643 </parameter>
644 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda”>
645 <label>Lambda</label>
646 </parameter>
647 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs”>
648 <label>t_rs</label>
649 </parameter>
650 <parameter uID=”/cpacs/toolspecific/dAEDalus/load_collector/sigma_ts”>
651 <label>sigma_ts</label>
652 </parameter>
653 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/rho_skin”>
654 <label>rho_skin</label>
655 </parameter>
656 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_rs”>
657 <label>sigma_rs</label>
658 </parameter>
659 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/c”>
660 <label>c</label>
661 </parameter>
662 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/planform/b”>
663 <label>b</label>
664 </parameter>
665 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n”>
666 <label>n</label>
667 </parameter>
668 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H”>
669 <label>H</label>
670 </parameter>
671 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M”>
672 <label>M</label>
673 </parameter>
674 <parameter uID=”/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed”>
675 <label>m_fixed</label>
676 </parameter>
677 <parameter uID=”/cpacs/toolspecific/fuel_weight_estimator/m_fuel”>
678 <label>m_fuel</label>
679 </parameter>
680 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M”>
681 <label>M</label>
682 </parameter>
683 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H”>
684 <label>H</label>
685 </parameter>
686 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H”>
687 <label>H</label>
688 </parameter>
689 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M”>
690 <label>M</label>
691 </parameter>
692 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n”>
693 <label>n</label>
694 </parameter>
695 <parameter uID=”/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n”>
696 <label>n</label>
697 </parameter>
698 <parameter uID=”/cpacs/toolspecific/dAEDalus/m_wing”>
699 <label>m_wing</label>
700 </parameter>
701 </parameters>
702 <problemDefinition uID=”MDFGauss-Seidel”>
703 <problemFormulation>
704 <mdaoArchitecture>MDF</mdaoArchitecture>
705 <convergerType>Gauss-Seidel</convergerType>
706 <executableBlocksOrder>



A.5. Test Suite 177

707 <executableBlock position=”1”>Aeroelastics</executableBlock>
708 <executableBlock position=”2”>FWE</executableBlock>
709 <executableBlock position=”3”>dLC</executableBlock>
710 <executableBlock position=”4”>ConstraintFunctions</executableBlock>
711 <executableBlock position=”5”>ObjectiveFunctions</executableBlock>
712 </executableBlocksOrder>
713 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
714 </problemFormulation>
715 <problemRoles>
716 <parameters>
717 <designVariables>
718 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs”>↪
719

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</parameterUID>↪
720 <nominalValue>
721 <nominalvalue>0.00450588</nominalvalue>
722 <nominalvalue>0.00458215</nominalvalue>
723 </nominalValue>
724 <validRanges>
725 <limitRange>
726 <minimum>
727 <minimum>0.001</minimum>
728 <minimum>0.001</minimum>
729 </minimum>
730 <maximum>
731 <maximum>0.03</maximum>
732 <maximum>0.03</maximum>
733 </maximum>
734 </limitRange>
735 </validRanges>
736 </designVariable>
737 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon”>↪
738 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</parameterUID>↪
739 <nominalValue>
740 <nominalvalue>-0.1039</nominalvalue>
741 <nominalvalue>-0.1826</nominalvalue>
742 </nominalValue>
743 <validRanges>
744 <limitRange>
745 <minimum>
746 <minimum>-0.25</minimum>
747 <minimum>-0.25</minimum>
748 </minimum>
749 <maximum>
750 <maximum>0.25</maximum>
751 <maximum>0.25</maximum>
752 </maximum>
753 </limitRange>
754 </validRanges>
755 </designVariable>
756 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs”>↪
757 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</parameterUID>↪
758 <nominalValue>
759 <nominalvalue>0.1</nominalvalue>
760 <nominalvalue>0.1925</nominalvalue>
761 <nominalvalue>0.35</nominalvalue>
762 </nominalValue>
763 <validRanges>
764 <limitRange>
765 <minimum>
766 <minimum>0.05</minimum>
767 <minimum>0.05</minimum>
768 <minimum>0.05</minimum>
769 </minimum>
770 <maximum>
771 <maximum>0.4</maximum>



178 A. Code

772 <maximum>0.4</maximum>
773 <maximum>0.4</maximum>
774 </maximum>
775 </limitRange>
776 </validRanges>
777 </designVariable>
778 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs”>↪
779

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</parameterUID>↪
780 <nominalValue>
781 <nominalvalue>0.02553329</nominalvalue>
782 <nominalvalue>0.02237119</nominalvalue>
783 </nominalValue>
784 <validRanges>
785 <limitRange>
786 <minimum>
787 <minimum>0.001</minimum>
788 <minimum>0.001</minimum>
789 </minimum>
790 <maximum>
791 <maximum>0.03</maximum>
792 <maximum>0.03</maximum>
793 </maximum>
794 </limitRange>
795 </validRanges>
796 </designVariable>
797 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts”>↪
798

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</parameterUID>↪
799 <nominalValue>
800 <nominalvalue>0.02553329</nominalvalue>
801 <nominalvalue>0.02237119</nominalvalue>
802 </nominalValue>
803 <validRanges>
804 <limitRange>
805 <minimum>
806 <minimum>0.001</minimum>
807 <minimum>0.001</minimum>
808 </minimum>
809 <maximum>
810 <maximum>0.03</maximum>
811 <maximum>0.03</maximum>
812 </maximum>
813 </limitRange>
814 </validRanges>
815 </designVariable>
816 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs”>↪
817 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</parameterUID>↪
818 <nominalValue>
819 <nominalvalue>0.6</nominalvalue>
820 <nominalvalue>0.8023</nominalvalue>
821 <nominalvalue>0.6</nominalvalue>
822 </nominalValue>
823 <validRanges>
824 <limitRange>
825 <minimum>
826 <minimum>0.6</minimum>
827 <minimum>0.6</minimum>
828 <minimum>0.6</minimum>
829 </minimum>
830 <maximum>
831 <maximum>0.9</maximum>
832 <maximum>0.9</maximum>
833 <maximum>0.9</maximum>
834 </maximum>
835 </limitRange>
836 </validRanges>



A.5. Test Suite 179

837 </designVariable>
838 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs”>↪
839

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</parameterUID>↪
840 <nominalValue>
841 <nominalvalue>0.00450611</nominalvalue>
842 <nominalvalue>0.00456957</nominalvalue>
843 </nominalValue>
844 <validRanges>
845 <limitRange>
846 <minimum>
847 <minimum>0.001</minimum>
848 <minimum>0.001</minimum>
849 </minimum>
850 <maximum>
851 <maximum>0.03</maximum>
852 <maximum>0.03</maximum>
853 </maximum>
854 </limitRange>
855 </validRanges>
856 </designVariable>
857 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/c”>↪
858

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</parameterUID>↪
859 <nominalValue>
860 <nominalvalue>13.7131</nominalvalue>
861 <nominalvalue>7.2595</nominalvalue>
862 <nominalvalue>2.7341</nominalvalue>
863 </nominalValue>
864 <validRanges>
865 <limitRange>
866 <minimum>
867 <minimum>1.0</minimum>
868 <minimum>1.0</minimum>
869 <minimum>1.0</minimum>
870 </minimum>
871 <maximum>
872 <maximum>15.0</maximum>
873 <maximum>15.0</maximum>
874 <maximum>15.0</maximum>
875 </maximum>
876 </limitRange>
877 </validRanges>
878 </designVariable>
879 <designVariable

uID=”__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/b”>↪
880

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</parameterUID>↪
881 <nominalValue>
882 <nominalvalue>12.7178</nominalvalue>
883 <nominalvalue>22.7016</nominalvalue>
884 </nominalValue>
885 <validRanges>
886 <limitRange>
887 <minimum>
888 <minimum>5.0</minimum>
889 <minimum>5.0</minimum>
890 </minimum>
891 <maximum>
892 <maximum>25.0</maximum>
893 <maximum>25.0</maximum>
894 </maximum>
895 </limitRange>
896 </validRanges>
897 </designVariable>
898 </designVariables>
899 <objectiveVariables>
900 <objectiveVariable

uID=”__objVar__/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel”>↪



180 A. Code

901 <parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</parameterUID>↪

902 </objectiveVariable>
903 </objectiveVariables>
904 <constraintVariables>
905 <constraintVariable

uID=”__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs”>↪
906 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</parameterUID>↪
907 <constraintType>inequality</constraintType>
908 <constraintOperator>&lt;=</constraintOperator>
909 <referenceValue>0.0</referenceValue>
910 </constraintVariable>
911 <constraintVariable

uID=”__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs”>↪
912 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</parameterUID>↪
913 <constraintType>inequality</constraintType>
914 <constraintOperator>&lt;=</constraintOperator>
915 <referenceValue>0.0</referenceValue>
916 </constraintVariable>
917 <constraintVariable

uID=”__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts”>↪
918 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</parameterUID>↪
919 <constraintType>inequality</constraintType>
920 <constraintOperator>&lt;=</constraintOperator>
921 <referenceValue>0.0</referenceValue>
922 </constraintVariable>
923 <constraintVariable

uID=”__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs”>↪
924 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</parameterUID>↪
925 <constraintType>inequality</constraintType>
926 <constraintOperator>&lt;=</constraintOperator>
927 <referenceValue>0.0</referenceValue>
928 </constraintVariable>
929 <constraintVariable

uID=”__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS”>↪
930 <parame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</parameterUID>↪
931 <constraintType>inequality</constraintType>
932 <constraintOperator>&lt;=</constraintOperator>
933 <referenceValue>0.0</referenceValue>
934 </constraintVariable>
935 </constraintVariables>
936 </parameters>
937 <executableBlocks>
938 <coupledBlocks>
939 <coupledBlock>Aeroelastics</coupledBlock>
940 <coupledBlock>FWE</coupledBlock>
941 </coupledBlocks>
942 <postCouplingBlocks>
943 <postCouplingBlock>dLC</postCouplingBlock>
944 <postCouplingBlock>ConstraintFunctions</postCouplingBlock>
945 <postCouplingBlock>ObjectiveFunctions</postCouplingBlock>
946 </postCouplingBlocks>
947 </executableBlocks>
948 </problemRoles>
949 </problemDefinition>
950 <workflow>
951 <problemDefinitionUID>MDFGauss-Seidel</problemDefinitionUID>
952 <dataGraph>
953 <name>MDG1</name>
954 <edges>
955 <edge>
956 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs</fromParameterUID>↪
957 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
958 </edge>
959 <edge>



A.5. Test Suite 181

960 <fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_init</fromParameterUID>↪

961 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
962 </edge>
963 <edge>
964 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
965 <toParameterUID>/cpacs/toolspecific/fuel_weight_estimator/C_L</toParameterUID>
966 </edge>
967 <edge>
968 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
969 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MTOW</toParameterUID>↪
970 </edge>
971 <edge>
972 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
973 <toParameterUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</toParameterUID>
974 </edge>
975 <edge>
976 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
977 <toParame-

terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</toParameterUID>↪
978 </edge>
979 <edge>
980 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</fromParameterUID>↪
981 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
982 </edge>
983 <edge>
984 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</fromParameterUID>↪
985 <toExecutableBlockUID>FWE</toExecutableBlockUID>
986 </edge>
987 <edge>
988 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</fromParameterUID>↪
989 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
990 </edge>
991 <edge>
992 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_bs</fromParameterUID>↪
993 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
994 </edge>
995 <edge>
996 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_other</fromParameterUID>↪
997 <toExecutableBlockUID>FWE</toExecutableBlockUID>
998 </edge>
999 <edge>

1000 <fromParame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_WS</fromParameterUID>↪

1001 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1002 </edge>
1003 <edge>
1004 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon</fromParameterUID>↪
1005 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1006 </edge>
1007 <edge>
1008 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts</fromParameterUID>↪
1009 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1010 </edge>
1011 <edge>
1012 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</fromParameterUID>↪
1013 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1014 </edge>
1015 <edge>
1016 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</fromParameterUID>↪
1017 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>



182 A. Code

1018 </edge>
1019 <edge>
1020 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</fromParameterUID>↪
1021 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1022 </edge>
1023 <edge>
1024 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</fromParameterUID>↪
1025 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1026 </edge>
1027 <edge>
1028 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts</fromParameterUID>↪
1029 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1030 </edge>
1031 <edge>
1032 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed</fromParameterUID>↪
1033 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1034 </edge>
1035 <edge>
1036 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed</fromParameterUID>↪
1037 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1038 </edge>
1039 <edge>
1040 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_res</fromParameterUID>↪
1041 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1042 </edge>
1043 <edge>
1044 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</fromParameterUID>↪
1045 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1046 </edge>
1047 <edge>
1048 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_rs</fromParameterUID>↪
1049 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1050 </edge>
1051 <edge>
1052 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma_yield</fromParameterUID>↪
1053 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1054 </edge>
1055 <edge>
1056 <fromParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</fromParameterUID>↪
1057 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1058 </edge>
1059 <edge>
1060 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_rs</fromParameterUID>↪
1061 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1062 </edge>
1063 <edge>
1064 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</fromParameterUID>↪
1065 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1066 </edge>
1067 <edge>
1068 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</fromParameterUID>↪
1069 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1070 </edge>
1071 <edge>
1072 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c</fromParameterUID>↪
1073 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1074 </edge>



A.5. Test Suite 183

1075 <edge>
1076 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b</fromParameterUID>↪
1077 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1078 </edge>
1079 <edge>
1080 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_bs</fromParameterUID>↪
1081 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1082 </edge>
1083 <edge>
1084

<fromParameterUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</fromParameterUID>↪
1085 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1086 </edge>
1087 <edge>
1088

<fromParameterUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</fromParameterUID>↪
1089 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1090 </edge>
1091 <edge>
1092 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs</fromParameterUID>↪
1093 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1094 </edge>
1095 <edge>
1096 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c</fromParameterUID>↪
1097 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1098 </edge>
1099 <edge>
1100 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b</fromParameterUID>↪
1101 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1102 </edge>
1103 <edge>
1104 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs</fromParameterUID>↪
1105 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1106 </edge>
1107 <edge>
1108 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs</fromParameterUID>↪
1109 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1110 </edge>
1111 <edge>
1112 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_bs</fromParameterUID>↪
1113 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1114 </edge>
1115 <edge>
1116 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</fromParameterUID>↪
1117 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1118 </edge>
1119 <edge>
1120 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</fromParameterUID>↪
1121 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1122 </edge>
1123 <edge>
1124 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1125 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</toParameterUID>↪
1126 </edge>
1127 <edge>
1128 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1129 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon</toParameterUID>↪
1130 </edge>
1131 <edge>



184 A. Code

1132 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1133 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c</toParameterUID>↪
1134 </edge>
1135 <edge>
1136 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1137 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs</toParameterUID>↪
1138 </edge>
1139 <edge>
1140 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1141 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs</toParameterUID>↪
1142 </edge>
1143 <edge>
1144 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1145 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</toParameterUID>↪
1146 </edge>
1147 <edge>
1148 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1149 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs</toParameterUID>↪
1150 </edge>
1151 <edge>
1152 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1153 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b</toParameterUID>↪
1154 </edge>
1155 <edge>
1156 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1157 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</toParameterUID>↪
1158 </edge>
1159 <edge>
1160 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1161

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</toParameterUID>↪
1162 </edge>
1163 <edge>
1164 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1165 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</toParameterUID>↪
1166 </edge>
1167 <edge>
1168 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1169 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs</toParameterUID>↪
1170 </edge>
1171 <edge>
1172 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1173 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs</toParameterUID>↪
1174 </edge>
1175 <edge>
1176 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1177

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</toParameterUID>↪
1178 </edge>
1179 <edge>
1180 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1181 <toParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts</toParameterUID>↪
1182 </edge>
1183 <edge>
1184 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1185 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</toParameterUID>↪
1186 </edge>
1187 <edge>
1188 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>



A.5. Test Suite 185

1189 <toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</toParameterUID>↪

1190 </edge>
1191 <edge>
1192 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1193 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</toParameterUID>↪
1194 </edge>
1195 <edge>
1196 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MLW</fromParameterUID>↪
1197 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1198 </edge>
1199 <edge>
1200 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1201 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs</toParameterUID>↪
1202 </edge>
1203 <edge>
1204 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1205 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_init</toParameterUID>↪
1206 </edge>
1207 <edge>
1208 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1209

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</toParameterUID>↪
1210 </edge>
1211 <edge>
1212 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1213 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</toParameterUID>↪
1214 </edge>
1215 <edge>
1216 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1217 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_other</toParameterUID>↪
1218 </edge>
1219 <edge>
1220 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1221

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</toParameterUID>↪
1222 </edge>
1223 <edge>
1224 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1225 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_wings</toParameterUID>↪
1226 </edge>
1227 <edge>
1228 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1229 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MLW</toParameterUID>↪
1230 </edge>
1231 <edge>
1232 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1233 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs</toParameterUID>↪
1234 </edge>
1235 <edge>
1236 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1237 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</toParameterUID>↪
1238 </edge>
1239 <edge>
1240 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1241

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</toParameterUID>↪
1242 </edge>
1243 <edge>
1244 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>



186 A. Code

1245 <toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_fus</toParameterUID>↪

1246 </edge>
1247 <edge>
1248 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1249

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</toParameterUID>↪
1250 </edge>
1251 <edge>
1252 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1253 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts</toParameterUID>↪
1254 </edge>
1255 <edge>
1256 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1257 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fixed</toParameterUID>↪
1258 </edge>
1259 <edge>
1260 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1261 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon</toParameterUID>↪
1262 </edge>
1263 <edge>
1264 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1265 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_payload</toParameterUID>↪
1266 </edge>
1267 <edge>
1268 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1269 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel_res</toParameterUID>↪
1270 </edge>
1271 <edge>
1272 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1273 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</toParameterUID>↪
1274 </edge>
1275 <edge>
1276 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1277

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</toParameterUID>↪
1278 </edge>
1279 <edge>
1280 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1281 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs</toParameterUID>↪
1282 </edge>
1283 <edge>
1284 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1285 <toParame-

terUID>/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</toParameterUID>↪
1286 </edge>
1287 <edge>
1288 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1289

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</toParameterUID>↪
1290 </edge>
1291 <edge>
1292 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1293 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_skin</toParameterUID>↪
1294 </edge>
1295 <edge>
1296 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1297

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</toParameterUID>↪
1298 </edge>
1299 <edge>
1300 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>



A.5. Test Suite 187

1301 <toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma_yield</toParameterUID>↪

1302 </edge>
1303 <edge>
1304 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1305 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</toParameterUID>↪
1306 </edge>
1307 <edge>
1308 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1309 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs</toParameterUID>↪
1310 </edge>
1311 <edge>
1312 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1313 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_sys</toParameterUID>↪
1314 </edge>
1315 <edge>
1316 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1317

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</toParameterUID>↪
1318 </edge>
1319 <edge>
1320 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1321 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_L_buffet</toParameterUID>↪
1322 </edge>
1323 <edge>
1324 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1325

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n</toParameterUID>↪
1326 </edge>
1327 <edge>
1328 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1329 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs</toParameterUID>↪
1330 </edge>
1331 <edge>
1332 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1333

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</toParameterUID>↪
1334 </edge>
1335 <edge>
1336 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1337

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</toParameterUID>↪
1338 </edge>
1339 <edge>
1340 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1341 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS_init</toParameterUID>↪
1342 </edge>
1343 <edge>
1344 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1345 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c</toParameterUID>↪
1346 </edge>
1347 <edge>
1348 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1349 <toParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b</toParameterUID>↪
1350 </edge>
1351 <edge>
1352 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1353 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho_skin</toParameterUID>↪
1354 </edge>
1355 <edge>
1356 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>



188 A. Code

1357 <toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_wing_init</toParameterUID>↪

1358 </edge>
1359 <edge>
1360 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ts</fromParameterUID>↪
1361 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1362 </edge>
1363 <edge>
1364 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_payload</fromParameterUID>↪
1365 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1366 </edge>
1367 <edge>
1368 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</fromParameterUID>↪
1369 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1370 </edge>
1371 <edge>
1372 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L</fromParameterUID>↪
1373 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1374 </edge>
1375 <edge>
1376 <fromParame-

terUID>/cpacs/vehicles/aircraft/model[@uID=”model”]/reference/area</fromParameterUID>↪
1377 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1378 </edge>
1379 <edge>
1380 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_rs</fromParameterUID>↪
1381 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1382 </edge>
1383 <edge>
1384 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_fs</fromParameterUID>↪
1385 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1386 </edge>
1387 <edge>
1388 <fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
1389 <toParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</toParameterUID>↪
1390 </edge>
1391 <edge>
1392 <fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
1393 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</toParameterUID>↪
1394 </edge>
1395 <edge>
1396 <fromParame-

terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</fromParameterUID>↪
1397 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1398 </edge>
1399 <edge>
1400 <fromParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</fromParameterUID>↪
1401 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1402 </edge>
1403 <edge>
1404 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</fromParameterUID>↪
1405 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1406 </edge>
1407 <edge>
1408 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</fromParameterUID>↪
1409 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1410 </edge>
1411 <edge>
1412 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</fromParameterUID>↪



A.5. Test Suite 189

1413 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1414 </edge>
1415 <edge>
1416 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</fromParameterUID>↪
1417 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1418 </edge>
1419 <edge>
1420 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_skin</fromParameterUID>↪
1421 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1422 </edge>
1423 <edge>
1424 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</fromParameterUID>↪
1425 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1426 </edge>
1427 <edge>
1428 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</fromParameterUID>↪
1429 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1430 </edge>
1431 <edge>
1432 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</fromParameterUID>↪
1433 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1434 </edge>
1435 <edge>
1436 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</fromParameterUID>↪
1437 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1438 </edge>
1439 <edge>
1440 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_L_buffet</fromParameterUID>↪
1441 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1442 </edge>
1443 <edge>
1444 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n</fromParameterUID>↪
1445 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1446 </edge>
1447 <edge>
1448 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/n</fromParameterUID>↪
1449 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1450 </edge>
1451 <edge>
1452 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs</fromParameterUID>↪
1453 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1454 </edge>
1455 <edge>
1456 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</fromParameterUID>↪
1457 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1458 </edge>
1459 <edge>
1460 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</fromParameterUID>↪
1461 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1462 </edge>
1463 <edge>
1464 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</fromParameterUID>↪
1465 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1466 </edge>
1467 <edge>
1468 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_wing_init</fromParameterUID>↪
1469 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>



190 A. Code

1470 </edge>
1471 <edge>
1472 <fromParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</fromParameterUID>↪
1473 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1474 </edge>
1475 <edge>
1476 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</fromParameterUID>↪
1477 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1478 </edge>
1479 <edge>
1480 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts</fromParameterUID>↪
1481 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1482 </edge>
1483 <edge>
1484 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_ts</fromParameterUID>↪
1485 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1486 </edge>
1487 <edge>
1488 <fromParameterUID>/cpacs/toolspecific/fuel_weight_estimator/C_L</fromParameterUID>
1489 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1490 </edge>
1491 <edge>
1492 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_fs</fromParameterUID>↪
1493 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1494 </edge>
1495 <edge>
1496 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_fs</fromParameterUID>↪
1497 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1498 </edge>
1499 <edge>
1500 <fromParame-

terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</fromParameterUID>↪
1501 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1502 </edge>
1503 <edge>
1504 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_wings</fromParameterUID>↪
1505 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1506 </edge>
1507 <edge>
1508 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</fromParameterUID>↪
1509 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1510 </edge>
1511 <edge>
1512 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_i</fromParameterUID>↪
1513 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1514 </edge>
1515 <edge>
1516 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</fromParameterUID>↪
1517 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1518 </edge>
1519 <edge>
1520 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_f</fromParameterUID>↪
1521 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1522 </edge>
1523 <edge>
1524 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_D_fus</fromParameterUID>↪
1525 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1526 </edge>
1527 <edge>



A.5. Test Suite 191

1528 <fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_MTOW</fromParameterUID>↪

1529 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1530 </edge>
1531 <edge>
1532 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</fromParameterUID>↪
1533 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1534 </edge>
1535 <edge>
1536 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs</fromParameterUID>↪
1537 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1538 </edge>
1539 <edge>
1540 <fromParameterUID>/cpacs/toolspecific/dAEDalus/m_wing</fromParameterUID>
1541 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1542 </edge>
1543 <edge>
1544 <fromParameterUID>/cpacs/toolspecific/dAEDalus/m_wing</fromParameterUID>
1545 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1546 </edge>
1547 <edge>
1548 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f_m_sys</fromParameterUID>↪
1549 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1550 </edge>
1551 <edge>
1552 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</fromParameterUID>↪
1553 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1554 </edge>
1555 <edge>
1556 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1557

<toParameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_ts</toParameterUID>↪
1558 </edge>
1559 <edge>
1560 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1561

<toParameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_bs</toParameterUID>↪
1562 </edge>
1563 <edge>
1564 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1565

<toParameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_rs</toParameterUID>↪
1566 </edge>
1567 <edge>
1568 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1569

<toParameterUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_fs</toParameterUID>↪
1570 </edge>
1571 <edge>
1572 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_i</fromParameterUID>↪
1573 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1574 </edge>
1575 <edge>
1576 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</fromParameterUID>↪
1577 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1578 </edge>
1579 <edge>
1580 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_i</fromParameterUID>↪
1581 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1582 </edge>
1583 <edge>
1584 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_f</fromParameterUID>↪
1585 <toExecutableBlockUID>FWE</toExecutableBlockUID>



192 A. Code

1586 </edge>
1587 <edge>
1588 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS_init</fromParameterUID>↪
1589 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1590 </edge>
1591 <edge>
1592 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</fromParameterUID>↪
1593 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1594 </edge>
1595 <edge>
1596 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</fromParameterUID>↪
1597 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1598 </edge>
1599 <edge>
1600 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs</fromParameterUID>↪
1601 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1602 </edge>
1603 <edge>
1604 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1605 <toParame-

terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</toParameterUID>↪
1606 </edge>
1607 <edge>
1608 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</fromParameterUID>↪
1609 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1610 </edge>
1611 <edge>
1612 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</fromParameterUID>↪
1613 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1614 </edge>
1615 <edge>
1616 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</fromParameterUID>↪
1617 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1618 </edge>
1619 <edge>
1620 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</fromParameterUID>↪
1621 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1622 </edge>
1623 <edge>
1624 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_fs</fromParameterUID>↪
1625 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1626 </edge>
1627 <edge>
1628 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_bs</fromParameterUID>↪
1629 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1630 </edge>
1631 <edge>
1632 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs</fromParameterUID>↪
1633 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1634 </edge>
1635 <edge>
1636 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon</fromParameterUID>↪
1637 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1638 </edge>
1639 <edge>
1640 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1641 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_ts</toParameterUID>↪
1642 </edge>



A.5. Test Suite 193

1643 <edge>
1644 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1645 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_bs</toParameterUID>↪
1646 </edge>
1647 <edge>
1648 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1649 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_fs</toParameterUID>↪
1650 </edge>
1651 <edge>
1652 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1653

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</toParameterUID>↪
1654 </edge>
1655 <edge>
1656 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1657 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_bs</toParameterUID>↪
1658 </edge>
1659 <edge>
1660 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1661 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_i</toParameterUID>↪
1662 </edge>
1663 <edge>
1664 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1665 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts</toParameterUID>↪
1666 </edge>
1667 <edge>
1668 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1669 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_D_f</toParameterUID>↪
1670 </edge>
1671 <edge>
1672 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1673

