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A B S T R A C T   

Exploring the influence of green space characteristics and proximity on health via air pollution mitigation, our 
study analysed data from 1,365 participants across Porto, Nantes, Sofia, and Høje-Taastrup. Utilizing Open-
StreetMap and the AID-PRIGSHARE tool, we generated nine green space indicators around residential addresses 
at 15 distances, ranging from 100m to 1500m. We performed a mediation analysis for these 135 green space 
variables and revealed significant associations between self-rated air pollution and self-rated health for specific 
green space characteristics. In our study, indirect positive effects on health via air pollution were mainly asso-
ciated with green corridors in intermediate Euclidean distances (800-1,000m) and the amount of accessible green 
spaces in larger network distances (1,400–1,500m). Our results suggest that the amount of connected green 
spaces measured in intermediate surroundings seems to be a prime green space characteristic that could drive the 
air pollution mitigation pathway to health.   

1. Introduction 

Air pollution is considered one of the major risk factors for non- 
communicable diseases (NCDs) (WHO - World Health Organization, 
2013). Next to respiratory illnesses, air pollution is also associated with 
cardiovascular diseases, impaired neural development, depression, sui-
cide, cognitive capacities, happiness and life satisfaction (Cohen et al., 
2017; Liu et al., 2021; Lu, 2020; Pope et al., 2017; Vos et al., 2015; WHO 
Regional Office for Europe, 2016). Since the rise of the Industrial Rev-
olution, urban planners and health professionals alike are aware of the 
air pollution problems in cities and the associated health risks. Air 
pollution alongside other environmental stressors was one of the main 
driving factors for the rise of the functional city in the early 20th cen-
tury, where industrial and residential uses were separated. However, 
with the dependence on cars, the problems with air pollution never 
disappeared for these high-industrialized, often high-income countries. 
They are even stronger for low-to-middle-income countries currently 
undergoing rapid urbanisation. According to the WHO ambient air 
pollution in 2019 was still associated with 4.2 million premature deaths, 
and 99% of the world population lived in neighbourhoods where the 
WHO air quality guidelines were not met (WHO - World Health Orga-
nization, 2023). 

Current evidence suggests that green spaces can help to reduce air 
pollution and thus promote human health by two main mechanisms 
(Diener and Mudu, 2021; Markevych et al., 2017; Mueller et al., 2022). 
The primary cause seems to be related to the fact that primary pollutants 
are not present in green spaces (Markevych et al., 2017), which may 
explain the association with positive health effects (Mueller et al., 2022). 
The second mechanism is related to direct deposition, dispersion and 
absorption of air pollutants through green spaces. But for this mecha-
nism, the evidence in urban settings is still inconsistent, potentially 
because its effects are highly dependent on how green spaces are inte-
grated into the urban fabric (Diener and Mudu, 2021; Markevych et al., 
2017). On the one hand, it has been shown that vegetation can mitigate 
both gaseous pollutants by absorbing through leaf stomata and partic-
ulate matter by deposition on plant surfaces (Diener and Mudu, 2021). 
On the other hand, vegetation may also increase air pollution by emit-
ting volatile organic compounds that can react with other airborne 
chemicals to form air pollution (Duan et al., 2023; Gu et al., 2021), or by 
capturing air pollution in street canyons (Janhäll, 2015; WHO Regional 
Office for Europe, 2016), and cause harm by introducing airborne al-
lergens (Marselle et al., 2021). Despite these potential trade-offs, most of 
the evidence points towards a positive relationship between green space, 
air quality and both mental and physical health. 
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However, especially due to the variety in study designs and hetero-
geneity in results, the pathway remains under investigation. It remains 
unknown what kind of proximity to what kind of green spaces is needed 
to be able to effectively reduce air pollution (Kumar et al., 2019; Qiu 
et al., 2021). Surrounding Vegetation (or greenness) seems to be the 
prime feature that is associated with air pollution mitigation (Diener and 
Mudu, 2021; Xing and Brimblecombe, 2019), but also airflow and air 
exchange through the connectivity of green spaces may play an impor-
tant role that needs to be investigated (Qiu et al., 2021; Shen and Lung, 
2017). Up to 2020, only 60% of studies found a mediating effect of air 
pollution on mental health and physical health markers (Dzhambov 
et al., 2020), but the frequent use of Land-use regression (LUR) models 
may lead to biased results since green space is already included in these 
LUR models to estimate local air pollution (Beelen et al., 2013; Eeftens 
et al., 2012, 2016; Rao et al., 2014). However, objectively measured air 
pollution data is rarely available at scale and self-rated air pollution is 
subject to bias due to its subjectivity (Brody et al., 2004; Piro et al., 
2008), limiting advancement in the field. In addition, previous research 
was often based on different definitions of green space in terms of type 
and distance (Taylor and Hochuli, 2017), which makes it hard to iden-
tify where and how this pathway operates. There is a need for a sys-
tematic investigation that incorporates various indicators of green 
spaces and greenness, accounting for different buffer types and distances 
to enable direct comparisons between green space characteristics (Car-
dinali et al., 2023b; Markevych et al., 2017). Furthermore, the general 
quality and rigour of studies still need to improve, including more 
contextual factors of the complex living environment (Cardinali et al., 
2023b; Mueller et al., 2022; Qiu et al., 2021), e.g. the spatial distribution 
and morphology of examined green spaces, differences in urbanicity or 
baseline air pollution levels. This will enable a comprehensive analysis 
of the necessary conditions of green spaces to be able to reduce air 
pollution and provide insights into the potential health benefits. 

The aim of this study is therefore to help close this research gap by 
conducting a sensitivity analysis of different green space and vegetation- 
based indicators at varying distances to identify patterns of associations 
between green spaces, self-rated air pollution, and self-rated health. We 
hypothesize that immediate surrounding greenness will show a reduc-
tion in self-rated air pollution due to the filtering capacity of vegetation 
(Diener and Mudu, 2021; Xing and Brimblecombe, 2019). In addition, 
we expect green corridors to reduce self-rated air pollution due to the 
effects of airflow and deposition (Qiu et al., 2021; Shen and Lung, 2017). 
Furthermore, we test different indicator configurations e.g. by adding 
private and semi-public green spaces and testing a range of both 
Euclidean and network distances to deepen our understanding of how 
and in what distance this pathway operates. By examining these asso-
ciations, this research seeks to contribute to the existing knowledge base 
and provide valuable insights for public health interventions through 
urban planning aimed at tackling the global disease burden associated 
with air pollution by optimizing the design of green spaces to enhance 
air quality. 

