Technische Universiteit Delft

Towaras the
NAustralization
of MDAO

by

D, De Vres

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday December 11, 2017 at 09:30 (CET).

Student number: 4132033

Thesis registration number: 174#17#MT#FPP

Project duration: February 2, 2017 — November 8, 2017

Thesis committee: Prof.dr.ir. L.L.M. Veldhuis, TU Delft, FPP, Chair Flight Performance
Dr.ir. G. La Rocca, TU Delft, FPP, Supervisor
Dipl.-Ing. S. Binder, Airbus, Aeromechanic Systems, Supervisor
Dr.ir. M.B. Zaayer, TU Delft, Wind Energy

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

Multidisciplinary Design Analysis and Optimization (MDAQO) promises major advances in aircraft de-
sign. However, judging from todays aircraft, MDAO is clearly not fully embraced by the industry yet.
This is due to technical difficulties (coupling incompatible tools) and non-technical barriers (intellectual
property).

Recent research, such as the AGILE project, aims at enabling 3rd generation MDO, where collab-
oration of distributed teams is key. Maturing MDAO is important to eventually make Overall Aircraft
Design possible. However, the industry is still in the early days of 1st generation MDO application.

This thesis proposes a new 1st generation MDO ’pipeline’ benefiting from the latest tools developed
for 3rd generation MDO. This open-source tool-chain makes it easy to connect analyses and include
gradient information. It is shown that gradient inclusion yields dramatically reduced computational
costs. Rapid (re)configuration and inclusion of gradient information using this pipeline is demonstrated
by considering the Sellar problem and a wing optimization.

This report represents the culmination of all the work done over the course of the nine months
between February and November 2017. During this time, | was supported by experts, colleagues,
friends, family members, and loved ones. | would like to express my thanks to my academic supervisor,
Gianfranco La Rocca, supervisor in the industry, Simon Binder, and expert advisor, Imco van Gent.
Their advice and knowledge was invaluable to my work. A special thanks goes out to my colleague and
friend, Jasper Bussemaker, who supported me not only with many stimulating discussions about the
work, but also by getting into trouble with my on many Friday nights out. Next, two people without whom
| would never have been able to even consider ever writing a thesis deserve my deepest gratitude: my
mom and dad, Maarten and Yvonne de Vries. Finally, | want to thank my fiancée and the love of my
life, Sarah Rucker, who is always there for me when | need it the most.

Daniél de Vries
Delft, December 2017

Contents

List of Figures vii
List of Tables ix
List of Code Fragments Xi
1 Introduction 1
2 Background 7
21 AircraftDesign e 7
211 Historyand CurrentWork L 7

21.2 TheDesignProcess e 9

2.1.3 Design Process Management L oo 10

2.1.4 The Multidisciplinary Nature of Aircraft Design 12

2.1.5 Design Requirements and Objectives. 14

21.6 WingDesign L 15

2.2 Multidisciplinary Design Optimization 17
221 TheBithof MDO. e 17

2.2.2 Definitions and Terminology Lo 18

2.2.3 MDO Architectures e 20

2.2.4 Difficultiesof MDO e 24

225 TheAGILEProject e 25

2.2.6 The OpenMDAO Framework, 30

3 Methodology 35
3.1 Requirements. 35
3.2 Workflow e 36
3.3 Knowledge Base e 37
3.4 HighLevel Strategy e 39
3.4.1 Coupling Strategy e 39

3.4.2 Construction Strategy 40

3.4.3 Architectural Strategy 41

3.5 Software Architecture 42
3.6 Implementation. 43
3.6.1 CoreModule 44

3.6.2 UtilitesModule e 46

3.6.3 RecordersModule 48

4 Results 51
4.1 Scalable Optimization Problem, 51
42 SellarProblem e 53
4.3 Aerostructural Wing Optimization 57

5 Conclusions & Recommendations 63
5.1 ConcClUSIONS. e e 63
5.2 Recommendations e e 64

A Code 67
A1 OpenLEGO c core o 67
A1.1 openlego.core.abstract discipline. 67

A1.2 openlego.core.discipline component 70

A1.3 openlego.core.modell e e 72

A14 openlego.core.xml component 82

\"

vi Contents
A2 Partials e 89
A21 XMLSchema 89
A.2.2 openlego.partials.partialsS. v i i i v it 90

A3 Recorders. e 93
A3.1 openlego.recorders.base iteration plotter. 93
A3.2 openlego.recorders.base lane plotter 98
A3.3 openlego.recorders.constraint plotter. 101
A3.4 openlego.recorders.normalized desvar plotter 103
A3.5 openlego.recorders.simple objective plotter 104
A3.6 openlego.recorders.voi plotter. 106

A4 Utilities e 109
A41 openlego.utils.general utils 109
A4.2 openlego.utils.xml utils 114

A5 TestSuite 119
A5.1 SellarProblem 119
A.5.2 Wing Optimization 163

Bibliography 251

List of Figures

1.1 Fleet of of the largest North American and European airlines: American Airlines and

Lufthansa e 1
1.2 First, second and third generation MDAO frameworks. Edited from [62] 2
2.1 Traditional design process schematic. Basedon[92]. 10
2.2 Example of a DSM for the design process of an electric car. Taken from [89]. 11
2.3 Example of an XDSM for a MDF MDO architecture. Taken from[52]. 11
2.4 Example of an XDSM involving stacked blocks. Taken from [52]. 12
2.5 Typical aircraft design disciplines and their connections. Taken from [88]. 13
2.6 XDSMrepresentationof fig. 2.5.o 13
2.7 The four monolithic MDO architectures. Takenfrom [60]. 21
2.8 Commutative diagram of the four monolithic architectures. Edited from [60]. 22
2.9 MDO architecture classification diagram. Edited from [60]. 24
2.10 Time of different activities performed during the design process using MDO or legacy

project management. Copiedfrom [3]. 25
2.11 The general MDO based process and its three phases. Copied from [15]. 26
2.12 The concept of the AGILE Paradigm. Copied from[15]. 27
2.13 The collaborative architecture within AGILE. Copied from[15]. 28
2.14 Top-level overview of the KADMOS framework. Copied from [97]. 30
2.15 The lifecycle of an OpenMDAO ticket. Copied from[32]. 31
2.16 Class diagram of the core OpenMDAO classes (pre 1.0). Basedon [33]. 31
2.17 Class diagram of the core OpenMDAO classes. Derived from the source code of v.1.7.3. 33
3.1 Workflow diagram for OpenLEGOo 36
3.2 Coupling strategy which keeps the link detached from OpenMDAO. 39
3.3 Coupling strategy which ties the link directly into OpenMDAO. 39
3.4 OpenLEGO strategy schematic 42
3.5 Simplified class diagram of the most important classes of OpenMDAO 2.0 42
3.6 Simplified class diagram of OpenLEGQO’s architecture and its connections with OpenMDAOQO 43
3.7 Sequence diagrams of the creation and computation of DisciplineComponents . . . 44
3.8 N2 diagram showing the dependency of all computed properties on one another. 47
3.9 Part of the design variable lane plot during the wing optimization testcaserun. 49
3.10 Part of the constraint variable lane plot during the wing optimization test caserun. . . . 49
4.1 XDSM and N2 diagram of the Sellar problem using the MDF architecture 56
4.2 XDSM and N2 diagram of the Sellar problem using the IDF architecture 56
4.3 XDSM of the wing optimization problem using MDF, generated by KADMOS 58
4.4 N2 diagram of the wing optimization problem using MDF, generated by OpenMDAO . . 59
4.5 XDSM of the simplified wing optimization problem using MDF, generated by KADMOS . 60
4.6 Wing geometry and lift distributions of the initial and finalwings 61

Vi

2.1

2.2
4.1

4.2

43

4.4

4.5

4.6

4.7
4.8

List of Tables

Terminology and corresponding mathematical notation for MDO problems. Adopted from
[B0]. . . . o e 19
Meaning of the MDO architectureacronyms 25

Average number of discipline function evaluations for across 100 complete optimization
runs using finite differencing (upper left hand corners), and using analytical gradients

(lower right hand corners) for all combinations of n, andn,,. 52
Differences between the average number of discipline function evaluations per configu-
ration . .. L e e 52
Percent differences between the average number of discipline function evaluations per
configuration L 53

Number of function evaluations of the dAEDalus Steady Model Initializer (dSMT), Aerody-
namic Model Initializer (dsaM1), Aerodynamic Analysis (dSaa), and Structural Analysis

(dssa) for one gradient evaluation. L 59
Geometricdesignvariables 60
Structural design variables. Note: The second to last row corresponds to the initial val-

ues, the last to the final values. 61
Performance characteristics 61
Constraintvalues e 61

List of Code Fragments

3.1 Generic structure of a partials XML file 38
4.1 Example implementation of discipline D, of the Sellar problem in OpenLEGO 55
4.2 Minimal example for the Sellartestcase 55
A.1 Code of the openlego.core.abstract discipline Pythonmodule. 70
A.2 Code of the openlego.core.discipline component Python module. 72
A.3 Code of the openlego.core.model Pythonmodule. 82
A4 Code of the openlego.core.xml component Pythonmodule. 89
A.5 Partials XSD schemacode. 90
A.6 Code of the openlego.partials.partials Pythonmodule. 93
A.7 Code of the openlego.recorders.base iteration plotter Python module. . . 98
A.8 Code of the openlego.recorders.base lane plotter Pythonmodule.. 101
A9 Code of the openlego.recorders.constraint plotter Python module. 103

A.10 Code of the openlego.recorders.normalized desvar plotter Python module. 104
A.11 Code of the openlego.recorders.simple objective plotter Python module. 106

A.12 Code of the openlego.recorders.voi plotter Pythonmodule. 109
A.13 Code of the openlego.utils.general utils Pythonmodule. 114
A.14 Code of the openlego.utils.xml utils Pythonmodule. 119
A.15 Code of the test_sellar Pythonscript. 121
A.16 Sellar problem IDF CMDOWS file. 133
A.17 Sellar problem MDF-GS CMDOWSfile. 144
A.18 Sellar problem MDF-J CMDOWSfile. 156
A.19 Sellar problem input XML file. 156
A.20 Code of the Sellar D1 Pythonmodule. 158
A.21 Code of the Sellar D2 Pythonmodule. 159
A.22 Code of the Sellar F1 Pythonmodule., 160
A.23 Code of the Sellar G1 Pythonmodule. 162
A.24 Code of the Sellar G2 Pythonmodule. 163
A.25 Data schema of the Sellar problem. 163
A.26 Code of the wing optimization test Python script. 165
A.27 CMDOWS file for the simplified wing optimization problem. 201
A.28 Input XML file for the simplified wing optimization problem. 202
A.29 Code of the wing optimization Aeroelastics Pythonmodule. 203
A.30 Code of the wing optimization ConstraintFunctions Python module. 204
A.31 Code of the wing optimization dL.C (load collector) Python module. 204
A.32 Code of the wing optimization FWE (fuel weight estimator) Python module. 205
A.33 Code of the wing optimization ObjectiveFunctions Python module. 205
A.34 Code of the Python module containing the dAEDalus disciplines. 216
A.35 Code of the Matlab script of the geometric and structural model initializer discipline (dsM1).217
A.36 Code of the Matlab script of the aerodynamic model initializer discipline (dsamMI). 218
A.37 Code of the Matlab script of the aerodynamic analysis discipline (dSaa). 218
A.38 Code of the Matlab script of the structural analysis discipline (dSs2). 219
A.39 Code of the Matlab script of the lift distribution calculation discipline (dSLD). 220
A.40 Code of the Matlab script of the full aerostructural loop of dJAEDalus. 220
A.41 Code of the Python module containing the fuel weight estimator discipline. 223

A.42 Code of the Python module containing the constraint and objective function disciplines. 227
A.43 Code of the Python module containing the collapsed, integrated aerostructural analysis

discipline. e e 229
A.44 Code of the Python module containing the wing object model discipline. 246
A.45 Code of the Python module containing all the XPaths of the disciplines. 249

Xi

Introduction

How can MDAO be made more applicable for conceptual design in the industry? This is the question
this thesis attempts to answer. This section expands on this question and provides the reader with a
non-technical overview of the thesis.

Taking aeronautical engineering as an example, it is obvious from the product that MDAO is not fully
embraced yet in the conceptual design phase: the tube-and-wing configuration is still the standard,
fig. 1.1. This designh makes it relatively easy to decouple the many disciplines that govern the design of

a
=N
"\-__ikw--:w:wﬁ‘wrm---’AmefieaanH = _
— _ - Sa -
\ = .
==

—‘é h B E—— e
< — H?%T?W{rimgﬁ? B 4
= = e
T — RS APET T AN E = A b E— 200
- ol TS -] (] 4
‘:-\., — e = A;rmzrlca&’v_ = ‘* = —a——i Arbus A320me0
_ o 70400
- —N & e 4
= e p— P
g s
= S A oy v = —— e 135
=—""C . ,Ar}ff}'l:ﬂan Nl ’§=r—\ S Al s g0 T =
2 e 4
e e .,
a—i, ﬁ— e s
- m— 1 !
(a) American Airlines fleet [5] (b) Lufthansa fleet [57]

Figure 1.1: Fleet of of the largest North American and European airlines: American Airlines and Lufthansa

an aircraft into smaller chunks which are easier to analyze and design in isolation [34]. This approach
still relies heavily on scientific breakthroughs and incremental technological improvements on the level
of the individual disciplines [34]. However, as the science and technology of the disciplines mature,
the tube-and-wing configuration reaches the summit of its potential. The only way forward from there
with true potential improvement of the product and its lifecycle is to focus on interdisciplinary synergies.
In the long run, this means abandoning the relative safety of the tube-and-wing configuration in favor
of unconventional aircraft configurations. In fact, is expected that unconventional configurations arise

1

2 1. Introduction

1st generation 2"d generation > 3 generation

Analysis-based design

. Workflow management Collaborative design in teams
computations

I : netwoﬂfed * management of
« optimization computing T e e
algorithms * increased 9¢
L » collaboration of
+ approximation number of A ——
techniques disciplinary 9
. tools
interfaces

Figure 1.2: First, second and third generation MDAO frameworks. Edited from [62]

naturally when the aircraft is analyzed optimized as a truly multidisciplinary system; that is, when Overall
Aircraft Design (OAD) can be achieved using an MDAO system.

Recent work has been focused on developing tools and procedures for third generation MDAO
frameworks [62], fig. 1.2. In these 3rd generation frameworks collaboration of scientifically - but also
physically - separated teams of experts is key [14]. When a system being designed is considered as
a whole and in more detail, the complexity reaches a point where it makes less and less sense to
attempt to create a framework with tightly coupled analysis tools. Instead it becomes important that
knowledge is managed by those who are expert in their respective field, and for them to disseminate
their knowledge to the rest of the team. The analysis tools which are part of a design study stay within
the respective domains of each team’s expertise. They are connected to one another with a networking
strategy which allows for the transfer of data needed as input for, and resulting as output from each
team’s tools [9, 16]. As such the knowledge of each expert team can be shared with the others to
achieve a common goal without sacrificing control over their analysis tools. Hence, this approach
helps to protect intellectual property and respects the borders between corporate (network) domains
[9, 16]. Itis a possible solution to overcome these important non-technical barriers encountered when
attempting to apply MDAO in the industry [11].

An example of a project taking this approach is AGILE: Aircraft 3rd Generation MDO for Innovative
Collaboration of Heterogeneous Teams of Experts [1, 14]. AGILE’s main target is the reduction of the
time needed to setup and solve an MDO problem by 40% [1]. The envisioned solution lies in the de-
velopment of a framework and frame of mind to support the move to 3rd generation MDAO [14]. The
frame of mind proposed by the project is known as the AGILE Paradigm [16]. Three concepts are for-
malized by the paradigm: Design Competence (DC), Knowledge Architecture (KA), and Collaborative
Architecture (CA). DCs represent analysis tools; KAs use the knowledge encapsulated by DCs to cre-
ate an architecture of multidisciplinary analyses; and CAs, in turn, make it possible to use knowledge
from distributed teams of experts without having to tightly couple their DCs. AGILE tries to enable the
move from 2nd to 3rd generation MDAO frameworks. If a system can be developed which allows for
this loose coupling whilst still achieving fast iteration turnaround times, MDAO can truly take center
stage in the engineering industry.

During conceptual design, it is of particular importance that an MDAO system can be configured
and reconfigured rapidly. At this stage of the design process the design freedom is maximal. This
means the design space is large, and the analysis tools are of relatively low fidelity. This phase of the
design process involves smaller teams of design engineers, which have to identify major options and
trade them off to one another. An MDAO system suitable for this phase of the design process looks
very differently than one targeting the detail design or even preliminary design phases. The engineers
using such a system during this early phase of the design need to have the freedom to extend and
modify the framework and architecture on the fly in order to enable them to quickly tradeoff different
approaches and find the best strategy. From this it can be deduced that extensibility and ease of use
are key requirements of an MDAO system suitable for conceptual design.

At the same time, high performance and fast turnaround times with respect to performing an MDA or
MDO run are required, as this will allow engineers to investigate more design options within a shorter
amount of time. Thus, greatly increasing the coverage of the full design space during a campaign.
However, when a sufficiently large design space needs to be covered by an optimization problem, and

hence the number of design variables increases, computational cost of function evaluations quickly
increases as well. In order to optimize a system using a gradient-based algorithm, gradients of inputs
to outputs are required. If tools are considered so called ‘black boxes’ — that is, simple in-/output
blocks — the only way to obtain the gradients is through finite differencing. This makes an already
expensive system even more expensive to optimize, since the number of function evaluations needed
at each design point scales directly with the number of inputs of each block in the system. To avoid the
computational cost from blowing up as the number of analysis tools and design variables increases it
is essential to utilize analytical gradients whenever they are available.

Hence, three key points can be identified. An MDAO system targeting the conceptual design phase
needs to:

1. be easily extensible;
2. allow for rapid (re)configuration of analysis tools and architecture;
3. make use of gradient information whenever it is available.

These three points answer the main question of how MDAO can be made more applicable to the
conceptual design phase in an industrial setting. They are in themselves also three sub-questions that
need to be answered:

1. How can an MDAO system be developed to be extensible?
2. How can a system allow for rapid (re)configuration of analysis tools and architecture?

3. How can gradient information be incorporated into such a system without sacrificing extensibility
and the ability of rapid (re)configuration?

Within AGILE, tools are considered to be black boxes. These black boxes are then coupled to
one another within a Process Integration and Design Optimization (PIDO) system. Two such systems
are targeted, namely the Remote Component Environment (RCE), which DLR develops, and Optimus,
developed by Noesis [96]. These PIDO systems are especially suitable for 3rd generation MDAO
frameworks, because they fully support remote analysis tools. Through a special protocol developed
within AGILE, known as BRICS, these tools can be used within large, integrated workflows in PIDO
environment, whilst remaining under full control of the team of experts that owns them [9]. BRICS is an
implementation of the networking strategy that was mentioned before, where data needed as input for
or resulting as output from analysis tools can be shared, without having to sacrifice intellectual property
and respecting the borders between domains. Furthermore, these systems have the advantage of
allowing the user to interact with their models intuitively through a Graphical User Interface (GUI). In it,
tools are represented by blocks, which can be dragged-and-dropped easily to rearrange the system.
However, the inputs and outputs of these blocks have to be connected to one another manually. This
makes reordering them or changing the MDO architecture actually very work intensive.

Recent work within the AGILE project, by Gent et al., has provided a solution to these shortcomings
in the form of KADMOS [95, 97]. This software allows the user to formulate and manipulate an MDO
problem from a higher, abstract level. In order to analyze how tools can be coupled to one another, and
how they can be part of various MDAO strategies, KADMOS uses graph theory [cite]. The software
uses a neutral data format as in- and output. This data format takes the form of the XML schema known
as CMDOWS [94, 96]. Within a CMDOWS XML file information about a repository of tools (DCs), the
Knowledge Base (KB), can be stored. Using KADMOS this information can then be used to construct
an overview of the possible connections between the DCs within the KB, known as the Repository
Connectivity Graph (RCG). Tools can then be easily removed and rearranged, the user can mark design
variables, constraints, and objective, and the user can specify the MDAO strategy using KADMOS’
API. The result is an overview of the fundamental problem, known as the Fundamental Problem Graph
(FPG). Finally, KADMOS can automatically add optimizer blocks, MDA converger blocks, meta-model
blocks, a coordinator block, and all connections between them and the DCs. The final overview of
the problem, cast in a specific solution strategy, is represented by a MDAO Problem Graph (MDG),
describing the tools and special blocks, their connections, and which variables are design variables,
constraints, and objectives, and a MDAO Process Graph (MPG), which describes in which order they
are to be executed.

4 1. Introduction

The true power of KADMOS/CMDOWS comes into the light after these graphs have been created
and stored in a CMDOWS file. The PIDO systems RCE and Optimus have been extended to allow the
user to parse a CMDOWS file, yielding a runnable workflow representative of the problem exactly as
it was formulated. In this thesis, this toolchain and workflow, taking a repository of tools through KAD-
MOS to an executable workflow, will be referred to as ‘the AGILE pipeline’ or simply as ‘the pipeline’.
Regardless of the choice between RCE and Optimus, the pipeline clearly satisfies the requirement
of rapid (re)configurability set before. However, the other two requirements are not (fully) satisfied.
This will be described next. Regardless, the notion of the Knowledge Base together with the abilities
of KADMOS and its neutral data format, CMDOWS, are an answer to the question of how to rapid
(re)configuration of MDAO problems can be achieved.

The pipeline as it exists presently does not, however, adequately answer the question of how to
achieve extensibility in such a system on all accounts. This is mainly due to Optimus being a proprietary,
closed source package. Because its code is not publically available, it is not possible to add to or change
functionality of the core of Optimus. The user is also not free to use parts of Optimus in any derivative
work, since the proprietary license agreement will not permit this. In contrast, KADMOS, CMDOWS,
and RCE enable extensibility by default, because they are made available as open-source software.
Open-source software naturally lends itself to extensibility, because anyone can obtain a copy of the
code and make changes/additions where they please. The concept of the Knowledge Base by itself,
being a concept, is easily extensible too, because anyone is free to add new definitions to it or derive
ideas from it.

Thus, being open-source is an important enabler of extensibility. However, it does not automat-
ically ensure that a software framework actually is extensible. For any software to be extensible its
architecture and codebase need to be developed with this requirement at its roots. If done properly,
Object-Oriented Programming (OOP) makes it easy to achieve reusable, extensible code [30]. KAD-
MOS follows this approach as well [95]. Therefore, it is proposed in this thesis that an open-source,
OOP framework would be the most suitable solution to the question of how an MDAO system can be
developed to be extensible.

Despite its disadvantage of being proprietary/closed source, Optimus does have an important ad-
vantage over the open-source RCE framework: it allows for analysis tools to specify gradients, whereas
RCE does not. Hence, the pipeline satisfies the requirement of utilizing analytical gradients if Optimus
is used. This comes at the cost of sacrificing the first requirement, however. Furthermore, there are
no provisions for dealing with analytical gradients in the current concept of the Knowledge Base and
within KADMOS/CMDOWS. Therefore, an extension to the concept of the KB would be required.

From this discussion, it is clear that the AGILE pipeline as it exists presently does not fully satisfy
the requirements listed before. Therefore, in order to truly convince the industry that MDAO can be
a valuable and useful tool in the conceptual design phase, a third end to the AGILE pipeline, next to
RCE and Optimus, is needed. This new end needs to be able to parse CMDOWS files containing
the definition of an MDO problem, automatically turn it into a representative, executable problem, and
make it easy to use gradient information whenever it is available. All the while, this system should be
open-source, object-oriented, and should be developed with extensibility and reusability at its core.

An optimization framework that fits the requirements is OpenMDAO, developed by the NASA Glenn
Research Center [31, 41, 63, 69, 70]. Itis an open-source, object-oriented framework, written in Python,
which allows the user to decompose models into a set of smaller components (analogous to DCs).
The main advantage of OpenMDAO over RCE and Optimus is its powerful mathematical architecture,
Modular Analysis and Unified Derivatives

(MAUD), which enables efficient automatic multidisciplinary gradient evaluation [45]. OpenMDAO
has a clear and easy to use API allowing the user expose gradient information of any or all components
to the framework. Instead of performing the finite differences for these components to estimate the
gradients, the information provided directly by the tools is then used. The system level gradients are
computed automatically by OpenMDAOQ, by carrying out the chain rule from the individual components
to the top level. All the while, it remains possible to use black boxes as well. That is; supplying gradients
is optional on the discipline level, and not an all or nothing situation.

Furthermore, OpenMDAO allows a problem to be run on High Performance Computing (HPC) envi-
ronments easily using the Message Passing Interface (MPI). No extra code is needed to achieve this;
using OpenMDAO a problem can be set-up to run monolithically, parallel, and distributed with the same
codebase. This makes the framework perfectly suited to handle problems on an industrial scale, while

at the same time remaining extensible and easy to use.

This thesis proposes a solution to make MDAO more applicable for the conceptual design phase
in an industrial setting in the form of a new open-source software framework, bringing together the
strengths of the AGILE pipeline and OpenMDAO. An extension to the notion of the Knowledge Base
as proposed within the AGILE project is proposed, which allows for Discipline Components to specify
and communicate gradient information. Despite this extension, KADMOS will still be used to formu-
late and manipulate an MDO problem in this enhanced pipeline, yielding valid CMDOWS files. Then,
the extended definition of the KB, along with the definition of the CMDOWS schema, are used to au-
tomatically construct a fully functioning OpenMDAO representation of the problem by the proposed
framework. What sets the framework apart from the abilities of RCE and Optimus is that is uses the
extended notion of the KB to automatically supply analytical gradients to the OpenMDAO framework
whenever a DC provides them. The proposed system will benefit from the powers of the tools devel-
oped for 3rd generation MDAO, such as KADMOS, and uses them to improve the state-of-the-art of 1st
generation frameworks in order to warm the industry to the idea of widespread application of MDAO.
This solution is therefore the proposed answer to the main research question of this thesis.

The rest of this report is structured as follows. First, a detailed background of relevant research
and technology will be given. This overview is contained in chapter 2. Next, the technical work of the
thesis will be presented, in chapter 3. This chapter will describe the strategy and implementation of the
proposed software framework meant to answer the main question of the thesis. The capabilities of the
framework will be demonstrated by means of two use cases: the Sellar problem and an aerostructural
wing optimization problem. These will be described and their results presented in chapter 4. The report
will finally be concluded in chapter 5. Attached to this report is a list of references, ??, and an appendix,
appendix A. Parts of these will be referred to throughout the text.

Background

2.1. Aircraft Design

Aircraft design, as is true for any design process, involves trading off different characteristics against
one another to arrive at a final package that is able to perform all desired features within given limits
and with a satisfactory performance. The main focus of this thesis is the development of an MDO
architecture that should make this trading off more efficient than it is in a traditional design process.
More so, the goal is to develop and architecture that is more effective than the current state of the art
MDO techniques. It should be applicable to any design process involving multiple disciplines. However,
before discussing these abstract concepts, it is important to realize that it was problems related to
aircraft design that gave birth to what is now known as MDO [36-38, 40, 60, 78-81]. Furthermore, the
test case to asses the performance and abilities of the techniques developed in this thesis will be an
aircraft design problem. Therefore it is important to have a solid base overview of what aircraft design
is, when and where MDO arises from it, and how this test case fits in the overall design of the aircraft.

This chapter will start by giving a brief overview of the birth of aviation and aircraft design in sec-
tion 2.1.1. Then an overview is given of the steps that are taken to get from the conception of a new
design to the final aircraft, identifying the different phases of aircraft design, and what is taken into ac-
count during these, in section 2.1.2. A high-level overview of the different disciplines required to design
an aircraft will be given thereafter, in section 2.1.4, along with how these are connected to one another.
This will directly show where MDO can be used for aircraft design. Then the driving requirements and
objectives of aircraft design are discussed in section 2.1.5. This section will explain that wing design
has a large impact on the overall aircraft design, and will therefore be considered as benchmark during
this thesis. Finally, section 2.1.6 discusses the current approach of wing design and its shortcomings,
the design requirements of wings, as well as recent developments. This section will show that it is
important to appreciate the multidisciplinary nature of the design process, and that benefits can be
expected if this is done early in the design.

2.1.1. History and Current Work

The first flying contraptions created by man were kites, invented by the ancient Chinese around 1000
B.C. [19]. During the ages that followed the invention of the Kite, visionaries did not stop dreaming about
achieving human flight. However, it was not until the late 1700s and 1800s that the aerodynamics of
flight was starting to be understood and investigated within the modern scientific method.

In the 1890s Otto Lilienthal, a German engineer and aviation pioneer, became known as "the father
of flight” after he became the first man to have flown a heavier than air aircraft in sustained flight.
What is more significant about Lilienthal, however, is his rigorous scientific approach. He studied the
flight of birds, and documented their wings’ aerodynamics. His observations lead him to write his
book "Der Vogelflug als Grundlage der Fliegekunst”, which translates to "Birdflight as the Basis of
Aviation” [55]. His book describes the fundamentals of flight, the design and aerodynamics of wings,
and even discusses the pressure distributions along sections and surfaces. Along with his earlier
scientific publications, books, and experiments, Lilienthaler’s work is considered instrumental in the
advent of aviation.

8 2. Background

The Wright Brothers were well aware of Lilienthal’s work, and recognized the importance of his
contribution to aviation [104]. However, the Wrights developed their theory of flight based on their own
wind tunnel experiments when they found the aeronautical data of Lilienthal’s did not give them correct
results. Their determination and scientific rigor let to their world famous first powered fights in 1903
[103].

An revolutionary aerodynamic discovery was made in 1904 by Ludwig Prandtl [6]. He presented
his concept of the viscous boundary layer at a mathematical congress in Heidelberg, Germany. A
publication followed describing the mathematics and implications of this new theory soon thereafter
[71]. Prandtl’s theory was incredibly important for our understanding of aerodynamics and is still applied
today in wing design.

Before World War | aircraft were constructed with wood and fabric [19]. Towards the end of the war,
however, metal started to make its way into aircraft construction. In 1915 the first all-metal aircraft took
flight for the first time: the Junkers J 1. Adopting metals as the main construction material for aircraft
brought a revolution to aircraft design. It vastly increased the possibilities of the designs.

The period between the first and second world wars became known as the "Golden Age of Aviation”
[19]. During World War 1l flight speeds were pushed to the limit by both sides. However, the wing
designs of the time, being straight wings, produced excessive amounts of drag at high speeds. The
Germans were onto a solution to the problem, though, as early as 1930. Under the lead of Adolph
Bussemann, wing sweep was first investigated in 1935. This concept would enable higher speeds
than ever before and remains a standard in modern wing designs.

The next big advance in aviation can be ascribed to another German scientist: Dietrich Kiichemann
[19]. He played an important part in the development of supersonic flight, helped develop the concept of
the delta wing, and is known for his work on the Concorde. His 1978 book "The Aerodynamic Design of
Aircraft” [50] is still considered a standard textbook on aerodynamic design. Kiichemann is also known
for his work on the transonic area rule and his "Coke bottle” area distribution to minimize wave drag.
However, the transonic area rule is usually attributed to Whitcomb [99]. Furthermore, something even
more relevant to this work, both Kiichemann and Whitcomb also did important work on novel wingtip
designs to reduce drag. Kiichemann gives name to his invention, the Kiichemann tip, and Whitcomb
is the man behind the winglet.

There are many discoveries, revolutions, and advances that were not covered in this short, selected
overview of the history of aviation and aircraft design. As mentioned before, the main focus of this work
is on novel techniques that use existing knowledge and analysis methods to design complex systems
such as aircraft. The interested reader is referred to works such as [19] that focus specifically on the
history of the aeronautical industry. However, standard textbooks on aircraft design, such as [46, 50,
72,74, 92, 93], usually contain a more engineering overview of this history as well. Before concluding
this section a selection of state of the art areas of research will be discussed. Once more, only a few
topics are highlighted, because the focus is not on the development of these analysis methods.

Active boundary layer control, active flutter control, active gust load alleviation, natural laminar
wings, and advanced automated optimization are such areas that are actively being researched in
the industry. Active boundary layer control is actually a topic that was already being investigated in the
1920s [42] in the form of suction on airfoils to prevent flow separation. This concept is now actively
being investigated in the industry [13, 22, 51, 54, 58, 77].

Active flutter control and gust load alleviation are concepts that promises reduced wing structural
weights by actively using the control surfaces to prevent flutter and reduce the excess loads introduced
into the structure by gusts, turbulence, and as an effect of maneuvering. Once more, these concepts
are not new, but are becoming increasingly important because aircraft designs move to increasingly
slender, high aspect ratio wings or reduced sweep angles. The industry is investigating whether these
concepts are feasible and if they show enough promise to apply in commercial aviation [100, 101].

Natural laminar wings offer the promise of dramatically reduced drag by increasing the fraction of
the wing that experiences laminar flow; hence, moving the transition line as far aft as possible. This
concept is not new and has been investigated for decades. The most notable commercial aircraft
manufacturer actually looking into NLF in practice is HondaJet [28, 29]. However, it is still investigated
today [4].

Last, but certainly not least, advanced automated optimization techniques are being investigated,
benchmarked and applied widely. Of course this topic deserves some attention, because it is especially
relevant for this thesis. The key idea is to consider many of a designs parameters as design variables

2.1. Aircraft Design 9

and to define a function of these that ranks designs. Then advanced computer algorithms are applied
to change the design variables automatically and repeatedly to seek an improved design point. The
crux of automated, computer controlled aircraft design optimization, however, is the excessive compu-
tational cost of adequately high fidelity analysis software, as well as the large amount of highly coupled
disciplines that need to be taken into account if a somewhat detailed study is to be performed. This is
the topic of the next chapter. A notable research group on this topic is the MDO lab at the University
of Michigan [59] lead by Joaquim Martins. Martins and his team perform high fidelity aerostructural
optimizations of wings using full blown CFD and FEM analyses [48].

2.1.2. The Design Process
Most well established aircraft design textbooks divide the traditional design process in three phases
[46, 72, 74, 92, 93]

1. Conceptual design phase;
2. Preliminary design phase;
3. Detailed design phase.

The following description of the three design phases is based on [93]. In the conceptual phase largely
creative decisions are made w.r.t the configuration and overall layout of a new aircraft. Usually multiple
possibilities are explored and compared to one another according to some figures of merit. Crude,
empirical relations are employed to get rough estimates of a concepts’ viability and performance. Once
a promising concept is selected, the design progresses to the preliminary design phase. There is some
overlap at the start of the preliminary design phase with the conceptual design phase, where the overall
layout can still be adjusted based on early findings from the preliminary phase. In the preliminary phase
the configuration is designed and evaluated using predominantly analytical, medium fidelity methods. In
this phase, a large amount of iterations are usually required to arrive at a final configuration. Therefore,
high fidelity methods are generally avoided in the traditional process. At the end of the preliminary
design phase, the configuration is frozen and the detailed design phase is started. This last design
phase uses high fidelity methods to determine the exact performance of all the parts of the aircraft. All
parts of the aircraft, down to the bolts and rivets, have to be sized and analyzed here. At some point
during the detailed design phase, parts of the aircraft as it is at that point are build and subjected to
physical tests. This can be seen as the maximum fidelity analysis method one could employ to evaluate
the performance of a (part of the) design - it is also the most costly.

The classical schematic that is often shown to summarize this subdivision and the design process
as a whole is shown in fig. 2.1, with the three main design phases highlighted.

Indeed, there is some overlap between the different phases of the process. This allows for some
back-propagation of findings in more detailed analyses to earlier phases, but overall it is an inflexible
and unidirectional process. The main downfall is the fact that the configuration is frozen at the end of the
preliminary phase. This means the detailed design phase cannot make adjustments to the configuration
if it is found this would be beneficial from more detailed analysis. This can lead to increased detailed
design cycle times, dramatically increased cost of manufacturing and, ultimately, unit cost [34].

Grose describes that the traditional design process is functionally oriented [34]. He explains fig. 2.1
as follows. Research and development is a constant, ongoing effort. The different disciplines that af-
fect the performance of aircraft are researched by teams both in-house within an aircraft manufacturer,
and independently from one another. The goal of this ongoing R&D is to discover and develop game
changing technology. These new technologies are pushed downward by the researches and incorpo-
rated into new aircraft designs. By operating as such, aircraft manufacturers tried to always have the
latest cutting edge technology and stay ahead of the competition. Grose explains that this approach
becomes less and less suitable as the industry matures, and most there is to know about the different
disciplines has already been mastered. Solely relying on new technological breakthroughs to remain
competitive is then no longer a viable business model. Instead, improvements can be made by attack-
ing the design process itself. As explained before, the traditional process is inflexible and unidirectional.
If, on the other hand, the complete design, including the configuration, were still being modified during
the detail design phase of the traditional process, or even during manufacturing, the process would of
course be extremely hard to control. However, if the vast majority or even the entirety of the process

10 2. Background

Research, Development and Marketing

I I | T
W Conceptual Designu u
| | | | [E—

Preliminary Design

Configuration Frozen Type Certificate
Detailed Design

i Manufacturing
Go-Ahead Approval
1

I
Testing I I
| |

Initial De/ivery*

Support Design

|
|
|
|
|
|
|
|
|
I Configuration Detail I Service
|< Development >|< Design >|<E_ngineering

Figure 2.1: Traditional design process schematic. Based on [92].

were digital and automated, it would in theory be possible to take into account high fidelity details in
the overall design of new aircraft.

In this 1994 paper, Grose proposes a new model for the process of aircraft design. He calls it
a system oriented approach [34]. The main idea is to fuse the different disciplines as early on as
possible. Sharing knowledge and techniques amongst them. Furthermore, a dedicated team is put in
charge of combining the knowledge from all disciplines into a single, best design. This team is now
aware of all the disciplines and can take all of them into account, including their interactions. The
expertise of the individual disciplines is seen as a set of competences, rather than a set of pipelines,
in this new model. This enables the design integration team to direct the different competence teams
in @ much more collaborative, reactive, and flexible manner. Hence, it is possible to (back-)propagate
findings from one discipline to the others in order to account for the interdisciplinary influences. In other
words: the multidisciplinary nature of the design process is embraced rather than compartmentalized.
Interestingly, this interdisciplinary corporation was not new; scientists like Schmit [78-81] and Haftka
[36-38, 40] already realized that better performance could be attained by fusing disciplines starting in
1960. This will be elaborated on in greater detail in ??, however. What is important to take away from
this notion is the fact that MDO automatically arises here from this improved design process model.

2.1.3. Design Process Management

In 1981 Steward introduced the Design Structure Matrix (DSM) to the engineering community [89].
The purpose of this concept was to visualize and manage the design process of complex systems like
aircraft. Figure 2.2 shows the final example Steward gives of a DSM for the design of an electric car
concept.

This is a tool still used by engineers today to organize, plan, and manage the design process of
complex systems involving multiple, interacting disciplines. Disciplines are listed by nhame below one
another on the left side of the matrix. They inhabit the position in the matrix that is in their respective row,
and on the diagonal. In fig. 2.2 these locations are marked with a circle and a cross. The off diagonal
crosses and numbers represent variables passed between the disciplines. In Steward’s original DSM
concept, variables below the diagonal are passed forward, whereas those above the diagonal are
passed backward. This is opposite from the modern implementation, where feed-forward variables
are above, and feed-back variables are below the diagonal. In the ideal situation only feed-forward
variables would be present. If this were the case, no loops would be required to obtain a converged,
consistent set of variables. All disciplines would only have to be executed once and in the oder in which
they appear in the DSM. However, often there will be disciplines that need input from disciplines that
are executed after them, and hence loops are necessary. By partitioning the DSM it can be made clear

2.1. Aircraft Design 11

Passenger Capaclity Spec. 1(x

Battery Type & Energy Density 6 (x]

Crulsting Speed Spec. B (x)

Acceleration Spec. 10 (x)

Kange Spec. 13 X

Stored Energy Req. 5 8 x 9 x[x) 5 9
Battery Slze and Wedight i x x|(x)

51ze and Aerodynamics P x [x)] 9 9 9
Total Weight 4l x x xf(x) & 9 9
Structural&Suspension Design 12} x 8 9|x (x 9 9
Speed & Accel. Perf. ve Power 9|9 x X 9Ky

Speed & Accel. Conformance I'1 x X x|(x

Motor Spec. and Weight 3 9 9 x x ~x|(x]
Cost 14 x x X x X x |/ x}
Consumer Demand vs Cost 15) x X X X 9 9 (x}
Profic 16] x x|(x)

Figure 2.2: Example of a DSM for the design process of an electric car. Taken from [89].

where these loops exist. This is shown in fig. 2.2 with the rectangles. Feed-back variables and loops
are encapsulated by these partitions.
The name "Design Structure Matrix” is often interchanged arbitrarily with the name N2-chart (from
N x N). The original description of the N2 diagram was first described by Lano in 1977 [53]. The main
difference is that it included descriptions of variables passed between the different disciplines.
Recently, Lambe and Martins proposed an extension to the DSM/N2-chart called Extended Design
Structure Matrix (XDSM) [52]. An example is shown in fig. 2.3.

0, 7—1:
Optimization

f 2w, w1 juf 3:wo,wo fu 4:wo,wy fun 6z]
{5 1o s 1 [t 2 Ui o] 11 oG 1]
{52 f Anal?;sis 2 1:y2 /6 vo

{5: v f Anald;sis 3 =6y]

7:f, ; 6:

Functions

5

RS

Figure 2.3: Example of an XDSM for a MDF MDO architecture. Taken from [52].

Like the DSM’s/N2-charts, analysis/disciplines are shown on the diagonal and connecting variables
are shown on the off diagonal positions. Note that feed-forward variables are always above, and feed-
back variables always below the diagonal in XDSM'’s, as with modern DSM’s/N2-charts. The definition
of the XDSM scheme adds the use of colors and block shapes, and the formalization thereof, to make
clear how they differ in function. Variables are represented by parallelograms. White variable blocks
represent system in- and output variables (design variables), whereas gray blocks represent internal

12 2. Background

variables passed between disciplines (coupling variables). Green rectangles represent analysis mod-
ules; for example, an aerodynamics tool that calculates the drag based on the wing shape. Generally,
these modules are considered black boxes, the internal workings of which are not known and/or not
of interest to the system integrator. Red rectangles represent function blocks. These do not perform
analyses of their own, but instead use output from one or more analysis modules in some form of
numerical formula; e.g., to compute objective and/or constraint function values. The orange rounded
rectangles represent so called multi-discipline analyses (MDA). In a sense, they combine multiple dif-
ferent analyses modules to yield one, consistent set of variables. Hence, they do not execute any
analyses internally, but call their child analysis modules and gather their output until some predefined
condition is satisfied; for example, convergence criteria. Effectively, an MDA block with one or more
child analysis modules could be replaced by a single analysis block performing the work of the MDA
and all the containing analyses. This can be seen as the equivalent of a partition in the DSM. Finally,
blue rounded rectangles represent optimizer blocks. They are similar to MDA’s: they do not perform
any analyses of their own, but instead call all child blocks repetitively until an optimum set of design
variables is obtained.

Another important addition that the XDSM scheme describes are the thick, gray data channels and
thin, black data flow lines. The data channels make clear how data flows through the system, whereas
the data flow lines show the order of execution. Along with these two definitions, the numbers inside
the variable and execution blocks are formalized. These numbers indicate the order of execution/use
of the respective blocks, starting from 0. Two numbers separated by a comma, followed by a rightward
arrow towards a third, signify a loop. The first two numbers are the first and last time the block is
executed during the loop, and the number following the arrow is the block to be executed first interior
of the loop. The XDSM of fig. 2.3 has two such loops: the optimizer loops between indices 0 and 7,
and calls 1 within the interior of its loop first; the MDA block loops between 1 and 5 and starts 2 in its
interior loop.

Finally, it is also possible to stack multiple blocks to summarize the XDSM if they are executed
in parallel. An example of an XDSM featuring this is shown in fig. 2.4. Here an arbitrary number

;1?(0)? yt.(O}
0,3—1: — —, // —
Optimization L : T, T4y Yy 2:1,y
I
;; 1:
m Analysis 1 2: 9

. E ;' 22
M Functions

Figure 2.4: Example of an XDSM involving stacked blocks. Taken from [52].

of analysis modules are executed in parallel within an optimization loop. This is an example of an
Individual Discipline Feasible, or IDF MDO architecture [60], but more will be said about this in ??.

2.1.4. The Multidisciplinary Nature of Aircraft Design
A general overview of systems design processes has been given (section 2.1.2) and a means to man-
age them has been discussed (section 2.1.3). Now it is time to discuss aircraft design specifically within
those frameworks.

Figure 2.5 shows the typical disciplines involved in the design of an aircraft and the connections
between them as presented by Sobieszczanski [88]. He also shows a corresponding N2-chart. How-
ever, it is not representative of all the connections in fig. 2.5. Instead a XDSM representative of all the

2.1. Aircraft Design

13

Controls

Propulsion

Structural
dynamics

Aerodynamics

Figure 2.5: Typical aircraft design disciplines and their connections. Taken from [88].

connections is shown in fig. 2.6. The central "Aircraft program” block from fig. 2.5 is represented by

Aircraft
program

Aerodynamics

T
i

N
o
I'l'i .
i
B

Stress

Figure 2.6: XDSM representation of fig. 2.5.

Propulsion

{
I

Performance

YSt -

(]
[} Controls []
(]

- Struc
dyna

(] (] [Certification

n

an MDA block here. This block can be seen as a common database containing both geometrical and
performance characteristics of the aircraft that can be used and fed by the different disciplines. When
used in an optimization, this block could be in charge of delivering a consistent design to the optimizer,
for example. All the other disciplines are represented by analysis blocks. The connections between
them are represented by empty data channels, since the exact variables that are passed between the
disciplines and the aircraft program were not specified in [88]. However, from these figures it is directly
apparent that aircraft design is indeed very multidisciplinary and that there are a lot of interdisciplinary

interactions.

14 2. Background

2.1.5. Design Requirements and Objectives

Like any design, aircraft design is driven by design requirements. These requirements are imposed
by government regulations, such as the Federal Aviation Regulations (FAR) [24] and the European
airworthiness requirements (CS25) [23], as well as by the market/customer. Certification requirements
put lower limits on performance and safety aspects. New aircraft have to fulfill all of these to be allowed
entry into service. Market/customer requirements are generally not directly imposed on the design
by customers. Instead the manufacturers make an assessment of what what they predict the market
desires in a new aircraft. The market requirements can be put into the following categories [49]:

+ Community acceptance;

+ Airport compatibility;

» Economic efficiency;

* Reliability and robustness.

Community acceptance mainly has to do with how well passengers evaluate the aircraft, as well as
how noisy the aircraft is. Airport compatibility determines which airports an aircraft can service, putting
requirements and restrictions on, for example, landing/takeoff distance, airport gate space, etc. Eco-
nomic efficiency mainly refers to how cost effective operating an aircraft is. This depends on factors
like fuel usage, turnaround time and maintenance costs. However, the latter is also captured by the
reliability and robustness. For this thesis the main driver for the economic efficiency category is consid-
ered to be fuel efficiency, which is valid especially during conceptual/early preliminary design. Finally,
reliability and robustness refer to maintainability. A reliable aircraft will require less maintenance, and
a robust design makes maintenance simpler and cheaper.

After the hard requirements imposed by governmental regulations, economic efficiency is usually
considered the most important driver of aircraft design and optimization. As was just mentioned, in
this thesis the main economic factor for aircraft operators is considered to be fuel efficiency. A good
measure for the fuel efficiency of aircraft is the specific range (SR). This is a measure used by Airbus
internally as well when determining and optimizing the Direct Operating Costs (DOC) [7]. The specific
range is defined as the ratio of the distance covered and the fuel burned. According to [7] the specific
(ground) range can be written as

ag (ML
sr = 2 05)

SFC ’
P

where SR is the specific range considering the ground distance covered in mN~', a, is the speed of
sound at sea level in ms™', M is the Mach number, L/D is the aerodynamic efficiency, SFC is the
specific fuel consumption in Ns~'N~1, T/T, is the temperature fraction at the flight altitude, and W
is the weight of the aircraft in N. However, a measure that is more useful when comparing the fuel
efficiency of different aircraft with potentially different missions, can be obtained by multiplying both
sides of eq. (2.1) with the payload weight, Wp, . Let this parameter be known as the payload specific
range (PSR). It can be written as

2.1)

PSR = % (2.2)

WpL

T/1q

This new quantity expresses how far a given payload weight can be flown per unit fuel burned, its units
are NmN~". It depends on three factors that can be influenced to increase efficiency:

« The aerodynamic characteristics of the aircraft, M %;

+ The weight to payload weight fraction, WLPL

» The engine characteristics,

2.1. Aircraft Design 15

The engine characteristics are fully captured by the fraction of the SFC and the temperature fraction,
and not by the SFC alone, because the operation of the engine depends heavily on the temperature and
hence the external environment. Installing a more efficient engine means this fraction becomes smaller,
which leads to an increased PSR. The term ML% fully captures the aerodynamic characteristics of the
aircraft. The fraction L/D by itself is the aerodynamic efficiency, but it depends on the Mach number, M.
Therefore the product of the two is a more accurate measure of the aircraft’s true aerodynamic efficiency
taking into account this Mach number dependence. An aerodynamically more efficient aircraft has a
higher value for this term, and therefore a higher PSR. Finally, the weight fraction captures how efficient
the aircraft has been designed in terms of weight. Reducing the structural, systems, and fuel weight
reduces this fraction and therefore increases the PSR.

In this thesis engine characteristics are not taken into account. Thus the aerodynamic and weight
characteristics of the aircraft are considered the driving factors in the design of an economically efficient
aircraft. As will be discussed in the next section these two should not be considered separately of one
another, because they are highly coupled.

2.1.6. Wing Design

Traditionally the wing design process is as follows, as outlined by Roskam in [75]. First a number of
different configurations are thought up by a small group of engineers. Then, in the conceptual design
phase, the general planform parameters such as the surface area, aspect ratio, span, etc. are deter-
mined through an iterative process. The design is based on regression analysis of data from reference
aircraft that perform similar missions as the new design is intended and low fidelity analysis tools, as
was explained for general aircraft design in section 2.1.2. The most promising configuration is then
selected from the available options.

Next, the aerodynamics team designs the wing in more detail, based on higher fidelity analyses
methods. The end results is a refined set of wing design parameters along with a description of the so
called "cruise flight shape” [102]. The cruise flight shape shape is the shape the wing assumes under
design cruise loads. It is the shape for which the wing has been optimized by the aerodynamicists; it
is what they intend the wing to look like during cruise.

Then the design is handed over to the other design teams. The structures team is put in charge
of designing a wing structure able to handle the loads imposed on the wing during on- and off-design
conditions, as specified by FAR/CS25 [23, 24], and transfer those into the rest of the airframe. Load
conditions such as a 2.5g pull-up maneuver, high speed dive, and ground loads are taken into ac-
count, for example. Regardless of these load cases and the structural requirements introduced onto
the structural design by these, the structures team has to design the structure in such a way that the
wing assumes the intended cruise flight shape specified by the aerodynamics team during cruise con-
ditions. Obviously this greatly limits the design freedom and agility. However, the process is linear and
easy to manage with limited technology and resources, which is why it made its way into the standard
commercial design process.

This static, unidirectional process not only has the potential to lead to suboptimal designs, it can
also lead to a number of dangerous instabilities caused by the interaction of the structural deformations
and aerodynamics during off-design operation if these are not taken into account. This interaction
between structural deformations and aerodynamics is what is known as aeroelasticity. Airworthiness
requirements put stringent limits and margins on the aircraft’'s performance during these off-design
conditions. An important example of this are the specified gust loads that the aircraft has to be able to
sustain. During gusts the loads on the airframe can fluctuate violently. High loads can be imposed on
the structure that need to be absorbed without failure. In the traditional design process mathematical
methods are employed to predict the effect of these loads. Based on the predicted stresses and torque
resulting from these loads the structure is stiffened to avoid failure, often with a relatively large safety
factor.

Luckily there are also success stories of endeavors to attack the problem in a more fruitful manner.
Passive load alleviation, also referred to as aeroelastic tailoring, is a concept that uses a clever wing
structure design that neutralizes the feedback between the aero loads and structural deformations
causing excessive stresses and torque in the structure. More effort is required to be put into the design,
and intensive, two-way communication and feedback between the aerodynamics and structures teams
is required to achieve this. However, in return the final weight of the wing structure can be reduced.

Gust load alleviation can be taken a step further still. Active aeroelstic wings use control surfaces

16 2. Background

to purposefully twist and deflect the wing at will. By doing so, not only gust load alleviation can be
achieved, but maneuver loads can be reduced, and dynamic phenomena such as flutter can be con-
trolled as well. The latter is known as active flutter control. Furthermore, active aeroelastic control can
be used to increase the maneuverability of the aircraft beyond classical limits. Successful flight tests
were performed by a joint team of the US Airforce, Boeing’s research division Phantom Works, and
NASA with a modified F/A-18, the X-53, displaying the advantage of even more cooperation between
structural and aerodynamic design teams.

Besides gust and maneuver loads several aeroelastic instabilities need to be considered as well.
What follows is a summary of the most common instabilities. They can be put into two categories: static
and dynamic.

Static instabilities are caused by a positive feedback between aerodynamic loads and the resulting
structural deformations. Two such instabilities are observed in aircraft: divergence and control reversal.
Divergence occurs when positive wing bending induced by aerodynamics loads increases the wing
twist (positive, nose up). A larger wing twist causes the load to move further outboard and also further
increases the lift. This in effect leads to an increased bending moment which bends the wing further,
and increases the twist even more, etc. This leads to a theoretically infinite bending moment, which
of course leads to structural failure of the wing. Control reversal is in a way the opposite effect. It
occurs when a trailing edge control surface deflection causes the wing to twist in the opposite direction.
This can happen when a downward deflected trailing edge locally moves the application point of the lift
vector aft and behind the elastic axis of the section. This causes a negative bending moment about the
y-axis, twisting the affected part of the wing with its leading edge downward. The local angle of attack
is then reduced, which leads to the opposite effect that was expected and intended when the control
surface was deflected.

Dynamic instabilities are caused by a delayed interaction between structural deformations and aero-
dynamic loads, leading to oscillatory motion. Flutter and buffeting are two examples of such instabilities
that can occur during flight. Flutter is a direct coupling between loads and deformations of the wing.
Buffeting happens when shocks on the top and bottom surface of the wing oscillate back-and-forth,
which in turn leads to an oscillation in the magnitude and action point of the local aero loads. Both
lead to an up-and-down shaking or vibrating and/or back-and-forth twisting of the wing, making control
difficult or impossible and lead damage to the aircraft and its payload. Besides the dangers of these
effects, they are to be avoided when designing a commercial jet in particular as well, because they
cause dismal ride quality.

The airworthiness requirements stipulate limits within which an aircraft should never experience
these instabilities. For example, CS25 stipulates that transport aircraft should not experience buffet
at speeds of up to 15% above the dive speed [23]. In the traditional wing design process divergence
was originally solved by simple trial and error. Control reversal was a phenomenon that was often
encountered by test pilots, leading to accidents more than once. The same goes for flutter and buffet.
American test pilots of experimental aircraft would often report that the aircraft would start shaking and
trembling uncontrollably when flying it at or above certain speeds. The shaking would stop once the
speed was reduced. Obviously this all revealed a lack of knowledge and appreciation for the intricate
interaction of aerodynamics and structures in the traditional design process. As a remedy models were
deviced to predict when these instabilities would occur. Aircraft were designed to stay well within these
limits within the full anticipated range of the flight envelope, often with heavy safety factors. The net
effect of this approach is a heavier structure and/or limited wing designs.

Modern aircraft designs use new materials and techniques that are much lighter and stronger, such
as composites and composite-hybrid materials. If not properly designed, these materials hold the
potential to make an aircraft more sensitive to gust and maneuver loads, and more susceptible to
aeroelastic instabilities. The unidirectional design process has already proven to be problematic in this
context. For example, during data review the FAA concluded that Boeing’s new version of the 747, the
747-8, had a flutter problem at certain load cases [25]. If there had been more interaction and feedback
between the aerodynamics and structures departments, this could have been foreseen and avoided.
To address the issue without having to redesign the entire aircraft, Boeing modified the control system
to actively combat the flutter at the affected flight/load conditions. They successfully convinced the
authorities that the system was sufficiently capable of removing the flutter and sufficiently reliable to
justify a controller approach to solving the problem [56]. In effect, the safety margin on the requirements
of a the structure alone to handle flutter had been pushed back.

2.2. Multidisciplinary Design Optimization 17

This trend has been continued since, allowing manufacturers to save weight on the structural design
by implementing active load alleviation controllers. An interesting question can be posed at this, though:
would it be possible to realize even more savings by fully embracing the aeroelastic nature of wings
early in the design process and tailoring the wing, both passively and actively, given the possibility of
pushing back the margins? This is the question being addressed by, for example, the Flexop project,
funded by the EU [27].

2.2. Multidisciplinary Design Optimization
Designing a new, complex system almost always involves more than one discipline - usually a wide
range of them. This was highlighted in section 2.1. This multidisciplinary nature has led to the birth
of Multidisciplinary Design Optimization (MDOQ), which, according to Martins and Lambe [60], can be
attributed to Schmitt [78—81] and Haftka [36—38, 40], who involved more than one discipline in structural
optimization studies. Since then it has evolved into a mature, separate field of research. Aircraft design
in particular is an excellent example of a highly coupled, multi-objective and multidisciplinary practice.
These three markers, high level of coupling between disciplines, multiple objectives, and large number
of disciplines, are the main reasons for using MDO [60].

One of the most extensive reviews of multidisciplinary design optimization approaches is the work
of Joaquim R. R. A. Martins and Andrew B. Lambde [60]. This work could very well be used as a
textbook for scientists and engineers seeking an introduction into the field of MDO, and as a reference
for those experienced with it in the field. Itis cited by nearly all authors in the field of MDO that published
after its publication, that were surveyed for this literature study. This makes it one of the most relevant
references within the entire field of MDO, even though it was published four years ago as of writing this
thesis - in 2013.

The paper starts with an overview multidisciplinary design optimization. It describes what MDO is
in the most generic sense:

”[...] a field of engineering that focuses on the use of numerical optimization for the
design of systems that involve a number of disciplines or subsystems.” [60]

The paper explains that the need to use MDO arises from the fact that the performance of complex
systems has a strong dependency on the interactions of the disciplines that govern them. Hence, solely
considering each governing discipline separately leads to suboptimal designs. This was also discussed
in section 2.1. Furthermore, the design process can be sped up by employing automated design tools
and applying MDO from the beginning.

Next, a brief history of MDO is given. Matins and Lambe attribute the birth of MDO to eight papers
coauthored by Schmit [78—-81] between 1960 and 1984, and by Haftka [36—38, 40] between 1973 and
1979. By doing this, Martins and Lambe recognize the importance of Schmit's and Haftka’s early work
for what would evolve into one of the most important engineering fields in modern engineering design.

What follows is an account of this history, by review of the papers by Schmit and Haftka that Martins
and Lambe mention. These works are the first contributions to creating the field of multidisciplinary
design optimization. Therefore they bear important historical significance to MDO and therefore to
this thesis. Although the actual optimization usecases described in these papers are outdated, these
papers introduce and define concepts and terminology still used in the current state-of-the art research.
In this respect they are relevant to this thesis because of more than their historical value, because they
define the common point of departure still employed by scientists and engineers today.

2.2.1. The Birth of MDO

Lucien A. Schmit researched aeroelasticity and structural analysis. He approached designing and an-
alyzing structural systems by what he called "systematic synthesis”, as he describes in [80]. This is
significant, because it is a first description of numerical optimization for engineering problems. Schmit
was also interested in aerodynamic analysis and design. He published a book on supersonic airfoil
design in 1965 [79]. In this book Schmit describes design methods that also account for aeroelas-
tic effects in the design of hypersonic airfoils. It is the first work that describes engineering design
techniques combining multiple disciplines. Hence, it is a very important, first reference for the advent
of multidisciplinary design optimization. In his 1981 and 1984 works [78, 81] he details his concept
of structural synthesis further. He defines the concepts of design variables, objective and constraint

18 2. Background

functions. These definitions form the cornerstone of all optimization approaches now. However, it
is significant to realize that this was one of the first works to list these definitions so that readers of
the paper and researchers in the field would have, as Schmit writes himself, ”[...] a common point of
departure” [78].

Raphael T. Haftka also contributed greatly to the development of MDO. Like Schmit, Haftka was
interested in coupling advanced analysis software, like Finite Element Methods (FEM), to optimization
codes. In 1973 Haftka published a paper titled "Automated Procedure for Design of Wing Structures
to Satisfy Strength and Flutter Requirements” [36]. The indications of this paper are pristine, as it de-
scribes a true multidisciplinary design optimization of wings, taking into account aerodynamics, struc-
tures, and even control. Then in 1975 he published another paper in which he compares two different
optimization procedures taking into account flutter requirements [40]. This is a move towards treating
MDO in a more abstract manner, discussing possible ways to approach an optimization problem, as is
done in the modern literature about MDO architectures such as this thesis. In 1977 Haftka coauthored
yet another paper on wing optimization [37]. In this paper the wing planform shape is also taken into
account, and aerodynamic characteristics are constrained and optimized. This problem is still attacked
today by scientists and engineers. Haftka’'s paper is therefore profoundly important historically, since
it is the first of its kind in this large research field. Later, in 1979, thermal analysis is added as another
discipline to his optimization studies [38]. Haftka authored and coauthored countless other papers and
books on the matter. In fact, in 2016 a paper was published by the title "Parallel surrogate-assisted
global optimization with expensive functions — a survey” [39], which is precisely one of the techniques
this thesis focuses on.

2.2.2. Definitions and Terminology
As was mentioned in section 2.2.1, Schmit's 1981 paper, [78], is one of the first papers to list the
definitions and concepts still in use today when describing optimization problems. It is fitting to use this
paper as reference for listing the definitions and terminology of MDO.

Two types of parameters are defined by [78]:

* Preassigned parameters;
» Design variables.

The first denote constant parameters of a design that are either not allowed to be changed, or param-
eters which cannot be controlled. Design variables, on the other hand, are parameters that can be
changed, and should be changed, in order to find an improved or optimal design.

Next, Schmit describes the role of load conditions and failure modes. In the context of his work,
which is in the field of structural engineering, load conditions refer to a combination of mechanical and/or
thermal loads to which the design will be subjected. Failure modes are described as ”[...] structural
behavior characteristic subject to limitation” [78]. The combination of load conditions and failure mode
limitations enter into an optimization problem in the form of (in)equality constraints. These constraints
depend on the design variables, and determine whether a set of design variables is feasible or not.

Finally, an optimization algorithm needs a means to evaluate and compare designs. This is done
by defining an objective function, which is dependent on the design variables, and attributes a score to
each combination of design variables.

A slightly different/extended terminology and classifications of parameters will be used here, follow-
ing the example of Martins and Lambe [60]. Table 2.1 summarizes both the different named parameters
and the corresponding mathematical notation. This table has been adopted directly from [60]. The spe-
cific terminological terms have been printed in bold.

Design variables have the same definition as described by Schmit [78]. These could be parameters
such as the wingspan and aspect ratio. Schmit's preassigned parameters are not explicitly mentioned
in this terminology. They are considered non-present in the optimization problem formulation. They
could, however, consistently be put under the header of state variables within this terminology.

Coupling variables are considered part of the design variables by Schmit. Here, however, they
are considered separately because they play a different role in the MDO architectures than regular
design variables do. Furthermore, the ratio of the amount of coupling variables and the number free
design variables can be an indication of how highly coupled an MDO problem is. This indication can
aid the selection of a suitable MDO architecture, since some architectures are better suited for highly

2.2. Multidisciplinary Design Optimization 19

Table 2.1: Terminology and corresponding mathematical notation for MDO problems. Adopted from [60].

Symbol | Definition

X Vector of design variables

y Vector of coupling variables (outputs from discipline analyses)

b Vector of state variables (variables used inside only one discipline analysis)

f Objective function

c Vector of design constraints

c Vector of consistency constraints

R Governing equations of a discipline analysis in residual from (discipline analysis
constraints)

N Number of disciplines

ng Length of a given variable vector

m Length of a given constraint vector

Oo Functions or variables that are shared by more than one discipline

oF Functions or variables that apply only to discipline i

0" Functions or variables at their optimal value

0 Approximations of a given function or vector of functions

(A) Independent copies of variables distributed to other disciplines

coupled problems than others [60]. An example of a set of coupling variables when performing an
aeroelastic optimization of a wing are deformations of the structure. These are calculated by a structural
analysis module given a loading distribution, and are needed by an aerodynamic module to calculate
the aerodynamic forces and moments for the deflected wing shape.

The state variables were already mentioned and require little attention. They are contained within
a single discipline analysis. These values are generally not returned as outputs by analyses and are
not of interest to the rest of the MDO architecture. Especially when a discipline analysis module is
a black box, these variables are even unaccessible from the outside. For example, if a vortex lattice
method (VLM) is used to calculate the lift and induced drag of a wing, influence coefficient matrices are
calculated by the tool. These are generally only used inside the VLM and can thus be considered state
variables.

Objective functions take design variables and coupling variables as input and return a scalar value.
These values can then be used by optimizers to find an optimal design point. This could be a function to
calculate the amount of fuel required to perform a mission given the aerodynamic, structural, and engine
characteristics, for example. Design constraints are similar to objective functions. They also process
design and coupling variables into scalar values. Generally an MDO problem has multiple constraints.
These are then grouped in a vector of the constraint values. In [60] only inequality constraints are
considered. This convention is adopted in this thesis as well. An example of a design constraint in
aircraft design is a minimum cruise velocity or the requirement that stresses in the structure always be
lower than the yield stress of the material.

When disciplines are connected by one or more coupling variables, they have to be run in sequence.
However, they can be decoupled by making a copy of the involved coupling variables such that they can
be run in parallel. The result is that the coupling variables calculated by one module and the copies
from the previous iteration used as input by another may be different, or inconsistent. To drive the
optimizer towards convergence a set of equality constraints are put in place that are satisfied when the
copies of the coupling variables match their actual, updated values. These constraints are referred to
as consistency constraints.

Finally, sometimes it is possible to exploit knowledge of the internal structure of an analysis disci-
pline. In this case the previous statements about state variables are not necessarily true and they can
be controlled by the optimizer directly. To describe how the modules function internally the discipline
analysis constraints are defined. These constraints pertain to the link between the coupling variables
state variables inside the disciplines. That is R; = 0 if the state variables y; are the solution of the
governing equations of a discipline analysis for a given set of input variables y;. If this construction is
possible, then the optimizer is fully in control of convergence, even within the discipline analyses.

20 2. Background

2.2.3. MDO Architectures

Martins and Lambe define an MDO architecture as the ”[...] combination of problem formulation and
organizational strategy [...]" [60]. They describe that an architecture both describes how different mod-
els are coupled to one another, as well as how the optimization problem as a whole is solved. MDO
architectures are put into two different categories:

* Monolithic architectures;
« Distributed architectures.

Monolithic architectures solve only one optimization problem, which is in fact the main problem to be
solved. Distributed architectures, on the other hand, split the overall problem into smaller subproblems
and delegate optimizing those to dedicated optimizers. A system optimizer directs these sub-optimizers
and is in charge of controlling the overall system optimization.

Selecting an MDO architecture and optimization algorithm(s) may seem arbitrary and an issue of
semantics, however it can have a large impact on the successful execution and optimality of the fi-
nal design. Depending on the type of problem to be solved not all MDO architectures and algorithms
are suitable, whereas some may be especially inclined towards a certain problem [60]. Martins and
Lambe explain that, for example, the choice between a gradient-based and gradient-free optimization
algorithm should be driven by the possibility to execute the analysis module(s) in parallel within the
framework of a given MDO architecture. Generally, a gradient-free algorithm may be capable of find-
ing a global optimum, whereas a gradient-based algorithm does not guarantee that, but at the price of
an increased number of function evaluations. If gradient information can be calculated efficiently, then
gradient-based algorithms should be preferred if parallelization is not feasible. However, if paralleliza-
tion is supported then gradient-free algorithms are of interest. This could be the case, for example, for
distributed architectures, as explained by Martins and Lambe.

The main contribution of Martins and Lambe’s paper is the uniform terminology they use to described
vastly different MDO architectures and how they use this to define an overarching classification of
architectures. As has undoubtedly become apparent to the reader by this point, this paper is used as
the backbone of this chapter and, in fact, of the thesis. As has been mentioned before, this work has
been cited time and time again by publications about MDO related topics. This strongly underlines
the importance and scientific relevance of this work - not just for this thesis, but for the field of MDO in
general. Martins and Lambe’s MDO architecture classification will therefore be summarized here. It will
be used as a road map onto which the architecture to be developed during this thesis will be overlain.
By doing so a clear picture will be given of the place of this thesis work within the field of MDO in a well
established framework.

Martin and Lambe’s classification of MDO architectures is based on the difference between two
well known monolithic architectures known as the Individual Discipline Feasible (IDF) and Multiple
Discipline Feasible (MDF) architectures. These can themselves be linked to the All At Once (AAO) and
Simultaneous Analysis and Design (SAND) architectures respectively, as described in [60]. All four of
these are monolithic architectures. Since these four architectures from the departure point of Martins
and Lambe’s classification they will be described in some detail first. This should give the reader new
to the field of MDO a good stating point and will therefore ensure a common point of departure to go
forward from.

Monolithic Architectures

Example XDSM'’s of the four monolithic architectures, AAO, SAND, IDF, and MDF are shown infigs. 2.7a
to 2.7d respectively. These have been taken directly from [60]. Indeed, as was described to be the
property that all monolithic architectures share before, in all of these figures there is only one optimizer
present. Besides this similarity, however, they are otherwise quite different.

The AAO architecture can be described as the most basic, straightforward approach to solving a
multidisciplinary design optimization problem. It could be said to be the "brute force” way of translating
the mathematical formulation of an optimization problem directly into MDO. As can be seen from its
XDSM, the optimizer is given control of all design, coupling, and state variables. Consistency of cou-
pling variables between different disciplines is not directly guaranteed by the sequence of operations
of the architecture and are under the control of the optimizer. Likewise, consistency between cou-
pling and state variables is directly controlled by the optimizer as well. Overall system consistency and

2.2. Multidisciplinary Design Optimization 21

20 (O 50

0,2—1: -
’ . Loy fef 1: 20,20y, 9
1:2,9,7 H 1 : o, Tiy Yi, Ujotis Ui // Optimization | i i /ﬂ
| 1:
N —
1:
Residual 4

20§50 (0 50)

0, 2-1:
Optimization

1:

Functions Functions

1:
Residual 4

J—
[z] /4

0, 7—=1:
Optimization

0,3—1:
Optimization

Analysis 7

1:10,@,3]]'#// /211“7?3/

6:

Functions

2:
3: c k
w Functions 7:fc

(c) IDF (d) MDF

Figure 2.7: The four monolithic MDO architectures. Taken from [60].

feasibility are likewise controlled by the optimizer directly. According to Martins and Lambe this archi-
tecture is never implemented in reality. Their explanation for this is the fact that the (linear) consistency
constraints can easily be eliminated [60].

In fact, if the consistency constraints are eliminated from the AAO architecture an equivalent SAND
architecture is obtained. In fig. 2.7b this is obvious: the parameters c¢ and y; have been removed w.r.t.
fig. 2.7a. What this means mathematically is also quite straightforward. Instead of making copies of
the coupling variables, one consistent set is used. Thus the copies are removed and the consistency
constraints become redundant and obsolete. Like the AAO architecture, the SAND architecture gives
control of the state variables to the optimizer. This allows for the optimizer to explore infeasible regions
of the design space that would otherwise be inaccessible. As Martins and Lambe describe, this has
the potential to lead to quick solutions.

The problem with both of these architectures is twofold. First of all, it needs to be possible to
directly control the values of the analyses’ state variables. This is a major restriction, because this
is certainly almost never possible. As mentioned before, most analysis tools are presented as black
boxes. The internal process is obscured and cannot be influenced. If such modules are present in
the MDO problem it is not possible to apply AAO or SAND architectures. Secondly, there is a risk of
obtaining an infeasible and inconsistent design when the optimizer stops prematurely. This is due to
the fact that the optimizer is directly responsible for the internal consistency of the analysis modules.
If the optimizer stops before their residuals have been brought (close) to zero, the design point is in
fact nonexistent. The computational expenses have then been in vain, because the design cannot be
used in any way [60]. For these reasons these architectures are very seldomly applied in practice. As
Martins and Lambde describe, however, they form the basis from which the IDF and MDF architectures
depart, and subsequently form the basis of their classification of distributed architectures. Therefore it
is worthwhile to discuss them.

Like the SAND architecture was obtained from the AAO architecture by eliminating the consistency
constraints, so the IDF architecture is obtained from it by removing the discipline analysis constraints.
Again this is clearly visible by comparing fig. 2.7c to fig. 2.7a and concluding that, indeed, the residuals,
R;, and state variables, y;, have been removed. Furthermore, the functions block has been put in
sequence and behind the analyses blocks. This reflects what has been done to achieve the elimination
of the residuals and state variables: the state variables, y;, and coupling variables, y;, of an analysis

22 2. Background

module are considered functions of the design variables, x, and x;, and copies of the coupling variables
not pertaining to that analysis module, J;.;. The analysis modules can now be considered black boxes
that respond to an input with an output. Like in the AAO architecture, consistency on the system level
is kept under the control of the optimizer. This still allows the optimizer to explore infeasible regions
of the design space, which can potentially aid convergence. However, the problem remains that an
infeasible design can be obtained when the optimizer stops prematurely. Nevertheless, unlike with the
SAND architecture, such a situation is not completely worthless, because the individual disciplines are
at least consistent and feasible individually. Note that this is precisely where this architecture gets its
name: Individual Discipline Feasible.

