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Abstract

Decentralized Finance (DeFi) lending platforms claim to use decentralized, community-driven gover-
nance. In practice, however, governance power remains concentrated among a limited number of
users. This thesis investigates the behavior of users actively participating in governance in two major
DeFi lending platforms, Aave and Compound, using a network science approach. Data covering gov-
ernance actions and both governance and yield token transfers is combined in a multi-layered network
model. By combining these layers, it is possible to investigate the characteristics of governance-active
users. Specifically, how their governance activity relates to their behavior in the token transfer networks.
The analysis studies correlations between token transfer patterns and governance participation, detects
communities in governance token transfer networks, and uses a Susceptible-Infected (Sl) process to
estimate each user’s structural influence in a spreading process to compare this to governance activity.
The results show that governance token transfer volume strongly correlates with voting power, while
other network features do not. Most governance-active users cluster together in a few communities in
the governance token transfer network. Users with a greater simulated spreading potential only tend
to partially hold higher actual voting power. Together, these findings suggest that DeFi governance is
strongly shaped by token wealth and tight user clustering, highlighting that open design alone does not
guarantee broad and equal participation.
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Introduction

Blockchain technology makes it possible to build applications that do not rely on a central author-
ity, called decentralized applications (dApps). Instead of a bank or administrator keeping records, a
blockchain stores transactions across a network of computers in a secure, transparent, and tamper-
resistant way. Ethereum is the most widely used blockchain for this, because it supports smart con-
tracts, which are small programs that automatically perform actions such as sending tokens, issuing
loans, or recording votes when certain conditions are met. These smart contracts enable Decentralized
Finance (DeFi), which offers financial services such as lending, borrowing, and managing assets with-
out the need for banks or other intermediaries. Unlike traditional finance, DeFi is accessible to anyone
with an internet connection and aims to be governed by its community rather than by a few centralized
actors.

Within DeFi lending platforms, users supply liquidity by depositing their crypto assets into a lending
pool. In return, they automatically receive platform-specific interest-bearing tokens, referred to here as
yield tokens, which represent their share in the pool plus any earned interest. These tokens can be
transferred, used as collateral themselves, or redeemed for the original assets at any time. Borrowers,
in turn, must lock up their own crypto assets as collateral, usually worth more than the amount they
borrow, to secure loans and protect lenders. In addition, they pay interest on the borrowed amount.
This trustless, permissionless model enables anyone with crypto to lend or borrow without relying on a
bank or intermediary.

DeFi lending platforms manage billions of dollars in assets through smart contracts and continue
to grow, but the rules behind these contracts evolve through community governance. Proposals (sug-
gested changes), voting (decisions on these changes), and delegation of voting power determine how
key parameters or rules change, risks are managed, and new features are introduced. Governance
takes place through its community of token holders. The platforms are governed through platform-
specific governance tokens, which carry financial and governance value and can be freely traded. The
voting power of users is generally proportional to their governance token holdings, which are issued in
limited supply to maintain scarcity and ensure that decision-making remains meaningful.

Many prior studies have looked at how governance tokens, which determine voting power, are
distributed among users. Despite the aim of decentralization, these studies consistently find that a
limited number of users actively participates in DeFi governance, contrary to the platforms’ stated goals.
This raises concerns that a few users could steer important decisions, such as setting interest rates
or collateral rules, for their own benefit. Other research analyzes token transfer networks to compare
structural decentralization, but this mostly focuses on general network properties, rather than user-
specific behavior. As a result, they do not examine who the governance-active users are, how they
behave in detail, or how their voting actions relate to their token transfer behavior.

Obtaining a clearer view of how governance-active users interact within token transfer networks is
important, since they are the ones directly influencing platform decisions. By measuring how gover-
nance actions align with token flows and network position, this research shows whether formal voting
rights match practical behavior, or whether hidden structures allow a few users to concentrate control.

To address this gap, this thesis goes beyond simply counting participation or describing network
structures in isolation. It focuses on the behavior of governance-active users, combining their actions;
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2 1. Introduction

proposing, voting, and delegating, with how they interact in governance and yield token transfer net-
works, and measuring how strongly these dimensions relate. A novel, multi-layered network science
approach is applied to Aave and Compound, two leading DeFi lending platforms. Unlike prior work that
studies governance or token flows separately, this study integrates three key dimensions into a unified
analysis:

* Governance Interaction Layer: governance proposals, voting, and delegations.
» Governance Token Transfer Layer
* Yield Token Transfer Layer

This multi-layered view tests whether formal governance power matches actual network behavior. It
also adds a dynamic perspective by detecting communities based on transfer activity and simulating
each user’s potential influence using a Susceptible-Infected (SI) spreading model on a temporal token
transfer network. This helps reveal whether the same users who participate in governance also hold
structural positions that amplify their influence. Together, these layers provide a realistic view on user
interactions, network positions, and governance activity and help asses whether DeFi governance lives
up to its open, token-based promise. The openly accessible DeFi data provides a unique opportunity
to observe these interactions at scale.

1.1. Research Questions

This research uniquely combines multiple aspects of DeFi platforms, such as data on governance
interactions (proposals, votes, delegations), governance token transfers, and yield token transfers.
The study addresses the following research questions:

» To what extent does the governance activity of users (voting and delegating) relate to their prop-
erties in the governance and yield token transfer layers?

» Do nodes that cluster together in communities, based on transfer activity in the governance token
transfer layer, tend to contribute similarly to governance activity?

» To what extent does the influence of users in a spreading process, as measured by the S| model,
relate to their governance activity?

» How do Aave and Compound differ with respect to the questions above?

The core analysis uses three types of directed networks for each of the two token transfer layers
(governance and yield tokens) on both platforms. In these networks, each node is an Ethereum ad-
dress, which basically represents a unique account on the blockchain. This can belong to an individual
user or a smart contract. The meaning of the edges differs per network. The first network, G, is a
temporal network. Each single interaction (i.e., token transfer) is represented by an edge from address
A to B at time t, with an associated weight indicating the amount of tokens transferred. From this, a
weighted aggregated network can be constructed, in which a directed edge from A to B exists if A has
transferred tokens to B at least once. Depending on the meaning of the edges, two static networks are
created from this. In G, the weight of an edge from A to B denotes the number of separate transfers
from address A to B. In Gy, the weight of an edge from A to B represents the total volume of tokens
transferred from address A to B. All data used to build networks is collected over a period of a year.

All networks include all addresses and token transfer information, but the analysis is only performed
on governance-active users; those who have proposed, voted, or delegated. This approach enables
the application of network science techniques to study the behavior these users, by relating their gov-
ernance activity to their properties in token transfer networks.