2. Methods 

2.1. Study design and sampling 

We followed the STROBE Reporting Guidelines for cross-sectional 
studies (Table A1, Elm et al., 2007). We collected data for this study 
following the same protocol as outlined in a previous study from the 
URBiNAT project (Cardinali et al., 2024a, b). To qualify for participa-
tion, individuals needed to be at least 14 years old. Participants were 
selected at random, and the surveys were carried out by local survey 
companies hired by the cities and instructed by the research team. In 
Porto and Sofia, surveys were conducted in person, while in Nantes and 
Høje-Taastrup, potential participants were approached by phone. Upon 
contact, individuals were briefed about the project’s objective, the sur-
vey’s role, and asked for informed consent. Before, the survey had been 

approved by the URBiNAT project’s ethics committee. No rewards were 
offered for participation. Data were collected from a total of 1650 par-
ticipants of which 1365 participants reported their address and were 
eligible for this study. The study participants are distributed across the 
four cities as follows: 439 from Porto (August 2019), 293 from Nantes 
and 432 from Sofia (both December 2019), as well as 201 from 
Høje-Taastrup (August 2021). 

All study areas are designed as satellite districts (urban districts 
purposely built on the outskirts of a city and according to functional city 
principles, for their location within cities see Fig. A1) but show distinct 
urban characteristics, as illustrated in Fig. 1. Nantes featured two radial 
green infrastructures leading from and to the city centre, with one of 
them running alongside a river. Its main roads and motorways are 
mostly bypasses which usually do not get very close to the residential 
areas. In contrast, Porto’s riverside was less accessible due to its car- 
centric infrastructure and elevation level. In addition, the amount and 
proximity of its main roads suggest a high exposure to traffic air pollu-
tion. Sofia’s public green spaces were relatively less connected and 
consisted of three primary green areas. Its main roads mainly consist of a 
radial infrastructure that is not getting too close to residential areas. 
Høje-Taastrup showcased smaller but interconnected green spaces 
within its urban landscape and showed the most agricultural sur-
roundings. The narrow spatial distribution of study participants in Høje- 
Taastrup is near three main roads. 

2.2. Green space 

We obtained spatial data from OpenStreetMap in January 2023 and 
manually corrected it to the timestamp of the survey conduction and 
controlled for bias (see Fig. 1). With the help of the PRIGSHARE 
Reporting Guidelines (Table A2), the green space data was adjusted 
manually for public ownership bias, residential ownership bias, classi-
fication bias, usability bias and connectivity bias (Cardinali et al., 
2023b). Especially, the manual connection of green spaces enabled the 
investigation of green space corridors. We manually (1) connected green 
space polygons that were interrupted by a road but had a crossing, (2) 
merged green spaces directly next to each other, and (3) added linear 
green spaces that consisted of walkable pathways with greenery. A 
detailed table with the inclusion/exclusion criteria can be viewed in the 
appendix (Table A3). To assess greenness around study participants we 
used the frequently used Normalized Difference Vegetation Index 
(NDVI, Tucker, 1979). For the calculation of the NDVI, we gathered 
sentinel 2 (L2A) data in 10 × 10m resolution from the European Space 
Agency ESA from the specific cloud-free time points of the survey con-
ducted in the city (2021). Since water bodies show negative NDVI 
values, we set larger water bodies like the rivers in Porto and Nantes 
manually to missing, as recommended by Markevych et al. (2017). 

Based on this data we constructed nine indicators (Fig. 2) in QGIS (v 
3.22) for our sensitivity analysis in distances from 100m (immediate 
surrounding) to 1500m (neighbourhood perspective), every 100m, with 
the help of the AID-PRIGSHARE tool (Cardinali et al., 2023a), summing 
up to a total of 135 green space indicators to identify distance patterns as 
well as potential differences between green space characteristics. Firstly, 
we assessed greenness with three indicators based on NDVI. One rep-
resents mean surrounding greenness (2A) measured by mean NDVI 
within Euclidean buffers. Another represents cumulative surrounding 
greenness (2B) measured by the sum of NVDI values within Euclidean 
buffers which might better reflect the quantity of vegetation in an area. 
The third one measures mean accessible greenness (2C) with mean NDVI 
in network distance. Secondly, we assessed surrounding green space 
with three public green space indicators: surrounding green spaces 
within Euclidean distance (2D), surrounding green corridors (2E) where 
the whole green space network that intersects the buffer is counted, and 
surrounding total green space (2F) where in addition also the individual 
private or semi-public green space for the surveyed individual is added. 
Thirdly, we assessed the same indicators with network distances (2G-2I) 
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to measure accessible green spaces and to examine differences between 
accessible and surrounding green spaces. 

2.3. Self-rated air pollution 

Self-rated air pollution was measured by a 5-point Likert scale asking 
for the level of inconvenience caused by air pollution in the neigh-
bourhood (smoke, dust, exhaust fumes) from 1 (no inconvenience) to 5 
(very high inconvenience). This item was part of the Environmental 
Quality of Life Scale (Fleury-Bahi et al., 2013) and the exact wording can 
be found in the appendix (A4). Self-rated air pollution variables are 
frequently used in similar studies (Chang et al., 2020; Dzhambov et al., 
2018; Liu et al., 2019; Wang et al., 2019, 2020). They can show a strong 
relation to modelled air pollution if adjusted for contextual factors (Piro 
et al., 2008) and provide the advantage of fine-grained spatial data 
points, through the geolocated address of individuals. This is especially 
an advantage when immediate surroundings around individuals’ homes 
are of interest and objectively measured air pollution or fine-grained 
land-use regression models are not available. It has been shown that 
low-resolution LUR models may overlook some of the associations due 
to the substantial variability (Forastiere, 2005). But even if fine-grained 
LUR models for PM2.5 or NO2 are available, we strongly suggest 
checking beforehand if green space indicators are already included as a 
predictor variable in these models (Examples include ESCAPE from 
Beelen et al., 2013; Eeftens et al., 2012; and the Global NO2 Model from 
Larkin et al., 2017). If so, we suggest not using them to measure the 
influence of green space as this would lead to an overestimation of the 
impact of green spaces. In these cases, a self-rated air pollution variable 
is useful if no objectively measured air pollution data is available. 