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L</toParameterUID>↪
1674 </edge>
1675 <edge>
1676 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1677 <toParame-

terUID>/cpacs/vehicles/aircraft/model[@uID=”model”]/reference/area</toParameterUID>↪
1678 </edge>
1679 <edge>
1680 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1681 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_rs</toParameterUID>↪
1682 </edge>
1683 <edge>
1684 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1685 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_fs</toParameterUID>↪
1686 </edge>
1687 <edge>
1688 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1689 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_rs</toParameterUID>↪
1690 </edge>
1691 <edge>
1692 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1693 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ts</toParameterUID>↪
1694 </edge>
1695 <edge>
1696 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1697 <toParameterUID>/cpacs/toolspecific/dAEDalus/m_wing</toParameterUID>
1698 </edge>
1699 <edge>
1700 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>



194 A. Code

1701 <toParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_i</toParameterUID>↪

1702 </edge>
1703 <edge>
1704 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1705 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</toParameterUID>↪
1706 </edge>
1707 <edge>
1708 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1709 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_i</toParameterUID>↪
1710 </edge>
1711 <edge>
1712 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1713 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_D_f</toParameterUID>↪
1714 </edge>
1715 <edge>
1716 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1717

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</toParameterUID>↪
1718 </edge>
1719 <edge>
1720 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1721 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_fs</toParameterUID>↪
1722 </edge>
1723 <edge>
1724 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1725 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_bs</toParameterUID>↪
1726 </edge>
1727 <edge>
1728 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1729 <toParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_rs</toParameterUID>↪
1730 </edge>
1731 <edge>
1732 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel</fromParameterUID>↪
1733 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1734 </edge>
1735 <edge>
1736 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1737 <toParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_WS</toParameterUID>↪
1738 </edge>
1739 <edge>
1740 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1741 <toParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</toParameterUID>↪
1742 </edge>
1743 <edge>
1744 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1745 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</toParameterUID>↪
1746 </edge>
1747 <edge>
1748 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1749 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</toParameterUID>↪
1750 </edge>
1751 <edge>
1752 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1753 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</toParameterUID>↪
1754 </edge>
1755 <edge>
1756 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>



A.5. Test Suite 195

1757 <toParame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</toParameterUID>↪

1758 </edge>
1759 <edge>
1760 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1761 <toParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</toParameterUID>↪
1762 </edge>
1763 <edge>
1764 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1765 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</toParameterUID>↪
1766 </edge>
1767 <edge>
1768 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1769 <toParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</toParameterUID>↪
1770 </edge>
1771 <edge>
1772 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1773 <toParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</toParameterUID>↪
1774 </edge>
1775 <edge>
1776 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</fromParameterUID>↪
1777 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1778 </edge>
1779 <edge>
1780 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</fromParameterUID>↪
1781 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1782 </edge>
1783 <edge>
1784 <fromParame-

terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs</fromParameterUID>↪
1785 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1786 </edge>
1787 <edge>
1788 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/load_collector/sigma_ts</fromParameterUID>↪
1789 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1790 </edge>
1791 <edge>
1792 <fromParame-

terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs</fromParameterUID>↪
1793 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1794 </edge>
1795 <edge>
1796 <fromParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</fromParameterUID>↪
1797 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1798 </edge>
1799 <edge>
1800 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho_skin</fromParameterUID>↪
1801 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1802 </edge>
1803 <edge>
1804 <fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/sigma_rs</fromParameterUID>↪
1805 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1806 </edge>
1807 <edge>
1808 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</fromParameterUID>↪
1809 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1810 </edge>
1811 <edge>
1812 <fromParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</fromParameterUID>↪



196 A. Code

1813 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1814 </edge>
1815 <edge>
1816 <fromParame-

terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</fromParameterUID>↪
1817 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1818 </edge>
1819 </edges>
1820 </dataGraph>
1821 <processGraph>
1822 <name>MPG1</name>
1823 <edges>
1824 <edge>
1825 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1826 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1827 <processStepNumber>7</processStepNumber>
1828 </edge>
1829 <edge>
1830 <fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
1831 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1832 <processStepNumber>7</processStepNumber>
1833 </edge>
1834 <edge>
1835 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1836 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1837 <processStepNumber>8</processStepNumber>
1838 </edge>
1839 <edge>
1840 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1841 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1842 <processStepNumber>2</processStepNumber>
1843 </edge>
1844 <edge>
1845 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
1846 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1847 <processStepNumber>5</processStepNumber>
1848 </edge>
1849 <edge>
1850 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1851 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1852 <processStepNumber>6</processStepNumber>
1853 </edge>
1854 <edge>
1855 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1856 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1857 <processStepNumber>6</processStepNumber>
1858 </edge>
1859 <edge>
1860 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1861 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1862 <processStepNumber>6</processStepNumber>
1863 </edge>
1864 <edge>
1865 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1866 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1867 <processStepNumber>3</processStepNumber>
1868 </edge>
1869 <edge>
1870 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1871 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1872 <processStepNumber>1</processStepNumber>
1873 </edge>
1874 <edge>
1875 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1876 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1877 <processStepNumber>7</processStepNumber>
1878 </edge>
1879 <edge>
1880 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1881 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1882 <processStepNumber>4</processStepNumber>



A.5. Test Suite 197

1883 </edge>
1884 </edges>
1885 <nodes>
1886 <node>
1887 <referenceUID>dLC</referenceUID>
1888 <processStepNumber>6</processStepNumber>
1889 <diagonalPosition>5</diagonalPosition>
1890 </node>
1891 <node>
1892 <referenceUID>ObjectiveFunctions</referenceUID>
1893 <processStepNumber>6</processStepNumber>
1894 <diagonalPosition>7</diagonalPosition>
1895 </node>
1896 <node>
1897 <referenceUID>Optimizer</referenceUID>
1898 <processStepNumber>1</processStepNumber>
1899 <convergerStepNumber>7</convergerStepNumber>
1900 <diagonalPosition>1</diagonalPosition>
1901 </node>
1902 <node>
1903 <referenceUID>FWE</referenceUID>
1904 <processStepNumber>4</processStepNumber>
1905 <diagonalPosition>4</diagonalPosition>
1906 </node>
1907 <node>
1908 <referenceUID>Converger</referenceUID>
1909 <processStepNumber>2</processStepNumber>
1910 <convergerStepNumber>5</convergerStepNumber>
1911 <diagonalPosition>2</diagonalPosition>
1912 </node>
1913 <node>
1914 <referenceUID>Coordinator</referenceUID>
1915 <processStepNumber>0</processStepNumber>
1916 <convergerStepNumber>8</convergerStepNumber>
1917 <diagonalPosition>0</diagonalPosition>
1918 </node>
1919 <node>
1920 <referenceUID>ConstraintFunctions</referenceUID>
1921 <processStepNumber>6</processStepNumber>
1922 <diagonalPosition>6</diagonalPosition>
1923 </node>
1924 <node>
1925 <referenceUID>Aeroelastics</referenceUID>
1926 <processStepNumber>3</processStepNumber>
1927 <diagonalPosition>3</diagonalPosition>
1928 </node>
1929 </nodes>
1930 <metadata>
1931 <loopNesting>
1932 <loopElements>
1933 <loopElement relatedUID=”Optimizer”>
1934 <loopElements>
1935 <loopElement relatedUID=”Converger”>
1936 <functionElements>
1937 <functionElement>FWE</functionElement>
1938 <functionElement>Aeroelastics</functionElement>
1939 </functionElements>
1940 </loopElement>
1941 </loopElements>
1942 <functionElements>
1943 <functionElement>dLC</functionElement>
1944 <functionElement>ObjectiveFunctions</functionElement>
1945 <functionElement>ConstraintFunctions</functionElement>
1946 </functionElements>
1947 </loopElement>
1948 </loopElements>
1949 </loopNesting>
1950 </metadata>
1951 </processGraph>
1952 </workflow>
1953 <architectureElements>



198 A. Code

1954 <parameters>
1955 <initialGuessCouplingVariables>
1956 <initialGuessCouplingVariable

uID=”/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel”>↪
1957 <relatedParame-

terUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</relatedParameterUID>↪
1958 <label>m_fuel^{c0}</label>
1959 </initialGuessCouplingVariable>
1960 </initialGuessCouplingVariables>
1961 <finalCouplingVariables>
1962 <finalCouplingVariable

uID=”/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel”>↪
1963 <relatedParame-

terUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</relatedParameterUID>↪
1964 <label>m_fuel^*</label>
1965 </finalCouplingVariable>
1966 </finalCouplingVariables>
1967 <couplingCopyVariables>
1968 <couplingCopyVariable

uID=”/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel_weight_estimator/m_fuel”>↪
1969 <relatedParame-

terUID>/cpacs/toolspecific/fuel_weight_estimator/m_fuel</relatedParameterUID>↪
1970 <label>m_fuel^c</label>
1971 </couplingCopyVariable>
1972 </couplingCopyVariables>
1973 <initialGuessDesignVariables>
1974 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs”>↪
1975 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</relatedParameterUID>↪
1976 <label>xsi_fs^0</label>
1977 </initialGuessDesignVariable>
1978 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts”>↪
1979 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</relatedParameterUID>↪
1980 <label>t_ts^0</label>
1981 </initialGuessDesignVariable>
1982 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c”>↪
1983 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</relatedParameterUID>↪
1984 <label>c^0</label>
1985 </initialGuessDesignVariable>
1986 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b”>↪
1987 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</relatedParameterUID>↪
1988 <label>b^0</label>
1989 </initialGuessDesignVariable>
1990 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs”>↪
1991 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</relatedParameterUID>↪
1992 <label>t_fs^0</label>
1993 </initialGuessDesignVariable>
1994 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs”>↪
1995 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</relatedParameterUID>↪
1996 <label>xsi_rs^0</label>
1997 </initialGuessDesignVariable>
1998 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs”>↪
1999 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</relatedParameterUID>↪
2000 <label>t_rs^0</label>
2001 </initialGuessDesignVariable>
2002 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon”>↪



A.5. Test Suite 199

2003 <relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</relatedParameterUID>↪

2004 <label>epsilon^0</label>
2005 </initialGuessDesignVariable>
2006 <initialGuessDesignVariable

uID=”/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs”>↪
2007 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</relatedParameterUID>↪
2008 <label>t_bs^0</label>
2009 </initialGuessDesignVariable>
2010 </initialGuessDesignVariables>
2011 <finalDesignVariables>
2012 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/epsilon”>↪
2013 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</relatedParameterUID>↪
2014 <label>epsilon^*</label>
2015 </finalDesignVariable>
2016 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_rs”>↪
2017 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</relatedParameterUID>↪
2018 <label>t_rs^*</label>
2019 </finalDesignVariable>
2020 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/c”>↪
2021 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</relatedParameterUID>↪
2022 <label>c^*</label>
2023 </finalDesignVariable>
2024 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/b”>↪
2025 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</relatedParameterUID>↪
2026 <label>b^*</label>
2027 </finalDesignVariable>
2028 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_bs”>↪
2029 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</relatedParameterUID>↪
2030 <label>t_bs^*</label>
2031 </finalDesignVariable>
2032 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_rs”>↪
2033 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</relatedParameterUID>↪
2034 <label>xsi_rs^*</label>
2035 </finalDesignVariable>
2036 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_ts”>↪
2037 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</relatedParameterUID>↪
2038 <label>t_ts^*</label>
2039 </finalDesignVariable>
2040 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/t_fs”>↪
2041 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</relatedParameterUID>↪
2042 <label>t_fs^*</label>
2043 </finalDesignVariable>
2044 <finalDesignVariable

uID=”/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure/xsi_fs”>↪
2045 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</relatedParameterUID>↪
2046 <label>xsi_fs^*</label>
2047 </finalDesignVariable>
2048 </finalDesignVariables>
2049 <finalOutputVariables>
2050 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_WS”>↪



200 A. Code

2051 <relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</relatedParameterUID>↪

2052 <label>con_WS^*</label>
2053 </finalOutputVariable>
2054 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts”>↪
2055 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</relatedParameterUID>↪
2056 <label>con_sigma_ts^*</label>
2057 </finalOutputVariable>
2058 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs”>↪
2059 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</relatedParameterUID>↪
2060 <label>con_sigma_rs^*</label>
2061 </finalOutputVariable>
2062 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs”>↪
2063 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</relatedParameterUID>↪
2064 <label>con_sigma_bs^*</label>
2065 </finalOutputVariable>
2066 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel”>↪
2067 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</relatedParameterUID>↪
2068 <label>obj_m_fuel^*</label>
2069 </finalOutputVariable>
2070 <finalOutputVariable

uID=”/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs”>↪
2071 <relatedParame-

terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</relatedParameterUID>↪
2072 <label>con_sigma_fs^*</label>
2073 </finalOutputVariable>
2074 </finalOutputVariables>
2075 </parameters>
2076 <executableBlocks>
2077 <coordinators>
2078 <coordinator uID=”Coordinator”>
2079 <label>COOR</label>
2080 </coordinator>
2081 </coordinators>
2082 <optimizers>
2083 <optimizer uID=”Optimizer”>
2084 <label>OPT</label>
2085 <designVariables>
2086 <designVariable>
2087 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_bs</designVariableUID>↪
2088 </designVariable>
2089 <designVariable>
2090 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</designVariableUID>↪
2091 </designVariable>
2092 <designVariable>
2093 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_fs</designVariableUID>↪
2094 </designVariable>
2095 <designVariable>
2096 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/c</designVariableUID>↪
2097 </designVariable>
2098 <designVariable>
2099 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_rs</designVariableUID>↪
2100 </designVariable>
2101 <designVariable>
2102 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_fs</designVariableUID>↪
2103 </designVariable>
2104 <designVariable>



A.5. Test Suite 201

2105 <designVari-
ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/planform/b</designVariableUID>↪

2106 </designVariable>
2107 <designVariable>
2108 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/xsi_rs</designVariableUID>↪
2109 </designVariable>
2110 <designVariable>
2111 <designVari-

ableUID>__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/t_ts</designVariableUID>↪
2112 </designVariable>
2113 </designVariables>
2114 <objectiveVariables>
2115 <objectiveVariable>
2116 <objectiveVari-

ableUID>__objVar__/cpacs/toolspecific/wingOptimizationProblem/objectives/obj_m_fuel</objectiveVariableUID>↪
2117 </objectiveVariable>
2118 </objectiveVariables>
2119 <constraintVariables>
2120 <constraintVariable>
2121 <constraintVari-

ableUID>__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_ts</constraintVariableUID>↪
2122 </constraintVariable>
2123 <constraintVariable>
2124 <constraintVari-

ableUID>__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_fs</constraintVariableUID>↪
2125 </constraintVariable>
2126 <constraintVariable>
2127 <constraintVari-

ableUID>__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_WS</constraintVariableUID>↪
2128 </constraintVariable>
2129 <constraintVariable>
2130 <constraintVari-

ableUID>__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_rs</constraintVariableUID>↪
2131 </constraintVariable>
2132 <constraintVariable>
2133 <constraintVari-

ableUID>__conVar__/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma_bs</constraintVariableUID>↪
2134 </constraintVariable>
2135 </constraintVariables>
2136 </optimizer>
2137 </optimizers>
2138 <convergers>
2139 <converger uID=”Converger”>
2140 <label>CONV</label>
2141 </converger>
2142 </convergers>
2143 <coupledAnalyses>
2144 <coupledAnalysis>
2145 <relatedExecutableBlockUID>FWE</relatedExecutableBlockUID>
2146 </coupledAnalysis>
2147 <coupledAnalysis>
2148 <relatedExecutableBlockUID>Aeroelastics</relatedExecutableBlockUID>
2149 </coupledAnalysis>
2150 </coupledAnalyses>
2151 <postCouplingAnalyses>
2152 <postCouplingAnalysis>
2153 <relatedExecutableBlockUID>ObjectiveFunctions</relatedExecutableBlockUID>
2154 </postCouplingAnalysis>
2155 <postCouplingAnalysis>
2156 <relatedExecutableBlockUID>ConstraintFunctions</relatedExecutableBlockUID>
2157 </postCouplingAnalysis>
2158 <postCouplingAnalysis>
2159 <relatedExecutableBlockUID>dLC</relatedExecutableBlockUID>
2160 </postCouplingAnalysis>
2161 </postCouplingAnalyses>
2162 </executableBlocks>
2163 </architectureElements>
2164 </cmdows>



202 A. Code

Code frament A.27: CMDOWS file for the simplified wing optimization problem.

1 <?xml version=’1.0’ encoding=’UTF-8’?>
2 <cpacs>
3 <toolspecific>
4 <wingOptimizationProblem>
5 <planform>
6 <c mapType=”vector”>13.7131;7.2595;2.7341</c>
7 <tc mapType=”vector”>0.1542;0.1052;0.095</tc>
8 <epsilon mapType=”vector”>-0.1039;-0.1826</epsilon>
9 <b mapType=”vector”>12.7178;22.7016</b>

10 <Lambda mapType=”vector”>0.5435;0.6077</Lambda>
11 <Gamma mapType=”vector”>0.0508;0.1167</Gamma>
12 <incidence>0.1172</incidence>
13 </planform>
14 <structure>
15 <xsi_fs mapType=”vector”>0.1;0.1925;0.35</xsi_fs>
16 <xsi_rs mapType=”vector”>0.6;0.8023;0.6</xsi_rs>
17 <t_fs mapType=”vector”>0.00450588;0.00458215</t_fs>
18 <t_rs mapType=”vector”>0.00450611;0.00456957</t_rs>
19 <t_ts mapType=”vector”>0.02553329;0.02237119</t_ts>
20 <t_bs mapType=”vector”>0.02553329;0.02237119</t_bs>
21 <t_skin>0.0015</t_skin>
22 </structure>
23 <reference>
24 <rho_skin>2180.0</rho_skin>
25 <m_fixed>107814.0</m_fixed>
26 <m_payload>34000.0</m_payload>
27 <m_MLW>213180.0</m_MLW>
28 <f_m_sys>0.27</f_m_sys>
29 <f_m_wings>0.7</f_m_wings>
30 <R>14306700.0</R>
31 <SFC>1.5e-05</SFC>
32 <m_fuel_res>15000.0</m_fuel_res>
33 <C_D_fus>0.006</C_D_fus>
34 <C_D_other>0.005</C_D_other>
35 <m_fuel_init>108508.0</m_fuel_init>
36 <m_wing_init>49591.0</m_wing_init>
37 <WS_init>538.725956758</WS_init>
38 <sigma_yield>276000000.0</sigma_yield>
39 <C_L_buffet>0.525</C_L_buffet>
40 </reference>
41 </wingOptimizationProblem>
42 <dAEDalus>
43 <loadCases>
44 <loadCase>
45 <M>0.85</M>
46 <H>11277.6</H>
47 <n>1.0</n>
48 </loadCase>
49 <loadCase>
50 <M>0.85</M>
51 <H>3048.0</H>
52 <n>2.5</n>
53 </loadCase>
54 <loadCase>
55 <M>0.6</M>
56 <H>0.0</H>
57 <n>-1.0</n>
58 </loadCase>
59 </loadCases>
60 </dAEDalus>
61 </toolspecific>
62 </cpacs>

Code frament A.28: Input XML file for the simplified wing optimization problem.

Knowledge Base
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-



A.5. Test Suite 203

3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a reference to the dAEDalus discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.SimpleAerostructuralAnalysis
import \↪

23 SimpleAerostructuralAnalysis
24

25

26 class Aeroelastics(SimpleAerostructuralAnalysis):
27 pass
28

29

30 if __name__ == ’__main__’:
31 n_ws = 2
32 n_lc = 3
33

34 aeroelastics = Aeroelastics(n_ws, n_lc)
35 aeroelastics.deploy()

Code frament A.29: Code of the wing optimization Aeroelastics Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a reference to the problem definition discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.ProblemDefinition import
Constraints↪

23

24

25 class ConstraintFunctions(Constraints):
26 pass
27

28

29 if __name__ == ’__main__’:
30 n_ws = 2
31

32 cons = ConstraintFunctions(n_ws)
33 cons.deploy()



204 A. Code

Code frament A.30: Code of the wing optimization ConstraintFunctions Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a reference to the load collector discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.dAEDalus import LoadCollector
23

24

25 class dLC(LoadCollector):
26 pass
27

28

29 if __name__ == ’__main__’:
30 n_ws = 2
31 n_lc = 3
32

33 dlc = dLC(n_ws, n_lc)
34 dlc.deploy()

Code frament A.31: Code of the wing optimization dLC (load collector) Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a reference to the fuel weight estimator discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.FuelWeightEstimator import
FuelWeightEstimator↪

23

24

25 class FWE(FuelWeightEstimator):
26 pass
27

28



A.5. Test Suite 205

29 if __name__ == ’__main__’:
30 n_ws = 2
31 n_lc = 3
32

33 fwe = FWE(n_ws, n_lc)
34 fwe.deploy()

Code frament A.32: Code of the wing optimization FWE (fuel weight estimator) Python module.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains a reference to the objective function discipline.
19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.ProblemDefinition import
Objectives↪

23

24

25 class ObjectiveFunctions(Objectives):
26 pass
27

28

29 if __name__ == ’__main__’:
30 objs = ObjectiveFunctions()
31 objs.deploy()

Code frament A.33: Code of the wing optimization ObjectiveFunctions Python module.

Disciplines
A.5.2.3.1 dAEDalus

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definitions of all the dAEDalus disciplines along with static variables
they use.↪

19 ”””
20 from __future__ import absolute_import, division, print_function



206 A. Code

21

22 import abc
23 import os
24 import time
25 import hashlib
26

27 import matlab
28 from matlab.engine import start_matlab, MatlabExecutionError
29 import numpy as np
30 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.WingObjectModel import

WingObjectModel↪
31 from lxml import etree
32

33 from openlego.api import AbstractDiscipline
34 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.xpaths import *
35 from openlego.utils.general_utils import try_hard
36 from openlego.utils.xml_utils import xml_safe_create_element
37

38 dir_path = os.path.dirname(os.path.realpath(__file__))
39 _mles = {}
40

41 n_seg_x = 10
42 n_seg_y = 20
43

44

45 def start_new_matlab_engine():
46 ”””Ensure the Matlab engine is renewed once the MATLAB_TIMEOUT is expired.
47

48 This function uses the try_hard() function from the framework.util module to ensure Matlab
is started↪

49 successfully when it needs to be.
50 ”””
51 mle = try_hard(start_matlab, ’-nodesktop -noslpash -nojvm’)
52 timestamp = time.time()
53 mle.matlab.engine.shareEngine(nargout=0)
54 engine_name = mle.matlab.engine.engineName(nargout=1)
55 engine_id = int(hashlib.md5(engine_name).hexdigest()[0:7], 16)
56

57 return mle, engine_id, engine_name, timestamp
58

59

60 class LoadCaseSpecific(AbstractDiscipline):
61 ”””Abstract base class storing the number of wing segments load cases as member properties

in the constructor.↪
62

63 Attributes
64 ----------
65 n_wing_segments : int
66 Number of wing segments.
67

68 n_load_cases : int
69 Number of load cases.
70 ”””
71

72 def __init__(self, n_wing_segments=2, n_load_cases=1):
73 # type: (int, int) -> None
74 ”””Create an instance of the ‘LoadCollector‘ discipline.
75

76 Parameters
77 ----------
78 n_wing_segments : int(2)
79 Number of wing segments.
80

81 n_load_cases : int(1)
82 Number of load cases.
83 ”””
84 super(LoadCaseSpecific, self).__init__()
85 self.n_wing_segments = n_wing_segments
86 self.n_load_cases = n_load_cases
87

88 @property



A.5. Test Suite 207

89 def creator(self):
90 return ’D. de Vries’
91

92 @abc.abstractmethod
93 def generate_input_xml(self):
94 super(LoadCaseSpecific, self).generate_input_xml()
95

96 @abc.abstractmethod
97 def generate_output_xml(self):
98 super(LoadCaseSpecific, self).generate_output_xml()
99

100 @staticmethod
101 @abc.abstractmethod
102 def execute(in_file, out_file):
103 super(LoadCaseSpecific, in_file).execute(in_file, out_file)
104

105 @staticmethod
106 def get_n_loadcases(tree):
107 # type: (etree._ElementTree) -> int
108 ””” Obtain the number of load cases from the XML tree representing a CPACS file.
109

110 Parameters
111 ----------
112 tree : :obj:‘etree._ElementTree‘
113 ‘etree._ElementTree‘ corresponding to a CPACS file.
114

115 Returns
116 -------
117 int
118 Number of load cases defined in the CPACS file.
119 ”””
120 return len(tree.xpath(’/’.join([x_loadcases, x_loadcase.split(’/’)[-1][:-4]])))
121

122

123 class SteadyAerostructuralLoop(LoadCaseSpecific):
124

125 MATLAB_TIMEOUT = 1800.
126 _mles = []
127 _timestamp = [0.]
128

129 def __init__(self, n_wing_segments=2, n_load_cases=1):
130 super(SteadyAerostructuralLoop, self).__init__(n_wing_segments, n_load_cases)
131

132 @property
133 def description(self):
134 return ’dAEDalus Steady Aerostructural Loop’
135

136 def generate_input_xml(self):
137 wd = WingObjectModel(self.n_wing_segments)
138 s = wd.generate_output_xml()
139

140 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
141 doc = etree.fromstring(s, parser)
142

143 for i in range(1, self.n_load_cases + 1):
144 xml_safe_create_element(doc, x_M % i, 0.)
145 xml_safe_create_element(doc, x_H % i, 0.)
146 xml_safe_create_element(doc, x_n % i, 0.)
147

148 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
149

150 def generate_output_xml(self):
151 root = etree.Element(’cpacs’)
152 doc = etree.ElementTree(root)
153

154 xml_safe_create_element(doc, x_m_wing, 0.)
155

156 for i in range(1, self.n_load_cases + 1):
157 xml_safe_create_element(doc, x_CL % i, 0.)
158 xml_safe_create_element(doc, x_CDf % i, 0.)
159 xml_safe_create_element(doc, x_CDi % i, 0.)