Finally, the MDF architecture is obtained by eliminating both the consistency constraints and the
discipline analysis constraints. Once more it can by observed that the corresponding parameters are
indeed all absent in fig. 2.7d. However, itis less obvious how the XDSM of the MDF architecture follows
from that of the AAO under these eliminations. The way to understand this transition, is to consider the
three example analyses along with the new Multi Discipline Analysis (MDA) block as one, combined
analysis module. In that case the shape of the XDSM is exactly equivalent that of the IDF architecture.
This is not just a trick to comprehend the changes: it is exactly the point of the MDF architecture. By
eliminating both the consistency constraints and the discipline analysis constraints from the system
problem formulation, the overall system being handled by the optimizer is always fully consistent. This
is an important advantage that the MDF architecture holds over the other three. Unlike the other three,
a premature stop of the optimizer still returns a consistent design.

At discipline level consistency is achieved by switching from the residual formulation to the implicit
functional, or black box formulation. At the interdisciplinary level, however, something external needs
to be done to ensure overall consistency. This task is delegated from the optimizer to the MDA block
in the MDF architecture. The MDA block internally works similarly to what the optimizer would do to
control system consistency. However, it lacks the task to do this in the direction of an improved design.
For example, the MDA block could perform a simple Gauss-Seidel iteration to converge the analyses.
The obvious disadvantage is that this convergence iteration has to be performed for every single op-
timization increment, leading to an increased number of function evaluations. However, by properly
arranging the analysis modules and selecting an appropriate convergence algorithm this process can
be much improved [60]. Martins and Lambe note that another obvious advantage of the MDF architec-
ture over the other three is the fact that it is the smallest problem formulation possible. The optimizer
only controls the design variables, objective function, and design constraints.

As described, the SAND, IDF, and MDF architectures can be obtained from the AAO architecture
by removing certain combinations of constraints and variables from its formulation. To clarify and sum-
marize these relationships a commutative diagram can be drawn with the four monolithic architectures
at its four corners. Such a diagram is shown here in fig. 2.8, which has been modified from [60].

c A
Remove c,

AAO > SAND

Remove Remove
R,y,y R,y,y

c o~
Remove ¢°,

IDF » MDF

Figure 2.8: Commutative diagram of the four monolithic architectures. Edited from [60].

Distributed Architectures
Now that an overview has been given of the four different monolithic architectures the distributed ar-
chitectures can be discussed. Once more this section follows the flow of Martins and Lambe’s paper
[60].

As was mentioned before, one of the most relevant contributions that Martins and Lambe made with
their paper is the classification of distributed MDO architectures. Paragraph 2.2.3.2.2 describes this.

2.2. Multidisciplinary Design Optimization 23

Before describing this classification, however, it is important to explain what the motivations are for
turning away from the relative simplicity of monolithic architectures in favor of distributed architectures.
This will be discussed in paragraph 2.2.3.2.1.

2.2.3.21 Motivations Martins and Lambe start by explaining that the original motivation to switch
from monolithic to distributed architectures is to decrease solution time by making smart use of the
structure of the problem [60]. Problems that are especially geared towards this exploitation of their
structure are network flow problems and resource allocation problems, according to Martins and Lambe.

To be able to decompose an optimization problem the structure of the problem has to be understood
first. Martins and Lambe explain that problems that are suitable for decomposition usually fall within
one of two categories:

* Problems with complicating constraints;
* Problems with complication variables.

In the ideal situation a problem exhibits neither one of these complications. In that case the problem can
directly be decomposed into N separate subproblems, one for each discipline. However, this means
the true nature of the problem was most likely misunderstood or mis-explained at first. Because if a
problem can simply be decomposed into one optimization problem per discipline it would not be an
MDO problem anymore. Equations (2.3) and (2.4) show generic optimization problems that fall into the
first and second category respectively. These equations have been adopted from [60] and follow the
mathematical notation introduced in table 2.1.

N
min. fi (xp) N

; min. Zfi (%0, x1)
(2.3) =1

W.rt X, .., Xy (2.4)
st co(xq, ., xy) =0 W.rt. xo, X1, ., Xy
c1(x1)=20,..cy(xy) 2 0. st ¢y (g, x1) =0, ...cy (xg,xy) = 0.

By observing these equations the names complicating constraint and variables become obvious. Equa-
tion (2.3) has multidisciplinary constraints, c,, and eq. (2.4) has multidisciplinary design variables. Both
of these features complicate the decomposition of the problem. The first allows for a separation of the
objective function into N independent factors, but the presence of ¢y, which is a function of all discipline
design variables, does not allow the complete problem to be separated into N separate subproblems.
The second has global design variables, x,, which means the objective function and constraint func-
tions cannot simply be separated.

In engineering settings problems rarely exhibit obvious means to exploit their structure to efficiently
decompose them. This is mainly due to the fact that nonlinear problems, which real world engineering
problems almost exclusively are, are hard to decompose in an advantageous manner. Despite this
limitation, decomposing design (optimization) problems is standard practice in the engineering industry.
The main motivation for doing so lies in the organizational structure of the industry. Different teams
are traditionally given some degree of autonomy on executing their part of the design, as has been
discussed in section 2.1.6 for wing design. This is precisely an example of a decomposition of an
overall design (optimization) problem. Hence, distributed MDO architectures conform better to the
current industrial environment.

Finally, another motivation to decompose MDO problems is to balance computational costs. The
example that Martins and Lambe give to explain this is apt and relevant to this thesis: aerostructural
optimization. Often a fairly sophisticated aerodynamic analysis is performed, but only a linear structural
solver is employed. In this case the aerodynamic analysis can take several orders of magnitude more
time to run than the structural solver. If they were executed in sequence and executed the same num-
ber of times, the computational load would be poorly distributed between them. Instead, the problem
could be decomposed such that the computationally cheap structural solver performs its own, internal
optimization for each computationally expensive aerodynamic analysis. A system optimizer then com-
mands the aerodynamic analysis and the internal sub-optimization loop of the structure to bring the
overall design to an optimum. In this case the architecture can be tweaked to achieve a fair balance of
the computational load taken by the aerodynamic and structural analyses.

24 2. Background

2.2.3.2.2 Classification Aswas mentioned before, in section 2.2.3.1, the classification of distributed
MDO architectures presented by Martins and Lambe is based on the monolithic architectures. More
specifically, the classification is based on which constraints are removed from the originally AAO prob-
lem, as was depicted schematically in fig. 2.8.

Specifically the main difference between IDF and MDF is the use of the MDA block. The first level
of Martin and Lambe’s classification of distributed architectures is based on this principle. That is,
distributed architectures that use some form of an MDA loop inside the architecture to control system
consistency are labeled distributed MDF architectures, whereas those without it, that use coupling vari-
ables in the system formulation, are labeled distributed IDF architectures. Distributed IDF architectures
are further divided into two categories: those using multilevel optimization, and those using penalty
functions. Martins and Lambe show the connection between the different classes of architectures with
arrows that related them to the IDF and MDF architectures. This is a very clear, geometric way to keep
them apart. Figure 2.9 is a compact version of the diagram shown in [60]. To compactify this diagram,

Monolithic
Remove c¢, 9
AAO ~— SAND
Remove Remove
R,y,y R, 9,y
A 4 Y
Remove ¢, 9
IDF > MDF
Distributed IDF Distributed MDF
Multilevel Penalty —> CSSO
CcO < — ATC L, BLISS
BLISS-2000 < —> IPD/EPD L, MDOIS
QSD < — ECO [, ASO

Figure 2.9: MDO architecture classification diagram. Edited from [60].

the names and descriptions of the different example architectures have been removed. Therefore, the
meaning of the acronyms of the different architecture are listed in table 2.2. The interested reader is
referred to [60] for the full descriptions.

2.2.4. Difficulties of MDO
To achieve the most optimal design and increase the iteration frequency it would be beneficial to im-
plement a competent MDO framework from the very start of the design process. However, in practice
MDO is not widely applied [3, 96, 97]. The reasons for this are technical difficulties/limitations [2] (e.g.
computer power, availability of analysis tools) and non-technical, organizational aspects [11, 85, 87].
Gent et al. [3] refer to the work of Flager and Haymaker [26]. They made an account of how long
different activities of the design process took for an MDO process as compared to a legacy design
process, applied to the design of a hypersonic vehicle. Gent et al. show a figure from [26] displaying
these metrics side by side. Itis shown here in fig. 2.10. As can be seen, the specification time needed to
set-up an MDO project is almost triple that of the legacy process. In return, however, both the execution
time and management time have been dramatically reduced. This leaves more time to interpret the
results and making design decisions. What is also striking is the iteration duration and the number of
iterations that could be performed during the design process. For the legacy process iterations were

2.2. Multidisciplinary Design Optimization 25

Table 2.2: Meaning of the MDO architecture acronyms

Acronym Meaning

CcoO Collaborative Optimization

BLISS(-2000) | Bilevel Integrated Systems Synthesis

QSD Quasiseparable Decomposition

ATC Analytical Target Cascading

IPD Inexact Penalty Decomposition

EPD Exact Penalty Decomposition

ECO Enhanced Collaborative Optimization

CSSO Concurrent Subspace Optimization

MDOIS MDO of Independent Subspaces

ASO Asymmetric Subspace Optimization
Design Relative Time Spent Iteration buration Ik‘ll‘:]oﬂ;l;iebrlgf
Method Initial Subsequent | Iterations*
Legacy I 32% - 10% 6 wks 4 wks 2.5
MDO . 18% I 48% 14 wks 1.5 hrs >1,000**

* assuming a 12 week period
** after process set-up has been completed

. Specification D Execution . Management D Reasoning

(e.g. determining tasks, (e.g. generating options (e.g. representing, documenting (e.g. interpreting results,
staffing, and what information and running analyses) and coordinating existing choosing options)
is used and produced) information

Figure 2.10: Time of different activities performed during the design process using MDO or legacy project management. Copied
from [3].

slow, in the order of multiple weeks to more than a month, and so only a few iterations were possible.
The MDO process, on the other hand, took more than twice as long to perform the first iteration as
compared to the legacy process, but then obliterated the time it took to perform subsequent iterations,
bringing it down from weeks to the order of hours. This allowed for over 400 times more iterations than
the legacy process.

The reduction in management costs is also impressive; it was reduced by 84% by applying MDO.
This shows what automation can do for any process in general. If managing the project becomes too
expensive, automation can cut it down to the minimal effort possible. Of course an initial investment
has to be made to set this automation up, which will increase costs in the short term first.

2.2.5. The AGILE Project

A number of workshops have recently identified and specified what is necessary for MDO to become
more readily applicable in the industry [87, 105]. This led to the conception of the EU funded AGILE
project (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts)
[1, 14]. The project is described by Ciampa and Nagel in [15]. The scope of the development within
AGILE is three fold, as listed on the project website [1]:

+ Advanced optimization techniques and strategies;
» Techniques for collaboration;

» Knowledge-enabled information technologies.

26 2. Background

Recent efforts within and related to the project [3, 14, 16, 64, 96, 97] as well as in different projects
[8, 17, 35, 91] have put a lot of thought and work into the last two points, progressing them beyond
the previous state of the art. Of course the first point is a research field of its own and a lot of work is
being done there. However, there is still a need for new optimization algorithms and strategies that are
robust and efficient [96].

AGILE Paradigm
Of course new software is developed as part of the AGILE project to aid MDO processes. However
the most important proposition put forth by the project is not a set of tools. Rather it is a philosophy
of how to approach MDO processes in order to overcome the difficulties faced in the industry. This
philosophy is referred to as the AGILE Paradigm [15]. Its purpose is not limited to any specific industry
where MDO might be applied. It does not limit the usecase.

Being a paradigm, the AGILE paradigm approaches MDO processes within a predefined framework.
In [15] the description of this framework starts with the definition and terminology of the general MDO
based process. Ciampa and Nagel describe that three phases can always be identified in such a
process: setup, operation, and solution. These three phases are shown in fig. 2.11, which has been
taken from [15]. The figure shows, that over the course of the design process abstraction is exchanged

setup operational solution
F 3 [

He—

Figure 2.11: The general MDO based process and its three phases. Copied from [15].

for knowledge. A nice analogy for this is the exchange of potential for kinetic energy during freefall. An
object starting at rest at a finite altitude has only potential energy (abstraction; the potential to innovate)
and no kinetic energy (knowledge; the ability to attain a solution). When it is released it gains speed
(knowledge) in exchange for altitude (abstraction) until it hits the ground (solution). When it does hit
the ground, the kinetic energy is released again until it is at a full stop (convergence to the solution).
When a solution is approached the knowledge that was gained during the process is invested until a
final design is obtained. At this point all abstraction has been removed. Hence, the three phases of
the design process: first a framework has to be set-up to drive the process. This limits the possibilities
(abstraction) slightly, but yields an increment in the knowledge of the problem(s). Then, during the
operational phase, a large amount of knowledge is gained about the design, and the design space
(abstraction) is shrunk more and more. Finally, the design has been fully specified and no abstraction
is left. All knowledge then accumulates into the final design.

These phases were also discussed in section 2.2.4. It was noted that the time spent in the setup
phase increases when applying MDO. Ciampa and Nagel explain that the main challenges of this phase
lie in the design task and MDO problem formulation, pre-selecting the design drivers, identifying and
tying together all of the different analysis competencies that are required, and deploying the necessary
IT infrastructure [15]. The AGILE Paradigm aims to overcome exactly these challenges and thereby
reduce the setup time. In fact, one of the high level objectives of the AGILE project is to reduce the
time needed to setup and solve MDO problems in a team of heterogeneous experts [15] by 40%. Next
to this, the project aims to reduce the time needed to converge the optimization of an aircraft by 20%.

To achieve these goals and tackle the practical problems of MDO in the aerospace industry the
AGILE paradigm attacks the three topics listed at the start of this section. Extracted from these, three
main supporting pillars are defined [15]:

» Design Competences;

2.2. Multidisciplinary Design Optimization 27

* Knowledge Architecture;
» Collaborative Architecture;

The entire concept of the paradigm is summarized in fig. 2.12, which was copied from [15]. In this

4{. DESIGN COMPETENCE ‘

KNOWLEDGE ARCHITECTURE

- ~ | Praduct dewelopment
AGILE PARADIGM D[E]*E&ETE
setup aperational solution e e, n
1 © PD/AD interface I ':
— Automated design '
=
Time
Design competences A
|) - -] -

COLLABORATIVE ARCHITECTURE

Figure 2.12: The concept of the AGILE Paradigm. Copied from [15].

figure a modified version of the general MDO based design process that was depicted in fig. 2.11 can
be seen. These modifications represent what the AGILE project aims to attack in the design process. It
pushes all three phases back, thereby reducing the total time required to obtain a solution. It does so by
making the setup phase more efficient. The setup phase is not only streamlined in terms of time costs,
but it also dramatically reduces the abstraction very early in the process. It is able to do this, because
a wealth of knowledge can immediately be utilized from the pre-existing design competences. Those
were previously hard to or even impossible to tap into, at least in such an early phase of the process,
because there was a lack of a robust knowledge database and collaborative environment. Next, by
investing in new, smart architectures and algorithms, by making it easier to store knowledge, and to
communicate between different actors in the design process, the operational phase is accelerated
as well. Finally, by developing and deploying advanced optimization techniques the solution time is
reduced furthermore. The figure indicates which chunk of the process the AGILE paradigm aims to
remove, which is quite significant.

Knowledge Architecture

The knowledge architecture begins by modeling the product development as a hierarchic structure. An
interface between the product development and automated design formalizes hows this hierarchy can
be translated into an executable workflow. This workflow, in turn, utilizes the design competences. A
special interface allows the automated design layer to communicate with the design competences in a
unified language.

The latter is important and deserves some attention. A crucial difficulty in setting up an MDO process
that combines the knowledge of different disciplines is to tie the different disciplines to one another. This
mainly stems from the fact that they do not speak the same language,; i.e., they require input and give
output in different forms.

To give a relevant example, consider the definition of an aircraft. Perhaps its design is stored in the
form of some CAD file. Now if we want to analyze its induced drag with a Vortex Lattice Method (VLM)
we need to discretize and represent the aircraft in an entirely different way. The geometry contained in

28 2. Background

the CAD file somehow needs to be translated into a set of panels. If, on the other hand, a CFD analysis
would have to be performed, the geometry would have to be translated to a proper grid, boundary
conditions, etc.

Without a uniform interface definition the tying together of the different design competences in an
automated manner becomes impractical, inefficient, and basically a mess. To address this problem,
the AGILE paradigm defines a common language that forms a uniform interface between the different
design competences and the automated design layer. Within the AGILE project this common language
takes the form of the Common Language for Aircraft Design, or CPACS for short [18]. CPACS is
an XML schema that allows for all the properties of an aircraft to be described. It has a broad base
definition that captures all common parameters and utilities to fully specify the design and configuration
of an aircraft. On top of geometrical parameters, CPACS also allows for performance related data to
be recorded within the same unified data schema. Finally, CPACS is also flexible and expandable,
because it allows for software specific data to be recorded within the same XML file as well. These
properties make CPACS a powerful tool to improve communication between tools, disciplines, and
engineers.

Collaborative Architecture

The collaborative architecture enables the distribution of an automated design workflow over multiple,
separated collaborators. This separation can be organizational (different team or division) but also
physical (different office). An important notion in the AGILE paradigm is the control of knowledge. It
should be possible to have extensive collaboration between different companies while still protecting
each company’s intellectual property [16]. To achieve this, it has to be possible to execute parts of the
worlflow at physically different locations. Furthermore, such a part, which can be a design competence
or a sub-workflow, should always remain under the control and authority of the owner. Therefore,
the collaborative architecture needs to offer the possibility of granting and/or revoking licenses. As
described by Ciampa et al. in [16], a framework has been developed for this purpose. Figure 2.13
shows how it works schematically. This figure describes what happens in the situation that a simula-

“local” service

Administrative Domain 1: Request for a service Administrative Domain 2: Provide a service

neutral domain
harepoint Server

Firewall]

®

©

= @ R EB | central data server BEB
_— | ® |) ﬁ':
retrieving/ sending data |_ gé > _tﬁ P ———*| retrieving/sending data

Iy

o : s ‘ :
5B Simulation workflow Integrator dd Tool specialist

£ L]

Figure 2.13: The collaborative architecture within AGILE. Copied from [15].

tion workflow integrator from one administrative domain wants to use a remote service, provided by
a tool specialist operating in a different administrative domain. Both domains are shielded from the
outside by a firewall. Two channels are now defined that cross the administrative domain borders: a
data communication channel, and a messaging channel. The first is mediated by agreeing to store
data on a central data server in a neutral domain, accessible to both parties. This server allows two
way communications of data to and from it, but does not allow a direct connection between two admin-
istrative domains. The messaging channel can be mediated by, for example, an email server/service.

2.2. Multidisciplinary Design Optimization 29

Regardless of its packaging, this channel should be based on a messaging protocol that, again, does
not allow direct connections between the sending and receiving end. The Bricks protocol forms an
interface between the data communication and messaging channels [9]. This is where the tool spe-
cialist enters the loop. It gives the tool specialist full control over if, how, when, and where to provide
the requested service. Conceptually, this could mean the tool specialist gets a prompt asking him/her
to approve the a service he/she provides to run at the request of a simulation workflow integrator. If
he/she does, the data required to run the service is automatically downloaded from the central data
server and the tool is run. Then the output is uploaded to the central data server, and a message is
send to the workflow integrator through the messaging channel. This message is picked up by the
Bricks interface on the simulation workflow integrator’s end, which automatically downloads the output
data from the central data server and injects it back into the workflow. During this process the borders
between the administrative domains are never violated and the tool specialist’s intellectual property is
protected, but the knowledge of the tool specialist is still shared with the workflow integrator.

Figure 2.13 displays the logo’s of three software products that are used extensively in the AGILE
project. The blue and gray intertwined half-circles within a white circle is the logo of CPACS, which
was already described. This logo is shown as in- and output, as well as along the data communication
channel. The two logos in the bottom right corner of the gray areas within either administrative domains
belong to the Process Integration and Design (PIDO) environments Optimus [65], a proprietary envi-
ronment developed by NOESIS, and RCE [21] (Remote Component Environment), developed by the
DLR. The gray areas in fact represent the inside of a PIDO environment. The red rounded rectangles
represented services/workflows defined within these environments. The green or blue blocks within
these, in their turn, represent an actual analysis tool (design competence).

KADMOS
To bridge the gap from the design competences, via the product development hierarchy, to the auto-
mated design workflows, and to provide tools for visualization and manipulation of MDO architectures
a system named KADMOS is being developed by Delft University of Technology and RWTH Aachen
University based on graph theory [3, 96, 97]. It is a framework written in Python that is aimed at the
reducing the time required for the setup phase as discussed before. It has five levels or layers. It starts
with a repository of analysis tools/design competences and ends with an executable workflow.

Figure 2.14 shows a top-level, conceptual overview of KADMOS, depicting these five layers. From
top to bottom the five layers operate as follows [97].

1. The Repository Connectivity Graph (RCG) allows for the potential connections between all design
competences to be visualized. To allow for this to work, the requirement is that all tools specify
their in- and outputs in CPACS format. If done so, this layer of KADMOS is able to generate a
directed graph representing the possible ways to couple one or more analysis tools to another.
This allows the user to get a clear overview of the possibilities and shortcomings of the repository.
Itimmediately becomes clear which tools could be used together in an MDO architecture and what
additional knowledge is required;

2. The second layer allows for a user to specify which tools will be used within the MDO problem
that is to be solved. Basically, the user makes a selection from the repository of available tools
that will form a sub-repository for the MDO problem at hand. By removing unused tools from this
sub-repository the RCG can be uncluttered and the unused tools and variables cleared from it.
The resulting, problem specific graph is referred to as the MDO Problem Graph (MPG);

3. The next layer allows a user to label in- and outputs as belonging to the different categories
present in an MDO problem; e.g., design variables, coupling variables, etc., as discussed in
section 2.2.2. After doing so KADMOS is able to wrap any given MDO architecture available
from a predefined database around the problem automatically. This step yields two graphs: the
MDO Data Graph (MDG), which is the MPG augmented with the necessary architectural blocks
(optimizers, MDA's, etc.), and the MDO Process Graph, which is in fact an N2 diagram describing
the order in which the different nodes of the MDG are executed. When combining the MDG and
MDO Process Graph, one obtains an XDSM describing the specific MDO problem to be solved,
with the specified disciplines and function blocks, cast into the specified MDO architecture;

30 2. Background

E).(ternal MDO development Associated KADMOS graphs Example (Sellar problem)
input process
G
Import tools
K"';,“::’e and connections
MDO
problem \ 4
o tosolve? Determine
required elements
- design variables for MDO problem
- objective,
-constraints
n®
ANI \ 4 NI
Wrap MDO G- M
architectures architecture sheme 0 +
database around problem @/ \@
- OPT :
MDO Data Graph MDO Process Graph
A 4
Translate to
specific SWF
translators software
A 4

Oph n’]US® Export as

- e

workflow
ModelCenter

Figure 2.14: Top-level overview of the KADMOS framework. Copied from [97].

4. Layer four has the task of automatically translating the combination of the MDG and MDO process
graph to an Simulation Workflow (SWF) Graph. This means the KADMOS representation of the
problem and its architecture are translated to a specific PIDO environment (RCE, Optimus, etc.);

5. The fifth and final layer exports the translated SFW Graph to an executable workflow. This work-
flow can directly be opened in the corresponding PIDO environment that was targeted in the fourth
layer.

2.2.6. The OpenMDAO Framework

In [97], Gent et al. describe that the challenges of integrating tools into an MDO architecture hinder the
implementation of new tools and the reuse of existing tools. The reason being, according to [97], that
all tools need to be refitted for every new MDO workflow. This means an MDO architecture has to be
selected early and cannot easily be swapped later on, disallowing MDO engineers to explore different
architectures in search for the one most suitable for the problem. Gent et al. make the side note that
there is one framework for performing MDO that is an exception to this: OpenMDAO [32].

The development of the Open-source Multidisciplinary Design Analysis and Optimization (Open-
MDAO) framework was first described in a 2008 paper by Moore, Naylor, and Gray [63]. Although
the framework had not received its final name yet at this point, this paper contains a detailed account
of its development process. First the authors discuss the context and motivation for developing an
MDAO framework. The project was founded by NASA’'s Fundamental Aeronautics Program and aimed
at developing MDAO capabilities to aid ”[...] a seamless transition between single-discipline and mul-

2.2. Multidisciplinary Design Optimization 31

tidisciplinary analyses by providing systematic process and an intelligent computational environment
for managing multidisciplinary variable-fidelity tools that enable system analysis and optimization at
primarily the conceptual and preliminary design stages for all flight regimes of conventional and uncon-
ventional vehicle classes.” [63]. This description fits well into the general aim of the AGILE project as
well. The developers of OpenMDAO define two areas where work will be performed: developing anal-
ysis tools, and developing an underlying framework that interconnects different analysis tools. Again,
this can easily be translated into the lingo of the AGILE paradigm as the design competences and the
knowledge architecture. Next the paper provides the reader with an extensive account of the require-
ments set and decisions made during the development of the framework. In the authors’ own words, it
provides an overview "[...] of the ideas that will form the backbone of the open source MDAO framework
[...]” [63]. They also mention that a lot of work still needs to be performed.

In 2010 the same authors report on their progress in the development of the OpenMDAO framework
[32]. This is the first time the framework is referred to by this specific name. This paper is a very interest-
ing and useful document. It starts with a detailed description of the general Open-Source development
process. To the author’s knowledge, such an account has not been published in a scientific publication
focusing on MDAO and computer aided engineering (CAE) in general. Besides the author’s personal
interest in open source development, it is relevant to this thesis, since all tools developed as part of it
will be published under open-source licenses as well. Therefore a short summary of the description as
given in [32] will be given here.

Figure 2.15 shows the lifecycle a ticket goes through within the open source development process
of OpenMDAO.

Component
Developer . N .
selects existing comp. list » 1.."| +inputs 1.
Ticket + outputs
+ execute()

Assembly
WORKING *

+ configure()

+run()
r Driver

1
READY_MERGE WorkFlow
1H>1 + add_parameter()
l + add() + add_objective() 1%

+ add_constraint()
+ add_objective()

Request to Merge
branch OptProblem

+ solution

i + add_local_parameter()
NO peeds |Not Architecture i + add_global_parameter()
Pa;ses rework 5PWW§ NOT + data_recorders + add_objective()
Review ? ACCEPTED + param_types + add_constraint()
+ constraint_types + add_coupling_var()

+ num_allowed_objectives + check_solution()
+ has_coupling_vars
+ has_global_des_vars

+ configure()

Figure 2.15: The lifecycle of an OpenMDAO ticket. Figure 2.16: Class diagram of the core OpenMDAO classes (pre 1.0). Based
Copied from [32]. on [33].

A ticket is a database entry describing some problem or desired improvement/addition to the code,
a number of which are stored in a database. These tickets can be created by anyone with access to
the open source development platform. Tickets can then be picked up by anyone in the development
community to be worked on. Once a developer has completed the work required by the ticket he
requests for his work to be merged into the main branch of the code. Before this request is accepted
other developers review the proposed changes/additions to the code. If the work is accepted the work
is merged with the existing code so it becomes available in the main branch. If not, the developer
can redo his code, or the code can be blocked from entering the main branch. In this way anyone is
able to contribute to the project, but the project is protected from people intentionally or unintentionally
breaking it by the very same community that contributes.

32 2. Background

After describing the open source development process [32] discusses the capabilities of the frame-
work. The OpenMDAO infrastructure as it was at the time [32] was published, defines 4 entities:

» Components;

* Drivers;

+ Assemblies; and
» Sockets.

Components are the basic building blocks of a problem in OpenMDAO. They are entities that have
inputs and outputs that perform some operation on the inputs to calculate the outputs. Drivers can
direct a chain of events within the problem. They are capable of performing optimizations, convergence
iterations, and design of experiments. Drivers use Components to perform the analyses during these
iterations. A system of Drivers and Components can make up an Assembly. As described by [32],
Assemblies and Drivers are actually sub-classes of Components themselves, which allows nesting
several of these to create more complex blocks of operations that take inputs to outputs. Finally, a
Socket is an interface that can be held by Components, Drivers and Assemblies to perform parts of
their internal operation. By implementing this interface, users can influence the way Components,
Drivers, and Assemblies function. The OpenMDAO framework clearly makes extensive use of the
Object Oriented Paradigm (OOP), which makes it flexible and robust. In the generalized MDO lingo,
Components and Drivers correspond to discipline analyses/function blocks and optimizer/MDA blocks
respectively.

In a second layer of abstraction, OpenMDAO defines one more important object: the WorkFlow
class. A WorkFlow determines in which order a group of Components will be executed [32]. As such,
every Driver contains precisely one WorkFlow object. Following the OOP fashion, it is possible to
contain Drivers inside WorkFlows, which contain WorkFlows of their own, to created intricate, nested
iterations.

The next noteworthy paper about OpenMDAOQ is a 2012 work by Gray et al. [33]. It describes using
OpenMDAO as a standard platform to benchmark different MDO architectures. Being from 2012, this
paper describes a more recent version of the OpenMDAO framework. Two more classes were added
to the core: the OptProblem class and the Architecture class. The OptProblem class is a sub-class
of the Assembly class which allows for an optimization problem to be explicitly defined in terms of the
mathematical entities of table 2.1 (design variables, coupling variables, constraints, etc.). As described
in [33], this class wraps all the necessary functionality to be able to optimize a given problem. Every
OptProblem object has exactly one instance of the Architecture class. This class is able to take an
optimization problem in the fundamental form and transform it into an equivalent problem formulation
wrapped in the specific MDO architecture it defines.

In [33] the complete class diagram with these two additional classes is shown. It also includes some
of the important functions of the classes. It is shown here in fig. 2.16.

After describing these two new classes the paper turns to describe the different architectures they
implemented for the benchmark: IDF, MDF, CO, BLISS, and BLISS-2000. The meaning of these
acronyms was already listed in table 2.2. To compare there architectures to one another the well
known Sellar problem is solved [82]. Furthermore, a scalable problem is defined that has a variable
number of variables, constraints, coupling variables, and disciplines. The latter has been developed by
Martins et al. in 2002 [61]. The rest of [33] describes the results of the benchmark. Their overall con-
clusion is that the classic monolithic architectures (IDF and MDF) generally outperform the three tested
distributed architectures (CO, BLISS, and BLISS-2000). Their performance metrics are proximity to the
optimum at termination, and the number of iterations till convergence. Nonetheless, there are cases
where the distributed architectures start to overtake the monolithic architectures’ performance. The
main purpose of the paper, however, was to demonstrate that OpenMDAO can be used as a common
testbed for evaluating the performance of MDO architectures.

The final paper that will be addressed here in relation to the OpenMDAO framework is the 2012
work by Heath and Gray [41]. This paper describes how the OpenMDAO framework is suitable as well
for more advanced architectures, involving adaptive sampling and surrogate modeling. This is relevant
for this thesis, because these techniques are often applied when performing global optimizations, as is
part of the aim here. The paper describes that two new concepts have been added to the framework

2.2. Multidisciplinary Design Optimization 33

to provide these functionalities. First of all, the concept of iteration hierarchies are introduced. These
ease the definition of complex processes in MDO architectures, and can be maintained during runtime,
making the problem setup more flexible [41]. The second concept introduced are MetaModels. These
are components that can mimic the behavior of an expensive analysis module by employing a meta
model such as a response surface. Both of these concepts are very relevant to this thesis, as they will
offer the flexibility and tools to develop new, complex architectures.

Finally, some recent changes in the OpenMDAO framework have to be addressed. The version
of OpenMDAO as described by the four papers [32, 33, 41, 63] was deprecated after its final release,
version 0.13.0, in April of 2015. On July 14th, 2015 the release of version 1.0 Alpha was announced
on the OpenMDAO website [66]. Then, on July 20th another announcement was made describing this
new release [67]. In this announcement it was described that this version departed from the previous
versions. It had been moved to a new repository, and brought significant, backwards-incompatible
API changes. As far as the author knows, no paper has been published describing this new release.
However, it is important to discuss how it is different from the deprecated version, because it will be
used in this thesis. The reference for this description is the source code of the latest version as of
writing this section, taken directly from the public repository of the framework, version 1.7.3 [70].

Figure 2.17 shows a class diagram of the core classes of the new OpenMDAO framework. As can

Driver

+ iter_count
+ options

+ supports
Problem - desvars

- objs

+ setup() 1| -cons

+ run()

+ add_desvar()

+ add_param()

+ add_constraint()
+ add_objective()
+ run()

1

System
Group
+ params
+ unknowns + connections
+ states
+add() solve <«
+ solve_linear() + connect() SolverBase
+ solve_nonlinear() + iter count
0.* + opti_ons
+ setup()
+ solve()
Component LinearSolver
+ connections 1

+ add_param()
+ add_output()
+ add_state()

NonLinearSolver

+ supports

-

Figure 2.17: Class diagram of the core OpenMDAO classes. Derived from the source code of v.1.7.3.

be seen, it is indeed quite different from the old version presented in fig. 2.16. Note that only the most
important classes have been shown, and only a selection of their variables and methods. This diagram
serves the purpose of aiding the description of the main framework class hierarchy and to compare it
to the old version of OpenMDAO.

Within the new framework an MDAOQO problem is set-up by defining a Problem object. This object
contains one Driver and one Group. The Driver basically has the same functionality as the original
Driver class in the old framework; it drives the iterative solution process of, for example, an optimization.
The Group class takes the place of the Assembly class from the old framework. It can contain any

34 2. Background

number of Components and Groups. Its main difference from Assembly is that it can only be run if
it exists within a Problem and only after the Problem’s setup() method has been called. The System
class is the common interface for Groups and Components. This level of abstraction allows Group
and Component to have different interfaces and behave much differently. That is, in the old model
Assemblies are Components that can hold Components, in the new model Groups are Systems that
can hold Systems, but Groups are not Components and cannot have their own variables. Finally, in
the old model a Driver can describe any iterative process, such as an optimizer or a solver. In the new
model the Solver is completely decoupled from the Driver. Only a Problem has a Driver, and each
Group has a LinearSolver and NonLinearSolver. The last two have a common interface by inheriting
from SolverBase. The latter is not, however, used explicitly by any of the other classes.

There are a number of things about the OpenMDAO framework that have not been addressed here,
such as how data flow is modeled and handled and the concept of Recorders, to name a few. These
concepts are important to fully understand how OpenMDAO works, but are not considered relevant
for this literature review. The interested reader is referred to the website of OpenMDAO for more
information on these topics [32].

Methodology

As mentioned in chapter 1, the proposed solution to the research questions is a third end to the AGILE
pipeline. In this thesis a new software framework is proposed to take this place. From a high level
point of view, this framework has the purpose of connecting KADMOS/CMDOWS with OpenMDAO.
Since both KADMOS and OpenMDAOQO are written in Python, the new framework was written in Python
as well. At the time of writing, the latest version of OpenMDAO that was released was version 2.0.2.
This version was targeted by the new framework. The framework was named OpenLEGO, which is
an acronym for Open-source Link Between AGILE and OpenMDAQO. It also has a symbolic meaning,
however, referring to the plastic building bricks, because it effectively enables a process integration
engineer to plug-and-play analysis modules as if they were LEGO bricks.

This chapter will describe the concepts and implementation of the OpenLEGO framework, referring
back to the concepts and problems described in the previous chapters.

3.1. Requirements
It is important to establish a common starting point before OpenLEGQO’s implementation is discussed.
Therefore, a set of requirements are put in place. They are listed below.

+ CMDOWS: OpenLEGO should operate on a CMDOWS file. A CMDOWS file is the main output
of a KADMOS run, however, it should be emphasized that the CMDOWS file need not have been
created by KADMOS, as CMDOWS is a standalone, neutral data schema;

» OpenMDAO: OpenLEGO should interface with OpenMDAO through its API. OpenLEGO should
use this API, not change it. Initially it is intended for OpenLEGO to function as a package which
depends on OpenMDAO, but is separate from it;

» Architecture: OpenLEGO should have a robust, well-defined architecture. It should be modular,
with clear, definite tasks for each part of the larger system. This is important to increase code
reusability and make it easier to maintain as well as update the code [30];

» Usability: OpenLEGO’s API should be clear and easy to use. The user should be able to parse
a CMDOWS file with a single line of code. After a CMDOWS file has been parsed into an Open-
MDAOQ problem, the user should be able to use the result together with any standard OpenMDAO
tools and procedures;

» Representativity: The OpenLEGO tools need to ensure the OpenMDAO problem parsed from a
CMDOWS file always represents the problem defined in the CMDOWS file. The user should be
able to change anything which is not specified in the CMDOWS file, however, without affecting
the structure of the underlying problem.

The first two requirements follow from the description of the the problem. That is, a new end to
the AGILE pipeline is required, because the current ends do not provide a satisfactory answer to the
main research question of this thesis. As was discussed before, OpenMDAO is proposed as a third

35

36 3. Methodology

end to the pipeline, because it is Open-source and because of its strength when it comes to handling
analytical gradients. Since the before-last link in the chain that is the AGILE pipeline is KADOS’ output,
CMDOWS, it logically follows that the proposed solution should interface with this file, as the current
two ends, RCE and Optimus, do.

As was mentioned in chapter 1, the choice for OpenMDAO as the optimization framework to end the
new pipeline in itself is motivated by first and third requirements and sub-questions listed in chapter 1.
OpenMDADO, like RCE, KADMOWS, and CMDOWS, naturally lends itself to extensibility, because it
is open-source. Furthermore, OpenMDAOQO’s codebase is clearly object-oriented, as was discussed in
section 2.2.6. Its features are encapsulated within a clear set of Python classes. Therefore OpenMDAO
holds promise to answer the question of how an MDAO system can be developed to be extensible; the
first sub-question of this thesis.

As was mentioned in chapter 1 and elaborated on in section 2.2.6, OpenMDAO is especially power-
ful in terms of system level gradient evaluation. It allows the user to specify analytical gradients for any
or all components of a model. The framework then automatically performs finite differencing where no
gradients are provided and carries out all the chain rules to obtain the system level gradients. Hence,
the the question of how gradient information can be incorporated into a system is answered adequately
by OpenMDAO.

The second and third requirement listed above come from the first requirement listed in chapter 1,
namely, the requirement of extensibility. Having a clear, well defined software architecture is key to
creating extensible software [cite, design patterns]. Furthermore, having a clear, easy to use API is
attractive to users, because it makes it easier to understand how the framework can be used. It also
lowers the threshold for new developers to dive into the code, because a clear API should allow them
to quickly discover how the framework fits together and functions.

The fifth and final requirement may seem trivial, but is nonetheless important. In order to attract
users with little to no programming background, the framework needs to be as fool-proof as possible.
Users need to be able to prod and probe a parsed problem, without accidentally breaking it. Anything
not specified in a CMDOWS file needs to be changeable, but these changes should never change the
underlying problem description unexpectedly.

3.2. Workflow

The tasks that OpenLEGO will have to perform in order to take a CMDOWS file and yield a runnable
OpenMDAO problem were identified and ordered. The resulting worlfow diagram for OpenLEGO is
shown in fig. 3.1. First the CMDOWS XML file needs to be read and parsed. As can be seen, four

1: read 2. Construct 3: identify 4: identify 5: create 6: mark
CMDbWS file OpenMDAO feedback system problem variables of
components loop variables hierarchy interest
.
* Create . Fi * Add IVC, coupled . "
« identify DCs « Find DCs in KB OpenMDAO 5'3';?6';"2‘: group, and DC } ")’;’akbfee:'g”
1.1) 2.1 3.1 group 5.1 comps. to group 6.1)
I * Create
. . * Identify in- * Add DC « Ensure all * Mark
19 « identify order 22 Joutputs 3.2 components 4.2 ﬁ/;::enMDAO 5.2 connections 6.2 constraints
« identify * Wrapin * Apply * Add free . .
coupled OpenMDAO convergence variables to EE:;: order of gﬂba';t\tive
1.3 group 2.3 component 3.3 settings 4.3 |\ 5.3 6.3)

* identify
1.4 parameters

Figure 3.1: Workflow diagram for OpenLEGO

different sub-tasks are defined for this part. First, all Discipline Components defined in the CMDOWS
file need to be identified by name. Then their order has to be read and stored. If a coupled group
is defined in the CMDOWS file, its members need to be identified and ordered properly. Finally, the
parameters which are part of the problem need to be identified.

Next, the information from the CMDOWS file along with a given Knowledge Base need to be used

3.3. Knowledge Base 37

to construct an OpenMDAO component for each DC in the KB. To achieve this, the DCs specified in
the CMDOWS file need to be found in the given KB first. Then, their in- and outputs need to be iden-
tified. Once this information is known, the functions of each DC should be wrapped in an OpenMDAO
Component subclass.

Then, a feedback loop has to be handled, if it exists. To do this, an instance of OpenMDAO’s Group
class needs to be created. Then the OpenMDAOQO Component representations of the DCs which are
part of this coupled group need to be added to the OpenMDAO Group. They need to be ordered and
coupled to one another correctly. Finally, the convergence settings of the Group should be set such
that the group is representative of the information specified in the CMDOWS file.

The next step in the process is the identification of free system variables. In OpenMDAO, these
need to be handled separately and specified as part of an IndepvarComp (IVC) class. From the
information stored in the CMDOWS file, it should be determined which variables should be marked
as free variables. An instance of the IVC should then be created, and the free variables should be
declared on it.

Following these first four steps, the problem is assembled in step 5. The IVC, coupled group, pre-
coupling DCs, and post-coupling DCs are added to an instance of OpenMDAOQ’s Group class. The in-
and outputs of all subclasses of the Component class added in this way need to be properly connected.
Furthermore, they should be ordered in the same way as is specified in the CMDOWS file.

Finally, in step 6, the variables of interest should be marked. Thus, the design variables, along
with their lower and upper bounds, should be marked as specified in the CMDOWS file. Then, the
constraints should be marked, along with the correct reference values and type (inequality, equality).
Finally, the objective of the problem should be marked.

3.3. Knowledge Base

As was mentioned in chapter 1, the notion of the Knowledge Base (KB) as it was put forward within
AGILE had to be extended, adding provisions for analytical gradients. Within AGILE a KB is populated
with a set of analysis tools, or Discipline Components (DCs). A DC consists of four parts:

1. Input template XML file;

2. Output template XML file;
3. Meta information JSON file;
4. Analysis tool executable.

In- and output of a DC is specified by two XML files. Each valued XML element in these files corre-
sponds to an input, resp. output. A similar approach is taken to define the gradients of a DC. That is,
a third template XML file is defined, specifying the partial derivatives from which output with respect to
which input variables are supplied by the DC.

Such an XML file needs to link specific outputs and inputs to one another. In order to formalize how
this is done, an XML schema was specified. Since partial derivatives are defined in the form "derivative
of y w.rt. X*, where y is a dependent variable (output) and x a free variable (input), the XML schema
lists outputs first, and inputs as their dependencies. In other words, a 'partials’ XML file contains a list
of output variables, each of which lists the input s it depends on.

Within the AGILE pipeline, in- and output data is stored in XML files with the same structure as the
template in- and output XML files that define the in- and output variables of DCs. Once more, the same
approach is followed for the partials XML files. As such, a template partials XML file qualifies which
outputs depend on which inputs by listing them with dummy values. In turn, a data carrying partials
XML file, with the exact same structure as the template file, quantifies the partial derivatives of the
same set of outputs w.r.t. the same set of inputs by storing their magnitudes as values in the XML tree.

In the partials XML schema, inputs and outputs are represented with the same complex type: pa-
rameterType. A parameterType must contain a single text valued child element with the tag name
uid declaring the Unique Identifier (UID) of the parameter. The type can optionally contain a value,
represented by a child element with value as tag name.

A valid partials XML file has a single root element with tag name partials. The root element con-
tains any number of dependentParameterType elements with tag name parameter. A depen-
dentParameterType is an extension to the parameterType, adding an obligatory child element of

38 3. Methodology

complex type with tag name partials. The partials element, in turn can contain any number of
elements with tag name partial of type parameterType. This setup allows for a list of dependent
parameters, which each list the parameters they depend.

The generic structure of a partials XML file is shown in code frag. 3.1.

<partials>
<parameter>
<uid>outputl uid</uid>
<value>outputl value</value>
<partials>
<partial>
<uid>inputl uid</uid>
<value>outputl inputl value</value>
</partial>

<partial>
<uid>inputN uid</uid>
<value>outputl inputN value</value>
</partial>
</partials>
</parameter>

<parameter>
<uid>outputM uid</uid>
<value>outputM value</value>
<partials>
<partial>
<uid>inputl uid</uid>
<value>outputM inputl value</value>
</partial>

<partial>
<uid>inputN uid</uid>
<value>outputM inputN value</value>
</partial>
</partials>
</parameter>
</partials>

Code frament 3.1: Generic structure of a partials XML file

The partial XML schema has been formalized using the XSD format. The contents of this XSD file
are listed in appendix A.2.1.

A Python class, Partials, has been created to simplify handling partials XML files. Instances of
this class can be written to an XML file or instantiated from an XML file The class exposes a function
to declare partial derivatives of outputs w.r.t. inputs, including their values. The data of the class can
also be turned into a text representation of the XML file, and a Python dictionary representation of the
XML file. The code of the Partials class can be found in appendix A.2.2.

3.4. High Level Strategy 39

3.4. High Level Strategy

Despite the requirements and constraints imposed on the link, and regardless of the workflow, there is
still a lot of design freedom. To reduce the design space further a high level strategy for OpenLEGO was
devised. The overall focus during the design and development of the link was to maximize re-usability
an modularity. All new components and features developed for this link need to be truly functional
tools, which also have meaning outside of just this bridge between CMDOWS and OpenMDAO. This
approach increases the impact and overall relevance of the link beyond a single purpose.

3.4.1. Coupling Strategy

The first decision that was made was whether the link should operate closer to the KADMOS end or
the OpenMDAO end of the pipeline. This statement requires clarification: one can imagine a setup
where a CMDOWS file is parsed and the outcome is some sort of executable, fully independent and
self sufficient, containing all logic of an OpenMDAOQO problem’s creation and execution. For example,
the parser could output a Python script which sets up an OpenMDAO Problem and executes it. In this
case the link can be said to be closer to KADMOS' side of the gap than it is to OpenMDAO, because the
parser does not use OpenMDAOQ’s APl when parsing the CMDOWS file. Only once the created Python
scriptis run is the APl evoked. In other words, the link is further removed from OpenMDAO in this case,
because the CMDOWS parser by itself does not have a direct dependency on the actual OpenMDAO
Python package during execution, but it does directly depend on the CMDOWS file. Of course in reality
it does depend on the OpenMDAO package, because knowledge of its APl is still necessary to write
the output Python script. However, no special code or classes are written in this case extending or
enriching OpenMDAQ’s functionality. This coupling strategy is shown schematically in fig. 3.2.

KADMOS

N

CMDOWS
OpenLEGO KADMOS

\/\
N N4

—o—] —o—|
Script [—©— CMDOWS —o—
OpenMDAO OpenLEGO OpenMDAO
—o— P P P
\/_@_ \/\ —o—

Figure 3.2: Coupling strategy which keeps the link detachedFigure 3.3: Coupling strategy which ties the link directly into
from OpenMDAO. OpenMDAO.

If, on the other hand, the link would reside closer to OpenMDAO the result would be quite different.
In this case the result of the parser would not be some form of an executable file. Instead special classes
could be written inheriting functionality from OpenMDAO, constructing themselves based on a given
CMDOWS file. For example, a subclass of OpenMDAQ’s Problem class could be written which is a di-
rect representation of a CMDOWS file it is provided with. Such a setup would be intrinsically connected
to and intertwined with OpenMDAOQO’s API endpoints through inheritance and aggregation. Instead of
having a notion of executing a tool which simply transforms a CMDOWS file into an executable file, this
approach has the notion of using new classes to setup and manipulate an OpenMDAO problem using
the CMDOWS file as direct input. In other words, the first approach in essence hard-codes the setup of
an OpenMDAO problem in a script, whereas the second approach constructs the problem dynamically
with a CMDOWS file as starting point. This second approach is shown schematically in fig. 3.3.

Another way to describe the difference between these two approaches, is that the first yields a
kind of converter or translator between CMDOWS and OpenMDAOQO, whereas the second provides
a front-end for OpenMDAO able to take CMDOWS directly as input. Both of these approaches have

40 3. Methodology

advantages and disadvantages. A clear disadvantage of the first approach is that it yields a hard-coded
script file. The user can only adjust the OpenMDAO problem by manually editing this file. However,
this is also an advantage, because in this way the problem can be stored and shared independently of
KADMOS and CMDOWS and can be run directly at any time. A disadvantage of the second approach
is that it is directly dependent on OpenMDAO. Furthermore, the OpenMDAO problem is not stored
directly, and needs to be regenerated from the CMDOWS file every time a new session is started.
Hence, the CMDOWS file remains the primary definition of the problem. However, this also has major
advantages over the first approach. For example, after the an OpenMDAO problem is constructed from
a CMDOWS file, the user has the opportunity to manipulate it directly using OpenMDAOQ’s API, without
the need to edit a hard-coded file. The CMDOWS file which is written by KADMOS already encodes
the full problem and solution strategy. The script generated by the link in the first approach therefore
contains no new information, making it a redundant step. For this reason the second approach is clearly
the cleaner, more direct approach of the two, if only because it needs less intermediate steps to get
from KADMOS to a functioning OpenMDAO run. Therefore, the second approach was selected as the
coupling strategy for the link.

3.4.2. Construction Strategy

Viewed from a high level, the function of the link is to construct an OpenMDAO problem from a CM-
DOWS file. Within OOP, there are two maijor strategies to construct objects: encapsulating the con-
struction in a class’ constructor, using inheritance, or encapsulating the construction in a factory pattern.
In essence, the difference between these two approaches is comparable to the difference between the
two coupling strategies that were just discussed. A factory pattern is most akin to the first coupling
strategy, whereas the constructor method is most akin to the second coupling strategy. However, in
this context the advantages and disadvantages of these two approaches are different.

In the factory pattern approach the construction is detached from the classes being constructed. In
the context of OpenMDAO, the construction of an optimization problem involves populating a tree hier-
archy of Group and Component classes. The first of these is itself a collection of Components and/or
other Groups. More precisely, both the Group and Component classes are subclasses of the System
class. This is a clear example of a composition pattern (also known as a tree and leaf pattern) [30].
This setup is very suitable for the purpose of OpenMDAO, because it is a direct model of a multidis-
ciplinary design optimization problem. That is, each Component represents a discipline, and multiple
disciplines can be connected to one another to form multi-discipline analyses, which themselves can in
turn be connected to other multi-discipline analyses and/or other disciplines, forming complex analysis
systems. If the factory pattern approach would be used to construct an OpenMDAO problem given a
CMDOWS file, it would be straightforward to create a Component for every design competence listed
in the CMDOWS file, and tie them together as specified. However, it would be a very code intensive,
linear, functionally oriented type of programming. For example, every Component would have to be
supplied with code individually to wrap the analysis tool it represents. The advantage of this approach
is that no special, extra classes are needed besides the factory. That is, vanilla OpenMDAO classes
would be used to build the entire problem with. In that sense this is a very clean approach, be it not a
very elegant one due to the code-heavy construction.

The other approach, on the other hand, offers much more opportunities to exploit the object-oriented
nature that Python has to offer. If done in a clever way, inheritance allows for the same end result with
much less code. Not only does this lead to more intuitive code bases, it also makes the result much
more robust because code duplication and boilerplate code can be avoided. One of the strengths of
this approach which makes it so powerful, is the concept of delegation [30]. By delegating certain
tasks to others, the responsibilities of a single class can be limited. This division of responsibility is
protected by encapsulation. This makes it easier to understand what a single class does and does
not do. It is also more intuitive in the sense that it models real world multi-part systems. A famous
example of delegation in software development is the model-view-controller (MVC) pattern [30] which
is applied when implementing graphical user interfaces (GUI). In this patters the model is responsible
for handling and storing data, the view is responsible for using this data to display something to the
user, and the controller is responsible for responding to user input by manipulating the model. In the
interest of minimizing code duplication while maximizing the robustness of the link, this strategy favoring
inheritance over the factory pattern was chosen.

3.4. High Level Strategy 41

3.4.3. Architectural Strategy

Having defined how the link will tie into OpenMDAO and how it will construct the problem from a given
CMDOWS file, the architecture of the link can be described. Having decided to tightly couple the link
with OpenMDAOQO, making extensive use of inheritance and delegation, the centerpiece of the link will
be a subclass of the OpenMDAO Problem class. The Problem class lies at the heart of OpenMDAO.
It therefore makes sense to stick to this approach, and create a specialized OpenMDAO Problem
class representing a given CMDOWS file: a CMDOWSProblem class. This class will be responsible
for constructing and assembling the OpenMDAO problem when given a CMDOWS file. Besides the
CMDOWS file, the class also needs to be told where it can find the knowledge base in which all the
disciplines used by the problem reside, since this information is not included in the CMDOWS file.

With this in mind, the next big question to address is how to handle the disciplines. That is: how
should each discipline be turned into an OpenMDAO Component, such that it can be connected and
included in the problem? Within AGILE, specifically within KADMOS, a discipline (also referred to as a
design competence), should be represented by four files: an input XML file, an output XML file, a JSON
file containing meta-data about the tool, and an executable [96]. The first three are straightforward and
well defined. The in- and output XML files should contain only those elements which are read, resp.
written, by a discipline during execution. The JSON file contains information like the name of the tool
and its author, a version number, description, etc. However, it is not prescribed how the executables
should be defined. That is, there is no uniform, standard interface prescribed for them. This is critical,
because without a uniform interface there is no way a software package can interact with a discipline
without prior knowledge of how it works. Therefore it was decided to define such a standard interface for
the purpose of creating this link: the AbstractDiscipline class. However, to make this interface usable
outside of the link as well, the requirement was put on it that it should not be dependent on OpenMDAO.
Hence, the interface needs to be neutral.

Using this strategy, a first picture can be drawn of what the overall architecture will look like. From
a bird’s eye view there are two parts to the link. On the one hand the link provides a standard, neutral
interface for all disciplines, independent of OpenMDAO, but following the definition of a design compe-
tence as seen within KADMOS. As such, every discipline will be represented by a class implementing
this interface. On the other hand, the link provides a specialized OpenMDAO Problem class which
is able to interact with all disciplines in the same way through their shared interface, and is able to
connected them to one another as such. The last piece of the puzzle to be put into place is what hap-
pens in between these two ends, transforming the neutral disciplines into representative OpenMDAO
Components. In the interest of modularity and re-usability, this step is split up into two parts. Firstly
a specialized OpenMDAO Component will be made which is able to use XML for the definition and
storage of its variables: an XMLComponent. This component, in contrast to the standard interface for
the disciplines, should be neutral within the context of OpenMDAO and independent of CMDOWS and
KADMOS. As such, this component can also be used directly by the user within OpenMDAO when the
need arises to incorporate an XML component in a problem. Clearly this indeed achieves the goal of
increasing the links relevance outside of tying CMDOWS to OpenMDAO.

The last part is actually fairly straightforward. A class will be made that brings together the added
functionalities of both the standard discipline interface and the XMLComponent: the DisciplineCompo-
nent. It does so through a combination of inheritance and composition. This class is an inherit part of
the link between CMDOWS and OpenMDAO. Therefore, following the link’s overall coupling strategy
as described before, it inherits from the XMLComponent class, and is given an instance of a discipline
class, which in turn implements the standard interface. The class uses the XML files of the specific
discipline it is given to define its own in- and outputs, and uses the functions exposed by the discipline’s
standard interface to execute it. As such any discipline, given it has been implemented using the stan-
dard interface provided by the link, can be effortlessly represented by an OpenMDAO component by
giving an instance of it to an instance of this coupling class. This approach has the advantage that all
disciplines look and behave exactly the same way as seen from OpenMDAQO’s perspective.

This high level strategy of OpenLEGO is shown schematically in fig. 3.4. As can be seen, the do-
mains of OpenMDAQO and KADMOS/CMDOWS overlap in the vertical middle of the diagram due to
the bridge connecting the XML OpenMDAOQO executable to the standard DC interface and the parsing
core connecting a CMDOWS file to the OpenMDAO problem API. In contrast, the standard DC inter-
face and XML OpenMDAO component parts depend only on KADMOS/CMDOWS and OpenMDAO
respectively. The CMDOWS file and KADMOS DC representation are part of the KADMOS/CMDOWS

42 3. Methodology

OpenMDAO

OpenMDAO exectuable] [OpenMDAO problem

XML OpenMDAO executable

DC OpenMDAO executable J

OpenLEGO core

CMDOWS file KADMOS DC representation
Standard DC Interface

OpenLEGO

Figure 3.4: OpenLEGO strategy schematic

domain only; the OpenMDAO executable and problem are part of the APl of OpenMDAO only. They are
unaffected by OpenLEGO. Finally, OpenLEGOQO’s domain is shown to contain the standard DC interface,
XML OpenMDAO executable, DC OpenMDAO executable, and OpenLEGO core parts.

3.5. Software Architecture

Given the high level strategy described in the previous section, and given the fact that OpenMDAO is
an Object-Oriented Programming (OOP) framework, it is immediately apparent that the XML OpenM-
DAO executable and OpenLEGO core can inherit from classes exposed by OpenMDAQO’s API to patch
into OpenMDAO. A simplified class diagram of the core of OpenMDAO 2.0 is shown in fig. 3.5. The

RecordingManager | 1

1 b

Problem 0.* System
0..*
BaseRecorder 1 1
Driver Group Component

Figure 3.5: Simplified class diagram of the most important classes of OpenMDAO 2.0

Problem class is at the heart of OpenMDAO. It holds an instance of the Driver and Group classes.
The latter is part of a structural software design pattern known as the composite or tree-and-leaf pat-
tern, together with the System and Component classes [30]. This is a powerful design pattern, which
simplifies the definition and construction of complex hierarchies of objects. In the case of OpenMDAO
(in the context of MDAO architectures) this pattern allows for the definition of hierarchies of individual
analyses (represented by the Component class) and Multi-Disciplinary Analyses (MDA) (represented
by the Group class). Note that groups are also referred to as models in the following.

In OpenMDAO 2.0, variables of interest (VOI), such as design variables, constraints, and objectives,
are defined on the Group class. Therefore, everything except for the solution strategy of the problem,
such as a specific optimization algorithm, is fully contained within the Group class. This means no
extra functionality is needed by OpenLEGO from the Problem and Driver classes. Therefore, the
OpenLEGO core part of the high level strategy was chosen to be a subclass of OpenMDAQO’s Group
class. This subclass was called LEGOModel.

Without a Driver class, the model of a Problem can only be used as a simple input-output exe-
cutable block. That is, it is only possible to simply run all the analyses and MDA’s once to get outputs
for a given set of inputs. In order to perform more complex runs, such as an optimization, a spe-
cific subclass of Driver needs to be attached to the Problem. For example, the ScipyOptimizer

3.6. Implementation 43

class, included in the OpenMDAOQO package, which inherits from the base Driver class and wraps the
optimization algorithms exposed by the SciPy package [47].

The selection of an optimization algorithm or other solution strategy, however, is not prescribed in
a CMDOWS file. Therefore this is left completely up to the user and no subclasses of the Driver
class are needed directly by OpenLEGO. The same is true for the BaseRecorder class, instances
and subclasses of which can be attached to Drivers and/or Groups to perform tasks like saving data
to a file or displaying a plot during a run.

The OpenMDAO executable part of the high level strategy corresponds to the Component class.
Therefore the XML OpenMDAO executable part is represented by a subclass of the Component class:
the XMLComponent class. On the other end, the standard DC interface part will be represented by an
Abstract Base Class (ABC) named AbstractDiscipline in OpenLEGO.

There is an ambiguity for the definition of the DC OpenMDAO executable part. It could be a sub-
class of either XML.Component, AbstractDiscipline, or even both. However, multiple inheritance
was chosen to be avoided. The main purpose of the DC OpenMDAO executable part is to automati-
cally construct an xMLComponent using the in- and output files from a given DC, using the standard
DC interface to obtain these. More so, the LEGOModel class uses the DC OpenMDAO executable
part to define its OpenMDAOQO components. Therefore, it was decided that the DC OpenMDAO exe-
cutable part should behave just like an XMLComponent, but that is should be constructed and executed
using a subclass of AbstractDiscipline. This subclass of XMLComponent was called Disci-
plineComponent. Itis connected to the AbstractDiscipline through aggregation. An instance
of DisciplineComponent holds precisely one subclass of AbstractDiscipline.

Figure 3.6 shows a simplified class diagram of this architecture and how it connects to OpenMDAO.
As can be seen, this architecture corresponds well with the the schematic of the high level strategy. In

OpenMDAO OpenLEGO
System o0 Group LEGOModel AbstractDiscipline
0..* $
Component XMLComponent DisciplineComponent

Figure 3.6: Simplified class diagram of OpenLEGQ’s architecture and its connections with OpenMDAO

the remainder of this section, the implementation of OpenLEGQ'’s four core classes, AbstractDisci-
pline, XMLComponent, DisciplineComponent, and LEGOModel, will be discussed in more detail.

To clarify the collaboration between these four core classes, sequence diagrams depicting the cre-
ation and computation of a DisciplineComponent instance by the LEGOModel class are shown in
fig. 3.7a and fig. 3.7b respectively.

3.6. Implementation
After having discussed the software architecture of OpenLEGO in the previous section, the implemen-
tation of OpenLEGO will be discussed now. The code of OpenLEGO has been divided into 3 Python
modules: openlego.core, openlego.partials, openlego.recorders, and openlego.util.
The four code classes of OpenLEGO, which were introduced in the previous section, are stored in the
first module. These classes rely heavily on the last two utility modules. The structure of this section
follows the file structure of the OpenLEGO code base. That is, a sub-section has been dedicated to
each of the six Python modules. Each of these sub-sections will give a general overview of the contents
and purpose of its corresponding module first. Then a paragraph is dedicated to each important class
and function contained in it. All source code of the project is attached to this report in appendix A.
This section will describe the openlego.core module first, in section 3.6.1. Then the XML utility
functions of the openlego.utils.xml utils module will be described, in section 3.6.2. Finally,
the recorder classes will be described in section 3.6.3. The openlego.partials module will not be

44 3. Methodology

:LEGOModel

‘AbstractDiscipline :LEGOModel :AbstractDiscipline :DisciplineComponent :XMLComponent]
new() ’ T T T
discipline l_] compute() 1 !
Cmmmre e T :DisciplineComponent :XMLComponent| 1 1
new(discipline) o ' compute()
! get_inputs() : : _ execute()
inputs ' 1 execute()
1
; I
outputs ' R
T > | new(inputs, outputs) _ :) >
[[retun 1 (S 1
<-......dcipline_component |] : D T e '
- 1 T 1 1 1
1 1 1
! . . 1 1 1 1
(a) Construction sequence (b) Computation sequence

Figure 3.7: Sequence diagrams of the creation and computation of DisciplineComponents

discussed here. The partials class was already introduced in section 3.3.

3.6.1. Core Module

The openlego.core module contains the core of the OpenLEGO API. That is, the four main classes
are contained within this module. Each class has its own sub-module. The source code of all sub-
modules of the openlego.core module can be found in appendix A.1.

openlego.core.abstract discipline:
Including the extension of the notion of the Knowledge Base described in the previous section, a Design
Competence (DC) is formally represented by a set of 5 separate entities:

1. Input template XML file;
2. Output template XML file;
Partials template XML file;

Meta information JSON file;

o &~ o

Analysis tool executable.

The DC is further formalized by defining a standard interface, wrapping the properties and content of
these 5 files. This interface comes in the form of an abstract Python class: AbstractDiscipline.

The openlego.abstract discipline module contains the definition of this class. As was de-
scribed before, the AbstractDiscipline class is independent from the OpenMDAO API. Therefore
it is defined in a dedicated module. In this way this module can be imported even if OpenMDAO has
not been installed.

The AbstractDiscipline class forms the Abstract Base Class (ABC) for all DCs within Open-
LEGO. It standardizes the definition of a DC as prescribed by KADMOS. In this definition a DC is
comprised of four parts: an input XML file, an output XML file, a JavaScript Object Notation (JSON) file
with meta information about the DC, and an executable. KADMOS actually only handles the first three
of these four parts directly; that is, it only deals with the in- and outputs, as well as meta-information
(such as the name and execution time of a tool), but does not actually need the executable. Therefore,
no specifications were given as to how this executable should be represented. However, OpenLEGO
will need to be able to run the executables of all DCs. If there is no standard representation for them,
then OpenLEGO cannot know how to execute a DC. This is the main reason why a standard interface
in the form of the AbstractDiscipline class was created.

The class defines a set of properties (using Python’s ¢property decorator) corresponding to the
most common entries of the information JSON files of DCs, such as the name, creator, version, and
description of the DC. These properties have standard implementations defined for them, but can be
overridden by a specific subclass to better represent the DC it wraps.

3.6. Implementation 45

Besides the information JSON file properties, the class also defines properties for the locations of
the in-foutput XML and information JSON files, as well as the path at which the DC is stored. These
properties have standard implementations pointing to the directory in which the Python module of the
implementing is stored, with standard names based on the name property of the subclass for the in-
/output XML and information JSON files. Furthermore, three abstract methods are declared by Ab-
stractDiscipline! generate input xml (self) -> str, generate output xml (self)
-> str, and execute (in_file, out file). These methods must be implemented by all sub-
classes. The first two should return a string with the contents of the in- and output XML files of the
DC respectively. The last is a static method, which should run the DC the subclass wraps using given
in- and output files. The execute (in file, out file) method is static to reflect the fact that
it represents an isolated tool. A fourth method, generate info json(self) -> str, returns a
string representing the DCs information JSON file. This method is not abstract, however, because it
uses the properties of the class as well as default values to generate a standard information JSON
file for the DC. It should be overridden by a subclass if more specific, custom information should be
included in the file. Finally, the AbstractDiscipline class defines the deploy (self) method,
which calls the three generation methods and stores the results in files at the paths specified by the
three corresponding path properties.

Due to the file generation methods, the interface can be used to generate the in-/output and info
files dynamically. This enables the possibility of defining DCs which depend on high level parameters
or settings for their in- and/or output XML files. An example of this is a tool performing an analysis
based on the geometry of an aircraft defined in a CPACS file. Because of the strict definition that a
given input XML file contains only those XML elements read by the tool, and the output file only those
written, the topology of the geometrical model cannot change. That is, if an input CPACS file of a DC
contains just one wing, with just one wing segment, and a second file contains the same one wing, but
with two wing segments, then they will have different variables. However, the analysis tool behind the
DC is most likely able to handle CPACS files with an arbitrary number of wings and wing segments.
To reconcile the strict in-/output variable definition and the flexibility of a tool, it should be possible to
generate different in- and output XML files based on some parameters. By using bound class methods
to dynamically generate these files, this is can easily be achieved by using extra class properties.

openlego.core.xml component:

The XMLComponent class is a subclass of OpenMDAQO’s ExplicitComponent class. Two new con-
crete methods are added: set inputs from xml (self, file path) and set outputs f,
rom xml (self, file path). They allow for input and output OpenMDAQO variables to be de-
fined given in- and output XML files respectively. These methods are used inthe init (self,
in file, out file) method to immediately define in- and output variables if in- and output XML
files are supplied to it, but can be called at any time before the setup (sel1f) method is called to
overwrite these. The in- and output variable names and sizes are stored in simple Python dictionaries
until the setup (self) method is called.

XMLComponent implements the setup (self) method to actually add OpenMDAO in- and output
variables to the Component given the dictionaries created earlier. Furthermore, an abstract method,
execute (self, in file, out file), is declared which must be implemented by a subclass
to perform the computation of the component given an input and an output XML file. Finally, the ab-
stract compute (self, inputs, outputs) method declared by the ExplicitComponent class
is implemented. It writes all inputs to a temporary XML file, calls the abstract execute (in_ file,
out_ file) method with this input file, and parses the resulting output XML file, storing the new val-
ues in the appropriate OpenMDAO output variables.

This class is a straightforward translation of the high level description of the XML OpenMDAO ex-
ecutable part into an actual implementation. As was prescribed by the requirements, it only depends
on OpenMDAO and works for any valid XML file. It is not specific to KADMOS/CMDOWS. Therefore
it can be used outside of the context of KADMOS/CMDOWS as well when a tool is used which uses
XML in- and output files.

openlego.core.discipline component:
Because of the robust definition of the AbstractDiscipline and XMLComponent classes, the im-
plementation of the DisciplineComponent is the simplest of the four core classes of OpenLEGO.

46 3. Methodology

As was mentioned before, this class is a subclass of the xMLComponent class. Therefore it inherits
all of its functionality automatically. It holds an instance of a subclass of AbstractDiscipline to
define its in- and outputs and uses it to execute. As such, the init (self, discipline)
method is overridden and extended to take an instance of AbstractDiscipline as input, storing
itin a class attribute. The init (self, in file, out file) of the XMLComponent class
it inherits from is then called using the in- and output XML file paths defined by the instance of Ab-
stractDiscipline as input arguments. Corresponding OpenMDAO in- and output variables are
then automatically created. Finally, the abstract execute (in_file, out file) method of the
XMLComponent class is implemented. It simply calls the execute (in_file, out file) method
of the instance of AbstractDiscipline the DisciplineComponent holds.

openlego.core.model:

In contrast to the DisciplineComponent class, the LEGOModel class has the most elaborate imple-
mentation of the four core classes. This is to be expected, because it performs most of the parsing and
construction tasks listed in section 3.2. Itis a subclass of OpenMDAOQ’s Group class. It defines no new
methods which should be used directly by OpenMDAOQO. Therefore it can be treated and used like any
other instance or subclass of Group. To construct itself, the LEGOModel’s init (self, cm-
dows file, kb path) method allows the user to specify the path to a CMDOWS file which should
be parsed, as well as the path at which the KB of the problem is stored. The latter should point to the
folder containing the Python files in which the subclasses of AbstractDiscipline are stored.

The strategy used to implement the LEGOMode1 class relies heavily on the concept of dependent/-
computed properties. For the majority of these, it uses a simple subclass of Python’s builtin property
decorator class called CachedProperty. This class stores the value of a computed property and
bypasses its actual computation as long as it is still marked as valid. This avoids recomputation of
properties which only need to be computed once, but are accessed repeatedly. This is especially
beneficial for properties who’'s computation is time and/or resource expensive.

All of these dependent/computed properties depend on the the CMDOWS file, KB path, or both.
Therefore, if either of those two is set all dependent/computed properties are automatically invalided
and will be recomputed the next time they are read. Furthermore, if any of them is attempted to be read
when either no CMDOWS file and/or no KB path is set, an exception is raised. This approach ensures
the requirement of representativity whilst minimizing computational cost. It also has the advantage of
allowing the code to be split up into smaller, isolated sub-tasks, which reduces code duplication.

3.6.2. Utilities Module

OpenLEGO relies heavily on the ability to read and write the values of OpenMDAOQ variables to and
from XML files. This ability is required throughout the core classes, and should be available to the user
as well, to make it easier to wrap external analysis tools in subclasses of AbstractDiscipline.
Therefore a suite of shared XML utility functions have been written and stored in a dedicated module:
openlego.utils.xml utils.

Besides the XML utilities, a set of general utility functions have been written as well. These are
stored in the openlego.utils.general utils module. However, these function will not be ex-
plicitly discussed here. The interested reader is referred to the source code, given in appendix A.4.1.

This section will discuss the important functions defined in the openlego.utils.xml utils
module. The source code of this module can be found in appendix A.4.2.

xpath to param¶m to xpath

The xpath to param(xpath) -> strandparam to xpath (param) -> str functions perform
the necessary operations to convert a valid XPath to a valid OpenMDAO variable name and vice versa.
These functions are actually remnants of the version of OpenLEGO targeting OpenMDAO 1.x. They
were necessary there, because OpenMDAO 1.x put restrictions on what characters could be used in
variable names. In OpenMDAO 2.0, however, these restrictions were lifted.

The decimal point, however, still needs to be replaced if it appears in an XPath in the new version,
because OpenMDAO uses decimal points as path separators between subsystems. In the interest
of backward compatibility with the version of OpenLEGO targeting OpenMDAO 1.x, and to yield the
minimum impact on the rest of the code, these functions were kept to perform this one translation.

3.6. Implementation 47

cmdows_path [|
kb_path [|
elem_cmdows BHEE B [| |
elem_problem_def [| | |
elem_params HER
elem_arch_elems [| [| H
has_converger H
discipline_components [| H B
variable_sizes HER H
coupling_vars [| | HE
coupling_var_cons [
block order H
coupled_blocks H B
system_inputs
design_vars
constraints
objective
coupled_group
consistency_constraint_group
system_order
coordinator
setup()

Figure 3.8: N2 diagram showing the dependency of all computed properties on one another.

In this version of OpenLEGO, decimal points appearing in XPaths are replaced with the sequence
7: :’. This sequence was chosen because it is unlikely to appear directly within an XPath, even
though itis a legal sequence within an XPath. Therefore it is unlikely that an XPath cannot be translated
to a valid OpenMDAO variable name in a reversible way.

xml to dict

The xml to dict(xml) -> OrderedDict function is the key to turning an XML file into a set of
OpenMDAO variables. It takes either the path of an XML file, or an instance of the ElementTree
class from the 1xm1 .etree module and returns a representative instance of the OrderedDict class.
The dictionary returned by this function contains an entry for each simple, valued XML element in the
XML tree, with its full XPath as key.