However, self-rated air pollution is also associated with several limita-
tions due to its subjectivity (Brody et al., 2004; Piro et al., 2008). These 
will be elaborated on in the discussion. The item was reverse coded to 
ease interpretation of the results, meaning a higher score implies lower 
inconvenience due to air pollution. 

2.4. Self-rated health 

Perceived general health was assessed by the 1-item questionnaire 
(World Health Organization, 1998), known to be a valuable indicator of 
human health status (Jylhä, 2009). Self-rated health is a 
well-established indicator linked to both physical and mental health 
(Baćak and Ólafsdóttir, 2017; Hamplová et al., 2022; Jylhä, 2009; 
Lundberg and Manderbacka, 1996). The question asked, “How is your 
health in general?”. Answers were given on a 5-point Likert scale from 
(1) very bad to (5) very good and were included as an ordinal variable in 
the model. 

2.5. Context variables 

We gathered data on potential confounders at personal, local, 
urbanicity, and global levels. The personal context was assessed with 
data on age, sex, disabilities (y/n), years lived in the neighbourhood, 
years of education, and monthly net income, as well as employment 
status (y/n). Most of these are social determinants of health that could 
confound the relationship (Cardinali et al., 2023b). Moreover, it has 
been shown, that especially in the context of self-rated air pollution 
inaccuracies can occur, if not controlled for demographics, socioeco-
nomic status as well as existing illnesses, even if not respiratory 

Fig. 1. Study areas green space: a) Nantes – Nord (France); b) Porto – Campanhã (Portugal), c) Sofia – Nadezhda (Bulgaria), d) Greater Copenhagen – Høje-Taastrup 
(Denmark); blue points indicate the residential address of the study participants. For better readability only the study areas are covered – e.g. some respondents do 
not live in the main study area. 
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(Pantavou et al., 2018; Pelgrims et al., 2022; Piro et al., 2008). To adjust 
for these influences on self-rated air pollution we used the available 
binary variable on disabilities as a proxy, which asked for any sensorial, 
motor, cognitive or organic disability that requires personal assistance 
or particular equipment or care. To harmonise between cases across 
countries, monthly net income was centred around the mean minimum 
wage of the country. Furthermore, we adjusted for years lived in the 
neighbourhood to add a measure that represents time to the surrounding 
green space characteristics. This is especially important in pathway 
analysis with cross-sectional data (Markevych et al., 2017) as in this case 
from green space exposure to self-rated air pollution to self-rated health. 
Since the time spent in the neighbourhood is different for employed and 
unemployed, and employment status also impacts health (Friedland and 
Price, 2003; Ross and Mirowsky, 1995), we also adjusted for employ-
ment status as a proxy for the actual time spent in the neighbourhood 
and thus the potential exposure to neighbourhood air pollution. 

We accounted for the local difference in traffic pollution by quanti-
fying the surface area of main roads within a 500m radius of the resi-
dential address. For this, we used OpenStreetMap data and filtered for 

motorways, primary, secondary and tertiary roads, thus including all 
roads that connect neighbourhoods, districts or cities. We buffered those 
street lines by 6 m to reflect differences in street width and associated 
traffic (see also Fig. 1). In addition, we used 5-point Likert scale items to 
measure local satisfaction with shops, leisure facilities, and public 
transport as part of the environmental quality of life questionnaire 
(Fleury-Bahi et al., 2013). These variables serve as covariates in this 
study, to adjust for differences in the local context which might influ-
ence behaviour-related associations between green space and health 
(Cardinali et al., 2023b). In this study on self-rated air pollution, we 
expect this to affect mainly the direct association between green space 
and health in the structural equation model (Fig. 3, path c). 

For the urbanicity context, we used rasterized 2018 population 
density data from Eurostat, with a resolution of 1 km × 1 km (Eurostat, 
2023). Moreover, to account for different cultural and climate contexts 
we included the city samples as a dummy variable in our model. This 
approach also allowed us to control for temporal differences (pre- or 
post-pandemic), potential differences in baseline city-wide air pollution 
caused by for example local industry, and seasonal variations during the 

Fig. 2. Green space indicators: Indicators used in the sensitivity analysis. Notes: Network distances are measured as 25m buffered service areas (walkable distance in 
m in every direction). Green Corridor and Total green space indicators (E, F, H, I) count every green space that intersects with the Euclidean buffer or network 
distances, while green space indicators (D, G) count only those green spaces that are within the buffer type. 
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time of survey conduction which is known to influence air pollution 
levels (Diener and Mudu, 2021; Shi et al., 2017), all while preserving the 
statistical power. 

2.6. Statistical analysis 

Data handling and processing follow the same protocol as outlined in 
a previous study (Cardinali et al., 2024a, b). 2.97% of the relevant data 
for this study were missing. Missing data could be classified as missing at 
random (MAR). Thus, a multiple imputation technique is considered the 
most appropriate to handle the missing data (Mirzaei et al., 2022). We 
used the multiple imputation software package miceforest 5.6.4 in Py-
thon (Wilson, 2022), with 10 iterations on all available data to estimate 
the missing variables. The last step of data handling was to standardize 
the dataset by min-max scaling (0–1) as all our variables, except 
NDVI-related indicators, can only be positive. Standardization ensured 
that all indicators were on the same scale, allowing for valid compari-
sons and precise model computation (Kline, 2015). 

We applied structural equation modelling (SEM) using the lavaan 
package (Rosseel, 2023) in R (v 4.2.3) and the diagonal weighted least 
squares estimator on a basic single-mediator model (Fig. 3) to perform a 
sensitivity analysis on the nine green space indicators, each at 15 dis-
tances, adding up to a total of 135 SEMs. The full model including all 
control variables can be found in the supplementary material (Fig. A2) 
as well as an example of the summary statistics for one green space in-
dicator (Table A5). These just-identified (saturated) mediation models 
were chosen to bypass the potential complexity that would be intro-
duced with over-identified models through variations in model fit across 
the 135 models, which would make this large-scale sensitivity analysis 
unmanageable and negatively affect the main aim of this research to 
compare the proximity and green space characteristics in their ability to 
influence the air pollution health pathway. 

In the subsequent results and discussion, we use the standard terms 
of partial effects (a or b), indirect effects (a*b), direct effects (c) and total 
effects (a*b + c) in SEM. However, it is important to emphasize these 
are, in fact, associations due to the cross-sectional study design. Given 
that indirect effects and total effects are products and not linear, we 
report bootstrap-generated standard errors and confidence intervals for 
all regression paths (5000 samples for every structural equation model). 
The relationship was considered significant when the bootstrapped 95% 
confidence intervals did not include zero. 