208 A. Code

160

161 for x_sigma in x_sigmas_in:
162 xml_safe_create_element(doc, x_sigma % i, np.zeros(self.n_wing_segments))
163

164 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
165

166 @staticmethod
167 def execute(in_file, out_file):
168 doc_in = etree.parse(in_file)
169

170 root = etree.Element(’cpacs’)
171 doc_out = etree.ElementTree(root)
172

173 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)
174 if not len(SteadyAerostructuralLoop._mles) or \
175 (time.time() - SteadyAerostructuralLoop._timestamp[0] >=

SteadyAerostructuralLoop.MATLAB_TIMEOUT):↪
176 SteadyAerostructuralLoop._mles = []
177 SteadyAerostructuralLoop._timestamp[0] = time.time()
178 for _ in range(n_lc):
179 mle, _, _, _ = start_new_matlab_engine()
180 SteadyAerostructuralLoop._mles.append(mle)
181

182 futures = n_lc * [None]
183 for i in range(1, n_lc + 1):
184 M = float(doc_in.xpath(x_M % i)[0].text)
185 H = float(doc_in.xpath(x_H % i)[0].text)
186 n = float(doc_in.xpath(x_n % i)[0].text)
187

188 futures[i - 1] = SteadyAerostructuralLoop._mles[i -
1].dAEDalusSteadyAerostructuralLoop(↪

189 in_file, matlab.double([n_seg_x]), matlab.double([n_seg_y]), M, H, n,
nargout=8, async=True)↪

190

191 for i, future in enumerate(futures):
192 if future is not None:
193 try:
194 m_wing, C_L, C_D_f, C_D_i, sigma_fs, sigma_rs, sigma_ts, sigma_bs =

future.result()↪
195 sigmas = [np.array(sigma_fs), np.array(sigma_rs), np.array(sigma_ts),

np.array(sigma_bs)]↪
196

197 xml_safe_create_element(doc_out, x_m_wing, m_wing)
198 xml_safe_create_element(doc_out, x_CL % (i + 1), C_L)
199 xml_safe_create_element(doc_out, x_CDf % (i + 1), C_D_f)
200 xml_safe_create_element(doc_out, x_CDi % (i + 1), C_D_i)
201

202 for j in range(4):
203 xml_safe_create_element(doc_out, x_sigmas_in[j] % (i + 1), sigmas[j])
204 except MatlabExecutionError:
205 break
206

207 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
208

209

210 class SteadyModelInitializer(LoadCaseSpecific):
211 ”””Initialization of the geometric and structural dAEDalus models using Matlab.
212

213 This discipline takes a CPACS file with a fully defined wing as input and initializes the
geometric and structural↪

214 models of dAEDalus accordingly. The weight of the wing is calculated and stored in the
output file, along with some↪

215 pseudo-variables to aid linking this dicipline to the other dAEDalus disciplines.
216

217 Behind the scenes, this discipline initializes the geometric and structural models and
stores these in the workspace↪

218 of the Matlab shared engine for each load case. Subsequent dAEDalus discipline calls can
use these initialized↪

219 models if they have the names of the Matlab shared engines.
220 ”””
221



A.5. Test Suite 209

222 MATLAB_TIMEOUT = 1800.
223

224 def __init__(self, n_wing_segments=2, n_load_cases=1):
225 super(SteadyModelInitializer, self).__init__(n_wing_segments, n_load_cases)
226

227 @property
228 def description(self):
229 return ’dAEDalus Steady Model Initializer’
230

231 def generate_input_xml(self):
232 # type: () -> str
233 ”””Input is a CPACS file with at least a fully defined wing.
234

235 It is possible to specify a timeout for Matlab, the name of a Matlab sharedEngine, and
the timestamp at which↪

236 this engine was shared. However, the Matlab engine should normally be left under the
control of this↪

237 discipline.
238 ”””
239 wd = WingObjectModel(self.n_wing_segments)
240 s = wd.generate_output_xml()
241

242 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
243 doc = etree.fromstring(s, parser)
244

245 for i in range(1, self.n_load_cases + 1):
246 xml_safe_create_element(doc, x_ml_timeout % i, self.MATLAB_TIMEOUT)
247

248 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
249

250 def generate_output_xml(self):
251 # type: () -> str
252 ”””Output is a CPACS file containing a predefined number of load cases.
253

254 Each load case will be assigned pseudo-variables allowing for subsequent disciplines
to connect to this↪

255 discipline (geometric and structural model), as well as the name of the shared Matlab
engine and its timestamp↪

256 of creation.
257 ”””
258 root = etree.Element(’cpacs’)
259 doc = etree.ElementTree(root)
260

261 xml_safe_create_element(doc, x_m_wing, 0.)
262

263 for i in range(1, self.n_load_cases + 1):
264 xml_safe_create_element(doc, x_ml_id % i, 0)
265 xml_safe_create_element(doc, x_ml_timestamp % i, 0.)
266

267 for j in range(3):
268 xml_safe_create_element(doc, x_grid_initial[j] % i, np.zeros(2 * (n_seg_x + 1)

* (n_seg_y + 1) * self.n_wing_segments))↪
269

270 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
271

272 @staticmethod
273 def execute(in_file, out_file):
274 ”””Call the Matlab function dAEDalusSteadyModelInitializer() and store the resulting

mass of the wingbox in the↪
275 output XML file for each load case.
276

277 The name of the Matlab engine is stored in CPACS. In this way it can be shared with
all subsequent disciplines↪

278 that need to use the same instance of Matlab in order to share the workspace.
279 ”””
280 doc_in = etree.parse(in_file)
281

282 root = etree.Element(’cpacs’)
283 doc_out = etree.ElementTree(root)
284

285 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)



210 A. Code

286 engine_ids = []
287 futures = n_lc * [None]
288 for i in range(1, n_lc + 1):
289 timeout = SteadyModelInitializer.MATLAB_TIMEOUT
290 elem_timeout = doc_in.xpath(x_ml_timeout % i)
291 if len(elem_timeout):
292 timeout = float(elem_timeout[0].text)
293

294 timestamp = 0.
295 elem_timestamp = doc_in.xpath(x_ml_timestamp % i)
296 if len(elem_timestamp):
297 timestamp = float(elem_timestamp[0].text)
298

299 # Obtain the current matlab engine if it is still valid and exists
300 engine_id = 0
301 mle = None
302 elem_ml_id = doc_in.xpath(x_ml_id % i)
303 if len(elem_ml_id):
304 engine_id = int(float(elem_ml_id[0].text))
305 if engine_id in _mles:
306 if time.time() - timestamp < timeout:
307 mle = _mles[engine_id]
308 mle.cd(dir_path)
309 else:
310 _mles.pop(engine_id)
311

312 # If a matlab engine was not connected to, start a new one and reset the timestamp
313 if mle is None:
314 mle, engine_id, engine_name, timestamp = start_new_matlab_engine()
315 mle.cd(dir_path)
316 _mles.update({engine_id: mle})
317

318 engine_ids.append(engine_id)
319

320 xml_safe_create_element(doc_out, x_ml_id % i, engine_id)
321 xml_safe_create_element(doc_out, x_ml_timestamp % i, timestamp)
322

323 futures[i - 1] = mle.dAEDalusSteadyModelInitializer(
324 in_file, matlab.double([n_seg_x]), matlab.double([n_seg_y]), nargout=2,

async=True)↪
325

326 # Remove any instances of the Matlab engine which aren’t used anymore to free up memory
327 if len(_mles) > n_lc:
328 _ids = _mles.keys()
329 for _id in _ids:
330 if _id not in engine_ids:
331 _mles.pop(_id)
332

333 for i, future in enumerate(futures):
334 if future is not None:
335 try:
336 m_wing, initial_grid = future.result()
337 initial_grid = np.array(initial_grid)
338 xml_safe_create_element(doc_out, x_m_wing, m_wing)
339

340 for j in range(3):
341 xml_safe_create_element(doc_out, x_grid_initial[j] % (i + 1),

initial_grid[j, :])↪
342 except MatlabExecutionError:
343 break
344

345 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
346

347

348 class SteadyAerodynamicModelInitializer(LoadCaseSpecific):
349 ”””Initialization of the steady aerodynamic dAEDalus model.
350

351 This discipline takes a CPACS file with a number of load cases containing a Mach number,
altitude, and load factor.↪

352 Furthermore, the pseudo-variable pointing to the geometric model of each load case, as
well as the name of the load↪



A.5. Test Suite 211

353 case’s shared Matlab engine are required.
354

355 Behind the scenes, the initialized geometric and structural models that were stored in the
Matlab shared engine’s↪

356 workspace are used, and the aerodynamic model is stored there too once it is initialized.
357 ”””
358

359 def __init__(self, n_wing_segments=2, n_load_cases=1):
360 super(SteadyAerodynamicModelInitializer, self).__init__(n_wing_segments, n_load_cases)
361

362 @property
363 def description(self):
364 return ’dAEDalus Steady Aerodynamic Model Initializer’
365

366 def generate_input_xml(self):
367 # type: () -> str
368 ”””Input is a CPACS file containing the Mach number, altitude, and load factor for

each load case.↪
369

370 The link to the geometric model and name of the Matlab shared engine for each load
case is also required.↪

371 ”””
372 root = etree.Element(’cpacs’)
373 doc = etree.ElementTree(root)
374

375 for i in range(1, self.n_load_cases + 1):
376 xml_safe_create_element(doc, x_M % i, 0.)
377 xml_safe_create_element(doc, x_H % i, 0.)
378 xml_safe_create_element(doc, x_n % i, 0.)
379

380 xml_safe_create_element(doc, x_ml_id % i, 0)
381

382 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
383

384 def generate_output_xml(self):
385 # type: () -> str
386 ”””Output is a CPACS file containing the lift- and friction drag coefficient for each

load case, as well as a↪
387 link to the aerodynamic model.
388 ”””
389 root = etree.Element(’cpacs’)
390 doc = etree.ElementTree(root)
391

392 for i in range(1, self.n_load_cases + 1):
393 xml_safe_create_element(doc, x_CL % i, 0.)
394 xml_safe_create_element(doc, x_CDf % i, 0.)
395

396 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
397

398 @staticmethod
399 def execute(in_file, out_file):
400 ”””Call the Matlab function dAEDalusSteadyAerodynamicModelInitializer() and store the

resulting values of C_L↪
401 and C_D_f in the the CPACS output file.
402 ”””
403 doc_in = etree.parse(in_file)
404

405 root = etree.Element(’cpacs’)
406 doc_out = etree.ElementTree(root)
407

408 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)
409 futures = n_lc * [None]
410 for i in range(1, n_lc + 1):
411 engine_id = int(float(doc_in.xpath(x_ml_id % i)[0].text))
412 if engine_id not in _mles:
413 break
414 else:
415 M = float(doc_in.xpath(x_M % i)[0].text)
416 H = float(doc_in.xpath(x_H % i)[0].text)
417 n = float(doc_in.xpath(x_n % i)[0].text)
418



212 A. Code

419 futures[i - 1] = _mles[engine_id].dAEDalusSteadyAerodynamicModelInitializer(
420 float(M), float(H), float(n), nargout=2, async=True)
421

422 for i, future in enumerate(futures):
423 if future is None:
424 break
425 else:
426 try:
427 C_L, C_D_f = future.result()
428 xml_safe_create_element(doc_out, x_CL % (i + 1), C_L)
429 xml_safe_create_element(doc_out, x_CDf % (i + 1), C_D_f)
430 except MatlabExecutionError:
431 break
432

433 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
434

435

436 class SteadyAerodynamicAnalysis(LoadCaseSpecific):
437 ””””Steady aerodynamic analysis of dAEDalus using Matlab.”””
438

439 def __init__(self, n_wing_segments=2, n_load_cases=1):
440 super(SteadyAerodynamicAnalysis, self).__init__(n_wing_segments, n_load_cases)
441 self.previous_grids = n_load_cases * [None]
442

443 @property
444 def description(self):
445 return ’dAEDalus Steady Aerodynamic Analysis’
446

447 def generate_input_xml(self):
448 # type: () -> str
449 ”””Input is a CPACS file with the lift coefficient and deflected grid of the wing for

each load case, as well↪
450 as links to the geometric and aerodynamic models.
451 ”””
452 root = etree.Element(’cpacs’)
453 doc = etree.ElementTree(root)
454

455 for i in range(1, self.n_load_cases + 1):
456 xml_safe_create_element(doc, x_CL % i, 0.)
457 xml_safe_create_element(doc, x_ml_id % i, 0)
458

459 for j in range(3):
460 xml_safe_create_element(doc, x_grid_initial[j] % i, np.zeros(2 * (n_seg_x + 1)

* (n_seg_y + 1) * self.n_wing_segments))↪
461 xml_safe_create_element(doc, x_grid[j] % i, np.zeros(2 * (n_seg_x + 1) *

(n_seg_y + 1) * self.n_wing_segments))↪
462

463 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
464

465 def generate_output_xml(self):
466 # type: () -> str
467 ”””Output is a CPACS file with the induced drag coefficient and link to the

aerodynamic forces.”””↪
468 root = etree.Element(’cpacs’)
469 doc = etree.ElementTree(root)
470

471 for i in range(1, self.n_load_cases + 1):
472 xml_safe_create_element(doc, x_CDi % i, 0.)
473

474 for j in range(3):
475 xml_safe_create_element(doc, x_grid_guess[j] % i, np.zeros(2 * (n_seg_x + 1) *

(n_seg_y + 1) * self.n_wing_segments))↪
476

477 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
478

479 @staticmethod
480 def execute(in_file, out_file):
481 ”””Call the Matlab function dAEDalusSteadyAerodynamicAnalysis() and store the

resulting value of C_D_i and a↪
482 link to the aerodynamic forces for each load case.
483 ”””



A.5. Test Suite 213

484 doc_in = etree.parse(in_file)
485

486 root = etree.Element(’cpacs’)
487 doc_out = etree.ElementTree(root)
488

489 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)
490 futures = n_lc * [None]
491 for i in range(1, n_lc + 1):
492 engine_id = int(float(doc_in.xpath(x_ml_id % i)[0].text))
493 if engine_id not in _mles:
494 break
495 else:
496 grid = 3 * [None]
497 s = 0.
498 for j in range(3):
499 g = np.array(doc_in.xpath(x_grid[j] % i)[0].text.split(’;’),

dtype=float).tolist()↪
500 s += np.sum(np.square(g))
501 grid[j] = g
502 if s == 0:
503 for j in range(3):
504 grid[j] = np.array(doc_in.xpath(x_grid_initial[j] %

i)[0].text.split(’;’), dtype=float).tolist()↪
505

506 C_L = float(doc_in.xpath(x_CL % i)[0].text)
507

508 futures[i - 1] = _mles[engine_id].dAEDalusSteadyAerodynamicAnalysis(
509 matlab.double(grid), float(C_L), nargout=1, async=True)
510

511 for j in range(3):
512 xml_safe_create_element(doc_out, x_grid_guess[j] % i, np.array(grid[j]))
513

514 for i, future in enumerate(futures):
515 if future is None:
516 break
517 else:
518 try:
519 C_D_i = future.result()
520 xml_safe_create_element(doc_out, x_CDi % (i + 1), C_D_i)
521 except MatlabExecutionError:
522 break
523

524 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
525

526

527 class SteadyStructuralAnalysis(LoadCaseSpecific):
528 ”””Steady structural analysis of dAEDalus using Matlab.”””
529

530 def __init__(self, n_wing_segments=2, n_load_cases=1):
531 super(SteadyStructuralAnalysis, self).__init__(n_wing_segments, n_load_cases)
532

533 @property
534 def description(self):
535 return ’dAEDalus Steady Structural Analysis’
536

537 def generate_input_xml(self):
538 # type: () -> str
539 ”””Input is a CPACS file containing the name of the Matlab shared engine, the links to

all three models↪
540 (geometric, structural, and aerodynamic), and the link the the aerodynamic forces for

each load case.↪
541 ”””
542 root = etree.Element(’cpacs’)
543 doc = etree.ElementTree(root)
544

545 for i in range(1, self.n_load_cases + 1):
546 xml_safe_create_element(doc, x_ml_id % i, 0)
547 for j in range(3):
548 xml_safe_create_element(doc, x_grid_guess[j] % i, np.zeros(2 * (n_seg_x + 1) *

(n_seg_y + 1) * self.n_wing_segments))↪
549



214 A. Code

550 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
551

552 def generate_output_xml(self):
553 # type: () -> str
554 ”””Output is a CPACS file with the stresses in the front/rear spars and in the

top/bottom skins for each load↪
555 case, as well as the deflected grid for each load case.
556 ”””
557 root = etree.Element(’cpacs’)
558 doc = etree.ElementTree(root)
559

560 for i in range(1, self.n_load_cases + 1):
561 for x_sigma in x_sigmas_in:
562 xml_safe_create_element(doc, x_sigma % i, np.zeros(self.n_wing_segments))
563

564 for j in range(3):
565 xml_safe_create_element(doc, x_grid[j] % i, np.zeros(2 * (n_seg_x + 1) *

(n_seg_y + 1) * self.n_wing_segments))↪
566

567 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
568

569 @staticmethod
570 def execute(in_file, out_file):
571 ”””Call the Matlab function dAEDalusSteadyStructuralAnalysis() and store the resulting

values of the stresses↪
572 (sigma_*) and the deflected grid in the corresponding unknowns.
573 ”””
574 doc_in = etree.parse(in_file)
575

576 root = etree.Element(’cpacs’)
577 doc_out = etree.ElementTree(root)
578

579 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)
580 futures = n_lc * [None]
581 for i in range(1, n_lc + 1):
582 engine_id = int(float(doc_in.xpath(x_ml_id % i)[0].text))
583 if engine_id not in _mles:
584 break
585 else:
586 futures[i - 1] = _mles[engine_id].dAEDalusSteadyStructuralAnalysis(nargout=5,

async=True)↪
587

588 for i, future in enumerate(futures):
589 if future is None:
590 break
591 else:
592 try:
593 sigma_fs, sigma_rs, sigma_ts, sigma_bs, deflected_grid = future.result()
594 sigmas = [np.array(sigma_fs), np.array(sigma_rs), np.array(sigma_ts),

np.array(sigma_bs)]↪
595 deflected_grid = np.array(deflected_grid)
596

597 for j in range(4):
598 xml_safe_create_element(doc_out, x_sigmas_in[j] % (i + 1), sigmas[j])
599

600 for j in range(3):
601 xml_safe_create_element(doc_out, x_grid[j] % (i + 1), deflected_grid[j])
602 except MatlabExecutionError:
603 break
604

605 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
606

607

608 class LoadCollector(LoadCaseSpecific):
609 ”””Defines the Load Collector discipline.
610

611 This discipline takes the maximum value of the stresses in the front/rear spars and
top/bottom skins for any number↪

612 of load cases and returns a single set of critical stresses.
613 ”””
614



A.5. Test Suite 215

615 def __init__(self, n_wing_segments=2, n_load_cases=1):
616 super(LoadCollector, self).__init__(n_wing_segments, n_load_cases)
617

618 @property
619 def description(self):
620 return ’Load Collector’
621

622 def generate_input_xml(self):
623 # type: () -> str
624 ”””Input is a CPACS file with the stresses in the front/rear spars and in the

top/bottom skins for each load↪
625 case.
626 ”””
627 root = etree.Element(’cpacs’)
628 doc = etree.ElementTree(root)
629

630 for i in range(1, self.n_load_cases + 1):
631 for x_sigma in x_sigmas_in:
632 xml_safe_create_element(doc, x_sigma % i, np.zeros(self.n_wing_segments))
633

634 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
635

636 def generate_output_xml(self):
637 # type: () -> str
638 ”””Output is a CPACS file containing the maximum stresses in the front/rear spars and

in the top/bottom skins↪
639 across all load cases.
640 ”””
641 root = etree.Element(’cpacs’)
642 doc = etree.ElementTree(root)
643

644 for x_sigma in x_sigmas_out:
645 xml_safe_create_element(doc, x_sigma, np.zeros(self.n_wing_segments))
646

647 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
648

649 @staticmethod
650 def execute(in_file, out_file=’LC-output-loc.xml’):
651 ”””Computes the maximum stresses across all load cases.”””
652 doc_in = etree.parse(in_file)
653

654 sigmas = 4 * [np.ndarray((0,))]
655 for i in range(1, LoadCaseSpecific.get_n_loadcases(doc_in) + 1):
656 for j in range(4):
657 data = np.array(doc_in.xpath(x_sigmas_in[j] % i)[0].text.split(’;’),

dtype=float)↪
658 if i == 1:
659 sigmas[j] = data
660 else:
661 sigmas[j] = np.maximum(sigmas[j], data)
662

663 # Write results to output XML file
664 root = etree.Element(’cpacs’)
665 doc_out = etree.ElementTree(root)
666 for i in range(4):
667 xml_safe_create_element(doc_out, x_sigmas_out[i], sigmas[i])
668

669 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
670

671

672 class SteadyLiftDistribution(LoadCaseSpecific):
673 ”””Calculation of the lift distribution using Matlab.”””
674

675 def __init__(self, n_wing_segments=2, n_load_cases=1):
676 super(SteadyLiftDistribution, self).__init__(n_wing_segments, n_load_cases)
677

678 @property
679 def description(self):
680 return ’Steady Lift Distribution’
681

682 def generate_input_xml(self):



216 A. Code

683 # type: () -> str
684 ”””Input is a CPACS file with the name of the Matlab shared engine and links to the

geometric model, aerodynamic↪
685 model and aerodynamic forces for each load case.
686 ”””
687 root = etree.Element(’cpacs’)
688 doc = etree.ElementTree(root)
689

690 for i in range(1, self.n_load_cases + 1):
691 xml_safe_create_element(doc, x_ml_id % i, 0)
692

693 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
694

695 def generate_output_xml(self):
696 # type: () -> str
697 ”””Output is a CPACS file with the normalized y-coordinates and corresponding

normalized section lift forces for↪
698 each load case.
699 ”””
700 root = etree.Element(’cpacs’)
701 doc = etree.ElementTree(root)
702

703 for i in range(1, self.n_load_cases + 1):
704 xml_safe_create_element(doc, x_y_norm % i, np.zeros(n_seg_y *

self.n_wing_segments))↪
705 xml_safe_create_element(doc, x_l_norm % i, np.zeros(n_seg_y *

self.n_wing_segments))↪
706

707 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
708

709 @staticmethod
710 def execute(in_file, out_file):
711 ”””Call the Matlab function dAEDalusSteadyLiftDistribution() and store the resulting

values of y_norm↪
712 (normalized y-coordinates) and l_norm (normalized lift) in the output XML.
713 ”””
714 doc_in = etree.parse(in_file)
715

716 root = etree.Element(’cpacs’)
717 doc_out = etree.ElementTree(root)
718

719 n_lc = LoadCaseSpecific.get_n_loadcases(doc_in)
720 futures = n_lc * [None]
721 for i in range(1, n_lc + 1):
722 engine_id = int(float(doc_in.xpath(x_ml_id % i)[0].text))
723 if engine_id not in _mles:
724 break
725 else:
726 futures[i - 1] = _mles[engine_id].dAEDalusSteadyLiftDistribution(nargout=2,

async=True)↪
727

728 for i, future in enumerate(futures):
729 if future is None:
730 break
731 else:
732 try:
733 y_norm, l_norm = future.result()
734 y_norm = np.array(y_norm)
735 l_norm = np.array(l_norm)
736

737 xml_safe_create_element(doc_out, x_y_norm % (i + 1), y_norm)
738 xml_safe_create_element(doc_out, x_l_norm % (i + 1), l_norm)
739 except MatlabExecutionError:
740 break
741

742 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)

Code frament A.34: Code of the Python module containing the dAEDalus disciplines.

1 function [m_wing, initial_grid] = dAEDalusSteadyModelInitializer(input_cpacs, n_seg_x,
n_seg_y)↪



A.5. Test Suite 217

2 try
3 evalin(’base’, ’clear geometrical_model’);
4 evalin(’base’, ’clear structural_model’);
5 evalin(’base’, ’clear aerodynamic_model’);
6 catch e
7

8 end
9

10 % Create Aircraft data structure
11 geometric_model = class_aircraft.create_from_cpacs(input_cpacs);
12 geometric_model.grid_settings.aerodynamic_fuselage = 0;
13 geometric_model.wings = geometric_model.wings(1);
14 geometric_model.wings_structural_properties =

geometric_model.wings_structural_properties(1);↪
15

16 % Obtain smallest chord length
17 wing = geometric_model.wings(1);
18 n_wing_segments = length(wing.wing_segments);
19 c_min = 100;
20 for i = 1:n_wing_segments
21 c_min = min(c_min, wing.wing_segments(i).c_r);
22 c_min = min(c_min, wing.wing_segments(i).c_t);
23

24 geometric_model.wings(1).wing_segments(i).n_chord = n_seg_x;
25 geometric_model.wings(1).wing_segments(i).n_span = n_seg_y;
26 end
27

28 geometric_model.grid_settings.dy_max_struct_grid = geometric_model.reference.b_ref/40;
29

30 % Compute grid and initialize structural model
31 geometric_model = geometric_model.compute_grid();
32 [geometric_model, structural_model] = create_structural_model(geometric_model);
33 structural_model.beam(1) = struc-

tural_model.beam(1).f_add_boundary_condition(class_boundary_condition(ceil(length(structural_model.beam.node_coords)/2),[1
1 1 1 1 1],[0 0 0 0 0 0]));

↪
↪

34 geometric_model = geometric_model.compute_force_interpolation_matrix(structural_model);
35

36 % Assemble structural model
37 structure_solver_settings = class_wingstructure_solver_settings;
38 structure_solver_settings.gravity = 0;
39 structural_model = structural_model.f_set_solver_settings(structure_solver_settings);
40 structural_model = structural_model.f_assemble(1,0);
41

42 % Make sure the deflected grid of the geometrical model is equal to the
43 % initial grid
44 geometric_model.grid_deflected = geometric_model.grid;
45

46 % Compute total wingbox mass
47 structural_model = structural_model.f_calc_mass(geometric_model.weights);
48 m_wing = structural_model.beam(1).m_total - structural_model.beam(1).m_fuel_total;
49

50 initial_grid = geometric_model.grid;
51

52 % Store these objects in the workspace for future use
53 assignin(’base’, ’geometric_model’, geometric_model);
54 assignin(’base’, ’structural_model’, structural_model);
55

56 end

Code frament A.35: Code of the Matlab script of the geometric and structural model initializer discipline (dSMI).

1 function [C_L, C_D_f] = dAEDalusSteadyAerodynamicModelInitializer( M, H, n )
2

3 geometric_model = evalin(’base’, ’geometric_model’);
4

5 % Create flight state
6 ref_state = critical_ref_state(geometric_model, M, H);
7 critical_state = critical_g_maneuver_state(ref_state, n);
8

9 % Find the required C_l



218 A. Code

10 C_L = critical_state.get_Cl(geometric_model.reference.S_ref);
11

12 % Compute C_D_f
13 ac = geometric_model.compute_CD_f(critical_state.aerodynamic_state,

geometric_model.reference.S_ref);↪
14 C_D_f = ac.CD_f;
15

16 % Initialize aerodynamic model
17 aerodynamic_model = class_VLM_solver(...
18 geometric_model.grid, ... % geometric_model.grid_deflected
19 geometric_model.te_idx, ...
20 geometric_model.panels, ...
21 critical_state.aerodynamic_state, ...
22 geometric_model.reference);
23

24 % Compute the influence coefficients
25 aerodynamic_model.f_calc_coeffs();
26

27 assignin(’base’, ’aerodynamic_model’, aerodynamic_model);
28

29 end

Code frament A.36: Code of the Matlab script of the aerodynamic model initializer discipline (dSAMI).

1 function [C_D_i] = dAEDalusSteadyAerodynamicAnalysis(deflected_grid, C_L)
2 % Obtain geometric_model
3 geometric_model = evalin(’base’, ’geometric_model’);
4 aerodynamic_model = evalin(’base’, ’aerodynamic_model’);
5

6 aerodynamic_model.set_grid(deflected_grid, geometric_model.panels);
7 aerodynamic_model = aerodynamic_model.f_solve_for_Cl_fast(C_L);
8

9 % Obtain C_D_i
10 C_D_i = aerodynamic_model.Cdi;
11

12 assignin(’base’, ’aerodynamic_model’, aerodynamic_model);
13 end

Code frament A.37: Code of the Matlab script of the aerodynamic analysis discipline (dSAA).