1.2. Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 introduces key concepts. Chapter 3
reviews prior work on DeFi governance, decentralization, and temporal network analysis. Chapter 4
details the research pipeline, including data collection, preprocessing, network construction, and anal-
ysis methods. Chapter 5 presents the findings, including structural analysis, community detection, and
influence modeling. Chapter 6 interprets these results, and Chapter 7 concludes with reflections and
directions for future work.



Background

This thesis uses network science to analyze DeFi lending platform data, with the aim of assessing
whether their promised governance decentralization is truly achieved. To support this analysis, this
chapter outlines essential concepts and technical foundations.

2.1. Ethereum

Ethereum is the most widely used blockchain for decentralized applications (dApps) [7, 33] because it
supports smart contracts, which are small programs that run exactly as coded. These smart contracts
make it possible to build DeFi platforms, where code replaces intermediaries such as banks. This is
important because Aave and Compound, the platforms studied in this thesis, both run on Ethereum.

2.2. DeFi Mechanisms

DeFi lending platforms remove intermediaries by using smart contracts to automate financial services
like lending and borrowing [35]. Key features include permissionless access, non-custodial control,
transparency, and composability [29, 34]. By contrast, Traditional Finance (TradFi) refers to conven-
tional banks and institutions that centrally manage funds, while Centralized Finance (CeFi) includes
crypto-native platforms that still retain centralized custody and control of user assets. Unlike CeFi,
DeFi lets users hold direct control without trusting an intermediary. In addition, DeFi lacks credit scor-
ing and regulation, often requiring overcollateralization to manage risk [28]. This mechanism offers
lenders protection against volatility, which is a common phenomenon in cryptocurrencies, ensuring the
repayment of loans in cases of collateral value fluctuations. Benefits of DeFi include financial inclusion,
censorship resistance, and low-cost global transactions [25]. Risks include smart contract vulnerabili-
ties, regulatory uncertainty, and potential misuse for illicit activities.

DeFi platforms, such as Aave and Compound, facilitate the lending and borrowing of assets through
smart contracts, eliminating the need for intermediaries. Typically, loans are overcollateralized and
interest rates are algorithmically determined by supply and demand.

Yield tokens are created when users deposit assets, their increasing value reflects accrued interest.
Conversely, borrowers are required to pay interest on the funds they borrow. Yield tokens are interop-
erable, meaning they can be transferred, used as collateral, or deployed in other DeFi protocols.

Governance tokens serve a dual purpose. On the one hand, they grant holders the right to par-
ticipate in platform governance by proposing and casting votes on changes to rules, parameters, or
upgrades. The proposing and voting power of a user is directly proportional to the number of gov-
ernance tokens they hold, while the overall supply of these tokens is limited. Conversely, they are
considered tradable assets and often carry monetary value. This duality can create a tradeoff between
influence and profit, potentially affecting how decentralized and active governance actually is.

To address low participation, numerous platforms support delegation, where governance token hold-
ers assign their voting rights to more active or informed users, who can then vote on their behalf. The
delegated voting power is proportional to the number of governance tokens possessed by the delegator.
While this boosts engagement, it can concentrate power among a few delegates.
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4 2. Background

2.3. DeFi Incentives

DeFi attracts users with unique benefits compared to CeFi and TradFi. The most common motivations
include the following, of which several are stated by [8]:

* Permissionless access: open to anyone with a wallet and internet access, without credit checks
or Know Your Customer (KYC) regulations.

* Flash loans: arbitrage or strategy execution with no collateral.

» Transparency: smart contracts and transactions are fully auditable.

» Composability: assets can be used across platforms.

» Tax benefits: borrow without selling, deferring capital gains.

* Flexible terms: no fixed loan durations, collateralization governs lifespan.

DeFi lending is also used for traditional purposes, such as saving, liquidity access, and portfolio
diversification. Its appeal lies in high yields, open access, and rapid innovation.



Related work

This chapter reviews prior research related to DeFi governance mechanisms, decentralization, and
temporal network modeling techniques. It highlights gaps that this thesis aims to address.

3.1. Governance in DeFi Platforms

DeFi governance is often managed through Decentralized Autonomous Organizations (DAOs), where
governance token holders can propose and vote on platform changes [13]. The process typically in-
volves:

1. Proposal submission: a user submits a proposal to change the platform.
2. Community discussion: the community provides feedback and iterates on the proposal.

3. Token-weighted voting: token holders vote on the proposal, with voting power proportional to their
token holdings.

4. Implementation via smart contracts: if approved, the change is automatically implemented via
smart contracts.

Many existing studies focus on the distribution of governance tokens or voting power in DeFi lending
platforms. They consistently find that governance often remains centralized in practice, with only a
limited number of users actively proposing or voting, and a handful of large holders controlling most
of the power. [12] report low voter turnout and a concentration of power among major voters. Other
studies [4, 6, 17, 23] confirm token concentration among a few users and underused voting rights.
[9] additionally show that many users who hold governance tokens rarely exercise their voting rights,
highlighting a gap between formal rights and real participation. A high proposal acceptance rate is also
common, often due to coordination and discussions that occur before voting. These discussions help
quantify community sentiment and enable the selection of on-chain proposals that are more likely to
secure majority support. While [24] argue that some concerns may be overstated, they still observe
high concentration of governance power.

These studies show clear participation gaps, but do not examine how governance-active users
behave in other parts of the platforms, such as token transfers. This thesis addresses this gap by
combining the layers of governance actions and token transfers in one model, enabling a deeper un-
derstanding of the behavior of these users.

3.2. Decentralization Metrics and Dynamics in DeFi

Decentralization in blockchain means that control and decision-making are distributed among many
users, but in practice, governance power can still concentrate in the hands of a few. Several studies
have explored this by analyzing token transfer networks in DeFi. For example, [27] focused on Com-
pound decentralization using inequality metrics such as the Gini and Nakamoto coefficients to show
that voting power remains concentrated, but they did not analyze token flows. They suggest future
research to examine what drives voting behavior and how voters interact with each other.
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6 3. Related work

[36] argue that DeFi decentralization is multi-dimensional, identifying five key aspects of DeFi de-
centralization: consensus, network, wealth, governance, and transactions. They highlight that these
aspects interact with each other and recommend future work to study how these different layers are
connected in practice. This thesis follows their recommendation by looking at governance actions and
token transfers together to assess governance decentralization in DeFi lending platforms.