We then analysed the correlation matrix for all green space charac-
teristics aiming to determine if the significant findings stemmed from 
unique features of green spaces or represented alternative measures for a 
common mechanism. Using the cut-off points of Dancey and Reidy 
(2007) we interpret a weak to moderate correlation (<0.6) between 
green space characteristics as indicating at least partly distinct in-
fluences on the observed outcomes. Conversely, strong correlations 
(>0.6) imply a shared underlying mechanism. This analysis was con-
ducted using Pearson’s r for each green space characteristic that showed 
significant results either to self-rated air pollution (path a) or directly to 
health (path c). A detailed breakdown of these correlations can be found 

in Table A6 in the supplementary material. 

3. Results 

3.1. Characteristics of the sample 

This study used the same sample as a previous study from the 
URBiNAT project (Cardinali et al., 2024a,b). The total sample comprised 
201 inhabitants from Høje-Taastrup (Denmark), 293 from Nantes 
(France), 439 from Porto (Portugal), and 432 from Sofia (Bulgaria). The 
city samples are composed of roughly 50% of men and women in 
Høje-Taastrup, Nantes, and Sofia. In Porto, the sample was composed of 
nearly 64% men and 36% women. Porto also had the most people over 
65 years with 41.0% compared to Nantes with only 17.1% of survey 
respondents and the highest proportion of people with disabilities 
(39.6%). The mean (SD) years of education were 12.49 (2.55) in 
Høje-Taastrup, 12.57 (3.37) in Nantes, 7.02 (3.70) in Porto, and 13.11 
(2.68) in Sofia. The majority of the participants were employed, with 
significant differences between cities. The mean income harmonized as a 
percentage of minimum wage of the country was roughly between 140% 
and 150% in Høje-Taastrup, Nantes, and Sofia, but only 40% in Porto. 
Self-perceived health as the main outcome indicator was the highest in 
Nantes with 76.5% reporting good or very good health, and lowest in 
Porto with 46.9%. For more details on the samples, we refer to Table 1. 

There were noteworthy variations in urbanicity context amongst the 
cities, with Sofia demonstrating the highest mean population density 
and Høje-Taastrup displaying the lowest. The local context also showed 
significant differences in all included variables. Self-rated air pollution 
ranges from 80.1% reporting weak or no inconvenience in Høje- 
Taastrup to 33.8% in Sofia. Surrounding main roads (SD) was the 
highest in Porto with a mean area of 70,872 m2 (20,180 m2) within a 
500 m buffer. The lowest covered area with main roads near residents 
was found in Sofia with a mean of 24,430 m2 (14,499 m2). 

3.2. Indirect effects – how green space indicators relate to health via self- 
rated air pollution 

We found associations between surrounding and accessible green 
corridors as well as total green space indicators to self-rated air pollution 
and indirectly on health, but not for indicators representing greenness 
(Fig. 4, Table A8). The indirect effects (a*b) showed similar patterns 
compared to the partial effects (a) (see Supplementary Table A7 and 
Fig. A3) due to the stable significant association (b) between air pollu-
tion and health (ß: 0.08; CI: 0.02, 0.15). Greenness (Fig. 4A-C) showed 
no significant indirect relation to health for any distance, but a clearly 
visible low point for accessible greenness (which includes street green) 
measured in 500m network buffer (ß: − 0.046; CI: − 0.154, 0.007). 
Surrounding green spaces (Fig. 4D) presented a plateau at 1100–1300m, 
although not significant. The indirect effects of surrounding green cor-
ridors (Fig. 4E) on health via self-rated air pollution started negatively, 
with a non-significant low at 200m (ß: − 0.021; CI: − 0.062, 0.001). They 
then turned positive and showed a clear plateau of significant positive 
associations for distances from 800 to 1000m, with a peak at 900m (ß: 
0.053; CI: 0.013, 0.121). Surrounding total green space (Fig. 4F) dis-
played the same patterns, peaking at the same point at 900m (ß: 0.053; 
CI: 0.013, 0.127). Accessible green space (Fig. 4G) showed no indirect 
health effects for distances up to 1100m and then started climbing to a 
significant association at 1400–1500m (ß: 0.035; CI: 0.002, 0.105). 
Green corridors in network distances (Fig. 4H) presented a longer and 
shifted significant plateau of positive associations (900m–1300m) 
compared to surrounding green corridors, with a peak at 1000m (ß: 
0.044; CI: 0.009, 0.108). Accessible total green space (Fig. 4I) reacted 
almost identically. The highest estimate was found for surrounding 
green corridors and total green spaces at 900m (ß: 0.053; CI: 0.013, 
0.127). The investigation of the correlation matrix indicated the ex-
pected strong collinearity between the nested green space 

Fig. 3. Conceptual diagram showing theoretically indicated pathways linking 
green space to air pollution and health. The green space indicator was 
exchanged 135 times for each structural equation model. 

M. Cardinali et al.                                                                                                                                                                                                                              



Health and Place 89 (2024) 103300

6

characteristics (D, E, H, I), indicating the same underlying mechanism 
(0.87–0.99) (Table A6). However, the correlation of accessible green 
space to other indicators was moderate (0.37–0.46). This indicates 
partially unique mechanisms for self-rated air pollution from green 
corridors and accessible green spaces. 

3.3. Direct effects – how green space indicators relate to health 

The direct effects, factually adjusted for air pollution, showed clear 
patterns of proximity and differed by the assessed green space charac-
teristic (Table A9). Surrounding greenness (Fig. 5A) showed a positive 
association in immediate distances, although not significant and a 

significant plateau for distances for intermediate distances of 
600–900m, reaching its maximum at 700m (ß: 0.566; CI: 0.064, 1.051). 
Cumulative surrounding greenness (Fig. 5B) behaved almost identically 
with somewhat higher estimates. On the contrary, accessible greenness 
(Fig. 5C) was not associated with direct health effects at any distance but 
showed an increasing pattern from 500 to 1400m distance. Surrounding 
green spaces (Fig. 5D) showed two significant positive peaks. The first is 
in the immediate surroundings at 200m (ß: 0.427; CI: 0.064, 0.813). The 
second is at intermediate distances of 700–900m, with a peak at 800m 
(ß: 0.340; CI: 0.020, 0.662). Surrounding green corridors (Fig. 5E) and 
total green space (Fig. 5F) showed an identical pattern with significant 
positive associations at 400–600m, very similar estimates and a 

Table 1 
– Characteristics of the sample (unstandardized).  