1 function [sigma_sp_fr, sigma_sp_re, sigma_sk_up, sigma_sk_lo, deflected_grid] =
dAEDalusSteadyStructuralAnalysis()↪

2 % Obtain geometric_model
3 geometric_model = evalin(’base’, ’geometric_model’);
4 structural_model = evalin(’base’, ’structural_model’);
5 aerodynamic_model = evalin(’base’, ’aerodynamic_model’);
6

7 % Transforms aeroloads to structure
8 geometric_model = geometric_model.compute_beam_forces(aerodynamic_model.F_body,

structural_model);↪
9 for i = 1:length(structural_model.beam)

10 if isa(structural_model.beam(i),’class_wing’)
11 structural_model.beam(i) =

structural_model.beam(i).f_set_aeroloads(geometric_model.wings(i));↪
12

13 end
14 end
15

16 % Solve structural model to get the deflections
17 structural_model = structural_model.f_solve();
18

19 % Compute the deflected grid of the geometrical model
20 geometric_model =

geometric_model.compute_deflected_grid(structural_model.f_get_deflections);↪
21 deflected_grid = geometric_model.grid_deflected;
22 %deflected_grid = deflected_grid(:, 1:(size(deflected_grid, 2)/2));
23

24 % Calculate the stresses
25 structural_model = structural_model.f_calc_stresses();



A.5. Test Suite 219

26

27 % Gather all the stresses in arrays for front/rear spars and top/bottom skins
28 beam = structural_model.beam;
29 n_segments = length(geometric_model.wings.wing_segments);
30

31 sigma_sp_fr = zeros(1, n_segments);
32 sigma_sp_re = zeros(1, n_segments);
33 sigma_sk_up = zeros(1, n_segments);
34 sigma_sk_lo = zeros(1, n_segments);
35

36 for i = 1:length(beam.beamelement)
37 cs = beam.beamelement(i).crosssection;
38 i_segment = cs.segment_index;
39

40 sigma_sp_fr(i_segment) = max([sigma_sp_fr(i_segment), cs.sigma_sp_fr]);
41 sigma_sp_re(i_segment) = max([sigma_sp_re(i_segment), cs.sigma_sp_re]);
42 sigma_sk_up(i_segment) = max([sigma_sk_up(i_segment), cs.sigma_sk_up]);
43 sigma_sk_lo(i_segment) = max([sigma_sk_lo(i_segment), cs.sigma_sk_lo]);
44 end
45

46 assignin(’base’, ’geometric_model’, geometric_model);
47 assignin(’base’, ’structural_model’, structural_model);
48

49 end

Code frament A.38: Code of the Matlab script of the structural analysis discipline (dSSA).

1 function [ y_norm, l_norm ] = dAEDalusSteadyLiftDistribution( )
2 %DAEDALUSSTEADYLIFTDISTRIBUTION Summary of this function goes here
3 % Detailed explanation goes here
4

5 geometric_model = evalin(’base’, ’geometric_model’);
6 aerodynamic_model = evalin(’base’, ’aerodynamic_model’);
7

8 % Compute the lift distribution
9 % Finding chord lengths

10 x_p_r_le = geometric_model.grid_deflected(:,aerodynamic_model.panels(1,:)); %
Panel root LE locations↪

11 x_p_r_te = geometric_model.grid_deflected(:,aerodynamic_model.panels(4,:)); %
Panel root TE locations↪

12 x_p_t_le = geometric_model.grid_deflected(:,aerodynamic_model.panels(2,:)); %
Panel tip LE locations↪

13 x_p_t_te = geometric_model.grid_deflected(:,aerodynamic_model.panels(3,:)); %
Panel tip TE locations↪

14

15 idx_te = find(geometric_model.is_te); % indices of TE panels
16 idx_le = [1,idx_te(1:end-1)+1]; % indices of LE panels
17 x_s_r_le = x_p_r_le(:,idx_le); % strip root LE positions
18 x_s_r_te = x_p_r_te(:,idx_te); % strip root TE positions
19 x_s_t_le = x_p_t_le(:,idx_le); % strip tip LE positions
20 x_s_t_te = x_p_t_te(:,idx_te); % strip tip TE positions
21

22 x_s_le = x_s_r_le + 0.5*(x_s_t_le - x_s_r_le); % strip middle LE positions
23

24 n_panels = size(aerodynamic_model.panels,2);
25 I1 = 1:n_panels <= idx_te’;
26 I2 = 1:n_panels >= idx_le’;
27 I = I1.*I2;
28

29 L_s = (I*aerodynamic_model.F_aero(3,:)’)’; % strip lift forces
30 b_s = (x_s_t_le(2,:) - x_s_r_le(2,:) + x_s_t_te(2,:) - x_s_r_te(2,:))/2; % strip spans
31

32 l = L_s./b_s; % section lift
33 l_mean = sum(L_s)/sum(b_s); % mean section lift
34 l_norm = l/l_mean; % normalized section lift
35

36 [y,iy] = sort(x_s_le(2,:)); % sorted y positions of LEs
37 y_norm = y./(sum(b_s)/2);
38 l_norm = l_norm(iy);
39



220 A. Code

40 y_norm = y_norm(length(y_norm)/2+1:end);
41 l_norm = l_norm(length(l_norm)/2+1:end);
42

43 end

Code frament A.39: Code of the Matlab script of the lift distribution calculation discipline (dSLD).

1 function [m_wing_struct, C_L, C_D_f, C_D_i, sigma_sp_fr, sigma_sp_re, sigma_sk_up,
sigma_sk_lo] = dAEDalusSteadyAerostructuralLoop(cpacs, n_x, n_y, M, H, n)↪

2 [m_wing_struct, initial_grid] = dAEDalusSteadyModelInitializer(cpacs, n_x, n_y);
3

4 [C_L, C_D_f] = dAEDalusSteadyAerodynamicModelInitializer(M, H, n);
5

6 deflected_grid_guess = initial_grid;
7 tol = 1e-6;
8 iter = 0;
9 maxiter = 10;

10 while 1
11 C_D_i = dAEDalusSteadyAerodynamicAnalysis(deflected_grid_guess, C_L);
12 [sigma_sp_fr, sigma_sp_re, sigma_sk_up, sigma_sk_lo, deflected_grid] =

dAEDalusSteadyStructuralAnalysis();↪
13

14 r_norm = sqrt(sum((deflected_grid - deflected_grid_guess).^2, 1));
15 err = rms(r_norm);
16 %fprintf(1, ’iter: %d\t err: %.7f\n’, iter, err);
17 iter = iter + 1;
18 if err < tol
19 break
20 end
21 deflected_grid_guess = deflected_grid;
22

23 if iter > maxiter
24 break
25 end
26 end
27 % [y_norm, l_norm] = dAEDalusSteadyLiftDistribution( );
28 end

Code frament A.40: Code of the Matlab script of the full aerostructural loop of dAEDalus.

A.5.2.3.2 Fuel Weight Estimator

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the FuelWeightEstimator class along with static variables
it uses.↪

19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 import os
23

24 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.dAEDalus import
LoadCaseSpecific↪



A.5. Test Suite 221

25 from lxml import etree
26 from numpy import sqrt, expm1, exp
27

28 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.xpaths import *
29 from openlego.utils.xml_utils import xml_safe_create_element
30 from openlego.partials.partials import Partials
31

32 dir_path = os.path.dirname(os.path.realpath(__file__))
33

34 g0 = 9.80665 # Standard gravitational acceleration, [m/s^2]
35 rho0 = 1.225 # ISA sea level density, [kg/m^3]
36 R_air = 287.05287 # ISA specific gas constant, [J/kg/K]
37 P0 = 101325 # ISA sea level pressure, [Pa]
38 T0 = 288.15 # ISA sea level temperature, [K]
39 beta = -0.0065 # ISA temperature lapse rate, [K/m]
40 kappa = 1.4 # ISA ratio of specific heats, [-]
41

42

43 class FuelWeightEstimator(LoadCaseSpecific):
44 ”””Definition of the Fuel Weight Estimator discipline.
45

46 This discipline estimates the weight of the fuel required to fly a given mission based on
the Breguet range↪

47 equation.
48 ”””
49

50 def __init__(self, n_wing_segments=2, n_load_cases=1):
51 super(FuelWeightEstimator, self).__init__(n_wing_segments, n_load_cases)
52

53 @property
54 def creator(self):
55 return ’D. de Vries’
56

57 @property
58 def description(self):
59 return ’Fuel weight estimator’
60

61 def generate_input_xml(self):
62 # type: () -> str
63 root = etree.Element(’cpacs’)
64 doc = etree.ElementTree(root)
65

66 for i in range(1, self.n_load_cases + 1):
67 xml_safe_create_element(doc, x_M % i, 0)
68 xml_safe_create_element(doc, x_H % i, 0)
69 xml_safe_create_element(doc, x_n % i, 0)
70 xml_safe_create_element(doc, x_CDf % i, 0)
71 xml_safe_create_element(doc, x_CDi % i, 0)
72 xml_safe_create_element(doc, x_CL % i, 0)
73

74 xml_safe_create_element(doc, x_CDfus, 0)
75 xml_safe_create_element(doc, x_CDother, 0)
76 xml_safe_create_element(doc, x_R, 0)
77 xml_safe_create_element(doc, x_SFC, 0)
78 xml_safe_create_element(doc, x_m_fuel_res, 0)
79 xml_safe_create_element(doc, x_m_fixed, 0)
80 xml_safe_create_element(doc, x_m_wing, 0)
81

82 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
83

84 def generate_output_xml(self):
85 # type: () -> str
86 root = etree.Element(’cpacs’)
87 doc = etree.ElementTree(root)
88

89 xml_safe_create_element(doc, x_CD, 0)
90 xml_safe_create_element(doc, x_LD, 0)
91 xml_safe_create_element(doc, x_fwe_CL, 0)
92 xml_safe_create_element(doc, x_m_fuel, 0)
93 xml_safe_create_element(doc, x_m_mtow, 0)
94



222 A. Code

95 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
96

97 def generate_partials_xml(self):
98 partials = Partials()
99 partials.declare_partials(x_CD, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother])

100 partials.declare_partials(x_LD, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL % 1])
101 partials.declare_partials(x_fwe_CL, x_CL % 1)
102 partials.declare_partials(x_m_fuel, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL %

1,↪
103 x_M % 1, x_H % 1, x_R, x_SFC, x_m_fuel_res,

x_m_fixed, x_m_wing])↪
104 partials.declare_partials(x_m_mtow, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL %

1,↪
105 x_M % 1, x_H % 1, x_R, x_SFC, x_m_fuel_res,

x_m_fixed, x_m_wing])↪
106 return partials.get_string()
107

108 @property
109 def supplies_partials(self):
110 return False
111

112 @staticmethod
113 def execute(in_file, out_file=’FWE-output-loc.xml’):
114 # Obtain data from XML file
115 tree = etree.parse(in_file)
116

117 M = H = C_D_f = C_D_i = C_L = 0
118 for i in range(1, LoadCaseSpecific.get_n_loadcases(tree) + 1):
119 M = float(tree.xpath(x_M % i)[0].text) # Mach number, [-]
120 H = float(tree.xpath(x_H % i)[0].text) # Altitude, [m]
121 C_D_f = float(tree.xpath(x_CDf % i)[0].text) # Friction drag

coefficient, [-]↪
122 C_D_i = float(tree.xpath(x_CDi % i)[0].text) # Induced drag

coefficient, [-]↪
123 C_L = float(tree.xpath(x_CL % i)[0].text) # Lift coefficient, [-]
124

125 if round(float(tree.xpath(x_n % i)[0].text)) == 1.:
126 break
127

128 C_D_fus = float(tree.xpath(x_CDfus)[0].text) # Fuselage drag coefficient, [-]
129 C_D_other = float(tree.xpath(x_CDother)[0].text) # Remaining drag coefficient,

[-]↪
130 R = float(tree.xpath(x_R)[0].text) # Range, [m]
131 SFC = float(tree.xpath(x_SFC)[0].text) # Specific fuel consumption,

[kg/N/s]↪
132 m_fuel_res = float(tree.xpath(x_m_fuel_res)[0].text) # Reserve fuel weight, [kg]
133 m_fixed = float(tree.xpath(x_m_fixed)[0].text) # Fixed weight, [kg]
134 m_wing = float(tree.xpath(x_m_wing)[0].text) # Wing weight, [kg]
135

136 # Perform calculations
137 C_D = C_D_i + C_D_f + C_D_fus + C_D_other # Total drag coefficient, [-]
138 L_D = C_L/C_D # Aerodynamic efficiency, L/D, [-]
139 LW = m_fixed + m_wing + m_fuel_res # Landing weight, [kg]
140 T = T0 + beta * H # Temperature at altitude, [K]
141 a = sqrt(kappa * R_air * T) # Speed of sound at altitude, [m/s]
142

143 if L_D == 0:
144 m_fuel = 0.
145 else:
146 m_fuel = LW * expm1(R * g0 * SFC / (a * M) / L_D) # Required fuel weight, [kg]
147

148 m_mtow = m_fuel + LW
149 m_fuel = m_fuel + m_fuel_res
150

151 # Write results to output XML file
152 root = etree.Element(’cpacs’)
153 doc = etree.ElementTree(root)
154 xml_safe_create_element(doc, x_CD, C_D)
155 xml_safe_create_element(doc, x_LD, L_D)
156 xml_safe_create_element(doc, x_fwe_CL, C_L)
157 xml_safe_create_element(doc, x_m_fuel, m_fuel)



A.5. Test Suite 223

158 xml_safe_create_element(doc, x_m_mtow, m_mtow)
159 doc.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
160

161 @staticmethod
162 def linearize(in_file, partials_file):
163 tree = etree.parse(in_file)
164

165 M = H = C_D_f = C_D_i = C_L = 0
166 for i in range(1, LoadCaseSpecific.get_n_loadcases(tree) + 1):
167 M = float(tree.xpath(x_M % i)[0].text) # Mach number, [-]
168 H = float(tree.xpath(x_H % i)[0].text) # Altitude, [m]
169 C_D_f = float(tree.xpath(x_CDf % i)[0].text) # Friction drag coefficient, [-]
170 C_D_i = float(tree.xpath(x_CDi % i)[0].text) # Induced drag coefficient, [-]
171 C_L = float(tree.xpath(x_CL % i)[0].text) # Lift coefficient, [-]
172

173 if round(float(tree.xpath(x_n % i)[0].text)) == 1.:
174 break
175

176 C_D_fus = float(tree.xpath(x_CDfus)[0].text) # Fuselage drag coefficient, [-]
177 C_D_other = float(tree.xpath(x_CDother)[0].text) # Remaining drag coefficient, [-]
178 R = float(tree.xpath(x_R)[0].text) # Range, [m]
179 SFC = float(tree.xpath(x_SFC)[0].text) # Specific fuel consumption, [kg/N/s]
180 m_fuel_res = float(tree.xpath(x_m_fuel_res)[0].text) # Reserve fuel weight, [kg]
181 m_fixed = float(tree.xpath(x_m_fixed)[0].text) # Fixed weight, [kg]
182 m_wing = float(tree.xpath(x_m_wing)[0].text) # Wing weight, [kg]
183

184 C_D = C_D_i + C_D_f + C_D_fus + C_D_other # Total drag coefficient, [-]
185 L_D = C_L / C_D # Aerodynamic efficiency, L/D, [-]
186 LW = m_fixed + m_wing + m_fuel_res # Landing weight, [kg]
187 T = T0 + beta * H # Temperature at altitude, [K]
188 a = sqrt(kappa * R_air * T) # Speed of sound at altitude, [m/s]
189

190 if L_D == 0:
191 dLD_dd = 5*[1.]
192 dmfuel_d2 = 12*[1.]
193 dmmtow_dd = 12*[1.]
194 else:
195 m_fuel = LW * expm1(R * g0 * SFC / (a * M) / L_D) # Required fuel weight, [kg]
196

197 dmfuel_dd = LW*R*g0*SFC/(a*M*L_D)*exp(R*g0*SFC/(a*M*L_D))
198 da_dH = .5*kappa*R_air/a
199

200 dLD_dd = 4*[1./C_L] + [-C_D/C_L**2]
201 dmfuel_d2 = 4*[dmfuel_dd/C_D] + [-dmfuel_dd/C_L, -dmfuel_dd/M,
202 -dmfuel_dd/a*da_dH, dmfuel_dd/R,
203 dmfuel_dd/SFC, 1., m_fuel/m_fuel_res,
204 m_fuel/m_fixed, m_fuel/m_wing]
205 dmmtow_dd = 4 * [dmfuel_dd / C_D] + [-dmfuel_dd / C_L, -dmfuel_dd / M,
206 -dmfuel_dd / a * da_dH, dmfuel_dd / R,
207 dmfuel_dd / SFC, 1., dmfuel_dd / m_fuel_res + 1.,
208 m_fuel / m_fixed + 1., m_fuel / m_wing + 1.]
209

210 partials = Partials()
211 partials.declare_partials(x_CD, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother], 4*[1.])
212 partials.declare_partials(x_LD, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL % 1],

dLD_dd)↪
213 partials.declare_partials(x_fwe_CL, x_CL % 1, 1.)
214 partials.declare_partials(x_m_fuel, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL %

1,↪
215 x_M % 1, x_H % 1, x_R, x_SFC, x_m_fuel_res,

x_m_fixed, x_m_wing],↪
216 dmfuel_d2)
217 partials.declare_partials(x_m_mtow, [x_CDi % 1, x_CDf % 1, x_CDfus, x_CDother, x_CL %

1,↪
218 x_M % 1, x_H % 1, x_R, x_SFC, x_m_fuel_res,

x_m_fixed, x_m_wing],↪
219 dmmtow_dd)
220

221 partials.write(partials_file)



224 A. Code

Code frament A.41: Code of the Python module containing the fuel weight estimator discipline.

A.5.2.3.3 Problem Definition

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the ProblemDefinition discipline.”””
19 from __future__ import absolute_import, division, print_function
20

21 import numpy as np
22 from lxml import etree
23

24 from openlego.api import AbstractDiscipline
25 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.xpaths import *
26 from openlego.utils.xml_utils import xml_safe_create_element
27 from openlego.partials.partials import Partials
28

29

30 class Constraints(AbstractDiscipline):
31 ”””Defines all the constraints for the problem.”””
32

33 def __init__(self, n_wing_segments=2):
34 # type: (int) -> None
35 ”””Initialize the Constraints discipline for a given number of wing segments.
36

37 Parameters
38 ----------
39 n_wing_segments : int
40 Number of wing segments.
41 ”””
42 self.n_wing_segments = n_wing_segments
43 super(Constraints, self).__init__()
44

45 @property
46 def creator(self):
47 return ’D. de Vries’
48

49 @property
50 def description(self):
51 return ’Calculates the constraint values for the wing optimization problem’
52

53 def generate_input_xml(self):
54 # type: () -> str
55 root = etree.Element(’cpacs’)
56 doc = etree.ElementTree(root)
57

58 xml_safe_create_element(doc, x_sigma_yield, 1.)
59 xml_safe_create_element(doc, x_WS_init, 1.)
60 xml_safe_create_element(doc, x_CL_buffet, 1.)
61

62 for x_sigma in x_sigmas_out:
63 xml_safe_create_element(doc, x_sigma, np.zeros(self.n_wing_segments))
64

65 xml_safe_create_element(doc, x_ref_area, 0.)
66 xml_safe_create_element(doc, x_m_mtow, 0.)



A.5. Test Suite 225

67 xml_safe_create_element(doc, x_fwe_CL, 0.)
68

69 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
70

71 def generate_output_xml(self):
72 # type: () -> str
73 root = etree.Element(’cpacs’)
74 doc = etree.ElementTree(root)
75

76 for x_sigma in x_con_sigmas:
77 xml_safe_create_element(doc, x_sigma, np.zeros(self.n_wing_segments))
78 # xml_safe_create_element(doc, x_con_ks, 0.)
79

80 xml_safe_create_element(doc, x_con_WS, 0.)
81 xml_safe_create_element(doc, x_con_buffet, 0.)
82

83 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
84

85 def generate_partials_xml(self):
86 partials = Partials()
87 for i, x_sigma in enumerate(x_con_sigmas):
88 partials.declare_partials(x_sigma, [x_sigma_yield, x_sigmas_out[i]])
89

90 partials.declare_partials(x_con_WS, [x_WS_init, x_ref_area, x_m_mtow])
91 partials.declare_partials(x_con_buffet, [x_CL_buffet, x_fwe_CL])
92 return partials.get_string()
93

94 @property
95 def supplies_partials(self):
96 return False
97

98 @staticmethod
99 def execute(in_file, out_file):

100 doc_in = etree.parse(in_file)
101

102 sigma_yield = float(doc_in.xpath(x_sigma_yield)[0].text)
103

104 root = etree.Element(’cpacs’)
105 doc_out = etree.ElementTree(root)
106 for i in range(4):
107 xml_safe_create_element(
108 doc_out, x_con_sigmas[i],
109 np.array(doc_in.xpath(x_sigmas_out[i])[0].text.split(’;’),

dtype=float)/sigma_yield - 1.)↪
110

111 MTOW = float(doc_in.xpath(x_m_mtow)[0].text)
112 S = float(doc_in.xpath(x_ref_area)[0].text)
113 WS_init = float(doc_in.xpath(x_WS_init)[0].text)
114 con_ws = MTOW/S/WS_init - 1.
115

116 xml_safe_create_element(doc_out, x_con_WS, con_ws)
117 xml_safe_create_element(doc_out, x_con_buffet,
118

float(doc_in.xpath(x_fwe_CL)[0].text)/float(doc_in.xpath(x_CL_buffet)[0].text) - 1.)↪
119

120 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
121

122 @staticmethod
123 def linearize(in_file, partials_file):
124 doc_in = etree.parse(in_file)
125

126 sigma_yield = float(doc_in.xpath(x_sigma_yield)[0].text)
127

128 n_ws = len(doc_in.xpath(x_sigmas_out[0])[0].text.split(’;’))
129

130 MTOW = float(doc_in.xpath(x_m_mtow)[0].text)
131 S = float(doc_in.xpath(x_ref_area)[0].text)
132 WS_init = float(doc_in.xpath(x_WS_init)[0].text)
133

134 partials = Partials()
135 for i in range(4):



226 A. Code

136 partials.declare_partials(x_con_sigmas[i], [x_sigma_yield, x_sigmas_out[i]], [
137 -np.array(doc_in.xpath(x_sigmas_out[i])[0].text.split(’;’), dtype=float) /

sigma_yield**2,↪
138 n_ws * [1./sigma_yield]])
139

140 partials.declare_partials(x_con_WS, [x_WS_init, x_ref_area, x_m_mtow],
141 [-MTOW/S/WS_init**2, -MTOW/S**2/WS_init, 1./S/WS_init])
142 partials.declare_partials(x_con_buffet, [x_CL_buffet, x_fwe_CL],
143

[-float(doc_in.xpath(x_fwe_CL)[0].text)/float(doc_in.xpath(x_CL_buffet)[0].text)**2,↪
144 1./float(doc_in.xpath(x_CL_buffet)[0].text)])
145

146 partials.write(partials_file)
147

148

149 class Objectives(AbstractDiscipline):
150 ”””Defines the objective functions for the problem.”””
151

152 def __init__(self):
153 # type: (int) -> None
154 ”””Initialize the Objectives discipline.”””
155 pass
156

157 @property
158 def creator(self):
159 return ’D. de Vries’
160

161 @property
162 def description(self):
163 return ’Calculates the objective values for the wing optimization problem’
164

165 def generate_input_xml(self):
166 # type: () -> str
167 root = etree.Element(’cpacs’)
168 doc = etree.ElementTree(root)
169

170 xml_safe_create_element(doc, x_m_fuel_init, 1.)
171 xml_safe_create_element(doc, x_m_fuel, 1.)
172 xml_safe_create_element(doc, x_m_wing_init, 1.)
173 xml_safe_create_element(doc, x_m_wing, 1.)
174

175 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
176

177 def generate_output_xml(self):
178 # type: () -> str
179 root = etree.Element(’cpacs’)
180 doc = etree.ElementTree(root)
181

182 xml_safe_create_element(doc, x_obj_m_fuel, 0.)
183 xml_safe_create_element(doc, x_obj_m_wing, 0.)
184

185 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
186

187 def generate_partials_xml(self):
188 partials = Partials()
189 partials.declare_partials(x_obj_m_fuel, [x_m_fuel_init, x_m_fuel])
190 partials.declare_partials(x_obj_m_wing, [x_m_wing_init, x_m_wing])
191 return partials.get_string()
192

193 @property
194 def supplies_partials(self):
195 return False
196

197 @staticmethod
198 def execute(in_file, out_file):
199 doc_in = etree.parse(in_file)
200

201 root = etree.Element(’cpacs’)
202 doc_out = etree.ElementTree(root)
203

204 xml_safe_create_element(doc_out, x_obj_m_fuel,



A.5. Test Suite 227

205 float(doc_in.xpath(x_m_fuel)[0].text) /
float(doc_in.xpath(x_m_fuel_init)[0].text))↪

206 xml_safe_create_element(doc_out, x_obj_m_wing,
207 float(doc_in.xpath(x_m_wing)[0].text) /

float(doc_in.xpath(x_m_wing_init)[0].text))↪
208

209 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
210

211 @staticmethod
212 def linearize(in_file, partials_file):
213 doc_in = etree.parse(in_file)
214

215 partials = Partials()
216 partials.declare_partials(x_obj_m_fuel, [x_m_fuel_init, x_m_fuel], [
217 -float(doc_in.xpath(x_m_fuel)[0].text) /

float(doc_in.xpath(x_m_fuel_init)[0].text)**2,↪
218 1. / float(doc_in.xpath(x_m_fuel_init)[0].text)
219 ])
220 partials.declare_partials(x_obj_m_wing, [x_m_wing_init, x_m_wing], [
221 -float(doc_in.xpath(x_m_wing)[0].text) /

float(doc_in.xpath(x_m_wing_init)[0].text) ** 2,↪
222 1. / float(doc_in.xpath(x_m_wing_init)[0].text)
223 ])
224

225 partials.write(partials_file)

Code frament A.42: Code of the Python module containing the constraint and objective function disciplines.