This function uses the etree . XPath function to quickly obtain a list of all text elements in a given
XML tree using the XPath expression ’ //text () ’. It then iterates over the list of all elements that
are returned. To obtain the full XPath of an element, the function backtracks from the text element up
the tree until the XML file’s root element is reached. At each node all XML attributes and indices are
appended to the node’s tag using the square bracket notation of XPaths. This ensures that the final
XPath points to exactly the right element, which is especially important if there are multiple nodes
sharing the same tag under a single parent. The value of each text element is parsed using the
parse cmdows value (value) -> Union[str,float,np.ndarray] function.

xml safe create element

The xml safe create element (tree, xpath, value=None) -> Element functionis used
to create an XML element in a given XML tree at a specific, absolute XPath. All intermediate elements
- that is, every node between the root element and target element - are created if they do not yet exist.
If an integer index is specified at a given node in the XPath, the correct number of sibling elements are
created correspondingly to ensure the integer index position exists in the tree. If attributes are specified
at a given node these are created accordingly as well. Finally, the given value is written to the target of
the XPath, if one is supplied. As such, this function ensures that the specified XPath exists in the given

48 3. Methodology

XML tree when it returns. It finally returns an instance of the Element class from the 1xml.etree
module corresponding to the target element that was created.

xml merge
The xml merge (base, merger, out file=None) function can be used to merge two XML files
into one. This function is used regularly by the XMLComponent class to merge the outputs of a one
analysis tool into a base XML file. The function merges the content of the merger into the base. By
default the merged XML is written to the base file, but if the out file argumentis given, it will leave
the base alone and instead write to this file. If there are conflicting elements which appear both in the
base and in the merger, the values in the merger will overwrite those of the base.

This function makes use of the xm1 _to_dict function, section 3.6.2.2, to create a dictionary of the
tree ofthemerger. Thenititerates over all key-value pairs and uses the xm1 safe create element
function, section 3.6.2.3, to write them to the base or out file tree.

3.6.3. Recorders Module

Aside from the core functionality of OpenLEGO a set of OpenMDAOQ recorders have been developed.
These have been stored in the openlego. recorders module, following OpenMDAQO’s naming con-
vention. The concept of recorders was discussed briefly at the start of this section. The leftmost two
classes in the class diagram of OpenMDAOQO’s core, which was shown in fig. 3.5, represent this con-
cept. As can be seen, recorders are managed by instances of RecordingManager held by both the
Driver and System classes. The RecordingManager can hold any number of subclasses of the
BaseRecorder ABC. Specific recorders can be created by defining a subclass of this ABC.

During the course of the development and testing of OpenLEGO a set of recorders was used repeat-
edly to monitor optimizations as they progressed. Matplotlib was used to generate and update plots for
this purpose [44]. This Python plotting library is powerful, but has some important disadvantages. The
most challenging issue that was encountered was that Matplotlib’s figure windows freeze when they are
used in interactive, non-blocking mode. The figures work well when they are used to display a single
window to the user, pausing the code until the user closes the window. However, when a figure needs
to be continually updated and refreshed the window becomes unresponsive and therefore unusable.

Eventually a general solution was found to this problem using Python’s multiprocessing toolbox. The
loop handling the figure window was moved to a dedicated, separate process. The Tkinter library was
used to control the figure, which allows for direct control of the figure’s main loop [86]. In order to allow
the main process to send updates to the process handling the plot, a pipe and polling mechanism was
used. This mechanism polls one end of a Python multiprocessing Pipe in a loop, handling any input as
it is received. The added benefit of this approach is that all the code handling and updating the figure
is run on a separate process. Therefore plotting does not block the computational thread performing
the optimization. This method was found to work so well that it was generalized and wrapped within a
subclass of OpenMDAQ’s BaseRecorder, BaseIterationPlotter, such that it can be reused to
simply create a non-blocking, non-freezing, continually updated plot during an optimization run.

A set of specialized iteration plotters were created, building on the capabilities of BaseItera-
tionPlotter. Because these recorders are generally useful, and because they solve common prob-
lems, they were considered relevant enough to include in the OpenLEGO package. They are listed
and described briefly below.

VOIPlotter:

This recorder allows the user to plot any number of VOls as a function of the number of iterations. The
user can specify which VOIs need to be recorded by using the native OpenMDAO options [’ includes’]
options for recorders. Each VOI gets its own vertical axis to allow for VOlIs of different ranges and scales

to be displayed clearly in one figure.

SimpleObjectivePlotter:
This is a simple convenience recorder which automatically plots the normalized objective function value
as a function of the number of iterations when it is attached.

BaselLanePlotter:
This recorder implements the concept of the lane plot, such as the ones shown by Bartoli et al. in
[10]. This type of plot uses a colormap to map values of variables to a color range. Each variable

3.6. Implementation 49

10

,,,,,

,,,,,

scon_sigma_bs{0]

traints/con_WS[0]

Figure 3.9: Part of the design variable lane plot during the Figure 3.10: Part of the constraint variable lane plot during
wing optimization test case run. the wing optimization test case run.

which is plotted is represented by its own horizontal lane. In the context of optimizations, the horizontal
axis corresponds to the number of iterations and each lane gets a colored rectangle at each iteration
corresponding to its value at that point. These plots are particularly useful to display the design vectors
of optimization problems, normalized to their bounds, or the values of the constraints as a function of
the number of iterations. Examples of this are shown in figs. 3.9 and 3.10. The BaseLanePlotter is
an ABC which should be implemented to make a specific plot, such as the next two in this list.

NormalizedDesignVarPlotter:

This is a subclass of the BaseLanePlotter ABC which plots all the design variables of the optimiza-
tion problem using the lane plot style. All design variables are normalized to their bounds. That is, a
variable at its upper bound maps to 1 and a variable at its lower bound maps to 0.

An example of such a lane plot depicting the design variables of an optimization problem is shown
in fig. 3.9. This plot was created during the first part of the aeroelastic wing optimization problem test
case, which will be described in section 4.3. This example uses the default settings for the Nor-
malizedDesignVarPlotter recorder. It uses the perceptually uniform sequential colormap Viridis,
which comes with matplotlib [44].

ConstraintsPlotter:

This is also a subclass of the BaseLanePlotter ABC which plots all the constraint values of the
optimization problem using the lane plot style. All constraints are assumed to be satisfied if they are
zero. It is up to the user whether inequality constraints are considered satisfied when they are < or
> than zero. A symmetric logarithmic colormap is used by default in order to capture the variation
constraints’ values equally well when they are close to zero and further away from it.

An example of a plot created with this recorder is shown in fig. 3.10. Like fig. 3.9, this plot was cre-
ated during the first part of the aeroelastic wing optimization problem test case described in section 4.3.
This example plot was created using the default settings of the ConstraintsPlotter recorder. As
can be seen, a symmetric logarithmic scale is used with a diverging colormap called 'RdBu’, which
comes with standard matplotlib [44]. The lighter the color, the closer to active a constraint is consid-
ered to be like this.

Results

To demonstrate the capabilities of OpenLEGO two test cases were set up: the Sellar problem and a
low-fidelity aerostructural wing optimization problem. This section will present these test cases and
their implementations in OpenLEGO.

The Sellar test case will be discussed first, in section 4.2. This test case serves as a proof of concept
of OpenLEGO. Besides constructing and solving the optimization problem, the Sellar problem will be
used to demonstrate OpenLEGO’s ability to handle different MDO architectures. Next, in section 4.3,
the wing optimization test case will be discussed. This case demonstrates the applicability of Open-
LEGO to a more realistic MDO problem in the context of aircraft design. Although this is still a problem
with a relatively small number of disciplines, it has a much larger number of variables and serves as a
first demonstration of OpenLEGO’s ability to handle bigger problems using external tools.

4.1. Scalable Optimization Problem

To demonstrate the advantage of making use of analytical gradients if they are made available by
analysis tools, a scalable, mathematical optimization problem was studied. The approach and setup
presented in [90] was followed. The mathematical description of the optimization problem studied here
is given in eq. (4.1).

ng
minimize f = zl'z+ Z Y. Vi
i=1
w.rt x;,2z,
subjectto g; = 1-C4y: 20,
ng
where D;: éy,iyi = Cx’l-xi - Z Cy,jyi + sz,
j=1,j%i (4.1)
CA‘y,i = [(ny + 1) ng + 1y C;,_L-l,
Cyi € R™WXM,
CyisCyi € RW*My,
CZ € Rnyxnz’
i € [1,ng4],

Ng, Ny, Ny, N; € R,

where Cy;, Cy;, Cg4;, and C, are matrices with random coefficients, determined prior to the start of an
optimization. The notation A°~! represents the Hadamard inverse [73], defined by eq. (4.2).

B=A""1&o Bij = Ai_jl, (42)
i.e., the element-wise inverse of a matrix. The number of disciplines, ny, local design variables per
discipline, n,, local coupling variables per discipline, n,,, and global design variables, n,, can be varied.

51

52 4. Results

This allows the problem to be tweaked to any given characteristic. For this study, as was done in
[90], the coefficients of all matrices but the ones related to the coupling variables were set to unity.
Furthermore, all off-diagonal coefficients of C,; were set to zero. Hence, the equation was simplified

to eq. (4.3):
ng
minimize f = z'z+ Z yl-TYi'
i=1
w.rt x;z,
subjectto g; = 1—diag (cg,i) y. =0,
ng
where D;: éy’iyi]ny,nxxi — Z Cy;¥i +]ny,nZZ, (4.3)
j=1,j%i
C‘y’i = [(ny + nx) ng + nz] C;,}l,
Cy,i € Rnyxny'
i € [1,ng],
Ng, Ny, Ny,N; € R,

where the notation J,, , denotes an m x n matrix of ones [43], and ¢, ; is a vector of length n,, with
random values.

For this study, the number of disciplines and the number of global design variables were fixed to
ng = n, = 3, as was done in [90]. The number of local design variables and coupling variables per
discipline were varied. All combinations of the values 2, 20, and 200 for each of them were analyzed,
making for 9 different configurations. With each of these combinations, 100 random problems were
generated and solved once with analytical gradients and once using finite differencing to approximate
the gradients. The amount of function evaluations of each discipline was recorded for both the run with
and without analytical gradients. An MDF architecture was used for all runs. All 'analysis’ disciplines,
D;, are coupled to one another due to the coupling variables, y;. Therefore they are all part of the
MDA of the MDF architecture. Since they all have the same number of local design variables, x;, non-
local coupling variables, y ;..;, and global design variables, z, as inputs, they are all executed the same
number of times as each other, regardless of whether analytical gradients are used or not. Therefore
it was sufficient to note only the amount of function evaluations of the first discipline.

The average number of function evaluations across all 100 runs of every configuration are tabulated
in table 4.1. The differences between the two runs for each configuration are tabulated in table 4.2.

Table 4.1: Average number of discipline function evaluations for across 100 complete optimization runs using finite differencing
(upper left hand corners), and using analytical gradients (lower right hand corners) for all combinations of n, and n,,.

. "ty 2 20 200
X
, 102.97 96.10 3130
1086.24 3191.95 8743.15
8951 95.74 65.80
20 299413 4816.18 16051.50
93.89 99.29 100.85
200 | 3573518 46133.00 51671.79

Finally, the fractions of these differences w.r.t. the numbers corresponding to the runs using finite

Table 4.2: Differences between the average number of discipline function evaluations per configuration

"ty 2 20 200
nx
2 08327 | 309585 | 8711.85
20 290462 | 472044 | 1598562
200 3664129 | 46033.71 | 51570.93

4.2. Sellar Problem 53

differencing are given in table 4.3. Itis immediately clear from these results that making use of analytical

Table 4.3: Percent differences between the average number of discipline function evaluations per configuration

ny
nx

2 20 200

2 90.52% | 96.99% | 99.64%
20 97.01% | 98.01% | 99.59%
200 99.74% | 99.78% | 99.80%

gradients has a dramatic, positive impact on the number of discipline function evaluations required to
complete an optimization run. Even in the lightest case, with the smallest number of local design and
coupling variables per discipline, the average number of discipline function evaluations is reduced by
more than 90%. As can be seen, the reduction is larger the more complex the configurations get. For
all configurations where the number of local design variables or the number of coupling variables per
discipline were set to 200, the reduction is well over 99%.

Hence, making use of analytical gradients if they are provided by analysis tools can profoundly re-
duce the computational cost of any optimization run. Therefore it is indeed very important to make it
easier to achieve analytical gradient utilization in any modern MDAO system, such as the one devel-
oped as part of this thesis. This serves as further justification of the work done.

4.2. Sellar Problem

The Sellar problem is a common test problem used to demonstrate and test MDO solution strategies
[82]. It is used as an example by both OpenMDAO [68] as well as KADMOS [95]. It is a purely mathe-
matical problem which can be written as eq. (4.4).

minimize f; (x4, Y1, V2, Z2) x2+z,+y, +e72

w.rt. xq,24,2,,

for 0<x <10,
—10 <z, <10,
0<1z, <10,
bject t 1- 2 <o (@4
= - <
subjectto g, (y1) 316 =
V2
= =-—-1 <0,
g2 (02) 2 <
Where V1 = Dl (xl,yz,zl,ZZ) = X1 +Z% + Zy — O.Zyz,
¥2 =Dy (01,21, 22) = z1t2z, +\y1

When written in this way, it can be understood as a single objective, constrained, multidisciplinary
optimization problem with two coupled disciplines, D; and D,. This problem has two local minima,

x; =0.11, y{ =3.16, y, = 0.20, z] = —1.72, z; = 0.14, f* = 4.13, g7 = 0.00, g5 = —0.99, and
x; = 0.00, y; = 3.16, y; = 3.76, z] = +1.98, z; = 0.00, f* = 3.18, g7 = 0.00, g5 = —0.84,

the second of which is the problem’s global minimum. At both local minima the first constraint, g4, is
active and the second, g,, is inactive. Both x; and z, are at their respective lower bounds at both
minima. Being defined purely in terms of simple algebraic functions, the Sellar problem can be solved
quickly on any modern computer. However, its solution is not trivial, because of the strong coupling
between D, and D, through coupling variables y, and y,. Together, these qualities make the Sellar
problem a good test case for MDO systems.

Since the problem is purely mathematical, the gradients can be expressed as simple mathematical
functions as well. To obtain these, the derivatives of the objective function, f;, constraint functions, g,
and g,, and the two coupling variables (disciplines), y; and y,, need to be carried out. They are given
in egs. (4.5a) to (4.9¢).

© ® N o U AW N =

54

4. Results

oh
dxq
oh
oy
% = —e V2
ay,

o
0z,

= 2x1

dg41 1

dy, 3.16
ag, 1
ay, 24

(4.5a)
(4.5b)
(4.5c)

(4.5d)

(4.6)

4.7)

oy
0x4
an
0y,

o _

0z,
o
aZZ

b
0y
a,
0z,
a,
0z,

=-0.2

(4.8a)
(4.8b)
(4.8c)

(4.8d)

(4.9a)
(4.9b)

(4.9¢c)

To create a KB with which the Sellar problem can be solved, six subclasses of OpenLEGO’s
AbstractDiscipline class were created: D1, D2, F1, G1, and G2. They represent the two coupled
disciplines, the objective function, and the two constraint functions respectively. An example

implementation of D1 is shown in code frag. 4.1.

from lxml import etree

from openlego.api import AbstractDiscipline
from openlego.xml import xml safe create element
from openlego.partials.partials import Partials

class D1 (AbstractDiscipline):

@property
def supplies partials(self):
return True

def generate input xml (self):
return ’<data>’ + \
r<x1>0.0</x1>"
r<y2>0.0</y1>"
'<z1>0.0</z1>"
1<z2>0.0</z2>"
'</data>’

+ + + +
P

def generate output xml (self):
return ’<data>’ + \
"<yl>0.0</y1>" + \
'</data>’

def generate partials xml (self):
partials = Partials()
partials.declare partials(x_yl,
return partials.get string()

@staticmethod
def execute(in file, out file):
doc = etree.parse(in file)

x1l = float(doc.xpath?’/data/xl’)
y2 = float (doc.xpath(’/data/y2")
z1l = float (doc.xpath(’/data/zl")
z2 = float (doc.xpath(’/data/z2")
yl = x1 + z1**2 + z2 - .2%y2

root = etree.Element (’data’)

[x x1, x y2, x z1, x z2])

[0].text)
[0].text)
[0].text)
[0].text)

42
43
44
45
46
47
48
49
50
51
52
53
54
55

o U bW N e

4.2. Sellar Problem 55

doc = etree.ElementTree (root)
xml safe create element (doc, ’/data/yl’, yl)
doc.write (out file)

@staticmethod

def linearize(in file, partials file):
doc = etree.parse(in_file)
z1l = float (doc.xpath(x z1) [0].text)

partials Partials()
partials.declare partials(x_yl,
[x x1, x y2, x z1, x z2],
[1., -.2, 2*z1, 1.1)
partials.write (partials file)

Code frament 4.1: Example implementation of discipline D, of the Sellar problem in OpenLEGO

This class implements the three abstract methods of AbstractDiscipline, generate inpu,
t xml (), generate output xml (), and execute (). The first two return simple, static Python
strings representing XML files with elements corresponding to the discipline’s four inputs, x1, vy2,
z1, z2,and single output, y1, respectively. The execute () method uses the 1xm1 Python package
and the xm1 utilities module, included in the OpenLEGO package, to read the input values from the
given input XML file, in_file, calculate the value of y1, and write the resulting value of y1 to the
given output XML file, out file.

The class also overrides the standard behavior of the supplies partials property, gener-
ate partials xml () function, and linearize () function. The first is simply set to True, to sig-
nify that analytical gradients are provided by the discipline. In the second, the Partials class is used
to generate a template partials XML file declaring which partials the discipline provides. Finally, the
linearize function calculates the values of the gradients given an input XML file.

The other disciplines were implemented similarly. Note that this implementation is very verbose and
inefficient for the simple disciplines of the Sellar problem, but is required because generally analysis
tools are more complex and are often represented by external programs.

After generating all in-, output, and information files, KADMOS was used to define the problem and
generate a corresponding CMDOWS file. For this test case, the Multi-Discipline Feasible (MDF) MDO
architecture was used with a Gauss-Siedel (GS) converger [60]. An eXtended Design Structure Matrix
(XDSM) [60] of the resulting problem definition, generated by KADMOS, is shown in fig. 4.1a.

The resulting CMDOWS file could then be used to generate the OpenMDAO model using a single
line of code (second line of code frag. 4.2). Finally, in order the solve the optimization problem, this
model was attached to an instance of OpenMDAQ’s Problemn class, along with an appropriate
subclass of Driver. A minimal example using the ScipyOptimizer driver with the default settings
is given in code frag. 4.2.

prob = Problem()

prob.model = LEGOModel (’'path/to/cmdows/file.xml’, ’'path/to/kb’)
prob.driver = ScipyOptimizer ()
prob.setup ()

prob.run_driver()

Code frament 4.2: Minimal example for the Sellar test case

Once the OpenMDAO Problemwas properly constructed and set up, the OpenMDAOQO view model ()
function was used to generate an N2 diagram of the problem, shown in fig. 4.1b. Comparing this with
the XDSM diagram generated by KADMOS, it is clear that the OpenMDAO representation corresponds
perfectly with the intended problem definition. The OpenMDAO problem was run with initial values
x? =5,z =0,z = 5, and converged to the known global minimum after 5 iterations. Hence, Open-

56 4. Results

coordinator data:_:

B o o
(X X X)

(a) XDSM, generated by KADMOS (b) N2 diagram, generated by OpenMDAO

Figure 4.1: XDSM and N2 diagram of the Sellar problem using the MDF architecture

Fi datai: v2

Gl datar:

G2 datar:

v [
Ge_data_y1 v L
]
v
Ge_data_y2 e
f]

(a) XDSM, generated by KADMOS (b) N2 diagram, generated by OpenMDAO

Figure 4.2: XDSM and N2 diagram of the Sellar problem using the IDF architecture

LEGO was able to generate a correct and functioning OpenMDAO representation of the CMDOWS file,
which converges to the correct solution when run.

The problem can also be solved using an Individual Discipline Feasible (IDF) [60] MDO architecture.
KADMOS is able to generate a CMDOWS file for the problem wrapped in the IDF architecture by simply
changing the mdao_architecture setting, and OpenLEGO can handle the resulting file just as well
as the MDF variant. An XDSM of the problem using the IDF architecture is shown in fig. 4.2a alongside
the N2 diagram generated by the OpenMDAO model constructed by OpenLEGO, fig. 4.2b. When
running this problem using yf® = 5, y{° = 5 as initial values of the coupling variables, and the same
initial values for the design variables as for the MDF case, this problem converges to the global optimum
after 6 iterations.

When comparing fig. 4.2b to fig. 4.1b, it can be seen that OpenLEGO has added two new design
variables, corresponding to y{ and y5, and a new group, consistency constraints, with two new
components, Gc_data_yl and Gec_data_y2, corresponding to the consistency constraint functions
represented by the Gc block in fig. 4.2a. The feedback between disciplines D1 and D2, which is present
in the MDF architecture (represented by the single black circle positioned below the diagonal of the N2
diagram of fig. 4.1b) has been removed by the addition of copies of the coupling variables and the
consistency constraint functions. Indeed, no feedback connections are present in the N2 diagram of
the IDF architecture, as can be seen in fig. 4.2b. This lack of feedback between the coupled disciplines
is also precisely the difference between the MDF and IDF architectures [60], and is evident as well
when comparing the XDSMs in figs. 4.1a and 4.2a. This proves OpenLEGO is able to handle both the

4.3. Aerostructural Wing Optimization 57

MDF and the IDF architectures.

4.3. Aerostructural Wing Optimization

The aerostructural wing optimization test case is a low-fidelity, conceptual/preliminary design space
exploration of a wing. The problem uses planform and structural parameters as design variables. The
dAEDalus framework is used to perform the aerostructural analyses [12, 83, 84]. This is an open-
source tool written for Matlab, which uses a Vortex Lattice Method (VLM) as aerodynamic, and a linear
structural model, based on straight, connected beam segments.

New functions were written for dAEDalus first, allowing it to be initialized using the CPACS data
schema. Next, Matlab functions were written to wrap the functionality of dAEDalus and yield a set of
distinct operations which could in turn be used to define distinct disciplines for the MDO problem. The
dAEDalus framework uses a hierarchy of Matlab objects to store the model of an aircraft. Functions
can be called on these objects to perform analyses. These analyses then enrich the objects with their
results, after which they can be retrieved. For example, when performing the aerodynamic analysis on
the model, the aerodynamic forces and moments are imposed on the grid, and stored on each panel
of the aerodynamic model.

Within dAEDalus, the aircraft is represented by three related, but distinct objects representing a
geometric, structural, and aerodynamic model respectively. The geometric model is constructed directly
from the input file and is the basis for the construction of the other two. The structural model is created
from the geometric model given a set of discretization settings, such as the maximum spanwise length
of beam elements. By imposing forces and moments on each beam element, the structural model
computes the resulting displacements of the grid points. The aerodynamic model is created from the
geometric model, taking into account the deflections computed by the structural model. Given a set
of panels, the aerodynamic model computes the aerodynamic forces and moments acting on each.
These can then be used to compute the new resulting deflections. Each time the grid is deflected, the
aerodynamic model needs to be updated and the aerodynamic forces and moments change slightly,
leading in turn back to slightly different deflections. This strong coupling between the aerodynamics
and structures is, the phenomenon known as aeroelasticity [56].

The construction of the dAEDalus models is costly in terms of computation time and memory. There-
fore they should be created as least often as possible and should preferably not be moved around in
memory. Much of the data contained in these models is not used directly by the optimization, but rather
by Matlab to perform the analyses. Since communicating large amounts of data between Matlab and
Python would lead to a lot of overhead, it was decided to store the models created by dAEDalus during
a run in the Matlab workspace and only communicate the data needed by the optimization. With this
in mind, four DCs were created to encapsulate the generation of the models and the performance of
dAEDalus’ analyses:

1. dsMI (dAEDalus Steady Model Initializer), which constructs the geometric and structural models
and returns the initial structural grid and the weight of the wing;

2. dsaMI (dAEDalus Steady Aerodynamic Model Initializer), which constructs the aerodynamic
model and returns the lift coefficient and friction drag coefficient of the wing;

3. dsAA (dAEDalus Steady Aerodynamic Analysis), which runs the VLM on the aerodynamic model
and returns the induced drag coefficient; and

4. dssa (dAEDalus Steady Structural Analysis), which runs the structural analysis and returns the
stresses and deflected structural grid.

For this low-fidelity test case, a very simple model of the wing was used, based on a fixed number,
nys, Of tapered wing segments. In this reduced model, the geometry of a single wing segment at index
i is completely described by two chord lengths, ¢; and c¢;, ¢, two twist angles, ¢; and €;, 1, two thickness
over chord ratios, (*/.), and (*/.),, . @ span, b;, sweep angle, A;, and dihedral angle, T;. The structure
of each wing segment is comprised solely of a wingbox with a trapezoidal cross-section. This wingbox
has constant front spar, rear spar, top skin, and bottom skin thicknesses along each segment, ts , trs;s
tis;» and tps,. The cross-sections are defined at each end of a wing segment by front and rear spar
chordwise locations, &, $ts,, s §rs;» @and s, . Furthermore, it is prescribed that two adjacent wing

58 4. Results

segments share the same section. Hence, there cannot be a jump in chord length, and spars cannot
have cuts, for example. Additionally, a set of reference values are used, namely: a non load-bearing
skin thickness and density, tsin, and pskin, @ fixed aircraft mass, msyeq, payload mass, mp, maximum
landing mass, my w, a systems mass fraction, fmsys.’ and a wings mass fraction, fmwings' These are used
to estimate the new total weight of the aircraft as the weight of the wing changes during the optimization.
A discipline named woM (Wing Object Model) was created which takes all of these parameters as input
and yields the aircraft in CPACS format as output.

The objective of the optimization problem is to minimize the fuel burn for a given range and payload
by changing the geometric and structural wing parameters. A simple estimation of the fuel burn based
on the Breguet range equation is used [76]. The mission is simplified to a single, constant speed,
constant altitude cruise leg. A discipline named FWE (Fuel Weight Estimator) was created to perform
this estimation.

The stresses are calculated at three different load cases: 1g cruise flight, a 2.5g symmetric pull-
up maneuver, and a -1.0g symmetric push-over maneuver. They are collected by a load collector
discipline, dLc, which computes the maximum stress out of all cases in each part of the wingbox, in
each wing segment. These collected stresses are then constrained to be below a given yield stress,
dyield- Additionally, the wing loading (W /S) is constrained to be smaller than or equal to the original
value.

The innermost twist angle is considered to be the wing’s overall incidence angle. It is subtracted
from all the other twist angles and kept fixed at its initial value. If it were not fixed, there would be an
ambiguity between it and the angle of attack of the wing. Furthermore, the effect of the incidence angle
on the longitudinal stability as well as any interference effects between the wing and the fuselage are
not captured by the analyses. The thickness over chord ratios are kept constant as well, because their
impact on the aerodynamic characteristics of the wing cannot be captured with a VLM. The same is true
for the sweep angles, because compressibility effects are not captured accurately. Finally, directional
stability is not considered, so the dihedral angles are also left unchanged too. Therefore the design
vector is comprised of the variables c;, €}, bj, &, s, tis;» trs; Lis)» and tos,» for i € [0,n,s + 1] and
j €10,nys].

Once all disciplines were defined in OpenLEGO by creating a subclass of the AbstractDis-
cipline class for each, the problem could easily be constructed using KADMOS. An XDSM of the
problem using the MDF architecture, generated by KADMOS, is shown in fig. 4.3. Note the feedback

0,12:

7 i Irrva— rere— 7
COOR 1: O inputs fusss/ 2: 11 inputs fusss/ 3: 11 inputs f f 4: 3inputs { 5: 9 inputs | { 8 15 inputs |} f 10: 3 inputs / 10: 2 inputs |
g _ S - / — - - { _ - /

JERTIETAN e e—

| 12 9 outputs ﬂ—& @ /)—l 9y 3: 9 connections |

Ve 2\ r !}
(2,93 \ /7 — —
(cowv/)_(32 J 6:9

wou ﬂlﬁ’ {10 1 connection |
/ outputs | [9: 1 connection [5: 3 connections =/ 6: 12 connect tions e/ 7: 3 connections j=/ 8: 1 connection 10: 1 connection |
/ 12: 1 outputs | / / d:M! 1 / =1 f J

6: 3 connect tions s 8: 6 connections |

dSAMI 1

6: ey B e
o/ 7: 9 connections /= 8: 3 connections |

12: 9 output / 9: 9 connection |-

re—g 7 r)
/ / 10: b |
Tn assA +/ 10: 12 connections |
[12: 1o L [8 r)]
12: 1 outputs f 7 9: 1 connection | | Fwe f 10: 2 connections f== 10: 1 connection |

10: |
dLC

f 10: 4 connections /

10:
ConstraintFunctions

/ 12: 5 outputs s/ 11: 5 connection
[12: 5 outputs | /

10:

/ 12: 1 outputs f=/ 11: 1 connection f Ob_\ectivel“\mcbicns
[12: 1 outputs /

Figure 4.3: XDSM of the wing optimization problem using MDF, generated by KADMOS

from the model initializer, dsMI, structural analysis, dSsa, and fuel weight estimator, FWE. The first
calculates the wing weight, and the latter calculates the fuel weight. Both of these need to be used by
the wing object model, Wou, to calculate the updated takeoff weight. The aerodynamic and structural
analyses are coupled to one another, which is, of course, the crux of the aeroelastic problem. As such,
the feedback from the structural analysis block corresponds to the deflected grid, which is used by the
aerodynamic model to compute the forces for the updated, deflected wing shape. As can be seen,

4.3. Aerostructural Wing Optimization 59

these feedbacks all connect to the converger block, and the coupled analyses are run consecutively,
since an MDF architecture is used. As such, all coupled analyses can be seen as sub-disciplines of a
higher-level multidisciplinary analysis (MDA).

Also note that the black lines indicating the order of execution in this diagram are actually incorrect
for the last four blocks. According to the XDSM, all three post-coupling blocks can be run in parallel.
Yet, the load collector discipline, d1.C, supplies inputs to the ConstraintFunctions, and the fuel
weight estimator, FWE, supplies inputs to the ConstraintFunctions and ObjectiveFunctions
blocks. Therefore they would have to be run sequentially and not in parallel. This is a mistake made
by KADMOS, because it assumes post-coupling blocks do not provide input to one another. However,
when parsing a CMDOWS file OpenLEGO does not use this information. Therefore it is not affected by
this mistake and the CMDOWS file can still be used to generate a correct OpenMDAO representation
of the problem.

OpenLEGO was able to generate a representative OpenMDAO problem from the CMDOWS file
created by KADMOS. A collapsed view of the N2 diagram created by OpenMDAQO’s view model ()
method of this problem is shown in fig. 4.4. When comparing fig. 4.4 with fig. 4.3 it is evident that

- E E@E@ E
coupled_group E E

= E@
oot

= E E

- E EE
- E

ConstraintFunctions

ObjectiveFunctions
Figure 4.4: N2 diagram of the wing optimization problem using MDF, generated by OpenMDAO

the disciplines were ordered correctly, and connections were created between the correct couples
of disciplines. Upon closer inspection of the model, it was concluded that it matched the problem
description.

Unfortunately, no gradient information was available for the dAEDalus tools. Therefore this part of
the pipeline can not be demonstrated with this problem. The importance of having gradient information
available, however, was made apparent by this problem with fervor. Note the number of connections
between the coupled analyses in fig. 4.3. Especially between woM and dsMI there are 217 connections
listed. This is more than the maximum number of coupling variables that were studied with the scalable
optimization problem, as was described in section 4.1, which went up to 200. There each discipline
had to execute up to tens of thousands of times to complete an optimization. To demonstrate the
significance of this issue with an industrially relevant problem, the gradients of the full wing optimization
model, corresponding to the XDSM of fig. 4.3, were estimated once using OpenMDAOQO’s functions. The
number of function evaluations of the four dAEDalus analyses, dSMI, dSAMI, dSAA, and dSSA, were
recorded. They are given in table 4.4. As can be seen, these numbers are very large. Especially the

Table 4.4: Number of function evaluations of the dAEDalus Steady Model Initializer (dsMI), Aerodynamic Model Initializer
(dsaM1), Aerodynamic Analysis (dSA2), and Structural Analysis (dSSa) for one gradient evaluation.

Discipline dsSMI | dSAMI | dSAA | dSSA | total
Number of evaluations | 9244 | 24 24963 | 16668 | 50899

aerodynamic and structural analysis stand out. This is due to the deflected grids being passed between
them as a result of the structural deformations. These are represented by vectors in the model, which
is why the number of connections between dsaa end dSsa are listed as only 9 (x, y, and z vectors for

60 4. Results

Table 4.5: Geometric design variables

SymbOI Cr Ck Ct €k €t bib bob
units m m m rad rad m m
initial 13.71 7.26 273 | -0.10 | —0.18 | 12.72 | 22.70
final 14.63 8.51 2.21 | —0.004| —0.035| 8.76 | 24.97

three load cases). However, to calculate the gradients, each individual element of these vectors are
varied independently, leading to the enormous amounts of evaluations listed in the table.

On the system that this run was performed on, this single gradient evaluation took 5 hours and
25 minutes. If the gradients need to be computed 150 times for a single optimization, a conservative
amount for an optimization of this size, it would take more than a month to complete. This demonstrates
the importance of making gradient information available, and using it in an optimization framework.

In order to be able to run the problem within a feasible amount of time, the problem was simplified.
This was done by collapsing all of the4 coupled disciplines, except for the fuel weight estimator, into a
since, multidisciplinary analysis tool. This has the effect of removing the thousands of coupling variables
between the aerodynamic and structural analysis, and between the wing object model and the model
initializers. As such, the number of function evaluations required for the estimation of the gradients was
reduced drastically. An XDSM of the simplified problem is shown in fig. 4.5.

/G: S, Clopye / /\; Muging

o/ 6 MTOW o 6: mia

Figure 4.5: XDSM of the simplified wing optimization problem using MDF, generated by KADMOS

The optimization problem was run using an initial design based on the NASA Common Research
Model (CRM) [98], using n,,s = 2. The run had to be started back up three times due to the memory
overflows. Unfortunately, the optimization finally exited abnormally due to a positive derivative in the
search direction after 201 iterations, having run continuously for over a week. The final design point
was infeasible, with most constraints violated.

The geometric and structural design variables at the initial and final point are tabulated in table 4.5
and table 4.6 respectively. The initial and final deflected wing shape and lift distributions (1g cruise
flight) are shown in figs. 4.6a and 4.6b. As can be seen, the overall taper ratio of the wing was
increased. This is to be expected when a VLM is used, because this increases the Oswald efficiency
factor and consequently the aerodynamic efficiency. The twist was increased both at the kink and at the
tip, increasing the local angle of attack. The inboard span of the wing was decreased, but the outboard
span was increased. Overall, the optimizer clearly tried to make the lift distribution more elliptical,
judging from fig. 4.6b, and moved the generation of lift further outboard. In a high-fidelity optimization,
however, it is expected that the wing span would increase, but previous design studies using a VLM
have also yielded a short, increased taper ratio wing [20]. In table 4.6 it can be seen that the optimizer
Did not move the the spars by much. The front spar was moved aft slightly, whereas the rear spar
was left nearly identical. The thicknesses of the outboard front spar and rear spar were increased;
the thicknesses of all skins were decreased. However, as was mentioned before, most constraints

4.3. Aerostructural Wing Optimization 61

0 — — initial 2= ~
final AN — — initial
5 3 1.5¢ \ final
S c
2 10 3
(S
>~
15 -1 05¢
~
N ~
20 | O 1 1 1 1
0 10 20 0 0.2 0.4 0.6 0.8 1
(a) Wing geometry (b) Lift distributions

Figure 4.6: Wing geometry and lift distributions of the initial and final wings

Table 4.6: Structural design variables. Note: The second to last row corresponds to the initial values, the last to the final values.

3 fs, 3 fsy 3 fs S;rsr $ rsy $ rsy tfsib tfsob trsib trsob ttsib ttsob tbsib tbsob
- - - - - - mm | mm | mm | mm mm mm mm mm
0.10 | 0.19 | 0.35 | 060 | 0.80 | 0.60 | 45 | 46 | 45 | 46 | 2565 | 224 | 255 | 224

0.17 | 0.20 | 0.32 | 062 | 0.80 | 060 | 45 | 54 | 45 | 59 | 193 | 208 | 193 | 208

were violated. This includes almost all the stress constraints. Therefore these thicknesses are in no
way sufficient to support this design. In table 4.7, a set of performance characteristics are listed for
the initial and final design point. As can be seen, both the fuel and wing mass have been reduced
significantly. The lift coefficient during cruise is reduced slightly due to the reduced total weight. There
is a very slight decrease in the friction drag estimate, but since this parameter is determined using a
very crude estimation method, this can be disregarded. The real improvement comes from the induced
drag coefficient, which the VLM is able to predict well. It was reduced by 28.3%, and the aerodynamic
efficiency during cruise was increased by 5.2%. Despite the smaller wing, the wing loading was reduced
by 4.2%. This is due to the reduction in takeoff weight, caused by the reductions in fuel and wing weight.
Finally, the values of the constraints are listed in table 4.8. As can be seen, the front spar stress, rear
spar stress, and wing loading constraints are all inactive and satisfied. However, the top and bottom
skin stress constraints are significantly violated. Hence, the final design is clearly infeasible indeed.

Table 4.7: Performance characteristics

SymbOIS Miyel mwing CL CDf CDi CD L/D W/S
units kg kg - - - - — | kgm™2
initial 108 508 49591 | 04229 | 0.0048 | 0.0060 | 0.0218 | 194 | 537.7
final 96758 37603 | 04088 | 0.0047 | 0.0043 | 0.0200 | 204 | 515.1

Table 4.8: Constraint values

symbols COoNg, cong, CONg, CoNg, . CoNyy /s
segment i.b. o.b. i.b. o.b. i.b. o.b. i.b. o.b. -

initial 000 | 000 | 000 | 000 | 0.00| 000 | 0.00| o0.00 0.00
final —-0.07 | -0.26 | -0.07 | -0.32 | 064 | 056 | 064 | 056 | —0.04

Conclusions & Recommendations

We have come to the end of the main content of this thesis report. At this point it is worthwhile to reflect
back on the report and on the work done, and draw conclusions from it. Section 5.1 is dedicated to
this.

Of course, research is never done. So too this work is only a lap in the much longer race. Advances
have been made, questions have been answered, but there are also open ends to this work. These
provide provide opportunities for future research. Therefore it is important to reflect on this shortly. This
will be done in the form of a brief set of recommendations, presented in section 5.2.

5.1. Conclusions

After having studied the field of MDAO extensively for the 9 months of this thesis, the author has
to conclude that the maturity of MDAO is not industry ready yet as this point. As was discussed in
chapter 1, the problems lie in both technical and non-technical difficulties and barriers. However, as
became apparent when investigating the literature of this field, as presented in chapter 2, a lot of
research has been and is being done to improve this. Projects like AGILE are helping to evolve MDO
towards a point where the industry can no longer ignore it. Hence, it can be concluded that this field
has the potential to reach an adequate level of maturity to entertain the idea of widespread industrial
implementation in the very near future.

As was discussed in chapters 1 and 2, the AGILE project focuses mainly on moving from 2nd to
3rd generation MDO frameworks. These frameworks rely heavily on supporting physically separated
teams of experts, working together on an integrated multidisciplinary design study. AGILE’s role as an
enabler of this move to distributed systems, where human engineers are being put back into the loop,
involves the development and dissemination of new tools and protocols. Still, from experience gained
in the industry over the past months, the author has to conclude that the industry is actually not even
fully convinced of 1st generation MDO at this point. The first generation is, of course, the foundation
upon which the technology is built. Therefore it is important that the technology is matured at its base
as well.

It was found that many of the tools developed within AGILE and other projects could help achieve
this. This is a powerful notion: methods developed for higher level MDO systems can help evolve
lower level systems as well! This conclusion lead to the development of a new software framework,
which consequently formed the last link in a end-to-end 1st generation MDO ’pipeline’. The concept
of this pipeline was inspired upon the 3rd generation tool-chain developed within AGILE, which takes
a database of analysis tools through several protocols and software frameworks to yield a runnable
optimization workflow. The difference between this pipeline as it is meant within AGILE and the one de-
veloped in this thesis, is that the first is geared towards distributed, collaborative frameworks, whereas
the latter considers only local, monolithic frameworks.

At this point, it is important to reflect back on the research questions posited in chapter 1. The main
question to be answered was:

How can MDAO be made more applicable for conceptual design in the industry?

63

64 5. Conclusions & Recommendations

The answer should now be clear:

By maturing its foundation, that is, by evolving the state-of-the-art of 1st generation
MDAO frameworks.

The author found that the extensible, open-source frameworks are most suitable and wanted by the
industry. So it was concluded that, regardless of its form, for any new framework to be a move in the
right direction it should be extensible and open-source. Furthermore, from previous research it was
concluded that it is important that any new framework would allow the user to rapidly (re)configure
MDAO problems. And finally, as was proofed experimentally in section 4.1, it was concluded that the
inclusion of gradient information is key. To achieve these goals, a new software framework was devel-
oped, adding to the tools coming from the AGILE project, and the OpenMDAO optimization framework.
The strategy, architecture, and implementation of this new pipeline and software framework were dis-
cussed in chapter 3.

From the investigation into the effect of including analytical gradient information, presented in sec-
tion 4.1, it has to be concluded that this is indeed essential to the successful industrialization of an
MDAO system, as was posited in chapter 1. Using gradient information allowed for dramatic reduc-
tions in computational costs for a wide range of different problems. In the next two section, sections 4.2
and 4.3, the application of the new framework was demonstrated. From these results, it can be con-
cluded that the high level requirements put forth in chapter 1 and the detailed software requirements
listed in section 3.1, were successfully translated into a functioning software system. Section 4.2 show-
cased the software’s ability to allow for an optimization problem to be easily (re)configured. This comes
cutesy of the interface with the KADMOS/CMDOWS tools from AGILE, and the seamless integration
with the OpenMDAO framework. After having completed the KADMOS link of the chain, an OpenMDAO
model could be constructed with a single line of code.

The new framework was also used successfully to construct an OpenMDAO problem representing
an aeroelastic wing optimization use case, as was discussed in section 4.3. The dAEDalus framework
for aeroelastic analysis was integrated into this framework. From this it can be concluded that the
new tool can be used for industry relevant problems too. Unfortunately no feasible results could be
presented from this optimization. However, the author would like to stress that this was never the main
goal here. What was demonstrated with the problem, is that it is possible to configure an optimization
relevant to aircraft design using the new pipeline. Regardless of the outcomes of the optimization run,
it has to be concluded that this was indeed done successfully.

5.2. Recommendations

As was said at the start of this chapter, the author recognizes his role as only a part of a much lager
process. Based on the results presented in this report, it can be said the work done during the nine
months of this thesis have helped evolve the field of MDO a step closer towards widespread industri-
alization. As such, important questions have been answered. However, the answering of questions
rarely does not lead to new questions.

One of these questions is the following: could the extension to the notion of the knowledge base pro-
posed in this thesis be better integrated into the AGILE pipeline? As it stands now, the extension to add
support for analytical gradient specification exists completely separated from the KADMOS/CMDOWS
definition of the knowledge base. Ideally, this idea should be integrated deeply within the definition
of KADMOS and the structure of CMDOWS. If this were done, the extended notion of the knowledge
base could even be adopted in the 3rd generation MDO tool-chain AGILE provides. As was seen in
section 4.1, this could have dramatically positive effects on the computational cost of optimizations.
Therefore this could help the AGILE project attain, or even surpass its goal of a 40% reduction in the
time required to converge a large-scale optimization problem. It is therefore strongly recommended
this be investigated in the near future.

The author is aware of a more elaborate aircraft design problem, using a much larger suite of
analysis tools, described within the AGILE project. To investigate the true potential of the pipeline
described and software developed during this thesis, it is recommended that this much larger problem
be implemented and run with these new tools. Not only should this demonstrate whether the tools
developed are truly scalable, but it should also serve as an import showcase of the powers of modern
MDO systems. This could move the industry a step closer to true acceptance of MDO in their processes.

5.2. Recommendations 65

As was mentioned in sections 4.3 and 5.1, the wing optimization test case performed considered in
this work did not yield a feasible solution. It goes without saying that the author recommends that this
problem is adjusted and properly seen to conclusion if resources are available for this.

Last, but certainly not least, the author recommends possible additions to the software framework
OpenLEGO, developed as part of this thesis. In this thesis, the main function of OpenLEGO is to
connect a 1st generation, monolithic version of the full 3rd generation MDO pipeline developed within
AGILE to the OpenMDAO framework. As was discussed in chapters 1 and 2, OpenMDAO has ad-
vantages over PIDO systems such as RCE and Optimus. However, as it stands now it has one major
disadvantage: it cannot make use of AGILE’s full suite of tools enabling 3rd generation MDO, such as
the BRICS protocol. It would be interesting to investigate if OpenLEGO could be extended to bring it
from the 1st generation MDO domain into the 3rd generation MDO domain that AGILE targets. En-
abling BRICS capabilities is seen by the author as an important step for this, because it would open
up the realm of collaborative optimization within OpenMDAO. The author would like to make two sug-
gestions for making this possible. Firstly, a special OpenMDAO component could be developed which
allows for BRICS analyses to be easily included in models. The author is aware of the remote com-
ponent provisions already existent in OpenMDAO currently, so it should be possible to target BRICS
too. Secondly, an interface between OpenMDAO and the PIDO systems RCE and Optimus could be
developed. This would give users the freedom to use the powers of the graphical user interfaces of
the PIDO systems to create workflows of cooperating tools and engineer, while allowing them to tap
into the strengths of the OpenMDAO framework. This would effectively also enable the link between
OpenMDAO and the BRICS protocol, because the latter is already available in these PIDO systems.

O L NG A W N -

N N N N T R I I S T I A T B S R S S R S S S B S S T = S R S
RO N SO O SO G TR - SR SR A ORI T RN - ST I A S R R R R R R T S =)

A.1. OpenLEGO core

A.1.1. openlego.core.abstract_discipline

#!/usr/bin/env python
—-*- coding: utf-8 —-*-

770717

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the AbstractDiscipline interface class.

from _ future__ import absolute import, division, print_ function
import abc

import inspect

import json

import os

from openlego.partials.partials import Partials

class AbstractDiscipline (object) :

”””Defines the common interface for all disciplines within ‘‘OpenLEGO"'"‘.
__metaclass = abc.ABCMeta
@property

def name (self):
type: () -> str
777”:obj: ‘str': Name of this discipline.
return self. class . name

1007

@property

def version(self):
type: () -> float
777:0bj: ‘str': Version number of this discipline.
return 1.0

s

@property
def creator (self):

67

170007

Code

101

106
107
108
109
110
111
112
113
114
115
116
117

68

A. Code

type: () -> str
777 :0bj: 'str': Name of the person that created this discipline.
return ’'Placeholder’

Vaaa

@property

def description(self):
type: () -> str
777 :0bj: 'str': Description of this discipline.
return ’'Abstract discipline’

g

@property

def precision(self):
type: () -> int
77””:0bj: ‘int': Precision of this discipline.
return 0O

170017

@property

def path(self):
type: () -> str
77”:0bj: 'str': Path at which this discipline resides.
return os.path.dirname (inspect.getfile(self. class))

10y

@property

def in file(self):
type: () -> str
77”:0bj: ‘str': Path of the template input XML file of this discipline.”””
return os.path.join(self.path, self.name + '-input.xml’)

@property

def out file(self):
type: () -> str
77””:0bj: ‘str': Path of the template output XML file of this discipline.”””
return os.path.join(self.path, self.name + ’'-output.xml’)

@property

def json file(self):
type: () -> str
777 :0obj: 'str': Path of the information JSON file of this discipline.”””
return os.path.join(self.path, self.name + ’'-info.json’)

@property

def partials file(self):
type: () -> str
77””:0bj: ‘str': Path of the partials XML file of this discipline.”””
return os.path.join(self.path, self.name + ’'-partials.xml’)

@property

def supplies partials(self):
type: () -> bool
77”Set to True to indicate this discipline supplies gradients.
return False

wrr

@abc.abstractmethod
def generate input xml (self):
type: () -> str
”””Generate the template input XML for this discipline.

This method should be implemented to define the input template of a specific
o discipline.

Returns

String representation of the template input XML.

10y

raise NotImplementedError

@abc.abstractmethod
def generate output xml (self):
type: () -> str
”””Generate the template output XML for this discipline.

118
119

120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180
181
182
183
184

A1,

OpenLEGO core 69

o

o

o

o

This method should be implemented to define the output template of a specific
discipline.

String representation of the template output XML file.

10707

raise NotImplementedError

def generate info json(self):
type: () -> str
”””Generate the information JSON file for this discipline.

This method should be overridden or extended to specify a non-standard info JSON file
for a specific discipline.

Returns

String representation of the info JSON file
o
return json.dumps ({’general info’: {’name’: self.name,
"version’: self.version,
"creator’: self.creator,

"description’: self.description},
"execution info’: [{'mode’: 'main’,
’description’: 'main execution mode’,
"precision’: self.precision}]}, indent=4)

def generate partials xml (self):
type: () -> str
7””Generate the template partials XML file for this discipline.

This method should be implemented to define for which inputs this discipline can
provide the sensitivities.

String representation of the template partials XML file.

700y

return Partials().get string()

def deploy(self):
type: () —-> None
”””Deploy this discipline’s template in-/output, partials XML files and its
information JSON file.”””

with open(self.in file, 'w’) as f:
f.write(self.generate input xml())

with open(self.out file, 'w’) as f:
f.write(self.generate output xml())

with open(self.json file, ’'w’) as f:
f.write(self.generate info json())

with open(self.partials file, ’'w’) as f:
f.write(self.generate partials xml())

@staticmethod
@abc.abstractmethod
def execute(in_file, out file):
type: (str, str) -> None
7””Execute this discipline with the given in- and output XML files.

This method should be implemented to define the execution of a specific discipline.

Parameters
in file : str
Path to the input XML file.

185
186

188
189
190
191
192
193

194
195

196
197
198
199
200
201
202
203
204
205
206

© ® N o U AW N =

32

33
34
35
36
37
38
39

70

A. Code

out file : str
Path to the output XML file.

11y

raise NotImplementedError

@staticmethod
def linearize(in_ file, partials file):
type: (str, str) —-> None

7””Compute the sensitivities of a given input XML file and write them to a given

o partials XML file.

This method should be implemented to define the linearization of a specific

o discipline. By default a discipline
is considered a ’black box’, and no sensitivities are provided.

Parameters

in file : str
Path to the input XML file.

partials file : str
Path to the sensitivities XML file.

10007

Partials() .write(partials file)

Code frament A.1: Code of the openlego.core.abstract discipline Python module.

A.1.2. openlego.core.discipline component

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vs

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition the ‘DisciplineComponent' class.
from _ future_ import absolute_ import, division, print_function
from typing import Optional

from .abstract_discipline import AbstractDiscipline

from .xml component import XMLComponent

class DisciplineComponent (XMLComponent) :
77””Specialized ‘XMLComponent' wrapping an ‘AbstractDiscipline’.

This version of ‘XMLComponent' defines in- and output variables based on the in- and

o output template XML files

generated by a subclass of ‘AbstractDiscipline'. The ‘execute() ' method simply forwards to

o that of the discipline.

Attributes
discipline

1

def init_ (self, discipline, data_folder='', keep files=False, base_file=None):

40
41
42
43

44

45

46
47
48
49
50
51
52
53

54
55
56

57
58
59

60
61
62
63

64

65

66

67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98

A.1. OpenLEGO core 71

type: (AbstractDiscipline, Optional[str]) -> None
77”Initialize a ‘Component' using a given ‘discipline’.

Stores a reference to the given ‘discipline'. The in- and output XML templates should
o already exist at the paths

specified in the ‘discipline'. This constructor uses those files to create the
o ''OpenMDAO'"' ‘params ‘' and

‘unknowns ' using the methods exposed by the 'XMLComponent' class this class inherits
o from.

Parameters
discipline : :obj: ‘AbstractDiscipline’
Instance of a subclass of ‘AbstractDiscipline' this ‘Component' will represent.

data folder : str(’’), optional
Path to a folder in which to store (temporary) data of this ‘Component' during
» execution.

keep files : bool (False), optional
Set to ‘'True' to keep the data files generated by this 'Component' during
- execution.

base file : str, optional
Path to an XML file which should be kept up-to-date with the latest data, if
o required.

Although this constructor could use the supplied ‘discipline' to also
o automatically generate its in- and
output XML templates on the fly, the user is left in control of their generation.
o This is to allow for a
‘discipline' to generate different in- and output templates dynamically based on
o certaln parameters. During
execution only the static methods of the ‘discipline's are used. Hence, any
o instance variables will not be
accessible then. Therefore it is impossible to guarantee consistency if the in-
o and output XML files are
generated here.
self. discipline = discipline
if discipline.supplies partials:
super (DisciplineComponent, self). init (self. discipline.in_file,
self. discipline.out_ file,
self. discipline.partials file,
data folder, keep files, base file)

else:
super (DisciplineComponent, self). init (self. discipline.in_file,
self. discipline.out file,
None,

data_ folder, keep_files, base file)
self.partials from xml = None

@property
def discipline(self):
type: () —-> AbstractDiscipline
777 :0bj: ‘AbstractDiscipline‘': Read-only reference to the specific discipline this
o ‘Component ' wraps.”””
return self. discipline

def execute(self, input xml=None, output xml=None) :
type: (str, str) -> None
77”Call the ‘execute()' method of this ‘Component'‘’s discipline.

Parameters

input xml : str
Path to the input XML file.

output xml : str

929
100

102
103
104
105
106
107

109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

L = N B N O N R

72 A. Code

Path to the output XML file.

Raises
ValueError
If either no ‘input xml' or ‘output xml' path was specified.
Notes

Since this class inherits from ‘XMLComponent' the interface, including the
o optionality of its arguments, are
left untouched. For this method this means the ‘input xml' and ‘output xml'
o parameters are strictly
optional. However, in the context of the ‘'DisciplineComponent' they should always
o be given. Therefore an
exception is raised here when one of them or both are omitted.
if input xml is None or output xml is None:
raise ValueError (’'Both an input xml and output xml path are expected.’)
self.discipline.execute (input_xml, output xml)

def linearize(self, input xml=None, partials_xml=None) :
type: (str, str) -> None
77””Call the ‘linearize () ' method of this ‘Component'’s discipline.

Parameters
input xml : str
Path to the input XML file.

partials xml : str
Path to the partials XML file.

Raises
ValueError
If either no ‘input xml' or ‘partials xml' path was specified.
if self.discipline.supplies partials:
if input xml is None or partials xml is None:
raise ValueError (’'Both an input xml and a partials xml path are expected.’)
self.discipline.linearize (input xml, partials xml)

Code frament A.2: Code of the openlego.core.discipline component Python module.

A.1.3. openlego.core.model

#!/usr/bin/env python
—-*- coding: utf-8 -*-

g

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the ‘LEGOModel‘' class.

worr

from _ future__ import absolute_import, division, print_function

import imp
import re

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47

48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68

69
70
71

72
73
74
75

76
77
78
79
80
81
82
83
84
85

A.1. OpenLEGO core 73

import warnings

import numpy as np
from lxml import etree
from lxml.etree import FElement, ElementTree
from openmdao.api import Group, IndepVarComp, LinearBlockGS, NonlinearBlockGS,
o LinearBlockJac, NonlinearBlockJac, \
LinearRunOnce, NonLinearRunOnce, ExecComp
from typing import Union, Optional, List, Any, Dict, Tuple

from openlego.utils.general utils import CachedProperty, parse_cmdows_value
from openlego.utils.xml utils import xpath_ to_param, xml to_dict

from .abstract discipline import AbstractDiscipline

from .discipline component import DisciplineComponent

re sys name char = re.compile(r’[" a-zA-Z0-9]")
re sys name starts = re.compile(r’”"[a-zA-Z]")

class LEGOModel (Group) :
77””Specialized OpenMDAO Group class representing the problem specified by a CMDOWS file.

An important note about this class in the context of OpenMDAO is that the aggregation
- pattern of the root Group

class the base Problem class has 1is changed into a stronger composition pattern. This 1is
o because this class directly

controls the creation and assembly of this class by making use of Python’s (@property
o decorator. It is not possible,

nor should it be attempted, to manually inject a different instance of Group 1in place of
- these, because the

correspondence between the CMDOWS file and the Problem can then no longer be guaranteed.

Attributes
cmdows_path
kb _path
discipline components
block order
coupled blocks
system order
system variables
system inputs
driver
coordinator

data folder : str, optional
Path to the folder in which to store all data generated during the ‘Problem‘’s
- execution.

base xml file : str, optional
Path to an XML file which should be kept up-to-date with the latest data
o describing the problem.

1

def init (self, cmdows path=None, kb path=None, data folder=None, base xml file=None,
o **kwargs) :
type: (Optionall[str], Optional[str], Optional[str], Optional[str]) -> None
77”Initialize a CMDOWS Problem from a given CMDOWS file and knowledge base.

It is also possible to specify where (temporary) data should be stored, and if a base
o XML
file should be kept up-to-data.

Parameters
cmdows_path : str, optional
Path to the CMDOWS file.

kb path : str, optional
Path to the knowledge base.

86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153

74

A. Code

o

o

o

def

data folder : str, optional
Path to the data folder in which to store all files and output from the problem.

base xml file : str, optional
Path to a base XML file to update with the problem data.
self. cmdows path = cmdows_path
self. kb path = kb path
self.data folder = data folder
self.base _xml file = base_xml file

super (LEGOModel, self). init (**kwargs)
self.linear solver = LinearRunOnce ()
self.nonlinear solver = NonLinearRunOnce ()

__getattribute (self, name):
type: (str) -> Any
”7””Check the integrity before returning any of the cached variables.

Parameters

name : str
Name of the attribute to read.

The value of the requested attribute.

11y

if name != ' <class ' and name != ' dict ':
if name in [name for name, value in self. class . dict .items() if

isinstance (value, CachedProperty)]:

def

def

self. integrity check()
return super (LEGOModel, self). getattribute (name)

__setattr_(self, name, value):
type: (str, Any) -> None
”””Bypass setting coordinator and coupled group attributes.

Parameters
name : str
Name of the attribute.

value : any
Value to set the attribute to.
if name not in [’coordinator’, ’‘coupled group’]:
super (LEGOModel, self). setattr (name, value)

__integrity check(self):
type: () -> None
77””Ensure both a CMDOWS file and a knowledge base path have been supplied.

Raises
ValueError
If either no CMDOWS file or no knowledge base path has been supplied
a = self. cmdows_path is None
b = self. kb path is None
if a or b:
raise ValueError ('No ' + a * 'CMDOWS file ' + (a & b) * "and ' + b * ’"knowledge

base path ’ + ’specified!’)

def

has been invalidated.

invalidate (self) :
type: () -> None
77””Invalidate the instance.

All computed (cached) properties will be recomputed upon being read once the instance

e

A.1. OpenLEGO core 75

154 for value in self. <class . dict .values():

155 if isinstance (value, CachedProperty):

156 value.invalidate ()

157

158 def does value fit(self, name, val):

159 # type: (str, Union[str, float, np.ndarray]) -> bool

160 ”7””Check whether a given value has the correct size to be assigned to a given variable.
161

162 Parameters

63 e

164 name : Str

165 Name of the variable.

166

167 val : str or float or np.ndarray

168 Value to check.

169

170 Returns

4 T it

172 bool

173 ‘True' if the value fits, ‘False' if not.

174 o

175 return (isinstance(val, np.ndarray) and val.size == self.variable sizes[name]) \
176 or (not isinstance(val, np.ndarray) and self.variable sizes[name] == 1)
177

178 @property

179 def cmdows path (self):

180 # type: () —-> str

181 77””:0bj: ‘str': Path to the CMDOWS file this class corresponds to.

182

183 When this property is set the instance is automatically invalidated.
184 oo

185 return self. cmdows path

186

187 @cmdows_path.setter

188 def cmdows path(self, cmdows path):

189 # type: (str) -> None

190 self. cmdows path = cmdows_path

191 self.invalidate ()

192

193 @property

194 def kb path(self):

195 # type: () -> str

196 777 :0bj: 'str': Path to the knowledge base.

197

198 When this property is set the instance is automatically invalidated.
199 e

200 return self. kb path

201

202 @kb path.setter

203 def kb path(self, kb path):

204 # type: (str) -> None

205 self. kb path = kb path

206 self.invalidate ()

207

208 @CachedProperty

209 def elem cmdows (self):

210 # type: () -> Element

211 ”7”:0bj: ‘etree. Element': Root element of the CMDOWS XML file.”””
212 return etree.parse(self.cmdows_path) .getroot ()

213

214 @CachedProperty

215 def elem problem def (self):

216 # type: () -> Element

217 ”7”:0bj: ‘etree. Element‘: The problemDefition element of this problem’s CMDOWS file.”””
218 return self.elem cmdows.find(’problembDefinition’)

219

220 @CachedProperty

221 def elem params(self):

222 # type: () -> Element

223 ”7””:0bj: ‘etree. Element': The problemRoles/parameters element of the CMDOWS file.”””

224 params = self.elem cmdows.find(’problemDefinition/problemRoles/parameters’)

225
226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

76 A. Code

if params is None:
raise Exception (’cmdows does not contain (valid) parameters in the problemRoles’)
return params

@CachedProperty
def elem arch elems (self):
type: () -> Element
77" :0bj: ‘etree. Element': The architectureElements element of the CMDOWS file.”””
arch _elems = self.elem cmdows.find(’architectureElements’)
if arch_elems is None:
raise Exception (’cmdows does not contain (valid) architecture elements’)
return arch elems

@CachedProperty
def has_converger (self):
type: () -> bool
777 :0bj: ‘bool‘': True if there is a converger, False if not.
if self.elem_arch_elems.find(’executableBlocks/convergers/converger') is not None:
return True
return False

wrr

@CachedProperty
def discipline components (self):
type: () -> Dict[str, DisciplineComponent]
777 :0bj:'dict': Dictionary of discipline components by their design competence ‘‘uID''
- from CMDOWS.

Raises
RuntimeError
If a '‘designCompetence'' specified in the CMDOWS file does not correspond to
o an ‘AbstractDiscipline’'.
_discipline components = dict()
for design competence in self.elem cmdows.iter (’designCompetence’) :
uid = design_competence.attrib[’ulD’]

name = design competence.find(’ID’).text

try:
fp, pathname, description = imp.find module (name, [self.kb path])
mod = imp.load module (name, fp, pathname, description)
cls = getattr(mod, name) # type: AbstractDiscipline. class

if not issubclass(cls, AbstractDiscipline):
raise RuntimeError
except Exception:
raise RuntimeError (
’Unable to process CMDOWS file: no proper discipline found for design
o competence with name %s’
% name)
finally:
if "fp’ in locals():
fp.close()

component = DisciplineComponent (cls(), data folder=self.data folder,
o base file=self.base xml file)
_discipline components.update ({uid: component})
return discipline_components

@CachedProperty
def variable sizes(self):
type: () -> Dict[str, int]
77”:0bj:'dict': Dictionary of the sizes of all variables by their names.
variable sizes = {}
for component in self.discipline components.values():
for name, value in component.variables from xml.items():
variable sizes.update({name: np.atleast ld(value).size})
return variable sizes

o

@CachedProperty
def coupling vars(self):
type: () —-> Dict[str, Dict[str, str]]
77””:0bj: 'dict': Dictionary with coupling variables.

10y

A.1. OpenLEGO core 77

202 coupling vars = dict()

293

294 # First create a map between related param and coupling copy var
295 for var in self.elem arch elems.iter (’couplingCopyVariable’):

296 related param = var.find(’'relatedParameterUID’) .text

297 coupling vars.update ({xpath to param(related param) :

- xpath to param(var.attrib[’uID’])})
208

299 # Then update dict with corresponding consitency constraint var

300 for convar in self.elem arch_elems.iter (’consistencyConstraintVariable’):

301 param = xpath to param(convar.find(’relatedParameterUID’) .text)

302 if param not in coupling vars:

303 raise RuntimeError (’invalid cmdows file’)

304

305 coupling vars.update ({param: {’copy’: coupling vars[param], ’con’:
o xpath to param(convar.attrib[’uID’])}})

306 return coupling vars

307

308 @CachedProperty

309 def coupling var copies(self):

310 # type: () -> Dict[str, str]

311 777 :0bj:'dict': Dictionary with coupling variable copies.”””

312 coupling var copies = dict()

313 for var, value in self.coupling vars.items():

314 coupling var copies.update ({var: valuel[’copy’]})

315 return coupling var copies

316

317 @CachedProperty

318 def coupling var cons(self):

319 # type: () -> Dict[str, str]

320 777 :0bj:'dict': Dictionary with coupling variable constraints.”””

321 coupling var cons = None

322 if ’con’ in self.coupling vars.values() [0]:

323 coupling var cons = dict()

324 for var, value in self.coupling vars.items():

325 coupling var cons.update ({var: value[’con’]})

326 return coupling var_cons

327

328 @CachedProperty

329 def block order (self):

330 # type: () -> List[str]

331 777 :obj: '1ist of :obj:'‘str': List of executable block '‘uIDs'' in the order specified
o in the CMDOWS file.”””

332 positions = list()

333 uids = list()

334 for block in

o self.elem problem def.iterfind(’problemFormulation/executableBlocksOrder/executableBlock’):
335 uid = block.text

336 positions.append(int (block.attrib[’position’]))

337 uids.append (uid)

338 return [uid for position, uid in sorted(zip(positions, uids))]

339

340 @CachedProperty

341 def coupled blocks (self):

342 # type: () -> List[str]

343 77”:0bj: '1ist" of :obj:'str': List of ‘‘ulIDs'‘' of the coupled executable blocks
o specified in the CMDOWS file.”””

344 _coupled blocks = []

345 for block in
o self.elem problem def.iterfind(’problemRoles/executableBlocks/coupledBlocks/coupledBlock’):

346 _coupled blocks.append(block.text)

347 return coupled blocks

348

349 @CachedProperty

350 def system inputs(self):

351 # type: () -> Dict[str, int]

352 77””:0bj: 'dict': Dictionary containing the system input sizes by their names.”””

353 system_inputs = {}

354 for value in self.elem cmdows.xpath (

355
o r’workflow/dataGraph/edges/edge[fromExecutableBlockUID="Coordinator”]/toParameterUID/text ()’) :

78 A. Code

356 if ’'architectureNodes’ not in value or ’'designVariables’ in value:

357 name = xpath to_param(value)

358 system inputs.update ({name: self.variable sizes[name]})

359

360 return system inputs

361

362 @CachedProperty

363 def design vars(self):

364 # type: () -> Dict[str, Dict[str, Any]]

365 777 :0obj: 'dict': Dictionary containing the design variables’ initial values, lower
« bounds, and upper bounds.”””

366 desvars = self.elem params.find(’designVariables’)

367 if desvars is None:

368 raise Exception (’cmdows does not contain (valid) design variables’)

369

370 design vars = {}

371 for desvar in desvars:

372 name = xpath to param(desvar.find(’parameterUID’) .text)

373

374 # Obtain the initial value

375 initial = desvar.find(’nominalValue’)

376 if initial is not None:

377 initial = parse cmdows value(initial)

378 if not self.does value fit(name, initial):

379 raise ValueError (' incompatible size of nominalValue for design variable
o "%s”’ % name)

380 else:

381 warnings.warn(’no nominalValue given for designVariable ”%s”. Default is all
- zeros.’ % name)

382 initial = np.zeros(self.variable sizes[name])

383

384 if name in self.coupling vars:

385 # If this is a coupling variable the bounds are -1e99 and 1e99 and it should
o not be normalized

386 design vars.update (

387 {self.coupling vars[name] [’'copy’]: {’initial’: initial,

388 "lower’ :
o -le99*np.ones(self.variable sizes[name]),

389 "upper’ :
o 1e99*np.ones (self.variable sizes[name]),

390 "ref(0’: None, ’'ref’: None}})

391 else:

392 # Obtain the lower and upper bounds

393 bounds = 2 * [None] # type: List[Optional[str]]

394 limit range = desvar.find(’validRanges/limitRange’)

395 if limit range is not None:

396 for index, bnd, in enumerate ([’minimum’, ’maximum’]):

397 elem = limit range.find (bnd)

398 if elem is not None:

399 bounds[index] = parse cmdows_value (elem)

400 if not self.does value fit(name, bounds[index]):

401 raise ValueError (' incompatible size of %s for design variable

- %s’ % (bnd, name))
402

403 # Add the design variable to the dict

404 design vars.update({name: {’initial’: initial,

405 "lower’: bounds[0], ’"upper’: bounds[1l],

406 "ref0’: bounds[0], 'ref’: bounds[1]}})

407 return design vars

408

409 @CachedProperty

410 def constraints(self):

411 # type: () -> Dict[str, Dict[str, Any]]

412 77”:0bj:'dict': Dictionary containing the constraints’ lower, upper, and equals
o reference values.”””

413 convars = self.elem params.find(’constraintVariables’)

414 constraints = {}

415 if convars is not None:

416 for convar in convars:

417 con = {’lower’: None, 'upper’: None, ’'equals’: None}

418 name = xpath to param(convar.find(’parameterUID’).text)

419
420

421

422
423
424
425

427
428
429
430
431
432
433
434
435
436

437
438

439
440
441

442
443

445
446
447
448
449
450
451
452
453
454
455
456

457
458
459

460
461

463

464
465
466

468

469
470
471
472

474
475
476
477
478
479

A.1. OpenLEGO core 79

if self.coupling var cons is not None and name in
o self.coupling var cons.values():
If this is a coupling variable consistency constraint, equals should just
o be zero
for key, value in self.coupling var_cons.items() :

if name == value:
size = self.variable sizes[key]
if size == 1:
con[’equals’] = 0.
else:
con[’equals’] = np.zeros(self.variable sizes[key])
break
else:
Obtain the reference value of the constraint
constr ref = convar.find(’referencevalue’) # type: etree. Element

if constr_ref is not None:
ref = parse cmdows_value (constr_ ref)
if isinstance(ref, str):
raise ValueError (' referenceValue for constraint ”%s” is not
- numerical’ % name)
elif not self.does_value fit(name, ref):
warnings.warn (’ incompatible size of constraint ”%s
o the same for all.’ % name)
ref = np.ones(self.variable sizes[name]) * np.atleast ld(ref) [0]

”

Will assume

else:
warnings.warn (’'no referenceValue given for constraint ”%s”. Default is
o all zeros.’ % name)
ref = np.zeros(self.variable sizes[name])

Process the constraint type
constr type = convar.find(’constraintType’)
if constr type is not None:
if constr_type.text == 'inequality’:
constr oper = convar.find(’constraintOperator’)
if constr_oper is not None:
oper = constr_oper.text

if oper == ’'>=’ or oper == '>':
con[’lower’] = ref

elif oper == <=’ or oper == ’'<’:
con[’upper’] = ref

else:

raise ValueError (’invalid constraintOperator ”%s” for
%$s”’ % (oper, name))
else:
warnings.warn (
"no constraintOperator given for inequality constraint.

”

o constraint

o Default is ”<=".")
con[’upper’] = ref
elif constr type.text == ’‘equality’:
if convar.find(’constraintOperator’) is not None:
warnings.warn(’constraintOperator given for an
o equalityConstraint will be ignored’)
con[’equals’] = ref
else:
raise ValueError (’invalid constraintType ”“%s” for constraint
o % (constr_ type.text, name))
else:
warnings.warn(’no constraintType specified for constraint ”%s”. Default
- 1s a <= inequality.’)
con[’upper’] = ref

"o

S

"oy

Add constraint to the dictionary
constraints.update ({name: con})
return constraints

@CachedProperty

def objective(self):
type: () -> str
777 :0bj: 'str': Name of the objective variable.
objvars = self.elem params.find(’objectiveVariables’)

g

480
481
482
483
484
485
486
487
488

490

491
492
493
494
495
496
497
498
499
500

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

521
522
523
524
525
526
527
528
529
530

531

532
533
534
535
536
537
538
539
540

541
542

543

80

A. Code

o

o

o

o

o

o

o

if objvars is None:
raise Exception (’cmdows does not contain
if len(objvars) > 1:

(valid)

raise Exception (’cmdows contains multiple objectives,

objective variables’)

but this is not supported’)

return xpath to param(objvars[0].find(’parameterUID’) .text)

@CachedProperty
def coupled group(self):
type: () -> Optional [Group]
77”:0bj: ‘Group "',
specified in the CMDOWS file.