Other studies [2, 37] use daily, undirected governance token transfer networks across DeFi plat-
forms. They track global network features, such as the number of disconnected components, the rela-
tive size of the largest component, the modularity, and standard deviation of nhode degrees to construct
timeseries that reflect overall network structure changes over time. Based on these timeseries, they
assess and compare decentralization of these platforms. Their findings suggest that network structure
can reveal concentration patterns. However, they do not analyze how these global network patterns
relate to individual governance behavior.

This thesis builds on and extends these works by combining governance actions with governance
and yield token transfers at the user level, using directed and temporal network models. By focusing
on the characteristics of governance-active users and analyzing how their network positions and token
activity relate to their governance participation, this study provides a more detailed, dynamic view of
how governance-active users shape decision-making in practice and how token flows and network
positions relate to their influence.

3.3. Temporal Network Analysis in Blockchain Networks

Most blockchain studies use static network analysis, where all interactions are aggregated into a single
snapshot. While useful, this approach can miss important temporal patterns. To address this, recent
research has focused on temporal network analysis, where interactions are modeled with timestamps,
capturing how behavior, influence, or value flows evolve over time.

[19, 20] use temporal random walks, which only follow transfer paths in chronological order, to better
model and predict user behavior on Ethereum. They introduce the Temporal Weighted MultiDiGraph
(TWMDG), where each edge represents a single time-stamped transfer, allowing multiple directed,
weighted edges between the same users. Together with [21], who apply temporal random walks to
blockchain token transfer networks, these time-aware methods reveal richer interaction patterns than
static graphs.

Another key development is the use of diffusion models, such as the Susceptible-Infected (Sl)
model, which simulate how information or influence might spread through a network. While common
in epidemiology or social media analysis, S| models are only beginning to be applied in blockchain re-
search. Forinstance, [30] model blockchain adoption in supply chain finance using a SEIR (Susceptible-
Exposed-Infected-Recovered) model, and [1] simulate risk contagion across crypto exchanges using
S| dynamics. However, these models have not yet been applied to blockchain token transfer networks,
especially not in DeFi governance.

While temporal random walks are useful for predicting future interactions, they are less suited to
modeling nodal influence in a network. In contrast, SI models simulate spreading processes to identify
influential nodes in a network. Since this thesis aims to evaluate governance decentralization through
influence dynamics, the SI model is a more appropriate fit.

This thesis contributes to this area by applying temporal network modeling to governance token
transfers and simulating nodal influence using an SI model. This helps us understand the influence
of nodes in the network, based on spreading processes, providing a dynamic view of governance
decentralization that static models cannot offer.



Methodology

The preceding chapter, Chapter 3 showed that earlier studies consistently report centralized gover-
nance in DeFi lending, while others use network science techniques to measure platform-level decen-
tralization. However, none of them analyze the platform-wide behavior and characteristics of governance-
active users in detail. This is worth investigating, since these users directly influence platform decisions,
while also participating in token transfers, jointly shaping how power is distributed. This thesis ad-
dresses this gap by combining governance activity and token transfer layers to reveal how governance-
active user behavior relates across these dimensions.

This chapter outlines the methodology used to evaluate governance-active user behavior in Aave
and Compound. The process involves collecting multi-layered data, constructing different types of
token transfers, extracting user-level features, and applying network analysis techniques including cor-
relation analysis, community detection, and nodal influence simulation. We define a feature as a single
measurable behavior belonging to a user, such as total tokens transferred, number of transfers, or
number of votes cast. Each data layer provides unique user features that can be used in the analysis,
for example by computing correlations between them. Table 4.1 summarizes how each data layer con-
tributes to the overall analysis by stating the source data for the layer, the networks constructed with
the data and the analysis purpose for which the data is collected. In this study, users are considered
governance-active if they created proposals, voted, or delegated their voting power during the study
period.

Data Layer Source Data Networks | Purpose

Governance interaction Proposals, votes, delegations | None Governance features

Governance token transfer | AAVE & COMP transfers Gr, G¢, Gy | Token transfer features,
community detection, Si
process

Yield token transfer aWETH & cWETH transfers Gr, G¢, Gy | Token transfer features

Table 4.1: Methodology per layer

4.1. Data Collection

The project relied on assembling a dataset from the Aave and Compound platforms, which forms the
basis for building the networks and performing all analyses. This data is essential since it captures real
user interactions. Compiling the dataset was challenging due to the required domain expertise before
being able to identify the required data, locate and collect this data, interpret its meaning, handle the
various formats from different sources, filter meaningful information from the large volume of records,
and combine this into a usable and coherent piece. The data for this project was collected from the
Ethereum blockchain through the following sources:
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8 4. Methodology

« Etherscan’, Infura?, The Graph3, and Snapshot* for querying token transfer, governance pro-
posal, voting, and delegation data.

+ The Aave® and Compound® websites were consulted manually for supplementary information.

All data was collected over a fixed period of one year, ranging from October 2023 until September
2024. This approach ensured the collection of a sufficiently large, yet manageable dataset. All datasets,
queries and Jupyter notebooks used and constructed for the project can be located in the project’s
repository, which is made publicly available on GitHub”.

The dataset includes governance token transfers, AAVE for Aave and COMP for Compound, which
grant holders voting power to participate in governance decisions. It also includes yield token transfers,
specifically aWETH for Aave and cWETH for Compound, belonging to the Wrapped Ether (WETH)
crypto asset. Yield tokens represent a user’s share in the lending pool and earn interest automatically.
DeFi lending platforms accept deposits in many different crypto assets, each having its own platform-
specific yield token. The WETH crypto asset was chosen for its wide adoption and ease of comparison.
Focusing on one representative yield token per platform keeps the analysis clear and comparable,
without losing validity.

The following data was collected:

» Governance token transfers (AAVE, COMP): sender address, receiver address, amount, and
timestamp.

* Yield token transfers (aWETH, cWETH): sender address, receiver address, amount, and times-
tamp.

» Governance proposals: proposer address, voting outcome, vote counts, and timestamp.
* Proposal votes: voter address, vote weight, and vote direction.
* Delegations: delegator address, delegate address, and timestamp.

More high-level information about the dataset used in this study is presented in Table 4.2, which
highlights the limited number of users who participate in governance actions, such as proposing, voting,
or delegating, compared to the total number of token holders and transfers in the networks. While our
dataset includes addresses that delegated their voting rights, it does not contain information on the
exact amount of voting power transferred in each delegation. Without the delegated token amounts,
it is impossible to precisely calculate the delegated voting weight for each user. Furthermore, we
observe that there are only very few users involved in creating proposals. Therefore, we do not consider
proposal creation as a specific user governance feature in further analysis.