A.5.2.3.4 Simple Aerostructural Analysis

1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 import numpy as np
6 import matlab
7 import time
8 import os
9

10 from lxml import etree
11 from matlab.engine import MatlabExecutionError
12

13 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.dAEDalus import
LoadCaseSpecific,\↪

14 start_new_matlab_engine, n_seg_x, n_seg_y
15 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.WingObjectModel import

WingObjectModel↪
16 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.xpaths import *
17 from openlego.utils.xml_utils import xml_safe_create_element, xml_merge
18

19

20 dir_path = os.path.dirname(os.path.realpath(__file__))
21

22

23 class SimpleAerostructuralAnalysis(LoadCaseSpecific):
24

25 MATLAB_TIMEOUT = 1800.
26 _mles = []
27 _timestamp = [0.]
28

29 data = []
30 count = 0
31

32 def __init__(self, n_wing_segments=2, n_load_cases=1):
33 super(SimpleAerostructuralAnalysis, self).__init__(n_wing_segments, n_load_cases)
34

35 @property
36 def description(self):
37 return ’dAEDalus Steady Aerostructural Loop’



228 A. Code

38

39 def generate_input_xml(self):
40 wd = WingObjectModel(self.n_wing_segments)
41 s = wd.generate_input_xml()
42 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
43 doc = etree.fromstring(s, parser)
44

45 elem = doc.xpath(x_m_wing)
46 elem[0].getparent().remove(elem[0])
47

48 for i in range(1, self.n_load_cases + 1):
49 xml_safe_create_element(doc, x_M % i, 0.)
50 xml_safe_create_element(doc, x_H % i, 0.)
51 xml_safe_create_element(doc, x_n % i, 0.)
52

53 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
54

55 def generate_output_xml(self):
56 wd = WingObjectModel(self.n_wing_segments)
57 s = wd.generate_output_xml()
58

59 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
60 doc = etree.fromstring(s, parser)
61

62 xml_safe_create_element(doc, x_m_wing, 0.)
63

64 for i in range(1, self.n_load_cases + 1):
65 xml_safe_create_element(doc, x_CL % i, 0.)
66 xml_safe_create_element(doc, x_CDf % i, 0.)
67 xml_safe_create_element(doc, x_CDi % i, 0.)
68

69 for x_sigma in x_sigmas_in:
70 xml_safe_create_element(doc, x_sigma % i, np.zeros(self.n_wing_segments))
71

72 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
73

74 @property
75 def supplies_partials(self):
76 return False
77

78 @staticmethod
79 def execute(in_file, out_file):
80 in_file = os.path.abspath(in_file)
81 out_file = os.path.abspath(out_file)
82

83 parser = etree.XMLParser(remove_blank_text=True, encoding=’utf-8’)
84

85 doc_in = etree.parse(in_file, parser)
86 n_lc = SimpleAerostructuralAnalysis.get_n_loadcases(doc_in)
87

88 # Prepare matlab engines
89 if not len(SimpleAerostructuralAnalysis._mles) or \
90 (time.time() - SimpleAerostructuralAnalysis._timestamp[
91 0] >= SimpleAerostructuralAnalysis.MATLAB_TIMEOUT):
92 SimpleAerostructuralAnalysis._mles = []
93 SimpleAerostructuralAnalysis._timestamp[0] = time.time()
94 for _ in range(n_lc):
95 mle, _, _, _ = start_new_matlab_engine()
96 mle.cd(dir_path)
97 SimpleAerostructuralAnalysis._mles.append(mle)
98

99 fail = False
100

101 # Converge wing weight first
102 err = 1.
103 tol = 1.e-2
104 imax = 10
105 i = 1
106 m_wing_prev = 1.
107 m_wing = 1.e10
108 while err > tol and i < imax:



A.5. Test Suite 229

109 WingObjectModel.execute(in_file, out_file)
110 try:
111 m_wing = SimpleAerostructuralAnalysis._mles[0].dAEDalusSteadyModelInitializer(
112 out_file, matlab.double([n_seg_x]), matlab.double([n_seg_y]), nargout=1)
113 except MatlabExecutionError:
114 fail = True
115 print(’fail’)
116 break
117

118 err = abs(m_wing - m_wing_prev) / m_wing_prev
119 m_wing_prev = m_wing
120

121 xml_safe_create_element(doc_in, x_m_wing, m_wing)
122 doc_in.write(in_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
123

124 doc_out = etree.parse(out_file, parser)
125 xml_safe_create_element(doc_out, x_m_wing, m_wing)
126 for i in range(n_lc):
127 xml_safe_create_element(doc_out, x_CL % (i + 1), 1.)
128 xml_safe_create_element(doc_out, x_CDf % (i + 1), 1.)
129 xml_safe_create_element(doc_out, x_CDi % (i + 1), 1.)
130

131 for j in range(4):
132 xml_safe_create_element(doc_out, x_sigmas_in[j] % (i + 1), np.ones(n_lc) * 1e10)
133

134 if not fail:
135 # Gather load case flight states
136 M = n_lc * [0.]
137 H = n_lc * [0.]
138 n = n_lc * [0.]
139 for i in range(1, n_lc + 1):
140 M[i - 1] = float(doc_in.xpath(x_M % i)[0].text)
141 H[i - 1] = float(doc_in.xpath(x_H % i)[0].text)
142 n[i - 1] = float(doc_in.xpath(x_n % i)[0].text)
143

144 # Perform full analysis on each loadcase
145 futures = n_lc * [None]
146 for i in range(n_lc):
147 futures[i] =

SimpleAerostructuralAnalysis._mles[i].dAEDalusSteadyAerostructuralLoop(↪
148 out_file, matlab.double([n_seg_x]), matlab.double([n_seg_y]), M[i], H[i],

n[i],↪
149 nargout=8, async=True)
150

151 # Obtain results and write to file
152 for i, future in enumerate(futures):
153 if future is not None:
154 try:
155 _, C_L, C_D_f, C_D_i, sigma_fs, sigma_rs, sigma_ts, sigma_bs =

future.result()↪
156 sigmas = [np.array(sigma_fs), np.array(sigma_rs), np.array(sigma_ts),

np.array(sigma_bs)]↪
157

158 xml_safe_create_element(doc_out, x_CL % (i + 1), C_L)
159 xml_safe_create_element(doc_out, x_CDf % (i + 1), C_D_f)
160 xml_safe_create_element(doc_out, x_CDi % (i + 1), C_D_i)
161

162 for j in range(4):
163 xml_safe_create_element(doc_out, x_sigmas_in[j] % (i + 1), sigmas[j])
164 except MatlabExecutionError:
165 print(’double fail’)
166 break
167

168 doc_out.write(out_file, encoding=’utf-8’, pretty_print=True, xml_declaration=True)

Code frament A.43: Code of the Python module containing the collapsed, integrated aerostructural analysis discipline.

A.5.2.3.5 Wing Object Model



230 A. Code

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains the definition of the WingObjectModel class along with a collection of
static variables and methods↪

19 it uses.
20 ”””
21 from __future__ import absolute_import, division, print_function
22

23 import os
24

25 import numpy as np
26 from lxml import etree
27 from typing import Optional, Union, Tuple, Sized
28

29 from openlego.api import AbstractDiscipline
30 from openlego.test_suite.test_examples.wing_opt.kb.disciplines.xpaths import *
31 from openlego.utils.xml_utils import xml_safe_create_element
32 from openlego.partials.partials import Partials
33

34 dir_path = os.path.dirname(os.path.realpath(__file__))
35

36 af_x = (1.000000, 0.997840, 0.995410, 0.992720, 0.989770, 0.986550, 0.983080, 0.979350,
0.975360, 0.971120,↪

37 0.966630, 0.961890, 0.956900, 0.951680, 0.946210, 0.940500, 0.934550, 0.928380,
0.921980, 0.915350,↪

38 0.908500, 0.901440, 0.894160, 0.886670, 0.878980, 0.871080, 0.862990, 0.854700,
0.846230, 0.837570,↪

39 0.828730, 0.819720, 0.810540, 0.801190, 0.791680, 0.782020, 0.772210, 0.762260,
0.752160, 0.741940,↪

40 0.731580, 0.721100, 0.710510, 0.699800, 0.688990, 0.678080, 0.667080, 0.655990,
0.644810, 0.633560,↪

41 0.622240, 0.610860, 0.599420, 0.587930, 0.576390, 0.564820, 0.553210, 0.541580,
0.529920, 0.518250,↪

42 0.506580, 0.494900, 0.483220, 0.471560, 0.459920, 0.448290, 0.436700, 0.425150,
0.413630, 0.402170,↪

43 0.390760, 0.379410, 0.368130, 0.356920, 0.345790, 0.334740, 0.323780, 0.312930,
0.302170, 0.291520,↪

44 0.280990, 0.270580, 0.260290, 0.250130, 0.240110, 0.230230, 0.220500, 0.210920,
0.201490, 0.192230,↪

45 0.183140, 0.174220, 0.165480, 0.156920, 0.148540, 0.140360, 0.132370, 0.124580,
0.116990, 0.109610,↪

46 0.102450, 0.095500, 0.088770, 0.082260, 0.075980, 0.069920, 0.064110, 0.058520,
0.053180, 0.048080,↪

47 0.043220, 0.038610, 0.034260, 0.030150, 0.026300, 0.022700, 0.019370, 0.016290,
0.013480, 0.010920,↪

48 0.008640, 0.006620, 0.004870, 0.003380, 0.002160, 0.001220, 0.000540, 0.000140,
0.000000, 0.000000,↪

49 0.000140, 0.000540, 0.001220, 0.002160, 0.003380, 0.004870, 0.006620, 0.008640,
0.010920, 0.013480,↪

50 0.016290, 0.019370, 0.022700, 0.026300, 0.030150, 0.034260, 0.038610, 0.043220,
0.048080, 0.053180,↪

51 0.058520, 0.064110, 0.069920, 0.075980, 0.082260, 0.088770, 0.095500, 0.102450,
0.109610, 0.116990,↪

52 0.124580, 0.132370, 0.140360, 0.148540, 0.156920, 0.165480, 0.174220, 0.183140,
0.192230, 0.201490,↪



A.5. Test Suite 231

53 0.210920, 0.220500, 0.230230, 0.240110, 0.250130, 0.260290, 0.270580, 0.280990,
0.291520, 0.302170,↪

54 0.312930, 0.323780, 0.334740, 0.345790, 0.356920, 0.368130, 0.379410, 0.390760,
0.402170, 0.413630,↪

55 0.425150, 0.436700, 0.448290, 0.459920, 0.471560, 0.483220, 0.494900, 0.506580,
0.518250, 0.529920,↪

56 0.541580, 0.553210, 0.564820, 0.576390, 0.587930, 0.599420, 0.610860, 0.622240,
0.633560, 0.644810,↪

57 0.655990, 0.667080, 0.678080, 0.688990, 0.699800, 0.710510, 0.721100, 0.731580,
0.741940, 0.752160,↪

58 0.762260, 0.772210, 0.782020, 0.791680, 0.801190, 0.810540, 0.819720, 0.828730,
0.837570, 0.846230,↪

59 0.854700, 0.862990, 0.871080, 0.878980, 0.886670, 0.894160, 0.901440, 0.908500,
0.915350, 0.921980,↪

60 0.928380, 0.934550, 0.940500, 0.946210, 0.951680, 0.956900, 0.961890, 0.966630,
0.971120, 0.975360,↪

61 0.979350, 0.983080, 0.986550, 0.989770, 0.992720, 0.995410, 0.997840, 1.000000)
62 af_z = (0.000000, 0.001150, 0.002320, 0.003500, 0.004690, 0.005900, 0.007110, 0.008340,

0.009560, 0.010810,↪
63 0.012040, 0.013270, 0.014490, 0.015680, 0.016880, 0.018070, 0.019240, 0.020410,

0.021570, 0.022730,↪
64 0.023890, 0.025070, 0.026270, 0.027480, 0.028720, 0.029980, 0.031270, 0.032590,

0.033930, 0.035310,↪
65 0.036690, 0.038090, 0.039510, 0.040920, 0.042320, 0.043720, 0.045100, 0.046460,

0.047790, 0.049090,↪
66 0.050340, 0.051550, 0.052720, 0.053830, 0.054890, 0.055900, 0.056850, 0.057750,

0.058580, 0.059360,↪
67 0.060080, 0.060760, 0.061380, 0.061950, 0.062470, 0.062940, 0.063360, 0.063720,

0.064070, 0.064350,↪
68 0.064590, 0.064790, 0.064940, 0.065060, 0.065120, 0.065140, 0.065130, 0.065060,

0.064960, 0.064810,↪
69 0.064610, 0.064370, 0.064090, 0.063750, 0.063380, 0.062970, 0.062510, 0.062010,

0.061460, 0.060890,↪
70 0.060280, 0.059620, 0.058930, 0.058200, 0.057460, 0.056670, 0.055870, 0.055030,

0.054160, 0.053270,↪
71 0.052350, 0.051400, 0.050450, 0.049450, 0.048440, 0.047390, 0.046340, 0.045250,

0.044150, 0.043020,↪
72 0.041870, 0.040710, 0.039510, 0.038320, 0.037080, 0.035840, 0.034570, 0.033290,

0.031980, 0.030650,↪
73 0.029290, 0.027920, 0.026510, 0.025090, 0.023630, 0.022130, 0.020610, 0.019050,

0.017450, 0.015840,↪
74 0.014170, 0.012480, 0.010770, 0.009020, 0.007240, 0.005460, 0.003660, 0.001820,

0.000000, 0.000000,↪
75 -0.001550, -0.003060, -0.004570, -0.006050, -0.007490, -0.008930, -0.010320,

-0.011680, -0.013020,↪
76 -0.014310, -0.015580, -0.016810, -0.018010, -0.019190, -0.020340, -0.021460,

-0.022570, -0.023650,↪
77 -0.024730, -0.025770, -0.026820, -0.027850, -0.028860, -0.029860, -0.030860,

-0.031830, -0.032810,↪
78 -0.033760, -0.034700, -0.035620, -0.036540, -0.037430, -0.038290, -0.039130,

-0.039960, -0.040770,↪
79 -0.041540, -0.042290, -0.043010, -0.043710, -0.044370, -0.045000, -0.045600,

-0.046160, -0.046670,↪
80 -0.047160, -0.047600, -0.048000, -0.048350, -0.048640, -0.048900, -0.049100,

-0.049250, -0.049340,↪
81 -0.049380, -0.049360, -0.049270, -0.049140, -0.048940, -0.048670, -0.048350,

-0.047970, -0.047520,↪
82 -0.046990, -0.046410, -0.045760, -0.045050, -0.044270, -0.043420, -0.042500,

-0.041520, -0.040470,↪
83 -0.039350, -0.038160, -0.036920, -0.035610, -0.034240, -0.032800, -0.031320,

-0.029790, -0.028210,↪
84 -0.026600, -0.024940, -0.023270, -0.021560, -0.019840, -0.018110, -0.016390,

-0.014660, -0.012960,↪
85 -0.011270, -0.009600, -0.007970, -0.006380, -0.004840, -0.003350, -0.001910,

-0.000550, 0.000760, 0.001980,↪
86 0.003120, 0.004190, 0.005150, 0.006030, 0.006800, 0.007480, 0.008040, 0.008490,

0.008850, 0.009090,↪
87 0.009220, 0.009250, 0.009180, 0.009010, 0.008750, 0.008400, 0.007970, 0.007470,

0.006900, 0.006280,↪
88 0.005600, 0.004890, 0.004130, 0.003340, 0.002540, 0.001710, 0.000880, 0.000000)
89



232 A. Code

90

91 def add_cleared_child(parent, child_name, attrib=None):
92 # type: (etree._Element, str, Optional[dict]) -> etree._Element
93 ”””Clears the child with the given name of the given parent with the given attributes and

returns it.↪
94

95 If a child doesn’t exist yet with the given name and attributes, it is created.
96

97 Parameters
98 ----------
99 parent : :obj:‘etree._Element‘

100 Parent element.
101

102 child_name : str
103 Name of the child element.
104

105 attrib : dict, optional
106 Dictionary of attributes.
107

108 Returns
109 -------
110 :obj:‘etree._Element‘
111 The cleared child element.
112 ”””
113 for child in parent.findall(child_name):
114 if attrib is None:
115 child.clear()
116 return child
117 elif all([value == child.attrib[key] for (key, value) in attrib.items() if key in

child.attrib]):↪
118 child.clear()
119 return child
120

121 return etree.SubElement(parent, child_name, attrib)
122

123

124 def add_point(tree, parent, point_name, *args):
125 # type: (etree._ElementTree, Union[str, etree._Element], str, *Union[float,

Tuple[float]]) -> etree._Element↪
126 ”””Safely creates a new point in the XML tree.
127

128 Parameters
129 ----------
130 tree : :obj:‘etree._ElementTree‘
131 Tree in which to add the point.
132

133 parent : str or :obj:‘etree._Element‘
134 XPath of the element or ‘etree._Element‘ under which to add the point.
135

136 point_name : str
137 Name of the point.
138

139 *args
140 Either three floats (x, y, z) or a length 3 tuple correspondingly, which describes

the point.↪
141

142 Returns
143 -------
144 :obj:‘etree._Element‘
145 The ‘etree._Element‘ corresponding to the newly created point.
146 ”””
147 if len(args) == 1 and len(args[0]) == 3:
148 x, y, z = args[0]
149 elif len(args) == 3:
150 x = args[0]
151 y = args[1]
152 z = args[2]
153 else:
154 raise ValueError(’*args should be three floats or a tuple or length 3’)
155

156 if isinstance(parent, str):



A.5. Test Suite 233

157 parent = xml_safe_create_element(tree, parent)
158

159 point = add_cleared_child(parent, point_name)
160 etree.SubElement(point, ’x’).text = str(x)
161 etree.SubElement(point, ’y’).text = str(y)
162 etree.SubElement(point, ’z’).text = str(z)
163

164 return point
165

166

167 def add_transform(tree, parent, scaling=(1, 1, 1), rotation=(0, 0, 0), translation=(0, 0, 0)):
168 # type: (etree._ElementTree, Union[str, etree._Element], tuple, tuple, tuple) ->

etree._Element↪
169 ”””Safely creates a new CPACS transformation within the XML tree at the given XPath.
170

171 Parameters
172 ----------
173 tree : :obj:‘etree._ElementTree‘
174 Tree in which to add the transformation.
175

176 parent : str or :obj:‘etree._Element‘
177 XPath of an element or ‘etree._Element‘ under which to add the transformation.
178

179 scaling, rotation, translation : tuple of float
180 Tuples of length 3 corresponding to the x-, y-, and z-components of the scaling,

rotation, and translation.↪
181

182 Returns
183 -------
184 :obj:‘etree._Element‘
185 ‘etree._Element‘ corresponding to the newly added transformation.
186 ”””
187 if len(scaling) != len(rotation) != len(translation) != 3:
188 raise ValueError(’scaling, rotation, and translation should be tuples of length 3’)
189

190 if isinstance(parent, str):
191 parent = xml_safe_create_element(tree, parent)
192

193 transform = add_cleared_child(parent, ’transformation’)
194 add_point(tree, transform, ’scaling’, scaling)
195 add_point(tree, transform, ’rotation’, rotation)
196 add_point(tree, transform, ’translation’, translation)
197

198 return transform
199

200

201 def add_spar_position(tree, parent, uid, element_uid, xsi):
202 # type: (etree._ElementTree, Union[str, etree._Element], str, str, float) ->

etree._Element↪
203 ”””Safely creates a new CPACS spar position with the given XML tree.
204

205 Parameters
206 ----------
207 tree : :obj:‘etree._ElementTree‘
208 Tree in which to add the spar position.
209

210 parent : str or :obj:‘etree._Element‘
211 XPath of an element or ‘etree._Element‘ under which to add the spar position.
212

213 uid, element_uid : str
214 Unique identifiers of the spar position and the corresponding element.
215

216 xsi : float
217 Chordwise location of the spar position.
218

219 Returns
220 -------
221 :obj:‘etree._Element‘
222 ‘etree._Element‘ corresponding to the newly added spar position.
223 ”””
224 if isinstance(parent, str):



234 A. Code

225 parent = xml_safe_create_element(tree, parent)
226

227 spar_pos = add_cleared_child(parent, ’sparPosition’, {’uID’: uid})
228 etree.SubElement(spar_pos, ’name’).text = uid
229 etree.SubElement(spar_pos, ’elementUID’).text = element_uid
230 etree.SubElement(spar_pos, ’xsi’).text = str(xsi)
231

232 return spar_pos
233

234

235 def add_spar_segment(tree, parent, uid, start_pos_uid, end_pos_uid, mat_uid, t_web, t_top,
t_bottom):↪

236 # type: (etree._ElementTree, Union[str, etree._Element], str, str, str, str, float, float,
float) -> etree._Element↪

237 ”””Safely creates a new CPACS spar segment within the XML tree.
238

239 Parameters
240 ----------
241 tree : :obj:‘etree._ElementTree‘
242 Tree in which to add the spar segment.
243

244 parent : str or :obj:‘etree._Element‘
245 XPath of an element or ‘etree._Element‘ under which to add the spar segment.
246

247 uid, start_pos_uid, end_pos_uid, mat_uid : str
248 Unique identifiers of the spar segment, its start and end positions, and its

material.↪
249

250 t_web, t_top, t_bottom : float
251 Thicknesses of the web, top, and bottom of the spar segment.
252

253 Returns
254 -------
255 :obj:‘etree._Element‘
256 ‘etree._Element‘ corresponding to the newly added spar segment.
257 ”””
258 if isinstance(parent, str):
259 parent = xml_safe_create_element(tree, parent)
260

261 spar_seg = add_cleared_child(parent, ’sparSegment’, {’uID’: uid})
262 etree.SubElement(spar_seg, ’name’).text = uid
263 etree.SubElement(spar_seg, ’description’).text = uid
264

265 x_sparseg = tree.getpath(spar_seg)
266 xml_safe_create_element(tree, ’/’.join([x_sparseg, ’sparCrossSection/rotation’]), 90)
267 xml_safe_create_element(tree, ’/’.join([x_sparseg, ’sparCrossSection/web1/relPos’]), 0.5)
268 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/web1/material/materialUID’]), mat_uid)↪
269 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/web1/material/thickness’]), t_web)↪
270

271 xml_safe_create_element(tree, ’/’.join([x_sparseg, ’sparCrossSection/upperCap/area’]), 0)
272 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/upperCap/material/materialUID’]), mat_uid)↪
273 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/upperCap/material/thickness’]), t_top)↪
274

275 xml_safe_create_element(tree, ’/’.join([x_sparseg, ’sparCrossSection/lowerCap/area’]), 0)
276 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/lowerCap/material/materialUID’]), mat_uid)↪
277 xml_safe_create_element(tree, ’/’.join([x_sparseg,

’sparCrossSection/lowerCap/material/thickness’]), t_bottom)↪
278

279 uids = etree.SubElement(spar_seg, ’sparPositionUIDs’)
280 etree.SubElement(uids, ’sparPositionUID’).text = start_pos_uid
281 etree.SubElement(uids, ’sparPositionUID’).text = end_pos_uid
282

283 return spar_seg
284

285

286 def add_mass_description(tree, parent, element_name, mass, uid=None):



A.5. Test Suite 235

287 # type: (etree._ElementTree, Union[str, etree._Element], str, float, Optional[str]) ->
etree._Element↪

288 ”””Safely adds a CPACS mass description to the given XML tree at the given parent.
289

290 Parameters
291 ----------
292 tree : :obj:‘etree._ElementTree‘
293 Tree in which to add the mass description.
294

295 parent : str or :obj:‘etree._Element‘
296 XPath of an element or ‘etree._Element‘ under which to add the mass description.
297

298 element_name : str
299 Name of the element.
300

301 mass : float
302 Value of the mass.
303

304 uid : str, optional
305 Unique identifier of the mass description.
306

307 Returns
308 -------
309 :obj:‘etree._Element‘
310 ‘etree._Element‘ corresponding to the newly added mass description.
311 ”””
312 if uid is None:
313 uid = element_name
314

315 if isinstance(parent, str):
316 parent = xml_safe_create_element(tree, parent)
317

318 elem = etree.SubElement(parent, element_name, {’uID’: uid})
319 etree.SubElement(elem, ’mass’).text = str(mass)
320 return elem
321

322

323 def add_mass(tree, parent, mass_name, mass, uid=None):
324 # type: (etree._ElementTree, Union[str, etree._Element], str, float, Optional[str]) ->

etree._Element↪
325 ”””Safely creates a CPACS mass within the given XML tree at the given parent.
326

327 Parameters
328 ----------
329 tree : :obj:‘etree._ElementTree‘
330 Tree in which to add the mass.
331

332 parent : str or :obj:‘etree._Element‘
333 XPath of an element or ‘etree._Element‘ under which to add the mass.
334

335 mass_name : str
336 Name of the mass.
337

338 uid : str, optional
339 Unique identifier of the mass.
340

341 Returns
342 -------
343 :obj:‘etree._Element‘
344 ‘etree._Element‘ corresponding to the newly added mass.
345 ”””
346 if uid is None:
347 uid = mass_name
348

349 if isinstance(parent, etree._Element):
350 parent = tree.getpath(parent)
351

352 _mass = xml_safe_create_element(tree, ’/’.join([parent, mass_name]))
353 add_mass_description(tree, _mass, ’massDescription’, mass, uid)
354 return _mass
355



236 A. Code

356

357 def add_cpacs_header(tree, name, creator, version, description, cpacs_version):
358 # type: (etree._ElementTree, str, str, str, str, str) -> etree._Element
359 ”””Add a CPACS header to the given XML tree root.
360

361 Parameters
362 ----------
363 tree : :obj:‘etree._ElementTree‘
364 Tree in which to add the header.
365

366 name, creator, version, description, cpacs_version : str
367 Name, creator, version identifier, and version of CPACS to put in the CPACS header

information.↪
368

369 Returns
370 -------
371 :obj:‘etree._Element‘
372 ‘etree._Element‘ corresponding to the newly added header.
373 ”””
374 root = tree.getroot()
375 header = etree.SubElement(root, ’header’)
376 etree.SubElement(header, ’name’).text = name
377 etree.SubElement(header, ’creator’).text = creator
378 etree.SubElement(header, ’version’).text = version
379 etree.SubElement(header, ’description’).text = description
380 etree.SubElement(header, ’cpacsVersion’).text = cpacs_version
381 return header
382

383

384 class WingObjectModel(AbstractDiscipline):
385 ”””This discipline transforms a reduced aero-structural model of a wing into a CPACS file.
386

387 The wing is modeled with a number of wing segments, n_wing_segments. Each wing segment has
a span, b, sweep angle,↪

388 Lambda, dihedral angle, Gamma, as well as four thicknesses, t_fs, t_rs, t_ts, and t_bs for
the front spar,↪

389 rear spar, top skin, and bottom skin associated with it. The sections joining two wing
segments each have a chord↪

390 length, c, thickness over chord ratio, t/c, twist angle, epsilon, from spar position,
xsi_fs, and rear spar↪

391 position, xsi_rs, associated with it. The most inboard section does not have a twist
angle, but an incidence angle↪

392 associated with it. Furthermore, a single thickness and material density are defined for
the skin of the wing↪

393 outside of the wingbox.
394

395 Upon executing this discipline, a CPACS file containing the parameters of this reduced
model is translated to a↪

396 regular CPACS file. The result should be a wing that has the same geometry as was
described by the reduced model.↪

397 ”””
398

399 def __init__(self, n_wing_segments=2):
400 super(WingObjectModel, self).__init__()
401 self.n_wing_segments = n_wing_segments
402

403 @property
404 def creator(self):
405 return ’D. de Vries’
406

407 @property
408 def description(self):
409 return ’Wing object model’
410

411 @property
412 def supplies_partials(self):
413 return True
414

415 def generate_input_xml(self):
416 # type: () -> str
417 root = etree.Element(’cpacs’)



A.5. Test Suite 237

418 doc = etree.ElementTree(root)
419

420 xml_safe_create_element(doc, x_c, np.zeros(self.n_wing_segments + 1))
421 xml_safe_create_element(doc, x_tc, np.zeros(self.n_wing_segments + 1))
422 xml_safe_create_element(doc, x_epsilon, np.zeros(self.n_wing_segments))
423 xml_safe_create_element(doc, x_b, np.zeros(self.n_wing_segments))
424 xml_safe_create_element(doc, x_Lambda, np.zeros(self.n_wing_segments))
425 xml_safe_create_element(doc, x_Gamma, np.zeros(self.n_wing_segments))
426 xml_safe_create_element(doc, x_xsi_fs, np.zeros(self.n_wing_segments + 1))
427 xml_safe_create_element(doc, x_xsi_rs, np.zeros(self.n_wing_segments + 1))
428 xml_safe_create_element(doc, x_t_fs, np.zeros(self.n_wing_segments))
429 xml_safe_create_element(doc, x_t_rs, np.zeros(self.n_wing_segments))
430 xml_safe_create_element(doc, x_t_ts, np.zeros(self.n_wing_segments))
431 xml_safe_create_element(doc, x_t_bs, np.zeros(self.n_wing_segments))
432 xml_safe_create_element(doc, x_incidence, 0.)
433 xml_safe_create_element(doc, x_t_skin, 0.)
434 xml_safe_create_element(doc, x_rho_skin, 0.)
435

436 xml_safe_create_element(doc, x_m_fixed, 0.)
437 xml_safe_create_element(doc, x_m_payload, 0.)
438 xml_safe_create_element(doc, x_m_wing, 0.)
439 xml_safe_create_element(doc, x_m_fuel, 0.)
440 xml_safe_create_element(doc, x_m_mlw, 0.)
441 xml_safe_create_element(doc, x_f_m_sys, 0.)
442 xml_safe_create_element(doc, x_f_m_wings, 0.)
443

444 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
445

446 def generate_output_xml(self):
447 # type: () -> str
448 _1 = np.zeros(self.n_wing_segments + 1)
449 _2 = np.zeros(self.n_wing_segments)
450 _3 = np.zeros((3, self.n_wing_segments + 1))
451

452 return WingObjectModel.write_data(0, 0, _1, _1, _1, _3, _1, _1, _2, _2, _2, _2, _2, 0,
0, 0, 0, 0, 0, 0, _2)↪

453

454 def generate_partials_xml(self):
455 partials = Partials()
456

457 partials.declare_partials(x_ref_area, x_c)
458 partials.declare_partials(x_ref_area, x_b)
459 partials.declare_partials(x_ref_length, x_c)
460

