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ABSTRACT: For many years, process intensification has been seen and considered
through the prism of equipment and methods. The current review paper adds a new
perspective to it and examines the role of (advanced) materials in process intensification.
The discussion is illustrated with numerous examples of various types of materials that
have been shown to intensify chemical and catalytic reactions, mass transfer, heat transfer,
and momentum transfer processes, respectively. The role of process intensification in
manufacturing of new, advanced materials is also discussed. In view of the importance of
materials for process intensification, an update of the classical approach to the field of PI is
postulated.

1. INTRODUCTION—HISTORICAL NOTES elastomers,'” fibers,'” iron, mild steels and low alloy steels,"*
nickel and high nickel alloys,15 plastics,16 hard rubber,"”
stainless steels, and other ferrous alloys."® More recently, a
chapter on construction materials in the chemical industry was
published in Ullmann’s Encyclopedia of Industrial Chemistry."”

On the other hand, enormous developments in the materials
science and engineering witnessed in the last decennia have
opened new opportunities and possibilities for intensification
of chemical processes. In the current paper, we examine the
role that (advanced) materials already play or can play in PL
We illustrate the discussion with examples of various categories
and types of materials that have been shown to intensify
chemical and catalytic reactions, mass transfer, heat transfer
and momentum transfer processes, respectively. Last but not
least, we take a look at the reversibility of the PI/materials
relation, discussing the role of PI in the manufacturing of new,
advanced materials.

Process intensification (PI) has attracted much attention in the
past 30 years and resulted in numerous publications, including
the paper on its fundamentals published in Industrial &
Engineering Chemistry Research on the occasion of its 100th
Anniversary.1 A popular view on process intensification was
introduced nine years earlier by Stankiewicz and Moulijn,” who
considered PI as a toolbox encompassing novel types of
process equipment and processing methods. Indeed, the
majority of research articles published in the field of PI so
far have focused on new equipment concepts, e.g, micro-
reactors or high-gravity devices, or on innovative processing
methods, e.g.,, hybrid separations or alternative energy forms
and transfer mechanisms. Some publications present process
systems engineering-derived concepts of PI and focus on the
role of process synthesis and computer-aided design in that
area.” % An aspect that, besides occasional mention,” has been

insufﬁciently addressed in the literature thus far is the role of 2 IMPORTANCE OF MATERIALS FOR PROCESS

(advanced) materials in process intensification. INTENSIFICATION

Materials have been shaping humanity through the ages, .
since the Stone Age until today. Nowadays, (advanced) 2.1. Reactions. In chemical reaction engineering, advanced
materials prompt new applications that transform entire materials offer unic;(ue reaction er’l’vironments, in terms of
industries. The importance of materials for chemical engineer- morphologies and “shape-selective”, perfectly defined pore

structures, that result in intensification of catalytic processes.
Zeolites present a well-established example of shape-selective
materials that are widely applied on the industrial scale, for

ing cannot be overestimated. Traditionally, materials used in
chemical engineering operations were primarily materials of
construction, and one of the first review papers in that area
appeared in Industrial and Engineering Chemistry in 1932.

Shortly after World War II, Industrial and Engineering Chemistry Received: March 16, 2019
published a series of articles under a common title, “Materials Revised:  April 21, 2019
of Construction”, that included aluminum alloys,8 cements,” Accepted: April 30, 2019
ceramics, '’ wrought copper and copper-based alloys,11 Published: April 30, 2019
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instance, in fluidized catalytic cracking (FCC). Another, more
recent family of materials that can be used for shape-selective
catalysis, are metal—organic frameworks (MOFs). These are
crystalline hybrid materials whose crystal structure is built from
a three-dimensional (3D) network of metal ions or small
discrete clusters connected by multidentate organic molecules.
The pore size and geometry of MOFs can be tuned to suit
various applications, including catalysis.”’~>*