Context Indicator Høje-Taastrup Nantes Porto Sofia p 

Global city sample (n) 201 293 439 432  

Urbanicity population density (mean (SD)) 4028.65 
(1336.94) 

5616.27 
(2353.62) 

4829.28 
(1632.50) 

9021.14 
(3689.54) 

<0.001 

Local self-rated Air Pollution (%)     <0.001  

no inconvenience 109 (54.2) 157 (53.6) 142 (32.3) 25 (5.8)   
weak inconvenience 52 (25.9) 52 (17.7) 62 (14.1) 121 (28.0)   
moderate inconvenience 32 (15.9) 53 (18.1) 67 (15.3) 188 (43.5)   
high inconvenience 7 (3.5) 12 (4.1) 85 (19.4) 81 (18.8)   
very high inconvenience 1 (0.5) 19 (6.5) 83 (18.9) 17 (3.9)   

main roads within 500m surroundings (0 – 11.02 ha, mean 
(SD)) 

2.49 (0.98) 4.40 (1.81) 7.09 (2.02) 2.44 (1.45) <0.001  

satisfaction with shops (Likert 1–5, mean(SD)) 3.98 (1.08) 3.48 (1.07) 3.41 (1.39) 3.82 (0.86) <0.001  
satisfaction with leisure facilities (Likert 1–5, mean(SD)) 3.78 (1.11) 2.85 (1.16) 3.34 (1.36) 3.28 (0.88) <0.001  
satisfaction with public transport (Likert 1–5, mean(SD)) 4.45 (0.90) 4.43 (0.66) 3.59 (1.44) 3.85 (0.63) <0.001 

Personal gender (%)     <0.001  
Male 105 (52.2) 129 (44.0) 159 (36.2) 204 (47.2)   
Female 96 (47.8) 162 (55.3) 280 (63.8) 228 (52.8)   
Diverse 0 (0.0) 2 (0.7) 0 (0.0) 0 (0.0)   

age group (%)a     <0.001  
15–24 13 (6.5) 32 (10.9) 18 (4.1) 46 (10.6)   
25–44 57 (28.4) 125 (42.7) 94 (21.4) 171 (39.6)   
45–64 66 (32.8) 86 (29.4) 147 (33.5) 128 (29.6)   
over 65 65 (32.3) 50 (17.1) 180 (41.0) 87 (20.1)   

mean years lived in Neighbourhood (SD) 16.60 (13.76) 14.53 (15.03) 28.90 (20.08) 22.41 (12.34) <0.001  
mean net income as % of minimum wage (SD) 141% (93%) 149% (63%) 40% (66%) 143% (73%) <0.001  
mean years of education (SD) 12.40 (2.51) 12.46 (3.38) 7.03 (3.72) 13.16 (2.67) <0.001  
has disabilities (%) 20 (10.0) 46 (15.7) 174 (39.6) 67 (15.5) <0.001  
employed (%) 115 (57.2) 166 (56.7) 126 (28.7) 318 (73.6) <0.001  

self-perceived Health (%)     <0.001  
very good 50 (24.9) 87 (29.7) 39 (8.9) 149 (34.5)   
Good 74 (36.8) 137 (46.8) 167 (38.0) 170 (39.4)   
Fair 48 (23.9) 51 (17.4) 142 (32.3) 86 (19.9)   
Bad 23 (11.4) 17 (5.8) 60 (13.7) 27 (6.2)   
very bad 6 (3.0) 1 (0.3) 31 (7.1) 0 (0.0)  

green space 
characteristics 

surrounding Greenness in 500m Euclidean distance (-1 to 1, 
mean (SD)) 

0.46 (0.05) 0.42 (0.03) 0.37 (0.08) 0.23 (0.04) <0.001  

Cumulative surrounding greenness in 500m 
Euclidean distance (1384.33 – 4775.13, mean (SD)) 

3630.87 
(374.23) 

3327.87 
(251.12) 

2963.04 
(666.85) 

1847.63 
(288.29) 

<0.001  

accessible greenness in 500m network distance (-1 to 1, mean 
(SD)) 

0.44 (0.04) 0.39 (0.04) 0.34 (0.06) 0.24 (0.04) <0.001  

surrounding green space 
in 500m Euclidean distance (0 - 30.02 ha, mean (SD)) 

9.89 (3.73) 6.12 (4.80) 6.24 (3.89) 6.90 (7.77) <0.001  

surrounding green corridors 
in 500m Euclidean distance (0 - 537.79 ha, mean (SD)) 

59.75 (21.63) 70.91 (67.41) 19.15 (11.89) 44.35 (85.01) <0.001  

surrounding total green space 
in 500m Euclidean distance (0 - 539.15 ha, mean (SD)) 

64.77 (19.93) 74.17 (67.03) 21.57 (13.59) 48.41 (86.41) <0.001  

accessible green space in 500m network distance (0 – 16.32 ha, 
mean (SD)) 

3.70 (1.45) 1.64 (1.56) 2.35 (2.11) 3.12 (3.68) <0.001  

accessible green corridors in 500m Network distance (0 - 
154.30 ha, mean (SD)) 

51.76 (17.59) 56.92 (66.64) 9.74 (9.81) 28.93 (37.99) <0.001  

accessible total green space in 500m network 
distance (0 - 158.66 ha, mean (SD)) 

56.77 (16.33) 60.18 (66.51) 12.16 (10.37) 32.99 (41.47) <0.001  

a age was used as a continuous variable in the analysis and is only shown here in groups to highlight the differences across samples. 
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maximum at 600m (ß: 0.560; CI: 0.096, 1.156). Both indicators then 
turned negative with a non-significant low at 1300m distance (ß: 
− 0.428; CI: − 0.876, 0.013). Accessible green spaces (Fig. 5G) showed a 
similar pattern to surrounding green spaces but with no significant as-
sociations and less strong estimates. Accessible green corridors (Fig. 5H) 
showed a sharp one-peak pattern at 900m (ß: 0.664; CI: 0.186, 1.257). 
Accessible total green spaces (Fig. 5I) behaved very similarly, with 
somewhat lower estimates. The overall strongest association was found 
for accessible green corridors at 900m (ß: 0.664; CI: 0.186, 1.257) 
(Fig. 5H). Similar to the peak of the partial effects, the investigation of 
the correlation matrix showed the expected strong collinearity between 
nested green space characteristics (A & B; D, E, H & I) (Table A6). 
However, we found a weak to moderate correlation to other green space 
characteristics for surrounding greenness (0.17–0.28), surrounding 
green space at 200m (0.09–0.49) and 800m (0.28–0.49), and sur-
rounding green corridors (0.11–0.42). This suggests partially indepen-
dent mechanisms to health for greenness, green space and green 
corridors at intermediate distances, as well as green spaces in immediate 
distances to health. 