461 for i in range(self.n_wing_segments + 1):
462 _x_sec = x_sec % i
463 x_trans = ’/’.join([_x_sec, ’transformation’])
464

465 x_scaling = ’/’.join([x_trans, ’scaling’])
466 partials.declare_partials(’/’.join([x_scaling, ’x’]), x_c)
467 partials.declare_partials(’/’.join([x_scaling, ’y’]), x_c)
468 partials.declare_partials(’/’.join([x_scaling, ’z’]), x_c)
469 partials.declare_partials(’/’.join([x_scaling, ’z’]), x_tc)
470

471 x_rotation = ’/’.join([x_trans, ’rotation’])
472 if i != 0:
473 partials.declare_partials(’/’.join([x_rotation, ’y’]), x_epsilon)
474 partials.declare_partials(’/’.join([x_rotation, ’y’]), x_incidence)
475

476 x_translation = ’/’.join([x_trans, ’translation’])
477 partials.declare_partials(’/’.join([x_translation, ’x’]), x_c)
478 partials.declare_partials(’/’.join([x_translation, ’y’]), x_c)
479 partials.declare_partials(’/’.join([x_translation, ’z’]), x_c)
480

481 partials.declare_partials(’/’.join([x_translation, ’x’]), x_epsilon)
482 partials.declare_partials(’/’.join([x_translation, ’y’]), x_epsilon)
483 partials.declare_partials(’/’.join([x_translation, ’z’]), x_epsilon)
484

485 partials.declare_partials(’/’.join([x_translation, ’x’]), x_incidence)
486 partials.declare_partials(’/’.join([x_translation, ’y’]), x_incidence)
487 partials.declare_partials(’/’.join([x_translation, ’z’]), x_incidence)



238 A. Code

488

489 if i != 1:
490 partials.declare_partials(’/’.join([x_translation, ’x’]), x_Gamma)
491 partials.declare_partials(’/’.join([x_translation, ’y’]), x_Gamma)
492 partials.declare_partials(’/’.join([x_translation, ’z’]), x_Gamma)
493

494 partials.declare_partials(’/’.join([x_translation, ’x’]), x_Lambda)
495 partials.declare_partials(’/’.join([x_translation, ’y’]), x_Lambda)
496 partials.declare_partials(’/’.join([x_translation, ’z’]), x_Lambda)
497

498 partials.declare_partials(’/’.join([x_translation, ’x’]), x_b)
499 partials.declare_partials(’/’.join([x_translation, ’y’]), x_b)
500 partials.declare_partials(’/’.join([x_translation, ’z’]), x_b)
501

502 for i in range(self.n_wing_segments):
503 partials.declare_partials(x_fs_web_t % (i, i), x_t_fs)
504 partials.declare_partials(x_fs_lowerCap_t % (i, i), x_t_bs)
505 partials.declare_partials(x_fs_upperCap_t % (i, i), x_t_ts)
506 partials.declare_partials(x_rs_web_t % (i, i), x_t_rs)
507 partials.declare_partials(x_rs_lowerCap_t % (i, i), x_t_bs)
508 partials.declare_partials(x_rs_upperCap_t % (i, i), x_t_ts)
509

510 partials.declare_partials(x_fs_r_xsi % (i, i), x_xsi_fs)
511 partials.declare_partials(x_rs_r_xsi % (i, i), x_xsi_rs)
512 partials.declare_partials(x_fs_t_xsi % (i, i), x_xsi_fs)
513 partials.declare_partials(x_rs_t_xsi % (i, i), x_xsi_rs)
514

515 x_md = ’{0}[@uID=”{1}”]/mass’
516 x_m = ’/’.join([’{0}’, x_md.format(’massDescription’, ’{0}’)])
517 x_mass = ’/’.join([x_mbd, x_m])
518 x_moem = x_mass.format(’mOEM’)
519 x_mem = ’/’.join([x_moem[:-34], x_m.format(’mEM’)])
520 x_sys = ’/’.join([x_mem[:-33], x_m.format(’mSystems’)])
521

522 x_m_struct = ’/’.join([x_mem[:-33], x_m.format(’mStructure’)])
523 x_m_wings = ’/’.join([x_m_struct[:-40], x_m.format(’mWingsStructure’)])
524 _x_m_wing = ’/’.join([x_m_wings[:-45], x_m.format(’mWingStructure’)])
525

526 partials.declare_partials(’/’.join([x_mbd,
’fuel/massDescription[@uID=”mFuel”]/mass’]), x_m_fuel)↪

527 partials.declare_partials(’/’.join([x_mbd,
’payload/massDescription[@uID=”mPayload”]/mass’]), x_m_fuel)↪

528 partials.declare_partials(x_moem, [x_m_wing, x_m_fixed])
529 partials.declare_partials(x_mem, [x_m_wing, x_m_fixed])
530 partials.declare_partials(x_sys, [x_m_wing, x_m_fixed, x_f_m_sys])
531

532 partials.declare_partials(x_m_struct, [x_m_wing, x_m_fixed, x_f_m_sys])
533 partials.declare_partials(x_m_wings, [x_m_wing, x_f_m_wings])
534 partials.declare_partials(_x_m_wing, x_m_wing)
535

536 for i in range(self.n_wing_segments):
537 x_m_compseg = ’/’.join([_x_m_wing[:-44], ’mComponentSegment[{:d}]’.format(i + 1)])
538

539 partials.declare_partials(
540 ’/’.join([x_m_compseg, x_md.format(’massDescription’,

’mWing_{:d}’.format(i))]),↪
541 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_t_skin, x_rho_skin, x_m_wing])
542

543 partials.declare_partials(
544 ’/’.join([x_m_compseg, ’mWingBox’, x_md.format(’massDescription’,

’mWingbox_{:d}’.format(i))]),↪
545 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_m_wing])
546

547 partials.declare_partials(
548 ’/’.join([x_mSkins % (i + 1), ’mSkins’, x_md.format(’massDescription’,

’mSkins_{:d}’.format(i))]),↪
549 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_t_skin, x_rho_skin])
550

551 x_des = ’/’.join([x_mbd, ’designMasses’])
552 partials.declare_partials(’/’.join([x_des, x_md.format(’mMLM’, ’mMLM’)]), x_m_mlw)
553 partials.declare_partials(’/’.join([x_des, x_md.format(’mMRM’, ’mMRM’)]),



A.5. Test Suite 239

554 [x_m_fuel, x_m_wing, x_m_fixed, x_m_payload])
555 partials.declare_partials(’/’.join([x_des, x_md.format(’mTOM’, ’mTOM’)]),
556 [x_m_fuel, x_m_wing, x_m_fixed, x_m_payload])
557 partials.declare_partials(’/’.join([x_des, x_md.format(’mZFM’, ’mZFM’)]),
558 [x_m_wing, x_m_fixed, x_m_payload])
559

560 return partials.get_string()
561

562 @staticmethod
563 def read_data(file):
564 tree = etree.parse(file)
565

566 c = np.array(tree.xpath(x_c)[0].text.split(’;’), dtype=float)
567 tc = np.array(tree.xpath(x_tc)[0].text.split(’;’), dtype=float)
568 epsilon = np.array(tree.xpath(x_epsilon)[0].text.split(’;’), dtype=float)
569 b = np.array(tree.xpath(x_b)[0].text.split(’;’), dtype=float)
570 sweep = np.array(tree.xpath(x_Lambda)[0].text.split(’;’), dtype=float)
571 dihed = np.array(tree.xpath(x_Gamma)[0].text.split(’;’), dtype=float)
572 xsi_fs = np.array(tree.xpath(x_xsi_fs)[0].text.split(’;’), dtype=float)
573 xsi_rs = np.array(tree.xpath(x_xsi_rs)[0].text.split(’;’), dtype=float)
574 t_fs = np.array(tree.xpath(x_t_fs)[0].text.split(’;’), dtype=float)
575 t_rs = np.array(tree.xpath(x_t_rs)[0].text.split(’;’), dtype=float)
576 t_ts = np.array(tree.xpath(x_t_ts)[0].text.split(’;’), dtype=float)
577 t_bs = np.array(tree.xpath(x_t_bs)[0].text.split(’;’), dtype=float)
578 incidence = np.array(tree.xpath(x_incidence)[0].text.split(’;’), dtype=float)
579 t_skin = np.array(tree.xpath(x_t_skin)[0].text.split(’;’), dtype=float)
580 rho_skin = np.array(tree.xpath(x_rho_skin)[0].text.split(’;’), dtype=float)
581

582 m_fuel = tree.xpath(x_m_fuel)
583 if not m_fuel:
584 m_fuel = 0. # float(tree.xpath(x_m_fuel_init)[0].text)
585 else:
586 m_fuel = float(m_fuel[0].text)
587

588 m_wing = tree.xpath(x_m_wing)
589 if not m_wing:
590 m_wing = 0. # float(tree.xpath(x_m_wing_init)[0].text)
591 else:
592 m_wing = float(m_wing[0].text)
593

594 m_fixed = float(tree.xpath(x_m_fixed)[0].text)
595 m_payload = float(tree.xpath(x_m_payload)[0].text)
596 m_mlw = float(tree.xpath(x_m_mlw)[0].text)
597 f_m_sys = float(tree.xpath(x_f_m_sys)[0].text)
598 f_m_wings = float(tree.xpath(x_f_m_wings)[0].text)
599

600 return c, tc, epsilon, b, sweep, dihed, \
601 xsi_fs, xsi_rs, t_fs, t_rs, t_ts, t_bs, \
602 incidence, t_skin, rho_skin, \
603 m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys, f_m_wings
604

605 @staticmethod
606 def write_data(*args):
607 # type: (*(str, str, Sized)) -> str
608 ”””Utility method that writes all output variables to the given XML file.
609

610 Parameters
611 ----------
612 *args
613 (S_ref, c_ref, c, t/c, twists, x_LE,
614 xsi_fs, xsi_rs, t_fs, t_rs, t_ts, t_bs,
615 m_skin, m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys, f_m_wings,

m_wingbox)↪
616

617 Returns
618 -------
619 str
620 String representing the output XML file.
621 ”””
622 s_ref, c_ref, c, tc, twists, x_le, xsi_fs, xsi_rs, t_fs, t_rs, t_ts, t_bs, m_skin,

m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys, f_m_wings, m_wingbox = args↪



240 A. Code

623

624 root = etree.Element(’cpacs’)
625 doc = etree.ElementTree(root)
626

627 add_cpacs_header(doc, ’WingObjectModel’, ’Automatically generated from python’, ’1.0’,
’Wing object model’,↪

628 ’2.3’)
629

630 xml_safe_create_element(doc, ’/’.join([x_model, ’name’]), ’Wing Definition’)
631

632 xml_safe_create_element(doc, x_ref_area, s_ref)
633 xml_safe_create_element(doc, x_ref_length, c_ref)
634 add_point(doc, x_ref, ’point’, 0, 0, 0)
635

636 xml_safe_create_element(doc, x_wing)
637 add_transform(doc, x_wing)
638

639 for i in range(len(c)):
640 _x_sec = x_sec % i
641 elem_sec = xml_safe_create_element(doc, _x_sec)
642 etree.SubElement(elem_sec, ’name’).text = ’Section %d’ % i
643 add_transform(doc, elem_sec, (c[i], 1, tc[i] * c[i]), (0, np.rad2deg(twists[i]),

0), tuple(x_le[:, i]))↪
644

645 elem_elems = etree.SubElement(elem_sec, ’elements’)
646 elem_elem = etree.SubElement(elem_elems, ’element’, {’uID’: ’elem_%d’ % i})
647 etree.SubElement(elem_elem, ’name’).text = ’Element %d’ % i
648 etree.SubElement(elem_elem, ’airfoilUID’).text = ’af’
649 add_transform(doc, elem_elem)
650

651 x_pos = ’/’.join([x_wing, r”positionings/positioning”])
652 if i != 0:
653 x_pos += ’[%d]’ % (i + 1)
654 pos = xml_safe_create_element(doc, x_pos)
655 etree.SubElement(pos, ’length’).text = str(0)
656 etree.SubElement(pos, ’sweepAngle’).text = str(0)
657 etree.SubElement(pos, ’dihedralAngle’).text = str(0)
658 if i != 0:
659 etree.SubElement(pos, ’fromSectionUID’).text = ’sec_%d’ % (i - 1)
660 etree.SubElement(pos, ’toSectionUID’).text = ’sec_%d’ % i
661

662 for i in range(len(c) - 1):
663 x_seg = ’/’.join([x_wing, r”segments/segment[@uID=’seg_%d’]” % i])
664 seg = xml_safe_create_element(doc, x_seg)
665 etree.SubElement(seg, ’name’).text = ’Segment %d’ % i
666 etree.SubElement(seg, ’fromElementUID’).text = ’elem_%d’ % i
667 etree.SubElement(seg, ’toElementUID’).text = ’elem_%d’ % (i + 1)
668

669 compseg = xml_safe_create_element(doc, x_compseg % i)
670 etree.SubElement(compseg, ’name’).text = ’ComponentSegment %d’ % i
671 etree.SubElement(compseg, ’fromElementUID’).text = ’elem_%d’ % i
672 etree.SubElement(compseg, ’toElementUID’).text = ’elem_%d’ % (i + 1)
673

674 add_spar_position(doc, x_sparposs % i, ’fs_%d_r’ % i, ’elem_%d’ % i, xsi_fs[i])
675 add_spar_position(doc, x_sparposs % i, ’fs_%d_t’ % i, ’elem_%d’ % (i + 1),

xsi_fs[i + 1])↪
676 add_spar_position(doc, x_sparposs % i, ’rs_%d_r’ % i, ’elem_%d’ % i, xsi_rs[i])
677 add_spar_position(doc, x_sparposs % i, ’rs_%d_t’ % i, ’elem_%d’ % (i + 1),

xsi_rs[i + 1])↪
678

679 add_spar_segment(doc, x_sparsegs % i, ’fs_%d’ % i, ’fs_%d_r’ % i, ’fs_%d_t’ % i,
680 ’mat_al’, t_fs[i], t_ts[i], t_bs[i])
681 add_spar_segment(doc, x_sparsegs % i, ’rs_%d’ % i, ’rs_%d_r’ % i, ’rs_%d_t’ % i,
682 ’mat_al’, t_rs[i], t_ts[i], t_bs[i])
683

684 # x_mbd = ’/’.join([x_model, ’analyses/massBreakdown’])
685

686 m_empty = m_wing + m_fixed
687 m_sys = m_empty * f_m_sys
688 m_struct = m_empty - m_sys
689 m_wings = m_struct * f_m_wings



A.5. Test Suite 241

690 m_wing = m_wing * (1. - f_m_sys)
691

692 m_mzf = m_empty + m_payload
693 m_mto = m_mzf + m_fuel
694 m_mrm = m_mto * 1.01
695

696 add_mass(doc, x_mbd, ’fuel’, m_fuel, ’mFuel’)
697 add_mass(doc, x_mbd, ’payload’, m_payload, ’mPayload’)
698 m_oem = add_mass(doc, x_mbd, ’mOEM’, m_empty)
699 m_em = add_mass(doc, m_oem, ’mEM’, m_empty)
700 add_mass(doc, m_em, ’mSystems’, m_sys)
701

702 m_structure = add_mass(doc, m_em, ’mStructure’, m_struct)
703 m_wings = add_mass(doc, m_structure, ’mWingsStructure’, m_wings)
704 m_wing = add_mass(doc, m_wings, ’mWingStructure’, m_wing)
705

706 for i in range(0, len(c) - 1):
707 x_m_compseg = ’/’.join([doc.getpath(m_wing), ’mComponentSegment[%d]’ % (i + 1)])
708 m_compseg = xml_safe_create_element(doc, x_m_compseg)
709 add_mass_description(doc, m_compseg, ’massDescription’, m_skin[i] + m_wingbox[i],

’mWing_%d’ % i)↪
710 add_mass(doc, m_compseg, ’mWingBox’, m_wingbox[i], ’mWingbox_%d’ % i)
711 add_mass(doc, x_mSkins % (i + 1), ’mSkins’, m_skin[i], ’mSkins_%d’ % i)
712

713 m_des = etree.SubElement(m_oem.getparent(), ’designMasses’)
714 add_mass_description(doc, m_des, ’mMLM’, m_mlw)
715 add_mass_description(doc, m_des, ’mMRM’, m_mrm)
716 add_mass_description(doc, m_des, ’mTOM’, m_mto)
717 add_mass_description(doc, m_des, ’mZFM’, m_mzf)
718

719 x_af = r”/cpacs/vehicles/profiles/wingAirfoils/wingAirfoil[@uID=’af’]”
720 af = xml_safe_create_element(doc, x_af)
721 etree.SubElement(af, ’name’).text = ’Airfoil’
722 point_list = etree.SubElement(af, ’pointList’)
723

724 etree.SubElement(point_list, ’x’, {’mapType’: ’vector’}).text = ’;’.join([str(_) for _
in af_x])↪

725 etree.SubElement(point_list, ’y’, {’mapType’: ’vector’}).text = ’;’.join([str(_) for _
in len(af_x) * [0.0]])↪

726 etree.SubElement(point_list, ’z’, {’mapType’: ’vector’}).text = ’;’.join([str(_) for _
in af_z])↪

727

728 mat = xml_safe_create_element(doc, ’/’.join([x_vehicles,
r”materials/material[@uID=’mat_al’]”]))↪

729 etree.SubElement(mat, ’name’).text = ’Al7075A’
730 etree.SubElement(mat, ’rho’).text = str(2180)
731 etree.SubElement(mat, ’k11’).text = str(71.7E9)
732 etree.SubElement(mat, ’k12’).text = str(26.9E9)
733 etree.SubElement(mat, ’sig11’).text = str(572E6)
734 etree.SubElement(mat, ’sig12’).text = str(331E6)
735

736 return etree.tostring(doc, encoding=’utf-8’, pretty_print=True, xml_declaration=True)
737

738 @staticmethod
739 def execute(in_file, out_file=’WOM-output-loc.xml’):
740 ”””Translate the reduced model parameters to CPACS format.”””
741 c, tc, epsilon, b, sweep, dihed, \
742 xsi_fs, xsi_rs, t_fs, t_rs, t_ts, t_bs, \
743 incidence, t_skin, rho_skin, \
744 m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys, f_m_wings =

WingObjectModel.read_data(in_file)↪
745

746 n_wing_segments = len(b)
747

748 s_ref = sum(b * (c[:-1] + c[1:]))
749

750 c_ref = c[:]
751 for i in range(0, n_wing_segments):
752 c_ref = 2. / 3. * (c_ref[:-1] ** 2 + c_ref[:-1] * c_ref[1:] + c_ref[1:] ** 2) /

(c_ref[1:] + c_ref[:-1])↪
753 c_ref = c_ref[0]



242 A. Code

754

755 dx_c4 = np.zeros((3, n_wing_segments))
756 dx_c4[1, :] = b[:]
757

758 x_c4 = np.zeros((3, n_wing_segments + 1))
759 c_sweep, s_sweep = np.cos(sweep), np.sin(sweep)
760 c_dihed, s_dihed = np.cos(dihed), np.sin(dihed)
761

762 for i in range(n_wing_segments):
763 rot_sweep = np.matrix([(c_sweep[i], s_sweep[i], 0), (-s_sweep[i], c_sweep[i], 0),

(0, 0, 1)])↪
764 rot_dihed = np.matrix([(1, 0, 0), (0, c_dihed[i], -s_dihed[i]), (0, s_dihed[i],

c_dihed[i])])↪
765 x_c4[:, i + 1] = np.matmul(rot_dihed * rot_sweep, dx_c4[:, i]) + x_c4[:, i]
766

767 dx_le = np.zeros((3, n_wing_segments + 1))
768 dx_le[0, :] = -.25 * c
769

770 x_le = np.zeros((3, n_wing_segments + 1))
771 twists = np.concatenate(([0.], epsilon)) + incidence
772 c_twist, s_twist = np.cos(twists), np.sin(twists)
773 for i in range(n_wing_segments + 1):
774 rot_twist = np.matrix([(c_twist[i], 0, s_twist[i]), (0, 1, 0), (-s_twist[i], 0,

c_twist[i])])↪
775 x_le[:, i] = np.matmul(rot_twist, dx_le[:, i]) + x_c4[:, i]
776

777 length_out = c * (1. - xsi_rs + xsi_fs)
778 area_out = 0.5 * (length_out[:-1] + length_out[1:]) * b
779 m_skin = 2. * area_out * t_skin * rho_skin
780

781 m_wingbox = m_wing * area_out / sum(area_out)
782

783 xml = WingObjectModel.write_data(s_ref, c_ref,
784 c, tc, twists,
785 x_le, xsi_fs, xsi_rs,
786 t_fs, t_rs, t_ts,
787 t_bs, m_skin,
788 m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys,

f_m_wings, m_wingbox)↪
789 with open(out_file, ’w’) as f:
790 f.write(xml)
791

792 @staticmethod
793 def linearize(in_file, partials_file):
794 c, tc, epsilon, b, sweep, dihed, \
795 xsi_fs, xsi_rs, t_fs, t_rs, t_ts, t_bs, \
796 incidence, t_skin, rho_skin, \
797 m_fuel, m_wing, m_fixed, m_payload, m_mlw, f_m_sys, f_m_wings =

WingObjectModel.read_data(in_file)↪
798

799 n_ws = len(b)
800 partials = Partials()
801

802 # Reference values
803 dSref_dc = np.zeros(len(c))
804 dSref_dc[:-1] += b
805 dSref_dc[1:] += b
806 partials.declare_partials(x_ref_area, x_c, dSref_dc)
807

808 dSref_db = c[:-1] + c[1:]
809 partials.declare_partials(x_ref_area, x_b, dSref_db)
810

811 dcref_dc = np.eye(n_ws + 1, n_ws + 1)
812 c_ref = c[:]
813 for i in range(0, n_ws):
814 dcref_dc = 2. / 3. * (
815 (c_ref[:-1] + c_ref[1:])
816 * (2. * c_ref[:-1] * dcref_dc[:, :-1] + c_ref[:-1] * dcref_dc[:, :-1]
817 + c_ref[1:] * dcref_dc[:, 1:] + 2 * c_ref[1:] * dcref_dc[:, 1:])
818 - (c_ref[:-1] ** 2 + c_ref[:-1] * c_ref[1:] + c_ref[1:] ** 2) * (dcref_dc[:,

:-1] + dcref_dc[:, 1:])↪



A.5. Test Suite 243

819 ) / (c_ref[:-1] + c_ref[1:]) ** 2
820 c_ref = 2. / 3. * (c_ref[:-1] ** 2 + c_ref[:-1] * c_ref[1:] + c_ref[1:] ** 2) /

(c_ref[1:] + c_ref[:-1])↪
821 partials.declare_partials(x_ref_length, x_c, dcref_dc.flatten())
822

823 # Geometry
824 de = np.concatenate(([0.], np.ones(len(epsilon))))
825 twist = np.concatenate(([0.], epsilon)) + incidence
826

827 c_twist, s_twist = np.cos(twist), np.sin(twist)
828

829 dx_le = np.zeros((3, n_ws + 1))
830 dx_le[0, :] = -.25 * c
831

832 dct_di, dst_di = -np.sin(twist), np.cos(twist)
833 dct_de, dst_de = dct_di * de, dst_di * de
834

835 c_sweep, s_sweep = np.cos(sweep), np.sin(sweep)
836 c_dihed, s_dihed = np.cos(dihed), np.sin(dihed)
837

838 dcs_ds, dss_ds = -np.sin(sweep), np.cos(sweep)
839 dcd_dd, dsd_dd = -np.sin(dihed), np.cos(dihed)
840

841 dx_c4 = np.zeros((3, n_ws))
842 dx_c4[1, :] = b[:]
843

844 dxle_dd = np.zeros(3)
845 dxle_ds = np.zeros(3)
846 dxle_db = np.zeros(3)
847

848 for i in range(n_ws + 1):
849 _x_sec = x_sec % i
850 x_trans = ’/’.join([_x_sec, ’transformation’])
851

852 x_scaling = ’/’.join([x_trans, ’scaling’])
853 dc = np.zeros(n_ws + 1)
854 dc[i] = 1.
855 partials.declare_partials(’/’.join([x_scaling, ’x’]), x_c, dc)
856 partials.declare_partials(’/’.join([x_scaling, ’z’]), x_c, dc * tc)
857 partials.declare_partials(’/’.join([x_scaling, ’z’]), x_tc, dc * c)
858

859 x_rotation = ’/’.join([x_trans, ’rotation’])
860 if i != 0:
861 de = np.zeros(2)
862 de[i - 1] = 180./np.pi
863 partials.declare_partials(’/’.join([x_rotation, ’y’]), x_epsilon, de)
864 partials.declare_partials(’/’.join([x_rotation, ’y’]), x_incidence, 180./np.pi)
865

866 rot_twist = np.matrix([(c_twist[i], 0, s_twist[i]), (0, 1, 0), (-s_twist[i], 0,
c_twist[i])])↪

867 drt_di = np.matrix([(dct_di[i], 0, dst_di[i]), (0, 1, 0), (-dst_di[i], 0,
dct_di[i])])↪

868

869 dxle_dc = np.asarray(np.matmul(rot_twist, dx_le[:, i] / c[i])).flatten()
870 dxle_di = np.asarray(np.matmul(drt_di, dx_le[:, i])).flatten()
871

872 d = np.zeros(n_ws + 1)
873 d[i] = 1.
874

875 x_translation = ’/’.join([x_trans, ’translation’])
876 partials.declare_partials(’/’.join([x_translation, ’x’]), x_c, dxle_dc[0] * d)
877 partials.declare_partials(’/’.join([x_translation, ’y’]), x_c, dxle_dc[1] * d)
878 partials.declare_partials(’/’.join([x_translation, ’z’]), x_c, dxle_dc[2] * d)
879

880 if i != 0:
881 drt_de = np.matrix([(dct_de[i], 0, dst_de[i]), (0, 1, 0), (-dst_de[i], 0,

dct_de[i])])↪
882 dxle_de = np.asarray(np.matmul(drt_de, dx_le[:, i])).flatten()
883

884 d = np.zeros(n_ws)
885 d[i - 1] = 1.