If no coupled blocks are specified in the CMDOWS file this property is

11y

if self.coupled blocks:
coupled group = Group ()
for uid in self.coupled blocks:
Get the correct DisciplineComponent
discipline component =

optional: Group wrapping the coupled blocks with a converger

'‘None ‘.

self.discipline components[uid]

Change input variable names if they are provided as copies of coupling

variables
promotes = [’*'] # type: List[Union[str,
if not self.has converger:

Tuple[str,

str]]]

for i in discipline component.inputs from xml.keys () :

if i in self.coupling vars:
promotes.append((i,

Add the DisciplineComponent to the group
coupled group.add subsystem(uid,

Find the convergence type of the coupled group

if self.has_converger:
conv_type =
if conv_type

"Gauss-Seidel’:

self.coupling vars[i] [’copy’]))

self.discipline components[uid], promotes)

self.elem problem def.find(’problemFormulation/convergerType’) .text

coupled group.linear solver = LinearBlockGS ()

coupled group.nonlinear solver = NonlinearBlockGS ()
elif conv_type == ’Jacobi’:

coupled group.linear solver = LinearBlockJac()

coupled group.
else:

nonlinear solver =

raise RuntimeError (' Specified convergerType ”%s” is not supported.’ %

conv_type)
else:
coupled group.linear solver =
coupled group.nonlinear solver =
return coupled group
return None

@CachedProperty
def consistency constraint group(self):

LinearRunOnce ()
NonLinearRunOnce ()

NonlinearBlockJac ()

o

type: () -> Optional [Group]

777 :0bj: ‘Group ', optional: Group containing ExecComps for the consistency
constraints.”””

elem ccf =

self.elem arch elems.find(’executableBlocks/consistencyConstraintFunctions’)

if elem ccf is not None:
group = Group ()

Loop over all consistencyConstraintFunction elements

for child in elem ccf:
uid = child.attrib[’uID’]
xpaths = []

Loop over all coupling variables which need to be constraint by this

consistencyConstraintFunction
for value in self.elem cmdows.xpath (
'workflow/data-

Graph/edges/edge [toExecutableBlockUID="{}"]/fromParameterUID/text ()’ .format (uid)) :

Only add a given variable once

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

560
561
562
563
564
565
566

567
568
569
570
571
572
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

591
592

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

A.1. OpenLEGO core 81

if ’architectureNodes’ not in value and value not in xpaths:
xpaths.append(value)

name = xpath to_param(value)

size = self.variable sizes[name]
coupling var = self.coupling vars[name]
if size == 1:

val = 0.
else:

val = np.zeros(size)

sys_name = re_sys name_char.sub(’’, self.elem arch elems.xpath(
"parameters/consistencyConstraintVariables/’ +

o ’consistencyConstraintVariable[QuID="{}"]/label/text ()’ .format (coupling var[’con’])) [0])
while not re sys name starts.match(sys name):
sys_name = sys name[l:]

Add an ExecComp to the Group for this equality constraint

group.add subsystem(
sys_name,
ExecComp('g = y ¢ - y’, g=val, y c=val, y=val),
[("g", coupling var[’con’]), ('y c’, coupling var[’copy’]l), ("vy’,

o name)])
return group
return None

@CachedProperty
def system order (self):
type: () —-> List[str]
77”:obj: '1ist' of :obj:'‘str': List system names in the order specified in the CMDOWS
o file.”"”
_system order = [’coordinator’]
coupled group set = False
for block in self.block order:
if block in self.coupled blocks:
if not coupled group_set:
_system _order.append(’coupled group’)
coupled group set = True
elif block in self.discipline components:
_system order.append (block)
if self.consistency constraint group is not None:
_system order.append(’consistency constraints’)
return _system order

@CachedProperty
def coordinator(self):
type: () —-> IndepVarComp
777 :0bj: ‘IndepVarComp ‘: An ‘IndepVarComp' representing the system’s ‘‘Coordinator''
o block.

This ‘IndepVarComp' takes care of all system input parameters and initial values of
o design variables.

10707

coordinator = IndepVarComp ()

Add design variables
for name, value in self.design vars.items():
coordinator.add output (name, valuel[’initial’])

Add system constants
for name, shape in self.system inputs.items():
if name not in self.design vars.keys():
coordinator.add output (name, shape=shape)

return coordinator
def setup(self):

type: () —> None
7””Assemble the LEGOModel using the the CMDOWS file and knowledge base.”””

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

625
626
627
628
629
630
631

632
633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

O L NG A W N -

82

A. Code

Add the coordinator
self.add subsystem(’coordinator’, self.coordinator, [’'*'])

Add all pre-coupling and post-coupling components
for name, component in self.discipline components.items() :
if name not in self.coupled blocks:
self.add subsystem(name, component, [’*'])

Add the coupled group
if self.coupled group is not None:
self.add subsystem(’coupled group’, self.coupled group, ['*'])

Add the consistency constraint group
if self.consistency constraint group is not None:
self.add_subsystem(’consistency constraints’, self.consistency constraint_ group,

[7*71)

Put the blocks in the correct order
self.set_order(list(self.system order)

Add the design variables
for name, value in self.design vars.items():
self.add design var (name, lower=value[’lower’], upper=value[’upper’],
refO=value[’ref0’], ref=valuel[’'ref’])

Add the constraints
for name, value in self.constraints.items () :
self.add constraint (name, lower=value[’lower’], upper=valuel[’upper’],
equals=value[’equals’])

Add the objective
self.add objective(self.objective)

def initialize from xml (self, xml):
type: (Union[str, ElementTree]) -> None
777”Initialize the problem with initial values from an XML file.

This function can only be called after the problem’s setup method has been called.

Parameters
xml : str or :obj:‘etree. ElementTree'
Path to an XML file or an instance of ‘etree. ElementTree' representing it.
oo
for xpath, value in xml to_dict(xml).items():
name = xpath to param(xpath)
if name in self. outputs:

self. outputs[name] = value
elif name in self. inputs:
self. inputs[name] = value

Code frament A.3: Code of the openlego.core.model Python module.

A.1.4. openlego.core.xml component

#!/usr/bin/env python
—-*- coding: utf-8 -*-

770717

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

43

44

45

46

47
48

49
50
51

52

53
54
55

56

57
58
59
60
61
62
63
64
65

66
67
68

69
70

71
72

A.1. OpenLEGO core 83

limitations under the License.

This file contains the definition the ‘XMLComponent' class.

v

from _ future_ import absolute_import, division, print_function

import abc

import os

from abc import abstractmethod
from datetime import datetime

import numpy as np

from lxml import etree

from openmdao.api import Group, IndepVarComp, ExplicitComponent
from openmdao.vectors.vector import Vector

from typing import Optional, List, Union, Iterable

from openlego.utils.xml utils import xml_safe create_element, xml_ to_dict, xpath_ to_param,
o param_to_xpath, xml merge
from openlego.partials.partials import Partials

dir_path = os.path.dirname (os.path.realpath(_file))

class XMLComponent (ExplicitComponent) :
7””Abstract base class exposing an interface to use XML files for its in- and output.

This subclass of ‘PromotingComponent' can automatically create '‘OpenMDAO'' inputs and
outputs based on given in-
and output XML template files. For maximum flexibility it is possible to only specify
o Inputs from an XML file and
retain direct control over the definition of the outputs, or vice versa. It is also
o perfectly valid to add inputs
even when an XML file is used to generate a set of inputs, or outputs when an XML file it
o used to generate outputs.
It is even possible to generate in- and/or output parameters based on more than one XML
o file.

L

This class exposes the functions ‘set inputs from xml () ' and ‘set outputs from xml() "' for
o this purpose. Lists of all
parameters obtained from XML files are stored by this class for later inspection.

The ‘solve nonlinear()' method of the ‘'Component' class is implemented to wrap the XML
o related operations such as

reading in- and output data from the corresponding XML files during execution and storing
o 1t in this ‘Component‘’s

parameter dictionaries.

A new abstract method is defined by this class, ‘execute() ', which assumes the role of the
o '‘solve nonlinear()"

function, in essence. A specific case of this class should implement this method to
o perform the actual calculations

of an analysis tool using XML in- and/or output.

Attributes
inputs from xml, outputs from xml, partials from xml : dict
List of inputs, resp. outputs, resp. partials, taken from XML.

data folder : str(’’)
Path to a folder in which to store data generated during the execution of this
o '‘XMLComponent *.

keep files : bool (False)
Set to 'True' to keep all temporary XML files generated by the ‘'XMLComponent'
o during execution.

This attribute is ‘False' by default, in which case all temporary in- and output
o XML files will be deleted
after they are no longer needed by this component.

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95

96
97
98
929
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139

84

A. Code

base file : str, optional

Path to an XML file to keep up-to-date with the latest data

v

__metaclass = abc.ABCMeta

def init (self,

input_xml=None, # type:
output xml=None, # type:
partials_xml=None, # type:
data folder=’", # type:
keep files=False, # type:
base file=None # type:

) :
type: (...) —-> None
77”Initialize the ‘XMLComponent'.

Parameters

Optional [Union[str,
Optional [Union[str,
Optional [Union[str,
str

bool

Optional[str]

from executions.

etree. ElementTree]]
etree. ElementTree]]
etree. ElementTree]]

input xml, output xml, partials xml : str or :o0bj:‘etree. ElementTree', optional
Paths to or an ‘etree. ElementTree' of input, resp. output, resp. partial, XML

Path to the folder in which to store temporary data files generated by this

Set to 'True' to keep the temporary XML files after they are no longer needed.

Path to a base XML file to keep up-to-date with all latest data from this

files.
data folder : str
'‘XMLComponent '.
keep files : bool (False)
base file : str, optional
'‘XMLComponent '.
super (XMLComponent, self). init ()
self.inputs_from xml = dict()
self.outputs_from xml = dict()
self.partials_from xml = dict()

if input_xml is not None:
self.set inputs from xml (input xml)

if output xml is not None:
self.set outputs from xml (output xml)

if partials_xml is not None:

self.declare partials_from xml (partials_xml)

self.data folder = data_folder
self.keep files = keep files
self.base_file = base_file

def set inputs from xml(self, input xml):

type: (Union[str, etree. ElementTree]) -> None
7””Set inputs to the ‘Component' based on an input XML template file.

Parameter names correspond to their XML elements’ full XPaths,

' 'OpenMDAO ‘' names using the
'xpath to param() ' method.

Parameters

input xml : str or :obj:‘etree. ElementTree'
Path to or an ‘etree. ElementTree' of an input XML file.

10y

self.inputs_from xml.clear ()

for xpath, value in xml to dict(input xml).items() :

name = xpath_to_param(xpath)

self.inputs_from xml.update ({name: value})

def set outputs from xml (self, output xml):

converted to valid

A.1. OpenLEGO core 85

140 # type: (Union[str, etree. ElementTree]) -> None

141 77”Set outputs to the '‘Component' based on an output XML template file.

142

143 Parameter names correspond to their XML elements’ full XPaths, converted to valid
o ' 'OpenMDAO'' names using the

144 'xpath to param() ‘' method.

145

146 Parameters

147 mmmmm—————

148 output xml : str or :obj:'‘etree. ElementTree'

149 Path to or an ‘etree. ElementTree' of an output XML file.

150 oo

151 self.outputs_from xml.clear ()

152 for xpath, value in xml to dict (output xml).items () :

153 name = xpath_ to_param(xpath)

154 self.outputs from xml.update({name: value})

155

156 def declare partials from xml (self, partial xml):

157 # type: (Union[str, etree. ElementTree]) -> None

158 7””Declare partials to the ‘Component' based on a partials XML template file.

159

160 Parameters

w61 mmmme—————

162 partial xml : str or :obj:‘etree. ElementTree'

163 Path to or an ‘etree. ElementTree' of a partials XML file.

64 oo

165 self.partials from xml.clear()

166 if partial_xml is not None:

167 partials = Partials(partial xml)

168 self.partials from xml = partials.get partials() .copy ()

169

170 @property

171 def variables from xml (self):

172 # type: () —-> dict

173 777 :obj: 'dict': Dictionary of all XML inputs and outputs.”””

174 variables = self.inputs_from xml.copy ()

175 variables.update (self.outputs_from xml.copy())

176 return variables

177

178 def setup(self):

179 for name, value in self.inputs from xml.items() :

180 if not isinstance(value, float) and not isinstance(value, np.ndarray) :

181 # TODO: pass by obj

182 # raise NotImplementedError (’pass-by-object variables are not yet supported by
o OpenMDAO 2.07)

183 pass

184 else:

185 self.add input (name, value)

186

187 for name, value in self.outputs from xml.items() :

188 if not isinstance(value, float) and not isinstance(value, np.ndarray) :

189 # TODO: pass by obj

190 # raise NotImplementedError (’pass-by-object variables are not yet supported by
o OpenMDAO 2.07)

191 pass

192 else:

193 self.add output (name, value)

194

195 if self.partials from xml:

196 for src, partials in self.partials from xml.items() :

197 if src is not None and partials is not None:

198 self.declare partials(src, partials.keys())

199 else:

200 self.declare partials(’*’, ’*’, method='fd’")

201 # 1f self.outputs from xml and self.inputs from xml:

202 # for src in self.outputs from xml.keys():

203 # self.declare partials(src, self.inputs from xml.keys (), method=’"fd’)

204

205 @abstractmethod

206 def execute(self, input xml=None, output xml=None) :

207 # type: (Optionall[str], Optional[str]) -> None

208

209
210
211
212
213
214
215

217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

86 A. Code

7””Execute the tool using the given input XML file. Write the results to the given
o output XML file.

Parameters

input xml, output xml : str, optional
Path to the input, resp. output, XML file.

rrrr

raise NotImplementedError

@abstractmethod
def linearize(self, input xml=None, partials xml=None) :
type: (Optionall[str], Optional[str]) -> None
7””Compute the partials of a tool using the given XML file. Write the results to the
o given partials XML file.

Parameters

input xml, partials xml : str, optional
Path to the input, resp. partials, XML file.

10107

raise NotImplementedError

def generate file names (self):
type: () -> (str, str, str)
”””Generate temporary file names for the input, output, and partials XML files.

Returns

Input XML file path.

str
Output XML file path.

str
Partials XML file path.

10007

salt = datetime.now () .strftime (’/YSmdSHSMSE")

input _xml = os.path.join(self.data folder, self.name + ’ in %s.xml’ % salt)
output xml = os.path.join(self.data folder, self.name + ' out %s.xml’ % salt)
partials xml = os.path.join(self.data folder, self.name + ' partials %$s.xml’ % salt)

return input xml, output xml, partials_xml

def write input file(self, file, inputs):
type: (Union[str, etree. ElementTree], Vector) -> None
7””Write the current input values to an input XML file.

Parameters
file : str or :obj:'‘etree. ElementTree'
Path to or :obj:‘etree. ElementTree' of an input XML file.

inputs : Vector
Input vector of this ‘Component’.
Create new root element and an ElementTree
root = etree.Element (param to xpath(self.inputs from xml.keys () [0]).split (/") [1])
doc = etree.ElementTree (root)

Convert all XML param names to XPaths and add new elements to the tree correspondingly
for param in self.inputs_from xml:
if param in inputs:
xml_safe create element (doc, param_ to xpath(param), inputs|[param])

Write the tree to an XML file
doc.write(file, pretty print=True, xml declaration=True, encoding=’'utf-8")

def read outputs file(self, file, outputs):

277
278

279
280
281
282
283
284

286
287
288
289
290
291
292
293
294
295
296

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

A.1. OpenLEGO core 87

type: (Union[str, etree. ElementTree], Vector) -> None
”7””Read the outputs from a given XML file and store them in this ‘Component'’s
- variables.

Parameters
file : str or :obj:'‘etree. ElementTree'
Path to or :obj:‘etree. ElementTree' of an output XML file.

outputs : Vector
Output vector of this ‘Component’.
Extract the results from the output xml
for xpath, value in xml to dict(file).items():
name = xpath_ to_param(xpath)
if name in self.outputs from xml and name in outputs:
outputs[name] = value

def read partials file(self, file, partials):
type: (Union[str, etree. ElementTree], Vector) -> None
”””Read the partials from a given XML file and store them in this ‘Component‘’s
o variables.

Parameters
file : str or :obj:'‘etree. ElementTree'
Path to or :obj:‘etree. ElementTree' of a partials XML file.

partials : Vector
Partials vector of this ‘Component'.

10707

_partials = Partials(file)
for src, partial in partials.get partials().items():
for tgt, val in partial.items():
if [src, tgt] in partials:
try:
partials[src, tgt] = val
except Exception as e:
print (e.message)

def compute (self, inputs, outputs):
type: (Vector, Vector) -> None
77”"Write the input XML file, call ‘execute() ‘', and read the output XML file to obtain
o the results.

Parameters
inputs : ‘Vector'
Input parameters.

outputs : ‘'Vector'
Output parameters.

11 0r

input xml, output xml, = self.generate file names()

if self.inputs_ from xml:
self.write input file(input_xml, inputs)
if self.base_file is not None:

xml merge (self.base file, input xml)

Call execute
if self.base file is not None:
self.execute (self.base_file, output xml)
xml merge (self.base file, output xml)
else:
self.execute (input_xml, output xml)

If files should not be kept, delete the input XML file
if not self.keep files:

345
346
347
348
349
350
351
352
353

355
356
357
358
359
360
361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

402
403
404
405
406
407

409
410
411

412
413

88 A. Code

try:

os.remove (input xml)
except OSError:

pass

if self.outputs_from xml:
self.read outputs file(output xml, outputs)

If files should not be kept, delete the output XML file
if not self.keep files:
try:
os.remove (output xml)
except OSError:
pass

def compute partials(self, inputs, partials):
type: (Vector, Vector) -> None
7””Write the input XML file, call ‘linearize()'‘, and read the sensitivities from the
o resulting XML file.

Parameters
inputs : ‘Vector'
Input parameters.

partials: ‘Vector'
bPartials.
if self.partials_ from xml:
input xml, , partials xml = self.generate file names ()

self.write input file(input xml, inputs)
self.linearize (input xml, partials xml)

if not self.keep files:
try:
os.remove (input xml)
except OSError:
pass

self.read partials file(partials xml, partials)

if not self.keep files:
try:
os.remove (partials_xml)
except OSError:
pass

def xml params as indep vars(self, group, params, values, aliases=None):
type: (Group, List[str], Union[np.ndarray, Iterable], Optional[List[str]]) -> None
7””Create ‘IndepVarComp's for given input params of this ‘XMLComponent ‘.

Parameters
group : :o0bj: ‘Group'
'Group ' to add the ‘IndepVarComp's to.

params : list of str
List of param names. These need to exist in this 'XMLComponent'.

values : :obj:'np.ndarray' or list of numbers
List of (initial) values for all ‘IndepVarComp's.

aliases : list of str, optional
List of aliases (promoted names) to give the ‘IndepVarComp's.
if len(params) != len(values) or (aliases is None and len(params) != len(aliases)):
raise ValueError (' number of params, values and optionally aliases needs to be the
- same’)

for param in params:

414
415

416
417
418
419
420
421

423
424

© o N U AW N

W oW oW W W NN NNNNNNNN 2 e e e e e e e e
EF O N =~ O © ®» N0 1 & O = O © ®» N O U A WK = O

35
36
37
38
39
40
41
42
43
44
45
46
47

48
49

A.2. Partials 89

if param not in self.inputs from xml:
raise ValueError (’'at least one param given is not a param of this XMLComponent
o ($s)’ % param)

for index, param in enumerate (params) :
if aliases is None:
alias = 'INDEP ' + param to_ xpath(param).split(’/’)[-1].split (' [") [0]
else:
alias = aliases[index]

group.add(alias, IndepVarComp (alias, val=values[index]), promotes=[alias])
group.connect (alias, param)

Code frament A.4: Code of the openlego.core.xml component Python module.

A.2. Partials
A.2.1. XMLSchema

<?xml version=7”1.0"” encoding="UTF-8” ?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified”

<!-- parameterType: an element with a parameterUID child element -->
<xs:complexType name="parameterType”>
<xs:sequence>
<xs:element name="uid” type="xs:string”>
<xs:annotation>
<xs:documentation xml:lang="en”>
Unique identifier of the parameter this element refers to.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="value” minOccurs="0">
<xs:annotation>
<xs:documentation>
Value of the sensitivity of the current parameter to this variable.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="mapType” />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<!-- dependentParamType: an extended parameterType with a number of partialType children
o -——>
<xs:complexType name="dependentParamType”>
<xs:annotation>
<xs:documentation>
This element defines the sensitivities of a parameter.
</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="parameterType”>
<xs:sequence>
<xs:element name="partials”>
<xs:annotation>
<xs:documentation>
A list of sensitivities of this parameter w.r.t. parameters it
o depends on.
</xs:documentation>
</xs:annotation>

50
51
52

53
54
55
56
57
58

60
61
62
63
64
65

66
67

69
70

© W NG AW N -

38
39
40
41

90

A. Code

<xs:complexType>
<xs:sequence>

<xs:element name="partial” minOccurs="0" maxOccurs="unbounded”

o type="parameterType” />
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- Definition of the overall schema -->
<xs:element name="partials”>
<xs:complexType>
<xs:sequence>
<xs:element name="parameter” minOccurs="0"” maxOccurs="unbounded”
o type="dependentParamType” />
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Code frament A.5: Partials XSD schema code.

A.2.2. openlego.partials.partials

from _ future__ import absolute_ import
from _ future_ import division
from _ future_ import print function

import os
import warnings

from lxml import etree
from typing import Union, List, Optional, Any

from openlego.utils.general utils import parse string
from openlego.utils.xml_utils import value_to_xml

dir path = os.path.dirname (os.path.abspath(file))
xsd _file path = os.path.join(dir path, ’'partials.xsd’)
xsi schema location = "file:///’ + xsd file path

schema = etree.XMLSchema (file=xsi_schema_ location)
parser = etree.XMLParser (schema=schema)

class Partials (object):

def init (self, file=None):
type: (Optional[str]) -> None
77”Initialize ‘Partials' object.

Parameters
file : str, optional
Path to the partials XML file to initialize from.

11y

super (Partials, self). init ()

if file is None:
self. tree = etree.ElementTree (etree.Element ('partials’), parser=parser)
o type: etree. ElementTree
else:
self. tree = etree.parse(file, parser)

@property

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111

A.2. Partials

91

def elem root(self):
-> etree. Element
' Element' of the partials XML file.”””
return self. tree.getroot()

def

def

type:
I RooE

()

get partials(self, src=None):
(Optional [src])
7””Get a dictionary with the partials stored in the XML file.

type:

Paramet

Returns

no ‘src

10007

partial

ers

str,

optional

-> dict

Name of the source parameter to get the partials from

In the form partials[’from param name’][’to param name’] = sensitivity value

v

is given, or

in the form partials[’to param name’] = sensitivity value if ‘src' is given.

s =

dict ()

if src is not None:
= self. tree.xpath(’/partials/parameter[uid="{}"]’.format (src))
if len(elem param) :

elem param

else:

for elem partial in elem param[1]:

param = elem partial[0].text
value = parse_string(elem partial[l].text)

partials.update ({param: vglue})

for elem param in self. elem root:
elem param[0].text

uid

if uid not in partials:
partials.update ({uid: dict () })

for

elem partial in elem param[1]:

param = elem partial[0].text
if len(elem_partial) > 1:
parse_string(elem partial[l].text)

value =

else:

partials[uid

value =

return partials

declare partials(self,
Union[str, List[str]], Optional[Any]) -> None
”7””Declare a set of partials that is provided.

type:

Paramet

tgt

val

70 0r

(st

ers

str

r,

0.
]

src, tgt, val=None):

Name of the source parameter.

str or Iterable[str]
Name (s) of target parameters.

any,

optional

Optional value(s) of partials.

‘val' is given and ‘tgt' is a list,

if not isinstance(tgt,
= [tgt]
val is not None:

tgt
if

val

[val]

list):

.update ({param: value})

‘val' should have the same length as

‘tgt ‘.

92 A. Code

112 elem root = self. elem root

113

114 x param = ”/partials/parameter[uid=’{}’]”.format (src)

115 elem param = self. tree.xpath (x_param)

116

117 if not len(elem param):

118 elem param = etree.SubElement (elem root, ’'parameter’)

119 elem param uid = etree.SubElement (elem param, ’‘uid’)

120 elem param uid.text = src

121

122 elem partials = etree.SubElement (elem param, ’'partials’)

123 else:

124 elem partials = elem param([0][1]

125

126 for i, t in enumerate (tgt):

127 x partial = ’/’.join([x_param, “partials/partial[uid=’'{}"]"]).format (t)

128 elem partial = self. tree.xpath(x_partial)

129

130 if not len(elem partial):

131 elem partial = etree.SubElement (elem partials, 'partial’)

132 elem param _uid = etree.SubElement (elem partial, ‘uid’)

133 elem param uid.text = t

134 else:

135 warnings.warn (

136 "Partial from {} to {} is defined more than once. Last occurrence take
- precedence.’

137 .format (src, t))

138

139 if val is not None:

140 elem value = etree.SubElement (elem partial, 'value’)

141 value to xml (elem value, val[i])

142

143 def add partials(self, partials):

144 # type: (dict) -> None

145 77”Add a set of partials to the XML file.

146

147 Parameters

148 mmm——— ==

149 partials : dict

150 Dictionary of the partials.

151 e

152 for param uid, param in partials.items():

153 self.declare partials(param uid, param.keys(), param.values())

154

155 def write(self, file):

156 # type: (str) -> None

157 77””Write the current state of the class to a partials XML file.

158

159 Parameters

60 mmm ==

161 file : str

162 Path of the file to write to.

163 o

164 if not schema.validate(self. tree):

165 raise RuntimeError (' Something is wrong.. XML is not a valid partials file.’)

166

167 self. tree.write(file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

168

169 def get string(self):

170 # type: () -> str

171 ”7””Return the current state of the class as a partials XML string.

172

173 Returns

74—

175 str

176 String representation of a partials XML file.

177 o

178 if not schema.validate(self. tree):

179 raise RuntimeError (' Something is wrong.. XML is not a valid partials file.’)
180

181

O LN U A W N -

oo g B A A A A A B DD R OW W W W W WWWWNNNNNNNNRNND 2o e s s e e e e
@ K = O © ®» N 0 1 & ® O = O © ® I O 1 & WL = S © ®» N0 & ®N =~ S © ® N 00 1 & W N = O

54

55

56

57
58

A.3. Recorders

93

return etree.tostring(self. tree, encoding='utf-8’, pretty print=True,

o xml declaration=True)

Code frament A.6: Code of the openlego.partials.partials Python module.

A.3. Recorders

A.3.1. openlego.recorders.base_iteration plotter

#!/usr/bin/env python
—-*- coding: utf-8 -*-

10007

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definitions of the ‘BaselterationPlotter' class.

770007

from _ future_ import absolute import, division, print_ function
import sys

if sys.version info[0] == 3:
import tkinter as tk
else:
import Tkinter as Tk
tk = Tk

import abc
import time
import matplotlib

from abc import abstractmethod

from multiprocessing import Process, Pipe

from openmdao.core.driver import Driver

from openmdao.solvers.solver import Solver

from openmdao.core.system import System

from openmdao.recorders.base_recorder import BaseRecorder
from typing import Optional, Any, Union

matplotlib.use (' TkAgg’)

from matplotlib.backends.backend tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg

from matplotlib import pyplot as plt
from matplotlib.figure import Figure

from openlego.utils.general utils import try hard

class BaselterationPlotter (BaseRecorder) :
”””Base class enabling continually updated plots.

This 1s an abstract base class which enables data from an OpenMDAO run to be plotted and

- for that plot to be updated

for each iteration/function evaluation. This class uses matplotlib for all the plotting

o functions. A separate

process 1is used to host and manage the plot. This avoids the blocking and stalling

o behavior of the main loop by
matplotlib.

Attributes

59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
929
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125

94

A. Code

save settings dict
Default setting sused when saving the plot as an image file.
__metaclass__ = abc.ABCMeta
def init (self):
type: () -> None
77””Initialize the class.”””
super (BaseIterationPlotter, self). init_ ()
self.options.declare(’save on close’, False, desc='Set to True to save figure when
o closing the Recorder’)
self.save_settings = {’path’: self. class__. name + ' figure.png’,
"dpi’: 600, ’'ar’: 1.61803398875, ’width’: 4000}
self. in, self. out = Pipe()
self. callback in, self. callback out = Pipe()
self. process = None
self. tk = None
self._canvas = None
self. toolbar = None
self. fig = None
self.options[’record objectives’] = True
self.options[’record constraints’] = True
@abstractmethod
def init fig(self, fig):
type: (Figure) -> None

77”Initialize the figure.

A plotting recorder implementing this method should use it to setup parts of the
o figure that should only be

initialized once, such as titles, labels, and legends.
Parameters
fig :obj: ‘Figure'

10707

Instance of ‘Figure' on which the plot should be initialized.

raise NotImplementedError

@abstractmethod
def update plot(self, *args):
type: (Any) -> None

7””Update the plot with data from the next iteration/function evaluation.

This

method should be implemented to insert new data into the plot. This method 1is

o called within the plot

handling ‘Process' and should never be called directly.
Parameters
*args any

10707

Data to update or enrich the plot with.

raise NotImplementedError

def startup(self,
type:
77”Call the

- figure.

object requesting recording) :
(Union[Driver, System, Solver]) =-> None

'‘BaseRecorder' ‘startup() ' method and start the ‘Process' handling the

Parameters

1007

super (BaselterationPlotter,

object requesting recording

Union[Driver, System,
The Object to which this recorder is attached.

Solver]

self) .startup (object requesting recording)

126
127
128
129
130
131
132
133
134

135
136
137
138

139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175

176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191

A.3. Recorders

95

o

o

o

o

self. process = Process(target=self. process run)
self. process.daemon = True
self. process.start()

def process_run(self):
type: () —-> None
7””perform the figure handling operations.

This funciton is the entry point for the plot handling

used di

11107

self

rectly.
This fun
only be

.tk =t

‘Process'. It should not be

ction is executed within a separate ‘Process'‘'. Any parameters assigned
from within this scope can

accessed by function also running on this

k.Tk ()

self. tk.protocol (‘WM DELETE WINDOW’, self. tk.quit())

def plt_figure():

self

self.
self.

self

self.

self

self.
self.

def loo

type:
#nrOpen

() -> Figure
a 'Figure' and wait for a short time.

‘Process ‘.

This is part of a workaround to ensure a figure window always opens.

Returns

:obj
fig = pl
time.sle

return f
. fig =

_canvas
_toolba
._toolba
_canvas

.init fi

_tk.aft
_tk.mai

p(self):

type: () -

”””Continually handle the figure on the dedicated

This function is the loop of the

dedicat

ed '‘Proc

: 'Figure'

Instance of the openened ‘Figure’'.

t.figure ()

ep(le-4)

ig

try hard(plt figure, try hard limit=4) # type: Figure

= FigureCanvasTkAgg (self. fig, master=self. tk)
r = NavigationToolbar2TkAgg(self. canvas, self. tk)

r.update ()

.get tk widget () .pack(side=tk.TOP, fill=tk.BOTH, expand=1)

g(self. fig)
er(l, self. loop())

nloop ()

> None

ess ' handling

'‘Process ‘.

'‘Process ' handling the plot. It is executed on the

the figure and therefore has access to the parameters that were assigned in

v

11107

process run() .

This method should never be called directly. Any instructions to manipulate the
figure are communicated

through

'‘Pipe's. Convenience methods have been set

while self. out.poll():

out = se
if out i
rais
elif "up
if

elif

1f. out.recv()
s None or not isinstance (out, tuple):

up for this purpose.

e ValueError ('packet sent to update() is not a tuple’)

date’ in out[0] or ’'save’ in out[0]:
update’ in out[0]:
self. update plot (*out[l:])
"save’ in out[0]:
path, dpi, ar, width = out[1l:]
self. fig.set size inches(ar * width / dpi,

ar * width / dpi)

192
193

195
196
197
198
199
200

202
203
204
205
206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238

239

240

241
242
243
244

245
246
247
248

249
250
251
252

253
254
255

96 A. Code

self. fig.savefig(path, dpi=dpi)

if 'block’ in out[0]:
self. callback in.send(True)
elif ’'close’ in out[0]:
self. tk.destroy()
if ’"block’ in out[0]:
self. callback_in.send(True)
return

self. canvas.draw ()
self. tk.after(l, self. loop)

def Dblocking call(self, instr, *args):
type: (str, *Any) -> Any
”7””Send an instruction to the ‘Process' handling the plot and wait for a reply.

Parameters
instr : sStr
Instruction to send to the '‘Process'.

*args
Any arguments to send along with the instruction.

Returns

A reply from the ‘Process'.
self. in.send((’block %s’ % instr,) + args)
while not self. callback out.poll():
time.sleep(l.e-4)
return self. callback out.recv()

def record metadata driver (self, object requesting recording):
pass

def record metadata system(self, object requesting recording) :
pass

def record metadata solver(self, object requesting recording):
pass

def record iteration driver passing vars(self, object requesting recording, desvars,
- responses, objectives,
constraints, sysvars, metadata):
super (BaselterationPlotter,
o self).record iteration driver passing vars(object requesting recording,
desvars,
- responses, objectives,
constraints,
- sysvars, metadata)
self. record iteration_driver (metadata)

def record iteration driver(self, object requesting recording, metadata):
super (BaselterationPlotter,
o self).record iteration driver (object requesting recording, metadata)
self. record iteration driver (metadata)

def record iteration system(self, object requesting recording, metadata):
super (BaselterationPlotter,
o self).record iteration system(object requesting recording, metadata)
self. record iteration system(metadata)

def record iteration solver(self, object requesting recording, metadata, **kwargs):
super (BaselterationPlotter,
o self).record iteration solver (object requesting recording, metadata, **kwargs)
self. record iteration solver (metadata)

def record iteration driver(self, metadata):

256
257

259
260
261
262
263
264

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

A.3. Recorders 97

o

o

self. in.send((’update’,
self. desvars_values,
self. responses values,
self. objectives values,
self. constraints_values,
metadata))

self.save figure()

def record iteration system(self, metadata):
self. in.send((’update’,
self. inputs,
self. outputs,
self. resids,
metadata))
self.save figure()

def record iteration_solver (self, metadata):
self. in.send((’update’,
self. abs_error,
self. rel error,
self. outputs,
self. resids,
metadata))
self.save figure()

def save figure(self, path=None, dpi=None, ar=None, width=None):
type: (Optionall[str], Optional[int], Optional[float], Optional[int]) -> None
7””Save the current plot to an image file.

Parameters
path : str, optional
Path of the image file.

dpi : int, optional
Resolution of the image file in dots per inch.

ar : float, optional
Aspect ratio of the image file.

width : int, optional
Width of the image file in pixels.

If any of the parameters are not given the defaults stored in the ‘save settings'
dictionary will be used.

This function makes a blocking call to the ‘Process' to ensure the figure really
is saved once this function
returns.
if path is None:
path = self.save settings[’path’]
if dpi is None:
dpi = self.save settings[’dpi’]
if ar is None:
ar = self.save settings[’ar’]
if width is None:
width = self.save settings[’width’]
self. blocking call(’save’, path, dpi, ar, width)

def save and close(self, path=None, dpi=None, ar=None, width=None):
type: (Optionall[str], Optional[int], Optional[float], Optional[int]) -> None
7””Save the current plot to an image file and close this ‘Recorder’'.

Parameters
path : str, optional
Path of the image file.

325
326
327
328
329
330
331
332
333

335
336

337
338

339
340
341
342
343
344
345
346
347
348
349
350

351
352
353
354
355
356
357
358
359

© W N U R W N

98

A. Code

o

o

o

dpi : int, optional
Resolution of the image file in dots per inch.

ar : float, optional
Aspect ratio of the image file.

width : int, optional
width of the image file in pixels.

If any of the parameters are not given the defaults stored in the ‘save settings'

dictionary will be used.

is

def

This function makes a blocking call to the ‘Process' to ensure the figure really
saved once this function
returns.

self.save figure(path, dpi, ar, width)
Prevent save on close option from saving the figure again, then call self.close()
self.options[’save on close’] = False

self.close ()

close (self):
77””Close the figure, then calls the 'BaseRecorder' ‘close() ' method.

If the option '‘save on close'' is set to ‘'True', this function first saves the figure

and waits for

confirmation before it closes it and this ‘Recorder’'.
Potentially save the figure before closing
if self.options[’save on close’]:

self.save figure()

Close the figure and call super
self. blocking call(’close’)
super (BaseIterationPlotter, self).close()

Code frament A.7: Code of the openlego.recorders.base iteration plotter Python module.

A.3.2. openlego.recorders.base lane plotter

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vs

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the ‘BaseLanePlotter' class.

v

from _ future_ import absolute_ import, division, print_function

import abc
from abc import abstractmethod

import matplotlib.colors as colors
import numpy as np
from matplotlib import ticker as ticker

28
29
30
31
32
33
34
35
36

37
38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94

A.3. Recorders

99

from matplotlib.figure import Figure
from openmdao.core.driver import Driver
from typing import Optional

from .base_iteration_ plotter import BaselterationPlotter

class BaseLanePlotter (BaselterationPlotter) :

77””Specialized ‘'BaselterationPlotter' wrapping a ‘‘lane plot'' style visualization of

o variables.

Abstract base class enabling OpenMDAO data to be visualized using colored, horizontal

o lanes. Each variable to be

visualized this way has its own lane. The x-axis corresponds to the number of

o iterations/function evaluations. A
colorbar is used to indicate the value of a design variable.

Attributes
n vars : int
The number variables.

var names : :obj:‘list' of :obj:'str'
List of all variable names.

xXs, ys, cs: :obj:'np.ndarray"’
Arrays containing the x-, y-, and color data of the figure.

iter : int
Number of the last iteration.

ax : :o0bj:‘Axes’
Matplotlib ‘Axes' of the plot.

max iter : int
Maximum number of iterations.

quad : :o0bj: '‘matplotlib.collections.QuadMesh"
Instance of '‘QuadMesh' that represents the actual plot.

vmin, vmax : float
Lower and upper cutoff for values along the colorbar.

cmap : Str
Name of the colormap to use.

norm : :obj:‘colors.Normalize', optional
Which normalization scheme to use for the colorbar.

v

__metaclass = abc.ABCMeta

def init (self, vmin=0., vmax=1., cmap='viridis’, norm=None) :
type: (float, float, str, Optional[colors.Normalize]) -> None
77””Initialize a new ‘BaseLanePlotter' instance.

Parameters

vmin, vmax : float
Lower and upper cutoff for the values along the colorbar.

cmap : str(’/viridis’)
Name of the colormap to use for the plot.

norm : :obj:‘colors.Normalize', optional

Instance of ‘colors.Normalize' can be supplied to use a normalization

- for the colorbar.

10007

super (BaseLanePlotter, self). init ()

self.n vars = None
self.var names = None

scheme

95
96
97
98
929
100
101
102
103

105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159

160
161

100

A. Code

self.
self.
self.

self.
self.
self.

self.

self.
self.
self.
self.

Xs =

ys
cs =

iter
ax =
max

quad

vmin
vmax
cmap
norm

None
None
None

=0
None
iter = 1000

= None

= vmin
= vmax
= cmap
= norm

def startup(self, object requesting recording):
type: (
”””Make sure this ‘Recorder' is attached to a '‘Driver' and obtain the maximum number

- of iterations.

Driver) -> None

Parameters
object requesting recording : :obj: 'Driver'
Instance of ‘Driver' to which this '‘Recorder' is attached.

1107

if not isinstance(object requesting recording, Driver):

raise ValueError (' This Recorder should be attached to a Driver.’)

if 'maxiter’ in object requesting recording.options:
self.max iter = object requesting recording.options[’maxiter’]

super (BaseLanePlotter, self).startup(object requesting recording)

@abstractmethod

def init vars(self):
type: (
77”Initialize the variables of the plot.

) —-> None

This method should be implemented by subclasses such that they can control how
o variables are initialized.

10007

raise NotImplementedError

def init fig(self, fig):
type: (
77””Initialize the figure, setting up axes, labels, the colorbar, etc.

Figure) -> None

Parameters

10707

I

:obj: ‘Figure'
nstance of the 'Figure' which should be populated.

self.init vars()

self.xs, self.ys = np.meshgrid(np.arange (0., self.max iter+.5)-.5, np.arange (0.,
o self.n vars+.5)-.5)

self.cs = np.zeros((self.n vars, self.max iter))

self.ax = fig.add subplot (111)

self.ax.xaxis.set major_ locator (ticker.MaxNLocator (integer=True))

self.ax.yaxis.set ticks(np.arange (0, self.n vars))

self.ax.yaxis.set ticklabels(self.var names)

self.ax.set xlim([-.5, .5])

self.ax.set _ylim([-.5, self.n vars-.5])

self.quad = self.ax.pcolormesh(self.xs, self.ys, self.cs,

vmin=self.vmin, vmax=self.vmax, cmap=self.cmap,

s norm=self.norm)

fig.colorbar (self.quad)

162
163
164
165
166
167
168
169
170

172
173

174
175
176

178
179
180
181
182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197
198
199

I = I B N R N

I S T T N R S S T S e R
a £ @ N =~ S © ® N O uhd N~ O

A.3. Recorders 101

self.ax.set xlabel ('Evaluation #’)

@abstractmethod

def compute new data(self, desvars, responses, objectives, constraints, metadata):
type: (dict, dict, dict, dict, dict) -> np.ndarray
7””Return a 1D numpy.ndarray containing the new data points.

Parameters
desvars, responses, objectives, constraints, metadata : dict
Dictionaries of the new design, response, objective, and constraint variables,
- as well as metadata.

Returns
np.ndarray
A 1D numpy array containing the new data.

10007

raise NotImplementedError

def update plot(self, *args):
type: (dict, dict, dict, dict, dict) -> None
7””Insert the new data into the plot and refresh it.

Parameters
desvars, responses, objectives, constraints, metadata : dict
Dictionaries of the new design, response, objective, and constraint variables,
- as well as metadata.

11100

if len(args) != 5 and not any([isinstance(arg, dict) for arg in args]):

raise ValueError(’'Illegal arguments for update plot of %s’ % self. name)
desvars, responses, objectives, constraints, metadata = args

data = self. compute new_data(desvars, responses, objectives, constraints, metadata)
self.cs[:, self.iter] = datal:]

self.quad.set_array(self.cs.ravel())

self.ax.set xlim([-.5, self.iter+.5])

self.iter += 1

Code frament A.8: Code of the openlego.recorders.base lane plotter Python module

A.3.3. openlego.recorders.constraint plotter

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vaaa

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the ‘ConstraintsPlotter' class.

g

from _ future__ import absolute_ import, division, print_function

import matplotlib.colors as colors
import numpy as np

from openmdao.core.driver import Driver
from typing import Optional

26
27
28
29
30
31

32
33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

102 A. Code

from .base lane plotter import BaselanePlotter

class ConstraintsPlotter (BaselLanePlotter):
77”Specific case of the ‘BaseLanePlotter' plotting all the constraint variables of a
o ‘Problem.

A symmetric logarithmic colorbar is used by default by this plottter.

Attributes
constr meta : dict
A copy of the constraint metadata of the '‘Driver' this ‘Recorder' is associated
o with.
o
def init (self, vmin=-1., vmax=1., cmap='RdBu r’,

norm=colors.SymLogNorm (linthresh=1.e-3, linscale=.5, vmin=-1., vmax=1.)):
type: (float, float, str, Optional[colors.Normalize]) -> None
”7””Initialize the ‘'BaseLanePlotter' and store the '‘‘constraint metadata'' from the
o ‘Driver'.

Parameters
vmin, vmax : float
Lower and upper cutoff for the values along the colorbar.

cmap : str(’RdBu r’)
Name of the colormap to use for the plot.

norm : :obj:‘colors.Normalize'('‘'colors.SymLogNorm'), optional
A symmetric logarithmic colorbar is used by default by this plottter.
super (ConstraintsPlotter, self). init (vmin, vmax, cmap, norm)
self.constr meta = None

def startup(self, object requesting recording) :
type: (Driver) -> None
”7””Make sure this ‘Recorder' is attached to a '‘Driver' and obtain the constraint
o variable metadata.

Parameters
object requesting recording : :obj: 'Driver'
Instance of 'Driver' to which this ‘Recorder' is attached.
self.constr meta = object requesting recording. cons.copy()
super (ConstraintsPlotter, self).startup(object requesting recording)

def init vars(self):
type: () -> None
77””Initialize the list of constraint variable names and obtain the number of
o constraints.”””
self.var names = list()
self.n vars = 0
for key in self.constr meta.keys():
size = self.constr metalkey][’size’]
self.n_vars += size
self.var names.extend([’%s[%d]’ % (key, i) for i in range(size)])

def compute new data(self, desvars, responses, objectives, constraints, metadata):
type: (dict, dict, dict, dict, dict) -> np.ndarray
77”Compute the new data points for the lane plot from the constraints.

Parameters
desvars, responses, objectives, constraints, metadata : dict
Dictionaries of the new design, response, objective, and constraint variables,
- as well as metadata.

91
92
93
94
95
96
97
98
929

O L NG A W N e

W oW NN N NNN NN NN 2o e s s e e e e
= S 0 ® N 0 G & ®W N = O © ® N O U A WN = O

32
33

34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50

51
52

A3.

Recorders

103

Returns

np.ndarray

A 1D numpy array containing the new data.

1007

parts = [constraints[key] for key in self.constr meta.keys()]

for index, part in enumerate (parts):
parts[index] = np.atleast ld(part).flatten()

return np.concatenate (parts)

Code frament A.9: Code of the openlego.recorders.constraint plotter Python module

A.3.4. openlego.recorders.normalized desvar plotter

#!/usr/bin/env python
—-*- coding: utf-8 —*-

v

Copyright 2017 D. de Vries

Licensed under the Apache License,

Version 2.0 (the ”License”);

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the

v

either express or implied.

'‘NormalizedDesignVarPlotter' class.

from _ future import absolute import, division, print function

import matplotlib.colors as colors
import numpy as np

from openmdao.core.driver import Driver
from typing import Optional

from .base_lane plotter import BaselLanePlotter

class NormalizedDesignVarPlotter (BaseLanePlotter):
77””Specific case of the 'BaseLanePlotter' which plots all normalized design variables of a

o

o

‘Problem’.

Design variable values are normalized using the '‘ref0'' and ‘‘ref'' properties of the

design variables as
specified in the '‘metadata'‘’.

vy

def init (self, vmin=0., vmax=1., cmap=’'viridis’, norm=None):
type: (float, float, str, Optional[colors.Normalize]) -> None
”””Initialize the ‘'BaseLanePlotter' and stores the '‘desvar metadata'' from the
‘Driver’.
Parameters

vmin, vmax : float

Lower and upper cutoff for the values along the colorbar.

cmap : str(’viridis’)

Name of the colormap to use for the plot.

norm : :obj:‘colors.Normalize', optional
Instance of ‘colors.Normalize' can be supplied to use a normalization scheme

for the colorbar.

rrr ey

super (NormalizedDesignVarPlotter,

self). init (vmin, vmax,

cmap,

norm)

53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
929

O ® N o U AW N =

104 A. Code

self.desvar meta = None

def startup(self, object requesting recording):
type: (Driver) -> None
””"”Make sure this ‘Recorder' is attached to a 'Driver' and obtain the design variable
o metadata.

Parameters
object requesting recording : :obj: 'Driver'
Instance of 'Driver' to which this 'Recorder' is attached.
self.desvar meta = object requesting recording. designvars.copy ()
super (NormalizedDesignVarPlotter, self).startup(object requesting recording)

def init vars(self):
type: () -> None
77”Initialize the lists of design variable names and obtain the number of design
o variables.”””

self.var names = list()
self.n_vars = 0
for key in self.desvar meta.keys():
ref0 = self.desvar metalkey] ['ref0’]
if isinstance(ref0, np.ndarray):
size = refl.size
else:
size = 1

self.n_vars += size
self.var names.extend([’%s[%d]’ % (key, i) for i in range(size)])

def compute new data(self, desvars, responses, objectives, constraints, metadata):
type: (dict, dict, dict, dict, dict) -> np.ndarray
7””Compute the new data points of the plot from the design variable values.

Parameters
desvars, responses, objectives, constraints, metadata : dict
Dictionaries of the new design, response, objective, and constraint variables,
- as well as metadata.

Returns

np.ndarray

A 1D numpy array containing the new data.
parts = [(desvars[key] - self.desvar metalkey][’lower’]) /
(self.desvar metalkey] ["upper’] - self.desvar metalkey] [’lower’]) for key in
o self.desvar meta.keys()]

for index, part in enumerate (parts):

parts[index] = np.atleast ld(part).flatten()
return np.concatenate (parts)

Code frament A.10: Code of the openlego.recorders.normalized desvar plotter Python module.

A.3.5. openlego.recorders.simple objective plotter

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vaaa

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software

distributed under the License 1is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82

A.3. Recorders

See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the ‘SimpleObjectivePlotter' class.

from _ future import absolute import, division, print function
import numpy as np

from matplotlib import ticker as ticker

from matplotlib.figure import Figure

from openmdao.core.driver import Driver

from .base iteration_plotter import BaselterationPlotter

class SimpleObjectivePlotter (BaselterationPlotter):

7””Specialized ‘BaselterationPlotter' which simply plots the normalized objective function

o value against iteration.

Attributes

obj name : str
Name of the objective function value.

obj init : float
Initial value of the objective function

xdata, ydata :obj: 'np.ndarray"
The x- and y-data of the plot.

ax : :obj: ‘Axes’
The axis of the plot.

line : :obj:‘Line’
The ‘Line' object of the plot.

first run : bool

Flag signifying whether this is the first run of the ‘Recorder’'.

o '‘False' after first iteration.

v

def init (self):

Flipped to

type: (Driver)
77””Initialize th

—-> None
e 'SimpleObjectivePlotter'.

1700 17

super (SimpleObjectivePlotter,

self). init ()

self.obj name = None
self.obj init = None

self.xdata = None
self.ydata = None

self.ax = None
self.line = None

self.first run = True

def startup(self, object requesting recording):
type: (Driver) -> None

7””0Obtain the name of the objective function variable from the

o the ‘super()'.

Parameters
object requesting recording :obj: ‘Driver’'
‘Driver ' that owns this ‘Recorder‘.

10007

if not isinstance(object requesting recording, Driver):

raise ValueError (' This Recorder must be attached to a Driver.’

'‘Driver ' before calling

super (SimpleObjectivePlotter, self).startup(object requesting recording)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123

125
126
127

I - I B N S

106 A. Code
def init fig(self, fig):
type: (Figure) -> None
77”Initialize the axes and line of the plot.
Parameters
fig : :obj: 'Figure'
Instance of the ‘Figure' which should be populated.
self.ax = fig.add subplot (111)
self.ax.xaxis.set major locator (ticker.MaxNLocator (integer=True))
self.ax.set xlabel (' Iteration #’)
self.ax.set ylabel ('Normalized objective function value’)
self.line, = self.ax.plot([], [], color="black’)
def update plot(self, *args):

o

Code frament A.11: Code of the openlego.recorders.simple objective plotter Python module.

as

; type: (dict, dict, dict, dict, dict) -> None
77”Insert the new data into the plot and refresh it.

Parameters

desvars, responses, objectives, constraints, metadata : dict

Dictionaries of the new design, response, objective, and constraint variables,

well as metadata.

rrr ey

if len(args) != 5 and all([isinstance(arg, dict) for arg in args]):

raise ValueError(’'Illegal arguments for method update plot()

self. name)

_, _, objectives, , = args

if self.first_run:
self.first run = False
self.obj init = objectives.values() [0]
self.xdata = np.array([0.])
self.ydata = np.array([1.])
else:
_iter = self.xdata[-1] + 1
self.xdata = np.append(self.xdata, [iter])

self.ydata = np.append(self.ydata, [objectives.values()[0]/self.obj init])

self.ax.set x1lim ([0, iter])
self.ax.set ylim ([0, 11)

self.line.set_data(self.xdata, self.ydata)
self.ax.relim()
self.ax.autoscale view()

A.3.6. openlego.recorders.voi_ plotter

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vaaa

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definitions of the ‘VOIPlotter' class.

I

©

o
g

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63

64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83

A3.

Recorders

aaa

from _ future__ import absolute_import, division, print_function

from collections import OrderedDict

import numpy as np
matplotlib import ticker as ticker
matplotlib. figure import Figure
mpl_toolkits import axisartist as aa
mpl_toolkits.axes_gridl.parasite_axes import host_ subplot class_factory
openmdao.core.system import System

from
from
from
from
from

from

.base iteration plotter import BaselterationPlotter

class VOIPlotter (BaselterationPlotter) :
77””Specialized ‘BaselterationPlotter' plotting several variables of interest with a

o

o

regular line plot.

Only those variables specified by settings this
plotted. If no variables
are specified this way an error is thrown.

Attributes

xdata : :obj: '‘np.ndarray’
Numpy array holding the x-data of the plot.

vois : dict

'Recorder‘’s ‘includes' property will be

Python dictionary representing the information of all variables of interest.

lines : :obj:‘'list' of

'‘Line's

The ‘'Line' objects of all variable of interest plots.

v

def init (self):
type: () —> None

o

o

def

o

o

77””Initializes the
super (VOIPlotter,

‘VOIPlotter'.”””
self). init ()

self.options.add option(’legend’, [],

desc="List of legend entries for each VOI to be plotted.
this list needs to have the same length as the

options[’includes’]”)
self.options.add option(’labels’, [],
desc="List of labels to give to each VOI to be plotted. ”

options[’includes’]”)
self.options[’includes’] =

self.xdata = None
self.vois = None

self.lines = None

type: (System) -> None

77””Check ‘includes?',

create ‘vois' dictionary.

Parameters

object requesting recording

”1f given,

”"1f given,

[

startup(self, object requesting recording):

'‘Sytem' that owns this '‘Recorder'.
Raises
AttributeError
If the ‘includes', ‘legend‘, and/or

with one another.

”

this list needs to have the same length as the

‘legend', and ‘labels' options for validity and compatibility and

:obj: 'System'

‘labels ' are not valid or incompatible

84
85
86
87
88
89
90
91
92

93
94

95
96

97

98

929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

125
126
127
128
129
130

132
133
134
135
136
137
138
139

140
141
142
143

145
146
147
148
149
150

108 A. Code
if not isinstance(object requesting recording, System):
raise ValueError (' This Recorder must be attached to a System.’)
includes = self.options[’includes’]
legend = self.options[’legend’]
labels = self.options[’labels’]
if len(includes) == 0 or includes[0] == 7*’:
raise AttributeError (”“At least one variable needs to be put into
o options[’includes’]"”)
elif len(legend) > 0 and len(legend) != len(includes):
raise AttributeError ('Number of legend entries does not match number of included
~ variables’)
elif len(labels) > 0 and len(labels) != len(includes):
raise AttributeError ('Number of labels does not match number of included
- variables’)
if len(labels) ==
self.options([’labels’] = includes]([:]
if len(legend) ==
self.options[’legend’] = legend[:]
self.vois = OrderedDict ()
super (VOIPlotter, self).startup(object requesting recording)
def init fig(self, fig):

o

type: (Figure) -> None
777”Initialize the variables of interest figure.

Parameters
fig : :obj:'‘Figure'
Instance of the 'Figure' which should be populated.

10007

host_ subplot class = host_subplot class_ factory(aa.Axes)

ax main = host_subplot class(fig, 111)
fig.add subplot (ax main)
ax main.xaxis.set major locator (ticker.MaxNLocator (integer=True))

offset = 60
flag = False
pos = [’left’, ’'right’]

for index, key in enumerate (self.options[’includes’]):
if not index:
ax = ax main
ax.set xlim ([0, 17)
ax.set xlabel ('Evaluation #’)
else:
ax = ax main.twinx()

ax.autoscale (True, 'y’)
ax.set ylabel (self.options[’labels’] [index])

if index > 1:
new_ fixed axis = ax.get_grid helper () .new_fixed axis
ax.axis[pos[flag]] = new fixed axis(loc=pos[flag], axes=ax,

1
offset=((index//2) *offset, 0))
1

ax.axis[pos[flag]].toggle (all=True)

line, = ax.plot([], [], label=self.options[’legend’] [index])
color = line.get color()

ax.axis[pos[flag]].label.set color(color)
ax.spines[pos[flag]].set _color(color)

ax.tick params(axis='y’, color=color)

self.vois.update({key: {’ax’: ax, 'line’: line, ’data’: np.array(I[])}})

A

flag "= True

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183

O L NG A W N -

A.4. Utilities

109

ax main.legend (bbox to_anchor=(.5,

def update plot(self, *args):
type: (dict, dict, dict,

Parameters

.), loc=’lower center’, ncol=4)

dict) -> None
77”Insert the new data into the plot and refresh it.

inputs, outputs, resids, metadata : dict

Dictionaries containing inputs,

10007

inputs, outputs, resids,

if self.xdata is None:
self.xdata = np.array(
else:

_ = args

(0.1

self.xdata = np.append(self.xdata, [self.xdatal[-1] + 1])

for key in self.vois.keys(
if key in inputs:
data = inputsl[key]
elif key in outputs:

) :

data = outputs/[key]

elif key in resids:
data = resids[key]
else:

raise ValueError ('Variable of interest

)

o holding this Recorder.’ % key)

” ”

%s

self.vois[key] ['data’] = np.append(self.vois[key][’data’], [datal)
self.vois[key] ["1line’].set data(self.xdata, self.vois[key][’data’])
self.vois[key] ["ax’].relim()

[1(

self.vois[key

"ax’].autoscale view()

Code frament A.12: Code of the openlego.recorders.voi plotter Python module.

A.4. Utilities

A.4.1. openlego.utils.general utils

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Va2a

Copyright 2017 D. de Vries

Licensed under the Apache License,

Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

This file contains the definition of general utility functions.

Va4

from _ future import absolute_ import, division, print_ function

import re
import warnings

import numpy as np
from lxml import etree

from openmdao.core.driver import Driver

from typing import Callable, Any,

Optional,

Union, Type

does not belong to the System

outputs, residuals, and metadata of the system.

30
31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94

110

A. Code

def

o

try hard(fun, *args, **kwargs):
type: (Callable, *Any, **Any) -> Any
77”Try repeatedly to call a function until it returns successfully.

Utility function that repeatedly tries to call a given function with the given arguments
until that function

successfully returns. It is possible to limit the maximum number of attempts by setting
the try hard limit argument.

Parameters
fun : function
The function to try to call.

*args
Any ordered arguments to pass to the function.

**kwargs
Any named arguments to pass to the function.

The return value of the function to be called.

This function is part of a workaround to deal with APIs crashing in a non-predictable
manner, seemingly random
way. It was found that, when simply trying to call such functions again, the problem
seemed to not exist
anymore.
warnings.simplefilter (’always’, UserWarning)
try hard limit = -1
if kwargs is not None:
if ’try hard limit’ in kwargs.keys():
try hard limit = kwargs[’try hard limit’]
del kwargs[’try hard limit’]

msg = None
return_value = None
successful = False
attempts = 0
while not successful:
try:
return_value = fun(*args, **kwargs)
successful = True
except Exception as e:
attempts += 1

if msg is None:
msg = "Had to try again to evaluate: %s(’ % fun. name + ', ’“.join(['%s’ %
arg for arg in args])
if kwargs is not None:
msg += ', ’.join ([’ %s=%s’ % (key, value) for key, value in kwargs.items()])

o

msg += ') . The following exception was raised: ”%s”’ % e.message

if 0 < try hard limit <= attempts:
raise

else:
warnings.warn (msg)

return return value

class CachedProperty (property) :

A.4. Utilities 111

95 77””Subclass of ‘property' using a cache to avoid recalculating an expensive ‘property'
o every time it is read.
96

97 An attribute can be decorated with this class is the same way as with a normal ‘property’'.
o It adds the possibility

98 to invalidate the cache when necessary.

. o

100

101 def init (self, fget=None, fset=None, fdel=None, doc=None):

102 # type: (Optional[Callable], Optional[Callable], Optional[Callable], Optional[str]) ->
o None

103 77””Initialize the ‘CachedProperty"'.

104

105 Parameters

6 0 e —————=

107 fget, fset, fdel : function, optional

108 Getter, setter, and deleter functions.

109

110 doc : str, optional

111 Docstring of the property.

112 o

113 super (CachedProperty, self). init (fget, fset, fdel, doc)

114 self. cache = None

115 self. dirty = True

116

117 def get (self, instance, owner=None):

118 # type: (Any, Optional[type]) -> Any

119 7””Get the value of the property.

120

121 This method checks if the cache of this property is still valid first. If it is, it
o simply returns the cached

122 value. If it isn’t, it calls the ‘super()' to recompute the cached variable, stores
- 1it, and then returns the

123 newly calculated value.

124

125 Parameters

26 0 mmmemm—————

127 instance : any

128 The instance through which the attribute is accessed.

129

130 owner : type, optional

131 The owner of the attribute.

132

133 Returns

B4 mmmm——=

135 any

136 The value of the attribute.

137 e

138 if self. dirty:

139 self. cache = super (CachedProperty, self). get (instance, owner)

140 self. dirty = False

141 return self. cache

142

143 def invalidate(self):

144 # type: () —-> None

145 ”””Marks the cache of the property as invalid, prompting its recomputation the next
o time it is accessed.”””

146 self. dirty = True

147
148
149 def parse string(s):

150 # type: (str) -> Union[str, np.ndarray, float]

151 77””Convert a string to a numpy array of floats or float if possible.

152

153 The string is returned unchanged if it cannot be converted to a numpy array of floats or
o float.

154

155 Parameters

156 ~00—————————=

157 s : Str

158 String to be converted.

159
160

162
163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

112 A. Code
Returns
str or np.ndarray or float
Parsed string or the string itself.
v = re.sub(r’ [\[\]]", "', s)

def

def

if ’,’ in v:

v = v.split(’,”)
elif ’;’ in v:

v = v.split(';’")

try:
v = np.atleast_ld(np.array(v, dtype=float))
if v.size == 1:
v = v[0]
return v
except ValueError:
return s

parse cmdows_value (elem) :
type: (etree. Element) -> Union[str, np.ndarray, float]
7””Convert an XML element from a CMDOWS file to a value.

Parameters
elem : :obj:' Element'
‘etree. Element' to convert.

str or np.ndarray or float
Converted element.
if len(list(elem)) > 1:
return np.array([parse_string(child.text) for child in elem])
else:
return parse string(elem.text)

normalized to bounds (driver):

type: (Type[Driver]) =-> Type[NormalizedDriver]

”””Decorate a ‘Driver' to adjust its '‘adder'‘'/‘'‘scaler'' attributes normalizing the
‘‘desvar''s.

This decorator automatically adjusts the adder and scalar attributes of the design
variables belonging to the

targeted '‘OpenMDAO'' ‘Driver' class such that the design variables are normalized to
their bounds.

Parameters
driver : :obj: 'Driver'
‘Driver' to normalize the design variables of.

:obj: 'NormalizedDriver'
Instance of ‘'NormalizedDriver' which inherits from the given 'Driver'.

Examples
@normalized to bounds\n
class MyNormalizedDriver (Driver) :
My design variables will now automatically be normalized to their bounds.
pass

v

class NormalizedDriver (driver) :

227
228
229

230

231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

A.4. Utilities

7”"Wrapper class for the ‘'normalized to bounds' decorator.

This class adds a static function to the 'Driver' it inherits from, which will
o intercept all ‘add desvar()'

calls to the wrapped ‘Driver' class to change its '‘adder'‘/‘'‘scaler'' attributes
o depending on the given

upper and lower bounds.

11 0r

@staticmethod
def normalize to bounds (func) :
type: (Callable) -> Callable
”””Wrap the function handle of the ‘add desvar()' function.

Parameters
func : function
Function handle of the ‘add desvar() ' function.

Returns
func : function
Function wrapping the ‘add desvar () ' function, which adds logic to
o calculate ‘‘adder‘‘'/‘‘scaler''.

10707

def new_ function (name, # type: str
lower=None, # type: Optional[Union[float, np.ndarray]]
upper=None, # type: Optional[Union[float, np.ndarray]]

*args, **kwargs):
type: (...) —-> None
7”"Wrap the ‘add desvar()' function call.

Inner wrapper function which will set the ‘‘adder'' and ‘‘scaler'' ‘kwargs' of

o the wrapped
‘add desvar () ' method before calling it.

Parameters
name : Str
Name of the design variable to add.

lower : float or list of float, optional
Lower bound(s) of the design variable.

upper : float or list of float, optional
Upper bound(s) of the design variable.

*args
Any extra, ordered arguments to pass to the ‘add desvar () ' method.

**kwargs
Any extra, named arguments to pass to the ‘add desvar () ‘' method.
if lower is not None:
adder = -lower
else:
adder = 0.

if upper is not None:

scaler = 1./ (upper + adder)
else:

scaler = 1.

if len(args) > 4:

args = args[:-1]
elif len(args) > 3:
args = args[:-1]

if "adder’ in kwargs:
del kwargs|[’adder’]

294
295
296
297
298
299
300
301
302

304

305
306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323

O L NG A W N -

114

A. Code

if ’'scaler’ in kwargs:
del kwargs|[’scaler’]

func (name, lower, upper, adder=adder, scaler=scaler, *args,
return new_function

def getattribute (self, item):

**kwargs)

”””Intercept any calls to the ‘add desvar() ' method of the Driver class.

This '‘‘hook'' checks if ‘add desvar()' is called. If so, it returns the wrapped

o function instead of the
clean ‘add desvar()' call.

Parameters
item : str
Name of the attribute.

Returns

The attribute that was requested or the wrapped call to
- 1t 1s requested.
x = super (NormalizedDriver, self). getattribute (item)
if item in [’add desvar’]:
return self.normalize to bounds (x)
else:
return x

return NormalizedDriver

Code frament A.13: Code of the openlego.utils.general utils Python module.

A.4.2. openlego.utils.xml utils

#!/usr/bin/env python
—-*- coding: utf-8 —*-

wirn

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a set of XML utility functions.

1007

from _ future import absolute import, division, print function

import re
from collections import OrderedDict
from shutil import copyfile

import numpy as np
from lxml import etree
from typing import Optional, Union, List

Patterns for XML attribute names and values
pttrn attr val = r’ ([-.0-9:A-Z a-z]+?)’
pttrn_attr name = r’ ([:A-Z a-z][0-9:A-Z a-z]*?)’

‘add desvar() ' if

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101
102

A.4. Utilities

115

Expressions used to replace illegal characters in an XPath to legal characters within an

o OpenMDAO variable name.
repl dot = ": :’ # A dot (.) becomes
repl _dot inv = ’.’/

Regular expressions to match attributes and indices within valid XPaths

re atr = re.compile(r’\[@’ + pttrn attr name + ”=["\"]” + pttrn attr val + ”“["\”]\]")

re ind = re.compile (r’\[([0-9]+2)\]")

parser = etree.XMLParser (remove blank text=True, encoding='utf-8")
find text = etree.XPath(’//text()’)

def xpath to param(xpath):
type: (str) -> str
7””Convert an XML XPath to a valid ‘‘OpenMDAO'‘' parameter name.

Parameters

xpath : str
XPath to convert.

Returns

Valid '‘OpenMDAO‘'‘' parameter name.

vy

param = xpath.replace(repl dot inv, repl dot)
return param

def param to xpath (param) :
type: (str) -> str

77””Convert an '‘OpenMDAO'‘' parameter name to the corresponding XML XPath.

This function is the inverse of ‘xpath to param() ‘.

Parameters

param : str
Valid '‘OpenMDAO'' parameter name.

Returns

Corresponding XML XPath.

s

xpath = param.replace(repl dot, repl dot inv)
return xpath

def value to xml (elem, value):
if isinstance(value, np.ndarray):
value = np.atleast 1ld(value).flatten()

if isinstance(value, np.ndarray):

if value.size == 1:
elem.text = str(valuel0])
else:
elem.text = ’;’.join([str(v) for v in value[:]])
elem.attrib.update ({'mapType’: ’vector’})
else:

elem.text = str(value)

def xml to dict(xml):
type: (Union[str, etree. ElementTree]) -> OrderedDict

77””Convert an XML file to a python dictionary with all valued elements as values with

o their full XPaths as keys.

Parameters

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155

156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171

116

A. Code

xml : str or :obj:‘etree. ElementTree'
Path to or ‘etree. ElementTree' of an XML file.

:obj: '‘OrderedDict"
'‘OrderedDict ' representing the XML file in file order.
if isinstance(xml, str):
xml = etree.parse(xml, parser)

_dict = OrderedDict()
for text in find text(xml):
Construct ’augmented’ XPath for this element, including attributes
xpath = 7’/
child = text.getparent ()
while child is not None:
parent = child.getparent ()

tag = child.tag
for name, value in child.items{() :
Exclude special purpose attribute: mapType
if name != "mapType’:
tag += r’ [@%s="%s”]’ % (name, value)

if parent is not None:
siblings = parent.findall (tag)
if len(siblings) > 1:
tag += " [%d]’ % (siblings.index(child) + 1)

xpath = 7/’ .join([tag, xpath])
child = parent

Try to convert the text into a float or a list of floats
try:
value = float (text)
except ValueError:
try:
value = np.array(text.split(’;’), dtype=float)
except ValueError:
value = str (text)

Update the dict with this element
_dict.update({’/’ + xpath[:-1]: value})

return dict

def xml safe create element (
tree, # type: etree. ElementTree
xpath, # type: str
value=None # type: Optional[Union[str, int, float, List[Union[str, int,
o np.ndarray]]

type: (...) -> etree. Element
7””Create an element at the given XML XPath with the given value.

This method ensures that all elements implied by the given X-Path exist.

float]],

Supplying a value is optional. If no value is supplied an empty XML node is created at the

o deepest level implied by
the XPath.

Parameters
tree : :obj:‘etree. ElementTree'
‘etree. ElementTree' in which to create the element.

xpath : str
XPath to ensure.

172
173

174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230

231
232
233
234
235
236

AA4.

Utilities

117

o

o

value

:obj: '‘np.ndarray"’
Optional value to write at the deepest node of the ensured XPath.

Returns

:obj:

v

‘etree. Element'
Instance of ‘etree. Element' corresponding to the newly created element.

Split the xpath to get the intermediate nodes as a list

xpath_list =
n

xpath.split (' /'
len(xpath_list)

str or int or float or list of str or list of int or list of float or

Loop over the elements in the XPath from tip to root until the XPath is found to already

exist
elem =
i=20

None

for i in range (0,
7/’ .join(xpath 1list([0:(n - i)])

xpath =
try:
elems

n - 1):

= tree.xpath (xpath)

if len(elems):

elem

elems[0]

break
except etree.XPathError:
raise ValueError (' Specified XPath is invalid’)

If no existing element was found the root elements of the tree and XPath don’t match
if elem is None:
raise ValueError (”“Specified XPath is incompatible with the given XML tree:

don’t match”

)

root tags

Loop over the part of the XPath beyond this point and create all intermediate elements
including attributes

for j in range(n - i,
xpath list[]j]

tag =

n) :

See if this node has an integer index specified

match ind

= re_ind.search(tag)

if match ind:

tag =

index
else:

index

tagl:match ind.start()]
= int (match_ind.group (1))

=0

Find any attributes at this node

attrib =
match att

if match.start ()

{

r

}

1

= list(re_atr.finditer (tag))
if match attr:
Loop over all attributes on this node
for match in match attr:

< len(tag)

tag = tag[:match.start(

attrib.update ({match.group (

)
1

]

) :

Check if there are siblings with the same name

siblings
n_sibling

S

elem.findall (tag)
len(siblings)

+ tag[match ind.end() :]

match.group(2) })

Check if there’s a sibling with the same name at this index without conflicting

attributes

if index < n_siblings and not any(

[siblings[index] .attrib[key]

siblings[index].attrib]):

If so,

= attriblkey]

use it instead of adding a new one

siblings[index].attrib.update (attrib)

elem

siblings[index]

elif index <= n_siblings:
In this case just append a new element

_elem

= etree.Element (tag,

attrib)

for key in attrib.keys()

if key in

237
238
239
240
241
242
243
244
245

247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267
268

269
270
271

272

273
274
275

276

277
278
279
280
281
282

283
284
285
286
287
288

289
290
291
292
293

294
295
296
297
298

118

A. Code

o

def

£

elem.append(_elem)
elem = _elem
else:

In the last case, insert as many empty siblings until this node’s index

sibling = None

for i in range(index - n_siblings):
_sibling = etree.Element (tag)

if i == 0:

if not n_siblings:
elem.append(_ sibling)

else:

siblings[-1].addnext (_sibling)

else:

sibling.addnext (_sibling)

sibling = _sibling

Finally at a new element at the right index with all attributes
elem = etree.Element (tag, attrib)

sibling.addnext (elem)

Finally we can update the current XPath,

point

xpath = '/’ .join([xpath, xpath list[j]])

If a value was supplied assign it to the deepest element in the XPath

if value is not None:
value to xml (elem, value)

return elem

xml merge (base, merger, out file=None):
type: (Union[str, etree. ElementTree], Union[str, etree. ElementTree], Optional[str])

-> None

7””Merge an XML file into another.

since it has been assured to exist at this

First two parameters can be either a path to an XML file or an instance of
‘etree. ElementTree' corresponding to an

XML tree. All content from the merger will be merger into the base.

optional. If set, the

result of the merger will be written to the file at this path.

This function does not return anything. If base is an instance of

this object will be changed,

The third parameter 1is

‘etree. ElementTree'

if it is a ‘str' the file at that location will be changed. However, if

set, the file at that

location will be changed instead, and not the one at base.

Parameters

base : str or :obj:‘etree. ElementTree'
Path to or ‘etree. ElementTree' of an XML file into which the merger should be

merged.

merger : str or :obj:'‘etree. ElementTree'

Path to or ’etree. ElementTree' of an XML file which should be merged into the base.

out file : str, optional

‘‘out file'' is

Path to a file into which the result of the merger should be written. If not

given, the result will
overwrite the base.

If conflicting elements exist the value of the merger will overwrite the one in the

base.
if isinstance (base, str):
try:
doc = etree.parse (base,
except IOError:

parser)

299
300

302
303
304
305

306

308
309
310
311
312
313

315
316
317
318

O L NG A W N -

N NN NN NN R e e s s s e s e
I 6 g & AR~ O 0 ® N0 s O = O

28
29
30
31
32
33

34

35

36
37

A.5. Test Suite 119

if out_file is None:
out file = base

if isinstance (merger, str):
copyfile (merger, out file)
else:
merger.write (out file, encoding="utf-8’, pretty print=True,
o xml declaration=True)

return
else:
doc = base

merger dict = xml to dict (merger)
for xpath, value in merger dict.items():
xml safe create element (doc, xpath, value)

if out file is not None:

doc.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)
elif isinstance (base, str):

doc.write (base, encoding=’'utf-8’, pretty print=True, xml declaration=True)

Code frament A.14: Code of the openlego.utils.xml utils Python module.

A.5. Test Suite

A.5.1. Sellar Problem

Sellar Test Case

#!/usr/bin/env python
—-*- coding: utf-8 —*-

v

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the test case for the Sellar example problem.