Aave Compound
Governance token transfer nodes | 175,923 68,422
Governance token transfers 3,228,269 | 370,439
Yield token transfer nodes 95,745 11,433
Yield token transfers 1,143,544 | 25,752
Proposers 10 14
Proposals 260 153
Voters 2,136 450
Votes 9,642 3,201
Delegators 1,563 1,373
Delegates 670 1,182

Table 4.2: Dataset overview

1https:
thtps:
Shttps:
4https:
5https:

bhttps

//etherscan.io/
//www.infura.io/
//thegraph.com/
//snapshot.box/
//app.aave.com/

://compound. finance/
7https:

//github.com/SamHes/Master-thesis
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4.2. Network Construction

For the analysis of both DeFi lending platforms, three distinct networks were constructed from token
transfer data. Each network allows us to extract certain node-level features. Additionally, they facilitate
community detection and employing an SI model. It is noteworthy that all three networks share the
same set of nodes, denoted by N. Within this set, each node represents a unique Ethereum address,
the semantics of the edges differ across the networks. To enhance interpretability, consistency, and
quality and to eliminate disconnected nodes, only the largest Weakly Connected Component (WCC)
is considered for each network. A WCC is a subgraph where all nodes are connected, regardless of
edge directions, eliminating all disconnected components.

The first network is defined as a Temporal Weighted MultiDiGraph (TWMDG), which was first pro-
posed by [19, 20] and discussed in Section 3.3. This network is denoted as G = (N, E7), where N is
the set of nodes (with size |N| = n), Er = {e(i,j,t),t € [0,T —1],i,j € N} is the set of edges, each item
e(i,j, t) indicates an interaction between node i and j at time t. This network is also represented by
a 3D adjacency matrix A, xnx7r, Whose elements A(i,j,t) = 1 or A(i,j,t) = 0 represent, respectively,
the presence or absence of a contact between node i and j at time t. Furthermore, a corresponding
transfer volume matrix W, .,y stores the amount of tokens transferred per interaction. This format
captures detailed temporal dynamics of token transfers.

By aggregating the contacts between each node pair over the whole observation time [0,T — 1],
a static aggregated network is obtained. In this network, two nodes i and j are connected, if there is
at least one interaction between i and j over the observation time. There are two possibilities for the
edge weights. To avoid misunderstandings, for both edge weights, we introduce a separate network.
The first aggregated network, denoted by G, = (N, E¢), is weighted and directed, encoding transfer
count or frequency. Each edge [(i,j) € E. can be associated with a weight C(i, ), which denotes
the number of transfers from i to j. The corresponding weighted adjacency matrix C,, has elements
C(i,)) = Zfz_ol A(i, j, t). G; therefore emphasizes how often users interact with each other.

Gy = (N,Ey), is again a weighted, directed network, now containing transfer volume rather than
interaction counts. Each edge I(i,j) € E, can be associated with a weight V (i, j), which represents
the total amount of tokens sent from i to j. The corresponding weighted adjacency matrix V},.,, has
elements V(i,j) = Zf;ol W(i,j,t). Thus Gy helps understand overall token flow volume.

For both Aave and Compound, the networks G, G., and G, are constructed separately for gover-
nance and yield token transfers. These two types of tokens display very different structural patterns.
Most yield token transfers, about 90% on average, go directly to or from a single central node that
manages the lending pool, showing that value flows are highly concentrated around this central node.
This centralization reflects the function of yield tokens, facilitating borrowing and lending, rather than
peer-to-peer interaction. In contrast, governance token transfer networks are more distributed, as to-
kens are used for governance and value exchange, leading to more diverse transfer patterns. Due to
this structural difference, yield token networks are excluded from community detection and S| modeling
due to the limited insights these methods would provide on these tokens.

4.3. User Activity Features

To analyze governance-active user behavior, this study extracts a range of node-level features that
capture different aspects of how users interact with the platform. These include activity levels, timing
patterns, network position, and direct governance actions. Comparing and correlating these features
helps reveal how governance-active users’ behavior in governance activities relates to their role in
token transfer networks. The following sections group the features by the network layer from which
they were derived, each with an explanation and formal definition.

4.3.1. Features from the Temporal Network (G;)
These features use temporal data or data per transfer:

» The burstiness b(i) [3] of a node i is the degree to which the activity of this node is irregular and
clustered in time, compared to a regular, evenly spaced pattern. Where the score ranges from -1
(perfectly regular) to 1 (highly bursty or irregular), defined as:

oat (1)
Uae (D)

b(i) =
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where g,.(i) is the standard deviation and ux.(i) the mean of the inter-event times of node i,
which is the time between consecutive transfers.

» The average per transfer APT (i) of a node i is the average weight of all token transfers involving
this node, defined as:

Yien Temo Wi jit) + W(, i, 8)

APT(i) = 2
T Y o Y (A 0 + AG 6 D)

4.3.2. Features from the Aggregated Network (G.)
This feature is based on aggregated transfer count data:

» The transfer count TC(i) of a node i is the total number of combined incoming and outgoing
transfers in which this node is involved, defined as:

TCW = ) (€G0) +CG,0)

JEN

4.3.3. Features from the Aggregated Network (G)

These features are based on aggregated token volume data:

+ The in-degree centrality d'*(i) of a node i is the total number of incoming edges of this node,
defined as:
d" (@) ={j €N 1V(,0) > 0}]

 The out-degree centrality d°%“t(i) of a node i is the total number of outgoing edges of this node,
defined as:
do@) =1 ENIV(J) > 0}

» The eigenvector centrality [11, 26] x(i) of a node i is the measure of the influence of this node
based on connections to other highly connected nodes, defined as:

1
x(i) = 5 ) VGDx0)
JEN
where 1 is the largest eigenvalue of the adjacency matrix.

» The clustering coefficient [10] CC (i) of a node i is the sum of the weighted contributions of all
triangles involving this node and two other nodes, divided by the number of all possible triangles
that this node could form with other nodes, defined as:

125 VN2 + VG OYHWVE K'Y + VI DYHWV G R +V(k NY?)

ce@ = [dtot (i) (dtot(i) — 1) — 2d;”]

where d°t(i) = d™ (i) +d°“t (i) is the total degree of node i, which is the sum of its in-degree and
out-degree, and d;” = Z#J-[V(i,j) > 0AV(j,i) > 0] is the number of bilateral edges between i
and its neighbors (i.e. the number of nodes j for which both i - j and j — i exist). The numerator
sums the weighted contributions of all triangles involving i, while the denominator contains the
number of all possible triangles that i could form.