244 A. Code

886

887 partials.declare_partials(’/’.join([x_translation, ’x’]), x_epsilon,
dxle_de[0] * d)↪

888 partials.declare_partials(’/’.join([x_translation, ’y’]), x_epsilon,
dxle_de[1] * d)↪

889 partials.declare_partials(’/’.join([x_translation, ’z’]), x_epsilon,
dxle_de[2] * d)↪

890

891 partials.declare_partials(’/’.join([x_translation, ’x’]), x_incidence, dxle_di[0])
892 partials.declare_partials(’/’.join([x_translation, ’y’]), x_incidence, dxle_di[1])
893 partials.declare_partials(’/’.join([x_translation, ’z’]), x_incidence, dxle_di[2])
894

895 if i < n_ws:
896 d = np.zeros(n_ws)
897 d[i] = 1.
898

899 rot_sweep = np.matrix([(c_sweep[i], s_sweep[i], 0), (-s_sweep[i], c_sweep[i],
0), (0, 0, 1)])↪

900 rot_dihed = np.matrix([(1, 0, 0), (0, c_dihed[i], -s_dihed[i]), (0,
s_dihed[i], c_dihed[i])])↪

901

902 drs_ds = np.matrix([(dcs_ds[i], dss_ds[i], 0), (-dss_ds[i], dcs_ds[i], 0), (0,
0, 1)])↪

903 drd_dd = np.matrix([(1, 0, 0), (0, dcd_dd[i], -dsd_dd[i]), (0, dsd_dd[i],
dcd_dd[i])])↪

904

905 dxle_dd += np.asarray(np.matmul(drd_dd * rot_sweep, dx_c4[:, i])).flatten()
906 dxle_ds += np.asarray(np.matmul(rot_dihed * drs_ds, dx_c4[:, i])).flatten()
907 dxle_db += np.asarray(np.matmul(rot_dihed * rot_sweep, dx_c4[:, i] /

b[i])).flatten()↪
908

909 partials.declare_partials(’/’.join([x_translation, ’x’]), x_Gamma, dxle_dd[0]
* d)↪

910 partials.declare_partials(’/’.join([x_translation, ’y’]), x_Gamma, dxle_dd[1]
* d)↪

911 partials.declare_partials(’/’.join([x_translation, ’z’]), x_Gamma, dxle_dd[2]
* d)↪

912

913 partials.declare_partials(’/’.join([x_translation, ’x’]), x_Lambda, dxle_ds[0]
* d)↪

914 partials.declare_partials(’/’.join([x_translation, ’y’]), x_Lambda, dxle_ds[1]
* d)↪

915 partials.declare_partials(’/’.join([x_translation, ’z’]), x_Lambda, dxle_ds[2]
* d)↪

916

917 partials.declare_partials(’/’.join([x_translation, ’x’]), x_b, dxle_db[0] * d)
918 partials.declare_partials(’/’.join([x_translation, ’y’]), x_b, dxle_db[1] * d)
919 partials.declare_partials(’/’.join([x_translation, ’z’]), x_b, dxle_db[2] * d)
920

921 # Structures
922 for i in range(n_ws):
923 d = np.zeros(2)
924 d[i] = 1.
925

926 partials.declare_partials(x_fs_web_t % (i, i), x_t_fs, d)
927 partials.declare_partials(x_fs_lowerCap_t % (i, i), x_t_bs, d)
928 partials.declare_partials(x_fs_upperCap_t % (i, i), x_t_ts, d)
929 partials.declare_partials(x_rs_web_t % (i, i), x_t_rs, d)
930 partials.declare_partials(x_rs_lowerCap_t % (i, i), x_t_bs, d)
931 partials.declare_partials(x_rs_upperCap_t % (i, i), x_t_ts, d)
932

933 d = np.zeros(3)
934 d[i] = 1.
935

936 partials.declare_partials(x_fs_r_xsi % (i, i), x_xsi_fs, d)
937 partials.declare_partials(x_rs_r_xsi % (i, i), x_xsi_rs, d)
938

939 d[i] = 0.
940 d[i + 1] = 1.
941

942 partials.declare_partials(x_fs_t_xsi % (i, i), x_xsi_fs, d)



A.5. Test Suite 245

943 partials.declare_partials(x_rs_t_xsi % (i, i), x_xsi_rs, d)
944

945 # Weights
946 length_out = c * (1. - xsi_rs + xsi_fs)
947 area_out = 0.5 * (length_out[:-1] + length_out[1:]) * b
948 m_skin = 2. * area_out * t_skin * rho_skin
949

950 m_wingbox = m_wing * area_out / sum(area_out)
951

952 m_empty = m_wing + m_fixed
953 m_sys = m_empty * f_m_sys
954 m_struct = m_empty - m_sys
955 m_wing = m_wing * (1. - f_m_sys)
956

957 x_md = ’{0}[@uID=”{1}”]/mass’
958 x_m = ’/’.join([’{0}’, x_md.format(’massDescription’, ’{0}’)])
959 x_mass = ’/’.join([x_mbd, x_m])
960 x_moem = x_mass.format(’mOEM’)
961 x_mem = ’/’.join([x_moem[:-34], x_m.format(’mEM’)])
962 x_sys = ’/’.join([x_mem[:-33], x_m.format(’mSystems’)])
963

964 x_m_struct = ’/’.join([x_mem[:-33], x_m.format(’mStructure’)])
965 x_m_wings = ’/’.join([x_m_struct[:-40], x_m.format(’mWingsStructure’)])
966 _x_m_wing = ’/’.join([x_m_wings[:-45], x_m.format(’mWingStructure’)])
967

968 partials.declare_partials(’/’.join([x_mbd,
’fuel/massDescription[@uID=”mFuel”]/mass’]), x_m_fuel, 1.)↪

969 partials.declare_partials(’/’.join([x_mbd,
’payload/massDescription[@uID=”mPayload”]/mass’]), x_m_fuel, 1.)↪

970 partials.declare_partials(x_moem, [x_m_wing, x_m_fixed], [1., 1.])
971 partials.declare_partials(x_mem, [x_m_wing, x_m_fixed], [1., 1.])
972 partials.declare_partials(x_sys, [x_m_wing, x_m_fixed, x_f_m_sys], [f_m_sys, f_m_sys,

m_empty])↪
973

974 partials.declare_partials(x_m_struct, [x_m_wing, x_m_fixed, x_f_m_sys], [1. - f_m_sys,
1. - f_m_sys, -m_empty])↪

975 partials.declare_partials(x_m_wings, [x_m_wing, x_f_m_wings], [f_m_wings, m_wing])
976 partials.declare_partials(_x_m_wing, x_m_wing, 1.)
977

978 dlout_dc = 1. - xsi_fs + xsi_rs
979 dlout_dxsifs = -c
980 dlout_dxsirs = c
981

982 dAout_db = area_out / b
983 dmskin_db = 2 * dAout_db * t_skin * rho_skin
984

985 dmskin_dtskin = m_skin / t_skin
986 dmskin_drhoskin = m_skin / rho_skin
987

988 dmwingbox_db = m_wing * (sum(area_out) * dAout_db - area_out * sum(dAout_db)) /
sum(area_out) ** 2↪

989 dmwingbox_dmwing = m_wingbox / m_wing
990

991 dmcs_db = dmskin_db + dmwingbox_db
992 dmcs_dtskin = dmskin_dtskin
993 dmcs_drhoskin = dmskin_drhoskin
994 dmcs_dmwing = dmwingbox_dmwing
995

996 dAout_dc = np.zeros((n_ws, n_ws + 1))
997 dAout_dxsifs = np.zeros((n_ws, n_ws + 1))
998 dAout_dxsirs = np.zeros((n_ws, n_ws + 1))
999

1000 dmskin_dc = np.zeros((n_ws, n_ws + 1))
1001 dmskin_dxsifs = np.zeros((n_ws, n_ws + 1))
1002 dmskin_dxsirs = np.zeros((n_ws, n_ws + 1))
1003

1004 dmwingbox_dc = np.zeros((n_ws, n_ws + 1))
1005 dmwingbox_dxsifs = np.zeros((n_ws, n_ws + 1))
1006 dmwingbox_dxsirs = np.zeros((n_ws, n_ws + 1))
1007

1008 for i in range(n_ws):



246 A. Code

1009 d = np.zeros(n_ws + 1)
1010 d[i] = 1.
1011 d[i + 1] = 1.
1012

1013 dAout_dc[i] = .5 * b[i] * dlout_dc * d
1014 dAout_dxsifs[i] = .5 * b[i] * dlout_dxsifs * d
1015 dAout_dxsirs[i] = .5 * b[i] * dlout_dxsirs * d
1016

1017 dmskin_dc[i] = 2 * dAout_dc[i] * t_skin * rho_skin
1018 dmskin_dxsifs[i] = 2 * dAout_dxsifs[i] * t_skin * rho_skin
1019 dmskin_dxsirs[i] = 2 * dAout_dxsirs[i] * t_skin * rho_skin
1020

1021 dmwingbox_dc[i] = m_wing * (sum(area_out) * dAout_dc[i] - area_out[i] *
np.sum(dAout_dc, 0)) / sum(area_out) ** 2↪

1022 dmwingbox_dxsifs[i] = m_wing * (sum(area_out) * dAout_dxsifs[i] - area_out[i] *
np.sum(dAout_dxsifs, 0)) / sum(area_out) ** 2↪

1023 dmwingbox_dxsirs[i] = m_wing * (sum(area_out) * dAout_dxsirs[i] - area_out[i] *
np.sum(dAout_dxsirs, 0)) / sum(area_out) ** 2↪

1024

1025 dmcs_dc = dmskin_dc[i] + dmwingbox_dc[i]
1026 dmcs_dxsifs = dmskin_dxsifs[i] + dmwingbox_dxsifs[i]
1027 dmcs_dxsirs = dmskin_dxsirs[i] + dmwingbox_dxsirs[i]
1028

1029 x_m_compseg = ’/’.join([_x_m_wing[:-44], ’mComponentSegment[{:d}]’.format(i + 1)])
1030

1031 partials.declare_partials(
1032 ’/’.join([x_m_compseg, x_md.format(’massDescription’,

’mWing_{:d}’.format(i))]),↪
1033 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_t_skin, x_rho_skin, x_m_wing],
1034 [dmcs_dc, dmcs_dxsifs, dmcs_dxsirs, dmcs_db[i], dmcs_dtskin[i],

dmcs_drhoskin[i], dmcs_dmwing[i]]↪
1035 )
1036

1037 partials.declare_partials(
1038 ’/’.join([x_m_compseg, ’mWingBox’, x_md.format(’massDescription’,

’mWingbox_{:d}’.format(i))]),↪
1039 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_m_wing],
1040 [dmwingbox_dc[i], dmwingbox_dxsifs[i], dmwingbox_dxsirs[i], dmwingbox_db[i],

dmwingbox_dmwing[i]]↪
1041 )
1042

1043 partials.declare_partials(
1044 ’/’.join([x_mSkins % (i + 1), ’mSkins’, x_md.format(’massDescription’,

’mSkins_{:d}’.format(i))]),↪
1045 [x_c, x_xsi_fs, x_xsi_rs, x_b, x_t_skin, x_rho_skin],
1046 [dmskin_dc[i], dmskin_dxsifs[i], dmskin_dxsirs[i], dmskin_db[i],

dmskin_dtskin[i], dmskin_drhoskin[i]]↪
1047 )
1048

1049 x_des = ’/’.join([x_mbd, ’designMasses’])
1050 partials.declare_partials(’/’.join([x_des, x_md.format(’mMLM’, ’mMLM’)]), x_m_mlw, 1.)
1051 partials.declare_partials(’/’.join([x_des, x_md.format(’mMRM’, ’mMRM’)]),
1052 [x_m_fuel, x_m_wing, x_m_fixed, x_m_payload],
1053 [1.01, 1.01, 1.01, 1.01])
1054 partials.declare_partials(’/’.join([x_des, x_md.format(’mTOM’, ’mTOM’)]),
1055 [x_m_fuel, x_m_wing, x_m_fixed, x_m_payload],
1056 [1., 1., 1., 1.])
1057 partials.declare_partials(’/’.join([x_des, x_md.format(’mZFM’, ’mZFM’)]),
1058 [x_m_wing, x_m_fixed, x_m_payload],
1059 [1., 1., 1.])
1060

1061 partials.write(partials_file)

Code frament A.44: Code of the Python module containing the wing object model discipline.

A.5.2.3.6 XPaths

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-



A.5. Test Suite 247

3 ”””
4 Copyright 2017 D. de Vries
5

6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at
9

10 http://www.apache.org/licenses/LICENSE-2.0
11

12 Unless required by applicable law or agreed to in writing, software
13 distributed under the License is distributed on an ”AS IS” BASIS,
14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and
16 limitations under the License.
17

18 This file contains all the XPaths and utility string constants used by the dAEDalus
disciplines.↪

19 ”””
20 from __future__ import absolute_import, division, print_function
21

22 sigma_names = [’sigma_fs’, ’sigma_rs’, ’sigma_ts’, ’sigma_bs’]
23

24 ””” CPACS ”””
25 x_vehicles = ’/cpacs/vehicles’
26 x_model = x_vehicles + ’/aircraft/model[@uID=”model”]’
27 x_ref = ’/’.join([x_model, ’reference’])
28 x_wing = ’/’.join([x_model, ’wings/wing[@symmetry=”x-z-plane”][@uID=”wing”]’])
29 x_sec = ’/’.join([x_wing, ’sections/section[@uID=”sec_%d”]’])
30 x_elem = ’/’.join([x_sec, ’elements/element[@uID=”elem_%d”]’])
31 x_mbd = ’/’.join([x_model, ’analyses/massBreakdown’])
32 x_global = ’/’.join([x_model, ’global’])
33 x_perf = ’/’.join([x_global, ’performanceTargets’])
34

35 x_ref_area = ’/’.join([x_ref, ’area’])
36 x_ref_length = ’/’.join([x_ref, ’length’])
37 x_compseg = ’/’.join([x_wing, ’componentSegments/componentSegment[@uID=”compSeg_%d”]’])
38 x_struct = ’/’.join([x_compseg, ’structure’])
39 x_sparposs = ’/’.join([x_struct, ’spars/sparPositions’])
40 x_fs_r_xsi = ’/’.join([x_sparposs, ’sparPosition[@uID=”fs_%d_r”]/xsi’])
41 x_fs_t_xsi = ’/’.join([x_sparposs, ’sparPosition[@uID=”fs_%d_t”]/xsi’])
42 x_rs_r_xsi = ’/’.join([x_sparposs, ’sparPosition[@uID=”rs_%d_r”]/xsi’])
43 x_rs_t_xsi = ’/’.join([x_sparposs, ’sparPosition[@uID=”rs_%d_t”]/xsi’])
44 x_sparsegs = ’/’.join([x_struct, ’spars/sparSegments’])
45 x_fs_web_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”fs_%d”]/sparCrossSection/web1/material/thickness’])↪
46 x_fs_lowerCap_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”fs_%d”]/sparCrossSection/lowerCap/material/thickness’])↪
47 x_fs_upperCap_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”fs_%d”]/sparCrossSection/upperCap/material/thickness’])↪
48 x_rs_web_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”rs_%d”]/sparCrossSection/web1/material/thickness’])↪
49 x_rs_lowerCap_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”rs_%d”]/sparCrossSection/lowerCap/material/thickness’])↪
50 x_rs_upperCap_t = ’/’.join([x_sparsegs,

’sparSegment[@uID=”rs_%d”]/sparCrossSection/upperCap/material/thickness’])↪
51 x_mSkins = ’/’.join([x_model, ’analyses/massBreakdown/mOEM/mEM/mStructure/mWingsStructure/’
52 ’mWingStructure/mComponentSegment[%d]/mWingBox’])
53

54 ””” Wing optimization problem ”””
55 x_opt = ’/cpacs/toolspecific/wingOptimizationProblem’
56 x_planform = ’/’.join([x_opt, ’planform’])
57 x_structure = ’/’.join([x_opt, ’structure’])
58 x_reference = ’/’.join([x_opt, ’reference’])
59

60 x_const = ’/’.join([x_opt, ’constants’])
61 x_con = ’/’.join([x_opt, ’constraints’])
62 x_obj = ’/’.join([x_opt, ’objectives’])
63

64 x_c = ’/’.join([x_planform, ’c’])
65 x_tc = ’/’.join([x_planform, ’tc’])
66 x_epsilon = ’/’.join([x_planform, ’epsilon’])



248 A. Code

67 x_b = ’/’.join([x_planform, ’b’])
68 x_Lambda = ’/’.join([x_planform, ’Lambda’])
69 x_Gamma = ’/’.join([x_planform, ’Gamma’])
70 x_incidence = ’/’.join([x_planform, ’incidence’])
71

72 x_xsi_fs = ’/’.join([x_structure, ’xsi_fs’])
73 x_xsi_rs = ’/’.join([x_structure, ’xsi_rs’])
74 x_t_fs = ’/’.join([x_structure, ’t_fs’])
75 x_t_rs = ’/’.join([x_structure, ’t_rs’])
76 x_t_ts = ’/’.join([x_structure, ’t_ts’])
77 x_t_bs = ’/’.join([x_structure, ’t_bs’])
78 x_t_skin = ’/’.join([x_structure, ’t_skin’])
79

80 x_m_fixed = ’/’.join([x_reference, ’m_fixed’])
81 x_m_payload = ’/’.join([x_reference, ’m_payload’])
82 x_f_m_sys = ’/’.join([x_reference, ’f_m_sys’])
83 x_f_m_wings = ’/’.join([x_reference, ’f_m_wings’])
84 x_m_mlw = ’/’.join([x_reference, ’m_MLW’])
85 x_m_mtow = ’/’.join([x_reference, ’m_MTOW’])
86

87 x_SFC = ’/’.join([x_reference, ’SFC’])
88 x_m_fuel_res = ’/’.join([x_reference, ’m_fuel_res’])
89 x_CDfus = ’/’.join([x_reference, ’C_D_fus’])
90 x_CDother = ’/’.join([x_reference, ’C_D_other’])
91 x_R = ’/’.join([x_reference, ’R’])
92

93 x_rho_skin = ’/’.join([x_reference, ’rho_skin’])
94 x_sigma_yield = ’/’.join([x_reference, ’sigma_yield’])
95 x_WS_init = ’/’.join([x_reference, ’WS_init’])
96 x_CL_buffet = ’/’.join([x_reference, ’C_L_buffet’])
97 x_m_wing_init = ’/’.join([x_reference, ’m_wing_init’])
98 x_m_fuel_init = ’/’.join([x_reference, ’m_fuel_init’])
99

100 x_con_sigmas = [’/’.join([x_con, ’con_’ + sigma]) for sigma in sigma_names]
101 x_con_WS = ’/’.join([x_con, ’con_WS’])
102 x_con_buffet = ’/’.join([x_con, ’con_buffet’])
103

104 x_obj_m_fuel = ’/’.join([x_obj, ’obj_m_fuel’])
105 x_obj_m_wing = ’/’.join([x_obj, ’obj_m_wing’])
106

107

108 ””” dAEDalus ”””
109 x_dAE = ’/cpacs/toolspecific/dAEDalus’
110 x_m_wing = ’/’.join([x_dAE, ’m_wing’])
111

112 x_loadcases = ’/’.join([x_dAE, ’loadCases’])
113 x_loadcase = ’/’.join([x_loadcases, ’loadCase[%d]’])
114

115 x_M = ’/’.join([x_loadcase, ’M’])
116 x_H = ’/’.join([x_loadcase, ’H’])
117 x_n = ’/’.join([x_loadcase, ’n’])
118 x_CL = ’/’.join([x_loadcase, ’C_L’])
119 x_CDf = ’/’.join([x_loadcase, ’C_D_f’])
120 x_CDi = ’/’.join([x_loadcase, ’C_D_i’])
121

122 x_grid_initial = [’/’.join([x_loadcase, ’initial_grid/’ + component]) for component in [’x’,
’y’, ’z’]]↪

123 x_grid = [’/’.join([x_loadcase, ’deflected_grid/’ + component]) for component in [’x’, ’y’,
’z’]]↪

124 x_grid_guess = [’/’.join([x_loadcase, ’guess_grid/’ + component]) for component in [’x’, ’y’,
’z’]]↪

125

126 x_sigmas_in = [’/’.join([x_loadcase, sigma]) for sigma in sigma_names]
127 x_load_collector = ’/’.join([x_dAE, ’load_collector’])
128 x_sigmas_out = [’/’.join([x_load_collector, sigma]) for sigma in sigma_names]
129

130 x_y_norm = ’/’.join([x_loadcase, ’y_norm’])
131 x_l_norm = ’/’.join([x_loadcase, ’l_norm’])
132

133 x_geom = ’/’.join([x_loadcase, ’geometric_model’])
134 x_stru = ’/’.join([x_loadcase, ’structural_model’])



A.5. Test Suite 249

135 x_aero = ’/’.join([x_loadcase, ’aerodynamic_model’])
136

137 x_mle = ’/’.join([x_loadcase, ’matlab_engine’])
138 x_ml_timeout = ’/’.join([x_mle, ’timeout’])
139 x_ml_id = ’/’.join([x_mle, ’id’])
140 x_ml_timestamp = ’/’.join([x_mle, ’timestamp’])
141

142 ””” FWE ”””
143 x_fwe = ’/cpacs/toolspecific/fuel_weight_estimator’
144

145 x_CD = ’/’.join([x_fwe, ’C_D’])
146 x_LD = ’/’.join([x_fwe, ’L_D’])
147 x_m_fuel = ’/’.join([x_fwe, ’m_fuel’])
148 x_fwe_CL = ’/’.join([x_fwe, ’C_L’])

Code frament A.45: Code of the Python module containing all the XPaths of the disciplines.





Bibliography
[1] AGILE. Agile - aircraft 3rd generation mdo for innovative collaboration of heterogeneous teams

of experts, 2017. URL https://www.agile-project.eu/. Accessed: 20-11-2017.

[2] Jeremy Agte, de Weck, Olivier, Jaroslaw Sobieszczanski-Sobieski, Arendsen, Paul, Alan Mor-
ris, and Martin Spieck. MDO: assessment and direction for advancement—an opinion of
one international group. Structural and Multidisciplinary Optimization, 40(1):17, 2009. ISSN
1615-1488. doi: 10.1007/s00158-009-0381-5. URL https://doi.org/10.1007/
s00158-009-0381-5.

[3] B. Aigner, I. van Gent, G. La Rocca, and E. Stumpf. Using graph-based algorithms and data-
driven documents for formulation and visualization of large mdo systems. In 6th CEAS Air &
Space Conference Aerospace Europe, volume Paper 173, Bucharest, Romania, 2017. URL
https://www.agile-project.eu/cloud/index.php/s/mbdufb7vnnMRb3Y.

[4] E. Allison, I. Kroo, P. Sturdza, Y. Suzuki, and H. Martins-Rivas. Aircraft conceptual design
with natural laminar flow. 27th Congress of the International Council of the Aeronautical Sci-
ences 2010, ICAS 2010, Vol. 1:pp. 428–436, 2010. URL http://www.scopus.com/inward/
record.url?eid=2-s2.0-84878478319{&}partnerID=tZOtx3y1.

[5] American Airlines. Final approach/our fleet. American Way, 50(11):128–129, nov 2017. URL
http://americanway.ink-live.com/html5/reader/production/default.aspx?
pubname=&edid=81767840-2346-411d-83cc-6988af881d99.

[6] J. D. Anderson. Ludwig prandtl’s boundary layer. Physics Today, Vol. 58(No. 12):pp. 42–48, dec
2005. doi: 10.1063/1.2169443. URL https://doi.org/10.1063%2F1.2169443.

[7] Flight Operations Support & Line Assistance. Getting to grips with aircraft performance. In-
ternal manual, Customer Services, Airbus, jan 2002. URL https://www.skybrary.aero/
bookshelf/books/2263.pdf. Accessed 22-11-2017.

[8] E. Baalbergen, A. Kanakis, and W. Vankan. A practical approach for coordination of multi-
partner engineering jobs in the design of small aircraft. CESAR Special Issue of Journal Czech
Aerospace Proceedings / Letechký zpravodaj, Journal for Czech Aerospace Research, Vol. 3,
2009. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.
4524&rep=rep1&type=pdf.

[9] Erik Baalbergen, Johan Kos, Clément Louriou, Cédric Campguilhem, and James Barron.
Streamlining cross-organisation product design in aeronautics. Proceedings of the Insti-
tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(12):2192–
2202, jul 2017. doi: 10.1177/0954410017716480. URL https://doi.org/10.1177/
0954410017716480.

[10] N. Bartoli, M. A. Bouhlel, I. Kurek, R. Lafage, T. Lefebvre, J. Morlier, R. Priem, V. Stilz, and
R. Regis. Improvement of efficient global optimization with mixture of experts: methodology de-
velopments and preliminary results in aircraft wing design. In 17th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, number June in AIAA AVIATION Forum, pages pp. 1–28.
American Institute of Aeronautics and Astronautics, jun 2016. doi: doi:10.2514/6.2016-4001.
URL http://dx.doi.org/10.2514/6.2016-4001.

[11] Gary Belie. Non-Technical Barriers to Multidisciplinary Optimization in the Aerospace Industry.
In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Multidisciplinary
Analysis Optimization Conferences. American Institute of Aeronautics and Astronautics, sep
2002. doi: doi:10.2514/6.2002-5439. URL https://doi.org/10.2514/6.2002-5439.

251

https://www.agile-project.eu/
https://doi.org/10.1007/s00158-009-0381-5
https://doi.org/10.1007/s00158-009-0381-5
https://www.agile-project.eu/cloud/index.php/s/mbdufb7vnnMRb3Y
http://www.scopus.com/inward/record.url?eid=2-s2.0-84878478319{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84878478319{&}partnerID=tZOtx3y1
http://americanway.ink-live.com/html5/reader/production/default.aspx?pubname=&edid=81767840-2346-411d-83cc-6988af881d99
http://americanway.ink-live.com/html5/reader/production/default.aspx?pubname=&edid=81767840-2346-411d-83cc-6988af881d99
https://doi.org/10.1063%2F1.2169443
https://www.skybrary.aero/bookshelf/books/2263.pdf
https://www.skybrary.aero/bookshelf/books/2263.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.4524&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.4524&rep=rep1&type=pdf
https://doi.org/10.1177/0954410017716480
https://doi.org/10.1177/0954410017716480
http://dx.doi.org/10.2514/6.2016-4001
https://doi.org/10.2514/6.2002-5439


252 Bibliography

[12] Simon Binder and K. Seywald. dAEDalus - Git repository, 2017. URL https://github.com/
sbind/dAEDalusNXT.

[13] Chunmei Chen, Boris Zakharin, and Israel Wygnanski. On the parameters governing fluidic
control of separation and circulaton. In 46th AIAA Aerospace Sciences Meeting and Exhibit.
American Institute of Aeronautics and Astronautics, jan 2008. doi: 10.2514/6.2008-629. URL
https://doi.org/10.2514/6.2008-629.

[14] P.D. Ciampa and B. Nagel. Towards the 3rd generation mdo collaborative environment.
In 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Ko-
rea, 2016. 30th ICAS. URL https://www.agile-project.eu/cloud/index.php/s/
scilViiMRGzHpbm.

[15] Pier Davide Ciampa and Björn Nagel. The AGILE paradigm: the next generation of collaborative
MDO. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American
Institute of Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4137. URL https:
//doi.org/10.2514/6.2017-4137.

[16] Pier Davide Ciampa, Erwin Moerland, Doreen Seider, Erik Baalbergen, Riccardo Lombardi, and
Roberto D’Ippolito. A collaborative architecture supporting AGILE design of complex aeronautics
products. In 18th AIAA/ISSMOMultidisciplinary Analysis andOptimization Conference. American
Institute of Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4138. URL https:
//doi.org/10.2514/6.2017-4138.

[17] P. Coleman. Innovations in collaborative modeling and simulation to deliver the behavioral digital
aicraft. PDT Europe, 2012.

[18] CPACS. Cpacs – a common language for aircraft design, 2016. URL https://software.
dlr.de/p/cpacs/home/. Accessed 28-03-2017.

[19] T.D. Crouch. Wings: A History of Aviation from Kites to the Space Age. Smithsonian National
Air and Space Museum, 2004. ISBN 9780393326208. URL https://books.google.de/
books?id=cXQmUf-JtNkC.

[20] Sebastian M. Deinert. Fakultät für Maschinenwesen Lehrstuhl für Leichtbau Sebastian Moritz
Deinert. Phd thesis, Technischen Universität München, 2016. URL https://mediatum.ub.
tum.de/doc/1297578/1297578.pdf.

[21] Deutsches Zentrum für Luft- und Raumfahrt e.V. � Simulation and Software Technology. Remote
component environment (rce), 2017. URL http://rcenvironment.de/. Accessed 28-03-
2017.

[22] German Aerospace Center DLR. European high lift programme ii: Final publishable report.
Technical report, DLR, 2004. URL http://www.transport-research.info/sites/
default/files/project/documents/20120822_121607_86015_124729341EN6.
pdf.

[23] European Aviation Safety Agency. Certification specifications for large aero-
planes, cs-25, 2013. URL https://www.easa.europa.eu/document-library/
certification-specifications/cs-25-initial-issue. Accessed 20-03-2017.