10707

from _ future__ import absolute import, division, print_ function
import unittest

from openmdao.api import Problem, ScipyOptimizer

from openlego.api import LEGOModel

from openlego.recorders import NormalizedDesignVarPlotter, ConstraintsPlotter,
o SimpleObjectivePlotter

def solve_sellar (cmdows_file):
77”Solve the Sellar problem using the given CMDOWS file.”””
1. Create Problem

prob = Problem() # Create an instance of the
o Problem class
prob.set solver print(0) # Turn off printing of

o solver information

2. Create the LEGOModel
model = prob.model = LEGOModel (cmdows file, # CMDOWS file

38
39
40
41
42
43

44
45
46
47
48
49

50

51

52

53

54

55

56

57

58

59
60

61

62

63
64

65

66

67
68

69

70

71
72
73
74
75
76
77
78

79
80
81
82
83

84

85
86

120

o

A. Code
"kb', # Knowledge base path
rr, # Output directory
’sellar-output.xml’) # Output file
3. Create the Driver
driver = prob.driver = ScipyOptimizer () # Use a SciPy for the
optimization
driver.options[’optimizer’] = ’SLSQP’ # Use the SQP algorithm
driver.options[’disp’] = True # Print the result
driver.opt settings = {’disp’: True, ’'iprint’: 2} # Display iterations

4. Setup the Problem

prob.setup () # Call the OpenMDAO setup ()
method

model.coupled group.linear solver.options[’maxiter’] = 17 # Increase maxiter of the
linear solver

model.coupled group.nonlinear solver.options[’maxiter’] = 17 # Increase maxiter of the
nonlinear solver

prob.run model () # Run the model once to
init. the variables

model.initialize from xml (’sellar-input.xml’) # Set the initial values

from an XML file

5. Create and attach some Recorders (Optional)

desvar plotter = NormalizedDesignVarPlotter () # Create a plotter for the
design variables

desvar plotter.options[’save on close’] = True # Should this plot be saved
automatically?

desvar plotter.save settings[’path’] = ’desvar.png’ # Set the filename of the

image file

convar plotter = ConstraintsPlotter() # Create a plotter for the
constraints

convar_plotter.options[’save on close’] = True # Should this plot be saved
automatically?

convar_plotter.save_settings[’path’] = 'convar.png’ # Set the filename of the

image file

objvar plotter = SimpleObjectivePlotter () # Create a plotter for the
objective

objvar plotter.options[’save on close’] = True # Should this plot be saved
automatically?

objvar plotter.save_settings[’path’] = 'objvar.png’ # Set the filename of the

image file

driver.add recorder (desvar plotter) # Attach the design
variable plotter

driver.add recorder (convar plotter) # Attach the constraint
variable plotter

driver.add recorder (objvar plotter) # Attach the objective

variable plotter

6. Solve the Problem
prob.run driver () # Run the optimization

7. Print results
from .kb import x fl1, x x1, x zl1, x z2, x yl, x y2, x gl, x g2

print (/Optimum found! Objective function value: £ = {}’.format (prob[x f1]))

print (' Design variables at optimum: x = {}, z1 = {}, z2 = {}’.format (prob([x x1],
prob[x zl], prob[x z2]))

print (' Coupling variables at optimum: yl = {}, y2 = {}’.format(prob[x yl], prob[x_y2]))

print (’Constraints at optimum: gl = {}, g2 = {}’.format (prob[x gl], probl[x g2]))

8. Cleanup the Problem afterwards

prob.cleanup () # Clear all resources and
close the plots
model.invalidate () # Clear the cached

properties of the LEGOModel

class TestSellar (unittest.TestCase) :

88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103

47
48
49

A.5. Test Suite

def test mdf gs(self):

77””Solve the Sellar problem using the MDF architecture and a Gauss-Siedel converger.”””

solve_sellar (’sellar-MDG _MDF-GS.xml")

def test mdf j(self):

77””Solve the Sellar problem using the MDF architecture and a Jacobi converger.

solve sellar(’sellar-MDG MDF-J.xml’)

def test idf (self):

77”Solve the Sellar problem using the IDF architecture.

solve sellar(’sellar-MDG IDF.xml’)

if name == ' main ':

unittest.main ()

Code frament A.15: Code of the test_sellar Python script.

<?xml version=’1.0’ encoding=’UTF-8’7?>

11000

<ecmdows xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

o xsi:noNamespaceSchemaLocation="https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>

<header>
<creator>D. de Vries</creator>
<description>Sellar problem MPG file</description>
<timestamp>2017-10-09T11:33:54.624000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
<updates>
<update>
<modification>KADMOS export of a mdao data graph
<creator>D. de Vries</creator>
<timestamp>2017-10-09T11:33:54.624000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
</update>
</updates>
</header>
<executableBlocks>
<designCompetences>
<designCompetence uID="F1">
<ID>F1</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>F1</label>
<inputs>
<input>
<parameterUID>/data_ schema/x1</parameterUID>
</input>
<input>
<parameterUID>/data_schema/y2</parameterUID>
</input>
<input>
<parameterUID>/data schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data_schema/fl</parameterUID>
</output>
<output>
<parame-

o~ terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/fl</parameterUID>

</output>
</outputs>
<metadata>

(MDG) .</modification>

1

50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102

103

105
106
107
108
109
110
111
112
113
114
115
116
117

122

A. Code

o

o

o

<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence ulID="D2">
<ID>D2</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>D2</label>
<inputs>
<input>
<parame-
terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/zl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</parameterUID>
</output>
<output>
<parameterUID>/data_ schema/y2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="G2">
<ID>G2</ID>
<modeID>main</modeID>
<instancelID>1</instancelID>
<version>l.0</version>
<label>G2</label>
<inputs>
<input>
<parameterUID>/data_schema/y2</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data schema/g2</parameterUID>
</output>
<output>
<parame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="Gl1”>
<ID>G1</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>G1l</label>
<inputs>

A.5. Test Suite 123

118 <input>
119 <parameterUID>/data schema/yl</parameterUID>
120 </input>
121 </inputs>
122 <outputs>
123 <output>
124 <parame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</parameterUID>
125 </output>
126 <output>
127 <parameterUID>/data_schema/gl</parameterUID>
128 </output>
129 </outputs>
130 <metadata>
131 <generalInfo>
132 <description>main execution mode</description>
133 </generalInfo>
134 </metadata>
135 </designCompetence>
136 <designCompetence ulID="D1">
137 <ID>D1</ID>
138 <modeID>main</modeID>
139 <instanceID>1</instanceID>
140 <version>1.0</version>
141 <label>D1</label>
142 <inputs>
143 <input>
144 <parameterUID>/data_schema/x1</parameterUID>
145 </input>
146 <input>
147 <parameterUID>/data_schema/z2</parameterUID>
148 </input>
149 <input>
150 <parameterUID>/data_ schema/z1l</parameterUID>
151 </input>
152 <input>
153 <parame-
o terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</parameterUID>
154 </input>
155 </inputs>
156 <outputs>
157 <output>
158 <parame-

o~ terUID>/data_ schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</parameterUID>
159 </output>

160 <output>

161 <parameterUID>/data_schema/yl</parameterUID>
162 </output>

163 </outputs>

164 <metadata>

165 <generalInfo>

166 <description>main execution mode</description>
167 </generalInfo>

168 </metadata>

169 </designCompetence>

170 </designCompetences>

171 </executableBlocks>

172 <parameters>

173 <parameter ulD="/data schema/gl”>
174 <label>gl</label>

175 </parameter>

176 <parameter ulD="/data_schema/g2"”>
177 <label>g2</label>

178 </parameter>

179 <parameter ulD="/data schema/f1”>
180 <label>f1</label>

181 </parameter>

182 <parameter ulD="/data schema/y2”>
183 <label>y2</label>

184 </parameter>

185 <parameter ulD="/data schema/yl”>

124 A. Code

186 <label>yl</label>

187 </parameter>

188 <parameter ulD="/data schema/x1”>

189 <label>x1</label>

190 </parameter>

191 <parameter ulD="/data schema/z2”>

192 <label>z2</label>

193 </parameter>

194 <parameter ulD="/data schema/zl1”>

195 <label>z1</label>

196 </parameter>

197 </parameters>

198 <problemDefinition uID="IDFNone”>

199 <problemFormulation>

200 <mdaoArchitecture>IDF</mdaocArchitecture>

201 <executableBlocksOrder>

202 <executableBlock position=”1”>D1</executableBlock>
203 <executableBlock position="2">D2</executableBlock>
204 <executableBlock position="3”>F1</executableBlock>
205 <executableBlock position="4">Gl</executableBlock>
206 <executableBlock position="5">G2</executableBlock>
207 </executableBlocksOrder>

208 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
209 </problemFormulation>

210 <problemRoles>

211 <parameters>

212 <designVariables>

213 <designVariable ulID="_desVar /data schema/y2”>
214 <parameterUID>/data schema/y2</parameterUID>
215 <nominalValue>0.0</nominalValue>

216 </designVariable>

217 <designVariable ulID=" desVar /data schema/yl”>
218 <parameterUID>/data_schema/yl</parameterUID>
219 <nominalValue>0.0</nominalValue>

220 </designVariable>

221 <designVariable uID="_desVar /data schema/x1”>
222 <parameterUID>/data_ schema/x1</parameterUID>
223 <nominalValue>5.0</nominalValue>

224 <validRanges>

225 <limitRange>

226 <minimum>0.0</minimum>

227 <maximum>10.0</maximum>

228 </limitRange>

229 </validRanges>

230 </designVariable>

231 <designVariable ulID="__desVar_ /data_schema/z2"”>
232 <parameterUID>/data_schema/z2</parameterUID>
233 <nominalValue>5.0</nominalValue>

234 <validRanges>

235 <limitRange>

236 <minimum>0.0</minimum>

237 <maximum>10.0</maximum>

238 </limitRange>

239 </validRanges>

240 </designVariable>

241 <designVariable uID=" desVar /data schema/zl1”>
242 <parameterUID>/data_ schema/z1l</parameterUID>
243 <nominalValue>l.0</nominalValue>

244 <validRanges>

245 <limitRange>

246 <minimum>-10.0</minimum>

247 <maximum>10.0</maximum>

248 </limitRange>

249 </validRanges>

250 </designVariable>

251 </designVariables>

252 <objectiveVariables>

253 <objectiveVariable ulD=" objVar /data schema/fl”>
254 <parameterUID>/data_ schema/fl</parameterUID>
255 </objectiveVariable>

256 </objectiveVariables>

A.5. Test Suite 125

257 <constraintVariables>
258 <constraintVariable uID="”_conVar /data schema/gl”>
259 <parameterUID>/data_schema/gl</parameterUID>
260 <constraintType>inequality</constraintType>
261 <constraintOperator><=</constraintOperator>
262 <referenceValue>0.0</referencevValue>
263 </constraintVariable>
264 <constraintVariable ulD=” conVar /data schema/g2”>
265 <parameterUID>/data_ schema/g2</parameterUID>
266 <constraintType>inequality</constraintType>
267 <constraintOperator><=</constraintOperator>
268 <referenceValue>0.0</referenceValue>
269 </constraintVariable>
270 <constraintVariable
o ulD=”_conVar /data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc y2”>
271 <parame-
& terUID>/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc y2</parameterUID>
272 <constraintType>equality</constraintType>
273 <constraintOperator>==</constraintOperator>
274 <referenceValue>0.0</referencevValue>
275 </constraintVariable>
276 <constraintVariable
o uID="__conVar__/data_schema/architectureNodes/consistencyConstraintVariables/data_schemaCopy//gc_yl”>
277 <parame-
o~ terUID>/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc yl</parameterUID>
278 <constraintType>equality</constraintType>
279 <constraintOperator>==</constraintOperator>
280 <referenceValue>(0.0</referenceValue>
281 </constraintVariable>
282 </constraintVariables>
283 </parameters>
284 <executableBlocks>
285 <coupledBlocks>
286 <coupledBlock>D1</coupledBlock>
287 <coupledBlock>D2</coupledBlock>
288 </coupledBlocks>
289 <postCouplingBlocks>
290 <postCouplingBlock>F1</postCouplingBlock>
291 <postCouplingBlock>G1l</postCouplingBlock>
292 <postCouplingBlock>G2</postCouplingBlock>
293 <postCouplingBlock>Gc</postCouplingBlock>
294 </postCouplingBlocks>
295 </executableBlocks>
296 </problemRoles>
297 </problemDefinition>
298 <workflow>
299 <problemDefinitionUID>IDFNone</problemDefinitionUID>
300 <dataGraph>
301 <name>MDG1</name>
302 <edges>
303 <edge>
304 <fromParame-
o~ terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</fromParameterUID>
305 <toExecutableBlockUID>D2</toExecutableBlockUID>
306 </edge>
307 <edge>
308 <fromParame-
& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</fromParameterUID>
309 <toExecutableBlockUID>Gc</toExecutableBlockUID>
310 </edge>
311 <edge>
312 <fromParame-
& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</fromParameterUID>
313 <toExecutableBlockUID>Gc</toExecutableBlockUID>
314 </edge>
315 <edge>
316 <fromParame-
o terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</fromParameterUID>
317 <toExecutableBlockUID>D1</toExecutableBlockUID>
318 </edge>

319 <edge>

320

322
323
324

325
326

328

329
330
331
332

333
334
335
336
337

338
339
340
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

126

A. Code

o

o

<fromParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl</fromParameter
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</fromParameter
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Gc</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc y2</toParame
</edge>
<edge>
<fromExecutableBlockUID>Gc</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc yl</toParame
</edge>
<edge>
<fromParameterUID>/data_schema/y2</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_schema/y2</fromParameterUID>
<toExecutableBlockUID>Gc</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/y2</fromParameterUID>
<toExecutableBlockUID>G2</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>G2</fromExecutableBlockUID>
<toParameterUID>/data_schema/g2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G2</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G1</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G1</fromExecutableBlockUID>
<toParameterUID>/data_ schema/gl</toParameterUID>
</edge>
<edge>
<fromParameterUID>/data schema/yl</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/yl</fromParameterUID>
<toExecutableBlockUID>Gc</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/yl</fromParameterUID>
<toExecutableBlockUID>G1</toExecutableBlockUID>
</edge>

383
384

386
387
388
389
390
391

393
394
395
396
397

398
399
400
401

402
403
404
405

406
407
408
409
410
411
412
413

414

416
417

418
419

421
422
423
424
425
426

428
429
430
431
432

434
435
436
437
438
439

441

442
443
444
445

A.5. Test Suite 127

<edge>
<fromParameterUID>/data schema/gl</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/g2</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
& terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o~ terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o~ terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o~ terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data schema/z2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/z1</toParameterUID>
</edge>
<edge>
<fromParameterUID>/data schema/fl</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParameterUID>/data_schema/fl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParame-
-~ terUID>/data_ schema/architectureNodes/finalOutputVariables/data schemaCopy/f1</toParameterUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/x1</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>

446
447

449
450
451
452

453

455
456

457
458
459

461
462
463
464
465
466
467
468
469
470
471
472
473

475
476
477
478
479
480
481

482
483
484
485

486
487
488
489

490

492
493

494
495
496

498
499
500

501
502
503
504

505
506
507

128

A. Code

o

o

</edge>
<edge>
<fromParameterUID>/data_ schema/x1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/z2</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/zl</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data_schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl</toParameterUI
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data_ schemaCopy/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</toParameterUI
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data_ schemaCopy/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</toParameterUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data_ schemaCopy/x1</fromParameterUI
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1</fromParameterUI
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>

A.5. Test Suite 129

508 <fromParame-
o~ terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</fromParameterUID>
509 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
510 </edge>
511 <edge>
512 <fromParame-
o~ terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</fromParameterUID>
513 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
514 </edge>
515 <edge>
516 <fromParame-
& terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</fromParameterUID>
517 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
518 </edge>
519 <edge>
520 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
521 <toParame-
o terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</toParameterUID>
522 </edge>
523 <edge>
524 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
525 <toParameterUID>/data schema/y2</toParameterUID>
526 </edge>
527 <edge>
528 <fromParame-
& terUID>/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc y2</fromParameterU
529 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
530 </edge>
531 <edge>
532 <fromParame-
& terUID>/data schema/architectureNodes/consistencyConstraintVariables/data_ schemaCopy//gc yl</fromParameterU
533 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
534 </edge>
535 <edge>
536 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
537 <toParame-
o terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</toParameterUID>
538 </edge>
539 <edge>
540 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
541 <toParameterUID>/data schema/yl</toParameterUID>
542 </edge>
543 </edges>
544 </dataGraph>
545 <processGraph>
546 <name>MPG1</name>
547 <edges>
548 <edge>
549 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
550 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
551 <processStepNumber>4</processStepNumber>
552 </edge>
553 <edge>
554 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
555 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
556 <processStepNumber>5</processStepNumber>
557 </edge>
558 <edge>
559 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
560 <toExecutableBlockUID>D2</toExecutableBlockUID>
561 <processStepNumber>2</processStepNumber>
562 </edge>
563 <edge>
564 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
565 <toExecutableBlockUID>D1</toExecutableBlockUID>
566 <processStepNumber>2</processStepNumber>
567 </edge>
568 <edge>
569 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
570 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>

571 <processStepNumber>4</processStepNumber>

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

130

A. Code

</edge>

<edge>
<fromExecutableBlockUID>G1</fromExecutableBlockUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
<processStepNumber>4</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
<processStepNumber>1</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>Gc</fromExecutableBlockUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
<processStepNumber>4</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D2</fromExecutableBlockUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D2</fromExecutableBlockUID>
<toExecutableBlockUID>Gc</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D2</fromExecutableBlockUID>
<toExecutableBlockUID>G2</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D1</fromExecutableBlockUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D1</fromExecutableBlockUID>
<toExecutableBlockUID>Gc</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

<edge>
<fromExecutableBlockUID>D1</fromExecutableBlockUID>
<toExecutableBlockUID>G1</toExecutableBlockUID>
<processStepNumber>3</processStepNumber>

</edge>

</edges>
<nodes>

<node>
<referenceUID>F1</referenceUID>
<processStepNumber>3</processStepNumber>
<diagonalPosition>4</diagonalPosition>

</node>

<node>
<referenceUID>Optimizer</referenceUID>
<processStepNumber>1</processStepNumber>
<convergerStepNumber>4</convergerStepNumber>
<diagonalPosition>1</diagonalPosition>

</node>

<node>
<referenceUID>G2</referenceUID>
<processStepNumber>3</processStepNumber>
<diagonalPosition>6</diagonalPosition>

</node>

<node>
<referenceUID>G1</referenceUID>
<processStepNumber>3</processStepNumber>
<diagonalPosition>5</diagonalPosition>

</node>

<node>
<referenceUID>Coordinator</referenceUID>

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

669
670
671
672

673
674
675
676
677
678

679
680
681
682

683
684
685
686
687
688

689
690
691
692

693
694
695
696
697
698

699
700
701
702

703
704
705

A.5. Test Suite

<processStepNumber>0</processStepNumber>
<convergerStepNumber>5</convergerStepNumber>
<diagonalPosition>0</diagonalPosition>

</node>

<node>
<referenceUID>Gc</referenceUID>
<processStepNumber>3</processStepNumber>
<diagonalPosition>7</diagonalPosition>

</node>

<node>
<referenceUID>D2</referenceUID>
<processStepNumber>2</processStepNumber>
<diagonalPosition>3</diagonalPosition>

</node>

<node>
<referenceUID>D1</referenceUID>
<processStepNumber>2</processStepNumber>
<diagonalPosition>2</diagonalPosition>

</node>

</nodes>
</processGraph>

</workflow>
<architectureElements>

<parameters>
<initialGuessCouplingVariables>
<initialGuessCouplingVariable
uID="/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl”>
<re1atedParameterUID>/data_schema/yl</relatedParameterUID>
<label>yl~{c0}</label>
</initialGuessCouplingVariable>
<initialGuessCouplingVariable
ulD="/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2”>
<relatedParameterUID>/data_schema/y2</relatedParameterUID>
<label>y2”{c0}</label>
</initialGuessCouplingVariable>
</initialGuessCouplingVariables>
<finalCouplingVariables>
<finalCouplingVariable
ulID="/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2”>
<relatedParameterUID>/data_schema/y2</relatedParameterUID>
<label>y2”**</label>
</finalCouplingVariable>
<finalCouplingVariable
ulID="/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl”>
<relatedParameterUID>/data schema/yl</relatedParameterUID>
<label>yl~*</label>
</finalCouplingVariable>
</£finalCouplingVariables>
<couplingCopyVariables>
<couplingCopyVariable
ulD="/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl”>
<relatedParameterUID>/data schema/yl</relatedParameterUID>
<label>yl~c</label>
</couplingCopyVariable>
<couplingCopyVariable
ulD="/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2”>
<relatedParameterUID>/data schema/y2</relatedParameterUID>
<label>y2~c</label>
</couplingCopyVariable>
</couplingCopyVariables>
<initialGuessDesignVariables>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/x1”>
<relatedParameterUID>/data schema/x1</relatedParameterUID>
<label>x1"0</label>
</initialGuessDesignVariable>
<initialGuessDesignVariable
ulID="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1”>
<re1atedParameterUID>/data_schema/zl</relatedParameterUID>
<label>z1"0</label>
</initialGuessDesignVariable>

131

132 A. Code

706 <initialGuessDesignVariable
o uID="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2”>
707 <relatedParameterUID>/data_schema/z2</relatedParameterUID>
708 <label>z2"0</label>
709 </initialGuessDesignVariable>
710 </initialGuessDesignVariables>
711 <finalDesignVariables>
712 <finalDesignVariable
o ulID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1”>
713 <relatedParameterUID>/data_schema/x1</relatedParameterUID>
714 <label>x1"*</label>
715 </finalDesignVariable>
716 <finalDesignVariable
o ulID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2”>
717 <relatedParameterUID>/data schema/z2</relatedParameterUID>
718 <label>z2"*</label>
719 </finalDesignVariable>
720 <finalDesignVariable
o ulD="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1”>
721 <relatedParameterUID>/data schema/z1</relatedParameterUID>
722 <label>z17*</label>
723 </finalDesignVariable>
724 </finalDesignVariables>
725 <finalOutputVariables>
726 <finalOutputVariable
o ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl”>
727 <relatedParameterUID>/data schema/gl</relatedParameterUID>
728 <label>gl~*</label>
729 </finalOutputVariable>
730 <finalOutputVariable
o ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2”>
731 <relatedParameterUID>/data_ schema/g2</relatedParameterUID>
732 <label>g2"*</label>
733 </£finalOutputVariable>
734 <finalOutputVariable
o uID="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1”>
735 <re1atedParameterUID>/data_schema/fl</re1atedParameterUID>
736 <label>f1"*</label>
737 </£finalOutputVariable>
738 </finalOutputVariables>
739 <consistencyConstraintVariables>
740 <consistencyConstraintVariable
o uID="/data schema/architectureNodes/consistencyConstraintVariables/data_ schemaCopy//gc y2”>
741 <re1atedParameterUID>/data_schema/y2</re1atedParameterUID>
742 <label>gc y2</label>
743 </consistencyConstraintVariable>
744 <consistencyConstraintVariable
o ulID="/data schema/architectureNodes/consistencyConstraintVariables/data schemaCopy//gc yl”>
745 <relatedParameterUID>/data_schema/yl</relatedParameterUID>
746 <label>gc yl</label>
747 </consistencyConstraintVariable>
748 </consistencyConstraintVariables>
749 </parameters>
750 <executableBlocks>
751 <coordinators>
752 <coordinator ulD="Coordinator”>
753 <label>COOR</label>
754 </coordinator>
755 </coordinators>
756 <optimizers>
757 <optimizer uID="Optimizer”>
758 <label>OPT</label>
759 <designVariables>
760 <designVariable>
761 <designVariableUID> desVar_ /data schema/x1</designVariableUID>
762 </designVariable>
763 <designVariable>
764 <designVariableUID> desVar /data schema/y2</designVariableUID>
765 </designVariable>
766 <designVariable>

767 <designVariableUID> desVar__/data_schema/z2</designVariableUID>

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

A.5. Test Suite 133

</designVariable>
<designVariable>
<designVariableUID> desVar_ /data schema/zl</designVariableUID>
</designVariable>
<designVariable>
<designVariableUID> desVar /data schema/yl</designVariableUID>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable>
<objectiveVariableUID> objVar__/data_schema/fl</objectiveVariableUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable>
<constraintVariableUID> conVar__/data_schema/gl</constraintVariableUID>
</constraintVariable>
<constraintVariable>
<constraintVariableUID> conVar /data schema/g2</constraintVariableUID>
</constraintVariable>
</constraintVariables>
</optimizer>
</optimizers>
<consistencyConstraintFunctions>
<consistencyConstraintFunction uID="Gc”>
<label>Gc</label>
</consistencyConstraintFunction>
</consistencyConstraintFunctions>
<coupledAnalyses>
<coupledAnalysis>
<relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
</coupledAnalysis>
<coupledAnalysis>
<relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
</coupledAnalysis>
</coupledAnalyses>
<postCouplingAnalyses>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G1</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
</postCouplingAnalysis>
</postCouplingAnalyses>
</executableBlocks>
</architectureElements>
</cmdows>

Code frament A.16: Sellar problem IDF CMDOWS file.

<?xml version=’1.0’ encoding=’'UTF-8’7?>
<cmdows xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
o xsi:noNamespaceSchemalocation="https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>
<header>
<creator>D. de Vries</creator>
<description>Sellar problem MPG file</description>
<timestamp>2017-10-09T11:35:18.577000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
<updates>
<update>
<modification>KADMOS export of a mdao data graph (MDG).</modification>
<creator>D. de Vries</creator>
<timestamp>2017-10-09T11:35:18.577000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
</update>

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85

134 A. Code

</updates>
</header>
<executableBlocks>
<designCompetences>
<designCompetence uID="F1">
<ID>F1</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>F1</label>
<inputs>
<input>
<parameterUID>/data schema/x1</parameterUID>
</input>
<input>
<parameterUID>/data_ schema/y2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data_ schema/fl</parameterUID>
</output>
<output>
<parame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/fl</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence ulID="D2">
<ID>D2</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>D2</label>
<inputs>
<input>
<parameterUID>/data_ schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z1</parameterUID>
</input>
<input>
<parameterUID>/data_schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
o terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</parameterUID>
</output>
<output>
<parameterUID>/data_schema/y2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>

86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149
150
151
152
153

A.5. Test Suite 135

o

o

o

<designCompetence ulID="G2">
<ID>G2</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>G2</label>
<inputs>
<input>
<parameterUID>/data_ schema/y2</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data_ schema/g2</parameterUID>
</output>
<output>
<parame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="Gl”>
<ID>G1</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>G1l</label>
<inputs>
<input>
<parameterUID>/data_schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</parameterUID>
</output>
<output>
<parameterUID>/data_schema/gl</parameterUID>
</output>
</outputs>
<metadata>
<generallInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="D1">
<ID>D1</ID>
<modeID>main</modeID>
<instancelID>1</instanceID>
<version>l.0</version>
<label>D1</label>
<inputs>
<input>
<parameterUID>/data schema/x1</parameterUID>
</input>
<input>
<parameterUID>/data schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z1</parameterUID>
</input>
<input>
<parame-
terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</parameterUID>

154
155
156
157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
175
176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

136

A. Code

</input>
</inputs>
<outputs>
<output>
<parameterUID>/data_schema/yl</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
</designCompetences>

</executableBlocks>
<parameters>
<parameter ulD="/data schema/gl”>
<label>gl</label>
</parameter>
<parameter ulID="/data schema/g2”>
<label>g2</label>
</parameter>
<parameter ulD="/data_schema/f1”>
<label>f1</label>
</parameter>
<parameter ulD="/data schema/yl”>
<label>yl</label>
</parameter>
<parameter ulD="/data schema/y2”>
<label>y2</label>
</parameter>
<parameter ulD="/data schema/x1”>
<label>x1</label>
</parameter>
<parameter ulD="/data schema/z2”>
<label>z2</label>
</parameter>
<parameter ulD="/data schema/z1”>
<label>z1</label>
</parameter>
</parameters>

<problemDefinition uID="MDFGauss-Seidel”>
<problemFormulation>
<mdaoArchitecture>MDF</mdaocArchitecture>
<convergerType>Gauss-Seidel</convergerType>
<executableBlocksOrder>
<executableBlock position=”1”>D1</executableBlock>
<executableBlock position="2">D2</executableBlock>
<executableBlock position=”3">F1</executableBlock>
<executableBlock position="4">Gl</executableBlock>
<executableBlock position="5">G2</executableBlock>
</executableBlocksOrder>

<allowUnconvergedCouplings>false</allowUnconvergedCouplings>

</problemFormulation>
<problemRoles>
<parameters>
<designVariables>
<designVariable uID=" desVar /data schema/x1”>
<parameterUID>/data schema/x1</parameterUID>
<nominalValue>5.0</nominalValue>
<validRanges>
<limitRange>
<minimum>0.0</minimum>
<maximum>10.0</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable uID=" desVar /data schema/z2”>
<parameterUID>/data_ schema/z2</parameterUID>
<nominalValue>5.0</nominalValue>
<validRanges>

225
226

228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285

286
287
288
289
290

291
292

A.5. Test Suite 137

<limitRange>
<minimum>0.0</minimum>
<maximum>10.0</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable ulID=" desVar /data schema/z1”>
<parameterUID>/data_schema/z1</parameterUID>
<nominalValue>1l.0</nominalValue>
<validRanges>
<limitRange>
<minimum>-10.0</minimum>
<maximum>10.0</maximum>
</limitRange>
</validRanges>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable ulID="__objVar /data schema/fl1”>
<parameterUID>/data schema/fl</parameterUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable ulID="”__conVar /data schema/gl”>
<parameterUID>/data schema/gl</parameterUID>
<constraintType>inequality</constraintType>
<constraintOperator><=</constraintOperator>
<referenceValue>(0.0</referenceValue>
</constraintVariable>
<constraintVariable uID="_ conVar /data schema/g2”>
<parameterUID>/data_schema/g2</parameterUID>
<constraintType>inequality</constraintType>
<constraintOperator><=</constraintOperator>
<referenceValue>(0.0</referenceValue>
</constraintVariable>
</constraintVariables>
</parameters>
<executableBlocks>
<coupledBlocks>
<coupledBlock>D1</coupledBlock>
<coupledBlock>D2</coupledBlock>
</coupledBlocks>
<postCouplingBlocks>
<postCouplingBlock>F1</postCouplingBlock>
<postCouplingBlock>G1</postCouplingBlock>
<postCouplingBlock>G2</postCouplingBlock>
</postCouplingBlocks>
</executableBlocks>
</problemRoles>
</problemDefinition>
<workflow>
<problemDefinitionUID>MDFGauss-Seidel</problemDefinitionUID>
<dataGraph>
<name>MDG1</name>
<edges>
<edge>
<fromParame-

& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</fromParameterUID>

<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>

<fromParame-

& terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</fromParameterUID>

<toExecutableBlockUID>Converger</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Converger</fromExecutableBlockUID>
<toParame-

o~ terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</toParameterUID>

</edge>
<edge>

293

295
296
297

298
299

301
302

303
304
305

307
308
309
310

311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

138 A. Code

<fromParame-
o terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o~ terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o~ terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
- terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
o~ terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/z2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G2</fromExecutableBlockUID>
<toParameterUID>/data_schema/g2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G2</fromExecutableBlockUID>
<toParame-
o~ terUID>/data_ schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G1</fromExecutableBlockUID>
<toParame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>G1</fromExecutableBlockUID>
<toParameterUID>/data_schema/gl</toParameterUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/yl</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/yl</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/yl</fromParameterUID>
<toExecutableBlockUID>G1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/gl</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>

357
358

360
361

362
363
364

366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397

398
399
400
401

403
404
405
406
407
408

410
411
412
413
414
415

417
418
419
420
421
422

A.5. Test Suite 139

<fromParameterUID>/data_ schema/g2</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/fl1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/y2</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/y2</fromParameterUID>
<toExecutableBlockUID>G2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/y2</fromParameterUID>
<toExecutableBlockUID>Converger</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParameterUID>/data_schema/fl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1l</toParameterUID>
</edge>
<edge>
<fromParameterUID>/data schema/x1</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/x1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o~ terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/zl</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>

423
424

426

427
428
429
430

431
432
433
434

435
436
437
438

439
440
441

442
443
444
445

446

448
449

450
451
452
453

454
455
456
457

459
460
461
462

463

465
466
467
468
469
470

472
473
474
475
476
477

479
480
481
482
483
484

140

A. Code

o

</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data_ schemaCopy/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</toParameterUI
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</toParameterUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data_ schemaCopy/x1</fromParameterUI
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1</fromParameterUI
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</fromParameterUlI
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/fl</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>D2</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>D2</fromExecutableBlockUID>
<toParameterUID>/data_schema/y2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>D1</fromExecutableBlockUID>
<toParameterUID>/data schema/yl</toParameterUID>
</edge>
</edges>
</dataGraph>
<processGraph>
<name>MPG1</name>
<edges>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
<processStepNumber>7</processStepNumber>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>

A.5. Test Suite 141

485 <processStepNumber>8</processStepNumber>

486 </edge>

487 <edge>

488 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
489 <toExecutableBlockUID>Converger</toExecutableBlockUID>
490 <processStepNumber>2</processStepNumber>

491 </edge>

492 <edge>

493 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
494 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
495 <processStepNumber>7</processStepNumber>

496 </edge>

497 <edge>

498 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
499 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
500 <processStepNumber>7</processStepNumber>

501 </edge>

502 <edge>

503 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
504 <toExecutableBlockUID>F1</toExecutableBlockUID>

505 <processStepNumber>6</processStepNumber>

506 </edge>

507 <edge>

508 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
509 <toExecutableBlockUID>G2</toExecutableBlockUID>

510 <processStepNumber>6</processStepNumber>

511 </edge>

512 <edge>

513 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
514 <toExecutableBlockUID>G1</toExecutableBlockUID>

515 <processStepNumber>6</processStepNumber>

516 </edge>

517 <edge>

518 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
519 <toExecutableBlockUID>D1</toExecutableBlockUID>

520 <processStepNumber>3</processStepNumber>

521 </edge>

522 <edge>

523 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
524 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
525 <processStepNumber>1</processStepNumber>

526 </edge>

527 <edge>

528 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
529 <toExecutableBlockUID>Converger</toExecutableBlockUID>
530 <processStepNumber>5</processStepNumber>

531 </edge>

532 <edge>

533 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
534 <toExecutableBlockUID>D2</toExecutableBlockUID>

535 <processStepNumber>4</processStepNumber>

536 </edge>

537 </edges>

538 <nodes>

539 <node>

540 <referenceUID>F1</referenceUID>

541 <processStepNumber>6</processStepNumber>

542 <diagonalPosition>5</diagonalPosition>

543 </node>

544 <node>

545 <referenceUID>Optimizer</referenceUID>

546 <processStepNumber>1</processStepNumber>

547 <convergerStepNumber>7</convergerStepNumber>

548 <diagonalPosition>1</diagonalPosition>

549 </node>

550 <node>

551 <referenceUID>G2</referenceUID>

552 <processStepNumber>6</processStepNumber>

553 <diagonalPosition>7</diagonalPosition>

554 </node>

555 <node>

142 A. Code

556 <referenceUID>G1</referenceUID>
557 <processStepNumber>6</processStepNumber>
558 <diagonalPosition>6</diagonalPosition>
559 </node>
560 <node>
561 <referenceUID>Converger</referenceUID>
562 <processStepNumber>2</processStepNumber>
563 <convergerStepNumber>5</convergerStepNumber>
564 <diagonalPosition>2</diagonalPosition>
565 </node>
566 <node>
567 <referenceUID>Coordinator</referenceUID>
568 <processStepNumber>0</processStepNumber>
569 <convergerStepNumber>8</convergerStepNumber>
570 <diagonalPosition>0</diagonalPosition>
571 </node>
572 <node>
573 <referenceUID>D2</referenceUID>
574 <processStepNumber>4</processStepNumber>
575 <diagonalPosition>4</diagonalPosition>
576 </node>
577 <node>
578 <referenceUID>D1</referenceUID>
579 <processStepNumber>3</processStepNumber>
580 <diagonalPosition>3</diagonalPosition>
581 </node>
582 </nodes>
583 <metadata>
584 <loopNesting>
585 <loopElements>
586 <loopElement relatedUID="Optimizer”>
587 <loopElements>
588 <loopElement relatedUID="Converger”>
589 <functionElements>
590 <functionElement>D2</functionElement>
591 <functionElement>D1</functionElement>
592 </functionElements>
593 </loopElement>
594 </loopElements>
595 <functionElements>
596 <functionElement>F1</functionElement>
597 <functionElement>G2</functionElement>
598 <functionElement>G1</functionElement>
599 </functionElements>
600 </loopElement>
601 </loopElements>
602 </loopNesting>
603 </metadata>
604 </processGraph>
605 </workflow>
606 <architectureElements>
607 <parameters>
608 <initialGuessCouplingVariables>
609 <initialGuessCouplingVariable
o ulID="/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2”>
610 <relatedParameterUID>/data_ schema/y2</relatedParameterUID>
611 <label>y2”{c0}</label>
612 </initialGuessCouplingVariable>
613 </initialGuessCouplingVariables>
614 <finalCouplingVariables>
615 <finalCouplingVariable
o uID="/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2”>
616 <relatedParameterUID>/data_schema/y2</relatedParameterUID>
617 <label>y2”~*</label>
618 </finalCouplingVariable>
619 </£finalCouplingVariables>
620 <couplingCopyVariables>
621 <couplingCopyVariable
o ulID="/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2”>
622 <relatedParameterUID>/data_schema/y2</relatedParameterUID>

623 <label>y2~c</label>

624
625
626
627

628
629
630
631

632
633
634
635

636
637
638
639
640
641

642
643
644
645

646
647
648
649

650
651
652
653
654
655

656
657
658
659

660
661
662
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

A.5. Test Suite

</couplingCopyVariable>
</couplingCopyVariables>
<initialGuessDesignVariables>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/x1”>
<relatedParameterUID>/data schema/x1</relatedParameterUID>
<label>x1"0</label>
</initialGuessDesignVariable>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1”>
<relatedParameterUID>/data schema/zl1</relatedParameterUID>
<label>z170</label>
</initialGuessDesignVariable>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2”>
<relatedParameterUID>/data_ schema/z2</relatedParameterUID>
<label>z2"0</label>
</initialGuessDesignVariable>
</initialGuessDesignVariables>
<finalDesignVariables>
<finalDesignVariable
ulD="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1”>
<relatedParameterUID>/data_ schema/x1</relatedParameterUID>
<label>x1"*</label>
</finalDesignVariable>
<finalDesignVariable
uID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2”>
<re1atedParameterUID>/data_schema/z2</relatedParameterUID>
<label>z2"*</label>
</finalDesignVariable>
<finalDesignVariable
ulID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1”>
<relatedParameterUID>/data_schema/zl</relatedParameterUID>
<label>z1”*</label>
</finalDesignVariable>
</finalDesignVariables>
<finalOutputVariables>
<finalOutputVariable
ulID="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl”>
<relatedParameterUID>/data_schema/gl</relatedParameterUID>
<label>gl”*</label>
</finalOutputVariable>
<finalOutputVariable
ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2”>
<relatedParameterUID>/data schema/g2</relatedParameterUID>
<label>g2"*</label>
</finalOutputVariable>
<finalOutputVariable
ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1”>
<relatedParameterUID>/data schema/fl</relatedParameterUID>
<label>f1”*</label>
</finalOutputVariable>
</£finalOutputVariables>
</parameters>
<executableBlocks>
<coordinators>
<coordinator uID="Coordinator”>
<label>COOR</label>
</coordinator>
</coordinators>
<optimizers>
<optimizer ulID="Optimizer”>
<label>0OPT</label>
<designVariables>
<designVariable>
<designVariableUID> desVar /data schema/x1</designVariableUID>
</designVariable>
<designVariable>
<designVariableUID> desVar__/data_schema/z2</designVariableUID>
</designVariable>
<designVariable>

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

144 A. Code

<designVariableUID> desVar_ _/data schema/zl</designVariableUID>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable>
<objectiveVariableUID> objVar /data schema/fl</objectiveVariableUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable>
<constraintVariableUID> conVar__/data_schema/gl</constraintVariableUID>
</constraintVariable>
<constraintVariable>
<constraintVariableUID> conVar /data schema/g2</constraintVariableUID>
</constraintVariable>
</constraintVariables>
</optimizer>
</optimizers>
<convergers>
<converger ulD="Converger”>
<label>CONV</label>
</converger>
</convergers>
<coupledAnalyses>
<coupledAnalysis>
<relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
</coupledAnalysis>
<coupledAnalysis>
<relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
</coupledAnalysis>
</coupledAnalyses>
<postCouplingAnalyses>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G1l</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
</postCouplingAnalysis>
</postCouplingAnalyses>
</executableBlocks>
</architectureElements>
</cmdows>

Code frament A.17: Sellar problem MDF-GS CMDOWS file.

<?xml version=’1.0’ encoding=’'UTF-8’7?>
<cmdows xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
o xsi:noNamespaceSchemalLocation="https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.
<header>
<creator>D. de Vries</creator>
<description>Sellar problem MPG file</description>
<timestamp>2017-10-09T11:34:39.674000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
<updates>
<update>
<modification>KADMOS export of a mdao data graph (MDG).</modification>
<creator>D. de Vries</creator>
<timestamp>2017-10-09T11:34:39.674000</timestamp>
<fileVersion>0.1</fileVersion>
<cmdowsVersion>0.7</cmdowsVersion>
</update>
</updates>
</header>
<executableBlocks>
<designCompetences>
<designCompetence uID="F1">

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

A.5. Test Suite 145

<ID>F1</ID>
<modeID>main</modeID>
<instancelID>1</instancelID>
<version>l.0</version>
<label>F1</label>
<inputs>
<input>
<parameterUID>/data_schema/x1</parameterUID>
</input>
<input>
<parameterUID>/data_schema/y2</parameterUID>
</input>
<input>
<parameterUID>/data_ schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data schema/fl</parameterUID>
</output>
<output>
<parame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/fl</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence ulID="D2">
<ID>D2</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>D2</label>
<inputs>
<input>
<parame-
- terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_ schema/zl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
& terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</parameterUID>
</output>
<output>
<parameterUID>/data schema/y2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="G2">
<ID>G2</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>

90
91
92
93
94
95
96
97
98
99

100

101

102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157

146

A. Code

o

o

o

<version>1.0</version>
<label>G2</label>
<inputs>
<input>
<parameterUID>/data_schema/y2</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/data_schema/g2</parameterUID>
</output>
<output>
<parame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="G1"”>
<ID>G1</ID>
<modeID>main</modeID>
<instancelID>1</instancelID>
<version>l.0</version>
<label>G1l</label>
<inputs>
<input>
<parameterUID>/data_schema/yl</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</parameterUID>
</output>
<output>
<parameterUID>/data_schema/gl</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="D1">
<ID>D1</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>D1</label>
<inputs>
<input>
<parameterUID>/data_ schema/x1</parameterUID>
</input>
<input>
<parameterUID>/data_ schema/z2</parameterUID>
</input>
<input>
<parameterUID>/data_schema/z1</parameterUID>
</input>
<input>
<parame-
terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</parameterUID>
</input>
</inputs>
<outputs>
<output>

A.5. Test Suite 147

158 <parame-
o~ terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</parameterUID>
159 </output>
160 <output>
161 <parameterUID>/data_schema/yl</parameterUID>
162 </output>
163 </outputs>
164 <metadata>
165 <generalInfo>
166 <description>main execution mode</description>
167 </generalInfo>
168 </metadata>
169 </designCompetence>
170 </designCompetences>
171 </executableBlocks>
172 <parameters>
173 <parameter ulD="/data schema/gl”>
174 <label>gl</label>
175 </parameter>
176 <parameter ulD="/data schema/g2”>
177 <label>g2</label>
178 </parameter>
179 <parameter ulD="/data_schema/f1”>
180 <label>f1</label>
181 </parameter>
182 <parameter ulD="/data schema/y2”>
183 <label>y2</label>
184 </parameter>
185 <parameter ulD="/data schema/yl”>
186 <label>yl</label>
187 </parameter>
188 <parameter ulD="/data schema/x1”>
189 <label>x1</label>
190 </parameter>
191 <parameter ulD="/data schema/z2”>
192 <label>z2</label>
193 </parameter>
194 <parameter ulD="/data schema/z1”>
195 <label>z1</label>
196 </parameter>
197 </parameters>
198 <problemDefinition uID="MDFJacobi”>
199 <problemFormulation>
200 <mdaoArchitecture>MDF</mdaocArchitecture>
201 <convergerType>Jacobi</convergerType>
202 <executableBlocksOrder>
203 <executableBlock position=”1”>D1</executableBlock>
204 <executableBlock position="2">D2</executableBlock>
205 <executableBlock position="3"”>F1</executableBlock>
206 <executableBlock position="4">Gl</executableBlock>
207 <executableBlock position="5">G2</executableBlock>
208 </executableBlocksOrder>
209 <allowUnconvergedCouplings>false</allowUnconvergedCouplings>
210 </problemFormulation>
211 <problemRoles>
212 <parameters>
213 <designVariables>
214 <designVariable ulD="__desVar_ /data schema/x1”>
215 <parameterUID>/data schema/x1</parameterUID>
216 <nominalValue>5.0</nominalValue>
217 <validRanges>
218 <limitRange>
219 <minimum>0.0</minimum>
220 <maximum>10 .0</maximum>
221 </limitRange>
222 </validRanges>
223 </designVariable>
224 <designVariable uID="_ desVar /data schema/z2”>
225 <parameterUID>/data_ schema/z2</parameterUID>
226 <nominalValue>5.0</nominalValue>

227 <validRanges>

228
229
230
231
232
233
234
235
236

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288

289
290
291
292

293
294
295

148 A. Code
<limitRange>
<minimum>0.0</minimum>
<maximum>10.0</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable ulID=" desVar /data schema/z1”>
<parameterUID>/data_schema/z1</parameterUID>
<nominalValue>1.0</nominalValue>
<validRanges>
<limitRange>
<minimum>-10.0</minimum>
<maximum>10.0</maximum>
</limitRange>
</validRanges>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable ulID="__objVar /data schema/fl1”>
<parameterUID>/data schema/fl</parameterUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable ulID="”__conVar /data schema/gl”>
<parameterUID>/data schema/gl</parameterUID>
<constraintType>inequality</constraintType>
<constraintOperator><=</constraintOperator>
<referenceValue>0.0</referenceValue>
</constraintVariable>
<constraintVariable uID=" conVar /data schema/g2”>
<parameterUID>/data_schema/g2</parameterUID>
<constraintType>inequality</constraintType>
<constraintOperator><=</constraintOperator>
<referenceValue>(.0</referenceValue>
</constraintVariable>
</constraintVariables>
</parameters>
<executableBlocks>
<coupledBlocks>
<coupledBlock>D1</coupledBlock>
<coupledBlock>D2</coupledBlock>
</coupledBlocks>
<postCouplingBlocks>
<postCouplingBlock>F1</postCouplingBlock>
<postCouplingBlock>G1</postCouplingBlock>
<postCouplingBlock>G2</postCouplingBlock>
</postCouplingBlocks>
</executableBlocks>
</problemRoles>
</problemDefinition>
<workflow>
<problemDefinitionUID>MDFJacobi</problemDefinitionUID>
<dataGraph>
<name>MDG1</name>
<edges>
<edge>
<fromParame-

& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</fromParameterUID>

<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>

<fromParame-

& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</fromParameterUID>

<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>

<fromParame-

o terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl</fromParameter
<toExecutableBlockUID>Converger</toExecutableBlockUID>

</edge>
<edge>

A.5. Test Suite 149

296 <fromParame-
o terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</fromParameterUID>
297 <toExecutableBlockUID>Converger</toExecutableBlockUID>
208 </edge>
299 <edge>
300 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
301 <toParame-
& terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/yl</toParameterUID>
302 </edge>
303 <edge>
304 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
305 <toParame-
o~ terUID>/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2</toParameterUID>
306 </edge>
307 <edge>
308 <fromParame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</fromParameterUID>
309 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
310 </edge>
311 <edge>
312 <fromParame-
o terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</fromParameterUID>
313 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
314 </edge>
315 <edge>
316 <fromParameterUID>/data_ schema/y2</fromParameterUID>
317 <toExecutableBlockUID>F1</toExecutableBlockUID>
318 </edge>
319 <edge>
320 <fromParameterUID>/data_ schema/y2</fromParameterUID>
321 <toExecutableBlockUID>G2</toExecutableBlockUID>
322 </edge>
323 <edge>
324 <fromParameterUID>/data schema/y2</fromParameterUID>
325 <toExecutableBlockUID>Converger</toExecutableBlockUID>
326 </edge>
327 <edge>
328 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
329 <toParameterUID>/data_schema/g2</toParameterUID>
330 </edge>
331 <edge>
332 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
333 <toParame-
-~ terUID>/data_ schema/architectureNodes/finalOutputVariables/data schemaCopy/g2</toParameterUID>
334 </edge>
335 <edge>
336 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
337 <toParame-
& terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl</toParameterUID>
338 </edge>
339 <edge>
340 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
341 <toParameterUID>/data_schema/gl</toParameterUID>
342 </edge>
343 <edge>
344 <fromParameterUID>/data_ schema/yl</fromParameterUID>
345 <toExecutableBlockUID>F1</toExecutableBlockUID>
346 </edge>
347 <edge>
348 <fromParameterUID>/data_ schema/yl</fromParameterUID>
349 <toExecutableBlockUID>G1</toExecutableBlockUID>
350 </edge>
351 <edge>
352 <fromParameterUID>/data schema/yl</fromParameterUID>
353 <toExecutableBlockUID>Converger</toExecutableBlockUID>
354 </edge>
355 <edge>
356 <fromParameterUID>/data schema/gl</fromParameterUID>
357 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
358 </edge>

359 <edge>

360
361
362
363
364

365
366
367

369

370
371
372
373

375
376
377

378
379
380
381

382
383
384
385
386
387
388
389
390
391
392

393
394
395
396

397
398
399
400
401
402
403

405

406
407
408
409

411
412
413
414
415
416

417
418
419
420

421

150

A. Code

<fromParameterUID>/data_ schema/g2</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-

o terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/fl1</fromParameterUID>

<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-

& terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</toParameterUID>

</edge>

<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/x1</toParameterUID>

</edge>

<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-

o~ terUID>/data_ schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</toParameterUID>

</edge>

<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-

& terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</toParameterUID>

</edge>

<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data_schema/z2</toParameterUID>

</edge>

<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParameterUID>/data schema/z1</toParameterUID>

</edge>

<edge>
<fromParame-

o~ terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</fromParameterUID>

<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>

<fromParame-

o terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1</fromParameterUID>

<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParameterUID>/data schema/fl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>F1</fromExecutableBlockUID>
<toParame-

o~ terUID>/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1</toParameterUID>

</edge>
<edge>
<fromParameterUID>/data_ schema/x1</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/x1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParame-

& terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2</fromParameterUID>

<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>

<fromParame-

& terUID>/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1</fromParameterUID>

<toExecutableBlockUID>Coordinator</toExecutableBlockUID>

422
423

425
426
427
428
429
430

432
433
434
435
436
437
438
439
440
441
442
443
444
445

446
447
448
449

450
451
452
453

454
455
456
457

458
459
460

462
463
464

465

467
468

469
470
471
472

473
474
475
476

478
479
480
481
482
483

A.5. Test Suite 151

</edge>
<edge>
<fromParameterUID>/data_schema/z2</fromParameterUID>
<toExecutableBlockUID>F1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z2</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/z2</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/z1</fromParameterUID>
<toExecutableBlockUID>D2</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data_ schema/z1</fromParameterUID>
<toExecutableBlockUID>D1</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/x1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</toParameterUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/x1</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</fromParameterUID>
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParameterUID>/data schema/fl</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>

152 A. Code

484 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
485 <toParame-
& terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/y2</toParameterUID>
486 </edge>
487 <edge>
488 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
489 <toParameterUID>/data_ schema/y2</toParameterUID>
490 </edge>
491 <edge>
492 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
493 <toParame-
& terUID>/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl</toParameterUID>
494 </edge>
495 <edge>
496 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
497 <toParameterUID>/data_schema/yl</toParameterUID>
498 </edge>
499 </edges>
500 </dataGraph>
501 <processGraph>
502 <name>MPG1</name>
503 <edges>
504 <edge>
505 <fromExecutableBlockUID>F1</fromExecutableBlockUID>
506 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
507 <processStepNumber>6</processStepNumber>
508 </edge>
509 <edge>
510 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
511 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
512 <processStepNumber>7</processStepNumber>
513 </edge>
514 <edge>
515 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
516 <toExecutableBlockUID>Converger</toExecutableBlockUID>
517 <processStepNumber>2</processStepNumber>
518 </edge>
519 <edge>
520 <fromExecutableBlockUID>G2</fromExecutableBlockUID>
521 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
522 <processStepNumber>6</processStepNumber>
523 </edge>
524 <edge>
525 <fromExecutableBlockUID>G1</fromExecutableBlockUID>
526 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
527 <processStepNumber>6</processStepNumber>
528 </edge>
529 <edge>
530 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
531 <toExecutableBlockUID>F1</toExecutableBlockUID>
532 <processStepNumber>5</processStepNumber>
533 </edge>
534 <edge>
535 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
536 <toExecutableBlockUID>D2</toExecutableBlockUID>
537 <processStepNumber>3</processStepNumber>
538 </edge>
539 <edge>
540 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
541 <toExecutableBlockUID>G2</toExecutableBlockUID>
542 <processStepNumber>5</processStepNumber>
543 </edge>
544 <edge>
545 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
546 <toExecutableBlockUID>G1</toExecutableBlockUID>
547 <processStepNumber>5</processStepNumber>
548 </edge>
549 <edge>
550 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
551 <toExecutableBlockUID>D1</toExecutableBlockUID>

552 <processStepNumber>3</processStepNumber>

A.5. Test Suite 153

553 </edge>

554 <edge>

555 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
556 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
557 <processStepNumber>1</processStepNumber>

558 </edge>

559 <edge>

560 <fromExecutableBlockUID>D2</fromExecutableBlockUID>
561 <toExecutableBlockUID>Converger</toExecutableBlockUID>
562 <processStepNumber>4</processStepNumber>

563 </edge>

564 <edge>

565 <fromExecutableBlockUID>D1</fromExecutableBlockUID>
566 <toExecutableBlockUID>Converger</toExecutableBlockUID>
567 <processStepNumber>4</processStepNumber>

568 </edge>

569 </edges>

570 <nodes>

571 <node>

572 <referenceUID>F1</referenceUID>

573 <processStepNumber>5</processStepNumber>

574 <diagonalPosition>5</diagonalPosition>

575 </node>

576 <node>

577 <referenceUID>Optimizer</referenceUID>

578 <processStepNumber>1</processStepNumber>

579 <convergerStepNumber>6</convergerStepNumber>
580 <diagonalPosition>1</diagonalPosition>

581 </node>

582 <node>

583 <referenceUID>G2</referenceUID>

584 <processStepNumber>5</processStepNumber>

585 <diagonalPosition>7</diagonalPosition>

586 </node>

587 <node>

588 <referenceUID>G1</referenceUID>

589 <processStepNumber>5</processStepNumber>

590 <diagonalPosition>6</diagonalPosition>

591 </node>

592 <node>

593 <referenceUID>Converger</referenceUID>

594 <processStepNumber>2</processStepNumber>

595 <convergerStepNumber>4</convergerStepNumber>
596 <diagonalPosition>2</diagonalPosition>

597 </node>

598 <node>

599 <referenceUID>Coordinator</referenceUID>

600 <processStepNumber>0</processStepNumber>

601 <convergerStepNumber>7</convergerStepNumber>
602 <diagonalPosition>0</diagonalPosition>

603 </node>

604 <node>

605 <referenceUID>D2</referenceUID>

606 <processStepNumber>3</processStepNumber>

607 <diagonalPosition>4</diagonalPosition>

608 </node>

609 <node>

610 <referenceUID>D1</referenceUID>

611 <processStepNumber>3</processStepNumber>

612 <diagonalPosition>3</diagonalPosition>

613 </node>

614 </nodes>

615 <metadata>

616 <loopNesting>

617 <loopElements>

618 <loopElement relatedUID="Optimizer”>

619 <loopElements>

620 <loopElement relatedUID="Converger”>

621 <functionElements>

622 <functionElement>D2</functionElement>

623 <functionElement>D1</functionElement>

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

642
643
644
645

646
647
648
649
650
651

652
653
654
655

656
657
658
659
660
661

662
663
664
665

666
667
668
669
670
671

672
673
674
675

676
677
678
679

680
681
682
683
684

154

A. Code

</functionElements>

</loopElement>

</loopElements>

<functionElements>
<functionElement>F1</functionElement>
<functionElement>G2</functionElement>
<functionElement>G1l</functionElement>

</functionElements>

</loopElement>
</loopElements>
</loopNesting>
</metadata>
</processGraph>

</workflow>
<architectureElements>

<parameters>
<initialGuessCouplingVariables>
<initialGuessCouplingVariable

ulD="/data_ schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/yl”>

<relatedParameterUID>/data schema/yl</relatedParameterUID>
<label>yl~{c0}</label>
</initialGuessCouplingVariable>
<initialGuessCouplingVariable

ulD="/data schema/architectureNodes/initialGuessCouplingVariables/data schemaCopy/y2”>

<relatedParameterUID>/data schema/y2</relatedParameterUID>
<label>y2”{c0}</label>
</initialGuessCouplingVariable>
</initialGuessCouplingVariables>
<finalCouplingVariables>
<finalCouplingVariable
uID="/data schema/architectureNodes/finalCouplingVariables/data schemaCopy/yl”>
<relatedParameterUID>/data_ schema/yl</relatedParameterUID>
<label>yl~*</label>
</finalCouplingVariable>
<finalCouplingVariable
uID="/data schema/architectureNodes/finalCouplingVariables/data_ schemaCopy/y2”>
<re1atedParameterUID>/data_schema/y2</re1atedParameterUID>
<label>y2"*</label>
</finalCouplingVariable>
</finalCouplingVariables>
<couplingCopyVariables>
<couplingCopyVariable
uID="/data schema/architectureNodes/couplingCopyVariables/data_ schemaCopy/yl”>
<re1atedParameterUID>/data_schema/yl</re1atedParameterUID>
<label>yl~c</label>
</couplingCopyVariable>
<couplingCopyVariable
ulID="/data schema/architectureNodes/couplingCopyVariables/data schemaCopy/y2"”>
<relatedParameterUID>/data_schema/y2</relatedParameterUID>
<label>y2~c</label>
</couplingCopyVariable>
</couplingCopyVariables>
<initialGuessDesignVariables>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/x1”>
<relatedParameterUID>/data_ schema/x1</relatedParameterUID>
<label>x170</label>
</initialGuessDesignVariable>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z1”>
<relatedParameterUID>/data schema/zl</relatedParameterUID>
<label>z170</label>
</initialGuessDesignVariable>
<initialGuessDesignVariable
ulD="/data schema/architectureNodes/initialGuessDesignVariables/data schemaCopy/z2”>
<relatedParameterUID>/data schema/z2</relatedParameterUID>
<label>z2"0</label>
</initialGuessDesignVariable>
</initialGuessDesignVariables>
<finalDesignVariables>

685

686
687
688
689

690
691
692
693

694
695
696
697
698
699

700
701
702
703

704
705
706
707

708
709
710
711
712
713
714
715

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

A.5. Test Suite 155

<finalDesignVariable
o uID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/x1”>
<relatedParameterUID>/data_schema/x1</relatedParameterUID>
<label>x1"*</label>
</finalDesignVariable>
<finalDesignVariable
o ulID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z2”>
<relatedParameterUID>/data_schema/z2</relatedParameterUID>
<label>z2"*</label>
</finalDesignVariable>
<finalDesignVariable
o ulID="/data schema/architectureNodes/finalDesignVariables/data schemaCopy/z1”>
<relatedParameterUID>/data schema/zl</relatedParameterUID>
<label>z1"*</label>
</finalDesignVariable>
</finalDesignVariables>
<finalOutputVariables>
<finalOutputVariable
o ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/gl”>
<relatedParameterUID>/data schema/gl</relatedParameterUID>
<label>gl~*</label>
</finalOutputVariable>
<finalOutputVariable
o ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/g2”>
<relatedParameterUID>/data schema/g2</relatedParameterUID>
<label>g2”*</label>
</finalOutputVariable>
<finalOutputVariable
o ulD="/data schema/architectureNodes/finalOutputVariables/data schemaCopy/f1”>
<re1atedParameterUID>/data_schema/f1</relatedParameterUID>
<label>f1"*</label>
</£finalOutputVariable>
</finalOutputVariables>
</parameters>
<executableBlocks>
<coordinators>
<coordinator uID="Coordinator”>
<label>COOR</label>
</coordinator>
</coordinators>
<optimizers>
<optimizer uID="Optimizer”>
<label>OPT</label>
<designVariables>
<designVariable>
<designVariableUID> desVar__/data_schema/x1</designVariableUID>
</designVariable>
<designVariable>
<designVariableUID> desVar_ /data schema/z2</designVariableUID>
</designVariable>
<designVariable>
<designVariableUID> desVar /data schema/zl</designVariableUID>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable>
<objectiveVariableUID> objVar__/data_schema/fl</objectiveVariableUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable>
<constraintVariableUID> conVar /data schema/gl</constraintVariableUID>
</constraintVariable>
<constraintVariable>
<constraintVariableUID> conVar /data schema/g2</constraintVariableUID>
</constraintVariable>
</constraintVariables>
</optimizer>
</optimizers>
<convergers>
<converger ulD="Converger”>

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

© ® N o U AW N =

O L NG AW N -

156

A. Code

<label>CONV</label>
</converger>
</convergers>
<coupledAnalyses>
<coupledAnalysis>
<relatedExecutableBlockUID>D2</relatedExecutableBlockUID>
</coupledAnalysis>
<coupledAnalysis>
<relatedExecutableBlockUID>D1</relatedExecutableBlockUID>
</coupledAnalysis>
</coupledAnalyses>
<postCouplingAnalyses>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G2</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>G1</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>F1</relatedExecutableBlockUID>
</postCouplingAnalysis>
</postCouplingAnalyses>
</executableBlocks>
</architectureElements>
</cmdows>

Code frament A.18: Sellar problem MDF-J CMDOWS file.

<?xml version=’1.0’ encoding=’UTF-8’7?>
<data_schema>
<x1>5.0</x1>
<z1>1.0</z1>
<z2>5.0</z2>
<architectureNodes>
<couplingCopyVariables>
<data_schemaCopy>
<yl>5.0</y1>
<y2>5.0</y2>
</data_schemaCopy>
</couplingCopyVariables>
</architectureNodes>
</data_schema>

Code frament A.19: Sellar problem input XML file.

Knowledge Base

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Vs

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the Sellar DI discipline.

from _ future import absolute_ import, division, print_ function

from lxml import etree

23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

A.5. Test Suite 157

from openlego.api import AbstractDiscipline

from openlego.utils.xml utils import xml_safe create_element

from openlego.test suite.test examples.sellar.kb import root tag, x x1, x yl, x y2, x zl, x z2
from openlego.partials.partials import Partials

import openlego.test_suite.test examples.sellar.store as store

class D1 (AbstractDiscipline):

@property

def

creator (self):
return u’D. de Vries’

@property

def

description (self):
return u’First discipline of the Sellar problem’

@property

def

def

def

def

supplies partials(self):
return True

generate input xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x x1,
xml_ safe create element (doc, x_zl1,
xml safe create element (doc, x z2,
xml safe create element (doc, x y2,

o O O O

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate output xml (self):
root = etree.Element (root_tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x yl, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
generate partials xml (self):

partials = Partials()

partials.declare partials(x_ yl, [x x1, x y2, x zl, x_ z2])
return partials.get string()

@staticmethod

def

execute (in file, out file):
store.count[0] += 1
store.sleep()

doc = etree.parse(in_file)
z1l = float (doc.xpath(x_zl) [0].text
z2 = float (doc.xpath(x z2) [0].text
x1 = float (doc.xpath(x_x1) [0].text
y2 = float (doc.xpath(x y2) [0].text

yl = z1**2. + x1 + z2 - .2*%y2

root = etree.Element (root tag)

doc = etree.ElementTree (root)

xml safe create element (doc, x yl, yl)

doc.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

@staticmethod

def

linearize (in_file, partials_file):
doc = etree.parse(in_ file)
z1 = float (doc.xpath(x_z1) [0].text)

partials = Partials()
partials.declare partials(x yl, [x x1, x y2, x z1, x z2], [l., -.2, 2.%z1, 1.])

94

© W N U R W N

158

A. Code

Code

#!/u
#_*

g

Copy.

Lice

partials.write (partials file)

frament A.20: Code of the Sellar D1 Python module.

sr/bin/env python
- coding: utf-8 —*-

right 2017 D. de Vries

nsed under the Apache License, Version 2.0 (the ”License”);

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unle
dist

http://www.apache.org/licenses/LICENSE-2.0

ss required by applicable law or agreed to in writing, software
ributed under the License is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See

1imi
This
o

from
from
from
from
from

from

impo

clas

the License for the specific language governing permissions and
tations under the License.

file contains the definition of the Sellar D2 discipline.
_ future import absolute import, division, print function
1xml import etree

openlego.api import AbstractDiscipline

openlego.utils.xml utils import xml safe create element
openlego.test_suite.test_examples.sellar.kb import root_tag, x_vyl, x_y2, x_zl, x_z2
openlego.partials.partials import Partials

rt openlego.test suite.test_examples.sellar.store as store

s D2 (AbstractDiscipline):

@property
def creator(self):
return u’D. de Vries’

@property
def description(self):
return u’ Second discipline of the Sellar problem’

@property
def supplies partials(self):
return True

def generate input xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x zl, 0.)

xml safe create element (doc, x z2, 0.)

xml safe create element (doc, x yl, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
def generate output xml (self):

root = etree.Element (root tag)

doc = etree.ElementTree (root)

xml safe create_element (doc, x y2, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
def generate partials xml (self):

partials = Partials()
partials.declare partials(x y2, [x yl, x zl, x z2])

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

O N U AW N e

W oW W W W NNNNNNRNN RN 2 s e e e e e e s
F O N =~ O © ® N o0 A DN = O 0 ® N O A WN = O

35

A.5. Test Suite 159

return partials.get string()

@staticmethod
def execute(in_file, out file):

store.count[1l] += 1

store.sleep ()

doc = etree.parse(in_file)

z1 float (doc.xpath(x zl) [0].text)
z2 = float (doc.xpath(x_ z2) [0].text)
yl float (doc.xpath(x_yl) [0].text)

y2 = abs(yl)**.5 + z1 + z2

root = etree.Element (root tag)

doc = etree.ElementTree (root)

xml safe create element (doc, x y2, y2)

doc.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def linearize(in_file, partials_ file):

doc = etree.parse(in_ file)
yl = float (doc.xpath(x_y1) [0].text)

dy2 dyl = .5 * float(((yl > 0) - (yl < 0))) / abs(yl)**.5
partials = Partials()

partials.declare partials(x y2, [x yl, x zl, x z2], [dy2 dyl, 1., 1.])
partials.write (partials file)

Code frament A.21: Code of the Sellar D2 Python module.

#!/usr/bin/env python
—-*- coding: utf-8 -*-

g

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This

rrr

from
from
from
from
from

from
from

file contains the definition of the Sellar F1 discipline.

_ future_ import absolute import, division, print_function
math import exp

lxml import etree

openlego.api import AbstractDiscipline
openlego.utils.xml_utils import xml safe create_ element

openlego.test suite.test examples.sellar.kb import root tag, x x1, x yl, x y2, x z2, x fl
openlego.partials.partials import Partials

import openlego.test suite.test examples.sellar.store as store

class F1 (AbstractDiscipline):

@property

def creator(self):

return u’D. de Vries’

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

© ® N o U AW N =

160

A. Code

@property

def

description (self):
return u’Objective function of the Sellar problem’

@property

def

def

def

def

supplies partials(self):
return True

generate input xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x z2,
xml safe create element (doc, x x1,
xml_safe create_element (doc, x_yl,
xml safe create element (doc, x y2,

o O O o

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate output xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x f1, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
generate partials xml (self):

partials = Partials()

partials.declare partials(x fl, [x x1, x yl, x y2, x z2])
return partials.get string()

@staticmethod

def

execute (in_file, out file):
store.count[2] += 1
store.sleep ()

doc = etree.parse(in file)
z2 = float (doc.xpath(x_z2)

([0].text)
x1 = float (doc.xpath(x_x1) [

([

([

]

] .text)
] .text)
].text)

yl = float (doc.xpath(x y1)
y2 = float (doc.xpath(x_y2)

fl = x1**2. + z2 + yl + exp(-y2)

root = etree.Element (root_tag)

doc = etree.ElementTree (root)

xml safe create element (doc, x f1, f1)

doc.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod

def

linearize(in file, partials file):
doc = etree.parse(in_file)

x1 = float (doc.xpath(x_x1) [0].text)
y2 = float (doc.xpath(x y2) [0].text)

partials = Partials()
partials.declare partials(x f1l, [x x1, x yl, x vy2, x z2], [2.*x1, 1., -exp(-y2), 1.1)
partials.write (partials file)

Code frament A.22: Code of the Sellar F1 Python module.

#!/usr/bin/env python
—-*- coding: utf-8 -*-

s

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

A.5. Test Suite 161
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License 1is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See

1imi
This
o

from
from
from
from
from

from

impo

clas

the License for the specific language governing permissions and
tations under the License.

file contains the definition of the Sellar Gl discipline.
_ future_ import absolute_ import, division, print_function
lxml import etree

openlego.api import AbstractDiscipline

openlego.utils.xml_utils import xml_ safe create_element
openlego.test_suite.test examples.sellar.kb import root tag, x_yl, x gl
openlego.partials.partials import Partials

rt openlego.test suite.test_examples.sellar.store as store

s Gl (AbstractDiscipline):

@property
def creator (self):
return u’D. de Vries’

@property
def description(self):
return u’First constraint function of the Sellar problem’

@property
def supplies partials(self):
return True

def generate input xml (self):
root = etree.Element (root_tag)
doc = etree.ElementTree (root)

xml_safe create_ element (doc, x yl, 0.)
return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)

xml safe create element (doc, x gl, 0.)
return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate partials xml (self):
partials = Partials()
partials.declare partials(x _gl, x_ yl)
return partials.get string()

@staticmethod
def execute(in_file, out file):
store.count[3] += 1
store.sleep ()
doc = etree.parse(in_file)
yl = float (doc.xpath(x yl) [0].text)

gl = 1. - yl1/3.16

root = etree.Element (root tag)

doc = etree.ElementTree (root)

xml safe create element (doc, x gl, gl)

doc.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

81
82
83
84
85

[= N B N R N

162

A. Code

@staticmethod

def linearize(in_file, partials file):

Code

#!/u
#,*

Vaaa

Copy

Lice

partials = Partials()
partials.declare partials(x gl, x yl, -1./3.16)
partials.write (partials file)

frament A.23: Code of the Sellar G1 Python module.

sr/bin/env python
- coding: utf-8 —-*-

right 2017 D. de Vries

nsed under the Apache License, Version 2.0 (the ”License”);

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Unle
dist

http://www.apache.org/licenses/LICENSE-2.0

ss required by applicable law or agreed to in writing, software
ributed under the License 1is distributed on an ”AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See

1imi
This
o

from
from
from
from
from

from

impo

clas

the License for the specific language governing permissions and
tations under the License.

file contains the definition of the Sellar G2 discipline.

_ future_ import absolute import, division, print_function

lxml import etree

openlego.api import AbstractDiscipline

openlego.utils.xml utils import xml_ safe create_element
openlego.test_suite.test examples.sellar.kb import root tag, x y2, x g2

openlego.partials.partials import Partials

rt openlego.test_suite.test examples.sellar.store as store

s G2 (AbstractDiscipline) :
@property
def creator (self):
return u’D. de Vries’
@property
def description(self):
return u’First constraint function of the Sellar problem’
@property
def supplies partials(self):
return True
def generate input xml (self):
root = etree.Element (root_tag)
doc = etree.ElementTree (root)
xml safe create element (doc, x y2, 0.)
return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
def generate output xml (self):
root = etree.Element (root tag)
doc = etree.ElementTree (root)
xml safe create element (doc, x g2, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate partials xml (self):

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

O LN U A W N -

W oW ONNNNNNNN NN 2o e s s e e e e e
= O O ® N 0 @ & ® N =~ O © ® N O U A WN = O

Lo T N N

A.5. Test Suite

163

partials = Partials()
partials.declare partials(x g2, x_y2)
return partials.get string()

@stati

cmethod

def execute(in_file, out file):

store.count[4]

store.sleep ()
doc = etree.parse(in_file)
= float (doc.xpath(x y2) [0].text)

y2

g2

= y2/24. -

+=1

1.

root = etree.Element (root tag)
doc = etree.ElementTree (root)
xml safe create element (doc, x g2, g2)

doc.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

@stati

cmethod

def linearize(in_file, partials_file)
partials = Partials()
partials.declare partials(x g2, x y2, 1./24.)
partials.write(partials file)

Code frament A.24: Code of the Sellar G2 Python module.

<?xml version="”1.0” encoding="UTF-8” ?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”>

<!-- definition of simple elements -->

<xs:element name="x1" type="xs:decimal”/>
<xs:element name="z1"” type="xs:decimal”/>
<xs:element name="z2"” type="xs:decimal”/>
<xs:element name="yl” type="xs:decimal”/>
<xs:element name="y2” type="xs:decimal”/>
<xs:element name="gl” type="xs:decimal”/>
<xs:element name="g2” type="xs:decimal”/>
<xs:element name="fl"” type="xs:decimal”/>
<!-- definition of complex elements -->

<xs:element name="data schema”>
<xs:complexType>

<xs:all>

element ref="x1"” minOccurs="0"

<xs:
<xs:
<xXs:
<xs:
<xXs:
<xs:
<xs:
<xs:

element ref=

”z1” minOccurs="0"

element ref="z2" minOccurs="0"
element ref="yl” minOccurs="0"

element ref=

”y2” minOccurs="0"

element ref="gl” minOccurs="0"

element ref=

”g2” minOccurs="0"

element ref="fl1” minOccurs="0"

</xs:all>
</xs:complexType>

</xs:element>

</xs:schema>

maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>
maxOccurs="1"/>

Code frament A.25: Data schema of the Sellar problem.