« The 2-hop weight sum W?2"°P (i) of a node i is the total transfer volume in a 2-hop neighborhood
of this node, defined as:
W2P@D) = Y V(L)) + V(D)
JEN2 (D)
where N, (i) = {j € N|hops(i,j) < 2}, and hops(i,j) counts the number of hops needed to get
from node i to node ;.
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As explained in Section 4.2, the yield token transfer network is highly concentrated around a single
central node, which is connected to many users. Because of this star-like structure, common struc-
tural metrics, like Eigenvector Centrality, Clustering Coefficient, and 2-hop Weight Sum, do not provide
meaningful variation between users. These measures work best when there is rich peer-to-peer con-
nectivity, which is not the case here. Therefore, for yield tokens, only activity-based features were
calculated, as they still reveal useful patterns in how users interact with the platform.

4.3.4. Governance Activity Features
The following features capture user engagement in governance activities, which is of fundamental
importance to be able to relate them to the previously defined features from the token transfer networks:

» Votes cast: the number of votes submitted by each user.
» Average vote weight: the average weight of all votes cast by each user.

 Delegations received: the number of times a user received delegated voting power from someone
else.

In Table 4.2 we see that the number of users involved in creating governance proposals is minor,
which means that this user-level information would likely not provide useful insights. Therefore, this
governance feature has been excluded from the analysis.

4.4. Correlation Analysis

By examining the correlation between different user-level features, such as the volume or frequency
of token transfers, their positions within the network, and governance actions, we can identify how
the governance behavior of users relates to their activity in token transfer networks. This helps reveal
which factors actually shape influence in DeFi governance and whether power depends more on wealth,
network connections, or user engagement.

To explore potential relationships between node-level features, Kendall Tau-b rank correlation is
used. The most recognized and used correlation coefficient is Pearson correlation, however, due to
the presence of non-linear, heavy-tailed distributions, rank order information becomes more significant
than the absolute values, making Kendall Tau-b a more adequate measure.

Kendall's Tau-b (z}) is derived from the comparison of pairs of observations [18] and measures the
correlation between two ranked variables X and Y. It is especially robust to ties, which are common in
sparse blockchain data. The formula is defined as:

ne—Ng

J@e +ng +t)(ne +ng + ty)

Tp =

where:
* n.: humber of concordant pairs: where the order of X and Y agrees,
* ng: number of discordant pairs: where the order of X and Y disagrees,
* ty, ty,: numMber of tied pairs in X and Y, respectively.

These correlations are computed between the extracted node-level features of governance token
networks and yield token networks with the features from the governance activity to assess whether
governance participation is linked to token transfer activity or network position. The identification of sig-
nificant correlations helps understand which features may be indicative of influence or voting behavior.

4.5. Community Detection

Community detection is applied to the governance token transfer network, specifically to the aggregated
network based on transfer count between users, G, to identify groups of addresses that interact fre-
quently with each other. Here, a community means a subset of nodes with dense internal connections
and relatively fewer connections to the rest of the network. Detecting such communities helps assess
the positioning of governance-active users in the network: if governance-active users are spread across
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many communities, this indicates that these users do not interact more frequently with each other than
with other nodes, however, if they are concentrated in a few communities, it may point to concentrated
interactions.

We apply community detection only to the governance token transfer network, since the yield token
transfer networks are structurally concentrated around a central node, the lending pool address. Their
star-like structure means that almost all transfers are from or to this central node, with minimal peer-to-
peer interaction. Since community detection algorithms look for groups with dense internal connections,
they would not find meaningful partitions in such networks.

For this study, we use the Leiden algorithm [31], an improved version of the Louvain method [5]
for modularity optimization in large, weighted, directed networks. The modularity score measures how
strongly the network divides into distinct communities, with higher values (closer to 1) indicating denser
connections within communities and sparser connections between them. Leiden avoids poorly con-
nected or disconnected communities by refining and aggregating clusters through three phases:

1. Local moving: each node is moved to the community that maximizes modularity gain.
2. Refinement: disconnected parts within a community are split, a key improvement over Louvain.
3. Aggregation: each community is treated as a new node in the network.

These steps are repeated until the modularity no longer increases.

Since the Leiden algorithm is stochastic, it yields different community partitions across iterations. To
ensure meaningful outcomes of community detection, its stability was assessed before analyzing the
outcomes of the algorithm. By running it 100 times on each network, we measured the consistency of
the resulting partitions using Variation of Information (VI) [22], Adjusted Mutual Information (AMI) [32],
and Adjusted Rand Index (ARI) [14]. Lower VI and higher AMI and ARI scores indicate more stable
partitions. Furthermore, we observe the average modularity score and average number of communities
produced per network, which are important factors as well. The higher the modularity, the stronger the
partitioning, while a lower number of communities makes the outcome easier to study. The results are
reported in Table 4.3.

Platform VI AMI | ARI | Modularity | Number of communities
Aave 0.22 | 0.96 | 0.98 | 0.63 130
Compound | 0.34 | 0.95 | 0.93 | 0.73 120

Table 4.3: Leiden stability analysis scores for Aave and Compound

The obtained scores highlight the high stability of Leiden on G, evidenced by its low VI and high AMI
and ARI. Additionally, good modularity scores and manageable numbers of communities are achieved,
facilitating further analysis of community sizes and internal features.

4.6. Simulation-Based Influence Scoring (S| Model)

To evaluate how governance-active users differ in their potential to reach other nodes in a simulated
spreading process, a Susceptible-Infected (Sl) model [15] was applied to the temporal governance
token transfer network Gr. The resulting influence score, measured as average outbreak size, is
treated as a nodal property and compared with governance participation features, which helps de-
termine whether governance power of users is related to their position in the network. The selection of
Gr is motivated by its time-sensitive structure, which enabled us to simulate how infections could the-
oretically propagate through governance token transfers over time, providing a dynamic view of users’
structural positions in the network. By ranking users based on their ability to trigger wide-reaching cas-
cades, we assess which nodes hold practical influence beyond our previously defined network features
from Section 4.3.