3.4. Total effects – how green space indicators, directly and indirectly, 
related to health 

The total effects (direct + indirect effects) in the structural equation, 
acted similarly to the direct effects (Fig. 6, Table A10), due to the larger 
effect size in the direct associations (maximum ß 0.664) and the indirect 
associations (maximum ß 0.053). The overall strongest association was 
found for accessible green corridors at 800m (ß: 0.675; CI: 0.191, 1.269). 

4. Discussion 

4.1. Main findings 

Our comprehensive and rigorous sensitivity analysis examined 135 
structural equation models to unveil differences in the associations be-
tween green space air pollution nuisance and health, depending on 
green space characteristics and their proximity to a person’s home. In 
our study, only two green space characteristics were associated with 
indirect health effects through lower experienced air pollution. First, the 
area of green corridors measured in intermediate surroundings of 800 
m–1000 m was significantly related to lower experienced air pollution 
and indirect health effects. Second, accessible green spaces were also 
associated with lower self-rated air pollution and indirect health effects 
at network distances of 1400–1500m. Interestingly, we did not find a 
significant association between any tested greenness variable and air 
pollution. Our results support the theory that to mitigate air pollution 
through deposition, dispersion and absorption of air pollutants, green 
space connectivity seems to be an important characteristic. 

Furthermore, we found direct effects on health deriving from 
partially unique green space characteristics. Surrounding greenness in 
intermediate distances (600–800 m), immediate (200 m) and interme-
diate (700–900 m) surrounding green spaces and green corridors in 
400–600 m or 500–800 m when measured in network distance, were all 
associated with health. In our results, these mechanisms also dominated 
the total effects between green space characteristics and health essen-
tially masking the indirect pathway through air pollution. This suggests 
that mechanisms can easily remain undiscovered in study designs that 
do not analyse specific pathways, which might partly explain the 

Fig. 4. Indirect Effects (a*b) Green Space – Self-rated Air Pollution – Health Sensitivity Analysis. Standardized Estimated ß (95% CI) of the 135 structural equation 
models; adjusted for sex, age, disabilities, years of education, income, occupation, years lived in the neighbourhood, main roads area within 500m buffer, satisfaction 
with shops, leisure facilities, public transport, population density and city. 5000 Bootstrap Samples, shaded grey area show 95% confidence interval. 
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heterogeneity in the results of previous studies. 

4.2. Connectivity of green spaces and self-rated air pollution 

Our results confirm our hypothesis that the connectivity of green 
spaces is an important characteristic of this pathway and is best 
detectable in Euclidean distances. Furthermore, mainly green space 
corridors at medium distances (800-1,300m depending on the indicator) 
were associated with self-rated air pollution and indirect health effects, 
which is in line with a recent study based on monitoring stations (Venter 
et al., 2024). A possible explanation for the role of connected green 
space might be the barrier effect of these types of green spaces which 
combines the three aspects of deposition, dispersion and absorption 
(Diener and Mudu, 2021). Moreover, green corridors increase ventila-
tion in urban environments, which is arguably much stronger than the 
removal capacity of green spaces (Vos et al., 2013). In addition, the 
results might be partly explained by conflicting land use, meaning that 
bigger green spaces usually do not contain pollution sources (Mueller 
et al., 2022). Notably, our results corroborate the research of Shen and 
Lung (Shen and Lung, 2017), who concluded that the connectivity of 
green spaces can be an important factor in reducing air pollution and 
subsequently reducing lung diseases. Consistent with recent literature 
our findings on the pathway from green space to air pollution annoyance 
to self-rated health suggest that instead of a high average level of 
greenness in an area, the area covered with green space corridors, likely 
due to increased ventilation, may be a better predictor for the pathway 
of green space health effects through air pollution mitigation. Lastly, our 
results suggest that this mechanism potentially operates in intermediate 
surroundings of not more than 800-1,000m Euclidean distance or 

900-1300 m network distance. 

4.3. Greenness and self-rated air pollution 

Contrary to our initial expectations, no indicator that tried to capture 
greenness (A-C) was associated with the self-rated air pollution at any 
buffer distance in our study. This is in line with part of the previous 
studies gathered by Dzhambov and colleagues on the mediating role of 
air pollution using NDVI as their green space measure (Dzhambov et al., 
2020). These studies did not find a mediation effect for air pollution but 
did find a significant total effect on a variety of health and mental health 
outcomes using NDVI as their green space measure (Agay-Shay et al., 
2014; Crouse et al., 2019; Cusack et al., 2018; Dzhambov, 2018; 
Dzhambov et al., 2018b; Fong et al., 2018; Hystad et al., 2014; Marke-
vych et al., 2014a, b; Sbihi et al., 2015). Notably, all of the above studies 
were conducted in North America, Europe or Israel and not in countries 
with severe air pollution which suggests that the severity of air pollution 
might be an influential factor in detecting a mitigation effect of 
greenness. 