Liquid crystals miss the rigidity of a solid matrix. At the same
time, however, the order of the crystalline phase restricts the
randomness in motion of the dissolved molecules. Because of
that feature, liquid crystals can influence the behavior of the
chemical reactions performed in those media (for instance,
photodimerizations, where clear effects of the liquid crystal and
its type on the selectivity of the reaction were observed).”*™>°
Also, ionic liquids (ILs) present an interesting environment for
carrying certain “green” chemical reactions with clear
intensification effects.”””” A separate group of advanced
materials that have been reported to significantly improve
the reaction performance are carbon-based materials, including
carbon nanotubes,”*’ carbon molecular sieves,”® and graphene
oxides.” %

Some specific properties of advanced catalytic materials can
be utilized for intensification of chemical reactions. For
instance, adjusting the wettability of catalysts can lead to
enhanced catalytic performance, as shown by Wang and
Xiao.>**° Also, catalytic materials that allow adjusting pore
structure from a purely nanoporous structure to a hierarchical
structure can result in enhanced yield*® Very interesting
challenges for materials are seen in the field of chemical and
catalytic reactors driven by electromagnetic energy, such as
microwave (MW), radio frequency (RF), or inductive heating.
Those types of heating allow a dramatic increase in reaction
rate and/or product yield, compared to conventional
heating.””~*' In MW and RF catalytic reactors, the control
of local temperature in the catalyst bed is of paramount
importance and can only be achieved via a careful choice of
materials with the right dielectric properties. In reactors based on
induction heating, core—shell superparamagnetic nanoparticles
can be used to intensify the energy transfer and shorten
reaction times.*>*!

Table 1 provides some examples of material-related
intensification effects in chemical and catalytic reactions.

2.2. Mass Transfer. Similarly, in mass-transfer processes,
advanced materials can provide remarkable advantages. For
instance, a finely tunable design in pore aperture and structure,
and/or molecule—surface interaction by surface functionaliza-
tion, results in process intensification of molecular-scale
separation (“molecular sieving”). Zeolites and metal—organic
frameworks(MOFs) exhibit excellent performance in gas
separation, especially in the case of close-boiling mixtures,
with a high potential of attainable 90% energy savings,
compared to conventional energy-intensive cryogenic distil-
lation methods.”™*" Covalent-organic frameworks (COFs),
porous organic cages(POCs), and polymer of intrinsic micro-
porosity(PIMs) have also been developed for mass-transfer
operations and deliver excellent intensification effects,
compared to conventional technologies."*™>*

Different from MOFs and zeolites, which belong to
molecularly 3D porous materials, graphene is a type of two-
dimensional (2D) material of atomic thickness. Graphene-
based materials show high flexibility and tunable interspacing
property.”>>* This provides another pathway for molecular

9215

sieving with microporosity and potentially breaks the tradeoff
between permeability and selectivity,® for instance, in the
organic waste filtration in water treatment processes.‘%’57

SiC and carbon foams, because of their high porosity and
good liquid spreading facilitated by capillary forces, redefine
equipment internals for the otherwise very mature distillation
technology.”®*’

Liquid crystals, as a special phase of materials, provide high
potential for separation of other functional materials (for
instance, fullerenes (C60 and C70)), because of good
molecular shape recognition capability.”’ Also, ILs with well-
defined cationic ligand and anionic li§and offer selective
separation transport in lignin separation.” Liquid membranes,
which are a combination of liquid solution as the selective
agent and a membrane as the support, present an opportunity
for a more-efficient ion separation or recovery.” "

Soft matter, which is a term established by Pierre-Gilles de
Gennes, the Nobel Laureate in Physics in 1991, comprises a
huge materials library. Composite hydrogels, which are an
example of soft matter, possess the features of interlinked
networks and matrix. They can be used, for instance, to form a
confined and elastic space for controllable crystallization with
tunable crystal size and desirable crystalline form. A hydrogels-
based crystallization reactor presents an alternative method to
intensify conventional crystallization process.®**®