As with community detection, the Sl model is applied only to governance token transfers. The
yield token transfer network is formed in a star-like structure centered around the lending pool node,
meaning nearly all paths pass through this node. This produces unrealistic cascades that do not reflect
user-to-user spreading potential relevant for governance.
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In the model, each node can be either susceptible or infected. Initially at timestep t = 0, a single
governance-active seed node was initialized as infected, leaving all others susceptible. At any timestep
t, a susceptible node could get infected by an infected node if the two nodes have an interaction at that
specific timestep. If a node becomes infected at time t, it could infect other susceptible nodes that it
is connected to from time t + 1 onward. The infection probability for an edge from node i to node j at
timestep t is defined as:

log(1+ W(i,j,t))
log(1 + Wimax)

p(Lj,t)=Fp
where:
* $ €{0.01,0.1,0.5, 1.0, 2.0} is a tunable infection base rate,
* W(i,j,t) is the token amount belonging to the edge from node i to node j at time ¢,

* Whax = f?ft))( W(i,j,t) is the maximum token amount among all edges in the network.

Token transfer weights are heavily skewed. The log scaling compresses large values and raises small
values, ensuring that even low-volume edges contribute meaningfully to the spread probability. The
spreading influence of a node is defined as the average number of infected nodes (outbreak size) till
time t = T over all iterations. For each iteration of the experiment, the set of infected nodes and
the timestamps of their infection are recorded. This methodology facilitates the quantification of the
influence of each node, based on outbreak size, indicating how many nodes were infected in total
through each seed node.

The correlations between the governance activity of users and the nodal influence, as modeled by
the Sl process, are used to measure how well this simulated influence mirrors governance power. This
outcome is additionally assessed through the normalized Discounted Cumulative Gain (nDCG) [16].
Unlike Kendall’'s rank correlation, which evaluates the overall similarity between two ranked lists based
on pairwise concordance, or recognition rate, which requires a binary ground truth, nDCG is top-heavy.
This means that nDCG prioritizes correct ranking of highly relevant items (i.e., users with high average
vote weight), which is particularly useful in governance contexts, where a few highly influential actors
dominate decisions. Formally, Discounted Cumulative Gain (DCG) is defined as:

k
DCG. = Z rel;
KT Lilog,(i+ 1)
=1
where:
* rel;: relevance (average vote weight) of the user at rank i,

* i: the rank based on Sl influence in descending order.

nDCG normalizes this against the Ideal DCG (IDCG), which is the ideal ranking (sorted by average

vote weight):
DCGy

IDCG,

By including nDCG, we gain insight into how well the S| model highlights the most powerful gover-
nance actors, not just the overall alignment in rankings.

nDCGy =







Results

This chapter presents the core results of this study, which examines the behavior of governance-active
users across several layers of DeFi lending platforms, consisting of governance activity, governance to-
ken transfers and yield token transfers. To address the lack of integrated perspectives in prior research,
the results combine correlation analyses, community detection, and simulation-based influence scores
across multiple network layers. Together, these findings reveal the characteristics of governance-active
users more closely, as well as how they relate to the behavior in token transfers. Specifically, the results
show three key findings; first, governance power strongly correlates with governance token transfer vol-
ume, but not with the frequency of peer-to-peer activity or network positioning. Second, governance-
active users are clustered within only a few communities, indicating they interact more with each other
than with other nodes. Third, nodes with high simulated spreading potential partially overlap with those
holding high voting power, although differences are observed between the platforms. Apart from the
most interesting and informative results outlined in this chapter, supplementary figures and interpreta-
tions are provided in Appendix A. These materials offer additional examination of the collected data,
the research methodology employed, and supplementary figures.

5.1. Feature Correlations between Token Transfers and Governance
Activity

To explore how governance participation relates to user behavior, we first analyze correlations between
governance activity (e.g., voting and delegating) and various user-level token transfer features. We use
Kendall rank correlation, a metric that captures the strength of relationships between ranked variables.
Throughout the results, we focus on correlations above 0.75 as strong. Figures 5.1 and 5.2 show how
features from the AAVE and COMP governance token networks relate to governance behavior.

The standout finding is that users who participate in voting and governance token transfers show a
very strong correlation between their average vote weight and their average amount of tokens trans-
ferred, with a Kendall Tau-b correlation of 0.88 and 0.89 Aave and Compound respectively. This sug-
gests that higher governance power aligns with larger governance token flows, highlighting the central
role of token wealth. In both Aave and Compound, correlations between other token transfer features
do not exceed 0.60, implying that practical governance power is less dependent on users’ network
position or interaction frequency alone, and more on their token holdings.

15
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Figure 5.1: Kendall correlation between Aave governance token (AAVE) features & governance features
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Figure 5.2: Kendall correlation between Compound governance token (COMP) features & governance features

In Figures 5.3 and 5.4 the strong correlation between the average amount of governance tokens per
transfer and the average vote weight of users is illustrated through scatterplots, confirming the positive
correlation between them. This reflects the token-based design of DeFi governance, where holding
more tokens typically gives more influence.
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Figure 5.4: Scatterplot of "COMP Avg. per Transfer” with "Avg. Vote Weight”

In contrast, Figures 5.5 and 5.6 show that governance activity has no strong correlation with yield
token activity (e.g., aWETH and cWETH transfers), with all correlation scores smaller than 0.50. This
suggests that governance power is not clearly tied to how user interaction with the lending platform,
but rather to the amount of governance tokens value they hold or move.
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Figure 5.5: Kendall correlation between Aave yield token (aWETH) features & governance features
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Figure 5.6: Kendall correlation between Compound yield token (c(WETH) features & governance features

In both Aave and Compound, average vote weight per user, indicating governance power, correlates
strongly with governance token amounts transferred. Other network features that are related to the
activity level or position in the network of users, such as degree centralities, clustering coefficient,
or burstiness, do not show high correlations. This reinforces the link between financial stake and
governance power.

5.2. Community Structure and Governance Activity Distribution

To understand how governance activity is distributed across users, we used the Leiden algorithm, a
method for detecting user communities. We applied this to the G, network, which is based on the
interaction count of governance token transfers between users, to reveal groups of users who often
interact with each other. Within the communities, we then examined whether governance-active users,
those who voted, delegated, or proposed, were spread out across the network or concentrated in
specific communities.
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5.2.1. Aave

Figure 5.7 shows the size of the 10 largest communities in terms of their number of nodes, highlighting
governance-active nodes in orange. This partitioning consists of approximately 130 communities with
a modularity score of 0.63, which indicates moderately strong community structure. At first glance,
governance-active users seem highly concentrated in Communities 1 and 2.
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Figure 5.7: Sizes of the largest communities and governance-active nodes

Figures 5.8 and 5.9 confirm this pattern. These figures display the absolute number and relative
percentage of governance-active nodes per community, with the red line denoting the overall percent-
age of governance-active users in the entire network. Community 2, and to a lesser extent Community
1, contain a disproportionately high number of governance-active users. This indicates that these users
interact more often with each other than with the broader network.
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Figure 5.8: Amount of governance-active users per community Figure 5.9: Percentage of governance-active users per
community