A.5.2. Wing Optimization
Test Case

#!/usr/bin/env python

—-*- coding: utf-8 -*-

wmrr

Copyright 2017 D. de Vries

Licensed under the Apache License, Versio

n 2.0 (the ”License”);

32
33
34
35
36
37
38
39
40
41
42
43
44

45
46

47

48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

164 A. Code

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the test case for the wing optimization example problem.

Vs

from _ future_ import absolute_ import, division, print_function

from datetime import datetime
import unittest

from os import path

from shutil import copyfile

from openmdao.api import Problem, ScipyOptimizer
from openmdao.recorders.base_recorder import BaseRecorder

from openlego.api import LEGOModel
from openlego.recorders import NormalizedDesignVarPlotter, ConstraintsPlotter,
o SimpleObjectivePlotter

class MyRecorder (BaseRecorder) :
def record metadata system(self, object requesting recording):
pass

def record metadata solver(self, object requesting recording):
pass

def record metadata driver (self, object requesting recording):
pass

def record iteration driver passing vars(self, object requesting recording, desvars,
- responses, objectives,
constraints, sysvars, metadata):
super (MyRecorder,
o self).record iteration driver passing vars(object requesting recording, desvars,
responses,
- objectives, constraints, sysvars,
metadata)
src = path.abspath(’base.xml’)
dst = path.abspath(’base-’ + datetime.now().strftime (’3YSm%dSHIMSE") + ' .xml’)
copyfile(src, dst)

class TestWingOptimization (unittest.TestCase):

def test wing opt(self):
7””Solve the wing optimization problem.
1. Create a Problem
prob = Problem()
prob.set solver print (0)

10007

base path = path.abspath (’base.xml’)
copyfile (path.abspath (’input.xml’), base_path)

2. Create the LEGOModel

model = prob.model = LEGOModel ('MDG MDF-GS-full.xml’, # CMDOWS file
"kb', # Knowledge base
"y # Output directory
base path) # Output file

3. Create a Driver object
driver = prob.driver = ScipyOptimizer ()
driver.options[’optimizer’] = ’SLSQP’

A.5. Test Suite 165

74 driver.options[’disp’] = True

75 driver.options[’tol’] = 1.0e-2

76 driver.opt settings = {’disp’: True, 'iprint’: 2, "ftol’: 1.0e-2}

77

78 # 4. Setup the problem

79 prob.setup ()

80

81 from openmdao.api import view model

82 view model (prob)

83 model.coupled group.linear solver.options[’maxiter’] = 10 # Increase maxiter of the
o linear solver

84 model.coupled group.nonlinear solver.options[’maxiter’] = 1 # Increase maxiter of the
o nonlinear solver

85 model.coupled group.linear solver.options[’rtol’] = le-2

86 model.coupled group.nonlinear solver.options[’rtol’] = le-2

87 model.approx totals (method=’fd")

88 prob.final setup()

89

90 model.initialize from xml (’input.xml’)

91 prob.run_model ()

92

93 # 5. Attach some Recorders

94 desvar plotter = NormalizedDesignVarPlotter() # Create a plotter for the design
- variables

95 desvar_plotter.options[’save on close’] = True # Should this plot be saved
o automatically?

96 desvar plotter.save settings[’path’] = ’desvar.png’ # Set the filename of the image
o file

97

98 convar_plotter = ConstraintsPlotter () # Create a plotter for the constraints

99 convar plotter.options[’save on close’] = True # Should this plot be saved
o automatically?

100 convar plotter.save settings[’path’] = ’convar.png’ # Set the filename of the image
o file

101

102 objvar plotter = SimpleObjectivePlotter() # Create a plotter for the objective

103 objvar plotter.options[’save on close’] = True # Should this plot be saved
o automatically?

104 objvar plotter.save settings[’path’] = ’‘objvar.png’ # Set the filename of the image
o file

105

106 driver.add recorder (desvar plotter) # Attach the design variable plotter

107 driver.add recorder (convar plotter) # Attach the constraint variable plotter

108 driver.add recorder (objvar plotter) # Attach the objective variable plotter

109

110 # 6. Solve the problem

111 prob.run driver ()

112 prob.cleanup ()

Code frament A.26: Code of the wing optimization test Python script.

1 <?xml version=’1.0’ encoding=’'UTF-8’7?>
2 <cmdows xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
o xsi:noNamespaceSchemaLocation="https://bitbucket.org/imcovangent/cmdows/raw/master/schema/0.7/cmdows.xsd”>
3 <header>
4 <creator>D. de Vries</creator>
5 <description>Wing optimization MPG file</description>
6 <timestamp>2017-11-07T15:13:10.036671</timestamp>
7 <fileVersion>0.1</fileVersion>
8 <cmdowsVersion>0.7</cmdowsVersion>
9

<updates>
10 <update>
11 <modification>KADMOS export of a mdao data graph (MDG) .</modification>
12 <creator>D. de Vries</creator>
13 <timestamp>2017-11-07T15:13:10.036671</timestamp>
14 <fileVersion>0.1</fileVersion>
15 <cmdowsVersion>0.7</cmdowsVersion>
16 </update>
17 </updates>

18 </header>

20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35

36
37
38

39
40
41

42
43
44

45
46
47

48
49
50

51
52
53

54
55
56

57
58
59

60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

A. Code

<executableBlocks>

<designCompetences>

<designCompetence uID="dLC”>
<ID>dLC</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>dLC</label>
<inputs>

<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma rs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma bs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma ts</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ts</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ ts</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma bs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma fs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma_ fs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma bs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma rs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma rs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma fs</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma ts</parameterUID>
</output>
<output>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma bs</parameterUID>
</output>
<output>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma_rs</parameterUID>
</output>
<output>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma fs</parameterUID>
</output>

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94
95
96
97
98
929

100
101
102

103
104
105

106
107
108

109
110
111
112
113
114

115
116
117

118
119
120

122
123

124
125
126

127
128
129

130
131
132
133
134
135
136
137
138

A.5. Test Suite 167

</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence ulID="FWE"”>
<ID>FWE</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>FWE</label>
<inputs>
<input>

& <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/C_D f</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</parameterUID>
</input>
<input>
<parame-
5 terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_ D other</parameterUID>
</input>
<input>

- <parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</parameterUID>
</input>
<input>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</parameterUID>
</input>
<input>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D i</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</parameterUID>
</input>
<input>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D f</parameterUID>
</input>
<input>
<parame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C D fus</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</parameterUID>
</input>
<input>
<parame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed</parameterUID>
</input>
<input>
<parame-
- terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel res</parameterUID>
</input>
<input>

- <parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</parameterUID>

</input>

<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/M</parameterUID>

</input>

<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</parameterUID>

</input>

<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</parameterUID>

139
140

142
143
144
145
146
147

148
149
150
151
152
153

154
155
156

157
158
159

160
161
162
163
164
165

166
167
168
169
170

172
173

174
175
176

178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201

168

A. Code

o

o

o

</input>

<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</parameterUID>

</input>

<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/m wing</parameterUID>

</input>

<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C L</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/n</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D i</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D f</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D i</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parameterUID>/cpacs/toolspecific/fuel weight estimator/C_L</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MTOW</parameterUID>
</output>
<output>
<parameterUID>/cpacs/toolspecific/fuel weight estimator/m_ fuel</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel weight estimator/m
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence ulID="ObjectiveFunctions”>
<ID>ObjectiveFunctions</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>ObjectiveFunctions</label>
<inputs>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/m _wing</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m wing init</parameterUID>
</input>
<input>

202
203

205

206
207
208
209

211
212
213

214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236

237
238
239
240
241
242

243
244
245

246
247
248
249
250
251
252
253
254
255
256
257

259
260
261
262

263

A.5. Test Suite 169

<parameterUID>/cpacs/toolspecific/fuel weight estimator/m fuel</parameterUID>
</input>
<input>
<parame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m_fuel init</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objecti
</output>
<output>
<parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="ConstraintFunctions”>
<ID>ConstraintFunctions</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>1.0</version>
<label>ConstraintFunctions</label>
<inputs>
<input>
<parame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_ L buffet</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma rs</parameterUID>
</input>
<input>
<parame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS init</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/fuel weight estimator/C L</parameterUID>
</input>
<input>
<parame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MTOW</parameterUID>
</input>
<input>
<parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma_yield</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma fs</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma bs</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma ts</parameterUID>
</input>
<input>

- <parameterUID>/cpacs/vehicles/aircraft/model [@uID="model”]/reference/area</parameterUID>
</input>
</inputs>
<outputs>
<output>
<parame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constra
</output>

264
265

266
267
268

269
270

272
273
274

275

277

278
279
280

281
282
283

284
285
286

287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310
311
312

313
314
315

316
317
318

319
320

170

A. Code

<output>
<parame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
</output>
<output>
<parame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts</parameterUID>
</output>
<output>
<parame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
</output>
<output>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma rs</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
<designCompetence uID="Aeroelastics”>
<ID>Aeroelastics</ID>
<modeID>main</modeID>
<instanceID>1</instanceID>
<version>l.0</version>
<label>RAeroelastics</label>
<inputs>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m wings</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</parameterUID>
</input>
<input>

321

322
323
324

325
326
327

328
329
330
331
332
333

334
335
336

337
338
339
340
341
342
343
344
345
346
347
348

349
350
351

352
353
354
355
356
357

358
359
360

361
362
363

364
365
366

367
368
369

370
371
372

374
375

376
377

A.5. Test Suite 171

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MLW</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m payload</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/M</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</parameterUID>
</input>
<input>
<parame-

terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel weight estimator/m fuel</

</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t skin</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m sys</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/n</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</parameterUID>
</input>
<input>

378

379
380
381
382
383
384

385
386
387

388
389
390

391
392
393
394
395
396
397
398

399
400
401

402
403
404

405
406
407

408
409
410

420
421
422

423
424
425

426

427

429
430
431

432

172

A. Code

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</parameterUID>
</input>
<input>
<parame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho skin</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</parameterUID>
</input>
<input>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</parameterUID>
</input>
<input>
<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</parameterUID>

</input>

</inputs>

<outputs>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma_ts</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma bs</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma fs</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_L</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma bs</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C_ D i</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma ts</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D f</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C L</parameterUID>
</output>
<output>

<parameterUID>/cpacs/vehicles/aircraft/model [@uID="model”]/reference/area</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma rs</parameterUID>
</output>
<output>

<parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma_ fs</parameterUID>
</output>

433
434

435
436
437

438
439

441
442
443

444
445

447
448
449

450
451
452

453
454
455

456
457
458

459
460
461

462
463
464

465

467
468
469
470
471
472

474
475
476
477
478
479

481
482
483
484
485
486

488
489
490
491
492
493

A.5. Test Suite 173

<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma_ rs</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma ts</parameterUID>
</output>
<output>
<parameterUID>/cpacs/toolspecific/dAEDalus/m wing</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D i</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D i</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/C_D f</parameterUID>
</output>
<output>

o~ <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C_L</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma fs</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma bs</parameterUID>
</output>
<output>

o <parameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([1l]/sigma rs</parameterUID>
</output>
</outputs>
<metadata>
<generalInfo>
<description>main execution mode</description>
</generalInfo>
</metadata>
</designCompetence>
</designCompetences>
</executableBlocks>
<parameters>
<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/structure/t fs”>
<label>t fs</label>
</parameter>
<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel init”>
<label>m fuel init</label>
</parameter>
<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs”>
<label>con sigma bs</label>
</parameter>
<parameter ulD="/cpacs/toolspecific/dAEDalus/load collector/sigma bs”>
<label>sigma bs</label>
</parameter>
<parameter ulID="/cpacs/toolspecific/wingOptimizationProblem/reference/C D other”>
<label>C D other</label>
</parameter>
<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma ts”>
<label>sigma ts</label>
</parameter>

174 A. Code

494 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel res”>
495 <label>m fuel res</label>

496 </parameter>

497 <parameter ulID="/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs”>
498 <label>con_sigma_rs</label>

499 </parameter>

500 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma rs”>

501 <label>sigma rs</label>

502 </parameter>

503 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/sigma yield”>
504 <label>sigma yield</label>

505 </parameter>

506 <parameter ulID="/cpacs/toolspecific/dAEDalus/load collector/sigma rs”>

507 <label>sigma rs</label>

508 </parameter>

509 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon”>

510 <label>epsilon</label>

511 </parameter>

512 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C L”>

513 <label>C I1</label>

514 </parameter>

515 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/sigma bs”>

516 <label>sigma bs</label>

517 </parameter>

518 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma bs”>

519 <label>sigma bs</label>

520 </parameter>

521 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m MLW”>

522 <label>m MLW</label>

523 </parameter>

524 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/sigma ts”>

525 <label>sigma ts</label>

526 </parameter>

527 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m payload”>
528 <label>m payload</label>

529 </parameter>

530 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts”>
531 <label>con sigma ts</label>

532 </parameter>

533 <parameter uID="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_L”>

534 <label>C 1</label>

535 </parameter>

536 <parameter ulD="/cpacs/vehicles/aircraft/model [@uID="model"]/reference/area”>
537 <label>area</label>

538 </parameter>

539 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma rs”>

540 <label>sigma rs</label>

541 </parameter>

542 <parameter uID="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([l]/sigma fs”>

543 <label>sigma fs</label>

544 </parameter>

545 <parameter ulID="/cpacs/toolspecific/wingOptimizationProblem/structure/t skin”>

546 <label>t skin</label>

547 </parameter>

548 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs”>

549 <label>xsi fs</label>

550 </parameter>

551 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D i”>

552 <label>C D i</label>

553 </parameter>

554 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/C L buffet”>
555 <label>C L buffet</label>

556 </parameter>

557 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/tc”>

558 <label>tc</label>

559 </parameter>

560 <parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m wing init”>
561 <label>m wing init</label>

562 </parameter>

563 <parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([1l]/sigma ts”>

564 <label>sigma ts</label>

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

A.5. Test Suite

175

</parameter>

<parameter ulID="/cpacs/toolspecific/fuel weight estimator/C L”>
<label>C I</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma fs”>
<label>sigma fs</label>

</parameter>

<parameter uID="/cpacs/toolspecific/dAEDalus/load collector/sigma fs”>
<label>sigma fs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/f m wings”>
<label>f m wings</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel”>
<label>obj m fuel</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/structure/t bs”>
<label>t bs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma”>
<label>Gamma</label>

</parameter>

<parameter ulID="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D £”>
<label>C D f</label>

</parameter>

<parameter uID="/cpacs/toolspecific/wingOptimizationProblem/reference/C D fus”>
<label>C D fus</label>

</parameter>

<parameter uID="/cpacs/toolspecific/wingOptimizationProblem/reference/m MTOW”>
<label>m MTOW</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/SFC”>
<label>SFC</label>

</parameter>

<parameter uID="/cpacs/toolspecific/wingOptimizationProblem/reference/f m sys”>
<label>f m sys</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/structure/t ts”>
<label>t ts</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D i”>
<label>C D i</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D f”>
<label>C D f</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D i”>
<label>C D i</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D £”>
<label>C D f</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/WS init”>
<label>WS init</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs”>
<label>con sigma fs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS”>
<label>con WS</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/incidence”>
<label>incidence</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/R”>
<label>R</label>

</parameter>

<parameter ulID="/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs”>
<label>xsi rs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C L”>

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

176

A. Code

<label>C I1</label>

</parameter>

<parameter uID="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([2]/sigma fs”>
<label>sigma fs</label>

</parameter>

<parameter ulID="/cpacs/toolspecific/dAEDalus/loadCases/loadCase([1l]/sigma bs”>
<label>sigma bs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda”>
<label>Lambda</label>

</parameter>

<parameter ulID="/cpacs/toolspecific/wingOptimizationProblem/structure/t rs”>
<label>t rs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/load collector/sigma ts”>
<label>sigma ts</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/rho skin”>
<label>rho skin</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma rs”>
<label>sigma rs</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/c”>
<label>c</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/planform/b”>
<label>b</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n”>
<label>n</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H">
<label>H</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M">
<label>M</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed”>
<label>m fixed</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/fuel weight estimator/m fuel”>
<label>m fuel</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/M">
<label>M</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/H">
<label>H</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H">
<label>H</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M">
<label>M</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/n”>
<label>n</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n”>
<label>n</label>

</parameter>

<parameter ulD="/cpacs/toolspecific/dAEDalus/m wing”>
<label>m wing</label>

</parameter>

</parameters>
<problemDefinition uID="MDFGauss-Seidel”>

<problemFormulation>
<mdaoArchitecture>MDF</mdaocArchitecture>
<convergerType>Gauss-Seidel</convergerType>
<executableBlocksOrder>

707
708
709
710
711
712
713
714
715
716
717
718

719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

738

739

741
742
743
744
745
746

748
749
750
751
752
753
754
755
756

757

758
759
760
761
762
763
764
765
766
767
768
769
770
771

A.5. Test Suite 177

<executableBlock position="1">Aeroelastics</executableBlock>
<executableBlock position="2">FWE</executableBlock>
<executableBlock position=”3”>dLC</executableBlock>
<executableBlock position="4”>ConstraintFunctions</executableBlock>
<executableBlock position="5”">0bjectiveFunctions</executableBlock>
</executableBlocksOrder>
<allowUnconvergedCouplings>false</allowUnconvergedCouplings>
</problemFormulation>
<problemRoles>
<parameters>
<designVariables>
<designVariable
o uID="_desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t fs”>

o <parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</parameterUID>
<nominalValue>
<nominalvalue>0.00450588</nominalvalue>
<nominalvalue>0.00458215</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>0.001</minimum>
<minimum>0.001</minimum>
</minimum>
<maximum>
<maximum>0.03</maximum>
<maximum>0.03</maximum>
</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable
o uID="_ desVar /cpacs/toolspecific/wingOptimizationProblem/planform/epsilon”>
<parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</parameterUID>
<nominalValue>
<nominalvalue>-0.1039</nominalvalue>
<nominalvalue>-0.1826</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>-0.25</minimum>
<minimum>-0.25</minimum>
</minimum>
<maximum>
<maximum>0.25</maximum>
<maximum>0.25</maximum>
</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable
o uID="_ desVar /cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs”>
<parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</parameterUID>
<nominalValue>
<nominalvalue>0.1</nominalvalue>
<nominalvalue>0.1925</nominalvalue>
<nominalvalue>0.35</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>

<minimum>0.
<minimum>0.
<minimum>0.

</minimum>
<maximum>

<maximum>0.

05</minimum>
05</minimum>
05</minimum>

4</maximum>

772
773
774
775
776
777
778

779

780
781
782
783
784
785

787
788
789
790
791
792
793
794
795
796
797

798

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

817

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

178

A. Code

o

o

o

o

o

o

<maximum>0.
<maximum>0.

</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable

uID="_ desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t bs”>

4</maximum>
4</maximum>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</parameterUID>

<nominalValue>

<nominalvalue>0.02553329</nominalvalue>
<nominalvalue>0.02237119</nominalvalue>

</nominalValue>
<validRanges>
<limitRange>
<minimum>

<minimum>0.
<minimum>0.

</minimum>
<maximum>

<maximum>0.
<maximum>0 .

</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable

uID=" desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t ts”>

001</minimum>
001</minimum>

03</maximum>
03</maximum>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</parameterUID>

<nominalValue>

<nominalvalue>0.02553329</nominalvalue>
<nominalvalue>0.02237119</nominalvalue>

</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>0

</minimum>
<maximum>

<maximum>0.
. 03</maximum>

<maximum>0
</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable

uID="__desVar__/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs”>

<parame-

.001</minimum>
<minimum>0.

001</minimum>

03</maximum>

terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</parameterUID>

<nominalValue>

<nominalvalue>0.6</nominalvalue>
<nominalvalue>0.8023</nominalvalue>
<nominalvalue>0.6</nominalvalue>

</nominalValue>
<validRanges>
<limitRange>
<minimum>

<minimum>0.
<minimum>0.
<minimum>0.

</minimum>
<maximum>

<maximum>0.
<maximum>0.
<maximum>0.

</maximum>
</limitRange>
</validRanges>

6</minimum>
6</minimum>
6</minimum>

9</maximum>
9</maximum>
9</maximum>

837
838

839

840
841
842
843

845
846
847
848
849
850

852
853
854
855
856
857

858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

A.5. Test Suite 179

</designVariable>
<designVariable
ulD=" desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t rs”>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</parameterUID>
<nominalValue>
<nominalvalue>0.00450611</nominalvalue>
<nominalvalue>0.00456957</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>0.001</minimum>
<minimum>0.001</minimum>
</minimum>
<maximum>
<maximum>0.03</maximum>
<maximum>0.03</maximum>
</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable
ulD="_ desVar /cpacs/toolspecific/wingOptimizationProblem/planform/c”>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</parameterUID>
<nominalValue>
<nominalvalue>13.7131</nominalvalue>
<nominalvalue>7.2595</nominalvalue>
<nominalvalue>2.7341</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>1.0</minimum>
<minimum>1.0</minimum>
<minimum>1.0</minimum>
</minimum>
<maximum>
<maximum>15.0</maximum>
<maximum>15.0</maximum>
<maximum>15.0</maximum>
</maximum>
</limitRange>
</validRanges>
</designVariable>
<designVariable
ulD="_desVar /cpacs/toolspecific/wingOptimizationProblem/planform/b”>

<parameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</parameterUID>
<nominalValue>
<nominalvalue>12.7178</nominalvalue>
<nominalvalue>22.7016</nominalvalue>
</nominalValue>
<validRanges>
<limitRange>
<minimum>
<minimum>5.0</minimum>
<minimum>5.0</minimum>
</minimum>
<maximum>
<maximum>25 . 0</maximum>
<maximum>25.0</maximum>
</maximum>
</limitRange>
</validRanges>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable
ulID="_objVar /cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel”>

180 A. Code

901 <parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</parameterUID>
902 </objectiveVariable>
903 </objectiveVariables>
904 <constraintVariables>
905 <constraintVariable
o uID="_conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs”>
906 <parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs</parameterUID>
907 <constraintType>inequality</constraintType>
908 <constraintOperator><=</constraintOperator>
909 <referenceValue>0.0</referenceValue>
910 </constraintVariable>
911 <constraintVariable
o ulD=”_conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs”>
912 <parame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs</parameterUID>
913 <constraintType>inequality</constraintType>
914 <constraintOperator><=</constraintOperator>
915 <referenceValue>0.0</referenceValue>
916 </constraintVariable>
917 <constraintVariable
o uID="_conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts”>
918 <parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts</parameterUID>
919 <constraintType>inequality</constraintType>
920 <constraintOperator><=</constraintOperator>
921 <referenceValue>0.0</referenceValue>
922 </constraintVariable>
923 <constraintVariable
o ulD=”_conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs”>
924 <parame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs</parameterUID>
925 <constraintType>inequality</constraintType>
926 <constraintOperator><=</constraintOperator>
927 <referenceValue>0.0</referencevValue>
928 </constraintVariable>
929 <constraintVariable
o uID="_conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con WS”>
930 <parame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</parameterUID>
931 <constraintType>inequality</constraintType>
932 <constraintOperator><=</constraintOperator>
933 <referenceValue>(0.0</referenceValue>
934 </constraintVariable>
935 </constraintVariables>
936 </parameters>
937 <executableBlocks>
938 <coupledBlocks>
939 <coupledBlock>Aeroelastics</coupledBlock>
940 <coupledBlock>FWE</coupledBlock>
941 </coupledBlocks>
942 <postCouplingBlocks>
943 <postCouplingBlock>dLC</postCouplingBlock>
944 <postCouplingBlock>ConstraintFunctions</postCouplingBlock>
945 <postCouplingBlock>ObjectiveFunctions</postCouplingBlock>
946 </postCouplingBlocks>
947 </executableBlocks>
948 </problemRoles>
949 </problemDefinition>
950 <workflow>
951 <problemDefinitionUID>MDFGauss-Seidel</problemDefinitionUID>
952 <dataGraph>
953 <name>MDG1</name>
954 <edges>
955 <edge>
956 <fromParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
957 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
958 </edge>

959 <edge>

960

961
962
963
964
965
966
967

969

970
971
972
973
974
975
976
977

978
979
980

981
982
983
984

985
986
987
988

989
990
991
992

993
994
995
996

997
998
999
1000

1001
1002
1003
1004

1005
1006
1007
1008

1009
1010
1011
1012

1013
1014
1015
1016

1017

A.5. Test Suite 181

<fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel init</fromParameterUID>
<toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>FWE</fromExecutableBlockUID>
<toParameterUID>/cpacs/toolspecific/fuel weight estimator/C_L</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>FWE</fromExecutableBlockUID>
<toParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MTOW</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>FWE</fromExecutableBlockUID>
<toParameterUID>/cpacs/toolspecific/fuel weight_ estimator/m_fuel</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>FWE</fromExecutableBlockUID>
<toParame-
5 terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel weight estimator/m fuel<
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
© terUID>/cpacs/toolspecific/dAEDalus/load collector/sigma bs</fromParameterUID>
<toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C D other</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constra
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
© terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planfor
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma ts</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>

1018
1019
1020

1021
1022
1023
1024

1025
1026
1027
1028

1029
1030
1031
1032

1033
1034
1035
1036

1037
1038
1039
1040

1041
1042
1043
1044

1045
1046
1047
1048

1049
1050
1051
1052

1053
1054
1055
1056

1057
1058
1059
1060

1061
1062
1063
1064

1065
1066
1067
1068

1069
1070
1071
1072

1073
1074

182

A. Code

</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel res</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma rs</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma yield</fromParameterUID>
<toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/load collector/sigma rs</fromParameterUID>
<toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C L</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>

A.5. Test Suite 183

1075 <edge>
1076 <fromParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1077 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1078 </edge>
1079 <edge>
1080 <fromParame-
© terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/sigma bs</fromParameterUID>
1081 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1082 </edge>
1083 <edge>

1084
o <fromParameterUID>/cpacs/toolspecific/fuel weight estimator/m fuel</fromParameterUID>

1085 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1086 </edge>
1087 <edge>

1088
o <fromParameterUID>/cpacs/toolspecific/fuel weight estimator/m fuel</fromParameterUID>

1089 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1090 </edge>
1091 <edge>
1092 <fromParame-
- terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structu
1093 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1094 </edge>
1095 <edge>
1096 <fromParame-
- terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planfor
1097 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1098 </edge>
1099 <edge>
1100 <fromParame-
» terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planfor
1101 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1102 </edge>
1103 <edge>
1104 <fromParame-
o terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structu
1105 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1106 </edge>
1107 <edge>
1108 <fromParame-
- terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structu
1109 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1110 </edge>
1111 <edge>
1112 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma bs</fromParameterUID>
1113 <toExecutableBlockUID>dJLC</toExecutableBlockUID>
1114 </edge>
1115 <edge>
1116 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</fromParameterUID>
1117 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1118 </edge>
1119 <edge>
1120 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</fromParameterUID>
1121 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1122 </edge>
1123 <edge>
1124 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1125 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</toParameterUID>
1126 </edge>
1127 <edge>
1128 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1129 <toParame-
» terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planfor
1130 </edge>

1131 <edge>

1132
1133

1134
1135
1136
1137

1138
1139
1140
1141

1142
1143
1144
1145

1146
1147
1148
1149

1150
1151
1152
1153

1154
1155
1156
1157

1158
1159
1160
1161

1162
1163
1164
1165

1166
1167
1168
1169

1170
1171
1172
1173

1174
1175
1176
1177

1178
1179
1180
1181

1182
1183
1184
1185

1186
1187
1188

184

A. Code

<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/p
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/g
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>

A.5. Test Suite 185

1189 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</toParameterUID>
1190 </edge>
1191 <edge>
1192 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1193 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</toParameterUID>
1194 </edge>
1195 <edge>
1196 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MLW</fromParameterUID>
1197 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1198 </edge>
1199 <edge>
1200 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1201 <toParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1202 </edge>
1203 <edge>
1204 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1205 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel init</toParameterUID>
1206 </edge>
1207 <edge>
1208 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1209
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/n</toParameterUID>

1210 </edge>
1211 <edge>
1212 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1213 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</toParameterUID>
1214 </edge>
1215 <edge>
1216 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1217 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C D other</toParameterUID>
1218 </edge>
1219 <edge>
1220 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1221
o <toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</toParameterUID>

1222 </edge>
1223 <edge>
1224 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1225 <toParame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m wings</toParameterUID>
1226 </edge>
1227 <edge>
1228 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1229 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MLW</toParameterUID>
1230 </edge>
1231 <edge>
1232 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1233 <toParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1234 </edge>
1235 <edge>
1236 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1237 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</toParameterUID>
1238 </edge>
1239 <edge>
1240 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1241
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/H</toParameterUID>

1242 </edge>

1243 <edge>

1244 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1245

1246
1247
1248
1249

1250
1251
1252
1253

1254
1255
1256
1257

1258
1259
1260
1261

1262
1263
1264
1265

1266
1267
1268
1269

1270
1271
1272
1273

1274
1275
1276
1277

1278
1279
1280
1281

1282
1283
1284
1285

1286
1287
1288
1289

1290
1291
1292
1293

1294
1295
1296
1297

1298
1299
1300

186 A. Code
<toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C D fus</toParameterUID>
</edge>
<edge>

<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/M</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fixed</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m payload</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m fuel res</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/M</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel weight esti
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t skin</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

<toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

A.5. Test Suite 187

1301 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/sigma yield</toParameterUID>
1302 </edge>
1303 <edge>
1304 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1305 <toParame-
» terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</toParameterUID>
1306 </edge>
1307 <edge>
1308 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1309 <toParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1310 </edge>
1311 <edge>
1312 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1313 <toParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m sys</toParameterUID>
1314 </edge>
1315 <edge>
1316 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1317
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</toParameterUID>

1318 </edge>

1319 <edge>

1320 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1321 <toParame-

o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C L buffet</toParameterUID>

1322 </edge>

1323 <edge>

1324 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1325
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/n</toParameterUID>

1326 </edge>

1327 <edge>

1328 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1329 <toParame-

» terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/

1330 </edge>

1331 <edge>

1332 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1333
o <toParameterUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</toParameterUID>

1334 </edge>
1335 <edge>
1336 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1337
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</toParameterUID>

1338 </edge>
1339 <edge>
1340 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1341 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS init</toParameterUID>
1342 </edge>
1343 <edge>
1344 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1345 <toParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1346 </edge>
1347 <edge>
1348 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1349 <toParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1350 </edge>
1351 <edge>
1352 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1353 <toParame-
- terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho skin</toParameterUID>
1354 </edge>
1355 <edge>

1356 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>

1357

1358
1359
1360

1361
1362
1363
1364

1365
1366
1367
1368

1369
1370
1371
1372

1373
1374
1375
1376

1377
1378
1379
1380

1381
1382
1383
1384

1385
1386
1387
1388
1389

1390
1391
1392
1393

1394
1395
1396

1397
1398
1399
1400

1401
1402
1403
1404

1405
1406
1407
1408

1409
1410
1411
1412

188 A. Code
<toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m wing init</toParameterUID>
</edge>
<edge>
<fromParame-

terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma ts</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m payload</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C L</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/vehicles/aircraft/model [@RuID="model”]/reference/area</fromParameterUID>
<toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma rs</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma fs</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
</edge>
<edge>
<fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</toParameterUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel weight estimator/m_
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/H</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</fromParameterUID>

A.5. Test Suite 189

1413 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1414 </edge>
1415 <edge>
1416 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/H</fromParameterUID>
1417 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1418 </edge>
1419 <edge>
1420 <fromParame-
> terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t skin</fromParameterUID>
1421 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1422 </edge>
1423 <edge>
1424 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</fromParameterUID>
1425 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1426 </edge>
1427 <edge>
1428 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/M</fromParameterUID>
1429 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1430 </edge>
1431 <edge>
1432 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</fromParameterUID>
1433 <toExecutableBlockUID>Aecroelastics</toExecutableBlockUID>
1434 </edge>
1435 <edge>
1436 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</fromParameterUID>
1437 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1438 </edge>
1439 <edge>
1440 <fromParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C_ L buffet</fromParameterUID>
1441 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1442 </edge>
1443 <edge>
1444 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/n</fromParameterUID>
1445 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1446 </edge>
1447 <edge>
1448 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/n</fromParameterUID>
1449 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1450 </edge>
1451 <edge>
1452 <fromParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1453 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1454 </edge>
1455 <edge>
1456 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/tc</fromParameterUID>
1457 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1458 </edge>
1459 <edge>
1460 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</fromParameterUID>
1461 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1462 </edge>
1463 <edge>
1464 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/n</fromParameterUID>
1465 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1466 </edge>
1467 <edge>
1468 <fromParame-

© terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m wing init</fromParameterUID>
1469 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>

190 A. Code

1470 </edge>
1471 <edge>
1472 <fromParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
1473 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1474 </edge>
1475 <edge>
1476 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</fromParameterUID>
1477 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1478 </edge>
1479 <edge>
1480 <fromParame-
- terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
1481 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1482 </edge>
1483 <edge>
1484 <fromParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma ts</fromParameterUID>
1485 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1486 </edge>
1487 <edge>
1488 <fromParameterUID>/cpacs/toolspecific/fuel weight estimator/C_L</fromParameterUID>
1489 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1490 </edge>
1491 <edge>
1492 <fromParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/sigma fs</fromParameterUID>
1493 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1494 </edge>
1495 <edge>
1496 <fromParame-
& terUID>/cpacs/toolspecific/dAEDalus/load collector/sigma fs</fromParameterUID>
1497 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1498 </edge>
1499 <edge>
1500 <fromParame-
& terUID>/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel weight estimator/m
1501 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1502 </edge>
1503 <edge>
1504 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m wings</fromParameterUID>
1505 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1506 </edge>
1507 <edge>
1508 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</fromParameterUID>
1509 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1510 </edge>
1511 <edge>
1512 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D i</fromParameterUID>
1513 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1514 </edge>
1515 <edge>
1516 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Gamma</fromParameterUID>
1517 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1518 </edge>
1519 <edge>
1520 <fromParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D f</fromParameterUID>
1521 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1522 </edge>
1523 <edge>
1524 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/C D fus</fromParameterUID>
1525 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1526 </edge>

1527 <edge>

A.5. Test Suite 191

1528 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/m MTOW</fromParameterUID>
1529 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1530 </edge>
1531 <edge>
1532 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/SFC</fromParameterUID>
1533 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1534 </edge>
1535 <edge>
1536 <fromParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1537 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1538 </edge>
1539 <edge>
1540 <fromParameterUID>/cpacs/toolspecific/dAEDalus/m wing</fromParameterUID>
1541 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1542 </edge>
1543 <edge>
1544 <fromParameterUID>/cpacs/toolspecific/dAEDalus/m wing</fromParameterUID>
1545 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1546 </edge>
1547 <edge>
1548 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/f m sys</fromParameterUID>
1549 <toExecutableBlockUID>Aecroelastics</toExecutableBlockUID>
1550 </edge>
1551 <edge>
1552 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</fromParameterUID>
1553 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1554 </edge>
1555 <edge>
1556 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>

1557
o <toParameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma ts</toParameterUID>

1558 </edge>
1559 <edge>
1560 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>

1561
o <toParameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma bs</toParameterUID>

1562 </edge>
1563 <edge>
1564 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>

1565
o <toParameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma rs</toParameterUID>

1566 </edge>
1567 <edge>
1568 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>

1569
o <toParameterUID>/cpacs/toolspecific/dAEDalus/load collector/sigma fs</toParameterUID>

1570 </edge>
1571 <edge>
1572 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D i</fromParameterUID>
1573 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1574 </edge>
1575 <edge>
1576 <fromParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C_D_f</fromParameterUID>
1577 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1578 </edge>
1579 <edge>
1580 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([2]/C_D_i</fromParameterUID>
1581 <toExecutableBlockUID>FWE</toExecutableBlockUID>
1582 </edge>
1583 <edge>
1584 <fromParame-

& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([3]/C D f</fromParameterUID>
1585 <toExecutableBlockUID>FWE</toExecutableBlockUID>

1586
1587
1588

1589
1590
1591
1592

1593
1594
1595
1596

1597
1598
1599
1600

1601
1602
1603
1604
1605

1606
1607
1608

1609
1610
1611
1612

1613
1614
1615
1616

1617
1618
1619
1620

1621
1622
1623
1624

1625
1626
1627
1628

1629
1630
1631
1632

1633
1634
1635
1636

1637
1638
1639
1640
1641

1642

192

A. Code

</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/WS init</fromParameterUID>
<toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</fromParameterUID>
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/s
<toExecutableBlockUID>Coordinator</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Converger</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel weight estimator/m_
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/incidence</fromParameterUID>
<toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/R</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</fromParameterUID>
<toExecutableBlockUID>Aecroelastics</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C L</fromParameterUID>
<toExecutableBlockUID>FWE</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma fs</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma bs</fromParameterUID>
<toExecutableBlockUID>dLC</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromParame-
terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationPr
<toExecutableBlockUID>Optimizer</toExecutableBlockUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma_ ts</toParameterUID>
</edge>

1643
1644
1645

1646
1647
1648
1649

1650
1651
1652
1653

1654
1655
1656
1657

1658
1659
1660
1661

1662
1663
1664
1665

1666
1667
1668
1669

1670
1671
1672
1673

1674
1675
1676
1677

1678
1679
1680
1681

1682
1683
1684
1685

1686
1687
1688
1689

1690
1691
1692
1693

1694
1695
1696
1697
1698
1699
1700

A.5. Test Suite 193

<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma bs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
-~ terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma fs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>

o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C L</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma bs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aerocelastics</fromExecutableBlockUID>
<toParame-
> terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D i</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma ts</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1]/C D f</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>

o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C 1</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/vehicles/aircraft/model [QuID="model”]/reference/area</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase([2]/sigma rs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma fs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma rs</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma ts</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
<toParameterUID>/cpacs/toolspecific/dAEDalus/m wing</toParameterUID>
</edge>
<edge>
<fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>

194 A. Code

1701 <toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D i</toParameterUID>
1702 </edge>
1703 <edge>
1704 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1705 <toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D f</toParameterUID>
1706 </edge>
1707 <edge>
1708 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1709 <toParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/C D i</toParameterUID>
1710 </edge>
1711 <edge>
1712 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1713 <toParame-
& terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C D f</toParameterUID>
1714 </edge>
1715 <edge>
1716 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>

1717
o <toParameterUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/C L</toParameterUID>

1718 </edge>
1719 <edge>
1720 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1721 <toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[2]/sigma fs</toParameterUID>
1722 </edge>
1723 <edge>
1724 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1725 <toParame-
o~ terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[3]/sigma bs</toParameterUID>
1726 </edge>
1727 <edge>
1728 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1729 <toParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[l]/sigma rs</toParameterUID>
1730 </edge>
1731 <edge>
1732 <fromParame-
& terUID>/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel weight esti
1733 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1734 </edge>
1735 <edge>
1736 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1737 <toParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
1738 </edge>
1739 <edge>
1740 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1741 <toParame-
» terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
1742 </edge>
1743 <edge>
1744 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1745 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</toParameterUID>
1746 </edge>
1747 <edge>
1748 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1749 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma bs</toParameterUID>
1750 </edge>
1751 <edge>
1752 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1753 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma fs</toParameterUID>
1754 </edge>
1755 <edge>

1756 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>

A.5. Test Suite 195

1757 <toParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constra
1758 </edge>
1759 <edge>
1760 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1761 <toParame-
- terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constra
1762 </edge>
1763 <edge>
1764 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1765 <toParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma ts</toParameterUID>
1766 </edge>
1767 <edge>
1768 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1769 <toParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constra
1770 </edge>
1771 <edge>
1772 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1773 <toParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs</toParameterUID>
1774 </edge>
1775 <edge>
1776 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/Lambda</fromParameterUID>
1777 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1778 </edge>
1779 <edge>
1780 <fromParame-
© terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</fromParameterUID>
1781 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1782 </edge>
1783 <edge>
1784 <fromParame-
o terUID>/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/
1785 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1786 </edge>
1787 <edge>
1788 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/load collector/sigma ts</fromParameterUID>
1789 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1790 </edge>
1791 <edge>
1792 <fromParame-
» terUID>/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structu
1793 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1794 </edge>
1795 <edge>
1796 <fromParame-
- terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/objecti
1797 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1798 </edge>
1799 <edge>
1800 <fromParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/reference/rho skin</fromParameterUID>
1801 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1802 </edge>
1803 <edge>
1804 <fromParame-
o terUID>/cpacs/toolspecific/dAEDalus/loadCases/loadCase[1l]/sigma rs</fromParameterUID>
1805 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1806 </edge>
1807 <edge>
1808 <fromParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</fromParameterUID>
1809 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1810 </edge>
1811 <edge>
1812 <fromParame-

o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</fromParameterUID>

196 A. Code

1813 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1814 </edge>
1815 <edge>
1816 <fromParame-
o terUID>/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/c
1817 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1818 </edge>
1819 </edges>
1820 </dataGraph>
1821 <processGraph>
1822 <name>MPG1</name>
1823 <edges>
1824 <edge>
1825 <fromExecutableBlockUID>dLC</fromExecutableBlockUID>
1826 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1827 <processStepNumber>7</processStepNumber>
1828 </edge>
1829 <edge>
1830 <fromExecutableBlockUID>ObjectiveFunctions</fromExecutableBlockUID>
1831 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1832 <processStepNumber>7</processStepNumber>
1833 </edge>
1834 <edge>
1835 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1836 <toExecutableBlockUID>Coordinator</toExecutableBlockUID>
1837 <processStepNumber>8</processStepNumber>
1838 </edge>
1839 <edge>
1840 <fromExecutableBlockUID>Optimizer</fromExecutableBlockUID>
1841 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1842 <processStepNumber>2</processStepNumber>
1843 </edge>
1844 <edge>
1845 <fromExecutableBlockUID>FWE</fromExecutableBlockUID>
1846 <toExecutableBlockUID>Converger</toExecutableBlockUID>
1847 <processStepNumber>5</processStepNumber>
1848 </edge>
1849 <edge>
1850 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1851 <toExecutableBlockUID>dLC</toExecutableBlockUID>
1852 <processStepNumber>6</processStepNumber>
1853 </edge>
1854 <edge>
1855 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1856 <toExecutableBlockUID>ObjectiveFunctions</toExecutableBlockUID>
1857 <processStepNumber>6</processStepNumber>
1858 </edge>
1859 <edge>
1860 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1861 <toExecutableBlockUID>ConstraintFunctions</toExecutableBlockUID>
1862 <processStepNumber>6</processStepNumber>
1863 </edge>
1864 <edge>
1865 <fromExecutableBlockUID>Converger</fromExecutableBlockUID>
1866 <toExecutableBlockUID>Aeroelastics</toExecutableBlockUID>
1867 <processStepNumber>3</processStepNumber>
1868 </edge>
1869 <edge>
1870 <fromExecutableBlockUID>Coordinator</fromExecutableBlockUID>
1871 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1872 <processStepNumber>1</processStepNumber>
1873 </edge>
1874 <edge>
1875 <fromExecutableBlockUID>ConstraintFunctions</fromExecutableBlockUID>
1876 <toExecutableBlockUID>Optimizer</toExecutableBlockUID>
1877 <processStepNumber>7</processStepNumber>
1878 </edge>
1879 <edge>
1880 <fromExecutableBlockUID>Aeroelastics</fromExecutableBlockUID>
1881 <toExecutableBlockUID>FWE</toExecutableBlockUID>

1882 <processStepNumber>4</processStepNumber>

1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

A.5. Test Suite

197

</edge>
</edges>
<nodes>
<node>
<referenceUID>dLC</referenceUID>
<processStepNumber>6</processStepNumber>
<diagonalPosition>5</diagonalPosition>
</node>
<node>
<referenceUID>ObjectiveFunctions</referenceUID>
<processStepNumber>6</processStepNumber>
<diagonalPosition>7</diagonalPosition>
</node>
<node>
<referenceUID>Optimizer</referenceUID>
<processStepNumber>1</processStepNumber>
<convergerStepNumber>7</convergerStepNumber>
<diagonalPosition>1</diagonalPosition>
</node>
<node>
<referenceUID>FWE</referenceUID>
<processStepNumber>4</processStepNumber>
<diagonalPosition>4</diagonalPosition>
</node>
<node>
<referenceUID>Converger</referenceUID>
<processStepNumber>2</processStepNumber>
<convergerStepNumber>5</convergerStepNumber>
<diagonalPosition>2</diagonalPosition>
</node>
<node>
<referenceUID>Coordinator</referenceUID>
<processStepNumber>0</processStepNumber>
<convergerStepNumber>8</convergerStepNumber>
<diagonalPosition>0</diagonalPosition>
</node>
<node>
<referenceUID>ConstraintFunctions</referenceUID>
<processStepNumber>6</processStepNumber>
<diagonalPosition>6</diagonalPosition>
</node>
<node>
<referenceUID>Aeroelastics</referenceUID>
<processStepNumber>3</processStepNumber>
<diagonalPosition>3</diagonalPosition>
</node>
</nodes>
<metadata>
<loopNesting>
<loopElements>
<loopElement relatedUID="Optimizer”>
<loopElements>
<loopElement relatedUID="Converger”>
<functionElements>
<functionElement>FWE</functionElement>
<functionElement>Aeroelastics</functionElement>
</functionElements>
</loopElement>
</loopElements>
<functionElements>
<functionElement>dLC</functionElement>
<functionElement>ObjectiveFunctions</functionElement>
<functionElement>ConstraintFunctions</functionElement>
</functionElements>
</loopElement>
</loopElements>
</loopNesting>
</metadata>
</processGraph>
</workflow>
<architectureElements>

198 A. Code

1954 <parameters>
1955 <initialGuessCouplingVariables>
1956 <initialGuessCouplingVariable

o ulID="/cpacs/architectureNodes/initialGuessCouplingVariables/cpacsCopy/toolspecific/fuel weight estima
1957 <relatedParame-
o terUID>/cpacs/toolspecific/fuel weight estimator/m fuel</relatedParameterUID>

1958 <label>m fuel”{c0}</label>
1959 </initialGuessCouplingVariable>
1960 </initialGuessCouplingVariables>
1961 <finalCouplingVariables>

1962 <finalCouplingVariable

o ulID="/cpacs/architectureNodes/finalCouplingVariables/cpacsCopy/toolspecific/fuel weight estimator/m f
1963 <relatedParame-

o terUID>/cpacs/toolspecific/fuel weight estimator/m fuel</relatedParameterUID>
1964 <label>m fuel”*</label>

1965 </finalCouplingVariable>
1966 </finalCouplingVariables>
1967 <couplingCopyVariables>
1968 <couplingCopyVariable

o ulID="/cpacs/architectureNodes/couplingCopyVariables/cpacsCopy/toolspecific/fuel weight estimator/m fu
1969 <relatedParame-

o terUID>/cpacs/toolspecific/fuel weight estimator/m fuel</relatedParameterUID>
1970 <label>m fuel”c</label>

1971 </couplingCopyVariable>
1972 </couplingCopyVariables>
1973 <initialGuessDesignVariables>
1974 <initialGuessDesignVariable

o ulD="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1975 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</relatedParameterUID>
1976 <label>xsi fs”0</label>
1977 </initialGuessDesignVariable>
1978 <initialGuessDesignVariable
o ulID="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1979 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</relatedParameterUID>
1980 <label>t ts~0</label>
1981 </initialGuessDesignVariable>
1982 <initialGuessDesignVariable
o ulD="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProb
1983 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</relatedParameterUID>
1984 <label>c”0</label>
1985 </initialGuessDesignVariable>
1986 <initialGuessDesignVariable
o ulID="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1987 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</relatedParameterUID>
1988 <label>b”0</label>
1989 </initialGuessDesignVariable>
1990 <initialGuessDesignVariable
o ulD="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1991 <relatedParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</relatedParameterUID>
1992 <label>t fs~0</label>
1993 </initialGuessDesignVariable>
1994 <initialGuessDesignVariable
o ulID="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1995 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</relatedParameterUID>
1996 <label>xsi rs”0</label>
1997 </initialGuessDesignVariable>
1998 <initialGuessDesignVariable
o ulID="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk
1999 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</relatedParameterUID>
2000 <label>t rs~0</label>
2001 </initialGuessDesignVariable>
2002 <initialGuessDesignVariable
o ulID="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProk

A.5. Test Suite 199

2003 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</relatedParameterUID>
2004 <label>epsilon”~0</label>
2005 </initialGuessDesignVariable>
2006 <initialGuessDesignVariable
o ulD="/cpacs/architectureNodes/initialGuessDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/st
2007 <relatedParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</relatedParameterUID>
2008 <label>t bs~0</label>

2009 </initialGuessDesignVariable>
2010 </initialGuessDesignVariables>
2011 <finalDesignVariables>
2012 <finalDesignVariable

o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/
2013 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</relatedParameterUID>

2014 <label>epsilon”*</label>
2015 </finalDesignVariable>
2016 <finalDesignVariable

o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2017 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t rs</relatedParameterUID>
2018 <label>t rs”*</label>
2019 </finalDesignVariable>
2020 <finalDesignVariable
o ulID="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/
2021 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/c</relatedParameterUID>
2022 <label>c”*</label>
2023 </finalDesignVariable>
2024 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/planform/
2025 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/planform/b</relatedParameterUID>
2026 <label>b"*</label>
2027 </finalDesignVariable>
2028 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2029 <relatedParame-
& terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t bs</relatedParameterUID>
2030 <label>t bs”*</label>
2031 </finalDesignVariable>
2032 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2033 <relatedParame-
o~ terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</relatedParameterUID>
2034 <label>xsi rs”*</label>
2035 </finalDesignVariable>
2036 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2037 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t ts</relatedParameterUID>
2038 <label>t ts”*</label>
2039 </finalDesignVariable>
2040 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2041 <relatedParame-
s terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/t fs</relatedParameterUID>
2042 <label>t fs”*</label>
2043 </finalDesignVariable>
2044 <finalDesignVariable
o ulD="/cpacs/architectureNodes/finalDesignVariables/cpacsCopy/toolspecific/wingOptimizationProblem/structure
2045 <relatedParame-
o terUID>/cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</relatedParameterUID>
2046 <label>xsi fs”*</label>

2047 </finalDesignVariable>
2048 </finalDesignVariables>
2049 <finalOutputVariables>
2050 <finalOutputVariable

o ulID="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/constrain

2051

2052
2053
2054

2055

2056
2057
2058

2059

2060
2061
2062

2063

2064
2065
2066

2067

2068
2069
2070

2071

2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087

2088
2089
2090

2091
2092
2093

2094
2095
2096

2097
2098
2099

2100
2101
2102

2103
2104

200

A. Code

<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</relatedParameterUID>
<label>con WS”*</label>
</finalOutputVariable>
<finalOutputVariable
ulD="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/con
<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con_sigma ts</relatedParameterUID>
<label>con sigma_ts”*</label>
</finalOutputVariable>
<finalOutputVariable
uID="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/con
<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs</relatedParameterUID>
<label>con sigma rs”*</label>
</£finalOutputVariable>
<finalOutputVariable
ulD="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/cor
<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs</relatedParameterUID>
<label>con_sigma bs”*</label>
</finalOutputVariable>
<finalOutputVariable
ulD="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/ob]
<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</relatedParameterUID>
<label>obj m fuel”*</label>
</finalOutputVariable>
<finalOutputVariable
ulD="/cpacs/architectureNodes/finalOutputVariables/cpacsCopy/toolspecific/wingOptimizationProblem/con
<relatedParame-
terUID>/cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs</relatedParameterUID>
<label>con sigma_ fs”*</label>
</£finalOutputVariable>
</finalOutputVariables>
</parameters>
<executableBlocks>
<coordinators>
<coordinator uID="Coordinator”>
<label>COOR</label>
</coordinator>
</coordinators>
<optimizers>
<optimizer uID="Optimizer”>
<label>0OPT</label>
<designVariables>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t bs</designVariableUID>
</designVariable>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/planform/epsilon</designVariableUID>
</designVariable>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t fs</designVariableUID>
</designVariable>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/planform/c</designVariableUID>
</designVariable>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t rs</designVariableUID>
</designVariable>
<designVariable>
<designVari-
ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/xsi fs</designVariableUID>
</designVariable>
<designVariable>

2105

2106
2107
2108

2109
2110
2111

2112
2113
2114
2115
2116

2117
2118
2119
2120
2121

2122
2123
2124

2125
2126
2127

2128
2129
2130

2131
2132
2133

2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164

A.5. Test Suite 201

<designVari-
- ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/planform/b</designVariableUID>
</designVariable>
<designVariable>
<designVari-
o~ ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/xsi rs</designVariableUID>
</designVariable>
<designVariable>
<designVari-
- ableUID> desVar /cpacs/toolspecific/wingOptimizationProblem/structure/t ts</designVariableUID>
</designVariable>
</designVariables>
<objectiveVariables>
<objectiveVariable>
<objectiveVari-
- ableUID> objVar /cpacs/toolspecific/wingOptimizationProblem/objectives/obj m fuel</objectiveVariableUID>
</objectiveVariable>
</objectiveVariables>
<constraintVariables>
<constraintVariable>
<constraintVari-
o~ ableUID> conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma ts</constraintVariableU
</constraintVariable>
<constraintVariable>
<constraintVari-
- ableUID> conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma fs</constraintVariableU
</constraintVariable>
<constraintVariable>
<constraintVari-
-~ ableUID> conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con WS</constraintVariableUID>
</constraintVariable>
<constraintVariable>
<constraintVari-
o~ ableUID> conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma rs</constraintVariableU
</constraintVariable>
<constraintVariable>
<constraintVari-
o~ ableUID> conVar /cpacs/toolspecific/wingOptimizationProblem/constraints/con sigma bs</constraintVariableU
</constraintVariable>
</constraintVariables>
</optimizer>
</optimizers>
<convergers>
<converger ulD="Converger”>
<label>CONV</label>
</converger>
</convergers>
<coupledAnalyses>
<coupledAnalysis>
<relatedExecutableBlockUID>FWE</relatedExecutableBlockUID>
</coupledAnalysis>
<coupledAnalysis>
<relatedExecutableBlockUID>Aeroelastics</relatedExecutableBlockUID>
</coupledAnalysis>
</coupledAnalyses>
<postCouplingAnalyses>
<postCouplingAnalysis>
<relatedExecutableBlockUID>ObjectiveFunctions</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>ConstraintFunctions</relatedExecutableBlockUID>
</postCouplingAnalysis>
<postCouplingAnalysis>
<relatedExecutableBlockUID>dLC</relatedExecutableBlockUID>
</postCouplingAnalysis>
</postCouplingAnalyses>
</executableBlocks>
</architectureElements>
</cmdows>

L = T B N R N

202

A. Code

Code frament A.27: CMDOWS file for the simplified wing optimization problem.

<?xml version=’1.0’ encoding=’UTF-8’7?>
<cpacs>
<toolspecific>
<wingOptimizationProblem>
<planform>
<c mapType="vector”>13.7131;7.2595;2.7341</c>
<tc mapType="vector”>0.1542;0.1052;0.095</tec>
<epsilon mapType="vector”>-0.1039;-0.1826</epsilon>
<b mapType="vector”>12.7178;22.7016
<Lambda mapType="vector”>0.5435;0.6077</Lambda>
<Gamma mapType="vector”>0.0508;0.1167</Gamma>
<incidence>0.1172</incidence>
</planform>
<structure>
<xsi_fs mapType="vector”>0.1;0.1925;0.35</xsi_£s>
<xsi_rs mapType="vector”>0.6;0.8023;0.6</xsi_rs>
<t_fs mapType="vector”>0.00450588;0.00458215</t_£s>
<t_rs mapType:”vector”>0.00450611;0.00456957</t_rs>
<t_ts mapType="vector”>0.02553329;0.02237119</t_ts>
<t_bs mapType:”vector”>0.02553329;0.02237ll9</t_bs>
<t_skin>0.0015</t_skin>
</structure>
<reference>
<rho_skin>2180.0</rho_skin>
<m_fixed>107814.0</m_fixed>
<m_payload>34000.0</m_payload>
<m_MLW>213180.0</m_MLW>
<f m sys>0.27</f_m_sys>
<f_m wings>0.7</f_m_wings>
<R>14306700.0</R>
<SFC>1.5e-05</SFC>
<m_fuel res>15000.0</m_fuel res>
<C_D_ fus>0.006</C_D_fus>
<C_D_other>0.005</C_D_other>
<m_fuel init>108508.0</m_fuel init>
<m_wing_init>49591.0</m_wing_ init>
<WS_init>538.725956758</Ws_init>
<sigma_yield>276000000.0</sigma_yield>
<C_L buffet>0.525</C_L buffet>
</reference>
</wingOptimizationProblem>
<dAEDalus>
<loadCases>
<loadCase>
<M>0.85</M>
<H>11277.6</H>
<n>1.0</n>
</loadCase>
<loadCase>
<M>0.85</M>
<H>3048.0</H>
<n>2.5</n>
</loadCase>
<loadCase>
<M>0.6</M>
<H>0.0</H>
<n>-1.0</n>
</loadCase>
</loadCases>
</dAEDalus>
</toolspecific>
</cpacs>

Code frament A.28: Input XML file for the simplified wing optimization problem

Knowledge Base

#!/usr/bin/env python
—-*- coding: utf-8 -*-

23
24
25
26
27
28
29
30
31
32
33
34
35

O NG AW N e

23
24
25
26
27
28
29
30
31
32
33

A.5. Test Suite 203

aaa

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a reference to the dAEDalus discipline.

worr

from _ future__ import absolute_import, division, print_function
from openlego.test_suite.test examples.wing opt.kb.disciplines.SimpleAerostructuralAnalysis

o import \
SimpleAerostructuralAnalysis

class Aeroelastics (SimpleAerostructuralAnalysis) :

pass

if name == ' main '
n ws = 2
n lc = 3

aeroelastics = Aeroelastics(n_ws, n_lc)
aeroelastics.deploy ()

Code frament A.29: Code of the wing optimization Aeroelastics Python module.

#!/usr/bin/env python
—-*- coding: utf-8 -*-

v

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a reference to the problem definition discipline.
from _ future_ import absolute_import, division, print_function
from openlego.test suite.test_examples.wing opt.kb.disciplines.ProblemDefinition import

o Constraints

class ConstraintFunctions (Constraints) :

pass
if name == ' main '

n ws = 2

cons = ConstraintFunctions(n_ws)

cons.deploy ()

© LW N U AW N -

O E NG AW N -

23
24
25
26
27
28

204

A. Code

Code frament A.30: Code of the wing optimization ConstraintFunctions Python module.

#!/usr/bin/env python
—-*- coding: utf-8 —*-

Vaaa

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a reference to the load collector discipline.

Vaaa

from _ future import absolute import, division, print_function

from openlego.test_suite.test examples.wing opt.kb.disciplines.dAEDalus import LoadCollector

class dLC (LoadCollector):

pass

if name ==’ main ':
n ws = 2
n lc = 3

dlc = dLC(n_ws, n_lc)
dlc.deploy ()

Code frament A.31: Code of the wing optimization dLC (load collector) Python module.

#!/usr/bin/env python
—-*- coding: utf-8 -*-

Va4

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a reference to the fuel weight estimator discipline.

g

from _ future import absolute_ import, division, print_function

from openlego.test_suite.test examples.wing opt.kb.disciplines.FuelWeightEstimator

o FuelWeightEstimator

class FWE (FuelWeightEstimator) :
pass

import

29
30
31
32
33
34

[= T B N O N

P T S T S S S S
BN A S 0 ® N0 o & ® 0 = O

23
24
25
26
27
28
29
30
31

© o N U AW N

T
©® N o u b W N = O

20

A.5. Test Suite 205

if name == "' main ':
n ws = 2
n_lc = 3

fwe = FWE(n_ws, n_lc)
fwe.deploy ()

Code frament A.32: Code of the wing optimization FWE (fuel weight estimator) Python module.

#!/usr/bin/env python
—-*- coding: utf-8 -*-

wrr

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains a reference to the objective function discipline.
from _ future import absolute import, division, print_function
from openlego.test_suite.test examples.wing opt.kb.disciplines.ProblemDefinition import

« Objectives

class ObjectiveFunctions (Objectives) :

pass
if name == "' main ':
objs = ObjectiveFunctions ()

objs.deploy ()

Code frament A.33: Code of the wing optimization ObjectiveFunctions Python module.

Disciplines
A.5.2.3.1 dAEDalus

#!/usr/bin/env python
—-*- coding: utf-8 -*-

wrr

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definitions of all the dAEDalus disciplines along with static variables
- they use.

v

from _ future_ import absolute_import, division, print_function

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

206

A. Code

import abc
import os
import time
import hashlib

import matlab
from matlab.engine import start matlab, MatlabExecutionError
import numpy as np

from openlego.test suite.test_ examples.wing opt.kb.disciplines.WingObjectModel import

o WingObjectModel
from lxml import etree

from openlego.api import AbstractDiscipline

from openlego.test suite.test_examples.wing opt.kb.disciplines.xpaths import *

from openlego.utils.general utils import try hard
from openlego.utils.xml utils import xml_safe create_ element

dir path = os.path.dirname (os.path.realpath(file))
_mles = {}

n_seg_x = 10
n_seg y = 20

def start new matlab engine():

”””Ensure the Matlab engine is renewed once the MATLAB TIMEOUT is expired.

This function uses the try hard() function from the framework.util module to ensure Matlab

- 1s started
successfully when it needs to be.
mle = try hard(start matlab, ’'-nodesktop -noslpash -nojvm’)
timestamp = time.time ()
mle.matlab.engine.shareEngine (nargout=0)
engine name = mle.matlab.engine.engineName (nargout=1)
engine_id = int (hashlib.md5 (engine name) .hexdigest () [0:7],

return mle, engine id, engine name, timestamp

class LoadCaseSpecific (AbstractDiscipline):

77”Abstract base class storing the number of wing segments load cases as member properties

« 1in the constructor.

Attributes
n _wing segments : int
Number of wing segments.

n load cases : int
Number of load cases.

v

def init (self, n_wing segments=2, n_ load cases=1):
type: (int, int) -> None

7””Create an instance of the ‘LoadCollector' discipline.

Parameters
n wing segments : int(2)
Number of wing segments.

n_load cases : int (1)
Number of load cases.

100y

super (LoadCaseSpecific, self). init ()
self.n_wing segments = n_wing segments
self.n load cases = n_load cases

@property

A.5. Test Suite 207

89 def creator (self):

90 return 'D. de Vries’

91

92 @abc.abstractmethod

93 def generate input xml (self):

94 super (LoadCaseSpecific, self).generate_input xml ()

95

96 @abc.abstractmethod

97 def generate output xml (self):

98 super (LoadCaseSpecific, self) .generate output xml ()

99

100 @staticmethod

101 @abc.abstractmethod

102 def execute(in file, out file):

103 super (LoadCaseSpecific, in_file) .execute(in_file, out file)
104

105 @staticmethod

106 def get n loadcases (tree):

107 # type: (etree. ElementTree) -> int

108 777 Obtain the number of load cases from the XML tree representing a CPACS file.
109

110 Parameters

- mmm e

112 tree : :0bj:‘etree. ElementTree'

113 ‘etree. ElementTree' corresponding to a CPACS file.
114

115 Returns

16 mmm————

117 int

118 Number of load cases defined in the CPACS file.

119 oo

120 return len(tree.xpath(’/’.join([x_loadcases, x loadcase.split(’/’)[-1]1[:-411)))

121
122
123 class SteadyAerostructuralloop (LoadCaseSpecific) :
124

125 MATLAB TIMEOUT = 1800.

126 _mles = []

127 _timestamp = [0.]

128

129 def init (self, n_wing segments=2, n_load cases=1):
130 super (SteadyAerostructuralLoop, self). init (n wing segments, n load cases)
131

132 @property

133 def description(self):

134 return ’'dAEDalus Steady Aerostructural Loop’

135

136 def generate input xml (self):

137 wd = WingObjectModel (self.n wing segments)

138 s = wd.generate output xml ()

139

140 parser = etree.XMLParser (remove blank text=True, encoding='utf-8’
141 doc = etree.fromstring(s, parser)

142

143 for i in range(l, self.n load cases + 1):

144 xml safe create element(doc, x M % i, 0.)

145 xml safe create element(doc, x H % i, 0.)

146 xml_safe create_element(doc, x n % i, 0.)

147

148 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
149

150 def generate output xml (self):

151 root = etree.Element (’'cpacs’)

152 doc = etree.ElementTree (root)

153

154 xml safe create element (doc, x m wing, 0.)

155

156 for i in range(l, self.n_load cases + 1):

157 xml safe create element(doc, x CL % i, 0.)

158 xml safe create element(doc, x CDf % i, 0.)

159 xml safe create element (doc, x CDi % i, 0.)

208 A. Code

160

161 for x sigma in x sigmas_in:

162 xml safe create element(doc, x sigma % i, np.zeros(self.n wing segments))

163

164 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

165

166 @staticmethod

167 def execute(in file, out file):

168 doc_in = etree.parse(in_ file)

169

170 root = etree.Element (’'cpacs’)

171 doc_out = etree.ElementTree (root)

172

173 n_lc = LoadCaseSpecific.get n loadcases (doc_in)

174 if not len(SteadyBRerostructuralLoop. mles) or \

175 (time.time () - SteadyAerostructurallLoop. timestamp[0] >=
o SteadyAerostructuralLoop.MATLAB TIMEOUT) :

176 SteadyAerostructuralLoop. mles = []

177 SteadyAerostructurallLoop. timestamp[0] = time.time ()

178 for _ in range(n_lc):

179 mle, , _, _ = start_new matlab_engine()

180 SteadyAerostructuralLoop. mles.append (mle)

181

182 futures = n lc * [None]

183 for i in range(l, n_lc + 1):

184 M = float(doc_in.xpath(x_M % i) [0].text)

185 H = float(doc_in.xpath(x H % 1) [0].text)

186 n = float(doc_in.xpath(x_n % 1) [0].text)

187

188 futures([i - 1] = SteadyAerostructuralLoop. mles[i -
o 1] .dAEDalusSteadyAerostructuralLoop (

189 in file, matlab.double([n_seg x]), matlab.double([n_seg y]), M, H, n,
- nargout=8, async=True)

190

191 for i, future in enumerate (futures):

192 if future is not None:

193 try:

194 m wing, C_ L, C_D f, C D i, sigma fs, sigma_rs, sigma_ts, sigma bs =
o future.result ()

195 sigmas = [np.array(sigma fs), np.array(sigma rs), np.array(sigma ts),
o np.array(sigma_bs)]

196

197 xml safe create element (doc_out, x m wing, m wing)

198 xml safe create element(doc out, x CL % (i + 1), C L)

199 xml_safe_ create_element (doc_out, x_CDf % (i + 1), C_D f)

200 xml_safe create_element (doc_out, x CDi % (i + 1), C_D 1)

201

202 for j in range(4):

203 xml safe create element (doc out, x sigmas in[j] % (i + 1), sigmas[j])

204 except MatlabExecutionError:

205 break

206

207 doc_out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

208

209

210 class SteadyModellInitializer (LoadCaseSpecific):

211 77””Initialization of the geometric and structural dAEDalus models using Matlab.

212

213 This discipline takes a CPACS file with a fully defined wing as input and initializes the
o geometric and structural

214 models of dAEDalus accordingly. The weight of the wing is calculated and stored in the
« output file, along with some

215 pseudo-variables to aid linking this dicipline to the other dAEDalus disciplines.

216

217 Behind the scenes, this discipline initializes the geometric and structural models and
o stores these in the workspace

218 of the Matlab shared engine for each load case. Subsequent dAEDalus discipline calls can

o use these initialized
219 models 1f they have the names of the Matlab shared engines.
220 o
221

222
223

225
226
227
228
229
230

232
233
234
235

236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

255

256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274

275
276
277

278
279
280
281
282
283
284
285

A.5. Test Suite 209

o

o

o

o

o

o

o

MATLAB TIMEOUT = 1800.

def init (self, n wing segments=2, n load cases=1):
super (SteadyModelInitializer, self). init (n_wing segments, n_load cases)

@property
def description(self):
return ’'dAEDalus Steady Model Initializer’

def generate input xml (self):
type: () -> str
77””Input is a CPACS file with at least a fully defined wing.

It is possible to specify a timeout for Matlab, the name of a Matlab sharedEngine, and
the timestamp at which

this engine was shared. However, the Matlab engine should normally be left under the
control of this

discipline.

wd = WingObjectModel (self.n _wing segments)

s = wd.generate output xml ()

parser = etree.XMLParser (remove blank text=True, encoding='utf-8’
doc = etree.fromstring(s, parser)

for 1 in range(l, self.n load cases + 1):
xml safe create element (doc, x ml timeout % i, self.MATLAB TIMEOUT)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () -> str
77””0utput is a CPACS file containing a predefined number of load cases.

Each load case will be assigned pseudo-variables allowing for subsequent disciplines
to connect to this

discipline (geometric and structural model), as well as the name of the shared Matlab
engine and its timestamp

of creation.

root = etree.Element (’'cpacs’)

doc = etree.ElementTree (root)

xml safe create element (doc, x m wing, 0.)

for i in range(l, self.n load cases + 1):
xml safe create element(doc, x ml id % i, 0)

)

xml safe create element (doc, x ml timestamp % i, 0.)

for j in range(3):
xml safe create element (doc, x grid initial([j] % i, np.zeros(2 * (n_seg x + 1)
* (n_seg_y + 1) * self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def execute(in_file, out file):

77””Call the Matlab function dAEDalusSteadyModelInitializer () and store the resulting
mass of the wingbox in the

output XML file for each load case.

The name of the Matlab engine is stored in CPACS. In this way it can be shared with
all subsequent disciplines
that need to use the same instance of Matlab in order to share the workspace.

10107

doc_in = etree.parse(in_file)

root = etree.Element (’'cpacs’)
doc_out = etree.ElementTree (root)

n_lc = LoadCaseSpecific.get n loadcases(doc_in)

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351

352

210

A. Code

o

o

engine ids = []
futures = n_lc * [None]
for i in range(l, n lc + 1):

timeout = SteadyModellInitializer.MATLAB TIMEOUT
elem_timeout = doc_in.xpath(x_ml_timeout % i)
if len(elem_timeout):

timeout = float (elem timeout[0].text)

timestamp = 0.
elem timestamp = doc in.xpath(x ml timestamp % 1)
if len(elem timestamp) :

timestamp = float (elem timestamp[0].text)

Obtain the current matlab engine if it is still valid and exists
engine_id = 0
mle = None
elem ml _id = doc_in.xpath(x_ml_id % 1)
if len(elem ml id):
engine id = int(float(elem ml id[0].text))
if engine id in mles:

if time.time() - timestamp < timeout:
mle = mles[engine_ id]
mle.cd(dir path)

else:

_mles.pop (engine id)

If a matlab engine was not connected to, start a new one and reset the timestamp

if mle is None:

mle, engine id, engine name, timestamp = start new matlab engine()

mle.cd(dir_path)
~mles.update ({engine id: mle})

engine ids.append(engine id)

xml safe create element(doc out, x ml id % i, engine id)
xml safe create element (doc_out, x ml timestamp % i, timestamp)

futures[i - 1] = mle.dAEDalusSteadyModelInitializer(

in file, matlab.double([n_seg x]), matlab.double([n_seg y]), nargout=2,

async=True)

_ids = mles.keys()
for id in _ids:
if id not in engine ids:
~mles.pop(_ id)

for i, future in enumerate (futures):

if future is not None:
try:
m wing, initial grid = future.result()
initial grid = np.array(initial grid)
xml safe create_element (doc_out, x m wing, m wing)

for j in range(3):

xml safe create element (doc_out, x grid initial[j] % (i + 1),
initial grid[j, :1)

except MatlabExecutionError:
break

class SteadyAerodynamicModelInitializer (LoadCaseSpecific):

o

o

Furthermore,

77”Initialization of the steady aerodynamic dAEDalus model.

Remove any instances of the Matlab engine which aren’t used anymore to free up memory
if len(_mles) > n_lc:

doc_out.write(out file, encoding=’'utf-8’, pretty print=True, xml declaration=True)

This discipline takes a CPACS file with a number of load cases containing a Mach number,
altitude, and load factor.
the pseudo-variable pointing to the geometric model of each load case, as
well as the name of the load

A.5. Test Suite 211

353 case’s shared Matlab engine are required.

354

355 Behind the scenes, the initialized geometric and structural models that were stored in the
o Matlab shared engine’s

356 workspace are used, and the aerodynamic model is stored there too once it is initialized.

357 o

358

359 def init (self, n wing segments=2, n load cases=1):

360 super (SteadyAerodynamicModelInitializer, self). init (n _wing segments, n_load cases)

361

362 @property

363 def description(self):

364 return ’'dAEDalus Steady Aerodynamic Model Initializer’

365

366 def generate input xml (self):

367 # type: () -> str

368 77””Input is a CPACS file containing the Mach number, altitude, and load factor for

o each load case.

369

370 The link to the geometric model and name of the Matlab shared engine for each load
 case 1is also required.

11100

371

372 root = etree.Element (’'cpacs’)

373 doc = etree.ElementTree (root)

374

375 for 1 in range(l, self.n load cases + 1):

376 xml safe create element(doc, x M % i, 0.)

377 xml_safe create_element(doc, x H 5 i, 0.)

378 xml safe create element(doc, x n % i, 0.)