Other specific properties of advanced materials, such as
superwettability or magnetic response, can be utilized for
intensification of mass-transfer processes. Superwettability,
which is a special interfacial property resulting from the
interplay between the micronano hierarchical structure and the
lower-energy surface, is applicable in mass-transfer operations.
For example, superoleophobic ZIF-8 coating on steel mesh
exhibits 99.9% separation efficiency and extremely high flux in
water—oil separation by selective affinity and capillary
force.*®” The possibility of gravity-driven operation, without
additional energy input, together with the extraordinary
separation efliciency, promises to result in a highly energy-
efficient process.”® In addition, superwettability can also
facilitate nonfouling and long-lasting stable operation of
membranes, which is of paramount importance for industrial
practice.””~"® As already mentioned in the reaction part,
interesting material-related challenges are seen in the processes
driven by electromagnetic energy. Materials that are responsive
to magnetic field are one example, which, coupled with proper
surface modification, provide a remarkable opportunity for
intensification.”*”

Selected examples of material-related intensification effect in
mass-transfer processes are listed in Table 2.

2.3. Heat Transfer. Selected ceramics and metals play a key
role in intensifying heat-transfer operations, because of their
excellent thermal conductivity. For example, silicon carbide is
used to fabricate heat-exchanger reactors for extremely efficient
heat removal/supply.”® Similarly, aluminum foam can be used
as a reactor packing to eliminate the danger of thermal
runaway, in the case of highly exothermic reactions.”’~”” On
the other hand, similar to mass-transfer operations, nano-
particles-based nanofluids deliver a significant improvement of
thermal conductivity.go’81 In principle, the application of
nanofluids as a replacement for conventional cooling/heating
agents should not require a major modification in the existing
process.

Metamaterials own unusual electromagnetic pro;)erties that
are not found in naturally occurring materials.”” They are

DOI: 10.1021/acs.iecr.9b01479
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Table 3. Examples of Material-Related Intensification Effects in Heat-Transfer Processes

Material
property/mechanism category example process reference technology intensification effect
thermal conductivity ~ ceramics Sic” exothermic process in heat Plexiglas 6—20 times more efficient in terms of
exchanger-reactor thermal exchange capacity
metal aluminum”® Fischer—Tropsch alumina-based catalyst ca. 650 times higher thermal
synthesis particles conductivity; no thermal runaway
nanofluids Cu nanoparticlesso general heat/energy water 1.78-fold increase of thermal
transfer conductivity
responsiveness to magnetic magnetite general heat/energy deionized water 4-fold enhancement of local heat-
magnetic field materials nanoparticles'* transfer transfer coefficient
magnetite 0 general heat/energy barium ferrite, cobalt more than 3-fold increase of heating
nanoparticles” transfer ferrite or maghemite rate
responsiveness to dielectric Fe;0 -petalite general heat/energy petalite foam without 7 times higher heating-up rate
microwave heating materials composite ! transfer Fe;0,
superwettability superydrophilic superhydrophili)g pool boiling hydrophilic copper 2-fold increase of maximum heat flux
materials TiO, coating‘

Table 4. Examples of Material-Related Intensification Effects in Mixing and Momentum-Transfer Processes

Material
property/mechanism category example
elongational viscosity; polymer general linear polymer of molecular
molecular stretching weight above 100 000'%*
poly isobutylene'%*
micelle-forming; wall surfactant APG1214'%*
slip
superwettability; superwettable PTFE nanofiber forests coating'*®
boundary slip materials
microstructured Teflon coating'®®
organically modified SiO, ?articles
coating on the foam SiC'%’
responsiveness to ferrofluids Fe;0, ferrofluid'®”

magnetic field

reference

process technology intensification effect

single-phase flow no additives up to 70%—80% drag reduction

multiphase flow (air- no additives

up to 40% drag reduction
crude oil)

surfactant-free
deionized water

water flow through
the microchannel

up to 30% drag reduction

laminar flow no coating 55~65% higher mass flow rate at
the same applied pressure

turbulent flow no coating 75% turbulent drag reduction

flow through a no coating up to 43% less pressure drop

distillation tray

mixing in same fluid, no up to 6-fold shortening of the
microfluidic magnetic field mixing length
channel

usually made from assemblies of multiple elements fashioned
from composite materials such as metals or plastics and
arranged in repeating patterns. As stated by Raman et al,*
their specially designed structures give them smart properties
capable of manipulating electromagnetic waves, by blocking,
absorbing, enhancing, or bending waves, to achieve benefits
that go beyond what is possible with conventional materials.
The properties may offer opportunities to intensify chemical
processes.