[24] Federal Aviation Administration (FAA). Airworthiness standards: Transport category air-
planes, 14 c.f.r. §25, 1964. URL http://www.ecfr.gov/cgi-bin/text-idx?SID=
bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.
1.25.a. Accessed 20-03-2017.

[25] DOT Federal Aviation Administration (FAA). Nprm docket no. f aa-2014-0926 (directorate iden-
tifier 2014-nm-085-ad): 747-8 vibration during high g maneuvers, airplane model 747-8, 2015.
URL https://www.federalregister.gov/d/2015-17023. Accessed 10-04-2017.

https://github.com/sbind/dAEDalusNXT
https://github.com/sbind/dAEDalusNXT
https://doi.org/10.2514/6.2008-629
https://www.agile-project.eu/cloud/index.php/s/scilViiMRGzHpbm
https://www.agile-project.eu/cloud/index.php/s/scilViiMRGzHpbm
https://doi.org/10.2514/6.2017-4137
https://doi.org/10.2514/6.2017-4137
https://doi.org/10.2514/6.2017-4138
https://doi.org/10.2514/6.2017-4138
https://software.dlr.de/p/cpacs/home/
https://software.dlr.de/p/cpacs/home/
https://books.google.de/books?id=cXQmUf-JtNkC
https://books.google.de/books?id=cXQmUf-JtNkC
https://mediatum.ub.tum.de/doc/1297578/1297578.pdf
https://mediatum.ub.tum.de/doc/1297578/1297578.pdf
http://rcenvironment.de/
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
https://www.easa.europa.eu/document-library/certification-specifications/cs-25-initial-issue
https://www.easa.europa.eu/document-library/certification-specifications/cs-25-initial-issue
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
https://www.federalregister.gov/d/2015-17023


Bibliography 253

[26] F. Flager and J. Haymaker. A comparison of multidisciplinary design, analysis and optimization
processes in the building construction and aerospace industries. In Conference: 24th Interna-
tional Conference on Information Technology in Construction, pages pp. 625–630, 2007. URL
https://www.researchgate.net/publication/265873970_A_Comparison_of_
Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_
Building_Construction_and_Aerospace_Industries.

[27] Flexop. Flexop project, 2015. URL https://www.flexop.eu/. Accessed 20-04-2017.

[28] M. Fujino. Design and development of the hondajet. Journal of Aircraft, Vol. 42(No. 3):pp. 755–
764, may 2005. ISSN 0021-8669. doi: 10.2514/1.12268. URL http://dx.doi.org/10.
2514/1.12268.

[29] Michimasa Fujino. Natural-laminar-flow airfoil development for the honda jet. In 20th AIAA Ap-
plied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, jun 2002.
doi: 10.2514/6.2002-2932. URL https://doi.org/10.2514/6.2002-2932.

[30] E. Gamma, Helm, R., R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Pearson Ed-
ucation, 1994. ISBN 9780321700698. URL https://books.google.nl/books?id=
6oHuKQe3TjQC.

[31] Justin Gray, Kenneth Moore, and Bret Naylor. OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. In 13th AIAA/ISSMO Multidisciplinary Analysis Op-
timization Conference. American Institute of Aeronautics and Astronautics, sep 2010. doi:
10.2514/6.2010-9101. URL https://doi.org/10.2514/6.2010-9101.

[32] Justin Gray, Kenneth Moore, and Bret Naylor. OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. In 13th AIAA/ISSMO Multidisciplinary Analysis Op-
timization Conference. American Institute of Aeronautics and Astronautics, sep 2010. doi:
10.2514/6.2010-9101. URL https://doi.org/10.2514/6.2010-9101.

[33] Justin Gray, Kenneth Moore, Tristan Hearn, and Bret Naylor. A standard platform for testing and
comparison of MDAO architectures. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference&lt;BR&gt;20th AIAA/ASME/AHS Adaptive Structures
Conference&lt;BR&gt;14th AIAA. American Institute of Aeronautics and Astronautics, apr 2012.
doi: 10.2514/6.2012-1586. URL https://doi.org/10.2514/6.2012-1586.

[34] D. Grose. Reengineering the aircraft design process. In 5th Symposium on Multidisciplinary
Analysis and Optimization. American Institute of Aeronautics and Astronautics, sep 1994. doi:
10.2514/6.1994-4323. URL https://doi.org/10.2514/6.1994-4323.

[35] Marin D. Guenov and Ernst Kesseler. Advances in Collaborative Civil Aeronautical Multidisci-
plinary Design Optimization. American Institute of Aeronautics and Astronautics, jan 2010. doi:
10.2514/4.867279. URL https://doi.org/10.2514/4.867279.

[36] R. T. Haftka. Automated procedure for design of wing structures to satisfy strength and flutter
requirements. Technical report, TN D-7264, NASA Langley Research Center, Hampton, VA,
1973.

[37] R. T. Haftka. Optimization of flexible wing structures subject to strength and induced drag
constraints. AIAA Journal, Vol. 15(No. 8):pp. 1101–1106, aug 1977. ISSN 0001-1452. doi:
10.2514/3.7400. URL http://dx.doi.org/10.2514/3.7400.

[38] R. T. Haftka and C. P. Shore. Approximate methods for combined thermal/structural design.
Technical report, TP-1428, NASA, 1979. URL https://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/19790017256.pdf.

[39] R. T. Haftka, D. Villanueva, and A. Chaudhuri. Parallel surrogate-assisted global optimization
with expensive functions – a survey. Structural and Multidisciplinary Optimization, Vol. 54(No.
1):pp. 3–13, apr 2016. doi: 10.1007/s00158-016-1432-3. URL https://doi.org/10.
1007%2Fs00158-016-1432-3.

https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.flexop.eu/
http://dx.doi.org/10.2514/1.12268
http://dx.doi.org/10.2514/1.12268
https://doi.org/10.2514/6.2002-2932
https://books.google.nl/books?id=6oHuKQe3TjQC
https://books.google.nl/books?id=6oHuKQe3TjQC
https://doi.org/10.2514/6.2010-9101
https://doi.org/10.2514/6.2010-9101
https://doi.org/10.2514/6.2012-1586
https://doi.org/10.2514/6.1994-4323
https://doi.org/10.2514/4.867279
http://dx.doi.org/10.2514/3.7400
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790017256.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790017256.pdf
https://doi.org/10.1007%2Fs00158-016-1432-3
https://doi.org/10.1007%2Fs00158-016-1432-3


254 Bibliography

[40] Raphael T. Haftka, James H. Starnes Jr., Furman W. Barton, and Sidney C. Dixon. Comparison
of two types of structural optimization procedures for flutter requirements. AIAA Journal, 13(10):
1333–1339, oct 1975. doi: 10.2514/3.60545. URL https://doi.org/10.2514/3.60545.

[41] Christopher Heath and Justin Gray. OpenMDAO: Framework for flexible multidisciplinary de-
sign, analysis and optimizationmethods. In 53rd AIAA/ASME/ASCE/AHS/ASCStructures, Struc-
tural Dynamics and Materials Conference&lt;BR&gt;20th AIAA/ASME/AHS Adaptive Structures
Conference&lt;BR&gt;14th AIAA. American Institute of Aeronautics and Astronautics, apr 2012.
doi: 10.2514/6.2012-1673. URL https://doi.org/10.2514/6.2012-1673.

[42] E. H. Hirschel, H. Prem, and G. Madelung. Aeronautical Research in Germany: From
Lilienthal until Today. Engineering online library. Springer Berlin Heidelberg, 2012.
ISBN 9783642184840. URL https://books.google.nl/books/about/Aeronautical_
Research_in_Germany.html?id=OoFcHOLpCskC&redir_esc=y.

[43] R.A. Horn and C.R. Johnson. Matrix Analysis. Matrix Analysis. Cambridge University
Press, 2012. ISBN 9780521839402. URL https://books.google.nl/books?id=
5I5AYeeh0JUC.

[44] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi: 10.1109/mcse.2007.55. URL https://doi.org/10.1109/mcse.
2007.55.

[45] John T. Hwang. A modular approach to large-scale design optimization of aerospace systems.
PhD thesis, University of Michigan, 2015. URL http://mdolab.engin.umich.edu/sites/
default/files/Hwang_dissertation.pdf.

[46] L. R. Jenkinson, P. Simpkin, and D. Rhodes. Civil Jet Aircraft Design. AIAA education series.
American Institute of Aeronautics and Astronautics, 1999. ISBN 9780340741528. URL https:
//books.google.nl/books?isbn=034074152X.

[47] Eric Jones, Oliphant, Travis, and Pearu Peterson. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/.

[48] Gaetan Kenway, Graeme Kennedy, and Joaquim Martins. Aerostructural optimization of the
common research model configuration. In 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and Astronautics, jun 2014. doi:
10.2514/6.2014-3274. URL https://doi.org/10.2514/6.2014-3274.

[49] I. Kroo and R. S. Shevell. Aircraft design: Synthesis and analysis, 2001. URL http://adg.
stanford.edu/aa241/AircraftDesign.html. Accessed 20-03-2017.

[50] D. Küchemann. The Aerodynamic Design of Aircraft: A Detailed Introduction to the Current Aero-
dynamic Knowledge and Practical Guide to the Solution of Aircraft Design Problems. Pergamon
International Library of Science, Technology, Engineering, and Social Studies. Pergamon Press,
1978. ISBN 9780080205151.

[51] Timo Kühn, Vlad Ciobaca, Ralf Rudnik, Burkhard Gölling, and Wiebke Breitenstein. Active flow
separation control on a high-lift wing-body configuration part 1: Baseline flow and constant blow-
ing. In 29th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and
Astronautics, jun 2011. doi: 10.2514/6.2011-3168. URL https://doi.org/10.2514/6.
2011-3168.

[52] A. B Lambe and J. R. R. A Martins. Extensions to the design structure matrix for the descrip-
tion of multidisciplinary design, analysis, and optimization processes. Structural & Multidisci-
plinary Optimization, Vol. 46(No. 2):pp. 273–284, 2012. ISSN 1615-147X. doi: 10.1007/
s00158-012-0763-y.

[53] R. Lano. The n2 chart. Internal report, TRW Software Series, Redondo Beach, CA, 1977.

https://doi.org/10.2514/3.60545
https://doi.org/10.2514/6.2012-1673
https://books.google.nl/books/about/Aeronautical_Research_in_Germany.html?id=OoFcHOLpCskC&redir_esc=y
https://books.google.nl/books/about/Aeronautical_Research_in_Germany.html?id=OoFcHOLpCskC&redir_esc=y
https://books.google.nl/books?id=5I5AYeeh0JUC
https://books.google.nl/books?id=5I5AYeeh0JUC
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
http://mdolab.engin.umich.edu/sites/default/files/Hwang_dissertation.pdf
http://mdolab.engin.umich.edu/sites/default/files/Hwang_dissertation.pdf
https://books.google.nl/books?isbn=034074152X
https://books.google.nl/books?isbn=034074152X
http://www.scipy.org/
https://doi.org/10.2514/6.2014-3274
http://adg.stanford.edu/aa241/AircraftDesign.html
http://adg.stanford.edu/aa241/AircraftDesign.html
https://doi.org/10.2514/6.2011-3168
https://doi.org/10.2514/6.2011-3168


Bibliography 255

[54] M. Lengers, U. Scholz, and M. Bauer. Test and industrial assessment of active flow control
integration in order to increase high - lift performance. Deutscher Luft- und Raumfahrtkongress
2011, pages pp. 1145–1153, 2011.

[55] O. Lilienthal. Der Vogelflug als Grundlage der Fliegekunst: Ein Beitrag zur Systematik der
Flugtechnik. Heyfelder, 1889.

[56] E. Livne. The active flutter suppression (afs) technology evaluation project. In JAMS Meeting,
Seattle, WA, March, 2014. URL https://depts.washington.edu/amtas/events/jams_
14/presentations/17.Livne.pdf. Accessed 10-04-2017.

[57] Lufthansa. Unsere flotte, our fleet. Magazin, page 83, oct 2017. URL http://www.
lhm-lounge.de/downloads/standardbeitrag/625263/lh_1710_inter.pdf.

[58] W. Machunze, A. Gessler, T. Fabel, P. Horst, and Rädel, M. and Wolf, K. and Ulbricht, A.
and Münter, S. and Hufenbach, W. Active flow control system integration into a cfrp flap.
CEAS Aeronautical Journal, Vol. 7(No. 1):pp. 69–81, 2016. ISSN 18695590. doi: 10.1007/
s13272-015-0171-2.

[59] J. R. R. A. Martins. Multidisciplinary design optimization laboratory, 2017. URL http://
mdolab.engin.umich.edu/. Accessed 22-03-2017.

[60] Joaquim R. R. A. Martins and Andrew B. Lambe. Multidisciplinary design optimization: A survey
of architectures. AIAA Journal, 51(9):2049–2075, sep 2013. doi: 10.2514/1.j051895. URL
https://doi.org/10.2514/1.j051895.

[61] Joaquim R. R. A. Martins, Christopher Marriage, and Nathan Tedford. pyMDO: An object-
oriented framework for multidisciplinary design optimization. ACM Transactions on Mathe-
matical Software, 36(4):1–25, aug 2009. doi: 10.1145/1555386.1555389. URL https:
//doi.org/10.1145/1555386.1555389.

[62] Erwin Moerland, Richard-Gregor Becker, and Björn Nagel. Collaborative understanding of dis-
ciplinary correlations using a low-fidelity physics-based aerospace toolkit. CEAS Aeronauti-
cal Journal, 6(3):441–454, apr 2015. doi: 10.1007/s13272-015-0153-4. URL https:
//doi.org/10.1007/s13272-015-0153-4.

[63] Kenneth Moore, Bret Naylor, and Justin Gray. The development of an open source framework for
multidisciplinary analysis and optimization. In 12th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and Astronautics, sep 2008. doi:
10.2514/6.2008-6069. URL https://doi.org/10.2514/6.2008-6069.

[64] B. Nagel and Böhnke, D. and Gollnick, V. and Schmollgruber, P. and Rizzi, A. and La Rocca, G.
and Alonso, J. J. Communication in aircraft design: Can we establish a common language? 28th
International Congress of the Aeronautical Sciences, 2012. ISSN 978-162276754-0. URL http:
//kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597.

[65] NOESIS. Optimus: The industry-leading pido software platform, 2017. URL https://www.
noesissolutions.com/our-products/optimus.

[66] OpenMDAO. Openmdao 1.0 alpha is coming, 2015. URL http://openmdao.org/
openmdao-1-0-alpha-is-coming/. Accessed 03-04-2017.

[67] OpenMDAO. The alpha has landed. welcome to openmdao 1.0.0a, 2015. URL http:
//openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/. Accessed
03-04-2017.

[68] OpenMDAO. Sellar - A Simple Two-Discipline Problem – OpenMDAO Documentation,
2017. URL http://blue-kgm.readthedocs.io/en/latest/basic_guide/sellar.
html. Accessed 10-10-2017.

[69] OpenMDAO. Openmdao.org | an open-source mdao framework written in python., 2017. URL
http://openmdao.org/. Accessed 22-11-2017.

https://depts.washington.edu/amtas/events/jams_14/presentations/17.Livne.pdf
https://depts.washington.edu/amtas/events/jams_14/presentations/17.Livne.pdf
http://www.lhm-lounge.de/downloads/standardbeitrag/625263/lh_1710_inter.pdf
http://www.lhm-lounge.de/downloads/standardbeitrag/625263/lh_1710_inter.pdf
http://mdolab.engin.umich.edu/
http://mdolab.engin.umich.edu/
https://doi.org/10.2514/1.j051895
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1007/s13272-015-0153-4
https://doi.org/10.1007/s13272-015-0153-4
https://doi.org/10.2514/6.2008-6069
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597
https://www.noesissolutions.com/our-products/optimus
https://www.noesissolutions.com/our-products/optimus
http://openmdao.org/openmdao-1-0-alpha-is-coming/
http://openmdao.org/openmdao-1-0-alpha-is-coming/
http://openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/
http://openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/
http://blue-kgm.readthedocs.io/en/latest/basic_guide/sellar.html
http://blue-kgm.readthedocs.io/en/latest/basic_guide/sellar.html
http://openmdao.org/


256 Bibliography

[70] OpenMDAO. Github - openmdao/openmdao, 2017. URL https://github.com/OpenMDAO/
OpenMDAO. Accessed 03-04-2017.

[71] L. Prandtl. Über flüssigkeitsbewegung bei sehr kleiner reibung. In Verhandlungen des Dritten
Internationalen Mathematiker-Kongresses in Heidelberg : vom 8. bis 13. August 1904, pages pp.
484–491. A. Krazer, ed., Taubner, Leipzig, Germany, 1905.

[72] D. P. Raymer. Aircraft design: a conceptual approach. Educ Series. American Institute of Aero-
nautics and Astronautics, 1989. ISBN 9780930403515.

[73] Robert Reams. Hadamard inverses, square roots and products of almost semidefinite matri-
ces. Linear Algebra and its Applications, 288:35–43, feb 1999. doi: 10.1016/s0024-3795(98)
10162-3. URL https://doi.org/10.1016/s0024-3795(98)10162-3.

[74] J. Roskam. Part I: Preliminary Sizing of Airplanes. Number pt. 1 in Airplane Design. DARcorpo-
ration, 1985. ISBN 9781884885426.

[75] J. Roskam. Part II: Preliminary Configuration Design and Integration of the Propulsion System.
Number pt. 2 in Airplane Design. DARcorporation, 1985. ISBN 9781884885433.

[76] G. J. J. Ruijgrok. Elements of airplane performance. VSSD, 2009. ISBN 9789065622037.

[77] P. Schlösser. Design of an Active Flow Control System at the Pylon/Wing Junction. PhD thesis,
TU München, 2015.

[78] L. A. Schmit. Structural synthesis - its genesis and development. AIAA Journal, Vol. 19(No. 10):
1249–1263, oct 1981. ISSN 0001-1452. doi: 10.2514/3.7859. URL http://dx.doi.org/
10.2514/3.7859.

[79] L. A. Schmit and W. A. Thornton. Synthesis of an airfoil at supersonic mach number. Technical
report, CR 144, NASA, 1965.

[80] Lucien A Schmit. Structural design by systematic synthesis. In Proceedings of the 2nd confer-
ence on electronic computation, ASCE, New York, pages 105–122, 1960.

[81] L. A. Schmit Jr. Structural synthesis — precursor and catalyst. recent experiences in multidisci-
plinary analysis and optimization. Technical report, CP-2337, NASA, 1984.

[82] R. Sellar, S. Batill, and J. Renaud. Response surface based, concurrent subspace optimization
for multidisciplinary system design. In 34th Aerospace Sciences Meeting and Exhibit. American
Institute of Aeronautics and Astronautics, jan 1996. doi: 10.2514/6.1996-714. URL https:
//doi.org/10.2514/6.1996-714.

[83] K. Seywald. Wingbox Mass Prediction considering Quasi-Static Nonlinear Aeroelasticity. PhD
thesis, Technischen Universität München, 2011. URL https://www.diva-portal.org/
smash/get/diva2:474633/FULLTEXT01.pdf.

[84] K Seywald, N Gommes de Paule, A Wildschek, F Holzapfel, C Breitsamter, and M Förster. Val-
idation of an aeroelastic analysis and simulation tool for the assessment of innovative, highly
elastic aircraft configurations. In Deutscher Luft- und Raumfahrtkongress [DGLRK2014-0232],
pages pp. 1–10, Augsburg, 2014.

[85] S Shahpar. Challenges to overcome for routine usage of automatic optimisation in the propulsion
industry. The Aeronautical Journal, 115(1172):615–625, 2011. ISSN 0001-9240. doi: DOI:
10.1017/S0001924000006308. URL https://www.cambridge.org/core/article/
challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/
0ECEB120D713F631B5271191DDFA88A4.

[86] John W. Shipman. Tkinter - python wiki, 2017. URL https://wiki.python.org/moin/
TkInter.

https://github.com/OpenMDAO/OpenMDAO
https://github.com/OpenMDAO/OpenMDAO
https://doi.org/10.1016/s0024-3795(98)10162-3
http://dx.doi.org/10.2514/3.7859
http://dx.doi.org/10.2514/3.7859
https://doi.org/10.2514/6.1996-714
https://doi.org/10.2514/6.1996-714
https://www.diva-portal.org/smash/get/diva2:474633/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:474633/FULLTEXT01.pdf
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter


Bibliography 257

[87] Timothy W. Simpson and Joaquim R. R. A. Martins. Multidisciplinary design optimization for
complex engineered systems: Report from a national science foundation workshop. Journal of
Mechanical Design, 133(10):101002, 2011. doi: 10.1115/1.4004465. URL https://doi.
org/10.1115/1.4004465.

[88] J. Sobieszczanski-Sobieski, A. Morris, and M. van Tooren. Multidisciplinary Design Optimization
Supported by Knowledge Based Engineering. Wiley, 2015. ISBN 9781118897089.

[89] D. V. Steward. The design structure system: A method for managing the design of complex
systems. IEEE Transactions on Engineering Management, EM-28(No. 3):pp. 71–74, Aug 1981.
ISSN 0018-9391. doi: 10.1109/TEM.1981.6448589.

[90] Nathan P. Tedford and Joaquim R. R. A. Martins. Benchmarking multidisciplinary design opti-
mization algorithms. Optimization and Engineering, 11(1):159–183, mar 2009. doi: 10.1007/
s11081-009-9082-6. URL https://doi.org/10.1007/s11081-009-9082-6.

[91] TOCIA Consortium. Eu fp7 tocia project public web page, 2016. URL http://www.
toica-fp7.eu/. Accessed 10-03-2017.

[92] E. Torenbeek. Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design
of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic
Design, Propulsion and Performance. Delft University Press, 1976. ISBN 9789029825054. URL
https://books.google.de/books?id=ZBwIAQAAIAAJ.

[93] E. Torenbeek. Advanced Aircraft Design: Conceptual Design, Technology and Optimization of
Subsonic Civil Airplanes. Aerospace Series. Wiley, 2013. ISBN 9781118568095.

[94] Imco van Gent and Lukas Müller. Cmdows - git repository, 2017. URL https://bitbucket.
org/imcovangent/cmdows. Accessed: 20-11-2017.

[95] Imco van Gent and Lukas Müller. Kadmos - git repository, 2017. URL https://bitbucket.
org/imcovangent/kadmos. Accessed 22-11-2017.

[96] Imco van Gent, Pier Davide Ciampa, Benedikt Aigner, Jonas Jepsen, Gianfranco La Rocca, and
Joost Schut. Knowledge architecture supporting collaborative MDO in the AGILE paradigm. In
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of
Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4139. URL https://doi.
org/10.2514/6.2017-4139.

[97] Imco van Gent, Gianfranco La Rocca, and Leo L. Veldhuis. Composing MDAO sym-
phonies: graph-based generation and manipulation of large multidisciplinary systems. In 18th
AIAA/ISSMOMultidisciplinary Analysis and Optimization Conference. American Institute of Aero-
nautics and Astronautics, jun 2017. doi: 10.2514/6.2017-3663. URL https://doi.org/
10.2514/6.2017-3663.

[98] John Vassberg, Mark Dehaan, Melissa Rivers, and Richard Wahls. Development of a com-
mon research model for applied CFD validation studies. In 26th AIAA Applied Aerodynamics
Conference. American Institute of Aeronautics and Astronautics, aug 2008. doi: 10.2514/6.
2008-6919. URL https://doi.org/10.2514/6.2008-6919.

[99] L. E. Wallace. The whitcomb area rule: Naga aerodynamics research and innovation. In FROM
ENGINEERING SCIENCE TO BIG SCIENCE: The NACA and NASA Collier Trophy Research
Project Winners, The NASA History Series. NASA History Office, 1998.

[100] W. L. Wesley and P. Chan-gi. Aeroelastic optimization study based on x-56a model. In AIAA
Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics
(AIAA), jun 2014. doi: 10.2514/6.2014-2052. URL https://doi.org/10.2514%2F6.
2014-2052.

https://doi.org/10.1115/1.4004465
https://doi.org/10.1115/1.4004465
https://doi.org/10.1007/s11081-009-9082-6
http://www.toica-fp7.eu/
http://www.toica-fp7.eu/
https://books.google.de/books?id=ZBwIAQAAIAAJ
https://bitbucket.org/imcovangent/cmdows
https://bitbucket.org/imcovangent/cmdows
https://bitbucket.org/imcovangent/kadmos
https://bitbucket.org/imcovangent/kadmos
https://doi.org/10.2514/6.2017-4139
https://doi.org/10.2514/6.2017-4139
https://doi.org/10.2514/6.2017-3663
https://doi.org/10.2514/6.2017-3663
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.2514%2F6.2014-2052
https://doi.org/10.2514%2F6.2014-2052


258 Bibliography

[101] Andreas Wildschek. Concurrent optimization of a feed-forward gust loads controller and mini-
mization of wing box structural mass on an aircraft with active winglets. In 16th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and
Astronautics, jun 2015. doi: 10.2514/6.2015-2490. URL https://doi.org/10.2514/6.
2015-2490.

[102] J.R. Wright and J.E. Cooper. Introduction to Aircraft Aeroelasticity and Loads. Aerospace Series.
Wiley, 2014. ISBN 9781118700433.

[103] O. Wright. Telegram from orville wright in kitty hawk, n.c., to his father announcing four successful
flights, 1903 dec. 17. Photograph, Retrieved from the Library of Congress, 1903. URL https:
//www.loc.gov/item/2003680165/. Accessed 21-03-2017.

[104] W.Wright. Wilbur wright [henry a. wise wood, aero club of america bulletin, july 1912]. Manuscrip-
t/Mixed Material, Retrieved from the Library of Congress, 1912. URL https://www.loc.gov/
item/wright003306/. Accessed 21-03-2017.

[105] S. X. Ying. Report from icas workshop on complex systems integration in aeronautics. 30th
Congress of the International Council of the Aeronautical Sciences, 2016.

https://doi.org/10.2514/6.2015-2490
https://doi.org/10.2514/6.2015-2490
https://www.loc.gov/item/2003680165/
https://www.loc.gov/item/2003680165/
https://www.loc.gov/item/wright003306/
https://www.loc.gov/item/wright003306/

	List of Figures
	List of Tables
	List of Code Fragments
	Introduction
	Background
	Aircraft Design
	History and Current Work
	The Design Process
	Design Process Management
	The Multidisciplinary Nature of Aircraft Design
	Design Requirements and Objectives
	Wing Design

	Multidisciplinary Design Optimization
	The Birth of MDO
	Definitions and Terminology
	MDO Architectures
	Difficulties of MDO
	The AGILE Project
	The OpenMDAO Framework


	Methodology
	Requirements
	Workflow
	Knowledge Base
	High Level Strategy
	Coupling Strategy
	Construction Strategy
	Architectural Strategy

	Software Architecture
	Implementation
	Core Module
	Utilities Module
	Recorders Module


	Results
	Scalable Optimization Problem
	Sellar Problem
	Aerostructural Wing Optimization

	Conclusions & Recommendations
	Conclusions
	Recommendations

	Code
	OpenLEGO core
	pythonopenlego.core.abstractdiscipline
	pythonopenlego.core.disciplinecomponent
	pythonopenlego.core.model
	pythonopenlego.core.xmlcomponent

	Partials
	XMLSchema
	pythonopenlego.partials.partials

	Recorders
	pythonopenlego.recorders.baseiterationplotter
	pythonopenlego.recorders.baselaneplotter
	pythonopenlego.recorders.constraintplotter
	pythonopenlego.recorders.normalizeddesvarplotter
	pythonopenlego.recorders.simpleobjectiveplotter
	pythonopenlego.recorders.voiplotter

	Utilities
	pythonopenlego.utils.generalutils
	pythonopenlego.utils.xmlutils

	Test Suite
	Sellar Problem
	Wing Optimization


	Bibliography