379

380 xml safe create element(doc, x ml id % i, 0)

381

382 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

383

384 def generate output xml (self):

385 # type: () —-> str

386 7””0Output is a CPACS file containing the 1lift- and friction drag coefficient for each
o load case, as well as a

387 link to the aerodynamic model.

388 oo

389 root = etree.Element (’'cpacs’)

390 doc = etree.ElementTree (root)

391

392 for i in range(l, self.n_load_cases + 1):

393 xml_safe create element(doc, x CL % i, 0.)

394 xml safe create element(doc, x CDf % i, 0.)

395

396 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

397

398 @staticmethod

399 def execute(in file, out file):

400 77”Call the Matlab function dAEDalusSteadyAerodynamicModelInitializer () and store the
o resulting values of C L

401 and C D f in the the CPACS output file.

402 e

403 doc in = etree.parse(in file)

404

405 root = etree.Element (’'cpacs’)

406 doc_out = etree.ElementTree (root)

407

408 n_lc = LoadCaseSpecific.get n loadcases(doc_in)

409 futures = n_lc * [None]

410 for i in range(l, n lc + 1):

411 engine _id = int(float(doc_in.xpath(x ml _id % 1) [0].text))

412 if engine_id not in _mles:

413 break

414 else:

415 M = float(doc_in.xpath(x M % i) [0].text)

416 H = float(doc_in.xpath(x H % i) [0].text)

417 n = float(doc in.xpath(x n % i) [0].text)

418

419
420

422
423
424
425
426
427

429
430
431
432
433
434
435
436
437
438
439
440
441

443
444
445
446
447
448

450
451
452
453
454
455
456
457
458
459
460

461

462
463
464
465

467

468
469
470
471

473
474
475

476
477

479
480
481

482
483

212 A. Code

futures[i - 1] = mles[engine id].dAEDalusSteadyAerodynamicModelInitializer (
float (M), float(H), float(n), nargout=2, async=True)

for i, future in enumerate (futures):
if future is None:
break
else:
try:
C L, C D f = future.result()
xml safe create element (doc out, x CL % (i + 1), C L)
xml safe create element (doc_out, x CDf % (i + 1), C D f)
except MatlabExecutionError:
break

doc_out.write(out_file, encoding='utf-8’, pretty print=True, xml declaration=True)
class SteadyAerodynamicAnalysis (LoadCaseSpecific):
777”Steady aerodynamic analysis of dAEDalus using Matlab.”””

def init (self, n_wing_segments=2, n_load cases=1):

super (SteadyAerodynamicAnalysis, self). init (n_wing segments, n_load cases)
self.previous grids = n_load cases * [None]
@property

def description(self):
return ’'dAEDalus Steady Aerodynamic Analysis’

def generate input xml (self):
type: () -> str
77”Input is a CPACS file with the 1ift coefficient and deflected grid of the wing for
- each load case, as well
as links to the geometric and aerodynamic models.
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for i in range(l, self.n_load cases + 1):
xml safe create element(doc, x CL % i, 0.)
xml safe create element(doc, x ml id % i, 0)

for j in range(3):
xml safe create element (doc, x grid initial([j] % i, np.zeros(2 * (n_seg x + 1)
o * (n_seg y + 1) * self.n wing segments))
xml safe create_element (doc, x grid[j] % i, np.zeros(2 * (n_seg x + 1) *
' (n_seg y + 1) * self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () -> str
77”0utput is a CPACS file with the induced drag coefficient and link to the
o aerodynamic forces.”””
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for i in range(l, self.n load cases + 1
xml safe create element (doc, x CDi

)t
% i, 0.)
for j in range(3):
xml safe create element (doc, x grid guess[j] % i, np.zeros(2 * (n_seg x + 1) *
' (n_seg y + 1) * self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def execute(in_file, out_file):
77”Call the Matlab function dAEDalusSteadyAerodynamicAnalysis () and store the
o resulting value of C D i and a
link to the aerodynamic forces for each load case.

10707

484
485

487
488
489
490
491
492

494
495
496
497
498
499

500
501
502
503
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540

541
542
543
544
545
546
547
548

549

A.5. Test Suite 213

doc_in = etree.parse(in file)

root = etree.Element (’'cpacs’)
doc_out = etree.ElementTree (root)

n_lc = LoadCaseSpecific.get n loadcases(doc_in)
futures = n_lc * [None]
for i in range(l, n lc + 1):
engine id = int(float(doc_in.xpath(x ml id % 1) [0].text))
if engine_id not in mles:
break
else:
grid = 3 * [None]
s = 0.
for j in range(3):
g = np.array(doc_in.xpath(x_grid[j] % 1) [0].text.split(';’),
o dtype=float).tolist ()
s += np.sum(np.square(g))
grid[j] = g
if s ==
for j in range(3):
grid[j] = np.array(doc_in.xpath(x_grid initial[j]
o 1) [0].text.split(’;’), dtype=float).tolist()

oo

C L = float(doc_in.xpath(x CL % 1) [0].text)

futures[i - 1] = mles[engine id].dAEDalusSteadyAerodynamicAnalysis (
matlab.double (grid), float(C_L), nargout=1, async=True)

for j in range(3):
xml safe create element (doc out, x grid guess[j] % i, np.array(grid[j]))

for i, future in enumerate (futures):
if future is None:
break
else:
try:
C D i = future.result()
xml safe create element (doc out, x CDi % (i + 1), C D i)
except MatlabExecutionError:
break

doc_out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

class SteadyStructuralAnalysis (LoadCaseSpecific):
77””Steady structural analysis of dAEDalus using Matlab.”””
def init (self, n wing segments=2, n load cases=1):
super (SteadyStructuralAnalysis, self). init (n_wing segments, n_load cases)

@property
def description(self):
return ’'dAEDalus Steady Structural Analysis’

def generate input xml (self):

type: () -> str

77””Input is a CPACS file containing the name of the Matlab shared engine, the links to
o« all three models

(geometric, structural, and aerodynamic), and the link the the aerodynamic forces for
o each load case.

root = etree.Element (’'cpacs’)

doc = etree.ElementTree (root)

for i in range(l, self.n load cases + 1):
xml safe create element(doc, x ml id % i, 0)
for j in range(3):
xml safe create element (doc, x grid guess[j] % i, np.zeros(2 * (n_seg x + 1) *
o (n_seg y + 1) * self.n wing segments))

214 A. Code

550 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)
551
552 def generate output xml (self):
553 # type: () —-> str
554 7””0Output is a CPACS file with the stresses in the front/rear spars and in the
o top/bottom skins for each load
555 case, as well as the deflected grid for each load case.
ss56 oo
557 root = etree.Element (’'cpacs’)
558 doc = etree.ElementTree (root)
559
560 for i in range(l, self.n_load_cases + 1):
561 for x sigma in x sigmas_in:
562 xml safe create element(doc, x sigma % i, np.zeros(self.n wing segments))
563
564 for j in range(3):
565 xml safe create element (doc, x grid[j] % i, np.zeros(2 * (n_seg x + 1) *

o (n_seg y + 1) * self.n wing segments))
566

567 return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

568

569 @staticmethod

570 def execute(in file, out file):

571 77””Call the Matlab function dAEDalusSteadyStructuralAnalysis() and store the resulting
o values of the stresses

572 (sigma *) and the deflected grid in the corresponding unknowns.

573 o

574 doc_in = etree.parse(in_file)

575

576 root = etree.Element (’'cpacs’)

577 doc_out = etree.ElementTree (root)

578

579 n lc = LoadCaseSpecific.get n loadcases (doc_in)

580 futures = n_lc * [None]

581 for i in range(l, n_lc + 1):

582 engine_id = int(float(doc_in.xpath(x ml _id % 1) [0].text))

583 if engine_id not in _mles:

584 break

585 else:

586 futures[i - 1] = mles[engine id].dAEDalusSteadyStructuralAnalysis (nargout=5,

~ async=True)
587

588 for i, future in enumerate (futures):
589 if future is None:
590 break
591 else:
592 try:
593 sigma fs, sigma_rs, sigma ts, sigma bs, deflected grid = future.result()
594 sigmas = [np.array(sigma fs), np.array(sigma rs), np.array(sigma ts),
o np.array(sigma_ bs)]
595 deflected grid = np.array(deflected grid)
596
597 for j in range(4):
598 xml safe create element (doc out, x sigmas in[j] % (1 + 1), sigmas[j])
599
600 for j in range(3):
601 xml safe create element (doc_out, x grid[j] % (i + 1), deflected grid[j])
602 except MatlabExecutionError:
603 break
604
605 doc_out.write(out_file, encoding='utf-8’, pretty print=True, xml declaration=True)

606
607
608 class LoadCollector (LoadCaseSpecific):

609 ”””Defines the Load Collector discipline.
610
611 This discipline takes the maximum value of the stresses in the front/rear spars and

o top/bottom skins for any number
612 of load cases and returns a single set of critical stresses.
613 o
614

615
616
617
618
619
620
621
622
623
624

625
626
627
628
629
630
631
632
633
634
635
636
637
638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

A.5. Test Suite 215

def init (self, n wing segments=2, n load cases=1):
super (LoadCollector, self). init (n_wing segments, n_load cases)

@property
def description(self):
return ’'Load Collector’

def generate input xml (self):
type: () -> str
7””Input is a CPACS file with the stresses in the front/rear spars and in the
o top/bottom skins for each load
case.
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for i in range(l, self.n load cases + 1):
for x sigma in x sigmas_in:
xml safe create element(doc, x sigma % i, np.zeros(self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () -> str
7””Qutput is a CPACS file containing the maximum stresses in the front/rear spars and
o 1in the top/bottom skins
across all load cases.
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for x sigma in x sigmas out:
xml safe create element (doc, x sigma, np.zeros(self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod

def execute(in_file, out file='LC-output-loc.xml’):
7””Computes the maximum stresses across all load cases.
doc_in = etree.parse(in file)

10707

sigmas = 4 * [np.ndarray((0,))]
for i in range(l, LoadCaseSpecific.get n loadcases(doc_in) + 1):
for j in range (4):
data = np.array(doc_in.xpath(x_sigmas in[j] % 1) [0].text.split(’;"),
- dtype=float)

if i == 1:
sigmas[j] = data
else
sigmas([j] = np.maximum(sigmas[j], data)

Write results to output XML file
root = etree.Element (’'cpacs’)
doc_out = etree.ElementTree (root)
for i in range(4):
xml safe create element (doc out, x sigmas out[i], sigmas[i])

doc out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

class SteadylLiftDistribution (LoadCaseSpecific):
7””Calculation of the 1ift distribution using Matlab.”””

def init (self, n_wing segments=2, n_load cases=1):
super (SteadyLiftDistribution, self). init (n wing segments, n load cases)
@property

def description(self):
return ’'Steady Lift Distribution’

def generate input xml (self):

683
684

685
686
687
688
689
690
691
692
693
694
695
696
697

698
699
700
701
702
703
704

705

706
707
708
709
710
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

1

216

A. Code

type: () -> str

77””Input is a CPACS file with the name of the Matlab shared engin
o geometric model, aerodynamic

model and aerodynamic forces for each load case.

root = etree.Element (’'cpacs’)

doc = etree.ElementTree (root)

for i in range(l, self.n load cases + 1):
xml safe create element(doc, x ml id % i, 0)

e and links to the

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () —-> str

77””0Output is a CPACS file with the normalized y-coordinates and corresponding

o normalized section 1ift forces for
each load case.
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for i in range(l, self.n load cases + 1):
xml safe create element(doc, x y norm % i, np.zeros(n seg y *
o self.n wing segments))
xml safe create element(doc, x 1 norm % i, np.zeros(n seg y *
o self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def execute(in_file, out file):
77””Call the Matlab function dAEDalusSteadyLiftDistribution() and
o values of y norm

store the resulting

(normalized y-coordinates) and 1 norm (normalized 1ift) in the output XML.

110y

doc_in = etree.parse(in_file)

root = etree.Element (’'cpacs’)
doc_out = etree.ElementTree (root)

n lc = LoadCaseSpecific.get n loadcases (doc_in)
futures = n_lc * [None]
for i in range(l, n_lc + 1):
engine_id = int(float(doc_in.xpath(x ml_id % 1) [0].text))
if engine id not in mles:
break
else:

futures[i - 1] = mles[engine id].dAEDalusSteadyLiftDistribution (nargout=2,

~ async=True)

for i, future in enumerate (futures):
if future is None:
break
else:
try:
y_norm, 1 norm = future.result()
y norm = np.array(y norm)
1 norm = np.array(l_norm)

xml safe create element (doc_out, x_y norm % (i + 1),

xml safe create element (doc_out, x 1 norm % (i + 1),
except MatlabExecutionError:

break

doc_out.write(out file, encoding='utf-8’, pretty print=True, xml

Code frament A.34: Code of the Python module containing the dAEDalus disciplines.

y_norm)
1 norm)

declaration=True)

function [m wing, initial grid] = dAEDalusSteadyModellInitializer (input cpacs, n_seg_ x,

s n_seqg y)

© L N o U AW N

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

[= I B N R N

A5.

Test Suite 217

end

try
evalin(’base’, 'clear geometrical model’);
evalin(’base’, ’clear structural model’);
evalin(’base’, ’clear aerodynamic model’);
catch e

end
% Create Aircraft data structure
geometric model = class aircraft.create from cpacs (input cpacs);
geometric model.grid settings.aerodynamic_ fuselage = 0;
geometric model.wings = geometric model.wings (1) ;
geometric model.wings structural properties =
geometric _model.wings_structural properties(1l);
% Obtain smallest chord length
wing = geometric model.wings(1);
n _wing segments = length(wing.wing segments);
c min = 100;
for i = 1:n_wing segments
c min = min(c_min, wing.wing_segments(i).c_r);
c min = min(c_min, wing.wing segments(i).c_t);

geometric model.wings(1l) .wing segments (i) .n chord = n seg x;
geometric model.wings(l).wing segments(i).n span = n_seg y;
end

geometric model.grid settings.dy max struct grid = geometric model.reference.b ref/40;

% Compute grid and initialize structural model

geometric model = geometric model.compute grid();

[geometric model, structural model] = create structural model (geometric model);
structural model.beam(1l) = struc-

tural model.beam(l).f add boundary condition(class boundary condition(ceil (length (structural model.beam.nod

111111,[0000001));
geometric model = geometric model.compute force interpolation matrix(structural model);

% Assemble structural model

structure solver settings = class_wingstructure solver settings;
structure solver settings.gravity = 0;

structural model = structural model.f set solver settings(structure solver settings);
structural model = structural model.f assemble(1,0);

% Make sure the deflected grid of the geometrical model is equal to the
% initial grid

geometric model.grid deflected = geometric model.grid;

% Compute total wingbox mass

structural model = structural model.f calc mass (geometric model.weights);

m wing = structural model.beam(1l).m total - structural model.beam(l).m fuel total;

initial grid = geometric _model.grid;
% Store these objects in the workspace for future use
assignin(’base’, ’geometric model’, geometric model);
assignin(’base’, ’‘structural model’, structural model);

Code frament A.35: Code of the Matlab script of the geometric and structural model initializer discipline (dSM1I).

function [C L, C D f] = dAEDalusSteadyAerodynamicModelInitializer(M, H, n)

geometric model = evalin(’base’, 'geometric model’);

% Create flight state
ref state = critical ref state(geometric model, M, H);
critical state = critical g maneuver state(ref state, n);

o)

Find the required C 1

® N o a bW N

21
22
23
24
25

218

A. Code

end

C L = critical state.get Cl(geometric model.reference.S ref);

% Compute C D f
ac = geometric model.compute CD f(critical state.aerodynamic_state,
geometric model.reference.S ref);
C D f = ac.CDh_f;
$ Initialize aerodynamic model
aerodynamic_model = class VLM solver(...
geometric model.grid, ... § geometric model.grid deflected
geometric _model.te idx,
geometric model.panels,
critical state.aerodynamic_state,
geometric model.reference);
% Compute the influence coefficients
aerodynamic model.f calc coeffs();

assignin(’base’, ’aerodynamic model’, aerodynamic model);

Code frament A.36: Code of the Matlab script of the aerodynamic model initializer discipline (dSAMI).

function [C D i] = dAEDalusSteadyAerodynamicAnalysis(deflected grid, C L)

end

o

Obtain geometric model
geometric model = evalin(’base’, ’'geometric model’);
aerodynamic_model = evalin(’base’, ’aerodynamic model’);

aerodynamic_model.set grid(deflected grid, geometric model.panels);
aerodynamic model = aerodynamic model.f solve for Cl fast(C_L);

% Obtain C D i
C D i = aerodynamic model.Cdi;

assignin(’base’, ’aerodynamic model’, aerodynamic model);

Code frament A.37: Code of the Matlab script of the aerodynamic analysis discipline (dSaa).

function [sigma sp fr, sigma sp re, sigma sk up, sigma sk lo, deflected grid] =

o

dAEDalusSteadyStructuralAnalysis ()
% Obtain geometric model
geometric model = evalin(’base’, ’'geometric model’);
structural model = evalin(’base’, ’'structural model’);
aerodynamic model = evalin(’base’, ’aerodynamic model’);
% Transforms aeroloads to structure
geometric model = geometric_model.compute beam forces(aerodynamic_model.F_body,
structural model);
for i = l:length(structural model.beam)
if isa(structural model.beam(i),’class wing’)

structural model.beam(i) =

structural model.beam(i).f set aeroloads(geometric model.wings(i));

end

end

% Solve structural model to get the deflections
structural model = structural model.f solve();
% Compute the deflected grid of the geometrical model

geometric model =

geometric model.compute deflected grid(structural model.f get deflections);
deflected grid = geometric model.grid deflected;

sdeflected grid = deflected grid(:, 1:(size(deflected grid, 2)/2));

% Calculate the stresses
structural model = structural model.f calc stresses();

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

A.5. Test Suite

o

beam = structural model.beam;

n_segments = length(geometric model.wings.wing segments) ;
sigma_sp_fr = zeros(l, n_segments);
sigma sp re = zeros(l, n_segments);
sigma_sk up = zeros(l, n_segments);
sigma sk lo = zeros(l, n_segments);
for i = l:length (beam.beamelement)
cs = beam.beamelement (i) .crosssection;
i segment = cs.segment index;

sigma_sp_fr(i_segment

sigma sp_re (i segment

sigma sk up (i segment

sigma sk lo(i_segment
end

) = max([sigma_sp_ fr (i segment),
) = max([sigma sp re(i segment),
) = max([sigma sk up(i segment),
) = max([sigma sk lo(i segment),
assignin(’base’, ‘geometric model’, geometric model);
assignin(’base’, ’structural model’, structural model);

¢ Gather all the stresses in arrays for front/rear spars and top/bottom skins

sigma_sp frl);
sigma_sp rel);
sigma sk up]l);
sigma_sk lol);

© W N U R W N

Code frament A.38: Code of the Matlab script of the structural analysis discipline (dSsa).

function [y norm, 1 norm] = dAEDalusSteadyLiftDistribution()
$DAEDALUSSTEADYLIFTDISTRIBUTION Summary of this function goes here
3 Detailed explanation goes here

geometric model = evalin(’base’, 'geometric model’);
aerodynamic model = evalin(’base’, ’aerodynamic model’);

% Compute the 1ift distribution
% Finding chord lengths

x p r le = geometric model.grid deflected(:,aerodynamic_model.panels(1l,:)); 3
- Panel root LE locations
X p r te = geometric model.grid deflected(:,aerodynamic_model.panels(4,:));]

13

Panel root TE locations

x p_t le = geometric model.grid deflected(:,aerodynamic_model.panels (2, :

Panel tip LE locations

x p_t te = geometric model.grid deflected(:,aerodynamic_model.panels (3, :

Panel tip TE locations

idx te = find(geometric model.is te); % indices of TE panels
indices of LE panels

strip root LE positions
strip root TE positions
strip tip LE positions
strip tip TE positions

idx le = [1,idx te(l:end-1)+1];
x s r le =xpr le(:,idx le);
X s r te = x p r te(:,idx _te);
x s t le =xp t le(:,1dx _le);
x s t te =x p t te(:,idx te);

)
el
o}
Gl

oo

x s le = x s r le + 0.5%(x s t le - x s r le); ¢ strip middle LE positions

n_panels = size(aerodynamic model.panels,2);
I1 = 1l:n_panels <= idx_te’;
I2 = 1:n_panels >= idx _le’;

I =1I1.%12;

L s = (I*aerodynamic model.F aero(3,:)’
bs=(xstle(2,:) - x s r le(2,:) +

1 =1Ls./b_s; & section lift

1 mean = sum(L_s)/sum(b_s); ¢ mean section 1lift
1 norm = 1/1 _mean; % normalized section 1ift

o)

[y,iy] = sort(x s le(2,:)); % sorted y positions of LEs

y norm = y./(sum(b_s)/2);
1 norm = 1 norm(iy);

oo

" % strip lift forces

)
X s t te(2,:) - x s r te(2,:))/2; strip spans

40
41
42
43

© N o g AW N

O L NG A W N -

220

A. Code

y norm = y norm(length(y norm)/2+1:end);
1 norm = l_norm(length(l_norm)/2+1:end);

end

Code frament A.39: Code of the Matlab script of the lift distribution calculation discipline (dSLD).

function [m wing struct, C L, C D f, C D i, sigma sp fr, sigma sp re, sigma_ sk up,

o sigma sk lo] = dAEDalusSteadyAerostructuralLoop(cpacs, n X, n y, M, H, n)
[m wing struct, initial grid] = dAEDalusSteadyModelInitializer (cpacs, n_x, n_y);
[C L, C D f] = dAEDalusSteadyAerodynamicModelInitializer (M, H, n);

deflected grid guess = initial grid;
tol = le-6;
iter = 0;
maxiter =
while 1
C D i = dAEDalusSteadyAerodynamicAnalysis(deflected grid guess, C_L);
[sigma sp fr, sigma sp re, sigma sk up, sigma sk lo, deflected grid] =
~ dAEDalusSteadyStructuralAnalysis();

10;

r norm = sqgrt(sum((deflected grid - deflected grid guess).”2, 1));
err = rms(r_norm);
Sfprintf (1, ’iter: %d\t err: $%.7f\n’, iter, err);
iter = iter + 1;
if err < tol
break
end
deflected grid guess = deflected grid;

if iter > maxiter
break
end
end
% [y norm, 1 norm] = dAEDalusSteadyLiftDistribution();
end

Code frament A.40: Code of the Matlab script of the full aerostructural loop of dAEDalus.

A.5.2.3.2 Fuel Weight Estimator

#!/usr/bin/env python
—-*- coding: utf-8 —-*-

10707

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the FuelWeightEstimator class along with static variables

- 1t uses.

from _ future__ import absolute_import, division, print_function

import os

from openlego.test suite.test_examples.wing opt.kb.disciplines.dAEDalus import
« LoadCaseSpecific

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48

49

50

51
52

53

54

55

56

57

58

59

60
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

A5.

Test Suite

221

from lxml import etree

from
from
from

from

dir |

g0 =
rho0
R_ai
PO
TO
beta

kapp

clas

numpy import sqrt, expml, exp

openlego.test_suite.test examples.wing opt.kb.disciplines.xpaths import *
openlego.utils.xml utils import xml safe create_element

openlego.partials.partials import Partials

path = os.path.dirname (os.path.realpath(file))

s FuelWeightEstimator (LoadCaseSpecific):

7””Definition of the Fuel Weight Estimator discipline.

9.80665 # Standard gravitational acceleration,
= 1.225 # ISA sea level density, [kg/m"3]
r = 287.05287 # ISA specific gas constant, [J/kg/K]
101325 # ISA sea level pressure, [Pa]
= 288.15 # ISA sea level temperature, [K]
= -0.0065 # ISA temperature lapse rate, [K/m]
a=1.4 # ISA ratio of specific heats, [-]

This discipline estimates the weight of the fuel required to fly a given mission based on

the Breguet range

equation.
def init (self, n _wing segments=2, n load cases=1):

super (FuelWeightEstimator, self). init (n wing segments, n_ load cases)
@property

def creator(self):
return 'D. de Vries’

@property
def description(self):
return ’'Fuel weight estimator’

def generate input xml (self):
type: () -> str
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for i in range(l, self.n_load cases +
xml safe create element(doc, x M
xml_safe create_element (doc, x_H
xml safe create element(doc, x n

o d° oe°

1):

xml safe create element (doc, x:CDf 5 i,

xml safe create element (doc, x CDi

xml_safe create_element (doc, x CL

xml safe create element (doc, x CDfus,

o
e
~

)

s i,

0)

xml_safe create_element (doc, x CDother, 0)

xml safe create element (doc, x R, 0)

xml safe create element (doc, x SFC, 0)
xml safe create element (doc, x m fuel

res,

xml safe create element (doc, x m fixed, 0)

xml safe create element (doc, x m wing,

0)

0)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () -> str
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

xml_safe create_ element (doc, x CD, 0)
xml safe create element (doc, x LD, 0)
(

xml_safe create_element (doc, x_ fwe CL,
xml safe create element (doc, x m fuel,
xml safe create element (doc, x m mtow,

0)
0)
0)

95
96
97
98
929
100
101
102

104

105

106

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129

130

132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150

152
153
154
155
156
157

A. Code

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate partials xml (self):
partials = Partials()
partials.declare partials(x CD, [x CDi % 1, x CDf % 1, x CDfus, x CDother])
partials.declare partials(x LD, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL % 1])
partials.declare partials(x_fwe CL, x CL % 1)
partials.declare partials(x m fuel, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL %
ll
xM%1, xH% 1, xR, x SFC, x m_fuel res,
x m fixed, x m wing])
partials.declare partials(x m mtow, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL %
ll
xM=% 1, xH %1, xR, x SFC, x m fuel res,
x m fixed, x m wing])
return partials.get string()

@property
def supplies partials(self):
return False

@staticmethod

def execute(in file, out file='FWE-output-loc.xml’):
Obtain data from XML file
tree = etree.parse(in_file)

M=H=CDf=CDi=CL=0
for 1 in range(l, LoadCaseSpecific.get n loadcases(tree) + 1):

M = float(tree.xpath(x M % 1) [0].text) # Mach number, [-]
H = float(tree.xpath(x H % 1) [0].text) # Altitude, [m]
C D f = float(tree.xpath(x CDf % i) [0].text) # Friction drag
coefficient, [-]
C D i = float(tree.xpath(x CDi % i) [0].text) # Induced drag
coefficient, [-]
C L = float(tree.xpath(x CL % i) [0].text) # Lift coefficient, [-]
if round(float (tree.xpath(x n % i) [0].text)) == 1.:
break
C D fus = float (tree.xpath(x CDfus) [0].text) # Fuselage drag coefficient, [-]
C_D other = float (tree.xpath(x CDother) [0].text) # Remaining drag coefficient,
[-]
R = float (tree.xpath(x R) [0].text) # Range, [m]
SFC = float (tree.xpath(x SFC) [0].text) # Specific fuel consumption,
[kg/N/s]
m_fuel res = float(tree.xpath(x m fuel res) [0].text) # Reserve fuel weight, [kg]
m fixed = float (tree.xpath(x m fixed) [0].text) # Fixed weight, [kg]
m wing = float(tree.xpath(x m wing) [0].text) # Wing weight, [kg]

Perform calculations

CD=CDi1i+CDTf+ CD fus + C D other # Total drag coefficient, [-]
LD=CL/CD # Aerodynamic efficiency, L/D, [-]
LW = m fixed + m_ wing + m_fuel res # Landing weight, [kg]
T = TO + beta * H # Temperature at altitude, [K]
a = sqrt(kappa * R _air * T) # Speed of sound at altitude, [m/s]
if L D == 0:

m_fuel = 0.
else:

m fuel = LW * expml(R * g0 * SFC / (a * M) / L D) # Required fuel weight, [kqg]

m mtow = m_fuel + LW
m fuel = m fuel + m fuel res

Write results to output XML file

root = etree.Element (’'cpacs’)

doc = etree.ElementTree (root)

xml_safe create_element (doc, x CD, C_D)

xml safe create element (doc, x LD, L_D)

xml safe create element (doc, x fwe CL, C L)
xml safe create element (doc, x m fuel, m fuel)

A.5. Test Suite 223

158 xml safe create element (doc, x m mtow, m mtow)

159 doc.write(out_file, encoding='utf-8’, pretty print=True, xml declaration=True)

160

161 @staticmethod

162 def linearize(in file, partials file):

163 tree = etree.parse(in_file)

164

165 M=H=CDf=CDi=CL=0

166 for i in range(l, LoadCaseSpecific.get n loadcases(tree) + 1):

167 M = float (tree.xpath(x M % i) [0].text) # Mach number, [-]

168 H = float(tree.xpath(x H % i) [0].text) # Altitude, [m]

169 C D f = float(tree.xpath(x CDf % i) [0].text) # Friction drag coefficient, [-]

170 C D i = float(tree.xpath(x_CDi % i) [0].text) # Induced drag coefficient, [-]

171 C L = float(tree.xpath(x CL % 1) [0].text) # Lift coefficient, [-]

172

173 if round(float (tree.xpath(x n % 1i)[0].text)) == 1.:

174 break

175

176 C D fus = float (tree.xpath(x CDfus) [0].text) # Fuselage drag coefficient, [-]

177 C_D other = float(tree.xpath(x CDother) [0].text) # Remaining drag coefficient, [-]

178 R = float (tree.xpath(x R) [0].text) # Range, [m]

179 SFC = float (tree.xpath(x_SFC) [0].text) # Specific fuel consumption, [kg/N/s]

180 m_fuel res = float(tree.xpath(x m fuel res) [0].text) # Reserve fuel weight, [kg]

181 m fixed = float (tree.xpath(x m fixed) [0].text) # Fixed weight, [kqg]

182 m wing = float(tree.xpath(x m wing) [0].text) # Wing weight, [kg]

183

184 CD=CDi+CDTf+ CD fus + C_D other # Total drag coefficient, [-]

185 L D=CUL/ CD # Aerodynamic efficiency, L/D, [-]

186 LW = m fixed + m_wing + m_fuel res # Landing weight, [kg]

187 T = TO + beta * H # Temperature at altitude, [K]

188 a = sqrt(kappa * R air * T) # Speed of sound at altitude, [m/s]

189

190 if L D ==

191 dLD_dd = 5*[1.]

192 dmfuel d2 = 12*[1.]

193 dmmtow_dd = 12*[1.]

194 else:

195 m fuel = LW * expml(R * g0 * SFC / (a * M) / L D) # Required fuel weight, [kqg]

196

197 dmfuel dd = LW*R*g0*SFC/(a*M*L D) *exp (R*g0*SFC/ (a*M*L_D))

198 da dH = .5*kappa*R air/a

199

200 dLD dd = 4*[1./C_L] + [-C_D/C _L**2]

201 dmfuel d2 = 4*[dmfuel dd/C_D] + [-dmfuel dd/C L, -dmfuel dd/M,

202 -dmfuel dd/a*da_dH, dmfuel dd/R,

203 dmfuel dd/SFC, 1., m_ fuel/m fuel res,

204 m_fuel/m_ fixed, m_ fuel/m wing]

205 dmmtow dd = 4 * [dmfuel dd / C D] + [-dmfuel dd / C L, -dmfuel dd / M,

206 -dmfuel dd / a * da_dH, dmfuel dd / R,

207 dmfuel dd / SFC, 1., dmfuel dd / m fuel res + 1.,

208 m_fuel / m_fixed + 1., m fuel / m wing + 1.]

209

210 partials = Partials()

211 partials.declare partials(x CD, [x CDi % 1, x CDf % 1, x CDfus, x CDother], 4*[1.])

212 partials.declare partials(x LD, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL % 1],
o dLD dd)

213 partials.declare partials(x fwe CL, x CL % 1, 1.)

214 partials.declare partials(x m fuel, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL %
o l,

215 xM=% 1, x H% 1, xR, x SFC, x m_fuel res,
o x m fixed, x m wing],

216 dmfuel d2)

217 partials.declare partials(x m mtow, [x CDi % 1, x CDf % 1, x CDfus, x CDother, x CL %
o l,

218 xM%1, xH% 1, xR, x SFC, x m_fuel res,
o x m fixed, x m wing],

219 dmmtow dd)

220
221 partials.write (partials file)

© W N U R W N

224

A. Code

Code frament A.41: Code of the Python module containing the fuel weight estimator discipline.

A.5.2.3.3 Problem Definition

#!/usr/bin/env python
-*- coding: utf-8 —-*-

g

Copyright 2017 D. de Vries

Licensed under the Apache License, Version 2.0 (the ”“License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the ProblemDefinition discipline.”””
from _ future_ import absolute_import, division, print_function

import numpy as np
from lxml import etree

from openlego.api import AbstractDiscipline

from openlego.test suite.test examples.wing opt.kb.disciplines.xpaths import *
from openlego.utils.xml utils import xml_safe create_element

from openlego.partials.partials import Partials

class Constraints (AbstractDiscipline):

”””Defines all the constraints for the problem.”””
def init (self, n_wing segments=2):

type: (int) -> None

777”Initialize the Constraints discipline for a given number of wing segments.

Parameters
n wing segments : int
Number of wing segments.

111 r

self.n wing segments = n_wing segments
super (Constraints, self). init ()
@property

def creator(self):
return 'D. de Vries’

@property
def description(self):
return ’'Calculates the constraint values for the wing optimization problem’

def generate input xml (self):
type: () -> str
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

xml safe create element (doc, x sigma yield, 1.)
xml safe create element (doc, x WS init, 1.)
xml_safe create_element (doc, x CL buffet, 1.)

for x sigma in x sigmas out:
xml safe create element (doc, x sigma, np.zeros(self.n wing segments))

xml_ safe create element (doc, x ref area, 0.)
xml safe create element (doc, x m mtow, 0.)

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

A.5. Test Suite

225

o

o

def

def

xml safe create element (doc, x fwe CL, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate output xml (self):

type: () —-> str

root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

for x sigma in x con sigmas:

xml safe create element (doc, x sigma, np.zeros(self.n wing segments))

xml safe create element (doc, x con ks, 0.)

xml safe create element (doc, x con WS, 0.)
xml_safe create_element (doc, x_con_buffet, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate partials xml (self):
partials = Partials()
for i, x sigma in enumerate (x_con_sigmas) :

partials.declare partials(x_sigma, [x _sigma yield, x sigmas_out[i]])

partials.declare partials(x con WS, [x WS init, x ref area, x m mtow])

partials.declare partials(x con buffet, [x CL buffet, x_fwe_CL]T

return partials.get string()

@property
def supplies partials(self):

return False

@staticmethod
def execute(in file, out file):

doc_in = etree.parse(in_file)
sigma_yield = float (doc_in.xpath(x sigma yield) [0].text)

root = etree.Element (’'cpacs’)
doc_out = etree.ElementTree (root)
for i in range(4):
xml_safe create_ element (
doc_out, x con sigmas[i],

np.array(doc_in.xpath (x sigmas out[i]) [0].text.split(’;

dtype=float)/sigma_yield - 1.)

float (doc_in.xpath(x fwe CL) [0].text)/float (doc in.xpath(x CL buffet) [0].text)

MTOW = float (doc_in.xpath(x m mtow) [0].text)

S = float (doc_in.xpath(x ref area) [0].text)

WS init = float(doc in.xpath(x WS init) [0].text)
con_ws = MTOW/S/WS_init - 1.

xml safe create element (doc out, x con WS, con_ws)
xml_safe create_element (doc_out, x con buffet,

doc out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def linearize(in_file, partials file):

doc_in = etree.parse(in_file)
sigma yield = float(doc_in.xpath(x sigma yield) [0].text)

n ws = len(doc in.xpath(x_sigmas out[0]) [0].text.split(’';"))
MTOW = float (doc_in.xpath(x m mtow) [0].text)

S = float (doc_in.xpath(x ref area) [0].text)

WS_init = float(doc_in.xpath(x_WS_init) [0].text)

partials = Partials()
for i in range(4):

1

)

136
137

138
139
140
141
142
143

144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180
181
182
183

185
186
187
188
189
190

192
193
194
195
196
197
198
199
200
201
202
203
204

226

A. Code

partials.declare partials(x con sigmas[i], [x sigma yield, x sigmas out[i]], [
-np.array(doc_in.xpath(x sigmas out[i]) [0].text.split(’;’), dtype=float) /

sigma yield**2,

n ws * [1./sigma yield]])

partials.declare partials(x _con WS, [x WS init, x ref area, x_m mtow],
[-MTOW/S/WS_init**2, -MTOW/S**2/WS_init, 1./S/WS_init])
partials.declare partials(x_con_buffet, [x CL buffet, x fwe CL],

[-float (doc_in.xpath(x fwe CL) [0].text)/float (doc_in.xpath(x CL buffet) [0].text)**2,

1.

partials.write(partials file)

class Objectives (AbstractDiscipline):

”””Defines the objective functions for the problem.

def init (self):
type: (int) -> None
77””Initialize the Objectives
pass

@property
def creator(self):
return 'D. de Vries’

@property
def description(self):

/float(doc_in.xpath(x_CL_buffet)[O].text)])

worr

discipline.”””

return ’'Calculates the objective values for the wing optimization problem’

def generate input xml (self):
type: () -> str
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

xml_safe create_element (doc,
xml_safe create_element (doc,
xml_ safe create element (doc,
xml_safe create_element (doc,

x m fuel init, 1.)
x_m_fuel, 1.)
x m wing init, 1.)
x m wing, 1.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate output xml (self):
type: () —-> sStr
root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

xml safe create element (doc,
xml_safe create element (doc,

x_obj m fuel, 0.)
x obj m wing, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

def generate partials xml (self):
partials = Partials()

partials.declare partials(x obj m fuel, [x m fuel init, x m fuel])
partials.declare partials(x obj m wing, [x m wing init, x m wing])

return partials.get string()

@property
def supplies partials(self):
return False

@staticmethod
def execute(in file, out file):

doc_in = etree.parse(in_file)

root = etree.Element (’'cpacs’)

doc_out = etree.ElementTree (root)

xml safe create element (doc_out, x obj m fuel,

205

207

208
209
210
211

213
214
215
216
217

219
220
221

222
223
224
225

L = N B N R N

A.5. Test Suite 227

float (doc_in.xpath(x m fuel) [0].text) /
o float(doc_in.xpath(x m fuel init) [0].text))
xml safe create element (doc out, x obj m wing,
float (doc_in.xpath(x m wing) [0].text) /
o float(doc_in.xpath(x m wing init) [0].text))

doc_out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod
def linearize(in file, partials file):
doc_in = etree.parse(in_file)

partials = Partials()
partials.declare partials(x_obj m fuel, [x m fuel init, x m fuel], [
-float (doc_in.xpath(x m fuel) [0].text) /
o float(doc_in.xpath(x m fuel init) [0].text)**2,
1. / float(doc_in.xpath(x m fuel init) [0].text)
1
partials.declare partials(x _obj m wing, [x m wing init, x m wing], [
-float (doc_in.xpath(x_m wing) [0].text) /
o float(doc_in.xpath(x m wing init) [0].text) ** 2,
1. / float(doc_in.xpath(x m wing init) [0].text)
1

partials.write(partials file)

Code frament A.42: Code of the Python module containing the constraint and objective function disciplines.

A.5.2.3.4 Simple Aerostructural Analysis

from _ future_ import absolute_import
from _ future__ import division
from _ future__ import print function

import numpy as np
import matlab
import time

import os

from lxml import etree
from matlab.engine import MatlabExecutionError

from openlego.test suite.test_examples.wing opt.kb.disciplines.dAEDalus import
o LoadCaseSpecific,\
start new matlab engine, n seg %, n_seg y
from openlego.test suite.test_examples.wing opt.kb.disciplines.WingObjectModel import
o WingObjectModel
from openlego.test suite.test_examples.wing opt.kb.disciplines.xpaths import *
from openlego.utils.xml utils import xml safe create element, xml merge

dir path = os.path.dirname (os.path.realpath(file))

class SimpleAerostructuralAnalysis (LoadCaseSpecific):

MATLAB TIMEOUT = 1800.

_mles = []
_timestamp = [0.]
data = []
count = 0
def init (self, n wing segments=2, n load cases=1):
super (SimpleAerostructuralAnalysis, self). init (n wing segments, n load cases)
@property

def description(self):
return ’'dAEDalus Steady Aerostructural Loop’

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

103
104
105
106
107
108

228

A. Code

def

def

generate input xml (self):

wd = WingObjectModel (self.n wing segments)

s = wd.generate_ input xml ()

parser = etree.XMLParser (remove_blank text=True, encoding='utf-8’
doc = etree.fromstring (s, parser)

elem = doc.xpath(x m wing)
elem[0] .getparent () .remove (elem[0])

for i in range(l, self.n load cases + 1
xml safe create element (doc, x M
xml_safe create_element (doc, x H
xml safe create element(doc, x n

de o

o O O

)t
il
j-l
il

oo

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate output xml (self):
wd = WingObjectModel (self.n wing segments)
s = wd.generate output xml ()

parser = etree.XMLParser (remove blank text=True, encoding='utf-8’
doc = etree.fromstring (s, parser)

xml safe create element (doc, x m wing, 0.)

for i in range(l, self.n load cases + 1):
xml safe create element(doc, x CL % i,
xml safe create element (doc, x CDf % i,
xml safe create element(doc, x CDi % i,

0.)
-)
-)

o O

for x sigma in x sigmas_in:
xml safe create element(doc, x sigma % i, np.zeros(self.n wing segments))

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@property

def

supplies partials (self):
return False

@staticmethod

def

execute (in file, out file):
in file = os.path.abspath(in_file)
out file = os.path.abspath(out file)

parser = etree.XMLParser (remove blank text=True, encoding=’'utf-8’

doc_in = etree.parse(in file, parser)
n lc = SimpleAerostructuralAnalysis.get n loadcases(doc_in)

Prepare matlab engines
if not len(SimpleAerostructuralAnalysis. mles) or \
(time.time () - SimpleAerostructuralAnalysis. timestamp[
0] >= SimpleAerostructuralAnalysis.MATLAB TIMEOUT) :
SimpleAerostructuralAnalysis. mles = []

SimpleAerostructuralAnalysis. timestamp[0] = time.time ()
for in range(n_lc):
mle, , , = start new matlab engine ()

mle.cd(dir path)
SimpleAerostructuralAnalysis. mles.append (mle)

fail = False

Converge wing weight first

err = 1.

tol = 1.e-2
imax = 10

i=1

m wing prev = 1.
m wing = 1.el0

while err > tol and i < imax:

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149
150
151
152
153
154
155

156

157
158
159
160
161
162
163
164
165
166
167
168

A.5. Test Suite

229

WingObje
try:

ctModel.execute (in_file, out file)

m wing = SimpleAerostructuralAnalysis. mles[0].dAEDalusSteadyModelInitializer (

except M
fail
prin
brea

err = ab
m wing p

out file, matlab.double([n_seg x]), matlab.double([n_seg_y]), nargout=1)
atlabExecutionError:

= True

t(’fail’

k

s(m_wing - m_wing prev) / m wing prev

rev = m _wing

xml safe create element (doc_in, x m wing, m wing)
rite(in_file, encoding="utf-8’, pretty print=True, xml declaration=True)

doc_in.w

doc_out = etree.parse(out file, parser)

xml_safe create_element (doc_out, x m wing, m _wing)

for i in range(n_lc):
xml safe create element (doc out, x CL % (i + 1), 1.)
xml_safe create_element (doc_out, x CDf (1 + 1), 1.)
xml safe create element (doc out, x CDi (1 + 1), 1.)
for j in range (4):

xml safe create element (doc out, x sigmas in[j] % (1 + 1), np.ones(n_lc) * 1el0)

if not fail:

Gather
M = n lc
H = n_lc
n =n_lc
for i in
M[i
H[1
nli

load case flight states

* [0.]

* [0.]

* [0.]

range(l, n lc + 1):
- 1] = float(doc_in.xpath(x M % 1) [0].text)
- 1] = float(doc_in.xpath(x H % 1) [0].text)
- 1] = float(doc_in.xpath(x n % 1) [0].text)

Perform full analysis on each loadcase

futures
for i in
futu

= n_lc * [None]
range (n_1lc) :
res[i] =

o SimpleAerostructuralAnalysis. mles[i].dAEDalusSteadyAerostructuralLoop (
out file, matlab.double([n_seg x]), matlab.double([n_seg y]), M[i], HI[i],

o nl[i],

Obtain
for i, £
if f

o future.result ()

nargout=8, async=True)

o np.array(sigma_bs)]

results and write to file

uture in enumerate (futures) :

uture is not None:

try:
~, CcCL, CDf, CDi, sigma fs, sigma rs, sigma ts, sigma bs =
sigmas = [np.array(sigma fs), np.array(sigma rs), np.array(sigma_ ts),
xml safe create element(doc out, x CL % (i + 1), C L)
xml safe create element (doc out, x CDf % (i + 1), C D f)
xml safe create element(doc out, x CDi % (i + 1), C D i)
for j in range (4):
xml _safe create element (doc_out, x sigmas _in[j] % (i + 1), sigmas[j])

except MatlabExecutionError:
print (' double fail’)
break

doc_out.write(out file, encoding='utf-8’, pretty print=True, xml declaration=True)

Code frament A.43: Code of the Python module containing the collapsed, integrated aerostructural analysis discipline.

A.5.2.3.5 Wing Object Model

© L N U AW N

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

230

A. Code

#!/usr/bin/env python

—-*- coding:

aaa

utf-8 —*-

Copyright 2017 D. de Vries

Licensed under the Apache License,

Version 2.0 (the ”License”);

you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
distributed under the License is distributed on an
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

software
”AS IS” BASIS,

See the License for the specific language governing permissions and
limitations under the License.

This file contains the definition of the WingObjectModel class along with a collection of

o static variables and methods

it uses.

Vaaa

from _ future import absolute import, division, print function

import os

import numpy as np

from lxml import etree
from typing import Optional, Union, Tuple, Sized
from openlego.api import AbstractDiscipline
from openlego.test_suite.test examples.wing opt.kb.disciplines.xpaths import *
from openlego.utils.xml utils import xml safe create element
from openlego.partials.partials import Partials
dir path = os.path.dirname (os.path.realpath(file))
af x = (1.000000, 0.997840, 0.995410, 0.992720, 0.989770, 0.986550, 0.983080,
- 0.975360, 0.971120,
0.966630, 0.961890, 0.956900, 0.951680, 0.946210, 0.940500, 0.934550,
- 0.921980, 0.915350,
0.908500, 0.901440, 0.894160, 0.886670, 0.878980, 0.871080, 0.862990,
- 0.846230, 0.837570,
0.828730, 0.819720, 0.810540, 0.801190, 0.791680, 0.782020, 0.772210,
- 0.752160, 0.741940,
0.731580, 0.721100, 0.710510, 0.699800, 0.688990, 0.678080, 0.667080,
- 0.644810, 0.633560,
0.622240, 0.610860, 0.599420, 0.587930, 0.576390, 0.564820, 0.553210,
s 0.529920, 0.518250,
0.506580, 0.494900, 0.483220, 0.471560, 0.459920, 0.448290, 0.436700,
- 0.413630, 0.402170,
0.390760, 0.379410, 0.368130, 0.356920, 0.345790, 0.334740, 0.323780,
- 0.302170, 0.291520,
0.280990, 0.270580, 0.260290, 0.250130, 0.240110, 0.230230, 0.220500,
- 0.201490, 0.192230,
0.183140, 0.174220, 0.165480, 0.156920, 0.148540, 0.140360, 0.132370,
- 0.116990, 0.109610,
0.102450, 0.095500, 0.088770, 0.082260, 0.075980, 0.069920, 0.064110,
- 0.053180, 0.048080,
0.043220, 0.038610, 0.034260, 0.030150, 0.026300, 0.022700, 0.019370,
- 0.013480, 0.010920,
0.008640, 0.006620, 0.004870, 0.003380, 0.002160, 0.001220, 0.000540,
s 0.000000, 0.000000,
0.000140, 0.000540, 0.001220, 0.002160, 0.003380, 0.004870, 0.006620,
s 0.010920, 0.013480,
0.016290, 0.019370, 0.022700, 0.026300, 0.030150, 0.034260, 0.038610,
- 0.048080, 0.053180,
0.058520, 0.064110, 0.069920, 0.075980, 0.082260, 0.088770, 0.095500,
- 0.109610, 0.116990,
0.124580, 0.132370, 0.140360, 0.148540, 0.156920, 0.165480, 0.174220,
- 0.192230, 0.201490,

either express or implied.

.979350,

.928380,

.854700,

.762260,

.655990,

.541580,

.425150,

312930,

.210920,

.124580,

.058520,

.016290,

.000140,

.008640,

043220,

.102450,

.183140,

53

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
89

A.5. Test Suite

231

0.210920,

o 0.291520, 0.3
0.312930,

o 0.402170, 0.4
0.425150,

o 0.518250, 0.5
0.541580,

o 0.633560, 0.6
0.655990,

o 0.741940, 0.7
0.762260,

o 0.837570, 0.8
0.854700,

o 0.915350, 0.9
0.928380,

o 0.971120, 0.9
0.979350,
af_z = (0.000000,
o 0.009560, 0.0
0.012040,

o 0.021570, 0.0
0.023890,

o 0.033930, 0.0
0.036690,

o 0.047790, 0.0
0.050340,

o 0.058580, 0.0
0.060080,

o 0.064070, 0.0
0.064590,

o 0.064960, 0.0
0.064610,

o 0.061460, 0.0
0.060280,

o 0.054160, 0.0
0.052350,

o 0.044150, 0.0
0.041870,

o 0.031980, 0.0
0.029290,

o 0.017450, 0.0
0.014170,

& 0.000000, 0.0
-0.001550,

o -0.011680, -0.
-0.014310,

o -0.022570, -0.
-0.024730,

o -0.031830, -0.
-0.033760,

o -0.039960, -0.
-0.041540,

o -0.046160, -0
-0.047160,

o -0.049250, -0.
-0.049380,

o -0.047970, -0.
-0.046990,

o -0.041520, -0.
-0.039350,

o -0.029790, -0.
-0.026600,

o -0.014660, -0.
-0.011270,

o -0.000550, 0.
0.003120,

o 0.008850, 0.0
0.009220,

o 0.006900, 0.0

0.005600,

0.220500, 0.230230, 0.240110, 0.250130, 0.260290, 0.270580,
02170,
0.323780, 0.334740, 0.345790, 0.356920, 0.368130, 0.379410,
13630,
0.436700, 0.448290, 0.459920, 0.471560, 0.483220, 0.494900,
29920,
0.553210, 0.564820, 0.576390, 0.587930, 0.599420, 0.610860,
44810,
0.667080, 0.678080, 0.688990, 0.699800, 0.710510, 0.721100,
52160,
0.772210, 0.782020, 0.791680, 0.801190, 0.810540, 0.819720,
46230,
0.862990, 0.871080, 0.878980, 0.886670, 0.894160, 0.901440,
21980,
0.934550, 0.940500, 0.946210, 0.951680, 0.956900, 0.961890,
75360,
0.983080, 0.986550, 0.989770, 0.992720, 0.995410, 0.997840,
0.001150, 0.002320, 0.003500, 0.004690, 0.005900, 0.007110,
10810,
0.013270, 0.014490, 0.015680, 0.016880, 0.018070, 0.019240,
22730,
0.025070, 0.026270, 0.027480, 0.028720, 0.029980, 0.031270,
35310,
0.038090, 0.039510, 0.040920, 0.042320, 0.043720, 0.045100,
49090,
0.051550, 0.052720, 0.053830, 0.054890, 0.055900, 0.056850,
59360,
0.060760, 0.061380, 0.061950, 0.062470, 0.062940, 0.063360,
64350,
0.064790, 0.064940, 0.065060, 0.065120, 0.065140, 0.065130,
64810,
0.064370, 0.064090, 0.063750, 0.063380, 0.062970, 0.062510,
60890,
0.059620, 0.058930, 0.058200, 0.057460, 0.056670, 0.055870,
53270,
0.051400, 0.050450, 0.049450, 0.048440, 0.047390, 0.046340,
43020,
0.040710, 0.039510, 0.038320, 0.037080, 0.035840, 0.034570,
30650,
0.027920, 0.026510, 0.025090, 0.023630, 0.022130, 0.020610,
15840,
0.012480, 0.010770, 0.009020, 0.007240, 0.005460, 0.003660,
00000,
-0.003060, -0.004570, -0.006050, -0.007490, -0.008930, -0.
013020,
-0.015580, -0.016810, -0.018010, -0.019190, -0.020340, -0
023650,
-0.025770, -0.026820, -0.027850, -0.028860, -0.029860, -0
032810,
-0.034700, -0.035620, -0.036540, —-0.037430, -0.038290, -0
040770,
-0.042290, -0.043010, -0.043710, -0.044370, -0.045000, -0
.046670,
-0.047600, -0.048000, -0.048350, -0.048640, -0.048900, -0
049340,
-0.049360, -0.049270, -0.049140, -0.048940, -0.048670, -0
047520,
-0.046410, -0.045760, -0.045050, -0.044270, -0.043420, -0
040470,
-0.038160, -0.036920, -0.035610, -0.034240, -0.032800, -0
028210,
-0.024940, -0.023270, -0.021560, -0.019840, -0.018110, -0
012960,
-0.009600, -0.007970, -0.006380, -0.004840, -0.003350, -0.
000760, 0.001980,
0.004190, 0.005150, 0.006030, 0.006800, 0.007480, 0.008040,
09090,
0.009250, 0.009180, 0.009010, 0.008750, 0.008400, 0.007970,
06280,
0.004890, 0.004130, 0.003340, 0.002540, 0.001710, 0.000880,

0.280990,

0.390760,

0.506580,

0.622240,

0.731580,

0.828730,

0.908500,

0.966630,

1.000000)
0.008340,

0.020410,

0.032590,

0.046460,

0.057750,

0.063720,

0.065060,

0.062010,

0.055030,

0.045250,

0.033290,

0.019050,

0.001820,

010320,

.021460,

.030860,

.039130,

.045600,

.049100,

.048350,

042500,

.031320,

.016390,

001910,

0.008490,

0.007470,

0.000000)

232 A. Code

91 def add cleared child(parent, child name, attrib=None):

92 # type: (etree. Element, str, Optional[dict]) -> etree. Element

93 77”Clears the child with the given name of the given parent with the given attributes and
o returns 1it.

94

95 If a child doesn’t exist yet with the given name and attributes, it is created.

96

97 Parameters

98 00—

99 parent : :obj:‘etree. Element'

100 Parent element.

101

102 child name : str

103 Name of the child element.

104

105 attrib : dict, optional

106 Dictionary of attributes.

107

108 Returns

109 00 =

110 :obj: ‘etree. Element'

111 The cleared child element.

112 100100

113 for child in parent.findall (child name) :

114 if attrib is None:

115 child.clear ()

116 return child

117 elif all([value == child.attribl[key] for (key, value) in attrib.items() if key in
o child.attrib]):

118 child.clear ()

119 return child

120

121 return etree.SubElement (parent, child name, attrib)

122
123
124 def add point(tree, parent, point name, *args):

125 # type: (etree. ElementTree, Union[str, etree. Element], str, *Union[float,
o Tuple[float]]) -> etree. Element
126 7””Safely creates a new point in the XML tree.
127
128 Parameters
129 00 —m———————=
130 tree : :obj:‘etree. ElementTree'
131 Tree in which to add the point.
132
133 parent : str or :obj:‘etree. Element'
134 XPath of the element or ‘etree. Element' under which to add the point.
135
136 point name : str
137 Name of the point.
138
139 *args
140 Either three floats (x, y, z) or a length 3 tuple correspondingly, which describes

o the point.
141

142 Returns

143 ———————

144 :obj: ‘etree. Element'

145 The ‘etree. Element' corresponding to the newly created point.
146 o

147 if len(args) == 1 and len(args[0]) ==

148 X, y, z = args[0]

149 elif len(args) ==

150 x = args|[0]

151 y = args[1l]

152 z = args|[2]

153 else:

154 raise ValueError (' *args should be three floats or a tuple or length 3’)

155
156 if isinstance (parent, str):

157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190

192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

A.5. Test Suite 233

parent = xml safe create element (tree, parent)

point = add cleared child(parent, point name)
etree.SubElement (point, ’'x’).text = str(x)
etree.SubElement (point, 'y’).text = str(y)
etree.SubElement (point, ’"z’).text = str(z)

return point

def add transform(tree, parent, scaling=(1, 1, 1), rotation=(0, 0, 0), translation=(0, 0, 0)):
type: (etree. ElementTree, Union[str, etree. Element], tuple, tuple, tuple) ->
o etree. Element
7””Safely creates a new CPACS transformation within the XML tree at the given XPath.

Parameters
tree : :obj:‘etree. ElementTree'
Tree in which to add the transformation.

parent : str or :obj:‘etree. Element'
XPath of an element or ‘etree. Element' under which to add the transformation.

scaling, rotation, translation : tuple of float
Tuples of length 3 corresponding to the x-, y-, and z-components of the scaling,
- rotation, and translation.

Returns
:obj: ‘etree. Element'
‘etree. Element' corresponding to the newly added transformation.
if len(scaling) != len(rotation) != len(translation) != 3:
raise ValueError (’scaling, rotation, and translation should be tuples of length 37)

if isinstance (parent, str):
parent = xml safe create element (tree, parent)

transform = add cleared child(parent, ’transformation’)
add point (tree, transform, ’‘scaling’, scaling)

add _point (tree, transform, ’rotation’, rotation)

add point (tree, transform, ’'translation’, translation)

return transform

def add spar position(tree, parent, uid, element uid, xsi):
type: (etree. ElementTree, Union[str, etree. Element], str, str, float) ->
o etree. Element
7””Safely creates a new CPACS spar position with the given XML tree.

Parameters
tree : :0bj:‘etree. ElementTree'
Tree in which to add the spar position.

parent : str or :obj:‘etree. Element'
XPath of an element or ‘etree. Element' under which to add the spar position.

uid, element uid : str
Unique identifiers of the spar position and the corresponding element.

xsi : float
Chordwise location of the spar position.

:obj: ‘etree. Element'
‘etree. Element' corresponding to the newly added spar position.

v

if isinstance (parent, str):

234 A. Code

225 parent = xml safe create element (tree, parent)

226

227 spar pos = add cleared child(parent, ’sparPosition’, {’uID’: uid})
228 etree.SubElement (spar_pos, ’'name’).text = uid

229 etree.SubElement (spar pos, ‘elementUID’).text = element uid

230 etree.SubElement (spar_pos, ’xsi’).text = str(xsi)

231

232 return spar pos

233

235 def add spar segment (tree, parent, uid, start pos uid, end pos uid, mat uid, t web, t top,
o t bottom):

236 # type: (etree. ElementTree, Union[str, etree. Element], str, str, str, str, float, float,
o float) -> etree. Element

237 77”Safely creates a new CPACS spar segment within the XML tree.

238

239 Parameters

240 000 —————————=

241 tree : :0bj:‘etree. ElementTree'

242 Tree in which to add the spar segment.

243

244 parent : str or :obj:‘etree. Element'

245 XPath of an element or ‘etree. Element' under which to add the spar segment.

246

247 uid, start pos uid, end pos uid, mat uid : str

248 Unique identifiers of the spar segment, its start and end positions, and its

o material.
249

250 t web, t top, t bottom : float
251 Thicknesses of the web, top, and bottom of the spar segment.
252
253 Returns
254 00000 0—o————=
255 :obj: ‘etree. Element'
256 ‘etree. Element' corresponding to the newly added spar segment.
257 oo
258 if isinstance (parent, str):
259 parent = xml safe create_element (tree, parent)
260
261 spar seg = add cleared child(parent, ’sparSegment’, {’uID’: uid})
262 etree.SubElement (spar_seg, ’‘name’).text = uid
263 etree.SubElement (spar seg, ’‘description’).text = uid
264
265 X sparseg = tree.getpath (spar_ seg)
266 xml_safe create element (tree, ’/’.join([x_sparseg, ’'sparCrossSection/rotation’]), 90)
267 xml safe create element (tree, ’/’.join([x_sparseg, " sparCrossSection/webl/relPos’]), 0.5)
268 xml safe create element (tree, '/’ .join([x sparseg,
o ’sparCrossSection/webl/material/materialUID’]), mat_uid)
269 xml safe create element (tree, '/’ .join([x_sparseg,
o ’sparCrossSection/webl/material/thickness’]), t_web)
270
271 xml_safe create_element (tree, '/’.join([x_sparseg, " sparCrossSection/upperCap/area’]), 0)
272 xml_safe create_element (tree, '/’ .join([x_sparseg,
o ’sparCrossSection/upperCap/material/materialUID’]), mat uid)
273 xml safe create element (tree, ’/’.join([x sparseg,

o ’sparCrossSection/upperCap/material/thickness’]), t_ top)
274

275 xml safe create element (tree, '/’ .join([x sparseg, ’'sparCrossSection/lowerCap/area’]), 0)
276 xml_safe create element (tree, '/’ .join([x_sparseg,

o ’sparCrossSection/lowerCap/material/materialUID’]), mat_uid)
277 xml_safe create element (tree, ’'/’.join([x_sparseg,

o ’sparCrossSection/lowerCap/material/thickness’]), t_bottom)
278
279 uids = etree.SubElement (spar seg, ’sparPositionUIDs’)
280 etree.SubElement (uids, ’sparPositionUID’).text = start pos uid
281 etree.SubElement (uids, ’'sparPositionUID’).text = end pos_uid
282
283 return spar_seg

284
285
286 def add mass description(tree, parent, element name, mass, uid=None):

287

288
289
290
291
292
293
294

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

A5.

Test Suite

235

o

def

type: (etree. ElementTree, Union[str, etree. Element], str, float, Optional[str])

etree. Element

7””Safely adds a CPACS mass description to the given XML tree at the given parent.

Parameters

tree : :obj:‘etree. ElementTree'
Tree in which to add the mass description.

parent : str or :obj:‘etree. Element'
XPath of an element or ‘etree. Element' under which to add the mass description.

element name : str
Name of the element.

mass : float
Value of the mass.

uid : str, optional

Unique identifier of the mass description.

Returns

:obj: ‘etree. Element'

‘etree. Element' corresponding to the newly added mass description.

v

if uid is None:
uid = element_name

if isinstance (parent, str):

parent = xml safe create element (tree, parent)

elem = etree.SubElement (parent, element name, {’ulD’:
etree.SubElement (elem, ’'mass’).text = str (mass)

return elem

add_mass (tree, parent, mass_name, mass, uid=None):

type: (etree. ElementTree, Union[str, etree. Element], str, float, Optional[str])

etree. Element

77”Safely creates a CPACS mass within the given XML tree at the given parent.

Parameters

tree : :0bj:‘etree. ElementTree'
Tree in which to add the mass.

parent : str or :obj:‘etree. Element'

XPath of an element or ‘etree. Element' under which to add the mass.

mass_name : Str
Name of the mass.

uid : str, optional

Unique identifier of the mass.

Returns

:obj: ‘etree. Element'

‘etree. Element' corresponding to the newly added mass.

s

if uid is None:
uid = mass name

if isinstance (parent, etree. Element):

parent = tree.getpath (parent)

_mass = xml_safe create_element (tree,

add mass_description(tree, mass,
return mass

"massDescription’,

uid})

mass,

"/’ .join([parent, mass namel))

uid)

->

->

236 A. Code

356
357 def add cpacs_header(tree, name, creator, version, description, cpacs version):

358 # type: (etree. ElementTree, str, str, str, str, str) -> etree. Element

359 777”Add a CPACS header to the given XML tree root.

360

361 Parameters

362 0 —mm———————

363 tree : :obj:‘etree. ElementTree'

364 Tree in which to add the header.

365

366 name, creator, version, description, cpacs version : str

367 Name, creator, version identifier, and version of CPACS to put in the CPACS header

o information.
368

369 Returns

370 0 ===

371 :obj: ‘etree. Element'

372 ‘etree. Element' corresponding to the newly added header.
373 10000

374 root = tree.getroot()

375 header = etree.SubElement (root, ’'header’)

376 etree.SubElement (header, ’'name’) .text = name

377 etree.SubElement (header, ’'creator’).text = creator

378 etree.SubElement (header, 'version’).text = version

379 etree.SubElement (header, ’description’).text = description
380 etree.SubElement (header, ’cpacsVersion’).text = cpacs version
381 return header

382
383
384 class WingObjectModel (AbstractDiscipline):

385 7””This discipline transforms a reduced aero-structural model of a wing into a CPACS file.

386

387 The wing is modeled with a number of wing segments, n wing segments. Each wing segment has
- a span, b, sweep angle,

388 Lambda, dihedral angle, Gamma, as well as four thicknesses, t fs, t rs, t ts, and t bs for
o the front spar,

389 rear spar, top skin, and bottom skin associated with it. The sections joining two wing
o segments each have a chord

390 length, ¢, thickness over chord ratio, t/c, twist angle, epsilon, from spar position,
o xsi fs, and rear spar

391 position, xsi rs, associated with it. The most inboard section does not have a twist
« angle, but an incidence angle

392 associated with it. Furthermore, a single thickness and material density are defined for
o the skin of the wing

393 outside of the wingbox.

394

395 Upon executing this discipline, a CPACS file containing the parameters of this reduced
- model 1is translated to a

396 regular CPACS file. The result should be a wing that has the same geometry as was

o described by the reduced model.