For further understanding, we computed the share of governance-active users in Communities 1 and
2 as percentage of their overall amount in the entire network. Community 1 contains approximately 50%
of all governance-active users, while this is 34% for Community 2, confirming the observed clustering.
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5.2.2. Compound

In Compound, we observe an even stronger concentration of governance activity. Figure 5.10 illus-
trates the sizes of the 10 largest communities and the distribution of governance-active node over
them. This figure resembles the characteristics previously examined in Aave. The partitioning contains
approximately 120 communities, with a modularity score of 0.73, indicating even stronger community
structuring than in Aave, which suggests that user interactions cluster tightly. Community 5 contains
most of the active governance participants.
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Figure 5.10: Sizes of the largest communities and governance-active nodes
Figures 5.11 and 5.12 confirm that governance-active users are highly clustered in Community 5.

The figures again indicate that many governance-active users appear in the same community, therefore
interacting more frequently with each other.

--- Average percentage
250 = Community percentage

Number of nodes
Percentage of nodes
w

Community index Community index

Figure 5.11: Amount of governance-active users per community Figure 5.12: Percentage of governance-active users per
community

We analyzed the percentage of all governance-active users clustered in Community 5. This per-
centage is approximately 52%, again indicating concentrated governance participation in a single com-
munity.

In both platforms, governance participation is not broadly distributed across communities in the
network, but clustered within a small number of groups that interact more often with each other. This
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indicates that governance-active users tend to form connected subgroups that interact more among
themselves than with other parts of the network, which helps explain how governance participation
remains concentrated within relatively closed user groups that shape decision-making.

5.3. Simulation-Based Influence and Governance Power

To estimate each governance-active user’s potential to reach others in the governance token transfer
network, we calculate their nodal influence using the Susceptible-Infected (SI) model on the temporal
network G. In this simulation, the influence is determined by the number of nodes that a single infected
seed node is able to reach or infect, also known as the average outbreak size across different infection
base rates 8. We then compare these scores to actual governance power (primarily measured by
average vote weight) through Kendall Tau-b rank correlation and nDCG ranking alignment.

Figures 5.13 and 5.14 contain Kendall rank correlations between the governance activity features
and the obtained nodal-influence scores, corresponding to the average outbreak size per seed node.
We observe only very limited correlations between the number of votes cast and the number of dele-
gations received with the obtained influence scores. Stronger correlations are observed with respect
to the average vote weight, which we therefore analyze further through computing the nDCG ranking
alignment scores.
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Figure 5.13: Kendall correlation between governance features and Sl nodal influence per g in Aave



22 5. Results

Q.75
Votes Cast - 0.04 0.07 0.02 0.04 0.06

-0.50
-0.25

Delegations Reveived - 0.11 0.26 0.25 0.23 0.23 -0.00

--0.25

-—0.50

Avg. Vote Weight - 0.19 0.26 0.35 0.36 0.35
-0.75

[ i i i i -1.00
B=0.01 B=0.1 B=0.5 B=1.0 B=2.0

Figure 5.14: Kendall correlation between governance features and Sl nodal influence per g in Compound
The Kendall Tau-b correlation and nDCG between the ranking of the simulated spreading influence

scores and the average vote weight in Aave and Compound across different spreading rates (f) are
displayed in Figure 5.15 and Figure 5.16 respectively.
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These figures show that a user’s potential to reach others through token transfers, as measured by
Sl influence scores, partly aligns with their practical governance impact. In Aave, the rank correlation
reaches a peak of 0.60 at 8 = 2.0, while the nDCG score stays below 0.50. This means that, overall,
nodes with higher simulated influence tend to have higher voting power, but the very top influential
nodes do no perfectly match the top governance voters. In Compound, the overall correlation is more
moderate, peaking at 0.36, but the higher nDCG scores, reaching 0.81 at § = 2.0, suggest that, al-
though the general alignment is weaker, the top-ranked simulated influential users more closely match
those with higher average vote weight. Together, these results suggest that governance-active users
who are structurally well-positioned in the token transfer network can amplify their influence in practice,
complementing their formal voting power, but the strength of this relationship varies by platform and
infection base rates.
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5.4. Cross-Platform Comparison

Although Aave and Compound differ in size, tokenomics (the economic aspects of a cryptocurrency
or blockchain project), and user base, they show similar patterns in governance structure and nodal
influence. Overall, the results show that governance-active users hold substantial voting power that
aligns strongly with their governance token flows but less so with other network position metrics. They
tend to cluster within a few communities and often hold network positions that help them reach other
nodes, possibly increasing practical impact of their actions.

That said, there are some differences. Aave displays a more distributed community structure, with
governance spread over two main groups, while this is more concentrated in Compound. Additionally,
Aave shows a stronger alignment between actual vote weight and simulated influence, while Compound
shows higher alignment in top-ranking (nDCG), suggesting different forms of power concentration.






Discussion

This study set out to better understand the behavior of governance-active users in DeFi lending plat-
forms. While prior research showed that only a limited number of users actively contributes to DeFi
governance, it did not examine how these users’ governance actions relate to their behavior in token
transfer networks. Although these users directly influence platform decisions, an analysis is missing of
how the properties of governance-active users relate to their behavior in other layers. To address this,
the thesis combined multiple data layers, consisting of governance actions, governance token flows,
and yield token flows, across two major DeFi lending platforms, Aave and Compound. This study ex-
amined how the role of users that actively participate in governance relates to their positions in token
networks using correlation analysis on nodal features, community detection, and a simulated spreading
process.

A key finding is the strong correlation between the average vote weight and the average amount of
governance tokens they transfer, while no significant correlations are observed between governance
activities and other token transfer features. This shows that DeFi lending platforms are largely plu-
tocratic, where governance token wealth is the main driver of governance power, while other network
features, like connectivity, matter less. Community detection shows that governance-active users clus-
ter into a few groups that interact more with each other than with the broader network. This suggests
that even if many users hold tokens, only few connected subgroups in the governance token transfer
network drive decisions, possibly indicating that token-based governance power remains concentrated
in practice, despite being open in design. The Susceptible-Infected (Sl) spreading scores, expressed
as average outbreak size per seed node, partly align with the average vote weight of users. However,
the correlations and nDCG values are moderate and vary per platform, meaning the network position
of a node can help amplify governance impact, but does not guarantee governance power on its own.
Most patterns are consistent across both platforms, with only minor differences, primarily in the out-
comes of the S| process. This consistency suggests that other token-governed DeFi platforms may
face similar issues.