Magnetocaloric materials gain increasing interest as an
energy-lean technology for alternative cooling and refrigeration
systems. Compared to the conventional vapor compression
technology, in magnetocaloric materials, the intensified cooling
is achieved by a repeated cycle of magnetization and
demagnetization in magnetic fields. As claimed in the
literature,”*~* its Carnot efficiency can even approach 100%,
while the conventional technology can only reach 40%. Also,
other materials responsive to external fields, including electric
fields, magnetic fields, and microwave fields, can achieve rapid
heating rates, significantly higher energy efliciency, and more
homogeneous temperature distribution, compared to the
conventional heating.40’87_91

9216

Similarly to reactions and mass-transfer operations, super-
wettability, which is a specific property of some advanced
materials, can be utilized to intensify heat-transfer oper-

. 2,93
ation.””

For example, a superhydrophilic surface can
intensify pool boiling by increasing the critical heat flux
(CHF);”* a superhydrophobic surface can turn film con-
densation into the perfect dropwise condensation, achieving an
order-of-magnitude intensification effect.”

Coking is a common phenomenon in petrochemical
cracking processes, which results in rapid deterioration of the
heat-transfer performance of cracking tubes. Some inorganic
coatings can significantly reduce the coking rate and, although
they do not intensify the process as such, they enable the
retaining of very intensive heat transfer through the tube
wall 81,9699

Some examples of the material-related intensification effects
in heat-transfer processes are listed in Table 3.

2.4. Momentum Transfer. Polymer or surfactant additives
can change the boundary phenomena near the wall and the
interaction between liquid and solid, resulting in drastic
reduction of the hydraulic resistance, whether it is a single-

DOI: 10.1021/acs.iecr.9b01479
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phase or a multiphase flow, a macroscale or a microchannel
flow, oil or water.''7'%*

Similar to the role of superwettability in reactions, mass
transfer, and heat transfer, a superwettable surface can also
significantly reduce the energy consumption, via the drag
reduction in laminar flow,'” turbulent flow,'” and also
bubbling flow process.'”’

Mixing is the fundamental phenomenon playing a role in
reactions, mass transfer, and heat transfer, and is of significant
importance, particularly for liquid-phase process. Tremendous
mixing intensification effects can be achieved by the addition of
particles responsive to magnetic fields.””'*® Several examples of
material-related intensification effects in mixing and momen-
tum transfer are provided in Table 4.

3. THE ‘'YIN AND YANG": MATERIALS FOR PI — PI
FOR MATERIALS

In the previous sections, we presented the importance of
(advanced) materials for process intensification. Advanced
materials, such as carbon materials (graphene, CNT),
molecularly porous/structured materials (zeolites, MOFs,
COFs, POCs, PIMs), nanoparticles or nanofluids, soft matter
(hydrogels, ionic liquids, polymers, liquid crystals), selected
ceramics and metals, superwettable materials, electromagnetic-
responsive materials, all were shown to play an important role
in intensifying reactions, as well as mass-, heat-, and
momentum-transfer processes.