Another influential factor for the contradicting results might be 
related to the fragmentation of green spaces. Although the following 
studies gathered by Dzhambov et al. (2020) that were able to detect a 
mediation effect looked at a variety of different health outcomes, they 
share the similarity of a 30 × 30m resolution or lower to calculate the 
NDVI values (Chang et al., 2020; Crous-Bou et al., 2020; Dadvand et al., 
2012; Dzhambov et al., 2018a; Gascon et al., 2018; James et al., 2016; 
Klompmaker et al., 2019a, b; Laurent et al., 2013, 2019; Liao et al., 
2019; Liu et al., 2019; Orioli et al., 2019; Thiering et al., 2016; Wang 
et al., 2019; Xiao et al., 2020; Yang et al., 2019, 2020). It has been shown 

Fig. 5. Direct Effects (c) Green Space – Health Sensitivity Analysis. Standardized Estimated ß (95% CI) of the 135 structural equation models; adjusted for sex, age, 
disabilities, years of education, income, occupation, years lived in the neighbourhood, main roads area within 500m buffer, satisfaction with shops, leisure facilities, 
public transport, population density and city. 5000 Bootstrap Samples, shaded grey area show 95% confidence interval. 
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that these resolutions are unable to detect smaller green spaces (Mar-
kevych et al., 2017). Since small fragmented green spaces might even 
increase secondary air pollutants (PM2.5 and O3) and create negative 
links to health (Shen and Lung, 2017) not including those might explain 
these differences. This is also in line with similar results in a recent study 
which used 10 × 10 m resolution and was not able to detect a significant 
mediation between greenness, air pollution and self-rated health 
(Dzhambov et al., 2023). Similarly, including those smaller green spaces 
with an NDVI based on a 10 × 10 m resolution in our study might have 
led to health trade-offs and resulted in insignificant findings. This 
further suggests that the connectivity of green spaces seems to be an 
important characteristic that enables green spaces to reduce air pollu-
tion inconvenience. 

Moreover, compared to green corridor indicators, which describe a 
relatively clear urban morphology, the mean vegetation index can be 
similar in very different urban contexts, potentially masking some of the 
effects. This might also partly explain our null findings since highly 
context-dependent mechanisms, such as the street canyon effect, may 
lead to green spaces being positive in one situation and ineffective in 
mitigating air pollution or even negative in another (Hewitt et al., 2020; 
Janhäll, 2015; Shen and Lung, 2017; Venter et al., 2024). More research 
is needed to understand the mechanisms more precisely, especially since 
negative mechanisms are theorised, which need to be avoided by 
evidence-based urban design guidelines. 

Another reason for our non-significant findings might be the validity 
of our air pollution variable, which might not be precise enough to 
detect associations with greenness (see 4.6 Strength and limitations). 
Especially, since a recent study based on 2615 monitoring stations from 
Venter and colleagues suggests that the air pollution mitigation effect of 
trees is only moderate at best and highly variable (Venter et al., 2024). 

In addition, there could be trade-offs with negative greenness effects like 
pollen, entrapment of pollution in green canyons, or unmeasured con-
founders like atopy, essentially masking the beneficial effect of green-
ness on air pollution. 

4.4. Green space characteristics and higher perceived air pollution 

Surrounding green corridors and to some extent, greenness in-
dicators showed a pattern of negative associations with self-rated air 
pollution in immediate distances, although non-significant. This could 
be related to fragmented green spaces and urban morphology leading to 
settings where ventilation is reduced, potentially trapping pollutants 
(Abhijith et al., 2017; Janhäll, 2015). In close buffer distances, the 
covered area is small and the chances are high that green spaces might 
be more often fragmented, which is associated with an increase in air 
pollution and negative health effects in some studies (Diener and Mudu, 
2021; Shen and Lung, 2017). Furthermore, trees emit volatile organic 
compounds (VOCs) that can react with other airborne chemicals to form 
secondary air pollutants (Duan et al., 2023; Gu et al., 2021), which 
might be especially noticeable in fragmented green spaces between 
buildings that can block air exchange, similar to the street canyon effect 
where tree canopies can hinder air-exchange and increase air pollution 
(Abhijith et al., 2017; Janhäll, 2015). The street canyon effect might also 
partially explain why we found the strongest negative estimate for 
accessible greenness which largely overlaps with the road network. See 
the work of Abhijith et al. (2017); Baldauf (2017); Diener and Mudu 
(2021); Janhäll (2015) for a deeper understanding of how roadside 
vegetation can either lead to an increase or decrease in nearby air 
quality. 

Higher perceived air pollution near green spaces may also be related 

Fig. 6. Total Effects (a*b + c) Green Space – Self-rated Air pollution - Health Sensitivity Analysis. Standardized Estimated ß (95% CI) of the 135 structural equation 
models; adjusted for sex, age, disabilities, years of education, income, occupation, years lived in the neighbourhood, main roads area within 500m buffer, satisfaction 
with shops, leisure facilities, public transport, population density and city. 5000 Bootstrap Samples, shaded grey area show 95% confidence interval. 
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to pollen dispersion, a concept with theoretical support but limited 
empirical evidence (Anenberg et al., 2020; Lam et al., 2021). Pollen’s 
limited travel distance might reduce its perceived impact beyond im-
mediate vicinities, potentially able to explain the observed indirect 
negative association to self-rated air pollution near green corridors and a 
positive one further away. Lastly, the self-rated air pollution indicator 
might also be susceptible to confounding effects of persons with asthma 
in our sample (Piro et al., 2008). 

4.5. Green space health effects associated with other mechanisms 

In this study, we have focused on the theorised mediating role of air 
pollution between green space and health, but there are also potential 
associations captured in the direct effects of our models. Surrounding 
greenness showed a clear association with health in intermediate dis-
tances, peaking at 700m surroundings. This is in line with the review 
and meta-analysis of Browning and Lee, who concluded that surround-
ing greenness was best in predicting physical health in buffer distances 
of 500–999 m around homes (Browning and Lee, 2017). Our results also 
imply a positive relationship between green corridors and health beyond 
reduced air pollution annoyance, which might partly be explained by 
the importance of air-exchange corridors which have been studied in 
their ability to reduce urban heat island effects (Gunawardena et al., 
2017; Kuang et al., 2015; Ren et al., 2016; Wong et al., 2010). In 
addition, the positive association between green spaces and green space 
corridors with health are consistent with the findings on green space 
physical activity pathways where significant associations were found for 
similar distances (Akpinar, 2016; Cardinali et al., 2024b; McCormack 
et al., 2010; Sugiyama et al., 2010). While our findings do not allow for 
disentangling all pathways individually, they do imply that several 
mechanisms act simultaneously, work at different distances, and rely on 
different green space characteristics (Cardinali et al., 2023b; Markevych 
et al., 2017). This has the potential to mask individual mechanisms 
depending on the study design. 

4.6. Strengths and limitations 

Our study is characterised by the systematic analysis of green space 
characteristics and their proximity to individual homes. To our knowl-
edge, such a comprehensive sensitivity analysis has not been done on the 
pathway from green space via self-rated air pollution to self-rated health 
and provides new insights into how and where this pathway operates. 
Our study allows the comparison of different green space characteristics 
and highlights the potential importance of the connectivity of green 
spaces to effectively reduce air pollution annoyance. 