That said, this study has several limitations. First, the analysis only includes users that actively
participate in governance, which limits the scope. There are many addresses involved in DeFi lending
platforms, but only a small portion of them participates in governance through proposing, voting, or
delegating. This excludes insights about the full network context and could miss how passive users
may shape the platforms indirectly. Second, token transfer volume may confound some results, since
these volumes affect both the vote weight of users and the simulated influence measured by the Sl
process, which are compared in the analysis. Third, our dataset consists of only on-chain data, which
can be extracted from the blockchain. However, there also exist off-chain interactions between users,
mainly on forums where discussions and coordination on proposals takes place. Including such off-
chain activity could offer a more complete picture of governance activity. Other limitations include the
one-year observation window, the focus on just two platforms, and the lack of delegated voting weight
data, which provides more information on the amount of power that is transferred through delegation.

Based on these findings, DeFi lending platforms should consider design changes to broaden par-
ticipation and reduce power concentration. Simply having open access does not guarantee this. In
practice, DeFi governance is vulnerable to concentration of power, despite its transparent and per-
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missionless design. If decentralization is a core goal, more than open access and transparency are
needed, designers must rethink the incentives, rules, and interfaces that shape governance behavior.
Possible steps include lowering barriers for small token holders to vote, capping maximum vote weight
per address, highlighting underrepresented proposals to encourage broader input, or experimenting
with non-token-based governance models.

Overall, this study highlights that understanding who governance-active users are and how they
behave across different layers in DeFilending platforms provides important insights into whether DeFi’s
promise of community-led governance holds up in practice. It requires careful design and ongoing
analysis to make sure influence is genuinely distributed.



Conclusion and Future Work

This thesis examines the behavior of governance-active users in DeFi lending platforms. By combining
multiple data layers from Aave and Compound, consisting of governance actions and both governance
and yield token transfers, the study provides a more complete picture of practical user influence.

The results show that formal governance power, measured by average vote weight, strongly aligns
with the volume of governance tokens users transfer. Other network features, such as degree centrality,
clustering coefficient, or burstiness, do not meaningfully explain governance participation. Community
detection reveals governance-active users cluster into a few communities, indicating that decision-
making is driven by connected subgroups rather than widely distributed across all users. Simulated
spreading influence scores show that the position of a user in the network strengthens how effectively
they reach others, but that this practical reach only partially aligns with governance power and differs
per platform. These patterns are mostly consistent across Aave and Compound, suggesting that similar
dynamics may exist in other token-governed DeFi platforms.

These findings directly address the research questions: governance actions, especially voting,
strongly align with governance token flows, while other token network properties do not strongly relate
to governance actions (RQ1); governance-active users cluster within only a few communities (RQ2);
nodal influence from the SI model partially matches governance activity (RQ3); and both platforms yield
similar findings (RQ4).

By combining layered network data and dynamic modeling, this work contributes a more realistic
view of how governance activity of users in DeFi lending platforms relates to their behavior in other
layers, specifically token transfers. It highlights that simply issuing governance tokens and providing
open access is not enough to ensure broad participation. Designers of DeFi platforms should consider
new incentives and design choices to broaden governance participation, such as lowering barriers for
smaller holders to vote, capping maximum vote weight, making user influence more transparent, or
experimenting with hybrid or non-token-based models.

7.1. Future Work

Future research could broaden the scope by not just analyzing the behavior of users actively par-
ticipating in governance, but by also studying the behavior of other users that are involved in token
transfers but not in governance. Longer observation periods could be used to show how the behavior
dynamics evolve over time. Additional DeFi platforms and alternative blockchains could be included
to test whether similar patterns hold across the ecosystem. Off-chain data could be integrated, this
thesis completely relies on on-chain data, consisting of governance activity data and token transfer
data. However, users also use forums and social media to discuss and interact with each other, which
could provide more complete information about governance in DeFi platforms. The collection of such
data should probably by done manually, which could be an issue. Methodologically, applying more ad-
vanced diffusion models could better capture nodal influence in a spreading process. Lastly, studying
delegation dynamics in more depth could clarify how delegated voting power affects concentration and
community structure.

27






Supplementary Figures

The following figures support the main analysis but were not included in the Results chapter due to their
limited direct relevance or clarity of insight. While these elements may not be central to the primary
conclusions, they could be useful for replication, extended analysis, or follow-up work.

A.1. Correlation Results

Figure A.1 and A.2 provide additional correlations between the features from governance tokens and
yield tokens for Aave and Compound respectively. The most notable observation is the elevated corre-
lation between the average governance tokens per transfer and the average yield tokens per transfer
in Aave, indicating a positive relation between them.
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Figure A.1: Kendall correlation between Aave governance token (AAVE) features & yield token (aWETH) features
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Figure A.2: Kendall correlation between Compound governance token (COMP) features & yield token (c(WETH) features

A.2. Community Structure

As a result of the implementation of the Leiden algorithm for clustering the G- governance token trans-
fer networks into communities, it is possible to explore the averages of each node-level governance
activity feature over these communities. The figures displaying these scores are visualized in Fig-
ures A.3 and A.4. The most notable observation are the high average feature scores for Community 6
in Compound, although this community only contains few governance-active users.
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Figure A.3: Average feature scores per community in Aave
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A.3. Influence Dynamics

We look at the outcomes of the SI model, employed on the G networks. We study the correlations
between the outcomes of each B configuration, displayed in Figures A.5 and 5.13. Looking at these
heatmaps, we can clearly see that larger values of 8 lead to higher correlations. This suggests that, as
B increases, the outcomes become more similar to each other.
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Figure A.6: Kendall correlation between Sl nodal influence per 8 in Compound

Figures A.7 and A.8 show how influence scores correlate with other governance token transfer fea-
tures. Users with high Out-Degree Centrality (many outgoing transfers), high Clustering Coefficient
(interacting with dense groups), and high Transfer Count tend to have a higher spreading potential,
meaning they can reach more nodes on average in a simulated spreading process, which makes sense,
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since these are all network features that facilitate the infection of neighboring nodes. The correlations
become stronger with an increasing value of . We do not observe strong correlations with other
features, such as Eigenvector Centrality, 2-Hop Weight Sum, or Burstiness, indicating that spread-
ing potential depends more on direct activity patterns and local connections than on broader, indirect
network influence or timing irregularity of transfers.
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Figure A.7: Kendall correlation between Aave governance token (AAVE) features and Sl nodal influence
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