According to the old Chinese philosophy, the two opposite
elements, Yin and Yang, interact, attract and complement each
other. The relationship between materials and process
intensification has that “Yin and Yang” nature. Materials are
used to intensify processes, while process intensification (PI)
technologies are used to manufacture materials. Accordingly, in
each of the four elementary domains of PI, first introduced by
Van Gerven and Stankiewicz in their article published on the
100th Anniversary of I&ECR,' intensified technologies are
found that have been or can be applied in the manufacturing of
advanced materials. For example, in the spatial (“Structure”)
domain, various polymers are synthesized in a highly controlled
way using microchannel or millichannel reactors. Microfluidic
systems are also used for the synthesis of hydrogels and crystal
polymorphs. In the thermodynamic (“Energy”) domain, acoustic
(ultrasound) or electromagnetic (e.g., light, microwaves) fields
are applied for the synthesis and processing of (bio)polymeric,
ceramic, crystalline, or carbon materials with specific proper-
ties. HiGee technology, based on centrifugal force, shows faster
mixing performance that leads to improved product quality in
the nanoparticle synthesis and polymer, compared to conven-
tional technology. In the functional (“Synergy”) domain,
membrane crystallization allows for a better control of crystal
polymorphism, while reactive extrusion simplifies the polymer-
ization process and deliver better polymer performance.
Finally, in the temporal (“Time”) domain, oscillatory flow
reactors can be applied in the continuous production of
polymers or crystalline materials, while pulsed plasmas/laser are
used in the synthesis of nanoparticles and thin-film materials.
Table S provides a brief, nonexhaustive overview of PI
technologies applied in the synthesis, manufacturing, and
processing of advanced materials. As one can see, the
technologies in the Energy domain dominate the field.
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Table S. Process Intensification (PI) Technologies for the
Synthesis, Manufacturing, and Processing of Advanced
Materials

PI technology materials addressed
PI Domain: Structure

. . <1 . 110—112
microstructured/microfluidic polymers (various types)

reactor
hydrogels' "> ~'"*
crystals/polymorphs''¢~*
. 119,120
nanoparticles
s 121
millireactor polymers
L 122
static mixer polymers

PI Domain: Energy
(bio)polymers
polymers 125,126

polymeric biomaterials
128-130

. 123,124
electric field

microwaves
127

ceramics

128,12
glasses ™ ?

129
composites

. . 12!
metallic materials'*’

gr;}r)cl)lglrllst Salr;fl‘ lggaphene-based

133
carbon nanotubes

quantum dots'**

135,136
carbon nanotubes "¢

127

plasma

biomaterials

y-ray irradiation hydrogels'*’
hydrogels'*’

138

light; coherent (laser)
colloids
structured biomaterials'*”

136
carbon nanotubes

light; noncoherent (visible, UV)  polymers'**~'**
biomaterials'*”'**

ultrasound polymer nanocomposites' **
hydrogels'*®
(nano)biomaterials'>”
gr;lphenel47'148

HiGee: rotating packed bed nanoparticlesmg’150
polymers"*"

HiGee: spinning disk reactor polymers'>>'%
nanoparticles' 7'

PI Domain: Synergy
reactive extrusion polymer5156_‘58
heat exchanger (HEX) reactor polymers">’

60161

crystal polymorphs’
PI Domain: Time

membrane crystallization

162

oscillatory flow reactor crystalline materials

polymers'®®

. 164—166
nanoparticles'**

pulsed plasma
pulsed laser nanoparticles'®’

thin-film materials'®®

4. CONCLUSIONS

For many years, process intensification has been seen and
considered through the prism of equipment and methods.”
The current paper adds new insights and another perspective
to it. Based on the above-discussed examples, we can clearly
see that (advanced) materials present an important, third way
of intensifying (catalytic) reactions, as well as heat-, mass-, and
momentum-transfer processes. They carry two main ingre-
dients of PI, which are the innovation and the significant scale
of the effects achieved. Because of that fact and because of the
“Yin-Yang” interrelationship between PI and materials, the
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Figure 1. Field of process intensification, as it was seen in 2000 and as it should be seen today.

almost-20-years-old “toolbox” approach to process intensifica-
tion” should now be updated, as proposed in Figure 1, and
materials should be given a place in the field that they fully
deserve.

Only a few of the materials discussed in this paper have
already been seen in industrial-scale applications. These
include, for instance, zeolites in catalytic reactors and in
mass-transfer processes, silicon carbide in heat-transfer equip-
ment and in distillation columns, or drag-reducing polymers in
petroleum pipelines. The vast majority of the reviewed
materials, however, have so far been synthesized and
investigated only on the laboratory/bench scale. In order to
implement them in commercial processes, important hurdles
must be overtaken, which obviously include the cost and, in
many cases, also the lack of the large-scale manufacturing
technologies for those materials. We expect that the “Yin-
Yang” relation between materials and process intensification
will help overtake those hurdles and that the low-cost, PI-based
technologies for manufacturing those materials will be
developed in the years to come.
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