397
398

399 def init (self, n wing segments=2):

400 super (WingObjectModel, self). init ()
401 self.n wing segments = n_wing segments
402

403 @property

404 def creator (self):

405 return 'D. de Vries’

406

407 @property

408 def description(self):

409 return ’'Wing object model’

410

411 @property

412 def supplies partials(self):

413 return True

414

415 def generate input xml (self):

416 # type: () —-> str

417 root = etree.Element (’'cpacs’)

A.5. Test Suite

237

def

def

doc = etree.ElementTree (root)

xml safe create element(doc, x c, np.zeros(self.n wing segments + 1))

xml safe create element (doc, x tc, np.zeros(self.n wing segments + 1))

xml safe create element (doc, x epsilon, np.zeros(self.n wing segments))
xml safe create element (doc, x b, np.zeros(self.n_wing segments))

xml safe create element (doc, x Lambda, np.zeros(self.n wing segments))
xml_safe create element (doc, x Gamma, np.zeros(self.n wing segments))

xml safe create element (doc, x xsi fs, np.zeros(self.n wing segments + 1))
xml safe create element (doc, x xsi rs, np.zeros(self.n wing segments + 1))
xml safe create element(doc, x t fs, np.zeros(self.n wing segments))
xml_safe create_element (doc, x t_rs, np.zeros(self.n wing segments))

xml safe create element (doc, x t ts, np.zeros(self.n wing segments))

xml safe create element (doc, x t bs, np.zeros(self.n wing segments))

xml safe create element (doc, x incidence, 0.)

xml safe create element (doc, x t skin, 0.)

xml safe create element (doc, x rho skin, 0.)

xml safe create element (doc, x m fixed, 0.)
xml_safe create_ element (doc, x m payload, 0.)
xml safe create element (doc, x m wing, 0.)
xml safe create element (doc, x m fuel, 0.)
xml safe create element (doc, x m mlw, 0.)

xml safe create element(doc, x f m sys, 0.)
xml safe create element(doc, x f m wings, 0.)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

generate output xml (self):
type: () -> str
1 = np.zeros(self.n wing segments + 1)
2 = np.zeros(self.n wing segments)
3 = np.zeros((3, self.n wing segments + 1))

return WingObjectModel.write data(0, O, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 2,
0, o, 0, 0, 0, _2)

generate partials xml (self):
partials = Partials()

partials.declare partials(x _ref area, x c)
partials.declare partials(x ref area, x b)
partials.declare partials(x _ref length, x c)

for i in range(self.n wing segments + 1):

)

X sec = X _sec % 1
x trans = '/’ .join([_x sec, ’'transformation’])
x scaling = '/’ .join([x trans, ’scaling’])
partials.declare partials(’/’.join([x_scaling, ’'x’]), x c)
partials.declare partials(’/’.join([x scaling, ’'y’]), x c)
partials.declare partials(’/’.join([x_scaling, ’z’]), x_c)
partials.declare partials(’/’.join([x_scaling, ’z’]), x_tc)
x_rotation = ’/’.join([x_trans, "rotation’])
if i != 0:

partials.declare partials(’/’.join([x_rotation, ’y’]), x epsilon)

partials.declare partials(’/’.join([x rotation, ’y’]), X incidence)

x_translation = ’/’.join([x_trans, "translation’])

partials.declare partials(’/’.join([x translation, 'x’]), x c)
partials.declare partials(’/’.join([x_translation, ’y’]), x c)
partials.declare partials(’/’.join([x translation, 'z’]), x c)

partials.declare partials(’/’.join([x translation, ’'x’]), x epsilon)
partials.declare partials(’/’.join([x_translation, ’y’]), x epsilon)
partials.declare partials(’/’.join([x translation, ’z’]), x epsilon)

partials.declare partials(’/’.join([x_translation, ’
partials.declare partials(’/’.join([x translation,
partials.declare partials(’/’.join([x_translation, ’

x’]), x_incidence)
y’1), x incidence)
z"]), %_incidence)

488
489

491
492
493
494
495
496

498
499
500
501
502
503

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

527

528
529
530
531
532
533
534
535
536
537
538
539
540

541
542
543
544

545
546
547
548

549
550
551
552
553

238

A. Code

o

o

o

o

o

if i != 1:

partials.declare partials(’/’.join([x translation, ’x
partials.declare partials(’/’.join([x_translation, ’y’]), x Gamma)
z

"]

), X_Gamma)

partials.declare partials(’/’.join([x_translation, ’z’]), x Gamma)
partials.declare partials(’/’.join([x_translation, ’x’]), x Lambda)
partials.declare partials(’/’.join([x translation, ‘y’]), x Lambda)
partials.declare partials(’/’.join([x_translation, ’z’]), x Lambda)
partials.declare partials(’/’.join([x_translation, 'x’]), x b)
partials.declare partials(’/’.join([x translation, 'y’]), x b)
partials.declare partials(’/’.join([x_translation, ’z’]), x b)
for i in range(self.n_wing segments) :
partials.declare partials(x fs web t % (i, 1), x t fs)
partials.declare partials(x fs lowerCap t % (i, i), x t bs)
partials.declare partials(x fs upperCap t % (i, 1), x_ t ts)
partials.declare partials(x rs web t % (i, 1), x t rs)
partials.declare partials(x rs_lowerCap_t % (i, 1), x_t bs)
partials.declare partials(x _rs upperCap t % (i, i), x t ts)
partials.declare partials(x fs r xsi % (i, 1), x xsi fs)
partials.declare partials(x rs_r xsi % (i, 1), x_xsi_rs)
partials.declare partials(x fs t xsi % (i, 1), x xsi fs)
partials.declare_partials(x_rs_t xsi % (i, 1), x_xsi_rs)
x md = " {0} [CuID="{1}"]/mass’
xm ="'/’ join(["{0}’, x md.format ('massDescription’, ’{0}’)])
x mass = '/’.join([x mbd, x m])
X moem = X mass.format ("mOEM’)
x mem = '/’ .join([x moem[:-34], x m.format ('mEM’)])
x sys = '/’ .join([x mem[:-33], x m.format ('mSystems’)])
x m struct = '/’ .join([x mem[:-33], x m.format ('mStructure’)])
x m wings = '/’ .join([x m struct[:-40], x m.format ('mWingsStructure’)])

_;_m_wing = '/’ .join([x_ m wings[:-45], x m.format ('mWingStructure’)])

partials.declare partials(’/’.join ([x_mbd,

" fuel/massDescri

ption[@uID="mFuel”]/mass’]),

partials.declare partials(’/’.join ([x_mbd,
'payload/massDescription[@uID="mPayload”]/mass’]), x m fuel)

partials.declare partials(x_moem,

partials.decl

partials.declare partials(x_sys,

partials.declare partials(x m struct,

partials.decl

x_m_fuel)

[x m wing, x m fixed])

are partials(x_mem, [x_m wing, x m_fixed])

are partials(x m wings, [x m wing, x f m wings])
partials.declare partials(_x m wing, X _m wing)

for 1 in range(self.n wing segments) :

x m compseg = '/’ .join([_x m wing[:-44],

partials.

declare partials(

"/’ .join([x m compseg, x md.format ('massDescription’,
‘mWing {:d}’.format(i))]),
[x ¢, x xsi fs, x xsi rs, x b, x t skin, x rho skin, x m wing])

[x m wing, x m fixed, x f m sys])

[x m wing, x m fixed, x f m sys])

oin([x_m compseg, 'mWingBox’, x md.format ('massDescription’,

"mComponentSegment [{:d}]’.format (i + 1)1)

oin([x mSkins % (i + 1), 'mSkins’, x md.format (’'massDescription’,

partials.declare partials(
/3 _
"mWingbox {:d}’.format(i))]),
[x ¢, x xsi fs, x xsi rs, x b, x m wing])
partials.declare partials(
"/
"mSkins {:d}’.format(i))]),

[x_ ¢, x xsi_fs, x xsi_rs, x_b, x t_skin, x_rho_skin])

x des = '/’ .3

oin([x _mbd, ’"designMasses’])

partials.declare partials(’/’.join([x des, x md.format ('mMLM’,
partials.declare partials(’/’.join([x des, x md.format (’mMRM’,

" MLM’)]
" MRM”)]

)
)

’

’

X m mlw)

A.5. Test Suite 239

554 [x m fuel, x m wing, x m fixed, x m payload])
555 partials.declare partials(’/’.join([x des, x md.format ('mTOM’, 'mTOM’)]),
556 [x m fuel, x m wing, x m fixed, x m _payload])
557 partials.declare partials(’/’.join([x des, x md.format ('mzFM’, 'mzFM’)]),
558 [x_ m wing, x m_fixed, x_m payload])

559

560 return partials.get string()

561

562 @staticmethod

563 def read data(file):

564 tree = etree.parse(file)

565

566 c = np.array(tree.xpath(x _c) [0].text.split(’;’"), dtype=float)

567 tc = np.array(tree.xpath(x_tc) [0].text.split(’;’), dtype=float)

568 epsilon = np.array(tree.xpath(x _epsilon) [0].text.split(’;’), dtype=float)
569 b = np.array(tree.xpath(x b) [0].text.split(’;’), dtype=float)

570 sweep = np.array (tree.xpath(x Lambda) [0].text.split(’;’), dtype=float)

571 dihed = np.array(tree.xpath(x _Gamma) [0].text.split(’;’), dtype=float)

572 xsi fs = np.array(tree.xpath(x xsi fs) [0].text.split(’;’), dtype=float)
573 xsi rs = np.array(tree.xpath(x xsi rs) [0].text.split(’;’), dtype=float)
574 t fs = np.array(tree.xpath(x t fs) [0].text.split(’;’), dtype=float)

575 t_rs = np.array(tree.xpath(x_t rs) [0].text.split(’;’), dtype=float)

576 t ts = np.array(tree.xpath(x_t ts)[0].text.split(’;’), dtype=float)

577 t bs = np.array(tree.xpath(x t bs) [0].text.split(’;’), dtype=float)

578 incidence = np.array(tree.xpath(x incidence) [0].text.split(’;’), dtype=float)
579 t skin = np.array(tree.xpath(x t skin) [0].text.split(’;’), dtype=float)
580 rho _skin = np.array(tree.xpath(x rho skin) [0].text.split(’;’), dtype=float)
581

582 m_fuel = tree.xpath(x_m_fuel)

583 if not m fuel:

584 m_fuel = 0. # float(tree.xpath(x m fuel init) [0].text)

585 else:

586 m_fuel = float(m_fuel[0].text)

587

588 m_wing = tree.xpath(x_m_wing)

589 if not m wing:

590 m wing = 0. # float (tree.xpath(x m wing init) [0].text)

591 else:

592 m wing = float(m wing[0].text)

593

594 m fixed = float(tree.xpath(x m fixed) [0].text)

595 m payload = float (tree.xpath(x m payload) [0].text)

596 m mlw = float (tree.xpath(x m mlw) [0].text)

597 f m sys = float(tree.xpath(x f m sys) [0].text)

598 f m wings = float(tree.xpath(x_f m wings) [0].text)

599

600 return c, tc, epsilon, b, sweep, dihed, \

601 xsi fs, xsi rs, t fs, t rs, t ts, t bs, \

602 incidence, t skin, rho skin, \

603 m fuel, m wing, m fixed, m payload, m mlw, f m sys, f m wings

604

605 @staticmethod

606 def write data(*args):

607 # type: (*(str, str, Sized)) -> str

608 777gtility method that writes all output variables to the given XML file.
609

610 Parameters

611 mm—mm— e

612 *args

613 (S ref, ¢ ref, ¢, t/c, twists, x LE,

614 xsi fs, xsi rs, t fs, t rs, t ts, t bs,

615 m _skin, m fuel, m wing, m fixed, m payload, m mlw, f m sys, f m wings,

o m wingbox)
616

617 Returns

618 ——————=

619 Str

620 String representing the output XML file.

621 o

622 s ref, c ref, ¢, tc, twists, x le, xsi fs, xsi rs, t fs, t rs, t ts, t bs, m skin,

o m_fuel, m wing, m fixed, m payload, m mlw, f m sys, f m wings, m wingbox = args

623
624
625
626
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654

root = etree.Element (’'cpacs’)
doc = etree.ElementTree (root)

add cpacs_header (doc,
"Wing object model’,

r2.3")

’WingObjectModel’,

xml safe create element (doc, ’/’.join([x_model,

xml safe create element (doc, x ref area, s_ref)

xml safe create element (doc, x ref length,
add_point (doc, x_ref,

c_ref)

"point’, 0, 0, 0)

xml safe create element (doc, x wing)

add_transform(doc, x_wing)

for i in range(len(c)):

)

X sec = X sec % i

elem_sec = xml_safe create_element (doc, _
etree.SubElement (elem sec, ‘name’).text = ’Section %d’

add_transform(doc, elem sec, (c[i], 1, tc[i]

tuple(x_le[:, 1i]))

elem elems = etree.SubElement (elem sec,
elem _elem = etree.SubElement (elem elems,

etree.SubElement (elem _elem, ’'name’).text =

etree.SubElement (elem elem,
add_transform(doc,

"Automatically generated from python’,

"Wing Definition’)

X_sec)

np.rad2deg (twists[i]),

"elements’)
"element’,
"Element %d’
"airfoilUID’) .text
elem_elem)

x pos = '/’ .join([x _wing, r”positionings/positioning”])
if i !'= 0:
x pos += "[%d]’ % (1 + 1)
pos = xml safe create element (doc, x_ pos)
etree.SubElement (pos, ’'length’).text = str(0)
etree.SubElement (pos, ’'sweepAngle’) .text = str(0)
etree.SubElement (pos, ’'dihedralAngle’).text = str(0)
if i !'= 0:
etree.SubElement (pos, ’fromSectionUID’).text = ’'sec %d’ % (1 - 1)
etree.SubElement (pos, ’toSectionUID’).text = ’sec %d’ % i
for i in range(len(c) - 1):
x seg = ’'/’.join([x_wing, r”segments/segment[QuID='seg %d’]” % i])
seg = xml safe create element (doc, x_ seq)
etree.SubElement (seg, ’'name’).text = 'Segment %d’ % 1
etree.SubElement (seg, ’fromElementUID’).text = ‘elem %d’ % i
etree.SubElement (seg, ’toElementUID’).text = ’'elem %d’ % (i + 1)
compseg = xml safe create element (doc, x compseg % 1)
etree.SubElement (compseg, ’'name’).text = ’'ComponentSegment %d’ % i
etree.SubElement (compseg, ’fromElementUID’).text = 'elem %d’ % i
etree.SubElement (compseg, ’toElementUID’).text = "elem %d’ % (i + 1)
add_spar_position(doc, x_sparposs % i, 'fs %d r’ % i, ’elem %d’ xsi fs[i])
add_spar position(doc, x sparposs % i, 'fs %d t’ % i, ’elem %d’ + 1),
o xsi fs[i + 11])
add_spar_position(doc, x sparposs % i, 'rs %d r’ % i, ’elem %d’ xsi rsf[i])
add spar position(doc, x sparposs % i, ’'rs %d t’ % i, ‘elem %d’ + 1),

o xsi rs[i + 1]

678
679
680
681
682
683
684
685
686
687
688
689

add_spar_segment (doc, x_ sparsegs % i,
'mat _al’, t_fs[i], t_ts[i]
add_spar segment (doc,

x mbd = //’.join([x model,
m empty = m wing + m_fixed

m sys = m empty * £ m sys
m struct = m empty - m sys

)

x_sparsegs % 1, 'rs %
'mat _al’, t rs[i], t_ts[i]

m wings = m _struct * £ m wings

rfs %d’

’analyses/massBreakdown’])

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707
708
709

710
711

713
714
715
716
717
718

720
721
722
723
724

725

726

727
728

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

745
746
747
748
749
750
751
752

753

A.5. Test Suite 241

m wing = m wing * (1. - £ m sys)

m mzf = m empty + m payload
m mto = m mzf + m_ fuel
m mrm = m mto * 1.01

add mass(doc, x mbd, ’'fuel’, m fuel, 'mFuel’)

add mass (doc, x mbd, ’‘payload’, m payload, 'mPayload’)
m_oem = add mass(doc, x mbd, 'mOEM’, m_ empty)

m em = add mass(doc, m oem, 'mEM’, m empty)

add mass(doc, m_em, 'mSystems’, m_sys)

m_structure = add mass(doc, m _em, 'mStructure’, m struct)
m wings = add mass(doc, m structure, ’'mWingsStructure’, m wings)
m _wing = add mass(doc, m_wings, ’'mWingStructure’, m_wing)

for i in range(0, len(c) - 1):
x m _compseg = ’/’.join([doc.getpath(m _wing), 'mComponentSegment[%d]’ % (i + 1)1])
m_compseg = xml safe create element (doc, x m compseg)
add _mass_description(doc, m compseg, ’‘massDescription’, m skin[i] + m_wingbox[i],

o

o 'mWing %d’ % 1)

o in
o in
o in

add_mass (doc, m_compseg, 'mWingBox’, m wingbox[i], ’'mWingbox %d’ % 1)

add mass(doc, x mSkins % (i + 1), ’'mSkins’, m skin[i], ’'mSkins %d’ i)
m _des = etree.SubElement (m oem.getparent(), ’designMasses’)
add mass description(doc, m des, 'mMLM’, m mlw)
add mass_description(doc, m _des, 'mMRM’, m_mrm)
add mass_description(doc, m des, 'mTOM’, m mto)
add mass_description(doc, m_des, 'mZFM’, m mzf)
x _af = r”/cpacs/vehicles/profiles/wingAirfoils/wingAirfoil [QuID="af’]”
af = xml_safe create_element (doc, x_ af)
etree.SubElement (af, ’"name’).text = 'Airfoil’
point list = etree.SubElement (af, ’'pointList’)
etree.SubElement (point list, ’'x’, {’mapType’: ’vector’}).text = ';’.join([str(_) for _
af x])
etree.SubElement (point list, ’'y’, {’mapType’: ’vector’}).text = ';’.join([str(_) for
len(af_x) * [0.0]1)
etree.SubElement (point list, ’z’, {'mapType’: 'vector’}).text = ’;’.join([str() for
af z])
mat = xml_safe create element (doc, ’/’.join([x vehicles,

o r”materials/material[@uID="mat al’]”]))

etree.SubElement (mat, ’'name’).text = "A17075A’
etree.SubElement (mat, ’'rho’).text = str(2180)
etree.SubElement (mat, ’"kll’).text = str(71.7E9)
etree.SubElement (mat, 'kl2’).text = str(26.9E9)
etree.SubElement (mat, ’'sigll’).text = str(572E6)
etree.SubElement (mat, ’'sigl2’).text = str(331E6)

return etree.tostring(doc, encoding='utf-8’, pretty print=True, xml declaration=True)

@staticmethod

def

execute(in_file, out file=’WOM-output-loc.xml’):
”””Translate the reduced model parameters to CPACS format.
c, tc, epsilon, b, sweep, dihed, \

xsi fs, xsi rs, t fs, t rs, t ts, t bs, \

incidence, t skin, rho skin, \

m_fuel, m wing, m fixed, m payload, m mlw, f m sys, f m wings =

aaa

o WingObjectModel.read data(in_file)

n_wing segments = len (b)
s_ref = sum(b * (c[:-1] + c[1:]))

c ref = c[:]
for i in range (0, n_wing segments) :
cref =2. / 3. % (c_ref[:-1] ** 2 + c ref[:-1] * c_ ref[l:] + c ref[l:] ** 2) /

o (c ref[l:] + c ref[:-1])

c ref = c_ref[0]

754
755
756
757
758
759
760
761
762
763

764

765
766
767

769
770
771
772
773
774

775
776
777
778
779
780
781
782
783
784
785
786
787
788

789
790
791
792
793
794
795
796
797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

814
815
816
817
818

242

A. Code

o

o

o

o

o

dx c4 = np.zeros((3, n_wing segments))
dx c4[1, :] = Db[:]

x c4 = np.zeros((3, n_wing segments + 1))
C_sweep, S _sweep = np.cos(sweep), np.sin(sweep)
c_dihed, s _dihed = np.cos(dihed), np.sin(dihed)

for i in range(n_wing segments) :
rot sweep = np.matrix([(c_sweep[i],
(0, 0, 1)1

rot dihed = np.matrix([(1, 0, 0), (O,

c_dihed[i])])

s_sweep[i],

c dihed[i],

0), (-s_sweepl[i],

x c4[:, 1 + 1] = np.matmul (rot dihed * rot sweep, dx c4[:,

dx le = np.zeros((3, n_wing segments + 1))

dx le[0, :] = -.25 * ¢

x le = np.zeros((3, n_wing segments + 1))

twists = np.concatenate(([0.], epsilon)

for i in range(n_wing segments + 1):
rot twist = np.matrix([(c_twist[i],
c_twist[i])])

)

+ incidence
c twist, s twist = np.cos(twists), np.sin(twists)

0, s twist[i]), (0, 1,

x le[:, 1] = np.matmul (rot twist, dx le[:, i])

length out

* (1. - xsi rs + xsi_fs)
area_out *

=c
0.5

(length out[:-1] + length out[l:])

m skin = 2. * area out * t skin * rho skin

m_wingbox = m_wing * area out / sum(area_out)

xml = WingObjectModel.write data(s_ref,
c, tc,

c_ref,
twists,

+ x cd:, 1]

* b

x le, xsi fs, xsi rs,
t_rs, t_ts,
t _bs, m skin,

m fuel, m wing, m fixed, m payload, m mlw, f m sys,

t fs,

f m wings, m wingbox)
with open(out file,
f.write (xml)

'w’) as f:

@staticmethod
def linearize(in file, partials file):
c, tc, epsilon, b, sweep, dihed, \

xsi fs, xsi rs, t fs, t rs, t ts, t _bs, \

incidence, t skin, rho skin, \

m_ fuel, m wing, m_fixed, m payload, m mlw,

WingObjectModel.read data(in file)

n ws = len(b)
partials = Partials()

Reference values

dSref dc = np.zeros(len(c))
dSref dc[:-1] += Db

dSref dc[l:] += Db

fm_

-s_dihed[i]),

c_sweep[il, 0),

(O’

s _dihed[i],

i]) + x c4[:, 1i]

sys, f m wings =

partials.declare partials(x ref area, x c, dSref dc)

dSref db = cl[:-1] + c[1:]

partials.declare partials(x ref area, x b, dSref db)

dcref dc = np.eye(n ws + 1, n ws + 1)
c ref = c[:]
for i in range(0, n_ws):

dcref dc = 2. / 3. * (

(c_ref[:-1] + c_ref[l:])

* (2. * c_ ref[:-1] * dcref dcl:
+ c ref[l:] * dcref dc[:, 1:

- (c_ref[:-1] ** 2 + c ref[:-1]

:-1] + dcref dcl:, 1:1)

’

]

:=1] + c ref[:-1]
+ 2 * c ref[l:]

* c ref[l:]

+ c ref[l:]

* dcref dcl:,

xx 2)

*

* dcref dcl:,
1:

:-1]
1)
(dcref dcl:,

819
820

821
822
823
824
825
826

828
829
830
831
832
833

835
836
837
838
839
840

842
843
844
845
846
847

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

867

868
869
870
871
872

874
875
876
877
878
879

881

882
883
884
885

o dct de[il])])
dxle de = np.asarray(np.matmul (drt de, dx le[:, 1i])).flatten()

= np.zeros (n_ws)

d
dfi - 1] = 1.

A.5. Test Suite 243
) / (c_ref[:-1] + c ref[l:]) ** 2
cref =2. / 3. % (c_ref[:-1] ** 2 + c ref[:-1] * c_ref[l:] + c ref[l:] ** 2) /
o (c ref[l:] + c ref[:-1]
partials.declare partials(x _ref length, x c, dcref dc.flatten())
Geometry
de = np.concatenate(([0.], np.ones(len(epsilon))))
twist = np.concatenate(([0.], epsilon)) + incidence
c twist, s twist = np.cos(twist), np.sin(twist)
dx le = np.zeros((3, n ws + 1))
dx_le[0, :] = -.25 * ¢
dct di, dst di = -np.sin(twist), np.cos(twist)
dct _de, dst de = dct di * de, dst di * de
C_sweep, s_sweep = np.cos(sweep), np.sin(sweep)
c dihed, s dihed = np.cos(dihed), np.sin(dihed)
dcs_ds, dss ds = -np.sin(sweep), np.cos (sweep)
dcd dd, dsd dd = -np.sin(dihed), np.cos (dihed)
dx c4 = np.zeros((3, n ws))
dx c4[1l, :] = b[:]
dxle dd = np.zeros(3)
dxle ds = np.zeros(3)
dxle db = np.zeros(3)
for 1 in range(n ws + 1):
X sec = X_sec % 1
x trans = '/’ .join([_x sec, ’'transformation’])
x _scaling = '/’ .join([x trans, ’scaling’])
dc = np.zeros(n_ws + 1)
dc[i] = 1.
partials.declare partials(’/’.join([x scaling, ’'x’]), x c, dc)
partials.declare partials(’/’.join([x_scaling, ’z’]), x c, dc * tc)
partials.declare partials(’/’.join([x scaling, ’z’]), x tc, dc * c)
x rotation = '/’ .join([x trans, ’rotation’])
if i !'= 0:
de = np.zeros(2)
de[i - 1] = 180./np.pi
partials.declare partials(’/’.join([x_rotation, ’y’]), x epsilon, de)
partials.declare partials(’/’.join([x rotation, ’'y’]), x incidence, 180./np.pi)
rot twist = np.matrix([(c_twist[i], O, s twist[i]), (0, 1, 0), (-s_twist[i], O,
o c_twist[i])])
drt di = np.matrix([(dct di[i], O, dst di[i]), (0, 1, 0), (-dst _di[i], O,
o dect difil)])
dxle dc = np.asarray(np.matmul (rot twist, dx le[:, 1] / c[i])).flatten()
dxle di = np.asarray(np.matmul (drt di, dx le[:, 1i])).flatten()
d = np.zeros(n_ws + 1)
d[i] = 1.
x_translation = ’/’.join([x_trans, "translation’])
partials.declare partials(’/’.join([x_translation, 'x’]), x c, dxle dc[0] * d)
partials.declare_partials(’/’.join([x_translation, "y"1), x_c, dxle dc[l] * d)
partials.declare partials(’/’.join([x translation, 'z’]), x c, dxle dc[2] * d)
if i != 0:
drt_de = np.matrix([(dct_de[i], O, dst de[i]), (0, 1, 0), (-dst_de[i], O,

886
887

888

889

890
891

893
894
895
896
897
898

900

901
902

904
905
906
907

908
909

910

911

912
913

914

915

916
917
918
919
920
921
922
923
924
925
926
927
928

930
931
932
933
934
935

937
938
939
940
941
942

244 A. Code
partials.declare partials(’/’.join([x_translation, ’'x’]), x epsilon,
o dxleide[O] * d)
partials.declare partials(’/’.join([x_translation, ’y’]), x epsilon,
o dxle de[l] * d)
partials.declare partials(’/’.join([x translation, ’z’]), x epsilon,
o dxle de[2] * d)
partials.declare partials(’/’.join([x_translation, ’'x’]), x_ incidence, dxle di[0])
partials.declare partials(’/’.join([x_ translation, 'y’]), x incidence, dxle di[l])
partials.declare partials(’/’.join([x_translation, 'z’]), x incidence, dxle di[2])

if i < n_ws:

d = np.zeros(n_ws)

dri] = 1.

rot sweep = np.matrix([(c sweep[i], s sweep[i], 0),
0), (0, 0, 1)1

rot dihed = np.matrix([(1, 0, 0), (0, c dihed[il],

s_dihed[i], c_dihed[i])])

(-s_sweep[i],

-s_dihed[i]),

c sweepl[i],

(Ol

drs ds = np.matrix([(dcs ds[i], dss ds[i], 0), (-dss ds[i], dcs ds[i], 0), (O,
0, 1)1

drd dd = np.matrix([(l, O, 0), (0, ded dd[i], -dsd dd[i]), (0, dsd dd[i],
ded ddf[i])])

dxle dd += np.asarray(np.matmul (drd dd * rot sweep, dx cd[:, 1i])).flatten()

dxle ds += np.asarray(np.matmul (rot dihed * drs ds, dx c4[:, 1])).flatten()

dxle db += np.asarray(np.matmul (rot dihed * rot sweep, dx c4[:, i] /
b[i])) .flatten ()

partials.declare partials(’/’.join([x_translation, ’'x’]), x Gamma, dxle dd[0]
* d)

partials.declare partials(’/’.join([x_translation, ’y’]), x Gamma, dxle dd[1]
* d)

partials.declare partials(’/’.join([x_translation, ’z’]), x Gamma, dxle dd[2]
* d)

partials.declare partials(’/’.join([x_translation, ’x’]), x Lambda, dxle ds[0]
* d)

partials.declare partials(’/’.join([x_translation, 'y’]), x Lambda, dxle ds[1]
* d)

partials.declare partials(’/’.join([x_translation, ’z’]), x Lambda, dxle ds[2]
* d)

partials.declare partials(’/’.join([x_translation, 'x’]), x b, dxle db[0] * d)

partials.declare partials(’/’.join([x translation, 'y’]), x b, dxle db[l] * d)

partials.declare_partials(’/’.join([x_translation, "z"]1), x b, dxle db[2] * d)

Structures
for 1 in range(n_ws):

d = np.zeros(2)

d[i] = 1.

partials.declare partials(x fs web t % (i, 1), x_ t fs, d)
partials.declare partials(x fs lowerCap t % (i, i), x t bs,
partials.declare partials(x fs upperCap t % (i, 1), x t ts,
partials.declare partials(x rs web t % (i, 1), x t rs, d)
partials.declare partials(x rs_lowerCap_t % (i, 1), x_ t bs,
partials.declare partials(x_rs upperCap t % (i, i), x t ts,
d = np.zeros(3)

d[i] = 1.

partials.declare partials(x fs r xsi % (i, 1), x xsi fs, d)
partials.declare partials(x rs r xsi % (i, 1), x xsi rs, d)
d[i] = 0.

dri + 1] = 1.

partials.declare partials(x_fs t xsi (i, 1), x_xsi fs, d)

943
944

946
947
948
949
950
951

953
954
955
956
957
958

960
961
962
963
964
965

967
968

969

970
971
972

973
974

975
976
977
978
979
980
981
982
983
984
985
986
987
988

989
990
991
992
993
994

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

A.5. Test Suite 245
partials.declare partials(x rs t xsi % (i, 1), x xsi rs, d)
Weights
length out = c * (1. - xsi rs + xsi_fs)
area out = 0.5 * (length out[:-1] + length out[1:]) * b
m skin = 2. * area out * t skin * rho_ skin
m_wingbox = m_wing * area out / sum(area_out)
m empty = m wing + m fixed
m sys = m_empty * £ m sys
m struct = m empty - m sys
m wing = m wing * (1. - f m sys)
x md = "{0}[@uID="{1}"]/mass’
X m = /7 Join ([{0}, x_md.format (‘massDescription’, "{0}")])
x mass = '/’ .join([x mbd, x m])
x_moem = x mass.format ('mOEM")
x mem = '/’ .join([x moem[:-34], x m.format ('mEM’)])
x sys = '/’ .join([x mem[:-33], x m.format ('mSystems’)])
x m struct = '/’ .join([x mem[:-33], x m.format ('mStructure’)])
x m wings = '/’ .join([x m struct[:-40], x m.format ('mWingsStructure’)])
~x m wing = ’/’.join([x m wings[:-45], x m.format ('mWingStructure’)])
partials.declare partials(’/’.join([x mbd,
o ’fuel/massDescription[@uID="mFuel”]/mass’]), x m fuel, 1.)
partials.declare partials(’/’.join([x_mbd,
o ’payload/massDescription[@uID="mPayload”]/mass’]), x m fuel, 1.)
partials.declare partials(x moem, [x m wing, x m fixed], [1., 1.])
partials.declare partials(x mem, [x m wing, x m fixed], [1., 1.])
partials.declare partials(x_sys, [x m wing, x m fixed, x f m sys], [f m sys, f m sys,
o m_empty])
partials.declare partials(x m struct, [x m wing, x m fixed, x f m sys], [1. - f m sys,

o

1. - f m sys, -m empty]
partials.declare partials(x_m wings,
partials.declare partials(_x m wing, x m wing, 1.)

dlout dc = 1. - xsi fs + xsi rs
dlout dxsifs = -c
dlout dxsirs = c

dAout db = area out / b
dmskin db = 2 * dAout db * t skin * rho_skin

dmskin dtskin = m skin / t skin
dmskin drhoskin = m skin / rho_ skin

dmwingbox db =
sum(area_out) ** 2
dmwingbox dmwing =

m wing * (sum(area_out)

m wingbox / m_wing

dmcs _db = dmskin _db + dmwingbox_db
dmcs_dtskin = dmskin dtskin
dmcs_drhoskin = dmskin_drhoskin
dmcs dmwing = dmwingbox dmwing

dAout_dc = np.zeros((n_ws, n_ws + 1)
dAout dxsifs = np.zeros((n_ws, n ws + 1))
dAout dxsirs = np.zeros((n ws, n ws + 1))

dmskin dc = np.zeros((n ws, n ws + 1)
dmskin dxsifs = np.zeros((n_ws, n_ws + 1)
dmskin dxsirs = np.zeros((n ws, n ws + 1))

dmwingbox dc = np.zeros((n_ws, n ws + 1))
dmwingbox dxsifs = np.zeros((n ws, n ws + 1))

dmwingbox dxsirs = np.zeros((n_ws, n ws + 1))

for i in range(n_ws):

[x m wing, x f m wings],

[f m wings, m wing])

* dAout_db - area out * sum(dARout _db)) /

246 A. Code

1009 d = np.zeros(n ws + 1)

1010 dri] = 1.

1011 dfi + 1] = 1.

1012

1013 dAout dc[i] = .5 * b[i] * dlout dc * d

1014 dAout dxsifs([i] = .5 * b[i] * dlout dxsifs * d

1015 dAout dxsirs([i] = .5 * b[i] * dlout dxsirs * d

1016

1017 dmskin dc[i] = 2 * dAout dc[i] * t_skin * rho_skin

1018 dmskin dxsifs[i] = 2 * dAout dxsifs[i] * t skin * rho skin

1019 dmskin dxsirs[i] = 2 * dAout dxsirs[i] * t _skin * rho_skin

1020

1021 dmwingbox dc[i] = m wing * (sum(area out) * dAout dc[i] - area out[i] *
o np.sum(dAout dc, 0)) / sum(area_out) ** 2

1022 dmwingbox dxsifs[i] = m wing * (sum(area out) * dAout dxsifs[i] - area out[i] *
o np.sum(dAout dxsifs, 0)) / sum(area_out) ** 2

1023 dmwingbox dxsirs[i] = m wing * (sum(area out) * dAout dxsirs[i] - area out[i] *
s np.sum(dAout dxsirs, 0)) / sum(area out) ** 2

1024

1025 dmcs_dc = dmskin dc[i] + dmwingbox dc[i]

1026 dmcs dxsifs = dmskin dxsifs[i] + dmwingbox dxsifs[i]

1027 dmcs dxsirs = dmskin dxsirs[i] + dmwingbox dxsirs[i]

1028

1029 x m compseg = ’/’.join([x m wing[:-44], ’'mComponentSegment[{:d}]’.format(i + 1)])

1030

1031 partials.declare partials(

1032 "/’ .join([x m compseg, x md.format ('massDescription’,
o 'mWing {:d}’.format(i))]),

1033 [x ¢, x xsi fs, x xsi rs, x b, x t skin, x rho skin, x m wing],

1034 [dmcs_dc, dmcs dxsifs, dmcs dxsirs, dmcs _db[i], dmcs dtskin[i],

o dmcs_drhoskin([i], dmcs dmwing[i]]
1035)
1036

1037 partials.declare partials(

1038 "/’ .join([x_m compseg, 'mWingBox’, x md.format ('massDescription’,
o 'mWingbox {:d}’.format(i))]),

1039 [x ¢, x xsi fs, x xsi rs, x b, x m wing],

1040 [dmwingbox dc[i], dmwingbox dxsifs[i], dmwingbox dxsirs[i], dmwingbox db[il],
o dmwingbox dmwing[i]]

1041)

1042

1043 partials.declare partials(

1044 "/’ .join([x mSkins % (i + 1), ’'mSkins’, x md.format (‘massDescription’,
o 'mSkins {:d}’.format(i))]),

1045 [x ¢, x xsi fs, x xsi rs, x b, x t skin, x rho skin],

1046 [dmskin dc[i], dmskin dxsifs[i], dmskin dxsirs[i], dmskin db[i],

o dmskin dtskin[i], dmskin drhoskin[i]]
1047)
1048

1049 x des = '/’ .join([x mbd, ’'designMasses’])

1050 partials.declare partials(’/’.join([x des, x md.format ('mMLM’, 'mMLM’)]), x m mlw, 1.)
1051 partials.declare partials(’/’.join([x des, x md.format ('mMRM’, 'mMRM’)]),
1052 [x m fuel, x m wing, x m fixed, x m payload],
1053 [1.01, 1.01, 1.01, 1.0171)

1054 partials.declare partials(’/’.join([x des, x md.format (’mTOM’, 'mTOM’)]),
1055 [x m fuel, x m wing, x m fixed, x m payload],
1056 [1., 1., 1., 1.1)

1057 partials.declare partials(’/’.join([x des, x md.format ('mzZFM’, 'mzZFM’)]),
1058 [x m wing, x m fixed, x m payload],

1059 [1., 1., 1.1)

1060

1061 partials.write (partials_file)

Code frament A.44: Code of the Python module containing the wing object model discipline.

A.5.2.3.6 XPaths

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-

A.5. Test Suite 247

aaa

Copyright 2017 D. de Vries

3
4
5
6 Licensed under the Apache License, Version 2.0 (the ”License”);
7 you may not use this file except in compliance with the License.
8 You may obtain a copy of the License at

9

10 http://www.apache.org/licenses/LICENSE-2.0

12 Unless required by applicable law or agreed to in writing, software

13 distributed under the License 1is distributed on an ”AS IS” BASIS,

14 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 See the License for the specific language governing permissions and

16 limitations under the License.

18 This file contains all the XPaths and utility string constants used by the dAEDalus
o disciplines.

o
20 from future__ import absolute import, division, print_ function

22 sigma_names = [’sigma_fs’, ‘sigma_rs’, ’‘sigma_ts’, ’sigma bs’]

24 nun CPACS 777

25 x vehicles = ’/cpacs/vehicles’
26 x model = x vehicles + ’/aircraft/model[@uID="model”]’
27 x ref = '/’ .join([x_model, ’'reference’])
28 x wing = '/’ .join([x_model, ’wings/wing[@symmetry="x-z-plane”] [@uID="wing”]’])
20 x sec = '/’.join([x wing, ’sections/section[@uID="sec %d”]’])
30 x elem = '/’ .join([x_sec, ’elements/element[@uID="elem %d”]’])
31 x mbd = ’/’.join([x_model, ’analyses/massBreakdown’])
32 x global = ’/’.join([x model, 'global’])
33 x perf = '/’ .join([x _global, ’performanceTargets’])
34
35 x ref area = '/’ .join([x_ref, ’area’])
36 x ref length = ’/’.join([x_ref, "length’])
37 x compseg = ’/’.join([x_wing, ’componentSegments/componentSegment [@uID="compSeg %d”]’])
38 X _struct = ’/’.join([x_compseg, ’structure’])
39 x sparposs = ’'/’.join([x_struct, ’spars/sparPositions’])
40 x fs r xsi = '/’ .join([x_sparposs, ’sparPosition[QuID="fs %d r”]/xsi’])
41 x fs t xsi = '/’ .join([x sparposs, ’sparPosition[@uID="fs %d t”]/xsi’])
42 x rs_r xsi = '/’ .join([x_sparposs, ’sparPosition[Q@uID="rs %d r”]/xsi’])
43 x rs_t xsi = '/’ .join([x sparposs, ’sparPosition[@uID="rs %d t”]/xsi’])
44 x sparsegs = ’'/’.join([x_struct, ’spars/sparSegments’])
45 x_fs web t = ’/’.join([x_sparsegs,
o ’sparSegment [QulD="fs %d”]/sparCrossSection/webl/material/thickness’])
46 x_fs lowerCap_t = ’/’.join([x_sparsegs,
o ’sparSegment [QulD="fs %d”]/sparCrossSection/lowerCap/material/thickness’])
47 x fs upperCap t = '/’ .join([x_sparsegs,
o ’sparSegment [QuID="fs %d”]/sparCrossSection/upperCap/material/thickness’])
48 x_rs_web_t = '/’ .join([x_sparsegs,
o ’sparSegment [@QuID="rs %d”]/sparCrossSection/webl/material/thickness’])
49 x_rs_lowerCap_t = ’/’.join([x_sparsegs,
o ’sparSegment [@uID="rs %d”]/sparCrossSection/lowerCap/material/thickness’])
50 X rs upperCap t = '/’ .join([x sparsegs,
o ’sparSegment [@uID="rs %d”]/sparCrossSection/upperCap/material/thickness’])
51 x mSkins = ’/’.join([x_model, ’analyses/massBreakdown/mOEM/mEM/mStructure/mWingsStructure/’
52 'mWingStructure/mComponentSegment [$d] /mWingBox’ 1)

53
54 777 Wing optimization problem

wrr

s5 x opt = ’/cpacs/toolspecific/wingOptimizationProblem’
s6 x planform = '/’ .join([x_opt, 'planform’])
57 X _structure = '/’ .join([x_opt, ’structure’])
58 x reference = '/’ .join([x _opt, 'reference’])
59

60 x const = ’/’.join([x opt, ’‘constants’])

61 x con = '/’ .join([x_opt, ’constraints’])

62 X obj = ’/’.join([x opt, ’‘objectives’])

63

64 x c = '/’.join([x_planform, 'c’])

6s x tc = ’/’.join([x planform, 'tc’])

66 x _epsilon = ’/’.join([x_planform, ’epsilon’])

248 A. Code

67 x b = '/’.join([x_planform, 'b’])

68 x Lambda = ’/’.join([x_planform, ’Lambda’])

69 x Gamma = '/’ .join([x planform, 'Gamma’])

70 x_incidence = '/’ .join([x_planform, ’incidence’])
71

72 x xsi fs = '/’ .join([x_structure, ’xsi fs’])

73 x xsi rs =" /7 . Join([x_structure, ’'xsi rs’])

74 x t fs = '/’ .join([x structure, 't fs’])

75 X t rs = '/’.join([x_structure, 't rs’])

76 X t ts = ’/’.join([x structure, 't ts’])

77 X t bs = '/’ .join([x_structure, 't bs’])

78 x t skin = 7/’ .join([x_structure, 't skin’])

79

80 x m fixed = ' /" .Join([x_reference, 'm fixed’'])

81 x m payload = ’/’.join([x_reference, 'm payload’])
82 x f m sys = ’/’.join([x_reference, 'f m sys’])

83 x f m wings = ’/’.join([x_reference, 'f m wings’])
84 x m mlw = '/’ .join([x_reference, ’'m MLW'])

85 x m mtow = '/’ .join([x reference, ’'m MTOW’])

87 x SFC = '/’ .join([x_reference, 'SFC’])

88 x m_fuel res = ' /7 .Join([x_reference, 'm fuel res’])

89 x CDfus = '/’ .join([x_reference, 'C D fus’])

9 x CDother = ’/’.join([x reference, 'C D other’])

91 x R = '/’.join([x reference, 'R’])

92

93 x rho skin = ’/’.join([x_reference, ’rho skin’])

94 x sigma yield = ’/’.join([x_reference, ’sigma yield’])
95 x WS init = '/’ .join([x_reference, 'WS init’])

9 x_CL buffet = '/’ .join([x_reference, 'C L buffet’])

97 x m wing init = ’/’.join([x reference, 'm wing init’])
98 x m fuel init = '/’ .join([x_reference, 'm fuel init’])
99

100 x _con_sigmas = [’/’.join([x_con, ’‘con ' + sigma]) for sigma in sigma names]
101 x con WS = ’/’.join([x _con, ’con WS’])

102 x_con buffet = '/’ .join([x_con, ’con buffet’])

103

104 x obj m fuel = '/’ .join([x obj, ’"obj m fuel’])

10s x_obj m wing = ‘/’.join([x_obj, ‘obj m wing’])

108 77" dAEDalus ”””
109 x dAE = ’/cpacs/toolspecific/dAEDalus’

110 x m wing = '/’ .join([x dAE, 'm wing’])

111

112 x loadcases = '/’ .join([x_dAE, ’loadCases’])

113 x loadcase = '/’ .join([x loadcases, ’loadCase[%d]’])

114

115 x M ="'/’ .join([x_loadcase, 'M’'])

116 x H = "'/’.join([x loadcase, "H'])

117 x n = '/’ .join([x loadcase, 'n’])

118 x CL = ’/’.join([x _loadcase, 'C L’1])

119 x CDf = '/’ .join([x_loadcase, 'C D f’])

120 x CDi = '/’ .join([x loadcase, 'C D i’])

121

122 x grid initial = [’/’.join([x loadcase, ’‘initial grid/’ + component]) for component in [’x’,
oy, Tz

123 x grid = [’/’.join([x loadcase, ’deflected grid/’ + component]) for component in ['x', 'y’,
o 'z']]

124 x _grid guess = [’/’.join([x loadcase, ’'guess grid/’ + component]) for component in ['x’', 'y’,

= . _ _

125

126 x sigmas in = [’/’.join([x loadcase, sigma]) for sigma in sigma names]

127 x load collector = '/’ .join([x_dAE, ’load collector’])

128 x sigmas out = [’/’.join([x load collector, sigma]) for sigma in sigma names]

129

130 x y norm = '/’ .join([x loadcase, 'y norm’])

131 x 1 norm = ’/’.join([x_loadcase, ’1 norm’])

132

133 x geom = '/’ .join([x loadcase, 'geometric model’])

134 X stru = ’/’.join([x_loadcase, ’structural model’])

135
136

138
139
140
141
142
143
144
145
146
147
148

A.5. Test Suite

249

x aero = '/’ .join([x loadcase, ’aerodynamic model’])

x mle = '/’ .join([x_loadcase, 'matlab engine’])
x ml timeout = ’/’.join([x_mle, ’timeout’])

x ml id = 7/’ .join([x mle, ’id’'])

x ml timestamp = '/’ .join([x mle, ’timestamp’])

o gwE
x_fwe = ’/cpacs/toolspecific/fuel weight estimator’

x CD = '/’ .join([x_fwe, 'C D’])

x LD = '/’ .join([x_fwe, 'L D’'])

x m fuel = '/’ .join([x_fwe, ’'m fuel’])
x fwe CL = '/’ .join([x_fwe, 'C L"1])

Code frament A.45: Code of the Python module containing all the XPaths of the disciplines.

(1]

(2]

(3]

[4]

(3]

(6]

[7]

8]

(9]

[10]

(1]

Bibliography

AGILE. Agile - aircraft 3rd generation mdo for innovative collaboration of heterogeneous teams
of experts, 2017. URL https://www.agile-project.eu/. Accessed: 20-11-2017.

Jeremy Agte, de Weck, Olivier, Jaroslaw Sobieszczanski-Sobieski, Arendsen, Paul, Alan Mor-
ris, and Martin Spieck. MDO: assessment and direction for advancement—an opinion of
one international group. Structural and Multidisciplinary Optimization, 40(1):17, 2009. ISSN
1615-1488. doi: 10.1007/s00158-009-0381-5. URL https://doi.org/10.1007/
s00158-009-0381-5.

B. Aigner, I. van Gent, G. La Rocca, and E. Stumpf. Using graph-based algorithms and data-
driven documents for formulation and visualization of large mdo systems. In 6th CEAS Air &
Space Conference Aerospace Europe, volume Paper 173, Bucharest, Romania, 2017. URL
https://www.agile-project.eu/cloud/index.php/s/mbdufb7vnnMRb3Y.

E. Allison, I. Kroo, P. Sturdza, Y. Suzuki, and H. Martins-Rivas. Aircraft conceptual design
with natural laminar flow. 27th Congress of the International Council of the Aeronautical Sci-
ences 2010, ICAS 2010, Vol. 1:pp. 428-436, 2010. URL http://www.scopus.com/inward/
record.url?eid=2-s2.0-84878478319{&}partnerID=tZ0tx3yl.

American Airlines. Final approach/our fleet. American Way, 50(11):128-129, nov 2017. URL
http://americanway.ink-live.com/html5/reader/production/default.aspx?
pubname=&edid=81767840-2346-411d-83cc-6988af881d99.

J. D. Anderson. Ludwig prandtl’s boundary layer. Physics Today, Vol. 58(No. 12):pp. 42—48, dec
2005. doi: 10.1063/1.2169443. URL https://doi.org/10.1063%2F1.2169443.

Flight Operations Support & Line Assistance. Getting to grips with aircraft performance. In-
ternal manual, Customer Services, Airbus, jan 2002. URL https://www.skybrary.aero/
bookshelf/books/2263.pdf. Accessed 22-11-2017

E. Baalbergen, A. Kanakis, and W. Vankan. A practical approach for coordination of multi-
partner engineering jobs in the design of small aircraft. CESAR Special Issue of Journal Czech
Aerospace Proceedings / Letechky zpravodaj, Journal for Czech Aerospace Research, Vol. 3,
2009. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.
4524 &rep=replé&type=pdf.

Erik Baalbergen, Johan Kos, Clément Louriou, Cédric Campguilhem, and James Barron.
Streamlining cross-organisation product design in aeronautics. Proceedings of the Insti-
tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(12):2192—
2202, jul 2017. doi: 10.1177/0954410017716480. URL https://doi.org/10.1177/
0954410017716480.

N. Bartoli, M. A. Bouhlel, |. Kurek, R. Lafage, T. Lefebvre, J. Morlier, R. Priem, V. Stilz, and
R. Regis. Improvement of efficient global optimization with mixture of experts: methodology de-
velopments and preliminary results in aircraft wing design. In 17th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, number June in AIAA AVIATION Forum, pages pp. 1-28.
American Institute of Aeronautics and Astronautics, jun 2016. doi: doi:10.2514/6.2016-4001.
URL http://dx.doi.org/10.2514/6.2016-4001.

Gary Belie. Non-Technical Barriers to Multidisciplinary Optimization in the Aerospace Industry.
In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Multidisciplinary
Analysis Optimization Conferences. American Institute of Aeronautics and Astronautics, sep
2002. doi: doi:10.2514/6.2002-5439. URL https://doi.org/10.2514/6.2002-54309.

251

https://www.agile-project.eu/
https://doi.org/10.1007/s00158-009-0381-5
https://doi.org/10.1007/s00158-009-0381-5
https://www.agile-project.eu/cloud/index.php/s/mbdufb7vnnMRb3Y
http://www.scopus.com/inward/record.url?eid=2-s2.0-84878478319{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84878478319{&}partnerID=tZOtx3y1
http://americanway.ink-live.com/html5/reader/production/default.aspx?pubname=&edid=81767840-2346-411d-83cc-6988af881d99
http://americanway.ink-live.com/html5/reader/production/default.aspx?pubname=&edid=81767840-2346-411d-83cc-6988af881d99
https://doi.org/10.1063%2F1.2169443
https://www.skybrary.aero/bookshelf/books/2263.pdf
https://www.skybrary.aero/bookshelf/books/2263.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.4524&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.931.4524&rep=rep1&type=pdf
https://doi.org/10.1177/0954410017716480
https://doi.org/10.1177/0954410017716480
http://dx.doi.org/10.2514/6.2016-4001
https://doi.org/10.2514/6.2002-5439

252

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Simon Binder and K. Seywald. dAEDalus - Git repository, 2017. URL https://github.com/
sbind/dAEDalusNXT.

Chunmei Chen, Boris Zakharin, and Israel Wygnanski. On the parameters governing fluidic
control of separation and circulaton. In 46th AIAA Aerospace Sciences Meeting and Exhibit.
American Institute of Aeronautics and Astronautics, jan 2008. doi: 10.2514/6.2008-629. URL
https://doi.org/10.2514/6.2008-629.

P.D. Ciampa and B. Nagel. Towards the 3rd generation mdo collaborative environment.
In 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Ko-
rea, 2016. 30th ICAS. URL https://www.agile-project.eu/cloud/index.php/s/
scilViiMRGzHpbm.

Pier Davide Ciampa and Bjorn Nagel. The AGILE paradigm: the next generation of collaborative
MDO. In 18th AIAA/ISSMO Muiltidisciplinary Analysis and Optimization Conference. American
Institute of Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4137. URL https:
//doi.org/10.2514/6.2017-4137

Pier Davide Ciampa, Erwin Moerland, Doreen Seider, Erik Baalbergen, Riccardo Lombardi, and
Roberto D’Ippolito. A collaborative architecture supporting AGILE design of complex aeronautics
products. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American
Institute of Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4138. URL https:
//doi.org/10.2514/6.2017-4138

P. Coleman. Innovations in collaborative modeling and simulation to deliver the behavioral digital
aicraft. PDT Europe, 2012.

CPACS. Cpacs — a common language for aircraft design, 2016. URL https://software.
dlr.de/p/cpacs/home/. Accessed 28-03-2017.

T.D. Crouch. Wings: A History of Aviation from Kites to the Space Age. Smithsonian National
Air and Space Museum, 2004. ISBN 9780393326208. URL https://books.google.de/
books?id=cXQmUf-JtNkC.

Sebastian M. Deinert. Fakultét fiir Maschinenwesen Lehrstuhl fiir Leichtbau Sebastian Moritz
Deinert. Phd thesis, Technischen Universitat Minchen, 2016. URL https://mediatum.ub.
tum.de/doc/1297578/1297578 .pdf.

Deutsches Zentrum fur Luft- und Raumfahrt e.V. (1 Simulation and Software Technology. Remote
component environment (rce), 2017. URL http://rcenvironment.de/. Accessed 28-03-
2017.

German Aerospace Center DLR. European high lift programme ii: Final publishable report.
Technical report, DLR, 2004. URL http://www.transport-research.info/sites/
default/files/project/documents/20120822 121607 86015 124729341EN6.
pdf.

European Aviation Safety Agency. Certification specifications for large aero-
planes, c¢s-25, 2013. URL https://www.easa.europa.eu/document-library/
certification-specifications/cs-25-initial-issue. Accessed 20-03-2017

Federal Aviation Administration (FAA). Airworthiness standards: Transport category air-
planes, 14 c.fr. §25, 1964. URL http://www.ecfr.gov/cgi-bin/text-1idx?SID=
bf54ddedc736f0acf9albc280c45e2cbaémc=trues&node=ptl4.1.25&6rgn=div5#spl4.
1.25.a. Accessed 20-03-2017.

DOT Federal Aviation Administration (FAA). Nprm docket no. f aa-2014-0926 (directorate iden-
tifier 2014-nm-085-ad): 747-8 vibration during high g maneuvers, airplane model 747-8, 2015.
URL https://www.federalregister.gov/d/2015-17023. Accessed 10-04-2017

https://github.com/sbind/dAEDalusNXT
https://github.com/sbind/dAEDalusNXT
https://doi.org/10.2514/6.2008-629
https://www.agile-project.eu/cloud/index.php/s/scilViiMRGzHpbm
https://www.agile-project.eu/cloud/index.php/s/scilViiMRGzHpbm
https://doi.org/10.2514/6.2017-4137
https://doi.org/10.2514/6.2017-4137
https://doi.org/10.2514/6.2017-4138
https://doi.org/10.2514/6.2017-4138
https://software.dlr.de/p/cpacs/home/
https://software.dlr.de/p/cpacs/home/
https://books.google.de/books?id=cXQmUf-JtNkC
https://books.google.de/books?id=cXQmUf-JtNkC
https://mediatum.ub.tum.de/doc/1297578/1297578.pdf
https://mediatum.ub.tum.de/doc/1297578/1297578.pdf
http://rcenvironment.de/
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
http://www.transport-research.info/sites/default/files/project/documents/20120822_121607_86015_124729341EN6.pdf
https://www.easa.europa.eu/document-library/certification-specifications/cs-25-initial-issue
https://www.easa.europa.eu/document-library/certification-specifications/cs-25-initial-issue
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
http://www.ecfr.gov/cgi-bin/text-idx?SID=bf54dd6dc736f0acf9a0bc280c45e2cb&mc=true&node=pt14.1.25&rgn=div5#sp14.1.25.a
https://www.federalregister.gov/d/2015-17023

Bibliography 253

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

F. Flager and J. Haymaker. A comparison of multidisciplinary design, analysis and optimization
processes in the building construction and aerospace industries. In Conference: 24th Interna-
tional Conference on Information Technology in Construction, pages pp. 625-630, 2007. URL
https://www.researchgate.net/publication/265873970 A Comparison of
Multidisciplinary Design Analysis and Optimization Processes_in the
Building Construction and Aerospace Industries

Flexop. Flexop project, 2015. URL https://www.flexop.eu/. Accessed 20-04-2017.

M. Fujino. Design and development of the hondajet. Journal of Aircraft, Vol. 42(No. 3):pp. 755—
764, may 2005. ISSN 0021-8669. doi: 10.2514/1.12268. URL http://dx.doi.org/10.
2514/1.12268.

Michimasa Fujino. Natural-laminar-flow airfoil development for the honda jet. In 20th AIAA Ap-
plied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, jun 2002.
doi: 10.2514/6.2002-2932. URL https://doi.org/10.2514/6.2002-2932.

E. Gamma, Helm, R., R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Pearson Ed-
ucation, 1994. ISBN 9780321700698. URL https://books.google.nl/books?id=
60HUKQe3TjQC

Justin Gray, Kenneth Moore, and Bret Naylor. OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. In 13th AIAA/ISSMO Muiltidisciplinary Analysis Op-
timization Conference. American Institute of Aeronautics and Astronautics, sep 2010. doi:
10.2514/6.2010-9101. URL https://doi.org/10.2514/6.2010-9101.

Justin Gray, Kenneth Moore, and Bret Naylor. OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. In 13th AIAA/ISSMO Muiltidisciplinary Analysis Op-
timization Conference. American Institute of Aeronautics and Astronautics, sep 2010. doi:
10.2514/6.2010-9101. URL https://doi.org/10.2514/6.2010-9101.

Justin Gray, Kenneth Moore, Tristan Hearn, and Bret Naylor. A standard platform for testing and
comparison of MDAO architectures. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures
Conference< BR> 14th AIAA. American Institute of Aeronautics and Astronautics, apr 2012.
doi: 10.2514/6.2012-1586. URL https://doi.org/10.2514/6.2012-1586.

D. Grose. Reengineering the aircraft design process. In 5th Symposium on Multidisciplinary
Analysis and Optimization. American Institute of Aeronautics and Astronautics, sep 1994. doi:
10.2514/6.1994-4323. URL https://doi.org/10.2514/6.1994-4323.

Marin D. Guenov and Ernst Kesseler. Advances in Collaborative Civil Aeronautical Multidisci-
plinary Design Optimization. American Institute of Aeronautics and Astronautics, jan 2010. doi:
10.2514/4.867279. URL https://doi.org/10.2514/4.867279.

R. T. Haftka. Automated procedure for design of wing structures to satisfy strength and flutter
requirements. Technical report, TN D-7264, NASA Langley Research Center, Hampton, VA,
1973.

R. T. Haftka. Optimization of flexible wing structures subject to strength and induced drag
constraints. AIAA Journal, Vol. 15(No. 8):pp. 1101-1106, aug 1977. ISSN 0001-1452. doi:
10.2514/3.7400. URL http://dx.doi.org/10.2514/3.7400.

R. T. Haftka and C. P. Shore. Approximate methods for combined thermal/structural design.
Technical report, TP-1428, NASA, 1979. URL https://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/19790017256.pdf.

R. T. Haftka, D. Villanueva, and A. Chaudhuri. Parallel surrogate-assisted global optimization
with expensive functions — a survey. Structural and Multidisciplinary Optimization, Vol. 54(No.
1):pp. 3-13, apr 2016. doi: 10.1007/s00158-016-1432-3. URL https://doi.org/10.
1007%2Fs00158-016-1432-3.

https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.researchgate.net/publication/265873970_A_Comparison_of_Multidisciplinary_Design_Analysis_and_Optimization_Processes_in_the_Building_Construction_and_Aerospace_Industries
https://www.flexop.eu/
http://dx.doi.org/10.2514/1.12268
http://dx.doi.org/10.2514/1.12268
https://doi.org/10.2514/6.2002-2932
https://books.google.nl/books?id=6oHuKQe3TjQC
https://books.google.nl/books?id=6oHuKQe3TjQC
https://doi.org/10.2514/6.2010-9101
https://doi.org/10.2514/6.2010-9101
https://doi.org/10.2514/6.2012-1586
https://doi.org/10.2514/6.1994-4323
https://doi.org/10.2514/4.867279
http://dx.doi.org/10.2514/3.7400
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790017256.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790017256.pdf
https://doi.org/10.1007%2Fs00158-016-1432-3
https://doi.org/10.1007%2Fs00158-016-1432-3

254

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Raphael T. Haftka, James H. Starnes Jr., Furman W. Barton, and Sidney C. Dixon. Comparison
of two types of structural optimization procedures for flutter requirements. AIAA Journal, 13(10):
1333-1339, oct 1975. doi: 10.2514/3.60545. URL https://doi.org/10.2514/3.60545.

Christopher Heath and Justin Gray. OpenMDAO: Framework for flexible multidisciplinary de-
sign, analysis and optimization methods. In 53rd AIAA/JASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures
Conferenced
 14th AIAA. American Institute of Aeronautics and Astronautics, apr 2012.
doi: 10.2514/6.2012-1673. URL https://doi.org/10.2514/6.2012-1673.

E. H. Hirschel, H. Prem, and G. Madelung. Aeronautical Research in Germany: From
Lilienthal until Today. Engineering online library. Springer Berlin Heidelberg, 2012.
ISBN 9783642184840. URL https://books.google.nl/books/about/Aeronautical
Research in Germany.html?id=0oFcHOLpCskC&redir esc=y.

R.A. Horn and C.R. Johnson. Matrix Analysis. Matrix Analysis. Cambridge University
Press, 2012. ISBN 9780521839402. URL https://books.google.nl/books?id=
5I5AYeeh0JUC.

John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90-95, 2007. doi: 10.1109/mcse.2007.55. URL https://doi.org/10.1109/mcse.
2007.55.

John T. Hwang. A modular approach to large-scale design optimization of aerospace systems.
PhD thesis, University of Michigan, 2015. URL http://mdolab.engin.umich.edu/sites/
default/files/Hwang dissertation.pdf.

L. R. Jenkinson, P. Simpkin, and D. Rhodes. Civil Jet Aircraft Design. AlIAA education series.
American Institute of Aeronautics and Astronautics, 1999. ISBN 9780340741528. URL https:
//books.google.nl/books?isbn=034074152X.

Eric Jones, Oliphant, Travis, and Pearu Peterson. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/.

Gaetan Kenway, Graeme Kennedy, and Joaquim Martins. Aerostructural optimization of the
common research model configuration. In 15th AIAA/ISSMO Muiltidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and Astronautics, jun 2014. doi:
10.2514/6.2014-3274. URL https://doi.org/10.2514/6.2014-3274.

I. Kroo and R. S. Shevell. Aircraft design: Synthesis and analysis, 2001. URL http://adg.
stanford.edu/aa241l/AircraftDesign.html. Accessed 20-03-2017.

D. Kichemann. The Aerodynamic Design of Aircraft: A Detailed Introduction to the Current Aero-
dynamic Knowledge and Practical Guide to the Solution of Aircraft Design Problems. Pergamon
International Library of Science, Technology, Engineering, and Social Studies. Pergamon Press,
1978. ISBN 9780080205151.

Timo Kihn, Vlad Ciobaca, Ralf Rudnik, Burkhard Gdlling, and Wiebke Breitenstein. Active flow
separation control on a high-lift wing-body configuration part 1: Baseline flow and constant blow-
ing. In 29th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and
Astronautics, jun 2011. doi: 10.2514/6.2011-3168. URL https://doi.org/10.2514/6.
2011-3168.

A. B Lambe and J. R. R. A Martins. Extensions to the design structure matrix for the descrip-
tion of multidisciplinary design, analysis, and optimization processes. Structural & Multidisci-
plinary Optimization, Vol. 46(No. 2):pp. 273-284, 2012. ISSN 1615-147X. doi: 10.1007/
s00158-012-0763-y.

R. Lano. The n2 chart. Internal report, TRW Software Series, Redondo Beach, CA, 1977.

https://doi.org/10.2514/3.60545
https://doi.org/10.2514/6.2012-1673
https://books.google.nl/books/about/Aeronautical_Research_in_Germany.html?id=OoFcHOLpCskC&redir_esc=y
https://books.google.nl/books/about/Aeronautical_Research_in_Germany.html?id=OoFcHOLpCskC&redir_esc=y
https://books.google.nl/books?id=5I5AYeeh0JUC
https://books.google.nl/books?id=5I5AYeeh0JUC
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
http://mdolab.engin.umich.edu/sites/default/files/Hwang_dissertation.pdf
http://mdolab.engin.umich.edu/sites/default/files/Hwang_dissertation.pdf
https://books.google.nl/books?isbn=034074152X
https://books.google.nl/books?isbn=034074152X
http://www.scipy.org/
https://doi.org/10.2514/6.2014-3274
http://adg.stanford.edu/aa241/AircraftDesign.html
http://adg.stanford.edu/aa241/AircraftDesign.html
https://doi.org/10.2514/6.2011-3168
https://doi.org/10.2514/6.2011-3168

Bibliography 255

[54] M. Lengers, U. Scholz, and M. Bauer. Test and industrial assessment of active flow control
integration in order to increase high - lift performance. Deutscher Luft- und Raumfahrtkongress
2011, pages pp. 1145-1153, 2011.

[55] O. Lilienthal. Der Vogelflug als Grundlage der Fliegekunst: Ein Beitrag zur Systematik der
Flugtechnik. Heyfelder, 1889.

[56] E. Livne. The active flutter suppression (afs) technology evaluation project. In JAMS Meeting,
Seattle, WA, March, 2014. URL https://depts.washington.edu/amtas/events/jams_
14/presentations/17.Livne.pdf. Accessed 10-04-2017.

[57] Lufthansa. Unsere flotte, our fleet. Magazin, page 83, oct 2017. URL http://www.
lhm-lounge.de/downloads/standardbeitrag/625263/1h 1710 inter.pdf.

[58] W. Machunze, A. Gessler, T. Fabel, P. Horst, and Radel, M. and Wolf, K. and Ulbricht, A.
and Mdunter, S. and Hufenbach, W. Active flow control system integration into a cfrp flap.
CEAS Aeronautical Journal, Vol. 7(No. 1):pp. 69-81, 2016. ISSN 18695590. doi: 10.1007/
s$13272-015-0171-2.

[59] J. R. R. A. Martins. Multidisciplinary design optimization laboratory, 2017. URL http://
mdolab.engin.umich.edu/. Accessed 22-03-2017.

[60] Joaquim R. R. A. Martins and Andrew B. Lambe. Multidisciplinary design optimization: A survey
of architectures. AIAA Journal, 51(9):2049-2075, sep 2013. doi: 10.2514/1.j051895. URL
https://doi.org/10.2514/1.5051895.

[61] Joaquim R. R. A. Martins, Christopher Marriage, and Nathan Tedford. pyMDO: An object-
oriented framework for multidisciplinary design optimization. ACM Transactions on Mathe-
matical Software, 36(4):1-25, aug 2009. doi: 10.1145/1555386.1555389. URL https:
//doi.org/10.1145/1555386.1555389.

[62] Erwin Moerland, Richard-Gregor Becker, and Bjoérn Nagel. Collaborative understanding of dis-
ciplinary correlations using a low-fidelity physics-based aerospace toolkit. CEAS Aeronauti-
cal Journal, 6(3):441-454, apr 2015. doi: 10.1007/s13272-015-0153-4. URL https:
//doi.org/10.1007/s13272-015-0153-4

[63] Kenneth Moore, Bret Naylor, and Justin Gray. The development of an open source framework for
multidisciplinary analysis and optimization. In 72th AIAA/ISSMO Muiltidisciplinary Analysis and
Optimization Conference. American Institute of Aeronautics and Astronautics, sep 2008. doi:
10.2514/6.2008-6069. URL https://doi.org/10.2514/6.2008-6069.

[64] B. Nagel and Bdhnke, D. and Gollnick, V. and Schmollgruber, P. and Rizzi, A. and La Rocca, G.
and Alonso, J. J. Communication in aircraft design: Can we establish a common language? 28th
International Congress of the Aeronautical Sciences, 2012. ISSN 978-162276754-0. URL http:
//kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597.

[65] NOESIS. Optimus: The industry-leading pido software platform, 2017. URL https://www.
noesissolutions.com/our-products/optimus.

[66] OpenMDAO. Openmdao 1.0 alpha is coming, 2015. URL http://openmdao.org/
openmdao-1-0-alpha-is-coming/. Accessed 03-04-2017.

[67] OpenMDAQO. The alpha has landed. welcome to openmdao 1.0.0a, 2015. URL http:
//openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/. Accessed
03-04-2017.

[68] OpenMDAO. Sellar - A Simple Two-Discipline Problem — OpenMDAO Documentation,
2017. URL http://blue-kgm.readthedocs.io/en/latest/basic guide/sellar.
html. Accessed 10-10-2017.

[69] OpenMDAO. Openmdao.org | an open-source mdao framework written in python., 2017. URL
http://openmdao.org/. Accessed 22-11-2017.

https://depts.washington.edu/amtas/events/jams_14/presentations/17.Livne.pdf
https://depts.washington.edu/amtas/events/jams_14/presentations/17.Livne.pdf
http://www.lhm-lounge.de/downloads/standardbeitrag/625263/lh_1710_inter.pdf
http://www.lhm-lounge.de/downloads/standardbeitrag/625263/lh_1710_inter.pdf
http://mdolab.engin.umich.edu/
http://mdolab.engin.umich.edu/
https://doi.org/10.2514/1.j051895
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1007/s13272-015-0153-4
https://doi.org/10.1007/s13272-015-0153-4
https://doi.org/10.2514/6.2008-6069
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A654699&dswid=-5597
https://www.noesissolutions.com/our-products/optimus
https://www.noesissolutions.com/our-products/optimus
http://openmdao.org/openmdao-1-0-alpha-is-coming/
http://openmdao.org/openmdao-1-0-alpha-is-coming/
http://openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/
http://openmdao.org/the-alpha-has-landed-welcome-to-openmdao-1-0a/
http://blue-kgm.readthedocs.io/en/latest/basic_guide/sellar.html
http://blue-kgm.readthedocs.io/en/latest/basic_guide/sellar.html
http://openmdao.org/

256 Bibliography

[70] OpenMDAO. Github - openmdao/openmdao, 2017. URL https://github.com/OpenMDAO/
OpenMDAO. Accessed 03-04-2017.

[71] L. Prandtl. Uber fliissigkeitsbewegung bei sehr kleiner reibung. In Verhandlungen des Dritten
Internationalen Mathematiker-Kongresses in Heidelberg : vom 8. bis 13. August 1904, pages pp.
484-491. A. Krazer, ed., Taubner, Leipzig, Germany, 1905.

[72] D. P. Raymer. Aircraft design: a conceptual approach. Educ Series. American Institute of Aero-
nautics and Astronautics, 1989. ISBN 9780930403515.

[73] Robert Reams. Hadamard inverses, square roots and products of almost semidefinite matri-
ces. Linear Algebra and its Applications, 288:35-43, feb 1999. doi: 10.1016/s0024-3795(98)
10162-3. URL https://doi.org/10.1016/s0024-3795(98)10162-3

[74] J. Roskam. Part I: Preliminary Sizing of Airplanes. Number pt. 1 in Airplane Design. DARcorpo-
ration, 1985. ISBN 9781884885426.

[75] J. Roskam. Part Il: Preliminary Configuration Design and Integration of the Propulsion System.
Number pt. 2 in Airplane Design. DARcorporation, 1985. ISBN 9781884885433.

[76] G. J. J. Ruijgrok. Elements of airplane performance. VSSD, 2009. ISBN 9789065622037 .

[77] P. Schldsser. Design of an Active Flow Control System at the Pylon/Wing Junction. PhD thesis,
TU Munchen, 2015.

[78] L. A. Schmit. Structural synthesis - its genesis and development. AIAA Journal, Vol. 19(No. 10):
1249-1263, oct 1981. ISSN 0001-1452. doi: 10.2514/3.7859. URL http://dx.doi.org/
10.2514/3.7859.

[79] L. A. Schmit and W. A. Thornton. Synthesis of an airfoil at supersonic mach number. Technical
report, CR 144, NASA, 1965.

[80] Lucien A Schmit. Structural design by systematic synthesis. In Proceedings of the 2nd confer-
ence on electronic computation, ASCE, New York, pages 105-122, 1960.

[81] L. A. Schmit Jr. Structural synthesis — precursor and catalyst. recent experiences in multidisci-
plinary analysis and optimization. Technical report, CP-2337, NASA, 1984.

[82] R. Sellar, S. Batill, and J. Renaud. Response surface based, concurrent subspace optimization
for multidisciplinary system design. In 34th Aerospace Sciences Meeting and Exhibit. American
Institute of Aeronautics and Astronautics, jan 1996. doi: 10.2514/6.1996-714. URL https:
//doi.org/10.2514/6.1996-714

[83] K. Seywald. Wingbox Mass Prediction considering Quasi-Static Nonlinear Aeroelasticity. PhD
thesis, Technischen Universitat Miinchen, 2011. URL https://www.diva-portal.org/
smash/get/diva2:474633/FULLTEXTO01.pdf.

[84] K Seywald, N Gommes de Paule, A Wildschek, F Holzapfel, C Breitsamter, and M Forster. Val-
idation of an aeroelastic analysis and simulation tool for the assessment of innovative, highly
elastic aircraft configurations. In Deutscher Luft- und Raumfahrtkongress [DGLRK2014-0232],
pages pp. 1-10, Augsburg, 2014.

[85] S Shahpar. Challenges to overcome for routine usage of automatic optimisation in the propulsion
industry. The Aeronautical Journal, 115(1172):615-625, 2011. ISSN 0001-9240. doi: DOI:
10.1017/S0001924000006308. URL https://www.cambridge.org/core/article/
challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propu
OECEB120D713F631B5271191DDFA88AA4.

[86] John W. Shipman. Tkinter - python wiki, 2017. URL https://wiki.python.org/moin/
TkInter.

https://github.com/OpenMDAO/OpenMDAO
https://github.com/OpenMDAO/OpenMDAO
https://doi.org/10.1016/s0024-3795(98)10162-3
http://dx.doi.org/10.2514/3.7859
http://dx.doi.org/10.2514/3.7859
https://doi.org/10.2514/6.1996-714
https://doi.org/10.2514/6.1996-714
https://www.diva-portal.org/smash/get/diva2:474633/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:474633/FULLTEXT01.pdf
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://www.cambridge.org/core/article/challenges-to-overcome-for-routine-usage-of-automatic-optimisation-in-the-propulsion-industry/0ECEB120D713F631B5271191DDFA88A4
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter

Bibliography 257

[87] Timothy W. Simpson and Joaquim R. R. A. Martins. Multidisciplinary design optimization for
complex engineered systems: Report from a national science foundation workshop. Journal of
Mechanical Design, 133(10):101002, 2011. doi: 10.1115/1.4004465. URL https://doi.
org/10.1115/1.4004465.

[88] J. Sobieszczanski-Sobieski, A. Morris, and M. van Tooren. Multidisciplinary Design Optimization
Supported by Knowledge Based Engineering. Wiley, 2015. ISBN 9781118897089.

[89] D. V. Steward. The design structure system: A method for managing the design of complex
systems. IEEE Transactions on Engineering Management, EM-28(No. 3):pp. 71-74, Aug 1981.
ISSN 0018-9391. doi: 10.1109/TEM.1981.6448589.

[90] Nathan P. Tedford and Joaquim R. R. A. Martins. Benchmarking multidisciplinary design opti-
mization algorithms. Optimization and Engineering, 11(1):159—-183, mar 2009. doi: 10.1007/
$11081-009-9082-6. URL https://doi.org/10.1007/s11081-009-9082-6.

[91] TOCIA Consortium. Eu fp7 tocia project public web page, 2016. URL http://www.
toica-fp7.eu/. Accessed 10-03-2017.

[92] E. Torenbeek. Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design
of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic
Design, Propulsion and Performance. Delft University Press, 1976. ISBN 9789029825054. URL
https://books.google.de/books?id=ZBwIAQAATIAAJ.

[93] E. Torenbeek. Advanced Aircraft Design: Conceptual Design, Technology and Optimization of
Subsonic Civil Airplanes. Aerospace Series. Wiley, 2013. ISBN 9781118568095.

[94] Imco van Gent and Lukas Miiller. Cmdows - git repository, 2017. URL https://bitbucket.
org/imcovangent/cmdows. Accessed: 20-11-2017.

[95] Imco van Gent and Lukas Miiller. Kadmos - git repository, 2017. URL https://bitbucket.
org/imcovangent/kadmos. Accessed 22-11-2017.

[96] Imco van Gent, Pier Davide Ciampa, Benedikt Aigner, Jonas Jepsen, Gianfranco La Rocca, and
Joost Schut. Knowledge architecture supporting collaborative MDO in the AGILE paradigm. In
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of
Aeronautics and Astronautics, jun 2017. doi: 10.2514/6.2017-4139. URL https://doi.
org/10.2514/6.2017-4139.

[97] Imco van Gent, Gianfranco La Rocca, and Leo L. Veldhuis. Composing MDAO sym-
phonies: graph-based generation and manipulation of large multidisciplinary systems. In 718th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aero-
nautics and Astronautics, jun 2017. doi: 10.2514/6.2017-3663. URL https://doi.org/
10.2514/6.2017-3663.

[98] John Vassberg, Mark Dehaan, Melissa Rivers, and Richard Wahls. Development of a com-
mon research model for applied CFD validation studies. In 26th AIAA Applied Aerodynamics
Conference. American Institute of Aeronautics and Astronautics, aug 2008. doi: 10.2514/6.
2008-6919. URL https://doi.org/10.2514/6.2008-69109.

[99] L. E. Wallace. The whitcomb area rule: Naga aerodynamics research and innovation. In FROM
ENGINEERING SCIENCE TO BIG SCIENCE: The NACA and NASA Collier Trophy Research
Project Winners, The NASA History Series. NASA History Office, 1998.

[100] W. L. Wesley and P. Chan-gi. Aeroelastic optimization study based on x-56a model. In AIAA
Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics
(AIAA), jun 2014. doi: 10.2514/6.2014-2052. URL https://doi.org/10.2514%2F6.
2014-2052.

https://doi.org/10.1115/1.4004465
https://doi.org/10.1115/1.4004465
https://doi.org/10.1007/s11081-009-9082-6
http://www.toica-fp7.eu/
http://www.toica-fp7.eu/
https://books.google.de/books?id=ZBwIAQAAIAAJ
https://bitbucket.org/imcovangent/cmdows
https://bitbucket.org/imcovangent/cmdows
https://bitbucket.org/imcovangent/kadmos
https://bitbucket.org/imcovangent/kadmos
https://doi.org/10.2514/6.2017-4139
https://doi.org/10.2514/6.2017-4139
https://doi.org/10.2514/6.2017-3663
https://doi.org/10.2514/6.2017-3663
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.2514%2F6.2014-2052
https://doi.org/10.2514%2F6.2014-2052

258

Bibliography

[101]

[102]

[103]

[104]

[105]

Andreas Wildschek. Concurrent optimization of a feed-forward gust loads controller and mini-
mization of wing box structural mass on an aircraft with active winglets. In 16th AIAA/ISSMO
Muiltidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and
Astronautics, jun 2015. doi: 10.2514/6.2015-2490. URL https://doi.org/10.2514/6.
2015-2490.

J.R. Wright and J.E. Cooper. Introduction to Aircraft Aeroelasticity and Loads. Aerospace Series.
Wiley, 2014. ISBN 97811187004 33.

O. Wright. Telegram from orville wright in kitty hawk, n.c., to his father announcing four successful
flights, 1903 dec. 17. Photograph, Retrieved from the Library of Congress, 1903. URL https:
//www.loc.gov/item/2003680165/. Accessed 21-03-2017.

W. Wright. Wilbur wright [henry a. wise wood, aero club of america bulletin, july 1912]. Manuscrip-
t/Mixed Material, Retrieved from the Library of Congress, 1912. URL https://www.loc.gov/
item/wright003306/. Accessed 21-03-2017.

S. X. Ying. Report from icas workshop on complex systems integration in aeronautics. 30th
Congress of the International Council of the Aeronautical Sciences, 2016.

https://doi.org/10.2514/6.2015-2490
https://doi.org/10.2514/6.2015-2490
https://www.loc.gov/item/2003680165/
https://www.loc.gov/item/2003680165/
https://www.loc.gov/item/wright003306/
https://www.loc.gov/item/wright003306/

	List of Figures
	List of Tables
	List of Code Fragments
	Introduction
	Background
	Aircraft Design
	History and Current Work
	The Design Process
	Design Process Management
	The Multidisciplinary Nature of Aircraft Design
	Design Requirements and Objectives
	Wing Design

	Multidisciplinary Design Optimization
	The Birth of MDO
	Definitions and Terminology
	MDO Architectures
	Difficulties of MDO
	The AGILE Project
	The OpenMDAO Framework

	Methodology
	Requirements
	Workflow
	Knowledge Base
	High Level Strategy
	Coupling Strategy
	Construction Strategy
	Architectural Strategy

	Software Architecture
	Implementation
	Core Module
	Utilities Module
	Recorders Module

	Results
	Scalable Optimization Problem
	Sellar Problem
	Aerostructural Wing Optimization

	Conclusions & Recommendations
	Conclusions
	Recommendations

	Code
	OpenLEGO core
	pythonopenlego.core.abstractdiscipline
	pythonopenlego.core.disciplinecomponent
	pythonopenlego.core.model
	pythonopenlego.core.xmlcomponent

	Partials
	XMLSchema
	pythonopenlego.partials.partials

	Recorders
	pythonopenlego.recorders.baseiterationplotter
	pythonopenlego.recorders.baselaneplotter
	pythonopenlego.recorders.constraintplotter
	pythonopenlego.recorders.normalizeddesvarplotter
	pythonopenlego.recorders.simpleobjectiveplotter
	pythonopenlego.recorders.voiplotter

	Utilities
	pythonopenlego.utils.generalutils
	pythonopenlego.utils.xmlutils

	Test Suite
	Sellar Problem
	Wing Optimization

	Bibliography