However, the scale and complexity of this study design also come 
with limitations. As we used just-identified models with 0 degrees of 
freedom, we can only judge the quality of the models based on theory, 
but not with model fit indices, as for this an over-identified model would 
be needed. In addition, our study design limited the ability to examine 
the results in more detail for possible effect modification, although 
different vulnerabilities to air pollution in age groups are to be expected. 
Another potential limitation arises from not explicitly addressing non- 
linear relationships between green space characteristics, self-rated air 
pollution, and self-rated health, which may have led to an over-
simplification of the complex relationships. On a related note, the 
sensitivity analysis approach with 135 structural equation models may 
have led to vulnerability to noise in the dataset, especially in cases 
where the true relationship between a green space characteristic and 
self-rated air pollution approaches zero. In general, the sensitivity 
analysis approach and reduced model complexity lead to limited pre-
cision in the examined mechanisms and should be treated accordingly. 

Although we performed a detailed analysis of green space indicators, 
there may be limitations regarding generalizability. While we adjusted 
for temperature and seasonality through our city dummy variables, we 
could not account for differences in weather conditions between the 

approximate two months of survey conduction in the cities. This might 
have affected our results since meteorological conditions such as tem-
perature, humidity and ventilation can easily mask the green space air 
pollution relationship (Diener and Mudu, 2021; Shi et al., 2017). In 
addition, it needs to be acknowledged that while NDVI is the most 
common method to measure greenness, the less known Soil Adjusted 
Vegetation Index (SAVI, Huete, 1988) might deliver more precise results 
due to its adjustment for soil reflection (Silleos et al., 2006). However, a 
recent study in Europe found no better performance of SAVI compared 
to NDVI (Sadeh et al., 2021). Furthermore, our case studies have been 
carried out in European climate zones and predominantly only in a 
certain category of urban satellite districts with specific socio-economic 
characteristics. This might have also reduced the variability in larger 
buffers. All this limits the generalisation of our results. 

In addition, our study relies heavily on survey data, which is asso-
ciated with the uncertainties of self-reported data such as social desir-
ability, recall or reporting bias. In particular, self-reported air pollution 
variables have been associated with inaccuracies through the influence 
of visual perception and socio-demographic variables (Brody et al., 
2004; Cobbold et al., 2022; Guo et al., 2016). Similarly, Pelgrims and 
colleagues found inaccuracies in self-rated air pollution alone, but a 
reasonable classification of relative exposure levels in their models, once 
they included socioeconomic status and other contextual factors (Pel-
grims et al., 2022). Although we are confident that our self-rated air 
pollution variable is equally robust, since we followed a similar 
approach, it is important to acknowledge this potential limitation. 
Furthermore, we cannot rule out reverse causation where people with 
lower self-rated health report higher perceived air pollution. Although 
we did adjust for disabilities and addressed this issue partially, not all 
health issues were captured in this proxy which means we cannot rule 
out that people with chronic illnesses reported higher air pollution than 
those without (Pantavou et al., 2018; Piro et al., 2008). 

Moreover, our one-item question on health only allows for an 
interpretation towards general health overall, and not specific health 
concerns like respiratory illnesses, cardiovascular diseases, impaired 
neural development, depression, suicide, cognitive capacities, happiness 
and life satisfaction (Cohen et al., 2017; Liu et al., 2021; Lu, 2020; Pope 
et al., 2017; Vos et al., 2015; WHO Regional Office for Europe, 2016). 
The relation to respiratory-specific health outcomes may be stronger 
(Mueller et al., 2022). Self-rated health is an indicator that encompasses 
both mental and physical health and could include both the physiolog-
ical pathways and the psychological pathways from air pollution to 
health (Lu, 2020). However, since our exposure is perceived rather than 
measured air pollution, the psychological pathways may be over-
represented, especially the ones related to perceived health risks (Orru 
et al., 2018). Furthermore, although we adjusted our model for in-
dicators of neighbourhood satisfaction that could confound this associ-
ation, we cannot exclude the possibility of some residual confounding by 
unmeasured psychological factors (Hajian Tilaki, 2012). Lastly, the 
study employed a cross-sectional design, which precludes establishing 
causal relationships between green space, self-rated air pollution and 
health outcomes. 

4.7. Further research avenues and implications 

Our results support the theory that green space corridors may 
contribute effectively to reducing air pollution annoyance and do not 
contradict the hypothesized negative associations with fragmented 
green spaces (Shen and Lung, 2017). They are also in line with recent 
findings of Venter and colleagues suggesting that the role of urban 
vegetation in air pollution reduction is more complex than greening 
cities (Venter et al., 2024). Currently, urban green space strategies often 
work with the percentage of green space per hectare or with green space 
per citizen. Both concepts fail to take the positive health aspect of 
connectivity into account and might easily result in fragmented green 
spaces, potentially even harmful by increasing local air pollution. 
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More research is needed to confirm the importance of green space 
connectivity, preferably with local air quality monitoring stations as 
they allow for a fine-grained objective assessment, which might lead to a 
change in urban green space strategies. Building on our research, we 
recommend using Euclidean distance when trying to capture the air 
pollution pathway and integrate the ratio of fragmentation and con-
nectivity of green spaces in future studies. Another research avenue is to 
test more complex structural equation models (effect modification, se-
rial and parallel mediation), to better understand the chain of effects 
between green space characteristics, air pollution and health. Most 
importantly, more longitudinal studies are needed to establish the 
theorized causal relationship. This study may support in setting up these 
more complex research frameworks. 

4.8. Conclusion 

We investigated nine green space indicators in 15 distances to get 
insights into how the proximity to and the characteristics of green spaces 
influence air pollution annoyance and in turn self-rated health. Our 
results indicate that it is mainly the connectivity of green spaces, 
measured in intermediate Euclidean distances (800–1000 m), that may 
lead to lower air pollution annoyance. Interestingly, we did not find any 
greenness indicators that were able to influence self-rated air pollution, 
in line with recent studies that suggest a complex and minimal role of air 
pollution mitigation of greenness. Although our study is limited to Eu-
ropean satellite districts and relies on self-reported air pollution, it 
supports the available evidence that the connectivity of green spaces 
may be an important green space characteristic when it comes to 
reducing air pollution in cities. With this, our study adds important in-
sights into how green spaces should be planned and implemented in 
cities, essentially calling for a connected system of green spaces instead 
of fragmented smaller parks, to reduce air pollution annoyance and in 
turn improve the overall health of their residents. 
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